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Abstract

Turbulent mixing and diffusion are investigated in the Lagrangian framework using tools
proper to network theory. Starting from a database of trajectories of non-inertial particles
obtained through direct numerical simulation of a channel flow, two innovative analysis
tools are developed and discussed.

The first tool aims to characterize the tendency of tracers to group in coherent structures,
or clusters, despite being driven further and further away by the diffusive action of
turbulence. The second tool deals with the diffusion and transport of particles in the only
inhomogeneous direction of the channel flow, which is the wall normal one.

In both tools particles (or sets of them) are represented as graph nodes, while different
definition of links are given. Network theory offers a powerful framework to analyse complex
dynamical behaviour in large datasets.
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Chapter 1

Introduction

Transport phenomena arising in turbulent flows permeate several aspects of our lives,
spanning from the diffusion of pollutants in the atmosphere to the combustion of fuel in
an aircraft’s jet engine. While diffusion of chemical species, momentum and heat takes
place even in the absence of turbulence, all of these processes are vastly amplified by its
multiscale and chaotic nature.

Despite the great importance of turbulent transport in many of today’s engineering
and physics problems, several questions remain open. Practical applications often resort on
models which are by their own nature incomplete and bounded to a restricted number of
cases. On the other hand, the complete resolution of the structure of a flow, i.e. the solution
of the Navier-Stokes equations for any boundary condition, is not possible in an analytical
way nor computationally feasible with a numerical approach. Nonetheless, the numerical
solution of the Navier-Stokes equations for selected, simplified cases (such as homogeneous
isotropic turbulence or the flow in a channel) provides useful insight on more complex real-life
scenarios and is of prime importance in the definition of simplified models [15]. Along with
numerical techniques, a great number of data is collected through experiments; relatively
new methods, such as Particle Image Velocimetry, offer the possibility to investigate various
laboratory flows with high spatial and temporal resolution [26].

The aforementioned approaches generate huge amounts of data, which need to be
adequately processed in order to extract useful information. Besides the dimension of
the datasets involved, a key factor pushing forward the research of novel post-processing
methods is the need to effectively highlight the prominent features of turbulent flows.

One of the most recent advancements amongst these methods is offered by complex
networks and their underlying mathematical basis, that is graph theory [1]. It has been
shown that complex networks are particularly suitable to describe the mutual interactions
of systems composed by a great number of dynamical elements; similar approaches have
been already applied to a number of different cases, ranging from biology to the study of
social groups. Its application to the study of turbulence is rather recent but promising,
since the dynamical and interconnected behaviour of turbulent flows seems suitable for a
network representation [17] [9] [7] [18] [20].

The purpose of this work is to develop and test two innovative methods of analysis for
wall bounded turbulence, starting from high resolution Lagrangian data and employing
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1 – Introduction

complex networks. The results provided by these methods will be accompanied by classical
results; also, additional insights on channel turbulence will be searched, in order to exploit
the peculiarities of network theory to highlight hidden features of such flows. In general,
the capability of graph theory to thoroughly describe turbulent flows will be assessed.

Chapter 2 introduces turbulent flows, their main characteristic and in particular wall
bounded turbulence, which is the main subject of this thesis.

Chapter 3 treats the theory of networks, introduces usual metrics needed to describe
them and reviews some relevant applications to fluid dynamics.

Chapter 4 analyses the dataset employed in this work, providing some classical results
about trajectories, their velocities and accelerations in the Lagrangian viewpoint. The
Lagrangian data has been obtained through the direct numerical simulation code of Kuerten
and Brouwers [13].

Chapter 5 and 6 constitute the main subject of this thesis; two network-based methods
to characterize wall bounded turbulence are introduced. The first method, treated in
chapter 5, defines a network starting from particles that get closer one to the other during
their motion. The second, addressed in chapter 6, aims to follow the motion of tracers
(grouped according to their release location) in the inhomogeneous direction of the channel,
which is y.

Chapter 7 provides some closing remarks and suggests some future developments of
this subject.

2



Chapter 2

Turbulence and mixing

2.1 Turbulent flows

The main feature of turbulent flows is their unsteady, irregular and seemingly unpredictable
motion; still, they are regulated by a deterministic set of equations and are known to exhibit
some common features and repetitive structures. Figure 2.1 shows both the pseudochaotic
behaviour and the presence of the previously mentioned structures, which usually appear
to be coherent both in time and space and are thus defined coherent structures.

Figure 2.1: Flow structures inside channel flow

While the random behaviour makes the analysis of flow features difficult and usually
forces to rely on statistical tools, the existence of repeated patterns and similarities between
different cases makes it useful to search for such features, in order to provide a simpler and
more immediate characterization of the flow.

Similarities in homogeneous turbulence and in bounded flows are perhaps the most
common amongst these phenomena and thus the most studied. Their existence stems
directly from several features embedded in the equations of motion of viscous fluids, which
are the Navier-Stokes equations.

3



2 – Turbulence and mixing

2.1.1 Governing equation

The Navier-Stokes equations for incompressible, Newtonian fluids are, in cartesian coordi-
nates,

∇ · v = 0 (2.1)

∂v
∂t

+ v · ∇v = −1
ρ

∇p + ν∆v, (2.2)

where ν is the kinematic viscosity of the fluid [15]. While the right-hand side of the
momentum equation (2.2) accounts for the action of normal and tangential stresses, the
left-hand side, in particular the non linear term v · ∇v, is responsible for the transfer of
energy between different scales. This transfer is the foundation for the onset of turbulence,
because it is the mechanism by which larger structures embedded in a flow break up and
generate other, smaller structures and so on.

The generation of smaller and smaller scales of motion is accountable for the enhanced
mixing properties of turbulent flows. The unsteady fluctuations of the velocity field,
together with the presence of vortices of every size, radically change the way passive scalar
quantities are transported and diffused. It should be noted that such process is way more
effective than diffusion caused by thermal agitation.

2.1.2 Reynolds number

The Navier-Stokes equations can be made non dimensional introducing appropriate scales
for length L, velocity U and pressure ρU2, so that x = Lxõ, v = Uvõ and p = ρU2põ, where
the star denotes the non dimensional variable and will be omitted in the following. While
the continuity equation is left formally unchanged by the substitution, the momentum
equation (2.2) becomes

∂v
∂t

+ v · ∇v = −∇p + ν

UL
∆v (2.3)

where UL/ν is defined as the Reynolds number Re. This parameter is proportional to
the ratio between inertial and viscous forces, the latter having a stabilizing effect on the
dynamics of the flow.

Many cases, such as boundary layers and the flow in a pipe or around a smooth sphere,
exhibit a sharp shift in certain properties (most notably, the forces exchanged between
fluid and body) for definite values of the Reynolds number. This transition is due to
prevailing inertial forces which overcome viscous effects and lead the flow to instability.
With growing Re the regularization of the solution induced by the Laplacian of the velocity
∆v is diminished, while the growing importance of non linear terms starts the breakup of
larger structures and the generation of smaller scales.

It should be noted that, in the limit of very large Reynolds number, the dissipation
does not become negligible, since the minimum scales of the flow become smaller and the
associated velocity gradients larger.

4



2.1 – Turbulent flows

2.1.3 Kolmogorov theory

All the previously treated concepts receive a formal framework in the theory developed by
Kolmogorov in 1941 [11]. The process by which large vortices generate smaller ones and
transfer energy to them is called energy cascade and was already recognized by Richardson
[16]. This transfer is not endless but stops when flow structures have reached a size and a
Reynolds number so small that viscosity is effective in dissipating their kinetic energy into
heat.

Kolmogorov theory is stated through three main hypotesis, which can be summarised
as follow. The first statement is the

Hypothesis of local isotropy At large Reynolds number, the smaller scales of
motion are statistically isotropic

While the larger scales of size L are strictly dependent on the boundary conditions, going
lower and lower in the cascade the smaller structures lose memory of the external geometry
and retain no directional information. This is only true for high Re since otherwise there
would not be enough separation between scales for this to happen.

It is useful to introduce the dissipation rate ε, that is the ratio at which energy is
transferred between vortices of different size. Since dissipation happens only at the bottom
of the cascade, ε is assumed to be constant through the cascade and equal to that injected
into the system by gradients in the mean flow. The loss of information from the mean
flow makes the lesser scales of every turbulent flow similar if rescaled with appropriate
parameters. The most important features at this state are the injection of energy and its
dissipation; this leads to the

First similarity hypothesis At the locally isotropic scale, all the statistics of the
flow are determined uniquely by ν and ε

Starting from ν and ε, unique length and velocity scales can be derived. In particular
the characteristic length scale at which dissipation happens can be defined as η = 4√

ν3ε
and is the Kolmogorov scale.

At very high Reynolds number, it is reasonable to assume the existence of a scale of
characteristic length l ¹ L, so already statistically isotropic, yet enough large (l º η) to
not experience significant dissipative phenomena. This is the

Second similarity hypothesis In turbulent flows at very high Reynolds number,
the statistics of the scale l with η ¹ l ¹ L are universal and dependent only on ε, not on ν

This range is called the inertial range, since dissipative effects are negligible and only
inertial ones are considered. Following from these considerations and from dimensional
arguments, a simple power law for the energy spectrum can be obtained:

E(k) = C0Ô2/3k−5/2, (2.4)

where C0 is a universal (Kolmogorov) constant.

5



2 – Turbulence and mixing

2.1.4 Wall flows

While of great theoretical importance, Kolmogorov’s predictions often fall short when
employed in most naturally occurring flow cases. Most notably, the need for turbulence to
be statistically homogeneous both in time and space excludes cases where gradients are
present. The presence of a wall introduces a boundary condition on velocity

v = 0 at y = 0, (2.5)

where y is the wall normal coordinate; equation (2.5) is the no-slip condition. The presence
of a non zero velocity away from the wall generates what is called a boundary layer, i.e. a
region in the vicinity of a solid boundary where, even at high Reynolds number, viscosity
effects are not negligible because of the great intensity of the velocity gradients caused by
the boundary.

One of the simplest cases of flow in presence of a wall is the fully developed channel, that
is the flow in a rectangular channel with one dimension much smaller than the other two;
entrance effects are also neglected, so a portion of the channel where motion is statistically
steady is considered. This configuration will be the main subject of this thesis. As can be
seen in figure 2.2, the channel has height 2δ, while dimensions b and L are much larger
(b, L º δ). The mean flow is non zero only in its streamwise component (that is x), while
variations in the mean flow happen only in the wall normal y direction. Since the spanwise
dimension z is much larger than the wall normal one, far from the ±b/2 walls the mean
flow is independent of z. The mean flow has components U , V and W with only U /= 0
and dU/dy /= 0; the channel flow is also statistically symmetrical along the center plane
located at y = δ. In numerically simulated channels the ±b/2 walls are usually neglected
and substituted by periodic boundaries.

Figure 2.2: Channel schematics

Because of the mean continuity equation and of the boundary condition éV êy=0 = 0,
integration leads to éV ê = 0. Taking the mean of the momentum equation (2.2) and
projecting it onto y,

0 = −1
ρ

∂épê
∂y

− dév2ê
dy

, (2.6)
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2.1 – Turbulent flows

Since also the fluctuating velocity is zero on the wall (év2êy=0 = 0), equation (2.6) can be
integrated and reduces to

év2ê + épê
ρ

= pw(x)
ρ

.

The axial projection of the mean momentum equation is

0 = ν
d2éUê
dy2 − déuvê

dy
− 1

ρ

∂épê
∂x

; (2.7)

defining the total shear stress τ as

τ = ρν
déUê
dy

− ρéuvê, (2.8)

equation (2.7) can be rewritten as
dτ

dy
= dpw

dx

The flow is statistically steady and this results in equation (2.7) being a simple balance of
forces between the mean axial pressure gradient and the cross-stream shear stresses. Shear
stresses meanwhile are a function only of y, while the wall pressure is a function only of x,
so integration of equation (2.7) is straightforward and results in the solution

−dpw

dx
= τw

ρ
(2.9)

where τw = τ(y = 0) is the wall shear stress; shear stresses are zero at the channel centreline.
The pressure drop is hence related to the shear stresses at the channel boundary.

