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Summary

This master thesis work is about the Human Activity Recognition field, which is
a part of the Body Area Network. The main purpose of this thesis work is to be
able to collect and analyze signals and parameters useful for recognizing human
activities performed by users.

To do this, a WatchKit App was developed using an Apple Watch Series 2
combined with an iPhone 6; this app allows, by pressing a button, to collect ac-
celerometer data (already deprived of the gravitational component), gyroscope,
orientation of the device through the three Euler angles, at a fixed frequency of 50
Hz.

The app also allows, through the authorizations provided by the user, to collect
data relating to the user’s current speed through the device’s GPS and the user’s
heartbeat obtained from the HealthKit package present in the iOS system. This
data thus obtained are recorded through JSON format files and stored within the
user’s iPhone within the iOS file system app.

Data was collected on 2 male subjects in environments and uncontrolled modes,
choosing a total of 8 activities such as: walking, running, indoor cycling, outdoor
cycling, driving, elliptical and rowing machine, smoking.

Data is then transferred and processed on an external server and processed
using Python v.2.7 and his data wrangling, visualization and machine learning
packages such as Pandas, Scikit and Matplotlib.

In the processing phase, data sequences have been divided into windows of 5
seconds each, associating for each window the related heart rate and speed values
(which are not possible to sample in a fixed way) through the relative timestamp
obtained during the recording phase.

Subsequently, features in the time and frequency domain were extracted from
the windows, so as to obtain a dataset composed of 1054 instances, each containing
214 features.

By applying a filter feature selection, in which highly correlated and low vari-
ance feature are removed from the aforementioned dataset, the number of features
is reduced to 21. It was also explored in this work HAR excluding heart rate and
current speed: in that case, the features considered were 18. Having thus obtained
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the definitive dataset and split into training and test set, some supervised model
were tuned and crossvalidated with stratified k-fold, with k=5. Model selected
were : K Nearest Neighbor, Support Vector Machine, Decision Tree and Random
Forest. The tuned model were also employed to perform HAR on the test set and
the performance of the different classifiers were compared, with the best accuracy
(98%) obtained by Random Forest. The result obtained sugggest the use of Apple
Watch as a quality-recording device, with high recognition rate even employing
very simple classifying models.
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Chapter 1

Human Activity
Recognition: introduction
and overview

1.1 Problem introduction
In the society in which we live,the cost of health care is often difficult to be afforded
for all sections of the population. Thus, it becomes fundamental to promote and
encourage people to follow a healthy lifestyle that improves them by aiming at a
work of prevention, saving on the cost of care .

The percentage in elderly people is growing and there’s more and more the
necessity of support in daily acitivities which allows even in subjects with reduced
autonomy (with motor and psycho-cognitive disabilities ) to continue living safely
in their home, reducing psycological distress and costs for hospitals and care struc-
tures.

Furthermore, using Human Hactivity Recognition (HAR) to detect physical
activity is a possible way to encourage a more active lifestyle in the population,
recognizing and encouraging physical activities, acting as a useful tool in the pre-
vention of obesity and diseases of the cardiovascular system.

In this perspective, the study of the Recognition of Human Activities, combined
with the ease of obtaining increasingly less intrusive sensors, can allow can allow
to easily monitor the actions performed by the user, encouraging positive habits
and, where possible, discouraging negative ones.

In this thesis work, we decided to investigate the ability to discern human
activities by collecting data through Apple devices, in particular the Apple Watch

1



1 – Human Activity Recognition: introduction and overview

which, placed on the wrist, occupies a strategic position for the detection of signals
useful for HAR.

The choice of the Apple branded device is not accidental: from data coming
from Strategy Analytics [1] , Apple Watch occupies 50% of the smartwatch market,
having sold over 22 million devices in 2018, four times compared to the second force
on the market , FitBit.

Smartwatch Brands Market Share(%)
Apple 50,0
Fitbit 12,2
Samsung 11,8
Garmin 7,1
Others 18,9

Table 1.1. Market share in 2018 to Strategy Analytics report

Furthermore, the fact that the Food and Drugs Administration has recognized
the Apple Watch Series 4 as a class 2 medical device due to its ability to recognize
cardiac rhythms and detect falls is a valuable reason for investigating the possibility
to perform HAR using Apple Watch as a sensing device. [2]

1.2 Human Activity Recognition: problem descrip-
tion and design issues

1.2.1 Preliminary definitions
Here are provided some essential definitions in order to better understand the
problem domain.

Time series: x :< x1, x2, ..., xn > is a set of n ordered real values.
Subsequence: with refence to a Time series x of length n, a subsequence skm,

with k≤m≤n is the set of m − k + 1 ordered real values obtained by sampling
the elements of x from the kth to the mth such as:

skm :< xk, xk+1, ..., xm >.
Class: a class is a set of time series which share one or more characteristics.

Label: a label is an identificative value for a given class.
Lara et al. provides to give a formal definition of the HAR problem [3].

1.2.2 Definition : HAR Problem
Given a set S = S0...Sk−1 of k time series each one from a particular measured
attribute, and all defined within time interval I = [tα, tω], the goal is to find a

2



1.3 – General structure for a HAR application

temporal partition < I0, Ir−1> of I, based on the data S, and a set of labels rep-
resenting the activity performed during each interval Ij . This implies that time
intervals Ij are consecutive, non-empty, non-overlapping, and such that

r−1Û
j=0

Ij = I

The main limit of this definition is that the subject in theory performs a single
activity in a given time interval, implying that for each time interval Ij there is
only one corresponding activity, which often does not deal with real conditions (for
example it is possible to walk while smoking). Anyway, in order to simplify the
HAR task, this assumption is often considered to hold.

1.2.3 Definition: relaxed HAR Problem
A new definition of relaxed HAR problem is given, introducing fixed time windows.

Given a set W = {W0...Wk−1} of m equally sized time windows, totally
or partially labeled, and such that each Wi contains a set of time series Si =
Si,0, ..., Si,k−1 from each of the k measured attributes, and a set A = a0, ..., an−1
of activity labels, the goal is to find a mapping function f : Si⇒ A such that the
returned label corresponds as much as possible to the activity in Wi.

1.3 General structure for a HAR application
Usually, the design of a HAR model follows the same stream of most of machine
learning applications : the dataset is split into training and test set. The training
phase is composed by the following phases:

1. data collection from sensors/wereable device

2. data communication with server

3. feature extraction from raw data

4. learning algorithm

5. model building

Then the recongnition model is subsequenlty employed to associate, for each
time window of a data stream, where possible, an acitivity in the dataset. This
kind of approach presents two main issues:

3



1 – Human Activity Recognition: introduction and overview

Figure 1.1. Workflow relative to learning model generation and its employ in
HAR in case of remote processing

• limited set of activities : considering the enormous amount of the human
activities which can be considered, it is fundamental to consider the right
project parameters in order to achieve properly HAR on the activities that
we aim to distinguish ;

• window length: it must be selected taking into account the parameters of
completeness of information (each time window should contain the neces-
sary information to distinguish activities properly) and lightness (each time
window should not be too long because, in case system requires remote com-
munication between different device, it couldn’t work properly or it could
require too much time).

In addition, a sliding window can be used to increase sensitivity in sudden
changes of activity, as happens in everyday life. Hu et al. [4] provide a definition
of sliding window in their work as a time series T of length m, and a user-defined
subsequence length of n, all possible subsequences can be extracted by sliding a
window of size n across T and extracting each subsequence, Sk. For a time series
T with length m, the number of all possible subsequences of length n is m-n+1.

4



1.4 – Approaches for data analysis

1.4 Approaches for data analysis
Lara et al. also distinguish seven main issues relative to HAR design:

1. selection of attributes and sensors: the most common sensor are accelerom-
eters, due to their cheapness, low power consumption and utility in recogni-
tion. Parameters of interest are sampling frequency (usually from 10 to 100
Hz) and sensor placement. Magnetometer and gyroscope are sensor widely
used as much. Also physiological and GPS signals are useful for recogni-
tion: first ones (f.e. heart rate, respiratory rate) can be discriminant between
standing and sport activity, second might be used to understand user’s trans-
portation mode or used to distinguish between indoor or outdoor activity. In
HAR can be also taken into account environmental parameters, such as light
intensity, temperature, audio level etc.

2. intrusiveness: the user cannot wear a large number of sensors, otherwise, in
addition to feeling less natural in performing the most common tasks, these
could hinder him, altering usual movement patterns;

3. data collection protocol: collecting data in an uncontrolled environment would
be preferable, but it usually causes a significant drop in the accuracy perfor-
mance of the system; furthermore, the possible bias given given by physical
characteristics, age, gender and the behavioral singularity of each individual
may be taken into account;

4. recognition performance: it depends on the activity set, quality of training
data, feature extraction method and learning algorithm. Of course including
activity with similar patterns may reflect in a drop of accuracy of the HAR
system; also simple activities such as walking or running are easier to rec-
ognize compared to complex activity such as practicing sports, watching TV
and so on;

5. energy consumption: Data transmission and communication between devices
or device and server is often wasteful: using short range communication
protocols (f.e. Bluetooth or WiFi) allows the system to consume less energy.
Data communication and data aggregation may be good strategies to reduce
energy consumption. Analyzing environmental factors in HAR may be very
expensive in these terms, especially in mobile application: in fact accessing
to microphone, GPS may cause a remarkable increase in energy expenditure;

6. processing: the recognition task can be done on the device or data can be
moved to an external server. Elaborating information on the device gives
more scalability and robustness to the system because it doesn’t rely in com-
munication, but there are a lot of issues in terms of storage and energy
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consumption. Computational power may be another aspect to take into ac-
count: in mobile devices it often presents limitations which may reflect on
more elaboration time and energy consumption;

7. flexibility: although for many of the activities considered in the HAR there
may be quite definite patterns, it is logical to think that each person per-
forms an action in his own way. Undoubtedly an elderly person will walk
differently than a young person, for example people with disabilities will
present patterns that will not be easily recognizable. There are therefore two
main approaches, a subject-dependent approach, in which for each user the
accuracy percentages of the system are calculated and their average is con-
sidered the accuracy of the classifier, and a subject-indipendent approach, in
which leave-one-out or cross-validation are used to build a valid model for all
individuals.

