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Abstract 
The following thesis, carried out in collaboration with the company Pro S3 s.r.l., 
consists in the study of the propulsion system of a quadricopter drone, with the aim 
of developing four propellers for vertical take-off and a propeller for horizontal flight. 
The Skywalker X8 drone must operate at an altitude of 4000 m. 

The theories used are: Simple Impulsive Theory, Extended Impulsive Theory, 
Vortex Theory, Blade Element Theory, and Linearized theory of the actuator disk. 

Firstly, the drone characteristics and the operating environment, characterized by 
a density of 0.86 𝑘𝑔/𝑚3, are exposed; the density is of central importance because, 
by calculating the Reynolds number, it contributes to the determination of the flow. 

Later, the Simple Impulsive Theory and the Extended Impulsive Theory are 
discussed and applied by considering a determined number of scenarios 
characterized by masses and variable diameters. The aim concerns the 
determination of the induced power and the induced speed for each scenario.  

The application of the Vortex Theory allows to calculate the vorticity distribution 
under optimal conditions by determining the load parameter of Glauert (G) using 
an iterative method. Moreover, this theory is applied both to a disk with an infinite 
number of blades and to a disk with finite number of blades, considering, at the 
same time, the losses at the tip by using the Prandtl factor. 

The Linearized theory of the actuator disk identifies the motion field induced by the 
propeller. 

Finally, the results obtained from the application of these theories, the profiles 
used, with the corresponding performance calculated with XFOIL, and the motion 
field results are reported. 
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1 – Introduction 
The following thesis aims to develop four propellers for vertical take-off and one for 
the straight horizontal flight of the Skywalker X8 drone. 

The drone in question has to operate at high altitude, about 4000 m, and it has to 
carry out activities such as shooting or photographs. 

The following thesis work was carried out in collaboration with the company Pro S3 
s.r.l. 

1.2 - The drone Skywalker X8 
The following drone can be found in two configurations, one with the presence of 
four arms used for placing the four propellers and one without the following arms, 
but with a single propeller. In the latter case, the take-off is performed in a special 
ramp. 

 
Figure 1 - First configuration 

 



2 
 

 
Figure 2 - Second configuration 

The configuration discussed in the thesis is the first one (Figure 1). The drone 
consists of: 

• Wing span: 2.122 [𝑚] 
• Length: 0.82 [𝑚] 
• Mass: 4 [𝑘𝑔] 
• Cruise speed: 19 [𝑚/𝑠] 

1.2 – Environment 
The operating environment is relative to 4000 m, therefore the operations take 
place inside the troposphere, which is in contact with the earth's surface and 
extends up to 16-20 km to the equator and up to 8 km to the poles. 

The troposphere contains the ¾ of the entire gaseous mass and in it mainly occur 
the atmospheric phenomena which consists of (Saha, 2008): 

• Nitrogen: 78.09% 
• Oxygen: 20.95% 
• Argon: 0.93% 
• The last percentage is about the other gas 
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Regarding physical quantities: 

Table 1 - Atmosphere at 4000 m 

Temperature 262.15 [𝐾] 
Pressure in ISA condition 6.5 ∙ 104 [𝑃𝑎] 

Density 0.8631 [𝑘𝑔/𝑚3] 
Dynamic viscosity 1.665 ∙ 10−5 

Cinematic viscosity 1.929 ∙ 10−5 
Speed of sound 324.72 [𝑚/𝑠] 

Gravity acceleration 9.81 [𝑚/𝑠2] 
 

 
Figure 3 - layers of the atmosphere 
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2 - Momentum theory 
The momentum theory was made to develop propellers used in the nautical field. 
The following theory was determined by W.J.M Rankine (1865) and R.E. Froude 
(1885); then, it was extended by A. Betz in 1920, also considering slipstream 
rotation.  

The actuator disk supports the thrust explained in the following paragraph, and the 
direction of the air is opposite to the thrust; for this reason, it leads back to Newton's 
third law (reaction action law). 

The wake stream has specific kinetic energy, from the latter, it is possible to 
determine the induced power, linked to the induced resistance of a fixed-wing. 

This theory does not allow to obtain essential data relating to the flow; moreover, 
it needs the application of conservation laws. 

2.1 - Analytical treatment (Simple Impulsive Theory) 
Before explaining the momentum theory, it is necessary an introduction relating to 
the actuator disk, exploited precisely within the theory just mentioned to simplify it. 

The actuator disk is a simplified model of the rotor, consisting of a circular section 
of infinitesimal thickness. 

• The actuator disk is rotated through a torque, which determines a certain 
angular momentum on the fluid. 

• The thrust on the rotor has a uniform distribution, and an instantaneous 
pressure variation (ΔP) occurs through the circular surface selected by an 

infinitesimal thickness. The uniform thrust can be realized because the rotor 
has an infinite number of blades. 

• “The slipstream of the rotor is a clearly defined mass of moving air outside 
which the air is practically undisturbed” (A. R. S. Bramwell, 2001). 

• The flow is ideal, steady and irrotational. 

Through the preliminary analysis, that it is carried out later, all that is done to know 
the flow velocity and the power, according to the thrust determined in the 
preliminary phase. These physical quantities are obtained by considering the 
influence of the actuator disk on the flow, and through the momentum theory, this 
problem is solved by applying the conservation laws. 
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Figure 4 - Variation throw the actuator disk in vertical flight 

• 𝑉𝑐: represents the ascent speed. 
• 𝑉𝑖: represents the increase in speed that the disk provides to the flow. 
• 𝑇: thrust generated by the disk and opposite to the fluid direction. 
• 𝑉2: speed increase downstream of the flow tube. 
• 𝑃𝑈, 𝑃𝐿: represent the pressure before and after the actuator disk, and the 

difference between them gives the pressure increment (ΔP) 

 
Figure 5 - Graphical point of view 

This theory considered an actuator disk constituted by an area: 𝐴 = 𝜋 ∙ 𝑅2. The 
mass flow rate that crosses the surface of the disk is �̇� = 𝜌𝐴𝑉, which is constant. 
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The thrust generated is expressed as: 

𝑇 = ∫ Δ𝑃 ∙ 𝑑𝐴
𝐴𝑑

= ∫ Δ𝑝 ∙ 2𝜋𝑟 ∙ 𝑑𝑟
𝑅𝑑

0

 (2.1) 

If the pressure variation is constant, it is possible to take it out of the integral 
obtaining: 

𝑇 = Δ𝑝 ∙ 𝐴𝑑 (2.2) 

Applying the Bernoulli equation to the various stations (Figure 3): 

• Station 0 – 2: 

𝑃0 = 𝑃2 +
1

2
𝜌𝑣2 

• Station 3 – 1 

𝑃3 =
1

2
𝜌𝑣2 = 𝑃0 +

1

2
𝜌𝑤2 

From the combination of the following equations, it is possible to obtain the thrust 
per unit area: 

𝑇

𝐴
= 𝑃3 − 𝑃2 =

1

2
𝜌𝑤2 (2.3) 

Considering the mass flow through the disc: 

𝑇 ∙ 𝑣 =
1

2
�̇�𝑤2 (2.4) 

• Station 0 – 1: 

Now in the equation (2.5), the whole tube, from the input surface to the output 
surface, is considered: 

𝑇 = 𝜌(𝑉𝐶 + 𝑤)2𝐴∞ − 𝜌𝑉𝐶
2𝐴0 (2.5) 
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Figure 6 - Flow tube with stations 

In the flow tube, there is an increase in speed, this increment determines an 
instantaneous reduction in pressure, as shown in Figure 5, and a reduction in the 
section of the flow tube to satisfy the conservation mass low. In the case of 
incompressible fluid, the mass flow rate remains constant, also considering the 
stationary flow condition, then the mass conservation law can be expressed in 
terms of volume obtaining Leonardo's law: 

𝑉 ∙ 𝐴 = 𝑐𝑜𝑠𝑡. (2.6) 

Equation (2.6) is constant for each section of the flow tube. 