2.1.5 Near wall region

As already stated in equation (2.8), the total shear stress τ is the sum of contributions from
viscous and Reynolds stresses (the latter being related to turbulent velocity fluctuations).
As can be seen in the data shown in figure 2.3 for a channel flow at Reτ = 590, at the
wall (y = 0) the viscous stress is the highest (because of the velocity gradient) while the
boundary condition v = 0 imposes that Reynolds stresses are zero. For growing y the
relative importance of the viscous term lessens in favour of turbulent fluctuations. Near
the wall viscosity (and, subsequently, Reynolds number) plays a major role in determining
the characteristic of the flow. The other important parameter is wall shear stress. Starting
from these quantities (and adding the density ρ) unique velocity and length scales can be
defined, namely the friction velocity

uτ =
ò

τw

ρ
(2.10)

and the viscous lengthscale
δv = ν

uτ
. (2.11)
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2 – Turbulence and mixing

Flow quantities normalized using these reference values are usually denoted with the apex +.
The friction Reynolds number is also defined as

Reτ = uτ δ

ν
. (2.12)
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Figure 2.3: Viscous and Reynolds stresses, channel flow at Reτ = 590. DNS data from Moser, Kim,
and Mansour [14]

As stated by Prandtl, at high Reynolds number and in close proximity of the wall, flow
quantities normalized in wall units are independent of the external field and determined
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2.1 – Turbulent flows

only by the viscous coordinate y+ = y/δv, which by its own definition is similar to a local
Reynolds number, therefore indicating the prevalence of viscous or turbulent effects. Two
distinct regions can therefore be identified in the inner layer of the channel flow, namely
the viscous sublayer, where holds the relation

U+ = y+, y+ < 5 (2.13)

and the logarithmic region, where viscosity can be neglected and the velocity profile obeys
the following law

U+ = 1
k

log y+ + C, y+ > 30, (2.14)

where k and C are universal constants. In between those two regions a buffer layer is
present, where neither viscosity nor turbulence is prevailing. Experimental and numerical
data shows a good agreement with these theoretical predictions, as shown for example
in figure 2.4, where the velocity profile from the channel DNS employed in this thesis is
displayed.
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y+
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U
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DNS data
Log law
Viscous sublayer

Figure 2.4: Velocity profile in a channel flow at Reτ = 950. DNS data from Kuerten and Brouwers
[13]

Figure 2.5 on the following page shows Reynolds stresses éuiujê for a channel flow DNS;
these are zero at the wall and grow rapidly away from it. Production of turbulent kinetic
energy has a peak located in the buffer layer, while viscous phenomena are the highest at
the boundary and rapidly decay away from it.
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2 – Turbulence and mixing
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Figure 2.5: Reynolds stresses in a channel flow at Reτ = 590. DNS data from Moser, Kim, and
Mansour [14]

2.2 Lagrangian approach and mixing

2.2.1 Trajectories

A natural approach for the treatment of diffusion and transport phenomena is the La-
grangian viewpoint, that relies on following the motion of infinitesimal particles that do
not alter the state of the flow [29]. Having no inertia, these particles follow the underlying
Eulerian filed, with their velocities matching the Eulerian one at any point in time and
space. The instantaneous position is x (x0, t) and is a function of time and of the release
coordinate x0 of the tracer. The evolution of the trajectory is simply given by

∂x
∂t

= vL (x0, t) , (2.15)

where vL (x0, t) is again the Lagrangian velocity of a particle released in x0 at time t.
This is a purely Lagrangian relationship; in order for the trajectory to be coupled to the
Eulerian velocity field vE , a relation must be provided between the two velocities. Since
no inertial effects are involved, this is

vL(x0, t) = vE (x (x0, t) , t) . (2.16)

Both particle tracking experiments and direct numerical simulation (DNS) may be
employed to obtain Lagrangian data. In particular in the case of numerical simulation,
both an Eulerian computation of the velocity field on a grid and an interpolation scheme
to obtain Lagrangian data everywhere else in the domain are needed. The latter is the
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2.2 – Lagrangian approach and mixing

method that has been used to obtain the trajectories studied in this thesis and will be
discussed in deeper detail in chapter 4.

Figure 2.6 shows the projection on the xy and xz plane of the trajectory of a single
particle in a turbulent channel flow. As can be seen the particle path is irregular, especially
when it is located near the walls where it appears to be trapped in vortical, highly irregular
structures.
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Figure 2.6: Trajectory of a single tracer in a turbulent channel. DNS data from Kuerten and
Brouwers [13]

2.2.2 Acceleration and intermittency

Figure 2.7 shows again the trajectory of a single tracer with the modulus of its acceleration,
calculated for each time instant with a second order central finite difference. The previously
mentioned trapping of particles near the boundary can be clearly seen. The onset of strong
vortical motion is associated with high instantaneous accelerations, with a magnitude even
greater than 1000 m/s−2.

Intense turbulent fluctuations are present in Lagrangian time histories in a discontinuous
manner, both in time and space; this behaviour is commonly addressed as intermittency.
Intermittency is an inhomogeneous phenomenon and thus experimental and numerical
evidence provides results that deviates somewhat strongly from Kolmogorov’s prediction.

Lagrangian velocity structure functions of order p, defined as the p-th order statistical
moment of velocity increments

Dp(τ) = é|v (x0, t + τ) − v (x0, t)|pê, (2.17)

are predicted, as per Kolmogorov’s theory, to scale as (ετ)p/2. Instead experimental and
numerical evidence shows that, in general, the scaling law is

Dp(τ) ∝ (ετ)ξp
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2 – Turbulence and mixing

Figure 2.7: Trajectory of a single tracer with its acceleration superimposed. DNS data from Kuerten
and Brouwers [13]

with ξp 6 p/2. In addition to that, probability distributions of velocity differences are
increasingly non Gaussian as the time lag τ diminishes, due to intermittency; this is closely
related to the intermittency of acceleration; indeed, acceleration is proportional to the
velocity structure function in the limit of τ → 0.

2.2.3 Particle dispersion

Taylor [25] has shown that the dispersion of tracers in homogeneous turbulence is closely re-
lated to the Lagrangian integral timescale. This relation can be extended to inhomogeneous
flows as follows [22]; the integration of (2.15) yields

x (x0, t) =
Ú t

t0
v(x0, r)dr + x0.

Being x a coordinate in cartesian space with xi i = 1, 2, 3 components, the covariance
matrix for a set of trajectories is

éxi(x0, t)xj(x0, t)ê =
Ú t

t0

Ú t

t0
évi(x0, r)vj(x0, s)êdrds, (2.18)

where the mean is to be taken on a set of particles starting from the same x0; in the case
of channel flow, the set is composed of tracers belonging to the same starting level y0, since
the x and z direction are statistically homogeneous. The normalized correlation coefficient
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2.2 – Lagrangian approach and mixing

can be introduced as

ρij(τ) = évi(x0, t0)vj(x0, t0 + τ)êñ
év2

i (x0, t0)êév2
j (x0, t0 + τ)ê

, (2.19)

whose integral
T L

ij =
Ú ∞

0
ρij(τ)dτ (2.20)

is the Lagrangian integral timescale, a measure of the time during which the velocities of a
tracer are correlated. The normalization factor in (2.19) is the product of the standard
deviations of velocity at times t0 and t0 + τ and will be referred to as σij(τ). Equation
(2.18) can then be rewritten as

éxi(x0, t)xj(x0, t)ê =
Ú t

t0

Ú r

t0
σij(s)ρij(s)dsdr

which can be further manipulated to obtain

éxi(x0, t)xj(x0, t)ê = 2(t − t0)
Ú t

t0
σij(s)ρij(s)ds − 2

Ú t

t0
sσij(s)ρij(s)ds. (2.21)

For long time lags τ = t − t0 the velocity is uncorrelated (ρij ≈ 0) and (2.21) reduces to

éxi(x0, t)xj(x0, t)ê = 2(t − t0)
Ú t

t0
σij(s)ρij(s)ds, (2.22)

being the integral a constant term for large t. Differently from the classical procedure of
Taylor for homogeneous flows, the normalization factor σij(τ) may not be brought out of
the integral since it is connected to the inhomogeneity of the flow.
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Chapter 3

Turbulence and networks

3.1 Network theory

The definition of networks encompasses a huge amount of objects and their respective
connections, from transportation infrastructures to social acquaintances. All of these very
different subjects receive a formal treatment via graph theory. A graph G consists of two
sets N and L, one containing the interacting elements, or nodes, the other containing their
respective connection, or links.

A single link, or edge, lij ∈ L is denoted by the two nodes, or vertices, vi, vj ∈ N
which it joins. Graph theory does not allow self loops, so lii = 0 ∀i. If a connection has a
directional information embedded in it (as, for example, in a predator-prey relationship)
the network is said to be directed and lij /= lji. Instead, if lij = lji the network is undirected.
In addition to that, a network is weighted if a real number wij ∈ R is associated to each
link lij ; weights may represent a variety of characteristic in different network, such as
Euclidean distances or the number of cars in each road between cities. The number of
nodes is the order of a graph, while the number of links is its size.

The definition for the links lij leads naturally to that of the adjacency matrix, that is
the N × N matrix A which has aij = 1 if a link is present between nodes i and j and is
zero otherwise. For an undirected network, A is symmetrical. Since self loops are excluded,
the maximum number of links that can be formed in an undirected network is N(N − 1)/2,
while it is N(N − 1) in a directed network. The weight matrix W may be associated to
the adjacency matrix.

3.1.1 Degree and strength

The degree ki of the i-th node is the number of links incident to that node. As such, it is
calculated as

ki =
Ø
j∈N

aij ; (3.1)

its most immediate characterization is the degree distribution P (k), representing the
probability of a given node has degree k or, alternatively, the fraction of nodes having
degree k.

15



3 – Turbulence and networks

An additional distinction can be made for directed networks; it may indeed be useful
to part ingoing and outgoing links, thus defining the ingoing degree kIN

kIN
i =

Ø
j∈N

aji (3.2)

and the outgoing degree kOUT

kOUT
i =

Ø
j∈N

aij , (3.3)

which correspond to column-wise and row-wise summation of the adjacency matrix respec-
tively.

The degree distribution of a great number of real networks is not homogeneous, as
earlier works expected, but instead follow a power law of the type

P (k) = Ck−γ . (3.4)

Such networks are called scale free, since relations like (3.4) retain the same functional form
at all scales; similar behaviour are present in several natural phenomena, most notably
fractals and the inertial range energy spectrum in turbulence (2.4). Scale free networks
tend to have a small number of high degree nodes and a high number of nodes with few
connections.

Weighted networks characterized by A and W do not only possess a degree distribution
but also a node strength distribution. For each node i, its strength si is defined as

si =
Ø
j∈N

wij . (3.5)

For directed networks, the ingoing and outgoing strengths are defined as in (3.2) and (3.3).

3.1.2 Other matrices and graph spectrum

Other than via the adjacency matrix A the description of a directed graph can be done
through the directed incidence matrix B ∈ Rn×e, defined as

Bij =


1 if vi is the starting vertex of lj

−1 if vi is the ending vertex of lj

0 otherwise
(3.6)

From the incidence matrix, the combinatorial Laplacian matrix Λ can be derived[2]:

Λ = BB|; (3.7)

which is by its own definition symmetric and semi-definite positive. It may be shown that
this matrix has on its diagonal the total number of edges incident on each vertex (i.e. the
sum of the ingoing and outgoing degree) and that Λij = −1 if there is a link between vi

and vj (Λij = −2 if there is a directed link in both directions). For undirected graphs the
following relation holds:

Λ = D − A, (3.8)
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3.1 – Network theory

where D is the diagonal matrix containing the degrees of each node (Dii = ki).
The spectral analysis of Λ is of particular importance for a graph. Let λ1 < . . . < λi <

. . . < λn be the eigenvalues of Λ; they are all real by the definition of Λ. If a graph is
connected (a path between any two vertices is always present) then it will have only one
Laplacian eigenvalue equal to 0, that is λ1. Instead, if the graph is disconnected in m
subgraphs, the null eigenvalue will have multiplicity m. In the following the focus will be
on connected graphs.