1.5 Learning approaches for HAR
As it has been possible to perceive, the enormity of variables present in the prob-
lem suggests resolution not in a deterministic approach, but turning to learning
algorithms that, once trained, are able to find solutions to the problem.

There are two main approaches to the recognition of activities: the supervised
and the non-supervised approach. To overcome the limitations of this type of
learning, a third method, semi-supervised learning, was introduced in the HAR
case studies.

Abdallah et al. [5], in their review, provide meaningful descriptions, presenting
advantages and disadvantages of these approaches. In supervised learning, an
impressive amount of data is collected and assigned a label, associating a class
instance with a sample, in this case an activity.

• Models generated by supervised learning can be distinguished between dis-
criminative models, based on the modeling of boundaries between the classes
present in the dataset (for example SVM, decision tree, kNN), generative
models, which are based onprobabilistic approaches, of which the most fa-
mous example is the Naive Bayes Classifier and a hybrid approach, which
combines the characteristics of the two to select the best features to use in
the classification. The main limitation of the supervised approach is obvi-
ously the difficulty in finding a large number of labeled data: in a system
that provides a continuous flow and in a context sensitive to sudden changes
it is difficult to think how each sample can be labeled with related activity
without taking into account loss of time and errors in labeling.

• to overcome the limits of the supervised approach, the applicability of unsu-
pervised learning to this type of problem was studied; unsupervised learning
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consists of finding a similarity between data based on criteria such as distance.
A famous example of unsupervised algorithm is the k-means clustering, in
which on the basis of the distance of the k centroids relative to the k clusters
selected, the sample is assigned to the closest of them.

• to take advantage of the robustness of supervised learning models but try-
ing to reduce the disadvantages of creating a large labeled dataset, semi-
supervised learning offers the possibility of combining a small amount of
labeled data with a large amount of untagged data, having significant im-
provements in system accuracy. The assumption of indipendently identical
distribution is also valid in semi-supervised learning.

1.6 Literature review

De Leonardis et al. [6] acquired 3-axis accelerometer, gyroscope and magnetome-
ter signal using a Xsens technology sensor, MTx miniature magnetic and inertial
measurement unit on 15 healthy subjects, 8 males and 7 females, considering 8
activities : sitting, standing, lying down, level walking, ascending and descend-
ing stairs, uphill and downhill walking. With a 5-s no overlapping windows, they
extracted 38 features from all the 9 signal and after using a Genetic Algorithm
for feature selection, they tested 5 classifiers: KNN, FeedForward Neural Network,
SVM , Naive Bayes, (NB) and Decision Tree (DT) with more than 90% of accuracy.

Rosati et al.[7] used the same sensor with a 5 s window with 3 second overlap
to build and compare two different datasets A and B, one obtained from features
found in literature, the other considering zero crossings and derivate features. A
GA was used for feature selection and KNN, FNN, SVM and DT were used for
classfication with peaks of accuracy, with SVM, of 97.1 % for dataset A and 96.7
% for dataset B.

Using WHARF dataset, which consist of 12 activities, Jordan et al. [10] pre-
sented an architecture called ConvNet; segmenting signals with a time window of
5 seconds and generating a Convolutional Neural Network, made by 3 layers with
24, 48 and 32 convolutional filters. They investigated different Kernel dimension
designing a ConvNet with 12x2 kernels, achieving an activity recognition rate of
79.3 %.

Xu et al. [9]in their work proposed, taking into account limited resources in
battery capacity and computing power of mobile devices, developed using a deep
learning tool called Caffe a SVM, obtaining different accuracy varying the num-
ber of features putting different threshold on the Pearson’s correlation coefficient,
obtaining accuracy values in recognition from 96,4% with 561 features , the whole
feature set to 91.0% with 130 features.
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Amezzane et al. [8]In their work, proposed some guide lines for mobile ap-
plication in HAR: they reviewed the present literature exposing influence of pa-
rameters such as sampling frequency, sensor selection, feature set. Working on a
public dataset from UCI repository which includes 6 activities , they tested Linear
Discriminant Analysis (LDA), Radial Basis Function Support Vettor Machine (
RBF-SVM), K Nearest Neighbor (KNN) and Random Forest(RF), trying differ-
ent feature selection techniques such as Consistency-Based Filter (CBF), Recur-
sive Feature Elimination (RFE) and Medium Decrease in Accuracy (MDA). They
compared results in terms of accuracy, macro-precision, macro-recall, macro- F1
measure and training time.

In [11], Suto et al. investigated performance of feature selection methods utiliz-
ing WARD database with a 32-samples window with 50% overlap. Most common
features in literature were extracted in time, frequency and correlation domain and
Artificial Neural Network(ANN), KNN and DT were tested trying different feature
set configurations for each subject, achieving the goal of HAR recognition.

In the next chapter, the iOS app developed to record data from Apple Watch
and iPhone will be described.
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Chapter 2

Motion Data Logging
WatchKit App

In order to be able to obtain data from a closed environment such as iOS, it was
necessary to develop an app that would allow the developer to record data from
sensors equipped on smartwatches.We developed such an App, to which we refer to
as Motion Data Logging, with the purpose of allowing the creation of a database
for Human Activity Recognition: the choice of developing on iOS ambient is mainly
the large diffusion of iOS devices on the market especially in that of smartwatches
which, despite the selling numbers at the moment are not comparable with other
devices such as smartphones, now present in everyone’s daily habits, have the
potential to be one of the strongly impacting new technologies.

The application, called Motion Data Logging, has a double interface, one relat-
ing to the smartphone and one to the smartwatch associated with it.

The data logging con be performed through the developed app in a simple way:
by pressing the "Start" button it is possible to start recording the data flow from
the accelerometer, gyroscope, magnetometer, GPS and from the optical detection
sensor placed on the body of the smartwatch, useful for measuring the heart beat;
when the "Stop" button is pressed, the recorded data is saved to a JSON file and
sent to the iPhone in background, where it is accessible via the File system app.

Moreover, the interface on the iPhone side allows, through a text box, to insert
a label in order to be able to associate each JSON file with the recorded activity,
thus allowing to proceed with the training of models derived from supervised and
semi-supervised algorithms.

It is also possible, without recording data relative to the heart rate because of
the absence of the photoplethysmograph, to log the iPhone sensor data and use
them for HAR .
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More details about the design of the app will be given in the following sections.

2.1 Hardware
2.1.1 Accelerometer, gyroscope and magnetometer
Unfortunately, due to the limited information available on Apple’s website, it was
not possible to obtain the technical specifications regarding the sensors equipped
on these devices.

However, from websites dealing with the subject, it is reported that from the
iPhone 6 onwards Apple mounts two accelerometers, a Bosch BMA280 and MPU-
6700 six-axis accelerometer from InvenSense, on the device with maximum sam-
pling rates of 2000 Hz and 4000 Hz, respectively[12].

Still, on specific forums related to the subject, the sampling frequency of 100 Hz
seems to be the maximum frequency for which the data obtained are recorded with
a certain stability, but unfortunately no more reliable sources have been found.[13].
However, considering the small dimensions of this type of sensors, it can be assumed
that for a device like the one used in this thesis work the specifications will not
differ much. In any case, it was decided to use project specifications that would
allow a stable collection of data. At the beginning of this master thesis work,
the possibility to record data only from the iPhone was explored : then the effort
was focused on creating a product that would have allowed the collection of data
from it. Apple Watch, considered as a more reliable sensing device because of the
number of movement patterns that can be detected which can be much greater
than using a cell phone; moreover, its low intrusiveness allows the user to carry
out the activities in a natural way, which may not happen by placing the mobile
phone on an arm, for example, through an armband.

Regarding gyroscope and magnetometer, no specific technical information was
found. The same for sensors equipped on Apple Watch

2.1.2 Heart rate measure system
Figure 2.1 shows the optical sensor on the back of the Apple Watch series 4, which
is the latest version available on the market, as follows:

• four green light LEDs diods;

• two infrared LEDs;

• an electrode placed on the digital crown, which can be used to measure health
parameters by putting your finger on it. This procedure allows to retrieve
heart rate and other parameters in a more direct way;
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Figure 2.1. Image is relative to the diods and leds equipped on Apple Watch
series 4, available on Apple website

• two semicircular electrodes, which carry out the measurements with the pro-
cedure described in the previous point, allow the closure of the finger-wrist
electrical circuit, guaranteeing the timeliness and accuracy mentioned above.

The Apple Watch series 2, which has been used in this master thesis work,
doesn’t use electrodes, relying for heart rate measurement exclusively on photo-
plethysmography; it consists in emitting pulsations in the spectrum of the green.
This light wavelength is absorbed by blood because of its strong composition of
hemoglobine, which absorbs wavelenghts in the green spectrum as showed in figure
2.4.[14]

With each beat the flow that circulates increases and consequently the greater
the absorption in the green spectrum of the tissues underlying the Apple Watch
and vice versa, as heart rate decreases, absorption will be lower.

These measurements are carried out in the background by the app, thus not
allowing a fixed sampling of the heartbeat, which can make it difficult to associate
a sampling rate to the cardiac measurement.