𝑉𝐶 ∙ 𝐴0 = (𝑉𝑐 + 𝑤) ∙ 𝐴∞ = (𝑉𝑐 + 𝑣𝑖) ∙ 𝐴𝑑 (2.7) 

From equation (2.7) it is possible to derive the equation of the areas (𝐴∞ and 𝐴0) 
and replace them in equation (2.5) obtaining: 

𝑇 =
𝜌𝜋𝐷𝑑

2

4
∙ (𝑉𝑐 + 𝑣𝑖) ∙ 𝑤 (2.8) 

Considering the equation reported (2.9): 

𝑝 +
1

2
𝜌𝑉2 + 𝜌𝑔𝑧 = 𝑐𝑜𝑠𝑡. (2.9) 

The (2.9) represents the Bernoulli equation, and in the case of negligible variations 
of the height, the third term is negligible, and it is possible to explain the pressure 
difference as: 

Δ𝑝 = 𝜌𝑤 (𝑉𝐶 +
1

2
𝑤) (2.10) 
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Replacing equation (2.10) in (2.2) it is possible to obtain the Froude's Theorem, 
which affirm that the velocity induced at the infinite downstream (𝑤) is precisely 
twice the speed estimated at the actuator disk (𝑣𝑖). 

The theorem just explained allows to rewrite the equation (2.8) and (2.10) reporting 
only the speed evaluated at the disk: 

𝑇 =
𝜌𝜋𝐷𝑑

2

2
(𝑉𝐶 + 𝑣𝑖)𝑣𝑖 

(2.11) 

Δ𝑝 = 2𝜌𝑣𝑖(𝑉𝐶 + 𝑣𝑖) (2.12) 

In the previous equations 𝑉𝐶, is the climb speed. 

If the flight is not vertical, but there is a hover condition, the climb speed (𝑉𝐶) is 
zero, and the lift generated by the actuator disk is equal in module to the weight, 
but the opposite direction. 

 
Figure 7 - Helicopter hovering flight 

𝑇 =
𝜌𝜋𝐷𝑑

2

2
(𝑉𝐶 + 𝑣𝑖) ∙ 𝑣𝑖 (2.13) 

Δ𝑝 = 2𝜌𝑣𝑖(𝑉𝐶 + 𝑣𝑖) (2.14) 
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The Simple Impulsive Theory is applied to make an example of this model. It is 
considered a certain number of masses and diameters, and from the combination, 
a certain number of scenarios are performed. It should be noted that all the 
calculations are carried out considering an altitude of 4000 m, therefore with 
density present at the considered level. 

Table 2 - Masses 

Masses [𝑘𝑔] 

0.125 0.25 0.375 0.5 0.625 0.75 0.875 1 1.125 1.25 

1.375 1.5 1.625 1.75 1.875 2 2.125 2.25 2.375 2.5 

Table 3 - Diameters 

 Diameters [𝑚] 

0.10 0.11 0.11 0.12 0.13 0.13 0.14 0.15 0.16 0.16 

0.17 0.18 0.18 0.19 0.20 0.20 0.21 0.22 0.22 0.23 

0.24 0.24 0.25 0.26 0.27 0.27 0.28 0.29 0.29 0.30 

Table 4 - Necessary thrust 

Thrust [𝑁]  

1.23 2.45 3.68 4.91 6.13 7.36 8.58 9.81 11.04 12.26 

13.49 14.72 15.94 17.17 18.39 19.62 20.85 22.07 23.30 24.53 

 The speeds belonging to each scenario are obtained with equation (2.15), and the 
induced power (2.16) 

𝑣𝑖 = √
2 ∙ 𝑇

𝜋𝜌𝐷𝑑
2 (2.15) 

𝑃𝑖 = 𝑇 ∙ 𝑣𝑖 (2.16) 

 
Figure 8 - Induced power 
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In Figure 8, the curves are parameterized with the mass, in particular, the value of 
the powers increases as the mass increases 

2.2 - Analytical treatment (Extended Impulsive Theory) 
The Simple Impulsive Theory considers stationary, incompressible, and irrotational 
flux; in the extended theory, instead, the condition of irrotational flux is no longer 
considered, and the vorticity downstream of the rotor is also taken into account. 
The conservation laws are always used, with the addition of the conservation of 
the angular momentum due to the rotation of the wake downstream of the disc. 

The laws in use are the following: 

• Conservation of the mass 

𝜌 ∫ 𝒒 ∙ 𝒏 𝑑𝑆 = 0 (2.16) 

•  Conservation of momentum 

𝜌 ∫ 𝒒𝒒 ∙ 𝒏 𝑑𝑆 + ∫ 𝑝 𝒏 𝑑𝑆 = 𝐹𝑏𝑜𝑑𝑦 (2.17) 

•  Conservation of angular momentum 

𝜌 ∫ 𝒓 × 𝒒𝒒 ∙ 𝒏 𝑑𝑆 + ∫ 𝑝𝒓 × 𝒏 𝑑𝑆 = 𝑀𝑏𝑜𝑑𝑦 (2.18) 

• Energy conservation 

∫ (𝑝 +
1

2
𝜌𝑞2) 𝒒 ∙ 𝒏 𝑑𝑆 =

𝑑𝐸

𝑑𝑡
 

(2.19) 

𝑑𝑆 represents the reference surface, and it encloses the fluid, 𝑛 represents the 
normal to the surface. 𝐹𝑏𝑜𝑑𝑦 and 𝑀𝑏𝑜𝑑𝑦 represent the force and the moment acting 
on the rotor, while the ratio 𝑑𝐸/𝑑𝑡  represents the energy added to the flow by the 
rotor. 

In this theory, a function of the radius must be obtained in such a way as to be able 
to minimize the power induced by a given thrust. It is possible to introduce the 
Lagrange multipliers to satisfy this request, which are chosen arbitrarily to find the 
minimum of the induced power. 

With the extended impulsive theory, it is possible to identify the tangential and axial 
velocity knowing the thrust. 

The thrust, power, and torque are calculated respectively: 

𝑇 = ∫ Δ𝑝 ∙ 𝑑𝐴
𝐴𝑑

= ∫ 𝜌𝑤2 𝑑𝑆1
𝑆1

+ ∫ (𝑝1 − 𝑝0)𝑑𝑆1
𝑆1

 (2.20) 
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𝑃𝑖 = ∫ Δ𝑃 ∙ 𝑣 𝑑𝐴
𝐴𝑑

+ ∫
1

2
 𝜌𝑢2𝑣 𝑑𝐴

𝐴𝑑

 (2.21) 

𝑄 = ∫ 𝜌 ∙ 𝑣 ∙ 𝑢 ∙ 𝑟 ∙ 𝑑𝐴
𝐴𝑑

= ∫ 𝜌 ∙ 𝑤 ∙ 𝑢1 ∙ 𝑟1 𝑑𝑆1
𝑆1

 (2.22) 

In the relations shown, the velocities 𝑢 and 𝑣 represent the tangential and axial 
velocity, respectively. Equation (2.21) consists of two terms; the first determines 
the acceleration of the fluid in the axial direction; the second term is not a power 
because the rotary motion does not determine thrust. 