The first non trivial eigenvalue λ2 has a greater importance and is strongly related to
the possibility of partitioning a graph in two weakly connected subgraphs; the greater λ2,
the more difficult it will be to partition the graph. These facts will be addressed using
as example the simple graph G depicted in figure 3.1, composed of two highly connected
communities which interact between themselves only via a single link l16.

Figure 3.1: Example graph G

While the first eigenvalue of the Laplacian Λ(G) is as expected zero, the second is
λ2 = 0.5, which is quite small compared to the others and confirms the quite clear partition
present in G. Further insight may come from the analysis of eigenvectors, which are able
to properly separate nodes into communities [5]. The eigenvector related to the zero
eigenvalue v1 is constant; since eigenvectors are orthogonal and the first is constant, the
others must have a zero sum. For the example graph present earlier, the first non trivial
eigenvector is

v2 =



−0.298
−0.437
−0.468

0.428
0.480
0.296


As can be seen, v2 components associated to the first three nodes are negative, while the
other three are positive. If the separation is less sharp, this distinction becomes milder,
but taking into account successive eigenvectors may provide further definition. Figure 3.2
shows the components of the first eigenvector; red and blue marks correspond to the first
and second community of G. The separation in eigenvector space is visible and quantifiable,
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3 – Turbulence and networks

although adding more dimensions to it may present the need to improve the measure of
separation between components.
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Figure 3.2: First non trivial eigenvector of G

3.2 Applications to turbulent flows

The following section will briefly examine previous results obtained by the research group
in which this thesis was conceived, regarding the application of network theory to fluid
dynamics and wall turbulence. Earlier works have focused on climate dynamics, exploiting
the features of complex networks to highlight interconnections between different regions
of the globe [18]. Recent works have instead shifted their attention to the study of high
resolution turbulent flows, exploiting the ability of networks to describe with simple metrics
phenomena that could otherwise be investigated only by statistical means.

The main issue in this kind of approach is providing a proper definition of the N and
L sets, so that the usual network metrics provide useful insight on the evolution of the
turbulent flow.

A first approach to transform a time series into a network is the visibility graph; different
time instants are the nodes, while a link is established if two nodes are in mutual visibility,
i.e. it is possible to draw a straight line between two data points without intersecting other
data. So a link is present between times ti and tj for the time series s(t) if

s(tk) < s(tj) + (s(ti) − s(tj)) tj − tk

tj − ti
∀k = i . . . j. (3.9)

Peaks in the time series s(t) usually are connected to a greater number of nodes, while
time instants in their surroundings may have their visibility obstructed by the peak and
thus have a reduced degree. Also irregularities in the time series are highlighted by similar
behaviour of the visibility graph. This approach has been exploited to describe time
series obtained from single points in space in a channel flow, considered from the Eulerian
viewpoint [7].

Also in the Eulerian framework, the definition of a link between single points in space
could stem from physical features of those points, such as kinetic energy correlation
(employed in homogeneous isotropic turbulence [17]) and velocity correlations (for wall
bounded turbulence [9]). For all of these methods, also limits on link distance were
imposed to exclude non physical correlation from forming network links; the Eulerian
framework naturally provides characteristic lengths (such as the Taylor microscale λ for
the homogeneous turbulence case) to limit the spatial length of interactions.
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3.2 – Applications to turbulent flows

The application to Lagrangian data allows to use single tracers or groups of them as
network nodes. A definition of links based on spatial proximity [8] allows to measure
the evolution of interactions between tracers through time and to analyse diffusion and
dispersion. The development of additional methods based on Lagrangian data is the subject
of this thesis.
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Chapter 4

Channel flow dataset

In order to obtain Lagrangian data and statistics for a turbulent flow, a robust and effective
method to generate trajectories is needed. The numerical resolution of (2.15) implies the
knowledge of the Eulerian velocity field everywhere in the fluid domain, which has been
obtained with direct numerical simulation at a friction Reynolds number Reτ equal to 950.
Other than presenting the DNS tools, this chapter will provide a brief description of the
tracers’ trajectories dataset, analysing distance, velocity and acceleration statistics.

4.1 Channel flow DNS
The ensemble of trajectories has been obtained through the work of Kuerten and Brouwers
[13], which comprises both a channel flow DNS and an interpolation and integration scheme.
The Navier-Stokes equations (2.1) - (2.2) are solved in their rotation form

∇ · v = 0 (4.1)

∂v
∂t

+ 1
ρ

∇P = f − ω × v + ν∆v (4.2)

where the vector identity

(v · ∇) v = ∇
1
|v|2

2
/2 − ω × v

has been employed; ω = ∇ × v is the vorticity and P = p + ρ|v|2/2 is the total pressure.
The Navier-Stokes equations are made non dimensional using the friction velocity uτ ,
the channel half-height δ and density ρ. Reτ (2.12) is kept fixed to 950 by imposing an
x-directed driving force per unit mass f ; the bulk Reynolds number based on the centreline
velocity is thus not fixed.

Using a procedure pioneered by Kim, Moin, and Moser [10], equations (4.1) - (4.2)
are solved in a box volume with height equal to 2δ, length 2πδ in the streamwise x
direction and πδ in the spanwise z one. A periodic boundary condition is imposed on
the x and z directions, while the no slip condition v = 0 is imposed on the channel walls.
Incompressibility is satisfied by means of a convenient choice of dependent variables.
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4 – Channel flow dataset

A pseudo-spectral method is used, with a Fourier-Galerkin approach in the homogeneous
directions and a Chebyshev-Tau method in the wall normal one. Non linear terms are
calculated in physical space and are explicitly integrated in time with the second order
Runge-Kutta method, while linear terms are advanced in time through an implicit Crank-
Nicolson scheme.

4.2 Trajectories integration

The DNS is run until all Eulerian quantities achieve statistical convergence; after that,
particle are seeded in the simulated channel and their paths integrated. Np = 104 particles
are inserted at x = 0, organized in Nl = 100 equally spaced levels in the wall normal
direction; the first level is located at y+ = 9.5 and their spacing is ∆y+ = 19. Tracers are
also homogeneously distributed along z with ∆z+ = 29.85. Each level therefore contains
Np1 = 100 particles.

At each time step the velocity of the tracer is found applying trilinear interpolation
to the computational grid. Although other methods may be more accurate in computing
single trajectories, statistical accuracy on the entire set of particles was not affected [13];
still, spurious oscillations in velocity and acceleration of particles may derive, modifying
probability distributions [4] [27]. For improved precision the velocity field was employed
after the transformation in real space, where the number of grid points is increased by a
factor of 3/2 for anti-aliasing.

Advancement in time was performed using the same explicit second order Runge-Kutta
method employed in the DNS. The trajectories were calculated for a total time equal to
T + = 15 200, which is a time greater than that needed for vertical mixing and for the onset
of the asymptotic Taylor dispersion regime; the time step of the integration is ∆t+ = 0.475,
this resulting in Nt = 32 000 time instants.

The dataset was provided in the form of a single precision floating point Matlab matrix
of size Np × 3 ×Nt, where along the second dimensions the three spatial coordinates of each
particles are stored. Since the size of this matrix is considerable (> 3 GB), some precautions
had to be taken during post processing in order to perform a fast and memory efficient
computation. On the other hand, being the data stored in single precision, some numerical
accuracy may be lost, especially when performing certain operations such as derivatives;
particular care has been employed when computing velocities and accelerations†.

4.3 Distance statistics

Starting from the trajectories dataset, a first natural approach is to examine the evolution
of the mutual distance of tracers. Owing to the dispersive action of turbulent flows, an
overall diffusive action is to be expected; still, different phases, each with its peculiar
behaviour, can be anticipated (as has been displayed in section 2.2.3 on page 12) and the

†Most notably in the calculation of derivatives, spatial coordinates were divided by the time step ∆t+

before subtracting them, in order to mitigate the effects of numerical cancellation
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4.3 – Distance statistics

analysis of higher order statistical moments may provide useful insight on the behaviour of
particles.

A matrix D containing mutual distances of all particles can thus be defined as

Dij = |x+
i − x+

j |, (4.3)

where x+
i is the position of the i-th particle in viscous coordinates. D is varying with time,

following the motion of tracers. Since the channel has an inhomogeneous direction y, it
could reasonably be expected that particles behave differently depending on their wall
normal release coordinate, i.e. y+

0 . It is then useful to consider a reduced matrix Dl, which
retains only the distance of particles belonging to level l with the rest of the dataset. The
matrix has size Np1 × Np (100 × 10 000) and has the form

All particles

Si
ng

le
le
ve
l  D11 D12 . . . D1,Np

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DNp1,1 DNp1,2 . . . DNp1,Np

 (4.4)

Figures 4.1 - 4.4 show the evolution of statistical moments of mutual distances between
particles, for both the whole set and selected levels, denoted by their respective y+

0 . In
figure 4.1 an asymptotic regime can be noted, where the mean distance increases linearly
with time; this is somewhat similar to (2.22), although the formulations are not equivalent.
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Figure 4.1: Mean distance of particles

The initial transient lasts until t+ ≈ 4000, a separation that stands consistently through
many analysis in the following of this work and thus can be considered a transition between

23
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different regimes, namely the Taylor dispersion regime and the previous, non asymptotic,
one. The mean distance of levels near the walls is higher at t+ = 0 (because of how particles
are arranged at their release) and also grows faster then the rest of the dataset; this could
be because tracers embedded in the inner part of the boundary layer move at a slower
velocity and are thus rapidly parted from the rest of the set. On the long run mixing is
effective and all curves tend to collapse on the mean for all particles, although the process
appear to be very slow for tracers whose y+

0 is very small.
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Figure 4.2: Mean distance of particles divided by its standard deviation

Figure 4.2 shows the ratio between mean distance and its standard deviation σD. In
the asymptotic regime those two quantities appear to be proportional for all levels, while in
the starting transient they behave considerably different. In particular lower levels increase
their mean distance considerably faster than their standard deviation, this because mean
distance increases and standard deviation initially decreases; both these phenomena are
probably due to particles being initially trapped in the region closest to the wall, as already
stated.

Figure 4.3 shows the skewness, which is proportional to the third statistical moment
of the distribution of mutual distances. It samples the asymmetry of the distribution, so
that a positive skewness indicates that values smaller than the mean are more frequent.
All levels reach a nearly asymptotic positive value by t+ ≈ 4000, although being quite
irregular, showing that low distances between particles are more common than high ones.
Only levels near the wall for a brief time exhibit a negative skewness, nearly at the same
time for which the ratio éDê/σD is maximum.

Finally in figure 4.4 the kurtosis of the distance distribution is shows. Kurtosis is a
measure of the relative importance of outliers in a distribution; in particular the kurtosis of
a normal distribution is 3, with higher values corresponding to tighter distributions. The

24



4.3 – Distance statistics

kurtosis for all levels appears to be always higher than three, although no clear trend can
be easily identified other than an initial growth. This could be due to the relatively low
number of distances on which this moment is calculated.
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Figure 4.3: Skewness of the distance of particles
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Figure 4.4: Kurtosis of the distance of particles
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4.4 Velocity statistics and Lagrangian timescale

Starting from the trajectories, a velocity time series for each particle has been calculated
using a second order central finite difference scheme

v+
1
x+

0 , tk
2

=
x+

1
x+

0 , tk+1
2

∆t+ −
x+

1
x+

0 , tk−1
2

∆t+ (4.5)

where tk is the discretized time and ∆t+ = 0.475 the constant time step; as already stated,
the division has been performed before the subtraction to alleviate the effects of numerical
cancellation.