Obviously a similar argument can be made regarding the reading of data from
GPS, also carried out in the background and therefore not subject to a well-defined
sampling frequency.
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Figure 2.2. Absorption spectrum of hemoglobin in the oxygenated and
deoxygenated form

2.2 App design

2.2.1 Swift programming language
The app was developed by writing the code in Swift, which is Apple’s native
language, used in the construction of all its products. The version of the language
used is 5.0.

Apple describes the Swift language as a powerful, easy to learn and safe pro-
gramming language; his major strength is the API which provides an interoper-
ability with objective-C, which is a programming language best known and most
widely used, from which Swift directly derives.

2.2.2 Xcode : the environment for iOS app developing
Apple provides developers with the Xcode development environment, available for
free on the Apple Store. The great strength of this development environment is
the ease in the top-down approach in the implementation of an application: Xcode
easily allows to create a graphical interface for the device for which it is designed,
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associating the code to the various elements present in it.
Another strength of XCode environment is the possibility of obtaining an aes-

thetically pleasing interface for any version and model through the imposition of
adaptive constraints on the margins of the secure area; regardless of the device
for which it was designed, it allows a remarkable scalability within the products
(iPhone, iPad and Apple Watch of all generations) of the parent company.

Furthermore, Xcode contains a powerful emulator called Simulator which al-
lows the developer to carry out the debugging and testing phase directly from the
graphic interface of the emulated device on the PC.

On the contrary, one of the major flaws of the apple development environment
is undoubtedly the poor open-sourcing of the system. To be able to freely test
devices and make the application accessible on the App store, the developer must
be in possession of the Apple developer license called the Apple Developer Program,
available for 99$ a year.

Without it, you can still develop and test your application on the Apple device,
but there are limitations:

• there is a limitation on the number of applications developed by the individual
developer. If he exceeds the number, it will not be possible to create a new
project before 7 days;

• the application remains available on the device on which testing takes place
for a few days: afterwards, it will no longer be possible to test it or use it
directly on the device unless it is reinstalled directly by Xcode.

2.3 Software design
MotionDataLogging app is designed in order to create an environment in which,
using Apple Watch, is possible to collect data to perform HAR. The class diagram
explains how both controllers are linked by a WCSession object, instantiated in
the iPhone interface, which is responsable of communication between devices. In
the following paragraphs it will be explained in detail how the app works.

2.4 Graphical User interface
2.4.1 watchOS App
The graphical interface is designed to be as intuitive and usable as possible: in
fact, it has two buttons, Start and Stop, which with an appropriate color coding
(green for the Start, red for the Stop) immediately give the idea of their functions.

When the first is pressed, the methods for recording the values of the param-
eters of interest are recalled, while at the pressure of the second the recording is
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Figure 2.3. Class Diagram: the ViewController is the controller relative to the
iPhone view; the InterfaceController is the controller relative to the AppleWatch

Figure 2.4. The diagram follows the steps that the user may pursuit in order to
obtain data from the AppleWatch
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interrupted and the procedure for transferring the data collected on the iPhone is
started and from there the storage procedure is started .

The interface also presents a timer, which allows the user to monitor if the
system is recording and the duration of the log session.

The label at the bottom gives an indication of the operation of the system: if
the label from phone is received, if stopped properly to record, and if the file is
moved to iPhone with success.

Figure 2.5. User interface for MotionDataLogging Watch App

2.4.2 iOS App
A text box has also been added, which allows the user to optionally insert a label
for the following session: this label will remain active until the user decides to
insert a new one. This choice is justified by the fact that often in the operation
data logging you find yourself recording more consecutive times, the same task: to
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avoid loss of time, that choice has been made. In the same way, the user interface
on the iPhone side tries to reproduce the Apple Watch visual aspect with the same
two buttons that allow you to start and stop data recording on the smartwatch
remotely; in addition, there are two text fields describing the operations performed
on the iPhone side and the Apple Watch side:

• start recording on watch side;

• stop recording on watch side;

• transfering file;

• file moved to documents URL;

• impossibility of sending label.

The following paragraphs explain in detail the functions, methods and struc-
tures used within the application.

2.5 Software developement
This section will describe the packages used by the app to perform the following
functions:

• retrieve data from accelerometer, gyroscope and magnetometer using the
CMMotion Manager class and his functions and attributes;

• retrieve data relative to longitude, latitude, current speed from CLLocation
manager class and his functions and attributes;

• retrieve biometric data relative to the Health package in Apple, such as heart
rate, respiration rate and so on;

• provide a struct called SessionData which provides the structures to store
data;

• store the SessionData into the app utility folder, accessible through the sys-
tem iOS app File, with the class Storage, his method and functions;

• provide communication between devices with the WCSession class and his
methods;
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Figure 2.6. User interface for MotionDataLogging app for iPhone

2.5.1 CMMotionManager
According to Apple documentation[15], the CMMotion manager is declared in the
controllers. The class provides methods to record:

• the istantaneous acceleration of the device in three-dimensional space with
the methods relative to the accelerometer;

• the istantaneous rotation speed relative to the three axes with the methods
relative to the gyroscope;

• the device orientation relative to Earth’s magnetic field with magnetome-
ter;
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• device-motion data, which consists of CoreMotion processed attributes:
it allows to obtain processed data such as device’s attitude, rotation rate,
calibrated magnetic fields, the direction of gravity, and the acceleration the
user is applying to the device. Those data are obtained by CoreMotion
algorithms which combine the three sensors mentioned above.

To take full advantage of the sensors and processing capabilities of Apple de-
vices, we chose to gather data among those attributes. 9 time series were collected
from this data :

1. User’s acceleration relative to x axis in m
s2 ;

2. User’s acceleration relative to y axis in m
s2 ;

3. User’s acceleration relative to z axis in m
s2 ;

4. Angular speed relative to x axis in rad
s ;

5. Angular speed relative to y axis in rad
s ;

6. Angular speed relative to z axis in rad
s ;

7. Pitch, device’s orientation relative to x axis in rad;

8. Roll, device’s orientation relative to y axis rad;

9. Yaw, device’s orientation relative to z axis rad;

It was decided to take into account the acceleration without its gravitational com-
ponent, automatically removed by the provided Apple API. The choice to exclude
the gravitational component in the data related to acceleration is justified by the
fact that it does not provide useful information for the discernment of movement
activities, while on the contrary it can be useful in detecting static activities such as
sitting or lying. Micucci et al.[16] in their work choose to exclude gravity from raw
accelerometer signal with a low-pass Butterwoth filter because gravity is assumed
to have only low frequency component.

According with Apple documentation [17] with the function myDevMotStart:

1. the availability of Device Motion is checked;

2. the reference frame is fixed among:

• XArbitraryZVertical describes a reference frame in which the Z axis is
vertical and the X axis points in an arbitrary direction in the horizontal
plane.
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Figure 2.7. Pitch, Roll and Yaw in device reference frame

• XArbitraryCorrectedZVertical describes the same reference frame as
xArbitraryZVertical except for the one of the magnetometer, when avail-
able and calibrated, is used to improve long-term yaw accuracy. Using
this constant instead of xArbitraryZVertical results in increased CPU
usage.

• XMagneticNorthZVertical describes a reference frame in which the Z
axis is vertical and the X axis points toward magnetic north. Note that
using this reference frame may require device movement to calibrate the
magnetometer.

• xTrueNorthzVertical dscribes a reference frame in which the Z axis is
vertical and the X axis points toward true north. Note that using this
reference frame may require device movement to calibrate the magne-
tometer. It also requires the location to be available in order to calculate
the difference between magnetic and true north.
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Figure 2.8. Example of reference frame with North set

To avoid further CPU usage and battery consuming, XArbitraryZVertical
was selected.

3. sampling frequency is set to 50 Hz

4. a check on DeviceMotion activity status is performed ;

5. data are stored in a SessionData struct, ready to be exported.

With the funcion MyDevMotStop the MotionManager stops the acquisition.

2.5.2 CLLocationManager
To retrieve data relative to GPS, an instance of CLLocationManager, the Swift
class deputed to gather data from GPS, is created in the Apple Watch controller
interface.

Due to the regulations imposed by the respect of users’ privacy, in order to
allow the use of position data, it is necessary to modify the permissions specifying
the use of the position in the Info.plist file; so the App will ask the user the
permission of using his personal GPS data.

Figure 2.9. permission required to authorize GPS data retrieving on an iOS App

At the start of the application through the delegation to the controller and
through the methods requestAlwaysAuthorization and
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requestWhenInUseAuthorization The AuthorizeLocation function allows data to
be recorded within the Struct SessionData.

The CLLocationManager [18]Class allows to register data relative to :

1. coordinate, longitude and latitude;

2. altitude, and derivates;

3. speed and course, the speed of the user and the direction measured in
degrees and relative to due north.

To try to save space to make communication easier between Apple Watch,
only current speed and his relative timestamp have been selected to be stored in
SessionData struct.

2.5.3 Health Store and HWorkoutSession packages
The Health app serves as a central repository for health and fitness data in iOS.
With the user permission, apps built with HealthKit can communicate with the
Health app to access and share information. To build an app with HealthKit, first
of all Health Records capablities must be enabled [19].

Figure 2.10. Enabling health records capabilities in iOS developing accord-
ing to Apple documentation

Then the permission to manage such sensitive data must be enabled into the
Info.plist file

Figure 2.11. Example of authorization required for managing health data

So, to gather and store information about any health data, an instance of
HKHealthStore class has been created in Apple Watch Interface Controller.
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Figure 2.12. example of user authorization interface required to an app which
integrate HealthKit(source: www.apple.com)
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Through the Controller function authorizeHealthKit the HKSampleType which
the iOS app is allowed to write and read through the HKHealthStore method
requestAuthorization were defined. For MotionDataLogging, only heart rate
has been selected.