 
Figure 9 - Extended theory 

The induced power reported in equation (2.21) is equal to the power calculated at 
the tree: 

𝑃 = Ω ∙ 𝑄 (2.23) 

By replacing in (2.23) equation (2.21) and (2.22), it is possible to get: 

∫ Δ𝑝 ∙ 𝑣 𝑑𝐴
𝐴𝑑

+ ∫
1

2
 𝜌𝑢2𝑣 𝑑𝐴

𝐴𝑑

= ∫ Ω ∙ ρ ∙ u ∙ v ∙ r dA
𝐴𝑑

 (2.24) 

By manipulating this equation, the pressure difference is obtained: 

∫ Δ𝑝 ∙ 𝑣 𝑑𝐴 = ∫ 𝜌𝑣 (Ω𝑟 −
1

2
𝑢) 𝑢 ∙ 𝑑𝐴

𝐴𝑑𝐴𝑑

 

Δ𝑝 ∙ 𝑣 𝑑𝐴 = 𝜌𝑣 (Ω𝑟 −
1

2
𝑢) 𝑢 ∙ 𝑑𝐴 

Δ𝑝 = 𝜌 (Ω𝑟 −
1

2
𝑢) 𝑢 (2.25) 
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It is possible to replace the equation (2.25) in the (2.12) obtained in the previous 
paragraph. 

2𝜌𝑣2 = 𝜌 (Ω𝑟 −
1

2
𝑢) 𝑢 (2.26) 

2𝑣2 = (Ω𝑟 −
1

2
𝑢) 𝑢 (2.27) 

Following the process reported in (Johnson W. , 2013), the optimal value of the 
tangential and axial velocity is determined by an iterative way to evaluate 𝑣0 
knowing the thrust T. The term 𝑣0 has the same dimensions of the speed and is a 
free parameter which is determined, as just said, by the imposition of the thrust. 

𝑇 = 2𝜌𝑣0
2 ∫

(Ω𝑟)4

[(Ω𝑟)2 + 𝑣0]
𝑑𝐴 (2.28) 

𝑇 = 2𝜌𝐴𝑣0
2 [1 +

2𝑣0
2

(Ω𝑅)2
∙ ln (

𝑣0

Ω𝑅
) +

𝑣0
2

(Ω𝑅)2
] (2.29) 

With equation (2.29) it is possible to determine the value of 𝑣0 iteratively, after 
having determined it is possible to obtain: 

𝑢 = Ω𝑟 ∙
2𝑣0

2

(Ω𝑟)2 + 𝑣0
2 (2.30) 

𝑣 = 𝑣0 ∙
(Ω𝑟)2

(Ω𝑟)2 + 𝑣0
2 (2.31) 

Considering the scenarios described above and replacing 𝑣0 in the equations 
(2.30) and (2.31), the tangential and axial speed distribution is determined. 

 
Figure 10 - Tangential and axial speed distribution 
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In the following treatment, the power is calculated considering the rotation of the 
wake, the following parameter is compared with the power induced by Simple 
Impulsive Theory to verify the increase. 

𝑃𝑢 = ∫ 𝑣(𝑟) ∙ 𝑑𝑇 (2.32) 

 
Figure 11 - TIS 

 
Figure 12 - TIE 

In the following chapter, the application of the simple and extended impulsive 
theory has been reported to evaluate the effect of the rotation of the wake. 
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3 - Blade Element Theory 
The first development of this theory, especially around 1920, followed two separate 
concepts: one was the blade element theory, the second was the momentum 
theory. 

The first approaches of considerable importance date back to the studies of William 
Froude (1878) and Stefan Drzewiecki (1892-1920), who approached the study 
considering the independent airfoils profiles between them, in particular, his studies 
were uncertain due to the aerodynamic characteristics adopted for the profiles; to 
deal with this problem, an empirical approach was used, that was calculating the 
necessary characteristics directly on a series of propeller. 

Therefore, using the characteristics of 2D profiles in the following analysis, give 
erroneous results, therefore Drzewiecki, used the characteristics related to the 3D 
wing to obtain acceptable results, even if there is a certain margin of error. 

G. de Bothezat (1918), he used the momentum theory but adding an empirical 
approach like the one adopted by Drzewiecki. 

A. Fage and H. E. Collins (1917), exploited the momentum theory, but with an 
aspect ratio like 6, the problem lay in the fact that, it was necessary to make specific 
corrections on the induced speed due to the variations of aspect ratio. 

Thanks to subsequent developments conducted by Prandtl, a clear formulation 
was provided that allows to understand the effect of the induced speed determined 
by the wake. It was shown that the circuit around the aerodynamic profile 
determines the lift. 

The Vortex Theory allows to incorporate the speed induced in the blade element 
theory. It is specified that both the previous theory and the momentum theory used 
a model called actuator disk. 

With the blade element theory, the aerodynamic profile formulation is applied to 
the rotor, with the influence of the wake expressed in an induced angle of attack. 
The application of theory requires the estimation of the induced velocity, obtainable 
through the momentum theory or vortex theory. 

The following points are the substantial differences that distinguish the two theories 
just mentioned: 

• The theory of the moment allows us to conduct a global analysis, 
furthermore, it must be accompanied by a further theory to obtain the 
complete results for the design of the rotor. Remember that in the theory of 
the moment the disk is included by an infinite number of blades, therefore 
an actuator disk and infinite aspect ratio. 

• The blade element theory instead refers to the flow, the load acting on the 
rotor blades, and the design parameters. 

By knowing thrust, angular velocity, propeller diameter, and aerodynamic 
characteristics of the profiles, this analysis can be used as a tool for the design of 
the propeller because it allows the determination of the geometric characteristics. 
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3.1 - Analytical treatment of the theory  
The blade element theory consists of applying to a rotating blade the theory used 
for the wing profiles. In Figure 13 it is possible to see a typical profile and in Figure 
14 the notation to be used. Figure 15 shows the element placed at a distance r 
from the rotational axis. The rotor is considered with infinitesimal thickness (𝑑𝑟). 
The effective speed (𝑈), that invests the rotating element, determines an angle 𝛼 
with the chord, this one is the angle of attack, while 𝜙, the inflow angle (or geometric 
angle), it is formed between the effective speed (𝑈) and the plane of the disk, as 
shown in Figure 15. 

It should be noted that the components of speed U are: 

• Tangential speed: Ω𝑟 
• Axial speed: (𝑉𝑖 + 𝑉𝐶), 𝑉𝐶 in the case of vertical flight 

The speed 𝑉𝑐 is considered in the driven propeller (propeller 2), because it has a 
feed speed perpendicular to the airflow. 

Figure 16 represents a view from the top of the rotor, it allows to identify the radius 
immediately at the tip of the blade and the rotation speed with the corresponding 
direction of rotation. 