4.4.1 Probability distributions

Figures 4.5 shows probability distributions of the streamwise component of velocity for
particles originating from different levels at a time instant in the starting transient. It can
be noticed how particles have clearly different velocities depending on their y+

0 , since at
low t+ these are still well inside their release region. Also particles near the walls appear
to have a greater variance, possibly meaning that velocity fluctuations are more intense.
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y+ =940.5, <u+> = 2.23e+01

Figure 4.5: Probability distribution of u+, t+ = 100

Figure 4.6 shows the evolution of the mean streamwise velocity. As already noticed
before, a clear shift in flow properties happens at t+ ≈ 4000, where the mean velocity of
particles with different y+

0 become equal; this is due to tracers becoming thoroughly diffused
in the channel height. After t+ ≈ 4000 trajectories have lost all information regarding their
origin coordinate and so their statistics are mostly independent of the starting level.
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Figure 4.6: Mean axial velocity for different y+
0

4.4.2 Velocity correlations and timescales

Another measure of the persistence of flow structures are velocity correlations and their
integrals, which in the Lagrangian viewpoint are the characteristic timescales of turbulent
motions. The timescales are the typical times of large eddies embedded in the channel, cal-
culated from the motion of tracers inside it; they are thus depending on the inhomogeneous
release coordinate y+

0 .
Velocity correlations are calculated from perturbed velocity, i.e. vÍ = v − évê, where

évê is the mean velocity and has only the streamwise component (V = (U, 0, 0)). U is
obtained from Eulerian DNS data, averaged for different axial coordinates and times. The
normalized cross correlation function, already defined in (2.19) on page 13, is

ρij(τ) =
évÍ

i(x0, t0)vÍ
j(x0, t0 + τ)êñ

évÍ2
i (x0, t0)êévÍ2

j (x0, t0 + τ)ê
,

and it depends on x0, t0 and τ ; the mean is taken on the set of particles sharing the same
y+

0 . It should be noted that due to the smallness of the dataset (100 tracers for each level)
the velocity fluctuations have still a non zero mean, so their mean has been removed and
ρij is better defined as a covariance matrix. For i = j, ρii is the autocorrelation function.
The dependence on t0 is tightly linked to that on x0, since changing the starting time
the particle will be moved to another starting coordinate and its correlation function will
reflect that. The autocorrelation function is bounded between 1 and −1, with the unitary
value corresponding to perfectly correlated variables; ρii for a turbulent velocity is equal
to 1 only for τ = 0.

Figure 4.7 shows the autocorrelation function for the axial component of the velocity
uÍ, for two different starting levels. It can be immediately noted that particles originating
near the boundary have their velocities correlated for a much shorter time than the others.
This signals that structures in the inner part of the boundary layer have a lesser lifespan
than those near the centreline.
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Figure 4.7: Autocorrelation ρ11 for two different y+
0

The autocorrelation function is expected to decrease exponentially, still the finiteness
of the set makes this true only for short time lags τ ; particular care has then to be taken
in order to properly integrate the autocorrelation functions. The autocorrelation integral
is the timescale Tij as defined in (2.20) on page 13; since integration for all times is not
practical nor it yields significant results, two different approaches have been used:

• Integration up to the first zero crossing of ρii, neglecting negative autocorrelations
and the subsequent oscillations. The results are shown in figure 4.8a.

• Exponential fitting for small time lags τ . The integral timescale is set as the time τ
for which ρij = 1/e; the fitting curve is then e−τ/Tii . The results are shown in figure
4.8b.

Both methods yields similar trends with small differences in magnitude. Although
data from the viscous sublayer is missing because no tracers originate from y+

0 lower than
9.5, it can clearly be seen that the integral timescale is increasing for all components of
velocity moving away from the wall. This is linked to the fact that structures near the
boundary have shorter lifespans. The trend is quite irregular inside the logarithmic law
region, especially near y+

0 = 100. Axial velocity fluctuations are correlated for a shorter
time than the other two components.

4.4.3 Taylor microscale

Starting from the autocorrelation function, also the temporal Taylor microscale λi can
be calculated. It is equal to the intercept of the osculating parabola to ρii at τ = 0, as
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Figure 4.8: Velocity timescales T +
ii in wall time units

portrayed in figure 4.9. It is a scale representative of small but still dynamically significant
eddies in the flow belonging to the inertial range. Its value is

λ2
i = − 21

∂2ρii

∂τ2

2
0

, (4.6)

which is equal to

λ2
i = 2éuÍ2

i ê1
∂uÍ

i
∂t

22 .

29



4 – Channel flow dataset

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

22

1 - 2/ 2

Figure 4.9: Graphical depiction of the temporal Taylor microscale

Values of the Taylor microscale for different y+
0 are shown in figure 4.10. It should be noted

that this scale is much larger than the Kolmogorov characteristic time τη (in a similar
fashion as the spatial Taylor scale and the Kolmogorov length scale). It can be easily noted
that the Taylor microscales λ2 and λ3 increase in a similar manner and with values close
one to the other, while λ1 attains a nearly constant value across the height of the channel.
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Figure 4.10: Taylor scale λi for different particle release coordinates
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4.5 Acceleration statistics
In this section statistics on the acceleration of tracers are presented. The acceleration is
calculated as the second order central finite difference of the position

a+
1
x+

0 , tk
2

=
x+

1
x+

0 , tk+1
2

(∆t+)2 − 2
x+

1
x+

0 , tk
2

(∆t+)2 +
x+

1
x+

0 , tk−1
2

(∆t+)2 . (4.7)

The normalization coefficient of the acceleration in wall units is u3
τ /ν. Since typical

values for ëa+ë are in the order of unity, very high values of physical acceleration can be
attained, as already shown in figure 2.7 on page 12. The probability distribution function
of a component of the acceleration, normalized by its standard deviation, is shown in figure
4.11; other components show a similar behaviour for different time instants. As can be
seen there is no significant deviation between particles originating from different levels;
the distribution is non Gaussian and exhibits long tails, which is a sign of the presence of
strong bursts in the acceleration and thus intermittency. Still, results may be biased by
the inaccuracies in the computation of the acceleration and by the low number of particles
in each level.

-15 -10 -5 0 5 10 15 20
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100
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All levels
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y+ =180.5

Figure 4.11: Probability distribution function of a+
y /σ

4.5.1 Acceleration timescale

In a manner similar to subsection 4.4.2, acceleration integral timescales may be calculated.
The results are reported in figure 4.12 and appear coherent with those from [23], except
for the spike in T11 at y+

0 ≈ 100. Acceleration components in general stay correlated for a
shorter time than velocity ones, as shown in 4.13; their timescale also does not increase
much with wall distance.

The timescale has been calculated using the integral method since the quality of fitting
was lower due to the small time lags involved.
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Chapter 5

Clustering network

5.1 Definitions

Tracer particles are driven further and further away one from the other thanks to the
diffusive action of turbulence; nonetheless it could be reasonably expected that turbulence
has an inverse effect at least locally, regrouping tracers in certain spatial and temporal
coordinates while the overall trend is still a diffusive one. For the scope of this chapter,
this behaviour will be addressed as clustering.

The mutual distances matrix for all particles D, already defined in (4.3) for each
particle i, j as

Dij = ëx+
i − x+

j ë

contains in each row the euclidean distance of the particle i (ranging from 1 to the number
of particles Np) with the j-th particle. D is therefore a square symmetric matrix; only
half of it can be calculated in order to speed up the process. Since D changes with time
following the motion of particles, also its shift in time ∆D can be defined as

∆Dk = Dk+1 − Dk, (5.1)

where the superscript denotes the time instant at which the distance matrix is taken. It
should be noted that, since the time lag between consecutive times ∆t = tk+1 − tk is
constant, (5.1) is a multiple of the ensemble of particles’ mutual velocities, calculated with
a forward first order finite difference.

Aiming to define a network of clustering particles, positive elements in ∆D are discarded;
in addition to that, only particles whose distance at tk is lower than a certain threshold
value dt are retained. This is done in order to exclude approaching motions that do not
arise from the belonging of the particles to the same flow structure but rather to different
structures with separate behaviour. More detail on the choice of this threshold will be
given in the following. A modified version of ∆D can thus be defined as

ç∆D
k

ij =
I

∆Dk
ij , if ∆Dk

ij < 0 ∧ Dk
ij < d+

t

0, otherwise
(5.2)
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for each couple i, j of particles. Figure 5.1 shows non zero elements of ç∆D and their
magnitude; again, only the upper half of the matrix has been calculated since it is symmetric.
Taking this matrix as (half of) a graph weight matrix W, a network can be built. Each
entry ç∆Dij then corresponds to a link between particles i and j. Substituting non zero
entries with ones, also the adjacency matrix A for this network can be built.
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Figure 5.1: Network matrix ç∆D, t+ = 475, d+
t = 100

The degree of each node, being the number of links incident to that node, is the sum
of each row (or column, independently) of A. It is useful to remark that this definition
includes also isolated vertices, i.e. nodes that to do not participate in any link. In the
following also degree distributions of only nodes with links (so with k > 1) will be given.

It is also useful to define the centroid coordinate of each link as the mean position of
particles forming a link, that is

xc,ij =
xk

i + xk
j

2 , (5.3)

where the apex k signals that positions are calculated before the clustering happens. Other
metrics pertinent to links are their weight value ç∆Dij and the mutual distance r of the
two tracers before clustering, simply calculated using the mutual distances matrix D at
time tk.

Figure 5.2a shows a close-up of the weight matrix; links are present only between
neighbouring particles; therefore, non zero entries are present only near the main diagonal
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5.2 – Single time clustering

and the upper (and lower, due to symmetry) 100th, 200th,. . . diagonals. This happens
because of the disposition of tracers at their release, which is schematised in figure 5.2b.
Each tracer i is close, at t+ = 0, not only to i + 1 and i − 1 (moving in the y direction),
but also to i + 100 and i − 100 (moving in the z direction). The effects of the original
disposition of particles persist for some time, but is subsequently lost when tracers are
completely mixed.
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(a) Network matrix ç∆D, t+ = 475, d+
t = 100 (b) Tracers’ arrangement at t+ = 0

Figure 5.2: Detail of the structure of ç∆D

5.2 Single time clustering

Figure 5.3 shows both the swarm of particles (represented as grey dots) and blue links,
corresponding to the network shown in figure 5.1; the thickness of these lines is proportional
to the magnitude of distance reduction.

At a quick glance, some main features of this network can be identified:

• Links are strongly inhomogeneous in physical space; this mostly reflects the uneven
concentration of particles. This matter will be addressed in section 5.5.3.

• Near the centreline of the channel a greater number of links is present than at the
walls. The number of links of each node is, in the network formalism, the degree
k; figure 5.4 shows the joint probability distribution of k and of the distance from
the nearest wall of each particle; also the marginal distributions and a trendline
are shown†. The marginal pdf of k is shown in a logarithmic plot to highlight its
exponential behaviour. Such a distribution implies that there are a few of highly

†The trendline is equivalent to a moving average and has been calculated partitioning the x axis and
taking the average of the y values of point belonging to that interval. The correlation coefficient is shown
in the caption.
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Figure 5.3: Particle snapshot and clustering links at t+ = 475, d+
t = 100

connected nodes, while the majority of tracers is clustering with a small number of
other particles.

• Particles near the wall get closer one to the other with more intensity than particles
near the centreline. This is shown in figure 5.5 on page 38, where the joint probability
distribution of the entity of distance decrease and the distance of the centroid y+

c from
the nearest wall is shown. The y+

c marginal pdf clearly shows that while particles
are thoroughly distributed across the channel (as from the y+ marginal pdf of 5.4),
links are concentrated near the centreline (at least at this time). Also it can be seen
that low intensity links are way more frequent than high intensity ones, which are in
turn located near the walls. This highlights the fact that near wall structures present
stronger turbulent motions, which in turn leads to zones where tracers reduce their
mutual distance.

• A dependency between particle mutual distance and link strength (normalized by
mutual distance) is also highlighted in their joint probability distribution (figure 5.6
on page 38). It may be deducted that (non-normalized) link strength grows with
mutual distance; still, the mean normalized link strength (shown in the trendline)
is slightly higher for small r+ links. This may lead to the conclusion that small
scale interactions are relatively more intense than those on larger scales. This fact
remarks the influence of flow structures on the behaviour of clustering links. Since
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the threshold is way below the channel height, all links considered here belong to
physically significant scales. The marginal pdf of r+ shows how longer range links
are more frequent overall.