HealthKit uses HKObjectType subclasses to divide the different types of data
stored in HealthKit. According to Apple developer documentation [20]:

• HKCharacteristicType represents data that doesn’t change over time (for
example, date of birth);

• HKQuantityType represents biological samples that contain a numeric value
(for example heart or respiratory rate);

• HKCategoryType represents samples that contain an option from a short list
of possible values (for example sleep analysis);

• HKCorrelationType represents complex samples that contain different quan-
tity or category samples (for example, a food sample that includes a number
of nutrition samples);

• HKWorkoutType represents a workout and its associated data;

• HKDocumentType, and HKSeriesType represent specialized data types.

There are three ways to access data from HealthKit Store, according to Apple
documentation[21]:

• Direct method calls : the HealthKit store provides methods to directly
access characteristic data, such as blood type, or birthday date;

• Queries : they return the current snapshot of the requested data from the
HealthKit store;

• Long-running queries: these queries continue to run in the background
and update your app whenever changes are made to the HealthKit store;

Since it is of our interest to continuously obtain the data relating to the heart-
beat of the user during the acquisition, it was necessary to implement a long
running query inside the controller which:

• Through the subscribeToHeartBeatChanges function prepares the query to
be performed in such a way to obtain the last heartbeat sample recorded by
the device;

• The fetchLatestHeartRateSample function executes the query;
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In order to make the query run in the background in a stable way, it was
necessary to add a Workout session, which by default allows the recording of data
related to the HKStore, during which, through the aid of a timer, the functions are
periodically recalled. In absence of the Workout session, during the standby the
recording of data related to inertial sensors was also interrupted: it was therefore
essential to implement it to guarantee a correct data recording process.

Through the startWorkOut function, recording GPS and health data functions
are called and data retrieved into the SessionData struct.

2.5.4 Storage class
To allow easily the storage in the document folder, the Storage class was imported
[22].

Through the getURL method, the app documents folder in the iPhone side is
selected as the location where data are saved.

Through the store method, called from the SessionData struct, data are saved
into the desired URL.

2.5.5 JSON format
JSON( Javascript Serialized Object Notation) is a markup language, completely
independent of the programming language, but uses conventions known to C lan-
guage family programmers. This feature makes JSON an ideal language for data
exchange[23].

JSON is based on two structures:

• A set of name / value pairs. This could be realized as an object, a record,
a struct, a dictionary, a hash table, a list of keys or an associative array
according to the language in which the JSON file is imported;

• An ordered list of values. In most languages this is accomplished with an
array, a vector, a list or a sequence.

These are universal data structures. Virtually all modern programming lan-
guages support them in both forms. A data-exchange language which interacts
with different programming languages must be based on these structures.

The JSON structure is divided in objects which are unordered series of names
/ values. An object starts delimited into curly braces. Each name is followed
by colon and the name / value pair are separated by comma. For example :
{”jsonObject : ”name”, ”date” : ”21/01/2019”} Objects may contain :

• values : can be integers, doubles, string, boolean or null;

24



2.5 – Software developement

• arrays : sorted set of values, included in square brackets with values sepa-
rated by comma.

• objects;

Objects can be nested; JSON does not support octals and hexadecimal formats.

2.5.6 Session Data struct

To allow storage in JSON data format, a widely used markup language in client-
server communication applications, SessionData was defined as a Codable struct:
this allows the export of objects and structs in the swift language in JSON files,
ready to be exchanged.

The SessionData provides data structures to save locally :

• user acceleration data through the three axis: x, y, z ;

• gyroscope data through the three axis: x, y, z;

• device attitude along the three angles pitch, roll and yaw;

• heartRate with relative timestamp to reallocate the value in the correct time
window;

• GPS measured speed with relative timestamp to reallocate the value in the
correct time window;

• the label associated with the acquisition;

• the device (iPhone or Apple Watch) used for acquisition;

• the acquisition frequency;

• the timestamp relative to start acquisition and stop acquisition;

• the string relative to start acquisition and stop acquisition;

• the duration of acquisition in seconds;

This struct also provides get and set methods and a saveData method, which
uses the upmentioned Storage class and his store method.
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2.5.7 WCSession delegate
To provide communication between Apple Watch and iPhone in the more efficient
and less energy consuming way, Apple provides the WCSession class, which is
designed to use different communication strategies[24]:

1. if devices are available and in range, Bluetooth connection is established. This
connection has the highest priority due to its low effort in energy consumption
and stability;

2. if Bluetooth is not available but the devices are both in the same local Wi-Fi
network, devices are connected using Wi-Fi protocol;

There are several communication ways between iPhone and Apple Watch pro-
vided by this class according to Apple documentaton [25]:

• updateApplicationContext

• sendMessage and sendMessageData transfers data to a reachable coun-
terpart. These methods are intended for immediate communication between
your iOS app and WatchKit extension.

• transferUserInfo transfers a dictionary of data in the background. The
dictionaries are queued and transfers continuously when the current app is
suspended or terminated.

• transferFile which sends the specified file and optional dictionary to the
counterpart in background;

All the methods were tested in the developing phase, and only transferFile
guarantees a proper data delivery for file in JSON format.

Relying on the fact that both devices are active and reachable, the SendMessage
is used in order to:

• allow starting and stopping data collection from Apple Watch pushing the
Start and Stop button on iPhone user interface;

• allow status communication between the devices, so the user can monitor the
status on labels present on both interfaces. In details:

– can monitoron Apple Watch side when the label is received and JSON
file has finished transferring;

– on iPhone side, communicate with AppleWatch when JSON file has
been received;
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In both iPhone and Apple Watch controllers, loading the view, a WCSession
object is created and the controller, through delegation, is allowed to exploit the
WCSession methods and through the activate method, the connection is estab-
lished.
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Chapter 3

Methods

In this chapter, it will be discussed about methods for achieving HAR in a super-
vised ambient.

The first section describes how the data has been collected using MotionData-
Logging app.

The second section describes the process of data wrangling and aggregation
useful to create a dataset.

The third section is about feature calculation from data and signals.
The fouth section presents the methods used for feature selection.
The fifth section presents the models used to achieve HAR.

3.1 Data collection
To provide data , two subjects contribute to the collection. The subjects involved
are described in the table below.

Subject Gender Age
1 Male 26
2 Male 27

Table 3.1. Subjects involved in data collection

Data were all collected from Apple Watch, placed on the left wrist of the subject
during the acquisition.

Data related to all activities were acquired in uncontrolled way, except for those
who requires a support or a machinary.

For this analysis, 8 activities were performed:
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1. walk: performed by subjects as fast, medium and slow;

2. run: performed by subjects as slow and medium;

3. cycling outdoor by subjects as slow and medium;

4. cycling in stationarky bike by subjects as slow and medium;

5. car driving performed in urban streets and highway;

6. smoke

7. rowing indoor

8. elliptical machine

For acquisition in uncontrolled way, we intend that all activities were performed
without any constriction, introducing some noise, for example trying to move the
left arm, where the Apple Watch was placed, during the data acquisition.

We tried to reproduce the normal performance of human activities in the best
possible way. Indeed, in the HAR definitions given in the introduction it is assumed
that at each time window only one activity is performed: this assumption does not
reflect the real conditions under which the activities are carried out. In fact, during
data acquisition, we tried not to perform activities defining a "standard" movement
pattern, but we tried to reproduce activities as they are performed in common life
situation.

This protocol described in figure 3.1 was used to collect the data.
Since background transfers of large amounts of data were not always successful

in case of long acquisitions, in order to have a good compromise between acquisition
continuity and data transfer speed, it was decided to maintain the length of the
acquisitions of duration up to 3 minutes. In this way, it is possible to obtain the
acquisition file on the iPhone Files app in times in the order of some seconds, so
as to be able to proceed with the collection of more data in a relatively short time.

All data were sampled with an sampling frequency of 50Hz. This choice is
justified by the sampling frequency found in literature: In [8], it was observed
that the most used sampling frequency which allows to obtain good recognition
performances are 20, 32 and 50 Hz; also 100 Hz has a significant use in literature:
Siirtola et al. [28], Heng et al. [29] in their work use this sampling frequency, as
well as [6]. Always in [8] it is enlighted that frequency in range from 2 to 150 Hz
have been widely employed in HAR works. The choice of 50 Hz has been made
in order to keep a good compromise between completeness of information and
the ability of devices to transmit data: In fact, using higher sampling frequencies,
problems could have been encountered in transferring data to the background, thus
not allowing a correct collection.
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Figure 3.1. Protocol of data acquisition

3.2 Data aggregation and data wrangling
A folder has been created on the elaboration server in which all JSON files have
been stored.

A pipeline was created in Python v.2.7 in order to automize reading of JSON
file and obtain a Pandas DataFrame.

3.2.1 from JSON files to dataframe
Figure 3.1 describes the pipeline used to convert a series of Json file to a DataFrame
on Pandas, a useful Python library which allows easily data manipulation and
wrangling in order to proceed with data analysis.

During the course of the pipeline, the windowing operation was carried out as
described in the following passages:

• The createDataset function opens every JSON file in the dataset folder
calling timeWindowingJsonAcquisitionTimestamp for every file which:
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Figure 3.2. Workflow of algorithm for Dataframe creation

– based on startDataAcquisition and stopDataAcquistion Timestamp recorded
on SessionData, the first and the last 4 seconds of every acquisition were
removed: the justification for this procedure is that data acquisition was
often performed by manually pressing the Start button on the app inter-
face for WatchOS, just as the end of the recording was done by pressing
the Stop button. Consequently, in the initial and final windows there
was undoubtedly the presence of non-informative signals and to avoid
to use them in generating learning models.
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Based on the new start and stop, a non-overlapping 5 second window
was used to split up acquisition and generate samples.