 
Figure 13 - Blade section 



16 
 

 
Figure 14 - Blade coordinates 

𝑈 = √𝑉𝑖
2 + (Ω𝑟)2 

(3.1) 

𝜙 = atan [
𝑉𝑖

Ω𝑟
] (3.2) 

𝛼 = 𝜃 − 𝜙 (3.3) 

 
Figure 15 - Blade section characteristics 

 
Figure 16 - Plan view 
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In the case of vertical flight or hover, the problem lies in the distribution of the forces 
shown in Figure 15, for this reason, it is necessary to integrate and then highlight 
the terms dependent on the radius: 

𝑑𝐿 =
1

2
∙ 𝜌 ∙ 𝑈2 ∙ 𝑐 ∙ 𝐶𝐿 ∙ 𝑑𝑟 (3.4) 

𝑑𝐷 =
1

2
∙ 𝜌 ∙ 𝑈2 ∙ 𝑐 ∙ 𝐶𝐷 ∙ 𝑑𝑟 (3.5) 

𝑑𝑇 = 𝑑𝐿 ∙ cos 𝜙 − 𝑑𝐷 ∙ sin 𝜙 (3.6) 

𝑑𝑄 = (𝑑𝐿 ∙ sin 𝜙 + 𝑑𝐷 ∙ cos 𝜙)𝑟 (3.7) 

𝑑𝐻 =
𝑑𝑄

𝑟
 (3.8) 

It is necessary to report some simplifications: 

• The blade is assumed rigid thanks to the action of the centrifugal force. 
• The inflow angle (𝜙) is assumed small, in particular, this statement is very 

close to reality when is considered a condition far from the axis of rotation 
thanks to the fact that Ω𝑟 is very high, this statement is inconsistent close to 
the rotation axis, even if the acting forces are small: 

𝑈 ≅ Ω ∙ 𝑟 (3.9) 
cos 𝜙 ≅ 1; sin 𝜙 ≅ 𝜙 (3.10) 

𝜙 ≅
𝑉𝑖

Ω𝑟
 (3.11) 

Now the first equations can be rewritten with the simplification introduced: 

𝑑𝐿 ≅ 𝑑𝑇 =
1

2
𝜌 (Ω ∙ 𝑟)2𝐶𝑙 ∙ 𝑐 ∙ 𝑑𝑟 (3.12) 

𝑑𝑄 ≅
1

2
𝜌Ω2𝑟3(𝐶𝑙𝜙 + 𝐶𝑑)𝑐 ∙ 𝑑𝑟 (3.13) 

The equation below (3.14), express the power request to the blade: 

𝑑𝑃 =
1

2
𝜌 (Ω ∙ 𝑟)3(𝐶𝑙𝜙 + 𝐶𝑑)𝑐 ∙ 𝑑𝑟 (3.14) 

If it is introduced the number of blades and the single blade has a finite size, it is 
necessary to integrate the equations from the inner radius to the outer. These 
equations represent the total physical quantities: 

𝑇 =
𝑁 ∙ Ω2 𝜌

2
∫ 𝐶𝑙 ∙ 𝑐 ∙ 𝑟2𝑑𝑟

𝑅

0

 (3.15) 

𝑄 =
𝑁 ∙ Ω2 ∙ 𝜌

2
∫ (𝐶𝑙𝜙 + 𝐶𝑑)𝑐 ∙ 𝑟3𝑑𝑟

𝑅

0

 (3.16) 

𝑃 =
𝑁 ∙ Ω3 ∙ 𝜌

2
∫ (𝐶𝑙𝜙 + 𝐶𝑑)𝑐 ∙ 𝑟3𝑑𝑟

𝑅

0

 (3.17) 

The equations below, (3.18), (3.19), (3.20) are adimensional: 

𝐶𝑇 =
𝜋2𝑇

4 ∙ 𝜌 ∙ Ω2𝑅4
 (3.18) 
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𝐶𝑄 =
𝜋2 𝑄

8 𝜌Ω2𝑅5
 (3.19) 

𝐶𝑃 =
𝜋3𝑃

4 ∙ 𝜌 ∙ Ω3𝑅5
 (3.20) 

In the Blade Element Theory is contained a parameter relative to the area of the 
disc, it represents the solidity (J. Seddom, 2011): 

𝑠 =
𝑁 ∙ 𝑐 ∙ 𝑅

𝜋 ∙ 𝑅2
=

𝑁 ∙ 𝑐

𝜋 ∙ 𝑅
 (3.22) 

Two other factors of fundamental importance are:  

• The performance of the propeller 
• The factor of merit. 

In particular, the efficiency is directly proportional to the speed of ascent, so in the 
case of a rotor analysis in hovering, this term is useless; the merit factor, on the 
other hand, can have a value between 1 and 0 and is directly proportional to the 
induced axial speed. 

𝐹. 𝑀. =
∫ 𝑣𝑖  𝑑𝑇

𝑅

∫ Ω 𝑑𝑄
𝑅

 (3.23) 

𝜎 =
𝑁 𝑐(𝑟)

𝜋 ∙ 𝑅
 (3.24) 

With the equations related to the coefficients introduced previously and the 
definition of solidity, it is possible to rewrite the coefficients as: 

𝐶𝑇 =
𝜋3

8𝑅3
 ∫ 𝐶𝑙𝜎𝑟2𝑑𝑟

𝑅

0

 (3.25) 
 

𝐶𝑄 =
𝜋3

16 𝑅4
 ∫ (𝐶𝑙 𝜙 + 𝐶𝑑)𝜎𝑟3𝑑𝑟

𝑅

0

 (3.26) 
 

𝐶𝑃 =
𝜋4

8𝑅4
 ∫ (𝐶𝑙 𝜙 + 𝐶𝑑)𝜎𝑟3𝑑𝑟

𝑅

0

 (3.27) 
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4 – Vortex Theory 
The vortex theory exploits the concept of actuator disk as already mentioned in the 
previous chapter (Blade Element Theory), the disk, made up of an infinite number 
of blades, is permeable and distributes the vorticity uniformly, moreover, in this 
theory the contraction of the wake is neglected. 

The leading scholars who developed and perfected the Vortex Theory are: 

• N. E. Joukowski (1912): he studied the speed induced by the helical vortex 
system of an actuator disk. 

• Betz (1919): he determines the optimal circulation distribution on the rotor 
in the case of an infinite number of blades and the minimum induced power. 

• L. Prandtl (1920): he developed the theory to take into consideration the 
circulation of a finite number of blades. 

• S. Goldenstein (1929): introduced an exact correction to consider the 
presence of a finite number of blades. 

• H. Glauert (1934): he reworked the work done by Betz in the condition of a 
weakly loaded disk extending the treatment to any load condition. 

The Vortex Theory allows to analyze the flow field near the disk and in the wake 
that is generated from it under the hypothesis of inviscid and incompressible fluid. 

The laws necessary for the analysis are: 

• Kutta-Joukowski theorem: 

 
Figure 17 - Kutta - Joukowski 

“If an irrotational two-dimensional fluid current, having at infinity the velocity 𝑉∞ 
surrounds any closed contour on which the circulation of velocity is 𝛤, the force of 
the aerodynamic pressure acts on this contour in a direction perpendicular to the 
velocity and has the value” (J. D. Anderson, 2011). 

𝐿′ = 𝜌∞𝑉∞Γ𝑡𝑜𝑡 (4.1) 
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• Vorticity equation: 

𝐷𝝎

𝐷𝑡
= 𝝎 ∙  ∇𝑽 (4.2) 

• Biot-Savar law: 

In the surrounding space, a flow field is induced by the filament, moreover, if the 
circulation is performed in a closed path, then it has a constant value, and the term 
Γ represents this intensity. 

𝑑𝒍 is the vector that determines the direction of the segment, r is the distance 
between the segment and the point P, V is a velocity induced by the filament: 

𝑑𝑉 =
Γ

4𝜋

𝑑𝒍 × (𝒓)

|𝒓|3
 (4.3) 

 
Figure 18 - Representation of the Biot Savart law 

• Kelvin’s theorem: 

“The time rate of change of circulation around a closed curve consisting of the 
same fluid elements is zero” (J. D. Anderson, 2011). 