• Figure 5.7 shows the joint pdf of ∆D+/r+ and y+
c ; its appearance is quite similar to

that of figure 5.5. Instead figure 5.8 shows the joint pdf of r+ and y+
c , which appears

to be uncorrelated. Therefore the increment in ∆D+/r+ is to be attributed to the
increase of link strength rather than the decrease of the typical range of action of
clustering tracers.

• The main direction in which clustering happens is y, i.e. particle pairs tend to
decrease their distance in the y component much more frequently and intensively
than x or z. This is probably due to particles being constrained by the channel walls.
Section 5.3 will deal with single direction clustering.

Figure 5.4: Joint probability distribution of degree and wall normal coordinate with its marginal
distributions and trendline, t+ = 475, d+

t = 100. The correlation coefficient between y+ and k is
ρ = 0.50
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Figure 5.5: Joint probability distribution of distance decrease and centroid wall normal coordinate
with its marginal distributions and trendline, t+ = 475, d+

t = 100. The correlation coefficient
between y+

c and ∆D+ is ρ = 0.42

Figure 5.6: Joint probability distribution of distance decrease normalized by mutual distance and
mutual distance with its marginal distributions and trendline, t+ = 475, d+

t = 100. The correlation
coefficient between r+ and ∆D+/r+ is ρ = 0.05
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Figure 5.7: Joint probability distribution of distance decrease normalized by mutual distance
and centroid coordinate with its marginal distributions and trendline, t+ = 475, d+

t = 100. The
correlation coefficient between y+

c and ∆D+/r+ is ρ = 0.41

Figure 5.8: Joint probability distribution of y+
c and r+, with its trendline, t+ = 475, d+

t = 100.
The correlation coefficient between y+

c and r+ is ρ = −0.03
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5.3 Clustering along the x and y direction

5.3.1 x-clustering

While clustering happens mostly in the y direction because of the boundedness of the flow,
it may be of interest to analyse this behaviour in the streamwise direction, that is x. In
order to do that, a modified mutual distance matrix, Dx is introduced:

Dx,ij = |x+
i − x+

j |. (5.4)

Since imposing the threshold only on the x direction would result in particles too far away
being linked, the threshold will still be imposed on the Euclidean distance, as was done
before.

For a given time and threshold, the number of clustering links along x is always greater
than the number calculated using the Euclidean distance. This happens probably because
links are established also between particles whose overall distance is increasing while their
streamwise distance is decreasing. As an example, the number of links in the case presented
in section 5.2 was 10 792, while with the same time instant and threshold it is now 11 363.

Figures 5.9 and 5.10 show the distributions of degree and distance decrease versus
y+; they are qualitatively very similar to the Euclidean clustering case, with the degree
increasing towards the centreline and the link strength increasing towards the channel
walls. Again the k marginal distribution appears to follow a similar trend to the Euclidean
case, albeit slightly more irregular.

Figure 5.9: Joint probability distribution of degree and wall normal coordinate, x-clustering,
t+ = 475, d+

t = 100
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Figure 5.10: Joint probability distribution of distance decrease and centroid wall normal coordinate,
x-clustering, t+ = 475, d+

t = 100

Figure 5.11 shows instead the joint pdf of r+ and ∆D+
x , where r+ is as before the

Euclidean distance between particles before clustering. Again, this distribution is similar
to the previous case; this may lead to conclude that taking into account single direction
clustering does not provide significantly different results.

5.3.2 y-clustering

In an analogous way clustering along the y direction can be analysed. The y distance
matrix Dy, similarly to (5.4), can be defined:

Dy,ij = |y+
i − y+

j |. (5.5)

Figure 5.12 show the joint probability distribution of the distance decrease and mutual
distance; as the other joint probability distributions is very similar to the case of Euclidean
clustering. The only noticeable difference (as for the x-clustering case) is that the mean
link intensity is slightly higher.
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Figure 5.11: Joint probability distribution of distance decrease and mutual distance, x-clustering,
t+ = 475, d+

t = 100

Figure 5.12: Joint probability distribution of distance decrease and mutual distance, y-clustering,
t+ = 475, d+

t = 100

42



5.4 – Threshold value and degree evolution

5.4 Threshold value and degree evolution
Two approaches have been employed to define the threshold value, with different underlying
motivations:

• A variable threshold, bound to the mean distance éDê between all particles at any
given time. This is done to account for tracers getting farther away and retaining a
considerable amount of them into the network.

• A fixed threshold for any instant of time. This is perhaps the most physically correct
approach, since flow structures do not change size throughout the evolution of the
flow; because of this, the number of tracers present in each structure gradually
reduces with time because of diffusion. Nonetheless, it is rather difficult to estimate
characteristic length scale of the flow starting from Lagrangian data alone; in addition
to that, the low number of tracers may lead to difficulties in computing statistical
quantities of interest. Said threshold may be tied to a given percentage of the
initial or final mean distance between particles, that is éD+ê(t+ = 0) = 1298 or
éD+ê(t+ = 15 200) = 19 476.

5.4.1 Variable threshold

Figures 5.13 and 5.14 show both the mean and standard deviation of the degree k of the
network of clustering tracers, for different percentage values of the mean distance éDê. The
mean degree is exactly proportional to the number of connections; this value, except for an
initial transient, stays nearly constant during the evolution of the flow. This could mean
that the average distance éDê reflects quite well the probability for particles to interact
one with the other. For large times, the threshold becomes greater than the channel height
2δ, so there is no correspondence to physical scales present in the flow.
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Figure 5.13: Mean degree, variable threshold
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Figure 5.14: Degree standard deviation, variable threshold

5.4.2 Fixed threshold

Figures 5.15 to 5.16 show the evolution of the degree for different values of a fixed threshold
dt. The mean degree (and thus the total number of connections) is diminishing through
time, as was expected. The standard deviation of k has an initial growth, then follows the
trend of ékê. The mean degree normalized by its standard deviation (figure 5.17) shows
an initial transient stage in which curves for different thresholds are indistinguishable; a
similar behaviour is shown in figure 5.18 for the kurtosis of ékê; its relatively high values
are due to the presence of a significant number of outliers in the degree distribution. The
fixed thresholds are respectively equal to (0.02, 0.04, 0.08, 0.12, 0.20, 0.28) times the initial
mean distance or, alternatively, to (1.3, 2.6, 5.2, 7.8, 13.0, 20.8) · 10−3 times the final mean
distance.

It should be noted that statistics for the lowest thresholds are computed on a low
number of tracers and therefore may be unreliable. On the other hand, the greatest
threshold is d+

t = 350, which is smaller than half channel height δ and thus may include
relevant structures in the turbulent flow. The evolution of the degree statistics has a
turning point at t+ ≈ 4000, a time at which other changes in the behaviour of the flow
happened (see figure 4.1 on page 23); after this point an asymptotic regime in dispersion
may be identified.
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Figure 5.15: Mean degree, fixed threshold
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Figure 5.16: Degree standard deviation, fixed threshold
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Figure 5.17: Mean degree normalized by its standard deviation, fixed threshold
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Figure 5.18: Kurtosis of k, fixed threshold
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As can be seen, for certain threshold values the mean degree drops (and sometimes
even starts from) under 1. This happens because tracers without links are considered too
in its computation. It may be useful, in the framework of a constant threshold, to evaluate
degree statistics only for linked nodes, therefore excluding tracers whose degree is equal to
zero. In the following distribution of this modified degree will be indicated by the apex ∗.
The evolution of ék∗ê is shown in figure 5.19; as expected it does not drop below one. The
double logarithmic plot again highlights the presence of different phases in the evolution of
ék∗ê, although a bit fuzzier than it was for ékê. Again by t+ ≈ 4000 the shift in regime
appears to be concluded. This representation highlights the fact that, even taking into
account only the nodes which cluster, a reduction of connectivity with time takes place.
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Figure 5.19: Evolution of ék∗ê for different threshold values

The evolution of the degree of tracers is shown, decomposed according to the parti-
cles’ wall normal coordinate, is shown in figure 5.20. As can be seen, most links are formed
near the centreline and the centrality value decreases rapidly everywhere in the domain.
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Figure 5.20: Degree of nodes

5.5 Temporal and spatial evolution

This section will deal with the dynamical and spatial characterization of the clustering
network; indeed, links and nodes are distributed in Euclidean space and evolve with time
in non trivial ways which require proper investigation. In particular, aspects such as the
evolution of the probability distribution presented in section 5.2 on page 35, the onset and
duration of clustering links and their inhomogeneous distribution in space will be discussed.

A first, simple step is the analysis of the evolution of the adjacency and strength
matrices.

Figure 5.21 shows part of the adjacency matrix ç∆D for different times. At the start
of the simulation only neighbouring particles form clustering links; thus only the main
diagonal and the 100th, 200th. . . upper diagonals (the lower diagonals are not computed
due to matrix symmetry) have non-zero elements, due to the distribution of particles in the
dataset matrix. Over time particles move away from their original location and are able to
create new link with nodes that were originally too far away. In the end the distribution of
non-zero elements in ç∆D becomes nearly homogeneous since all information regarding the
starting coordinate is lost.

5.5.1 Evolution of marginal probability density functions

Joint pdf for relevant quantities in the flow network are shown in section 5.2 on page 35
and following, coupled with their marginals; quantities deserving further analysis are
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(a) t+ = 9.5 (b) t+ = 237
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(c) t+ = 3990

Figure 5.21: Non-zero elements of ç∆D, weight superimposed (constant threshold d+
t = 350)

• The degree distribution P (k)

• The node strength distribution P (s)

• The spatial distribution of links across the height of the channel, by means of the
distribution of the centroid of linked tracers P (y+

c )

• The mutual distances distribution of linked particles P (r+)

In the following the probability distribution functions of the aforementioned quantities
are calculated for different times. A fixed threshold d+

t = 250 is employed. The probability
distribution of k, shown in figure 5.26, exhibits an exponential behaviour as was already
noted previously; this behaviour is more marked for long times, while for very short times
(t+ < 400) the distribution is not exponential. As time goes the maximum connectivity
decreases and the distribution becomes narrower. The exponential distribution has equation
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P (k) = e−λk; (5.6)

The exponential coefficient λ can be calculated finding the slope coefficient of the k-log(P (k))
line; the trend of λ is shown in figure 5.23. As expected from the probability density
function plots, λ increases with time. An asymptotic value is not to be reached since the
diffusion of tracers is still ongoing and the distribution is expected to become more and
more narrow.
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Figure 5.22: Probability distribution function of k for different times

Figure 5.24 shows the evolution of P (y+
c ), that is the centroid coordinate of links. Links

are concentrated outside the inner part of the boundary layer, so at y+ > 100. For small
times (approximately t+ < 2000) there is a smaller number of links in the first half of the
channel height δ (y+ < 475) than near the centreline of the channel. For larger times, links
are more or less equally distributed across the channel (but still outside the inner part of
the boundary layer).

Figure 5.25 shows the distribution of the mutual euclidean distances of linked nodes.
As was shown before, the distribution is oriented towards large values of r+ (of course
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Figure 5.23: Exponential distribution coefficient λ
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Figure 5.24: Probability distribution function of y+
c for different times

limited by the threshold value imposed in this computation). As already shown in figure
5.6 for relatively small times the distribution appears to be linear, while growing faster for
larger times. This points that, as time goes, links are formed in prevalence between farther
particles; this is an obvious consequence of the mean distance between tracers getting
bigger and the imposition of a fixed threshold, so that short distance links form with a
smaller probability with time growing. The adoption of a variable threshold makes this
probability distribution function linear for different times.
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Figure 5.25: Probability distribution function of r+ for different times

At last the distribution of the strength of the nodes is shown in figure 5.26. Clustering
strength ∆D+ again appears to follow an exponential distribution for different time instants;
as time increases, stronger links become more prevalent. Recalling from the joint probability
distribution 5.6 on page 38 that r+ and ∆D+ are positively correlated, it can be noticed
how the prevalence of large r+ links leads to an increase of their strength.
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Figure 5.26: Probability distribution function of ∆D+ for different times

Finally, evolution of mean quantities (excluding the degree, already shown in section
5.4.2) will be presented in the following. Figure 5.27 shows the evolution of éy+

c ê for four
different threshold values; the threshold appears to have no significant influence on the
behaviour of éy+

c ê, which reaches first a maximum (y+
c ≈ 650, about a third of channel

height) and then an asymptotic value (y+
c ≈ 500) for t+ > 2700; the time by which an
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asymptotic value is attained is significantly lower than the time instant observed before as
a shifting point in flow behaviour (which was t+ ≈ 4000).