– using the new start and stop and the timeStamp acquired relative to
GPS Current Speed and Heart Rate, every acquisition of those two
features is assigned to the relative time-Window.

A dataframe with the single JSON file data is created.

• the concatenateSamples function joins every single-JSON dataset in order
to create the complete dataframe.

• the removeRowsWithNoValues deletes from the dataframe every window in
which there’s no value of current speed or heart rate ;

• the ReplaceMinusOneInCurrentSpeed function arises from the observation
of the dataset: in fact, in case of of failure to gather current speed values ,
the CLLocationManater returns the value -1, clearly impossible to obtain in
speed measurement. Therefore this strategy was adopted:

– if the mean of current speed in the window is negative, then the row is
discarded;

– else, the -1 value is replaced with the mean of the time window current
speed, calculated excluding the -1.

Dataset Observations
full 1213

after RemoveNoValue 1103
after ReplaceMinusOnes 1054

Table 3.2. Number of observation in dataset after data wrangling and
manipulation operations

3.2.2 Windowing
The choice of the window length was not accidental: analyzing the literature iden-
tify examples of similar duration: Altun et al. [30], as well as in [6], use 5 s, but
numerous examples of similar length can be found of window duration in range
from 1 to 4 seconds.[31]

Table 3.2 describes some window type found in the literature analysis. From
these examples, the choice used in this thesis work is fully justified.
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Work Window length (s) Overlapping (%)
[30], [6] 5 0
[16] 3 0
[29] 1.5 50
[11] 2 50

Table 3.3. Windowing in literature review

3.2.3 Dataframe structure
The dataset thus obtained is composed as described in the table 3.4.

Signals AccelerationX, AccelerationY,
AccelerationZ,

GyroX, GyroY, GyroZ,
Pitch, Yaw, Roll, HeartRate, CurrentSpeed

Observations 1054

Table 3.4. Final dataset structure

To explore the relevance of the analyzed signals, taking into account the con-
siderable battery consumption that involves the acquisition of speed via GPS or
heart rate, different combinations of signals have been explored so as to be able
to compare the results with or without these last two. Moreover, those data are
considered pretty sensitive in privacy terms. The combinations are described in
table 3.5.

Dataset Name Feature set
A complete feature set
B no Heart Rate and Current Speed in feature set

Table 3.5. Combination of time series set considered

3.3 Feature calculation
From the raw dataset of the signals in time domain, features have been extracted in
the time domain, frequency and taking into account the correlation of the signals
acquired between the axes. The choice of those features is justified by [11], which
provides an exhaustive description in his work about features in HAR. Most of the
features in time and frequency are considered also in [6], [7].
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3.3.1 Features in time domain
From all the signals extracted from the database, the following features have been
extracted in the time domain:

• mean : the mean of the signal

x̄ =

NØ
i=1

xi

N

• standard deviation

σ =

öõõõõô
NØ
i=1

(xi − x̄)

(N − 1)

• variance :

σ2 =

NØ
i=1

(xi − x̄)

(N − 1)

• skewness: a measure of the asymmetry of the probability distribution of
a real-valued random variable about its mean. The skewness value can be
positive, with tail on the left or negative, with tail on the right, or undefined.

sk =
qN
i=1(xi − x̄)3

σ3

• kurtosis: deviation from the normal distribution, with respect to which
there is a greater flattening (platicurtic distribution) or a greater elongation
(leptocurtic distribution)

k =
qN
i=1(xi − x̄)4

σ4

• maximum : maxx is the highest value that can be found in the observation;

• minimum : minx is the smallest value that can be found in the observation;

• 25 percentile :Q1 : data relative to a value q1 which divides a set of n
linearly ordered data, so that the number of values lower than q1 constitutes
the 25% of n;
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• 75 percentile : Q3 : data relative to a value q3 which divides a set of n
linearly ordered data, so that the number of values lower than q3 constitutes
the 75% of n

• interquartile range :
IQR = Q3−Q1

• peak-to-peak :
PTP = maxx −minx

• mean crossing :the number of time that signal crosses the mean value.

• SMA : is the normalized sum of accelerometer components.

SMA = 1
T

TØ
t=1
|ax(t)|+ |ay(t)|+ |az(t)|

3.3.2 Features in frequency domain
From all the signals relative to acceleration signals and angular speed from the
database, the following features have been extracted in the frequency domain. A
power spectrum density estimation (PSD) of acceleration and angular speed along
the three axis was computed using Welch periodogram, which is defined as :

Pxx = F{x(t) ∗ x(−t)} = X(f) ∗X(-f) = |X(f)|2

TheWelch method allows the presence of overlap between two adiacent windows
up to 50% of windows length to have better spacial resolution. In this study, the
overlap was set to 50% of the length of the window (5 s). Pxx is the power spectrum
estimate and f the frequency vector, with 0 ≤ fi ≤ fsampling/2, according to
Nyquist sampling theorem[26].

From PSD calculation, several features were computed:

• mean frequency of PSD:

MNF =

Ú N

i=1
Pxx(fi) ∗ fiÚ N

i=1
fi

• median frequency of PSD:

MDF =
Ú M

i=1
Pxx(fi) ∗ fi
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such as

MDF =

Ú N

i=1
Pxx(fi) ∗ fi

2
with M /= N

• principal frequency of PSD :

PF = f(max(Pxx))

, with f /= 0.

• Shannon Entropy of PSD : H =
fs/2Ø
f=0

Pxx(f)log2[Pxx(f)]

Also PSD spectrum mean amplitude, PSD spectrum stardard deviation, PSD spec-
trum skewness, PSD spectrum kurtosis, PSD spectrum amplitude maximum, PSD
spectrum amplitude peak-to-peak were calculated in order to investigate their dis-
criminative power.

Data on heart rate and speed detected via GPS have been excluded from the
frequency analysis since they are not signals detected but an estimate averaged
over a period of time, it would make no sense to analyze them in the frequency
domain.

Furthermore the signals relative to the orientation of the device were excluded.
(Pitch, Yaw, Roll).

At the end, 214 features were extracted from data relative to dataset A, 196
relative to dataset B.

3.3.3 Features in correlation domain
For the signals related to the axes x, y, z (acceleration, angular speed and device
attitude) the Pearson correlation between the axes relative to the same signal was
calculated.

Pearson correlation is defined as:

ρxy = σxy
σxσy

and it’s an index of linear relation between two instances x and y, expressed in
range ρxy = [−1,1]. For negative values, a negative linear correlation is assumed
to exist between x and y; on the contrary, for positive values a positive one.
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3.4 Feature normalization
Data normalization, also known as feature scaling or data standardization, is a
techinque used to readjust the values to a more readable scale without losing the
information contained in them in order to make objective functions work properly
in a faster way.

In this work, Min-Max scaling was used for dataset A and B, with trasformation
defined as :

Xscaled = X −min(X)
max(X)−min(X)

where X is a feature in the feature set. Xscaled values are in range [0,1].

3.5 Feature selection
In order to enhance generalization of the model, reduce dimensionality of the fea-
ture set and speed up training times, a feature selection is required.

There are different feature selection techniques :

• filter: usually are methods that applies statistical functions to features in
order to rank them and discard the ones considered less informative; filter
methods are considered effectives in computation time and robust to overfit-
ting;

Figure 3.3. filter method for feature selection (ref.Wikipedia)

• wrapper: consists of an evaluation of the subset of features based on an
apriori choice of the model used for learning: disadvantages may be a trend
to overfitting when the number of observations is not sufficient and the high
computational time when a large number of features is considered;

• embedded: this strategy tries to combine the two methods illustrated above,
combining the feature selection process specific for the model selected and
performing simultaneously classification;

In this work, a two steps filter feature selection has been performed:

• correlation-based feature selection: for each pair of all feature calcu-
lated in dataset, the Pearson correlation was computed[32]. For Pearson
correlation, an inference process must be activated to evaluate how much we
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Figure 3.4. wrapper method for feature selection (ref. Wikipedia)

Figure 3.5. embedded methods for feature selection(ref. Wikipedia)

can trust about the correlation; in fact,samples on which the correlation is
calculated could present, randomly, a linear relationship while the popula-
tion from which it is extracted may not or samples on whose correlation has
been calculated does not have a linear structure, while the population has.
Defining H0 as the null hypothesis, according to which there is no correla-
tion between the variables, and the alternative hypothesis H1 according to
which correlation is present, the correlation between the two variables x and
y is calculated on a sample of amplitude n. This procedure is repeated an
infinite number of times creating a sampling distribution of the correlations
that can be assumed as a normal distribution. The probability of the corre-
lation under consideration is calculated, setting an α parameter (usually set
to α = 0.05, which is the region of non-acceptance of the normal distribu-
tion of correlations) to which corresponds a critical value above which the
alternative hypothesis can be assumed to be true.
The Pearson correlation coefficient, considered in his absolute value, may
indicate a correlation of three types:

– if 0 ≤ ρxy < 0,3 a weak linear correlation is present between x and y;
– if 0,3 ≤ ρxy < 0,7 a moderate linear correlation is present between x and

y;
– if 0,7 ≤ ρxy ≤ 1 a strong linear correlation is present between x and y;

Based on this range, a threshold of correlation value is assumed to 0,7. If ρxy
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> 0.7 and α < 0.05, it can be assumed that the features are highly linearly
correlated, thus containing the same type of information. Based on this, one
of them is discarded.
After this step, from an original set of 214 feature relative to dataset A, a
subset of 41 features is selected. For dataset B,from 195 feature a subset of
36 is selected. In table 3.6, there are the feature selected for each dataset
after this step of feature selection.