 
Figure 19 - Representation Kelvin's theorem 
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𝐷

𝐷𝑡
∫ 𝝎 ∙ 𝒏 𝑑𝑆

𝑆

=
𝐷Γ

𝐷𝑡
= 0 (4.4) 

• Helmholtz theorems: 

The mathematician and physicist Hermann von Helmholtz (1821-1894) was a 
pioneer in the use of the vortex filament for analysis of inviscid and incompressible 
flow, establishing principles concerning the vortex behavior: 

1. “The strength of a vortex filament is constant along its length”. 
2. “A vortex filament cannot end in a fluid; it must extend to the boundaries of 

the fluid (which can be ± ∞) or form a closed path” (J. D. Anderson, 2011). 

𝐷

𝐷𝑡
(𝝎 ∙ 𝒏 𝑑𝑆) = 0 (4.5) 

After having listed all the laws considered in this theory, it is possible to proceed 
with the integration of the Kutta-Jukowski theorem on the radius of a single blade 
to determine a relationship between the circuitry and the forces acting on the disk. 

 
Figure 20 - Example of a wing subject to a speed flow V 

𝐿 = 𝜌∞𝑉∞ ∫ Γ(𝑟)
𝑅

0

𝑑𝑟 (4.6) 

In the case of a rotating element, the relative speed can be approximated as a 
product between the speed of rotation and the radius, and the elementary thrust 
can be considered equal to the lift; therefore, the following relation (4.7) is reported: 

𝑑𝑇 ≅ 𝜌Ω𝑟Γ(𝑟)𝑑𝑟 (4.7) 

Dividing by area: 

𝑑𝑇

𝑑𝐴
=

𝜌ΩΓ(𝑟)

2𝜋
 (4.8) 
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Where the infinitesimal area is: 𝑑𝐴 = 2𝜋𝑟 𝑑𝑟 and in this way, as anticipated above, 
a relation has been identified between thrust on area units and circulation. 

4.1 – Discussion of the rotor vortex and its wake 
Considering a rotor made by a finite number of blades and having a constant 
circulation distribution, it is possible to assume the blade equal to a whirling filament 
that starts from the infinite and ends at the root, moreover, the vortex filament is 
set on the axis of the rotor, there is also a swirling end filament, which takes on a 
helical shape due to the rotation of the disk and the axial velocity also determined 
by the disk (Figure 21) 

 
Figure 21 - Helicoidal motion 

The flux is irrotational at infinity upstream of the flow tube, therefore  𝝎 = 0, passing 
to the two following stations "2" and "3" ( the stations that enclose the rotor, Figure 
9), the flow becomes rotational, in particular, the axial speed is constant, while the 
tangential speed undergoes an increment, passing from the null value to a finite 
value: 

𝑢(𝑟) =
Γ

2𝜋𝑟
 (4.9) 

Concerning the case reported, due to the uniform distribution of vorticity and vortex 
adhering to the blade, the root and terminal vortex, have a constant circuit value.  

From equation (4.8), it is possible to determine the ratio between the thrust, the 
surface, and the value of the circuit (equations (4.10) and (4.11)). 

𝑇

𝐴
=

𝜌ΩΓ

2𝜋
 (4.10) 
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Γ =
𝑇

𝐴

2𝜋

𝜌Ω
 (4.11) 

The points that characterize the whirling system are listed below: 

• Whirling filament aligned with the axis of the rotor having a circulation 
intensity equal to the equation (4.11) described. 

• On the surface of the actuator disk there is a radial distribution of vortex 
filaments having a density: 

𝛾𝑏 =
Γ

2𝜋𝑟
 (4.12) 

• The flow tube is made up of swirling rings parallel to the plane of the 
propeller; the rings constitute the lateral surface of the tube. 

• Axial distribution and perpendicular to the whirling rings have the following  
intensity: 

𝛾𝑙 =
Γ

2𝜋𝑟
 (4.13) 

This breakdown of the motion field was carried out in such a way as to simplify the 
analysis of the induced motion field. 

 
Figure 22 - Vortex theory for the actuator disk model. 

The longitudinal filaments and the root vortex present in the following system do 
not induce any axial velocity, but determine only the rotary motion of the flow, in 
particular, the tangential velocity caused by the root vortex is: 

𝑢𝑅𝑉 =
Γ

4𝜋𝑟
 (4.14) 
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The radial vorticity distribution helps to determine the two tangential velocities 
below, and above the disk, they have the same form but different sign. Considering 
that the flow before crossing the disk is irrotational, then the velocity above the 
disk:  −𝑢𝑏 is opposite and equal in form to the velocity that gush from the root 
vortex (4.9). It is possible to determine the relations relative to the velocity below 
the disc (4.15) and the velocity to the infinity downstream (4.16). 

𝑢(𝑟) = 2 ∙ 𝑢𝑅𝑉 =
Γ

2𝜋𝑟
 (4.15) 

𝑢∞(𝑟) = 𝑢𝑅𝑉 =
Γ

4𝜋𝑟
=

𝑢(𝑟)

2
 (4.16) 

The elements that allow the determination of the axial speed are the rings that 
make up the lateral surface of the flow tube; they have an intensity: 

𝛾𝑟 =
Γ

ℎ
 (4.17) 

The parameter ℎ represents the distance between the whirling rings. 

ℎ =
2𝜋

Ω
𝑣𝑖 (4.18) 

In equation (4.18), 𝑣𝑖 represents the induced axial velocity, replacing this equation 
in (4.17), it is obtained: 

𝛾𝑟 =
𝑇

𝐴𝜌𝑣𝑖
 (4.19) 

Considering what reported on page 6 of (M. Knighr, 1937), it is shown that a 
distribution of rings, belonging to the surface of a flow tube (with density reported 
in equation (4.17)), determines a potential velocities in a generic point P : 

𝜙𝑝 =

𝑑Γ
𝑑𝑧
4𝜋

 ∫ 𝜔 𝑑𝑧
𝑧2

𝑧1

 (4.20) 

It should be noted that 𝑧1 and 𝑧2 represent the extremes of integration. 𝜔 in 
equation (4.19) represents the solid angle subtended by the rotor; this angle is also 
reported in (Johnson W. , 2013), but with another symbology. 

By deriving the potential concerning the variable z, the induced velocity is obtained 
as: 

𝑣𝑖(𝑃) =
𝛾𝑟

4𝜋
 ∫ 𝑑𝜔

𝜔2

𝜔1

 (4.21) 

Considering that the density is explained by (4.19) and the angle subtended from 
the ring to the downstream infinity is zero, by appropriately manipulating, the 
induced speed is obtained: 
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𝑣𝑖(𝑃) = √
2 ∙ 𝑇

𝜋𝜌𝐷2
 (4.21) 

Manipulating these relations, in particular following the procedure reported in 
(Johnson W. , 1994), it is shown that the speed of a point placed at the infinity 
downstream is: 𝑣∞ = 2𝑣𝑖. 

Therefore with this theory, the results obtained for the Simple Impulsive Theory 
have been confirmed. 

4.1.1 – Variable distribution of Γ(𝑟) 

Considering a variable circuitry distribution, for each variation of circuiting, there is 
the detachment of a filament from the blade (Figure 23). 