Figure 5.28 shows the evolution of ér+ê; normalization by the threshold make different
curves collapse into one, except for very small times. Furthermore, as already stated, the
mean distance increases since tracers get farther away one from the other and, with a
constant threshold, this make longer range links more likely. Nonetheless, the trend seems
to show an asymptote starting at t+ ≈ 4000 and equal to about ér+ê/d+

t = 0.75
Figures 5.29 and 5.30 show the evolution of é∆D+ê, both non-normalized and normalized

by the linked tracers mutual distance. At a single point in time, higher r+ values were
correlated with stronger links of clustering nodes; this is still the case if evolution in time
is considered: the value of ér+ê and so does the (absolute) value of é∆D+ê. Again, an
asymptote is reached at t+ ≈ 4000. The evolution of é∆D+ê is the main factor that shapes
the evolution of é∆D+ê/d+

t .
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Figure 5.27: Mean centroid wall normal coordinate
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Figure 5.28: Mean mutual distance normalized by threshold value
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Figure 5.29: Mean link strength
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Figure 5.30: Mean link strength normalized by mutual distance
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5.5.2 Onset and persistence of clustering

It is reasonable to ask whether clustering between individual tracers is a long lasting
phenomenon or not. The duration and the average intensity of clustering can yield
information about the intensity of structures in which tracers are contained. Indeed, if a
structure is collapsing rapidly, the duration of clustering will be reduced for sure, since
the maximum relative distance a pair of tracer can cover is bounded. This means that
structures with a smaller characteristic timescale (i.e. those closer to the walls, for this
particular case) will produce clustering links of shorter duration and vice versa. Also,
larger velocity fluctuations, which are again found near the walls, may reduce the duration
of links.

This hypothesis has been put to test calculating the mean link duration éT +
l ê and the

associated total reduction in distance for several time instants and wall normal coordinates.
The link duration is the amount of time in which a pair of tracers is getting closer one to
the other, that is the amount of time in which their relative velocity is negative. Instead
the mean total reduction in distance é∆D+

l ê is the difference between the relative distance
when clustering ends and when it starts. To highlight differences due to the wall normal
coordinate of the link centroid (as defined in (5.3)), links have been also ordered according
to their belonging to three different distances from the wall: y+ ∈ [0 250), y+ ∈ [250 475)
and y+ ∈ [475 950]. A threshold value of d+

t = 250 has been chosen, being smaller than
the smallest y+ partition.

Figure 5.31 shows the evolution of the mean link time; as expected, it is larger in
general for links farther from the wall. This, along with the data for é∆D+

l ê (figure 5.32),
confirms that structures leading to clustering near the walls are in general more intense
than those at the centreline.
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Figure 5.31: Mean duration of links éT +
l ê
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Figure 5.32: Mean distance reduction for full links é∆D+
l ê

It is also worth noting that the mean duration of links is of the order of the hundreds;
thus clustering is not an instantaneous phenomenon and its persistence may be associated
to that of the flow structures that generate it. Values of the total distance reduction greater
than d+

t are obtained since, when moving backwards in time for each trajectory to calculate
the starting time of the clustering event, also time instants where the mutual distance was
greater than the threshold were included. Figure 5.33 shows an example of that: while the
mutual distance is lower than the threshold at the time at which the clustering network
matrix is computed (blue circle), it is far larger at the time at which the clustering begins.
This leads to large values of clustering times and total strength.
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Figure 5.33: Mutual distance of a pair of particles. Red circles: start and end of the clustering
event; blue circle: t+ = 9500
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Figures 5.34 and 5.35 show the evolution of both mean link duration and mean distance
reduction with the threshold. Even if limited by the threshold, values of the duration are
still quite large and are comparable both in magnitude and trend with Lagrangian velocity
timescales.
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Figure 5.34: Mean duration of links éT +
l ê, threshold included

0 500 1000 1500 2000 2500 3000 3500 4000 4500

t+

-90

-80

-70

-60

-50

-40

-30

<
D

+ l>

Figure 5.35: Mean distance reduction for full links é∆D+
l ê, threshold included

5.5.3 Spatial inhomogeneity

As already noted in the previous section, clustering appears not to be homogeneous in
space. The following analysis will try to characterize in deeper detail this behaviour. Figure
5.36 shows the distribution of particles in the channel as seen from the streamwise direction,
in the form of a joint probability distribution and its marginal pdf s. The distribution is
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not homogeneous, especially along the z direction where it can be noted that particles
appear to be diffusing away from the mean z+ coordinate; in the y coordinate particles are
instead bounded.

Figure 5.36: Distribution of tracers in the yz plane, t+ = 950, d+
t = 350

Figure 5.37 shows instead the distribution of link centroid coordinates xc,ij , again
projected onto the yz plane; these coordinates are calculated as the mean position of two
linked particles, that is, as defined in (5.3),

xc,ij = xi + xj

2 .

As can be seen, the link coordinate distribution somewhat follows that of tracers, but is
more definite and limited to a reduced number of zones in the flow. In particular links
are not present at all in zones where there is a reduced number of tracers, or at high (or
low) z+. Also, the borders of the link distribution are somewhat jagged and irregular. The
latter could be explained by the fact that particle are diffusing away from the mean z+

coordinate and are thus less prone to clustering.
As was already noted before, the y+

c marginal distribution is quite different from the
y+ one, since links tend to arise away from the wall while tracers are scattered throughout
the channel. In addition to that, the centreline of the channel is somewhat devoid of
tracers; this is certainly the same behaviour as in figure 6.3 on page 66. The z+

c and z+

distributions are more similar.
Furthermore it should be noted that for this case (t+ = 950, d+

t = 350) while particles
are (as always) 10 000, clustering links are about 2·105; so the distributions of the c quantities
are more detailed.
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Aside from visual inspection of distributions, it may be useful to provide some metrics
to describe the spatial inhomogeneity of clustering links. To a certain degree, an object
with a highly irregular distribution and indented boundaries could be assimilated to a
fractal, keeping in mind that the irregularities in a fractal are not inferiorly bounded since
they are purely mathematical objects, while their physical counterparts are not (be it
turbulent eddies, the distribution of clustering links or broccoli [6]). In this particular case
the inferior bound is not the Kolmogorov scale η as in turbulence, but rather the definition
provided by tracers, which can become very low as diffusion goes on. Nonetheless in a
certain regime a fractal behaviour can be observed (as in the inertial scale of the energy
cascade).

Fractals are, from the mathematical standpoint, objects characterized by a non-integer
dimension D; if the fractal is contained in a plane, then 1 < D < 2 (as for the Koch’s
fractal curve, figure 5.38). The calculation of D is not straightforward and relies on
different definitions. The one used on the following for its practicality in application is
the Minkowski–Bouligand dimension, or box counting dimension [1] [19]. In a non fractal
planar object (D = 2) the number of squares of side ε required to cover the object will,
say, quadruple if ε is halved. This does not hold for a fractal and instead the following
definition can be introduced:

D = lim
ε→0

− log N(ε)
log ε

, (5.7)

where N(ε) is the number of boxes of side ε which contain part of the object.
In this case, the fractal object is the distribution of clustering links in the yz plane,

Figure 5.37: Distribution of links in the yz plane, t+ = 950, d+
t = 350
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Figure 5.38: Koch’s snowflake, D ≈ 1.26

which has been partitioned in an increasing number of rectangular boxes of side

ε =
ñ

lylz

(the introduction of a different box shape does not alter the result; circles have been used
too). The projection of the distribution of links on the yz plane has been chosen both
because it seems that it may represent well the global inhomogeneity of the distribution
and because a three dimensional partition does not appear to be computationally feasible;
nonetheless, information on the three dimensional distribution may be inferred [21]. The
limit operation cannot be properly executed for the already mentioned problems in the
dataset resolution; a linear fitting has been used to calculate the dimension D as the slope
of the N(ε) versus ε curve in a double logarithmic plot.
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Figure 5.39: N(ε) versus ε and fractal dimension, t+ = 950, d+
t = 350

The results are reported, for a single time, in figure 5.39 and the calculated fractal
dimension is D = 1.9; it can be noted that the slope of the curve (ans so the dimension)
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tends to zero as ε → 0, since increasing the number of boxes does not increase the number
of links which is always about 2 · 105 (which is also the maximum value attainable by N(ε)).
The value of D is close to 2, so a true fractal behaviour is not observed.

The evolution of D in time is shown in figure 5.40; as can be seen the Minkowski
dimension of the distribution of links is smaller than 2 and decreases with time, indicating
that the distribution becomes more irregular. However, this behaviour may as well be due
to the diminishing number and to sparsity of links leading to numerical inaccuracies.
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Figure 5.40: Fractal dimension D versus time, d+
t = 350
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Chapter 6

Flow map network

6.1 Transport mapping
A conceptually simple way of analysing transport properties of turbulent flows is to follow
the motion of an advected scalar (or a tracer particle, for the scope of this work) between
different, separate regions of the fluid domain [20]. The dataset employed in this thesis is
particularly suitable for this approach, since the fluid domain can be partitioned in the
only inhomogeneous direction (the wall normal one) and the measure of particles belonging
to each partition is straightforward. Figure 6.1 shows the distribution of particles and
their starting level, which will be characterized by means of complex networks in the
following. For short times (figure 6.1a) tracers are disposed orderly in the channel, close to
their starting level; instead, for long times (figure 6.1b) they are diffused thoroughly and
information about their origin is lost.

(a) t+ = 240 (b) t+ = 9500

Figure 6.1: Distribution of particles in the channel; the starting level is color coded

The channel is divided in one hundred equally spaced sections, each one with height
∆y+ = 19. Since the tracer particles are also released starting from one hundred different
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levels at y+ = 9.5, 28.5 . . . , each section will contain, at t+ = 0, exactly 100 tracers.
A transport matrix Pk for each time instant tk can be defined as

P k
ij =

Nk
i→j

N0
i

(6.1)

where Nk
i→j is the number of particle that at time tk have moved from the i-th level (which

they occupied at t = 0) to the j-th. Being the number of particles originally present in
each level, N0

i is always equal to 100. The matrix shifts from an initial state in which only
diagonal terms are present, to one where particles are diffused through the channel height
and the matrix is almost filled.

Figure 6.2 shows the evolution of P; along with the aforementioned diffusion of particles,
it can be seen that particles near the walls diffuse slower than the rest of the set; this may
be due to their inherently lower velocity.

P is asymmetric and has the following features:

• the sum of the elements of each row is always equal to 1, since it is the number of
particles originally belonging to the i-th level normalized by itself (both are equal to
100). So

NlØ
i=1

Pij = 1, ∀j

with Nl being the number of levels;

• the sum of each column is equal to Nk
j /N0

j , namely the number of tracers contained
in the j-th level at t = tk normalized by 100. It is therefore a measure of the tracer
density of each level.

Figure 6.3 shows the difference, evolving in time, between the number of particles
present in each level and the starting number (always equal to 100). Therefore, this plot is
always inferiorly bounded by -100, which corresponds to an emptied level. On the x and y
axis both the advancement in time and the y+ coordinate of each level are represented.

It can be seen that the distribution of tracers in the wall normal direction becomes
immediately inhomogeneous, with zones having a greater concentration than others. In
particular, for t+ < 500 tracers appear to move towards the centreline; shortly afterwards,
the concentration near the walls increases. At the end, the distribution of particles becomes
nearly homogeneous (but not constant).