• A feature selection setting a threshold on the variance of the individual
features has been applied: this process has been operated to further reduce
the dimensional space of the features. We have tried to avoid a feature
extraction process like PCA in order to maintain the original meaning of the
features given to the selected models.
The idea is that features with lower variance can express less informative
patterns, so the that they can be considered less informative and are as-
sumed to have less predictive power: so the variance of each feature has been
computed and, looking at the distribution of variance values, the threshold
was set to the median value of all variances so as to halve the number
of features. In table 3.7, there are the feature selected for each dataset after
this step of feature selection.
Obviously, since it starts from the same data set (the data set B can be
considered a subset of the data set A ), the results are completely comparable:
the set of features selected in the B dataset is in turn a subset of the feature set
obtained from the A dataset, which is desirable having applied deterministic
methods in the feature selection process.

3.6 Classification models
In this section, a description of the model used to perform HAR is provided. Con-
sidered the size of the dataset, four learning models have been tuned,trained and
tested for dataset A and B : Decision Tree, Support Vector Machine, K Nearest
Neighbor as single model classifiers and Random Forest as ensamble classifier.

All the classifiers were trained following these steps:

1. The dataset is split into training and test set: in the split phase the pro-
portion of the samples in the test and in the training set was kept among
the training sessions, taking into account the unbalancing in the number of
samples related to different classes.

2. To tune classifiers, different combination of hyperparameters have been em-
ployed: in the tuning process, a k fold cross validation with k=5 is performed
on the training set. The tuning process is defined as :
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Figure 3.6. Feature selection based on variance threshold for dataset A. Threshold
t is set to the median value of all variance.

(a) choose the classifiers and set the hyperparameters to be tested;

(b) find best parameters relying on the best accuracy score retrieved through
a 5 fold cross validation greed search;

(c) evaluate the best classifier performance with the tested parameters with
an ulterior 5 fold cross validation to check the effective goodness of
hyperparameters;

Once found the best pameters relying on the best accuracy, an ulterior eval-
uation of the goodness of tuning hyperparameters was carried out through
the indicators of:

• Mean Accuracy : it’s the mean of accuracy for every class, where
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Figure 3.7. Feature selection based on variance threshold for dataset B. Variance
threshold was set to median value of all feature set variances.

accuracy per single class is defined as as:

Accclass = TP + TN

FP + TP + FN + TN

Mean Accuracy is defined consequently as:

MeanAccuracy =

nØ
i=0

Accclassi

n

where n is the number of classes considered.
• Mean Precision : it’s the mean of precision for every class, where
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precision per single class is defined as as:

Precclass = TP

TP + FP

Mean Precision is defined consequently as:

MeanPrecision =

nØ
i=0

Precclassi

n

• Mean Recall: it’s the mean of recall for every class, where recall per
single class is defined as as:

Recclass = TP

TP + FN

Mean Recall is defined consequently as:

MeanRecall =

nØ
i=0

Recclassi

n

• Mean F1 Score: is the armonic mean between Mean Precision and
Mean Recall, defined as :

MeanF1Score = 2 ∗MeanPrecision ∗MeanRecall

MeanPrecision+MeanRecall

• Fitting time : time needed to train the model during fitting.
• Scoring time : time needed to perform scores during the evaluation of

the fold left out for crossvalidation.

Figure 3.8. Training and tuning process for selected models
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3.6.1 K Nearest Neighbor
The k nearest neighbor is an instance-based algorithm defined as a non parametric
method, that means not based on a priori hypotheses on the samples popula-
tion, widely used in machine learning. Instances are vectors in a multidimensional
feature space, each one associated with a label.[33] It’s a method used both in
classification and regression fields. The difference between this model in this two
learning fields is in the outcome:

• for regression, it’s a property value of the instance, which is the mean of the
property values of the k nearest instances;

• for classification, it’s a class membership, obtained as the most frequent class
which appears in the majority of nearest instances;

Relying not on statistical parameters but on distance between samples, data spacial
distribution plays a fundamentamental role in correct classification[33].

The fundamental hyperparameters to tune using this methods are:

• k: the number of neighbors taken in consideration during the classification
phase; because it’s a majority voting class it’s suggested not to use k as an
even number. During the tuning phase, k was evaluated in range

Rk = [1,3,5,7,9];

• the algorithm used to divide instances in the feature space. In this work,
we explored :

– Ball tree: a partitioning data structure which splits data points into
a nested set of hyperspheres known as "balls" which containin a subset
of the points to be searched. Each node splits the data points into two
disjoint sets, each one associated with different balls. If a point belongs
to two balls, it’s assigned to one of the two intesecting balls according
to its distance from the ball’s center. Each leaf node in the tree defines
a ball and enumerates all data points inside that ball[34].

– K-D tree: in k-d tree, every leaf node is a k-dimensional point, every
non-leaf node can generate an hyperplane which splits in two the sample
space. Every node in the tree is associated with one of the k dimensions,
with the hyperplane perpendicular to that dimension’s axis. Points in
the subset will be assigned to one of the half space according to the
dimension considered for splitting.[35].

– Brute-force search: consists of systematically enumerating all possi-
ble features for the splitting and checking whether each feature splits
best the samples in leaf node.
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Figure 3.9. Example of ball tree algorithm in decision tree building

Figure 3.10. Example of k-d sample space decomposition

Figure 3.11. Example of tree generated from k-d space decomposition
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• in case of using one of the tree feature space dividing algorithm, also leaf
size of the tree was taken in consideration. Leaf size was evaluated in range

Rlf = [10,15,20];

• the metric used to evaluate distance between samples.In the tuning stage,
three different distances have been evaluated :

– Euclidean distance: for an n-dimensional space, given two points
A = (a1, a2, ..., an) and B = (b1, b2, ..., bn), the Euclidean distance is
calculated as

dEuc =
nØ
i=1

ñ
(a2
i − b2

i )

– Manhattan distance:for an n-dimensional space, given two points
A = (a1, a2, ..., an) and B = (b1, b2, ..., bn), the Manhattan distance
is defined as

dMan =
nØ
i=1
|ai − bi|

– Chebyshev distance: for an n-dimensional space, given two points
A = (a1, a2, ..., an) and B = (b1, b2, ..., bn), the Manhattan distance is
defined as

dCheb = max
i
{|ai − bi|}

In figures 3.12-19 are showed the mean results of training with a 5-fold stratified
crossvalidation.

3.6.2 Support Vector Machine
Support Vector Machine is an algorithm used in supervised learning used in clas-
sification and regression analysis; this model provides a representation of samples
in space in a way that instances belonging to different classes are separated by a
gap. Wider is the gap, better will be the predictive capability of the model : for
this purpose, a margin should be defined as the gap between the closest sample to
the separating plane and the plane itself.
Linear SVM is able to classify data maximizing this margin. Support vectors, the
subset of samples closest to the decision boundaries, are the ones on which the
function depends. A misclassification margin zone defined as soft margin could be
defined, assuming that on data could be affected from noise, which doesn’t allow a
correct classification performed by the model. Thus, performing this operation, a
linear hyperplane could not be sufficient to divide well high-dimensional data. To
overcome this problem, SVM admits using a kernel to carry out a transformation
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Figure 3.12. Fit time related to Dataset A for every cross validation fold

Figure 3.13. Fit time related to Dataset B for every cross validation fold

that increases the dimensionality of the space of the solutions, thus allowing an
easier data separation. Obviously, this operation increases computational time.
As for KNN, it’s mainly used for classification and regression analysis[36]. The
hyperparameters evaluated for tuning SVM performance were:

• kernel: several kernels were tested trying to explore the best spacial trans-
formation to separate data.

– linear kernel;
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Figure 3.14. Scoring time related to Dataset B for every cross validation fold

Figure 3.15. Scoring time related to Dataset B for every cross validation fold

– polynomial kernel;

– Radial Basis Function kernel. It’s defined, between two feature vec-
tors a and b as:

K(a, b) = exp(−||a− b||
2

2σ2 ),

where ||a− b||2 is defined as the squared Euclidean distance;
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Figure 3.16. Results for accuracy, precision, recall and F1 score averaged among
the 5 crossvalidation folds related with tuning SVC on Dataset B. Those results
are obtained with the best parameters presented in table 3.8

Figure 3.17. Results for accuracy, precision, recall and F1 score averaged among
the 5 crossvalidation folds related with tuning KNN on Dataset A. Those results
are obtained with the best parameters presented in table 3.8

• C: is the parameter relative to the slack variable, which allows a misclassifi-
cation margin. In tuning, C was in range [0.1, 10] with step = 1.

• γ: is defined, just for Radial Basis Function, as:

γ = 1
2σ2 ,

admitting RBF definition as:

K(a, b) = exp(−γ||a− b||2).
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Figure 3.18. Learning curve for training and validation set using KNN on Dataset
A with number of samples on the x axis and accuracy score on the y axis

Figure 3.19. Learning curve for training and validation set using KNN on Dataset
B with number of samples on the x axis and accuracy score on the y axis

It controls the tradeoff between error due to bias and variance in the model:
for large values, the model can overfit and be prone to high variance. In
tuning, γ was in range [1, 10] with step = 1.

• decision function: SVM for multiclass models can work in two modalities.
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– One-vs-rest: builds a binary classifier for every class; each classifier
finds the best hyperplane to separate each class from the rest of samples;

– One-vs-one: buids a binary classfiers for every possible combination
of two classes; the classification output is obtained by majority voting
from all the classifiers built.
every time two classes were considered, a binary classifier between them
is built: the class returned from majority of the classifiers is the classi-
fication output;

In figures 3.20-3.27 the mean results are shown of training with a 5-fold stratified
crossvalidation.