 
Figure 23 - Separation of the swirling filament 

The set of filaments forms a swirling free surface of helical shape, as in Figure 24. 
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Figure 24 - Vortex sheet 

Between the plane of the disk and the surfaces shown in Figure 24, an angle is 
formed: 

𝜙 = arctan (
𝑣𝑖

Ω𝑟 −
𝑢
2

) (4.22) 

Compared to the previous case with constant circuitry, in this case, considering a 
variable circulation and an infinite number of blades, the swirling surfaces are 
separated by an infinitesimal distance, and the vorticity is no longer concentrated 
only in the lateral surface of the flow tube but throughout the wake. 

It is possible to consider the model as reported in Figure 21, so the problem is 
simplified. 

For the Kelvin theorem, the generic filament has an intensity equal to: 

−
𝑑Γ(𝑟)

𝑑𝑟
 (4.23) 

In particular, the density of the whirling rings is: 

𝛾(𝑟) = −
𝑑Γ(𝑟)

𝑑𝑟
∙

1

ℎ
= −

𝑑Γ(𝑟)

𝑑𝑟
∙

Ω

2𝜋𝑣𝑖
 (4.24) 

As far as the determination of the tangential speed is concerned, it has a relation 
equal to that shown in (4.15), with the circulation variable according to the radius. 

Applying Bernoulli's law to the current lines, the pressure increase across the disc 
takes into account the tangential speed and axial speed: 
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Δ𝑝 = 𝜌 (2𝑣𝑖
2 −

𝑢2

2
) (4.25) 

It is also possible to evaluate the elementary thrust (4.26) and compare it with the 
thrust obtainable by the Kutta-Jukowski law (4.27), obtaining the variable circuitry 
as a function of the induced speed. 

𝑑𝑇 = 2𝜋𝜌 (2𝑣𝑖
2 −

𝑢2

2
) (4.26) 

𝑑𝑇 = 𝜌𝑉𝑒Γ𝑑𝑟 = 𝜌 (Ω𝑟 −
𝑢

2
) Γ𝑑𝑟 (4.27) 

Γ(𝑟) =
4𝜋𝑣𝑖

2

Ω
 (4.28) 

Equation (4.28) is determined by equating (4.26) and (4.27). 

4.2 - Optimal vortex system 
As demonstrated by Betz, a weakly charged propeller, the condition of minimum 
induced energy requires that the vortex surface must rotate around the rotation 
axis, as a rigid surface, and form with the disk plane a constant angle for each 
dimension (𝜙). Then the swirling surface can be assimilated to an Archimedean 
screw. 

 

 

 
Figure 25 – Rotor wake 

The Archimedean screw, which is formed by the swirling trail, pushes the fluid 
downstream. As shown in Figure 25, three velocity components are formed: 
perpendicular to the vortex trail (𝑣𝑛), one directed along the rotation axis (𝑣𝑧), and 
the last tangential (𝑣𝑡). The speed of the wake relative to the disc is constant and 
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is 𝑣0. To determine the three indicated speeds, they are expressed as a function 
of angle 𝜙 and speed 𝑣0: 

𝑣𝑛 = 𝑣0 ∙ cos 𝜙 (4.29) 
𝑣𝑡 = 𝑣0 ∙ 𝑐𝑜𝑠𝜙 ∙ sin 𝜙 (4.30) 

𝑣𝑧 = 𝑣0 cos2 𝜙 (4.31) 

The 𝜙 angle is: 

𝜙 ≅ arctan (
𝑣0

Ω𝑟
) (4.32) 

The speed 𝑣𝑡 is the component of 𝑣𝑛, while the absolute tangential speed is: 

𝑢 = 𝜔𝑟 
In the inflow angle, it is possible to consider the climb velocity or the 
cruise speed, as reported in chapter 6, to describe a condition different 
from the hover. 

(4.33) 

4.2.1 - Determination of the optimum circulation 

As explained at the beginning of Chapter 4, Betz determined the optimal circulation 
distribution for a disk having an infinite number of blades and weakly loaded. 
Subsequently, Glauert extended this treatment to any load condition and provided 
a formulation and a mathematical solution of the condition problem minimum 
induced power and, considering the pressure variation of the Extended Impulsive 
Theory (equation (2.25)), the elementary thrust is determined: 

𝑑𝑇 = 2𝜋𝜌 (Ω𝑟 −
𝑢

2
) 𝑢𝑟 𝑑𝑟 (4.34) 

Considering that 𝑣𝑖 = Ω 𝑟 tan 𝜙 and 𝑑𝑃𝑖 = 𝑑𝑇 𝑣𝑖, the induced elementary power is: 

𝑑𝑃𝑖 = 2𝜋𝜌 (Ω𝑟 −
𝑢

2
) 𝑢𝑟 𝑑𝑟 𝑣𝑖 = 2𝜋𝜌 (Ω𝑟 −

𝑢

2
) 𝑢Ω𝑟2 tan 𝜙 𝑑𝑟 (4.35) 

Using the calculation of the variations based on the Euler-Lagrange equations, 
Glauert determined an equation that allows to obtain the condition of Minimum 
induced power of the rotor, knowing the necessary thrust, as reported in (Peters, 
2016): 

(𝑋 − 1)(3𝑋 − 6)2 = �̃�(3𝑋 − 4)2 (4.36) 

Making explicit: 

𝑋 =
2Ω

𝜔
 (4.37) 

𝜔 =
𝑢

𝑟
 (4.38) 

�̃� =
𝑟

(𝑅𝐺)
 (4.39) 
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The parameter G indicated as 𝑣0 in (Peters, 2016), represents a Lagrange 
multiplier, as explained later, it assumes an arbitrary value to obtain the maximum 
of the function, which in this case is the assigned value of the thrust. 

The dimensionless angular velocity is: 

�̅� =
𝜔

Ω
=

2

𝑋
 (4.40) 

�̅� =
6

5 + �̃�2 + 2(1 + �̃�2) cos (
𝜃
3)

 (4.41) 

𝜃 is calculated as: 

𝜃 = arccos (
�̃�6 + 3�̃�4 + 3�̃�2 − 1

�̃�6 + 4�̃�4 + 3�̃�2 + 1
) (4.42) 

Explaining the circuit as a function of the radius from equation (4.15) and replacing 
the tangential speed 𝑢 = 𝜔𝑟 = �̅�Ω𝑟, it is possible to obtain: 

Γ(𝑟) = 2𝜋𝑟2�̅�Ω (4.43) 

The dimensionless circulation is derived from the latter, and the typical trend is 
reported in Figure 26. 

Γ̅(𝑟) =
Γ(𝑟)

2𝜋Ω𝑅2𝐺2
= �̅� (

𝑟

𝑅𝐺
)

2

 (4.44) 

 
Figure 26 - Adimentional circulation 
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4.2.2 – Prandtl correction 
In the case of the finite number of blades, energy losses occur, caused by the 
motion of the fluid, which escapes from the helical vortex surface and flows around 
the edge of the upper and lower face causing a reduction in the axial momentum. 

In the case of an infinite number of blades, this phenomenon did not occur thanks 
to the presence of contiguous swirling surfaces, which hindered this phenomenon. 

The phenomenon, exposed later analytically, occurs with the cancellation of lift and 
circulation to the tip of the blades. 

Glauert made an equation that allowed simple evaluation of tip losses for the BEM 
(Blade Element Theory) model, thus exploiting a two-dimensional model Glauert 
obtained a factor that multiplied by the circulation approximates the effects of such 
losses. This discussion is also presented in (Sørensen, 2016) 

𝐹(𝑟) =
2

𝜋
arccos(𝑒−𝑓) (4.45) 

𝑓 =
𝑁

2
∙

(𝑅 − 𝑟)

𝑟𝜙
 (4.46) 

In equation (4.46), N represents the number of blades, while 𝜙 is the inflow angle 
exposed above. By tracing the behavior of the Prandtl factor with the variation of 
the number of blades as in Figure 27, it is possible to see how at the tip (as the 
number of blades increases)  𝐹 tends to the unit value. 