6.2 Network building and an example
The flow map matrix can be easily interpreted as a network weight matrix; being P
asymmetric the corresponding network will be directed. It is also necessary to ignore the
terms pii on the diagonal since nodes do not have links to themselves; doing that, only the
net transfers in and out of levels are considered.

In this section a reduced example of a flow network is presented, in order to further
clarify concepts related to its temporal evolution. The example consists of a fictitious three
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Figure 6.2: Evolution of P

layered channel ({l1, l2, l3}, corresponding to the nodes). Each layer at t = 0 contains 10
particles. Two consecutive time instants t1 and t2 are defined with their particle dynamics
and respective graphs in order to exemplify the main features. The distribution of particles,
together with their respective starting level, is tabulated in table 6.1.

Table 6.1: Particle distribution for the example flow network. The subscript denotes the starting
layer of particles

t0 t1 t2
l1 101 81 + 12 = 9 61 + 42 + 13 = 11
l2 102 92 + 21 + 13 = 12 62 + 31 + 13 = 10
l3 103 93 83 + 11 = 10
Np 30 30 30
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Figure 6.3: Balance between Nk and N0, initial transient

The construction of the transport matrix P0 is trivial and so is its associated graph,
which has order three and size zero. For t = t1 instead, the motion of particles leads to a
non-trivial graph; its transport matrix is

P1 =

0.8 0.2 0
0.1 0.9 0
0 0.1 0.9

 .

It can be clearly verified that the sum of rows is always equal to 1, which is the initial
number of tracers in each level (10) divided by itself. Also the sum of columns is equal to
the number of particles present in each level at t1, again divided by 10. Cancelling out
the diagonal of P, a weight matrix W is obtained; the corresponding network is shown
in figure 6.4, with the number of moving tracers superimposed to links. For small times
particles only diffuse in nearby levels, so non zero terms in W are concentrated near the
main diagonal.

Figure 6.4: Graph of the example flow network at t = t1

Further diffusion drives particles away from their starting location; at t = t2 the
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transport matrix is

P2 =

0.6 0.3 0.1
0.4 0.6 0
0.1 0.1 0.8

 .

As time goes, links are created between particles originally separated by a greater distance.
This is also evident since almost all terms in the P and corresponding W matrices are non
zero. The network is graphically represented in 6.5.

Figure 6.5: Graph of the example flow network at t = t2

It is important to stress that transport matrix Pk shows the evolution of the network
between t0 and tk and does not fully characterize the motion of tracers between any two
consecutive time instants. As an example, the description of the motion of particles from
t1 to t2 is not possible starting only from P1 and P2 (recalling that such matrices all have
their starting point at t0).

6.2.1 Strength and degree for the transport network

An usual metric for weighted networks is the strength of nodes s as defined in equation
(3.5); since this is also a directed network, it is possible to define both a measure for
outgoing links sOUT and for ingoing links sIN. The outgoing strength is calculated for each
node i as

sOUT
i =

NlØ
j=1

Pij − Pii, (6.2)

which is the sum of each row of P excluding the diagonal. This value corresponds to the
number of tracers that had left the i-th level at a certain time; adding the value on the
matrix diagonal Pii the value is always 1 for all i. Outgoing strength for both the example
graphs are, respectively:

sOUT(t1) =

0.2
0.1
0.1

 sOUT(t2) =

0.4
0.4
0.2


showing that the first node donates the greatest number of particles in the network. In a
similar fashion, the ingoing strength is

sIN
i =

NlØ
j=1

Pji − Pii, (6.3)
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where inside the summation indexes i and j are inverted to perform the addition on columns
instead of rows. This value is the number of tracers that came into the i-th level (still
divided by the number of those originally present in the level); adding Pii the number of
particles present in the level at any time is found. The ingoing strength for the example
flow is here displayed, showing that the second layer is the most active at first, but for
t = t2 the first node receives more tracers:

sIN(t1) =

0.1
0.3
0

 sIN(t2) =

0.5
0.4
0.1


Another important metric to evaluate is the degree k, i.e. the number of links incident

in a node; again, since this is a directed network, a distinction has to be made between the
ingoing degree kIN and the outgoing kOUT. In order to compute the degree, the adjacency
matrix A has to be introduced, defined as in chapter 3 on page 15; having already the
network matrix, it is simply a rewriting of P with ones substituted to non zero elements,
that is

Aij =


1 if Pij /= 0
0 if Pij = 0
0 if i = j

(6.4)

The ingoing degree kIN is, as already defined in (3.2) on page 16,

kIN
i =

NlØ
j=1

Aji

and is the number of nodes which have given one or more tracers to the i-th level at a
certain time; for the example network, the ingoing degrees are

kIN(t1) =

1
2
0

 kIN(t2) =

2
2
1


In the same way, the outgoing degree

kOUT
i =

NlØ
j=1

Aij

is the number of nodes which received a particle from the i-th level; again their values are

kOUT(t1) =

1
1
1

 kOUT(t2) =

2
1
2
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6.3 Network evolution

Using metrics and definitions introduced in the previous sections, the evolution of the
transport network for the turbulent channel flow dataset will now be analysed. At first,
probability distribution functions and temporal evolution of the first statistical moments
for the strength s and the degree k will be shown; the evolution of s and k will also be
shown using maps representing these quantities both in space and time, thus highlighting
additional features.

6.3.1 Strength and degree evolution

The evolution in time of sIN and sOUT is shown (in the form of their probability distributions)
in figures 6.6 and 6.7. The distribution of sOUT rapidly becomes very narrow and centred
on the unity value; this means that most of tracers originally present in a level quite rapidly
leave it and diffuse throughout the channel. On the other hand, the distribution of sIN also
tends to an almost unitary mean (since its mean must be the same of that of sOUT), but a
larger deviation from the average is present. This higher variance may be related to the fact
that, while particles quickly diffuse out of their starting level, the concentration of particles
in the y direction (which is related with sIN) is uneven at any time. All distributions have
been tested for normality using the Kolmogorov-Smirnov test with a threshold p-value of
0.05; all ingoing probability distributions are Gaussian, while the outgoing are not.

Precisely the asymptote for the mean strength is situated at 0.99, as will also be stated
in table 6.2 on page 74. This happens because, being tracers homogeneously distributed
throughout the channel height, each level still has on average N0

i /Nl = 1 particles inside,
thus the asymptote cannot be 1.

The evolution of the standard deviation of s is shown in figure 6.8; the standard
deviation of sOUT is always smaller and reaches immediately its asymptote, while that of
sIN oscillates three times and reaches its asymptote at t+ ≈ 4000 (a time instant that was
already identified previously as a turning point in the evolution of the flow).

This behaviour is shown in more detail in figure 6.9, which shows the evolution of the
ingoing strength of all nodes. It follows closely the balance between ingoing and outgoing
tracers (figure 6.3); after a transient stage, the strength distribution holds a constant
mean, but as can be seen is quite inhomogeneous through different levels. Since sIN is
proportional to the number of particles each level has received, it can be seen how the
tracer’s concentration is fluctuating quite intensely around its mean. On the other hand,
the distribution of the outgoing strength (not shown here) almost immediately reaches its
asymptote and shows no fluctuations both in time and space.

Figures 6.10 and 6.11 show probability distribution function of both the ingoing and
outgoing degree for several time instants. Distributions have been again tested for normality
using the Kolmogorov-Smirnov test, after being subtracted their mean and divided by their
standard deviation; p-values are shown in the legend and the threshold was p = 0.05. The
degree has also been normalized by its maximum attainable value for this network, that
is 99. Both distributions are quite irregular because of the low number of samples. They
exhibit a slower shift towards an asymptotic value than the weight distributions, probably
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Figure 6.6: Probability distribution of the ingoing strength
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Figure 6.7: Probability distribution of the outgoing strength

meaning that the transfer of particles is faster than the establishment of connections
between levels.

The evolution of both ingoing and outgoing degree is shown in figures 6.12 and 6.13.
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Figure 6.9: Evolution of the ingoing strength

The ingoing degree evolution shows that at the beginning the levels near the centreline of
the channel receive tracers from more levels than those near the walls. After a transient
period the distribution becomes more homogeneous. The outgoing degree evolution shows
how levels near the wall do not communicate much with the outside (or, precisely, do not
send particles to a great number of levels). Levels near the centreline instead have a greater
outgoing degree; there is a well marked separation between these two zones, located near
y+ Ä 475, which is one quarter channel height.

Figures 6.14 and 6.15 show the evolution in time of the mean and standard deviation
of k. As already noted, ékê grows monotonically towards an asymptotic value. Also the
standard deviation has an asymptote for large times, but reaches a peak and subsequently
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Figure 6.11: Probability distribution of kOUT

decreases. The peak appears to be related with the period of inhomogeneity also visible in
figures 6.12 and 6.13.

Asymptotic values for statistical quantities of the strengths and degrees are reported
in table 6.2. The kurtosis has been computed using a range of consecutive time instants
to provide an adequate number of samples. The kurtosis is mostly near 3, which is the
value attained by the normal distribution; this means that the number of outliers in the
degree and strength distributions is not large. The value of standard deviation for the OUT

quantities are smaller than those of the IN ones.
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Figure 6.12: Evolution of the ingoing degree
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Figure 6.13: Evolution of the outgoing degree
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Table 6.2: Statistical moments of s and k, asymptotic values

sIN sOUT kIN kOUT

Mean 0.99 0.99 0.63 0.63
Standard deviation 0.1 0.01 0.0475 0.0313
Kurtosis 2.7 3.8 2.9 2.9
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6.3 – Network evolution

Since the flow transport network is embedded in physical space, an additional charac-
terization can be provided through the link distance, that is the y distance of linked nodes.
Its non weighted value is calculated as

élêij = ∆y+|i − j|Aij , (6.5)

with ∆y+ = 19 and where A is the adjacency matrix. In a similar fashion, its weighted
variant is

élêw,ij = ∆y+|i − j|Wij , (6.6)

which also retains some information about link strength. The mean evolution of both
quantities is reported in figure 6.16; the weighted mean link length is shown multiplied by
100. As can be seen, both mean link lengths grow with time, signalling that longer range
connections are formed. The weighted length is always larger since weights (which are here
multiplied by 100) are always greater than 1.
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Figure 6.16: Mean link length

A further and more detailed analysis, where the mean link length is shown decomposed
for each starting level, is presented in figure 6.17 and refers to outgoing links. As can
be seen, as time goes the levels near the walls form longer distance links than the other
levels. Instead, levels near the centreline form shorter distance links and the mean length
grows slower; this is particularly true for levels comprised between y+ ≈ 200 and y+ ≈ 450.
Besides, figure 6.17 appears to be streaked along the time axis; this indicates levels that
form links with a consistently greater length than their neighbours. The cause for these
streaking levels may be that tracers remain trapped for some time in flow structures located
far away from their original y+

0 , thus increasing the mean link distance for some time.
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Figure 6.17: Mean outgoing weighted link length

6.3.2 Predominant links

After describing the behaviour of the flow network at single points in time and analysing
the evolution of simple metrics, it may be useful to search the network for persistent
links and preferential paths followed by tracers in their motion. To achieve that, a simple
approach is to analyse a cumulative network matrix, calculated as the summation of flow
maps at consecutive times

Pc =
qkf

k=k0
Pk

kf − k0 + 1 , (6.7)

where the normalization factor keeps the row-wise sum always equal to 1. k0 and kf are
the starting and ending instants of the summation.