Figure 3.20. Fit time related to Dataset A for every cross validation fold

3.6.3 Decision Tree
In machine learning a decision tree is a predictive model based on a directed acyclic
graph, in which:

• each internal node represents a variable;

• an arc towards a child node represents a possible value for that variable;

• a leaf represents the predicted value for the target variable based on the
values of the other properties;

The tree is represented by the path from the root node to the leaf node. This
method providesa very intuitive way to get a graphical representation of the clas-
sification process.
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Figure 3.21. Fit time related to Dataset B for every cross validation fold

Figure 3.22. Scoring time related to Dataset A for every cross validation fold

The procedure is simple: for each node, the algorithm looks for the feature
which best splits the samples until the leaf contains instances of the same class[37].

The hyperparameters evaluated for tuning Decision Tree performance were:

• Splitting criterion: it’s choosen between two different criteria, Gini Index
and Entropy Information gain, which give a measure of homogeneity of the
leaf node. The homogeneity is intended as how much a leaf node contains
instances of a single class and it is in range (0,1] for all classes considered in
classification: ower the score, higher the homogeneity in the leaf node. The
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Figure 3.23. Scoring time related to Dataset B for every cross validation fold

Figure 3.24. Results for accuracy, precision, recall and F1 score averaged among
the 5 crossvalidation folds related with tuning SVC on Dataset A. Those results
are obtained with the best parameters presented in table 3.8

two criteria are defined as:

– Gini impurity: measures the hetereogenity of a dataset by computing
the product between the probability of a sample to belong to a class
versus the probability to belong to another after splitting the leaf node
on a feature; for a dataset with J classes, Gini impurity for every node
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Figure 3.25. Results for accuracy, precision, recall and F1 score averaged among
the 5 crossvalidation folds related with tuning SVC on Dataset B. Those results
are obtained with the best parameters presented in table 3.8

Figure 3.26. Learning curve for training and validation set using SVC on Dataset
A with number of samples on the x axis and accuracy score on the y axis

is defined as:

IG(p) = 1−
JØ
i=1

p2
i ,

where pi is the fraction of i labeled samples in the node.

– Entropy Information gain: based on information theory, defining
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Figure 3.27. Learning curve for training and validation set using KNN on Dataset
B with number of samples on the x axis and accuracy score on the y axis

entropy as:

H(T ) = −
JØ
i=0

pi log2 pi.

Information gain is defined as the difference between entropy in the
parent node T and the weighted sum of entropy in the children node
relative to attribute a used for splitting.

IG(T, a) = H(T )−H(T |a),

with

H(T |a) = −
Ø
a

p(a)
JØ
i=1
−Pr(i|a) log2 Pr(i|a)

• number of features taken in consideration when splitting. In tuning was
taken into account as number of features to be considered:

– all the features in dataset;
– the square root of all features in dataset;
– the log2 of all features in dataset;

In figures 3.28-3.35 are showed the mean results of training with a 5-fold stratified
crossvalidation.
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Figure 3.28. Fit time related to Dataset A for every cross validation fold

Figure 3.29. Fit time related to Dataset B for every cross validation fold

3.6.4 Random Forest
Random forest is an ensemble method which is made up of different decision trees,
giving as output the mode of the class label[38].

The hyperparameters evaluated for tuning Decision Tree performance were:

• Number of trees: number of decision tree used for voting. In tuning the
range considered was [2, 4, 8, 16, 32, 64, 100, 200]
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Figure 3.30. Scoring time related to Dataset A for every cross validation fold

Figure 3.31. Scoring time related to Dataset B for every cross validation fold

• Splitting criterion: Gini index and Entropy Information gain as defined
for decision tree;

• number of features taken in consideration when splitting as for decision
tree.

The results of parameter tuning are showed in table 3.8.
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Figure 3.32. Results for accuracy, precision, recall and F1 score averaged among
the 5 crossvalidation folds related with tuning Decision Tree on Dataset A. Those
results are obtained with the best parameters presented in table 3.8

Figure 3.33. Results for accuracy, precision, recall and F1 score averaged among
the 5 crossvalidation folds related with tuning Decision Tree on Dataset B. Those
results are obtained with the best parameters presented in table 3.8

3.6.5 Computational time

Undoubtedly the KNN and the decision tree have exhibit the lower computational
time among the considered classifiers: as far as SVC is concerned, time require-
ments seem to be at least one order of magnitude higher both in terms of training
and testing, reaching even three orders of magnitude of difference compared with
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Figure 3.34. Learning curve for training and validation set using Deci-
sion Tree on Dataset A with number of samples on the x axis and accuracy
score on the y axis

Figure 3.35. Learning curve for training and validation set using Deci-
sion Tree on Dataset B with number of samples on the x axis and accuracy
score on the y axis

Random Forest, for which time requirements are of tenths of a second. It should
also be noted that in the B dataset, without heart rate and GPS, the times for
both fitting and scoring are slightly lower: this result is consistent since the lower
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Figure 3.36. Dataset A

Figure 3.37. Fit time related to Dataset B for every cross validation fold

is the number of features on which the model must recognize the class, the lower
are computational times.

3.6.6 Validation set score
The models obtained from the tuning of the parameters are satisfying and com-
pletely comparable. The standard deviations of the evaluation parameters are
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Figure 3.38. Fit time related to Dataset A for every cross validation fold

Figure 3.39. Scoring time related to Dataset B for every cross validation fold

considerable in the case of the decision tree, which suggests a strong variability of
the goodness of prediction . Not by chance, using the Random Forest which me-
diates between the results of 200 decision trees, the standard deviation decreases
significantly: affirm that, when robust models are considered, we can expect high
percentages of success regardless of the fold on which the validation is carried out,
that we can expect high percentages of success in recognition activity considering
not only in terms of accuracy, but also in terms of precision and recall.
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Figure 3.40. Results for accuracy, precision, recall and F1 score averaged among
the 5 crossvalidation folds related with tuning Random Forest on Dataset A. Those
results are obtained with the best parameters presented in table 3.8

Figure 3.41. Results for accuracy, precision, recall and F1 score averaged among
the 5 crossvalidation folds related with tuning Random Forest on Dataset B. Those
results are obtained with the best parameters presented in table 3.8

3.6.7 Learning curve

From what can be seen by observing the trends of accuracy as a function of tnumber
of samples provided in the training stage, undoubtedly with a higher number of
samples very high success rates is reached. From the curves it seems that there
is no convergence between the accuracy scores of the training and those of the
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Figure 3.42. Learning curve for training and validation set using Ran-
dom Forest on Dataset A with number of samples on the x axis and
accuracy score on the y axis

Figure 3.43.

crossvalidation, which would mean that the model does not adapt perfectly to the
dataset, allowing a good generalization. However, the success rate in recognition
seems to be comfortable. It can also be observed that the standard deviation of
the accuracy obtained on the crossvalidation folds tends to decrease as the number
of samples increases, except for the random forest, for which the thinning of the
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variability of the accuracy does not take place. The decision tree seems to have
more stable results since the standard deviation on the obtained accuracy is the
smallest among the analyzed models.
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Dataset A Dataset B

Feature set

Q1 acceleration Y, kurtosis accelerationX,
kurtosis accelerationY,
kurtosis accelerationZ,
kurtosis currentSpeed,
kurtosis gyroX, kurtosis gyroY,
kurtosis gyroZ,
kurtosis heartRate,
kurtosis pitch,
kurtosis roll,
kurtosis yaw,
min accelerationX,
PF accelerationX,
PF accelerationY,
PF accelerationZ,
PF gyroX,
PF gyroY,
PF gyroZ,
skewness accelerationX,
skewness accelerationY,
skewness accelerationZ,
skewness currentSpeed,
skewness gyroX,
skewness gyroY,
skewness gyroZ,
skewness heartRate,
skewness pitch,
skewness roll,
skewness yaw,
mean crossings currentSpeed,
mean crossings heartRate,
mean crossings pitch,
mean crossings roll,
mean crossings yaw,
acc. correlation xy,
acc.correlation xz,
correlation yaw pitch,
gyro correlation xy,
gyro correlation xz,
gyro correlation yz, SMA

Q1 accelerationY,
kurtosis accelerationX,
kurtosis accelerationY,
kurt_accelerationZ,
kurtosis gyroX,
kurtosis gyroY,
kurtosis gyroZ,
kurtosis pitch,
kurtosis roll,
kurtosis yaw,
min accelerationX,
PF accelerationX,
PF accelerationY,
PF accelerationZ,
PF gyroX,
PF gyroY,
PF gyroZ,
skewness accelerationX,
skewness accelerationY,
skewness accelerationZ,
skewness gyroX,
skewness gyroY,
skewness gyroZ,
skewness pitch,
skewness roll,
skewness yaw,
mean crossings pitch,
mean crossings roll,
mean crossings yaw,
acc.correlation xy,
acc. correlation xz,
correlation yaw pitch,
gyro correlation xy,
gyro correlation xz,
gyro correlation yz,
SMA

Number of features 42 36

Table 3.6. Feature selected after Pearson correlation index (threshold fixed
to 0,7) feature selection 65
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Dataset A Dataset B

Feature set

Q1 accelerationY,
kurtosis currentSpeed,
min accelerationX,
PF accelerationX,
PF accelerationY,
PF accelerationZ ,
PF gyroX, PF gyroY,
PF gyroZ, skewness currentSpeed,
mean crossings currentSpeed,
mean crossings pitch,
mean crossings roll,
mean crossings yaw,
correlation acc xy ,
acc correlation xz,
correlation yaw pitch,
gyro correlation xy,
gyro correlation xz,
gyro correlation yz, SMA

Q1 accelerationY,
min accelerationX ,
PF accelerationX,
PF accelerationY,
PF accelerationZ,
PF gyroX,
PF gyroY,
PF gyroZ,
mean crossings pitch,
mean crossings roll,
mean crossings yaw,
acc correlation xy,
acc correlation xz,
correlation yaw pitch,
gyro correlation xy,
gyro correlation xz,
gyro correlation yz,
SMA

Number of features 21 18

Table 3.7. Number of features and feature selected for each dataset after
variance threshold feature selection
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Best parameters
Dataset A

Best Parameters
Dataset B

Accuracy
Dataset A

Accuracy
Dataset B

KNN

algorithm: ball tree
leaf size = 10
metric : Manhattan
neighbors: 9

algorithm: ball tree
leaf size = 10
metric : Manhattan
neighbors: 1

0.955 0.943

SVC

C = 8.1
decision function shape:
one-vs- rest
γ = 1
kernel: RBF

C = 8.1
decision function shape:
one-vs- rest
γ = 1
kernel: RBF

0.962 0.958

Decision
Tree

Splitting criterium :
Gini impurity
Features considered:
all feature set
Splitter : best

Splitting criterium :
Information gain
Features considered:
all feature set
Splitter : best

0.926 0.931

Random
Forest

Estimators : 200
Splitting criterium :
Gini impurity
Features considered:
log2 feat.set
Splitter : best

Estimators : 200
Splitting criterium :
Gini impurity
Features considered:
log2 feat.set
Splitter : best

0.975 0.979

Table 3.8. Sum table of tuning parameters for dataset A and B
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Chapter 4

Results

In this chapter, the results on the test set of the four classifiers tuned as explained
in the previous chapter, are presented and discussed.