 
Figure 27 - Prandtl factor 

Once the Prandtl factor has been determined, it is possible to correct the 
adimensional circuitry determined for an infinite number of blades; the correction 
consists in introducing both the energy losses to the tip and the finite number of 
blades which in this case is equal to 2 (𝑁 = 2). 

Γ̅𝑐(𝑟) = 𝐹(𝑟)�̅� (
𝑟

𝑅𝐺
)

2

=
2

𝜋
arccos (𝑒

(𝑟−𝑅)
𝑟𝜙 ) �̅� (

𝑟

𝑅𝐺
)

2

 (4.47) 
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The problem related to the resolution of equation (4.47) is correlated to the 
presence of two free parameters which are 𝑣0, contained in 𝜙, and the load 
parameter G. One of the two can be eliminated by imposing the thrust, moreover, 
it needs to add a relation that links 𝑣0 and 𝐺. The first term has the dimensions of 
speed, while the load parameter is adimensional. 

Through the properties of the trigonometric functions, it is possible to derive the 
equation (4.48) from (4.30): 

𝑣𝑡 =
𝑣0

2 Ω𝑟

(Ω𝑟)2 + 𝑣0
2 (4.48) 

𝑢 = 2
𝑣0

2Ω𝑟

(Ω𝑟)2 + 𝑣0
2 (4.49) 

The (4.49) has been obtained considering that 𝑢 = 2 ∙ 𝑣𝑡 and knowing that 𝑢 = 𝜔 ∙

𝑟 = �̅�Ω𝑟  (�̅� is a function of G as shown by the equation (4.41)) 

𝑢 = Ω𝑟 �̅�(𝐺) (4.50) 

�̅�(𝐺) =
2𝑣0

2

(Ω𝑟)2 + 𝑣0
2 (4.51) 

The equation (4.51) was obtained by equating (4.49) and (4.50). 

The following shows the trend of the correct dimensionless circuit (Figure 28). 

 
Figure 28 – 𝛤 adimensional corrected 
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5 – Linearized theory of the actuator disk 
5.1 – Exposition of the problem and formulation 
“Through the theory presented in (Conway, 1997), it is possible to determine more 
precisely the effect due to the presence of more propellers and also extends the 
theory of the actuator disk with radially and constant distributed load, to calculate 
the range of motion in all the domain considering any distribution of axial speed” 
(Zazza, 2017). 

For the treatment, it is considered an incompressible and rotational flow due to the 
intrinsic property of the propeller filed, which is a vortex region. 

∇ × 𝑽 ≠ 0 

∇ ∙ 𝑽 = 0 

Thanks to the compressibility of the fluid, it is possible to define an arbitrary 
potential vector A that allows the representation of the motion field: 

𝑽 = ∇ × 𝑨 (5.1) 

Due to the arbitrariness of the potential vector, the following condition is taken: 

∇ ∙ 𝑨 = 0 (5.2) 
∇2𝑨 = −𝝎 (5.3) 

The vector 𝝎 represents the vorticity; as previously exposed in this treatment, it is 
different from 0, and the problem is symmetrical. Therefore the vector 𝝎 is written 
as a function of the derivatives reported in equation (5.4). 

𝝎 = ∇ × 𝑽 = (𝜔𝑟 , 𝜔𝜃, 𝜔𝑧) = (−
𝜕𝑣𝜃

𝜕𝑧
,
𝜕𝑣𝑟

𝜕𝑧
−

𝜕𝑣𝑧

𝜕𝑟
,
1

𝑟

𝜕(𝑟𝑣𝜃)

𝜕𝑟
) (5.4) 

Thanks to the presence of cylindrical symmetry the only non-zero component of 
the potential vector is 𝐴𝜃, and with (5.3), which expresses the link between the 
potential vector and vorticity, it is possible to rewrite (5.4) eliminating the null terms 

𝝎 = (0, 𝜔𝜃, 0) (5.5) 

The terms: 𝐴𝜃(𝑟, 𝑧), 𝑣𝑟(𝑟, 𝑧), 𝑣𝑧(𝑟, 𝑧) are induced fields obtained using an 
axisymmetric vorticity distribution. 

Equation (5.1) is expressed through the potential vector in cylindrical coordinates 
to obtain the velocity field. 

𝑉 = ∇ × 𝐴 = (𝑣𝑟 , 𝑣𝜃 , 𝑣𝑧) = (−
𝜕𝐴𝜃

𝜕𝑧
, 0,

1

𝑟

𝜕(𝑟 𝐴𝜃)

𝜕𝑟
) (5.6) 
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Figure 29 - Cylindrical coordinate system 

Figure 29 shows a cylindrical reference system, concerning the figure, the radius 
𝜌 corresponds to 𝑟 and the angle 𝜙 to 𝜃. 

The exposed problem is characterized by an incompressible and symmetrical flow, 
as explained above, so it is possible to introduce the current function Ψ (𝑟, 𝑧),  it is 
linked to the velocity components through the following equations: 

𝑣𝑟 = −
1

𝑟

𝜕Ψ

𝜕𝑧
 (5.7) 

𝑣𝑧 =
1

𝑟

𝜕Ψ

𝜕𝑟
 (5.8) 

From the comparison of the last two equations with the (5.6), it is possible to obtain 
𝐴𝜃 = Ψ/𝑟, therefore replacing the (5.7) and (5.8) in the azimuthal component of the 
vorticity is obtained: 

𝜔𝜃 = −
1

𝑟

𝜕2Ψ

𝜕𝑧2
+

1

𝑟2

𝜕Ψ

𝜕𝑟
−

1

𝑟

𝜕2Ψ

𝜕𝑟2
 

𝜕2Ψ

𝜕𝑟2
−

1

𝑟

𝜕Ψ

𝜕𝑟
+

𝜕2Ψ

𝜕𝑧2
= −𝑟𝜔𝜃 

(5.9) 

Equation (5.9) can also be expressed through a linear differential operator 

ℒ(𝑟,𝑧) (
Ψ

𝑟
) = 𝑟 (

𝜕2Ψ

𝜕𝑟2
+

1

𝑟

𝜕Ψ

𝜕𝑟
−

Ψ

𝑟2
+

𝜕2Ψ

𝜕𝑧2
)

1

𝑟
= −𝑟𝜔𝜃 (5.10) 

The (5.10) represents the governing law of the motion field determined by an axial 
vorticity distribution (𝜔𝜃(𝑟, 𝑧)). The equation (5.10) represents the beginning of the 
study related to the determination of the flow induced by an immersed propeller in 
an ideal fluid. It is necessary to impose the following boundary conditions to solve 
the equation (5.10). 
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𝑣𝑧 =
1

𝑟

𝜕Ψ

𝜕𝑧
→ 0 

𝑣𝑟 = −
1

𝑟

𝜕Ψ

𝜕𝑧
→ 0 𝑖𝑓 𝑟 → ∞  𝑜𝑟 𝑧 → ±∞ 

(5.11) 

To determine the induced speed field, proceed from the equation (5.10) and 
consider a single whirling ring. In particular, in chapter 6, the axial velocity 
distribution and tangential velocity distribution are calculated. 