It stems directly from this definition that the relative importance of persistent links will
be enhanced, while that of short duration ones lessened. The cumulative network matrix
for the example network presented in section 6.2 is

Pc = P0 + P1 + P2 =

24 5 1
5 25 0
1 2 27


and its associated graph visualization is shown in figure 6.18; both the matrix and the
graph have not been normalized. The links between nodes 1 and 2 are more intense due to
the combination of intense exchanges in the discrete time instants.
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Figure 6.18: Graph of the example flow network, cumulative representation

For large t0 - tf spans, the degree distribution becomes trivial, since most nodes appear
to be connected and the (normalized) degree reaches the value of 1 with little to no
deviation. On the other hand, the strength of nodes quantifies their tendency to receive or
donate particles from other levels. The strength distribution over y+ for the cumulative
network comprising all time instants (t+ ∈ [0 15 200]) is shown in figure 6.19. Contrary
to what may be expected, the behaviour of sIN is strongly asymmetric across the channel
height; levels near the lower wall of the channel are more inclined to form ingoing links
than those on the upper wall. This appears to be at odds with the fact that tracers are
distributed homogeneously across the channel height even at large times. The outgoing
strength is instead more homogeneous, while still being slightly bigger near the centreline.
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Figure 6.19: Strength distribution of the cumulative network, t+
0 = 0, t+

f = 15 200

The cumulative transport matrix for the previous case is shown in figure 6.20. Higher
values correspond to persistent and intense links; for example, if a single particle moved
immediately from level, say, l to level m and stayed there throughout the temporal evolution
of the flow, then the value of P c

lm would be 0.01, which is quite high considering the mean
magnitude of P c

ij . Inspection of the matrix shows that levels are more likely to bound for
long times if they are physically close one to the other, but if they are located near the
boundaries then they may also form longer range links.

In addition to the P c
ij values, also the maximum of each row (blue diamond) and column

(red circle) are marked, calculated excluding the main, first lower and first upper diagonals.
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Figure 6.20: Cumulative transport matrix Pc, t+
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f = 15 200.

The reason for this is to identify the maximum receiver level of particles starting from a
given level (row maximum) and to identify the maximum donor of tracers to a certain
level (column maximum).

So for each y+
0 , the level to which most outgoing links were formed is marked by the

blue dot. Instead the red circle marks, for each ending level, the starting y+
0 of the majority

of its ingoing links. The main diagonal has been eliminated since the focus is on particles
which change level. Furthermore, the first lower and upper diagonals have been elided from
the computation of the maxima to eliminate short distance links formed by contiguous
levels. While this enhances the visibility of some long distance links, the appearance of the
Pc is not dramatically altered since in some cases long distance links are predominant over
shorter ones.

The analysis of maxima reveals some additional features:

• As already noted before, levels near the walls form more long distance links than
those near the centre of the channel. In particular, near the centreline, the main
donor and receiver of levels are close one to the other (usually no more than 10 levels,
or 190 wall units, apart). In the quarters of the channel near the boundaries, instead,
maxima are farther away.

• Starting levels close to the boundaries have several of their (row) maxima, marked by
blue diamonds, at levels 1 and 100 (and some of their closest neighbours) depending
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on the channel side. This means that particles from several levels are transferred to
the levels closest to the wall and that these particles stay there for quite long times.
This behaviour may be related to the presence of vortical structures in the lowest
part of the boundary layer that trap tracers (the first level is comprised between
y+ = 0 and y+ = 19, so it is below the logarithmic law region).
In addition to that, row maxima near the boundaries are present almost only under
the matrix diagonal for the lower wall (up, in the matrix view) and over the diagonal
for the upper wall. This means that the main (cumulative) outgoing link for each level
is directed towards a lower y+ coordinate. This is well exemplified by the particles
which become trapped in the wall-adjacent zones.

• Column maxima (i.e. the red circles) are disposed in a symmetrical way to row
maxima. Since column maxima represent the main donor of tracer to a given (ending)
level, this means that the main ingoing link for each ending level is coming from
a lower y+

0 coordinate. It also appears that column maxima pop up in contiguous
pairs or triplets belonging to the same starting level; this could be related to tracers
moving in small structures belonging to these groups of levels for a long time.

All of these observations lead to the identification of preferential paths in the motion of
tracers between y+ levels and to the recognition of regions spanning several levels which
have little interchange while still being very active within them.

6.3.3 Network partitioning

The objective of this section will be to provide some insight on the presence of partitions
in the flow network, that is zones with a reduced number of links between them, using
some results from spectral graph theory [2] [5] [3].

The procedure described in section 3.1.2 will be employed, using the depiction of the
flow network graph via its Laplacian eigenvectors. However, since the flow network is
weighted other than directed, the definition of the Laplacian matrix will be extended
accordingly [24]. First a diagonal weight matrix Wd ∈ Re×e is introduced, defined as

W d
ii = w(li) (6.8)

where w(·) stands for the weight of a given link and edges li are ordered in the same way
as the directed incidence matrix B. The weighted Laplacian is then defined as

Λw = BWdB| (6.9)

The introduction of a weighted measure is of particular importance when trying to find
communities in the cumulative graph defined in the previous section, since for large spans
all nodes become connected and no communities can be identified without considering the
weight.

Figure 6.21 shows the distribution of the components of the first three non trivial
eigenvectors of Λw. As can be noticed, no clear separation between groups of levels is
present, rather components follow an ordered distribution. Still, some grouping takes place,

79



6 – Flow map network

Figure 6.21: Eigenvector plot, non cumulative flow network at t+ = 712. The colouring identifies the
origin zones; red: 0 < y+ < δ/2, blue: δ/2 < y+ < δ, yellow: δ < y+ < 3δ/2, green: 3δ/2 < y+ < 2δ

especially between the levels of the upper wall region (green dots); anyway levels from the
same origin zone stay generally closer one to another than the rest of the set. It should be
noted that the main difference in component position is given by the first eigenvectors and
as distinction between communities vanish, the number of eigenvectors showing non trivial
behaviour is reduced. Figure 6.22 shows the eigenvector plot for t+ = 9000, a time at which
most of the original distinction between levels has faded. The fourth eigenvector v4 has not
been shown since it did not provide any additional information on subnetworks separation.
The overall separation is reduced and also the ordered disposition of components has gone
away, but still some trace of the original disposition of levels is retained. Instead in the
eigenvector plot in figure 6.23 all information about the starting position of levels is lost
and no community at all can be detected.

The eigenvector plot for the cumulative flow network with t+
0 = 0 and t+

f = 15 200
is shown in figure 6.24. Again the distinction between zones is quite marked, even if
not totally defined; this is in agreement with the presence of isolated regions which only
exchanged tracers between them, as already noted in the previous section.
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Figure 6.22: Eigenvector plot, non cumulative flow network at t+ = 9000. Colour codes as in 6.21

Figure 6.23: Eigenvector plot, non cumulative flow network at t+ = 15 200. Colour codes as in 6.21
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Figure 6.24: Eigenvector plot, cumulative flow network from t+ = 0 to t+ = 15 200. Colour codes
as in 6.21
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Chapter 7

Conclusions

In this thesis, the capabilities of network-based methods to describe inhomogeneous
turbulence have been successfully assessed. The Lagrangian viewpoint, in particular, has
proven especially suitable for this approach, since moving tracers provide a proper starting
point for the definition of network nodes. In the following of this chapter, the main results
will be summarized, with a focus on the physical aspects emerging from the network
description. The second section will deal with some possible future developments of the
treated subject.

Main results
The clustering network has the ability to effectively describe interactions between close
tracers, which are represented as graph edges. The spatial and temporal distribution of
links is non trivial and possibly reflects the presence of structures in the underlying flow
field, since it highlights contracting regions in an otherwise diffusive flow. For these reasons,
while some metrics of the network (i.e. the mean degree, see figure 5.15 on page 45) reflect
the shift in diffusion regimes at the already identified turning point of t+ ≈ 4000, the most
interesting and effective feature of the clustering network lies in the ability to detect and
describe coherent structures.

The analysis of both link strengths and durations yields useful information on the
presence of complex motions in the channel flow. This is remarkable for two main reasons;
the first is that this approach works with a relatively low number of tracers and provides
quite significant results even when these are far one from the other due to diffusion. The
second reason is the low computational cost, mainly due to the simplicity of the matrix
representation of particles’ motion. Nonetheless, a more detailed analysis of the dynamics
of tracers involved in clustering links is needed, especially in the definition of the threshold
distance d+

t . The choice of a fixed thresholds seems more promising because of its consistent
physical meaning, but the adoption of different values does not seem to radically alter the
evolution of the network, rather only the number and intensity of its links. Moreover, the
evolution of relative distance between tracers (for example figure 5.33) does not seem to
reflect different behaviours according to the mutual distance value.

The flow map network reveals in a straightforward manner the motion of tracers between
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different levels in the non homogeneous direction of the channel, so it is a powerful tool in
the representation of wall normal diffusion. The nature of the phenomenon, a transfer of
elements between different locations in space, is perfectly described by graphs embedded in
physical space. Because of this, many tools of network theory may be employed successfully,
most notably the analysis of paths and communities.

Again, network properties shift at t+ ≈ 4000 and this change is evidenced by the
statistics of degree k and strength s, which reach asymptotic values. The evolution of the
degree and of the strength decomposed by y+ highlights a coherent behaviour and the
existence of definite regions inside the flow with different properties regarding the exchange
of tracers. Most notably, the region closer to the wall (y+ < 475) forms a reduced number
of outgoing links in the initial phase of the evolution of the trajectories, so that tracers
appear to be trapped. The analysis of link physical length reveals additional information
on the behaviour of nodes; levels close to the walls form longer distance links, probably a
signal that some tracers are ejected from the lower part of the boundary layer to higher
y+ coordinates. The cumulative network is successful in revealing repeated behaviours
in the flow map, thus making most active links visible. Again, it results that the inner
part of the boundary layer have strong particles exchanges inside itself, while not being
very communicative with other zones. Also, the features of most active links are complex
and may require a more accurate interpretation in terms of preferential paths inside the
network. Both network formalism and spectal graph theory provide powerful tools to
partition the channel in separate zones with little interchange between them. It should
again be noted that all of these approaches have a moderate computational cost while still
providing effective results.

Future developments

Starting from the present work, some additional research seems necessary, both to expand
the subject and to verify some possible unclear points of these approaches. For what
concerns clustering, the main working points are:

• a more accurate and reasoned choice of the threshold, which should be connected
to physical properties of the underlying flow. This could be obtained employing the
Eulerian integral length scales, which seem suitable for the purpose but were not
provided in the Lagrangian dataset;

• while the number of tracers seems suitable to adequately describe the clustering
problem (at least before diffusion move particles too far one from the other), their
disposition at release may be changed. In particular, since tracers are released in
a plane (x+ = 0) the description of clustering along the x direction may be flawed;
additionally, no tracers are released inside the viscous sublayer (y+ < 5);

• since clustering is heavily influenced by particles’ trajectories, a review of the inter-
polation scheme adopted to extract Lagrangian data seems necessary. The motion of
a single particle is surely affected by the usage of a low order scheme and the extent
of this may be rather large on clustering statistics.
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• a more accurate review of graph theory should be performed, in order to find metrics
and tools (other than the degree and strength distributions) fit to provide further
insight on clustering;

• the physical behaviour of clustering should be investigated thoroughly, either by
providing correlations with the underlying flow or by further analysing trajectories of
clustering tracers, especially their velocities and accelerations.

The possible developments for the flow map network are:

• an increase of the number of tracers and a modification of their disposition at release.
A greater number of tracers would not provide any difficulty to the method because
of its computational lightness, but may provide a better definition to statistical
network quantities. Moreover, tracers released inside the viscous sublayer could
provide additional detail to that zone of the boundary layer. It may also be of great
interest to release a large number of particles at several times from a single point in
space and track their motion using the tools here developed;

• a further investigation of the properties of the cumulative network and of its relation
with non cumulative ones at different times. In particular, the analysis of paths
could provide more detail to the dynamics of tracers while still being computationally
effective. To this purpose, the theory regarding temporal evolving networks seems
promising [12] [28];

• a further characterization of the spectral representation of this network. Metrics to
analytically identify and separate communities should be provided; also, the behaviour
of the Laplacian eigenvectors should be investigated, in particular regarding their
components’ disposition.

Concerning both methods and also the preliminary data presented in chapter 4, it
should be investigated why the transition to the Taylor dispersion regime was identified to
start at t+ ≈ 4000, while in the work of Iacobello et al. [8], which used the same dataset,
this was located at t+ ≈ 5200.
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