Figure 4.1. Confusion Matrix for K Nearest Neighbor evaluated on test
set - Dataset A

First of all, it must be specified that the poor support of the classes labeled as
run, elliptical and rowing is the main cause of the performance: in every case they
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Accuracy Precision Recall F1- Score Support
walking 0.980 0.962 0.980 0.974 52
smoking 0.786 0.917 0.786 0.846 28
running 1.000 1.000 1.000 1.000 9
cycling out. 0.905 0.704 0.905 0.792 21
car driving 0.864 0.884 0.864 0.874 44
cycling ind. 0.958 0.978 0.957 0.968 47
elliptical 0.667 1.000 1.000 1.000 3
rowing 1.000 1.000 1.000 1.000 7
AVG 0.895 0.921 0.915 0.915

Table 4.1. Classification Report for K Nearest Neigbors evaluated on
test set - Dataset A

Figure 4.2. Confusion Matrix for K Nearest Neighbor evaluated on test
set - Dataset B

were included in the model to test the model recognition capacity. Only one sample
belonging to of those classes is misclassified in both test sets (A,B) by the KNN,
Decision Tree and Random Forest respectively . Regardless of the model, it is clear
that the activities have been optimally recognized: this underlines the quality of
the features obtained from the selection. Overall, better results are observed on
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Accuracy Precision Recall F1- Score Support
walking 0.961 1.000 0.961 0.980 52
smoking 0.786 0.846 0.786 0.815 28
running 0.889 1.000 0.889 0.941 9
cycling out. 0.952 0.909 0.952 0.930 21
car driving 0.886 0.829 0.886 0.857 44
cycling ind. 0.957 0.918 0.957 0.973 47
elliptical 0.667 1.000 0.667 0.800 3
rowing 1.000 1.000 1.000 1.000 7
AVG 0.887 0.916 0.915 0.915

Table 4.2. Classification Report for K Nearest Neighbor evaluated on
test set - Dataset B

Figure 4.3. Confusion Matrix for Support Vector Machine evaluated on
test set - Dataset A

the test set which does not include heart rate and speed via GPS: this indicates the
features related to these acquisitions globally do not improve the performance of
the model. However, it can be noticed that, with the exception of the decision tree,
in the absence of these data we can see misclassifications between the smoke class
and the car class, not present for the corresponding model trained on the entire
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Accuracy Precision Recall F1- Score Support
walking 1.000 0.981 1.000 0.990 52
smoking 0.857 0.981 0.857 0.923 28
running 0.889 0.889 0.889 0.888 9
cycling out. 0.905 0.905 0.905 0.905 21
car driving 0.954 0.931 0.954 0.933 41
cycling ind. 1.000 0.979 1.000 0.989 47
elliptical 0.889 1.000 1.000 1.000 3
rowing 1.000 1.000 1.000 1.000 7
AVG 0.951 0.958 0.957 0.957

Table 4.3. Classification Report for Support Vector Machine evaluated
on test set - Dataset A

Figure 4.4. Confusion Matrix for Support Vector Machine evaluated on
test set - Dataset B

feature set: this can demonstrate how this feature have potential to be further
investigated in order to be discriminant for the recognition of specific classes. The
best performing model proves to be the Random Forest, with better results on the
B dataset, although all models have well over 90% performance for all parameters,
as shown in the tables in the previous chapter[tab.3.8].
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Accuracy Precision Recall F1- Score Support
walking 0.981 0.962 0.981 0.971 52
smoking 0.821 1.000 0.821 0.902 28
running 1.000 1.000 1.000 1.000 9
cycling out. 1.000 1.000 1.000 1.000 21
car driving 0.954 0.875 0.954 0.913 44
cycling ind. 1.000 1.000 1.000 1.000 47
elliptical 1.000 1.000 1.000 1.000 3
rowing 1.000 1.000 1.000 1.000 7
AVG 0.969 0.962 0.962 0.961

Table 4.4. Classification Report for Support Vector Machine evaluated
on test set - Dataset B

Figure 4.5. Confusion Matrix for Decision Tree evaluated on test set - Dataset A
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Accuracy Precision Recall F1- Score Support
walking 0.961 0.980 0.961 0.971 52
smoking 0.821 0.885 0.821 0.852 28
running 0.889 1.000 0.889 0.941 9
cycling out. 0.801 0.893 0.810 0.923 21
car driving 0.954 0.893 0.954 0.923 41
cycling ind. 1.000 0.940 1.000 0.969 47
elliptical 0.667 1.000 0.667 0.800 3
rowing 1.000 0.778 1.000 0.875 7
AVG 0.888 0.931 0.928 0.928

Table 4.5. Classification Report for Decision Tree evaluated on test set - Dataset A

Figure 4.6. Confusion Matrix for Decision Tree evaluated on test set - Dataset B
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Accuracy Precision Recall F1- Score Support
walking 0.981 0.981 0.981 0.981 52
smoking 0.821 1.000 0.821 0.902 28
running 0.889 1.000 0.888 0.942 9
cycling out. 0.952 0.869 0.952 0.909 21
car driving 1.000 0.956 1.000 0.978 44
cycling ind. 1.000 0.959 1.000 0.979 47
elliptical 0.667 1.000 0.667 0.800 3
rowing 1.000 0.875 1.000 0.933 7
AVG 0.913 0.960 0.957 0.956

Table 4.6. Classification Report for Decision Tree evaluated on test set - Dataset B

Figure 4.7. Confusion Matrix for Random Forest evaluated on test set - Dataset A
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Accuracy Precision Recall F1- Score Support
walking 0.981 0.981 0.981 0.981 52
smoking 0.928 1.000 0.923 0.946 28
running 1.000 1.000 1.000 1.000 9
cycling out. 0.945 0.954 1.000 0.978 21
car driving 1.000 0.956 1.000 0.978 44
cycling ind. 1.000 1.000 1.000 1.000 47
elliptical 0.667 1.000 0.667 1.000 3
rowing 1.000 1.000 1.000 1.000 7
AVG 0.945 0.981 0.981 0.980

Table 4.7. Classification Report for Random Forest evaluated on test set - Dataset A

Figure 4.8. Confusion Matrix for Random Forest evaluated on test set - Dataset B
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Accuracy Precision Recall F1- Score Support
walking 1.000 1.000 1.000 1.000 52
smoking 0.964 1.000 0.963 0.982 28
running 1.000 1.000 1.000 1.000 9
cycling out. 1.000 0.954 1.000 0.977 21
car driving 1.000 0.978 1.000 0.989 44
cycling ind. 1.000 1.000 1.000 1.000 47
elliptical 0.667 1.000 0.667 0.800 3
rowing 1.000 1.000 1.000 1.000 7
AVG 0.954 0.991 0.990 0.990

Table 4.8. Classification Report for Random Forest evaluated on test set - Dataset B
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Chapter 5

Conclusions

In this work, the possibility of using the Apple watch as a recognition device for
human activities was therefore investigated. Through the development of Motion
Data Logging, it is possible to create a dataset of 8 distinct activities. The good-
ness of the acquired datasets have been proved experimentally in this thesis, by
performing HAR by means of the most basic and widespread classifiers
This work provides an experimental evidence that the information that can be
extracted from the apple watch sensors is remarkable and can be succesfully ex-
ploited by simple classifiers in order to discriminate between a number of possible
human activities of interest. The data acquisition and preprocessing is performed
internally, fact that facilitates the development of user-customed activity recog-
nition systems. The choice to use simple feature selection algorithms and simple
recognition models has been considered in the perspective of subsequent works that
include real time recognition: other types of algorithms widely used such as Dy-
namic Time Warping have been discarded a priori due to the high computational
cost they require. All of the basic recognition models studied in this work have
achieved promising perdormances. Random forest in particular have achieved the
best results in all parameters evaluated in both validation and test set, but every
model performance can be considered excellent.
Further suggested works related may be the further development of the software,
trying to investigate real-time recognition by exploiting local computing capacity
or upgrading it using the latest generation Apple Watch, which allows to record of
the entire ECG trace from the derivation of the wrist in which it is located, so as
to investigate how this entire can be informative in the context of the recognition
of human activities.
Finally, the introduction of partially supervised models that envisage the recogni-
tion of new activities based on the user experience could be an interesting perspec-
tive for the continuation of the work done so far.
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