5.1.1 – Problem solution 

The solution to the problem is determined by referring to a vortex ring of intensity 
Γ, it determines a potential vector 𝐴𝜃(𝑟, 𝑧) and a motion field identified by the 
successive equations; the following treatment is also reported in (Besset, 1888): 

𝐴𝜃(𝑟, 𝑧) =
Ψ(𝑟, 𝑧)

𝑟
=

Γ𝜎

2
 ∫ 𝐽1(𝑠𝜎)𝐽1(𝑠𝑟)𝑒−𝑠|𝑧−𝜁|𝑑𝑠

∞

0

 
(5.12) 

𝑣𝑟(𝑟, 𝑧) =
Γ𝜎

2
 ∫ 𝑠𝐽1(𝑠𝜎)𝐽1(𝑠𝑟)𝑒−𝑠|𝑧−𝜁|𝑑𝑠     𝑖𝑓 𝑧 ≥ 𝜁

∞

0

 
(5.13) 

𝑣𝑟(𝑟, 𝑧) = −
Γ𝜎

2
 ∫ 𝑠𝐽1(𝑠𝜎)𝐽1(𝑠𝑟)𝑒−𝑠|𝑧−𝜁|𝑑𝑠     𝑖𝑓 𝑧 < 𝜁

∞

0

 
(5.14) 

𝑣𝑧(𝑟, 𝑧) =
Γ𝜎

2
∫ 𝑠𝐽1(𝑠𝜎)𝐽0(𝑠𝑟)𝑒−𝑠|𝑧−𝜁|𝑑𝑠

∞

0

 
(5.15) 

The surface density in the considered domain is introduced, it is possible to 
reformulate the equations just described and to consider them concerning more 
whirling rings rather than one. By introducing the density, the domain can be 
extended along z to all values greater than 0; while the radius r, it can vary from 0 
to the reference R; the determination of the radius R is shown in the next chapter. 

𝐴𝜃(𝑟, 𝑧) =
Ψ(𝑟, 𝑧)

𝑟
=

1

2
∫ ∫ ∫ 𝛾(𝜎, 𝜁)𝜎 𝐽1(𝑠𝜎) 𝐽1(𝑠𝑟) 𝑒−𝑠|𝑧−𝜁|𝑑𝑠𝑑𝜎𝑑𝜁

∞

0

𝑅(𝑧)

0

∞

0

 (5.16) 

𝑣𝑟(𝑟, 𝑧) =
1

2
∫ ∫ ∫ 𝛾(𝜎, 𝜁)𝜎 𝑠 𝐽1(𝑠𝜎) 𝐽1(𝑠𝑟) 𝑒−𝑠|𝑧−𝜁|𝑑𝑠𝑑𝜎𝑑𝜁   𝑖𝑓 𝑧 ≥ 𝜁

∞

0

𝑅(𝑧)

0

∞

0

 (5.17) 

𝑣𝑟(𝑟, 𝑧) =
1

2
∫ ∫ ∫ −𝛾(𝜎, 𝜁)𝜎 𝑠 𝐽1(𝑠𝜎) 𝐽1(𝑠𝑟) 𝑒−𝑠|𝑧−𝜁|𝑑𝑠𝑑𝜎𝑑𝜁   𝑖𝑓 𝑧 < 𝜁

∞

0

𝑅(𝑧)

0

∞

0

 (5.18) 

𝑣𝑧(𝑟, 𝑧) =
1

2
∫ ∫ ∫ 𝛾(𝜎, 𝜁)𝜎 𝑠 𝐽1(𝑠𝜎) 𝐽0(𝑠𝑟) 𝑒−𝑠|𝑧−𝜁|𝑑𝑠𝑑𝜎𝑑𝜁

∞

0

𝑅(𝑧)

0

∞

0

 (5.19) 

In the equations just described, the vorticity density and the radius R are not known, 
to determine the density the Vortex Theory is used, while as regards R, it varies 
along z. To eliminate the contraction, R is assumed constant to linearize the 
exposed treatment. 

For the vorticity density, the equation (5.20) is considered, it is possible to see that 
it depends only on the coordinate 𝑟, while 𝑣𝑖 represents the induced axial velocotà. 

𝛾(𝜎) = −2
𝑑𝑣𝑖(𝜎)

𝑑𝜎
 (5.20) 
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With the simplifications introduced, the equations (5.16), (5.17), (5.18), and (5.19) 
are rewritten, modifying the integration extreme eliminating the dependence on the 
𝑧 dimension. 

𝐴𝜃(𝑟, 𝑧) =
Ψ(𝑟, 𝑧)

𝑟
=

1

2
∫ ∫ ∫ 𝛾(𝜎)𝜎 𝐽1(𝑠𝜎) 𝐽1(𝑠𝑟) 𝑒−𝑠|𝑧−𝜁|𝑑𝑠𝑑𝜎𝑑𝜁

∞

0

𝑅

0

∞

0

 (5.21) 

𝑣𝑟(𝑟, 𝑧) =
1

2
∫ ∫ ∫ 𝛾(𝜎)𝜎 𝑠 𝐽1(𝑠𝜎) 𝐽1(𝑠𝑟) 𝑒−𝑠|𝑧−𝜁|𝑑𝑠𝑑𝜎𝑑𝜁   𝑖𝑓 𝑧 ≥ 𝜁

∞

0

𝑅(𝑧)

0

∞

0

 (5.22) 

𝑣𝑟(𝑟, 𝑧) =
1

2
∫ ∫ ∫ −𝛾(𝜎)𝜎 𝑠 𝐽1(𝑠𝜎) 𝐽1(𝑠𝑟) 𝑒−𝑠|𝑧−𝜁|𝑑𝑠𝑑𝜎𝑑𝜁   𝑖𝑓 𝑧 < 𝜁

∞

0

𝑅(𝑧)

0

∞

0

 (5.23) 

𝑣𝑧(𝑟, 𝑧) =
1

2
∫ ∫ ∫ 𝛾(𝜎)𝜎 𝑠 𝐽1(𝑠𝜎) 𝐽0(𝑠𝑟) 𝑒−𝑠|𝑧−𝜁|𝑑𝑠𝑑𝜎𝑑𝜁

∞

0

𝑅(𝑧)

0

∞

0

 (5.24) 

By integrating concerning the variable 𝜁, which represents the center of the ring in 
the z-axis, the speeds concerning 𝑟 and 𝑧 become: 

𝑣𝑟(𝑟, 𝑧) = ∫ ∫
𝑑𝑣𝑖(𝜎)

𝑑𝜎
 𝜎 𝐽1(𝑠𝜎)𝐽1(𝑠𝑟)𝑒−𝑠|𝑧|𝑑𝑠𝑑𝜎

∞

0

𝑅

0

 (5.25) 

𝑣𝑧(𝑟, 𝑧) = − ∫ ∫
𝑑𝑣𝑖(𝜎)

𝑑𝜎
 𝜎 𝐽1(𝑠𝜎)𝐽0(𝑠𝑟)(2 − 𝑒−𝑠|𝑧|)𝑑𝑠𝑑𝜎  𝑖𝑓 𝑧 ≥ 0

∞

0

𝑅

0

 (5.26) 

𝑣𝑧(𝑟, 𝑧) = − ∫ ∫
𝑑𝑣𝑖(𝜎)

𝑑𝜎
 𝜎 𝐽1(𝑠𝜎)𝐽1(𝑠𝑟)𝑒−𝑠|𝑧|𝑑𝑠𝑑𝜎  𝑖𝑓 𝑧 < 0

∞

0

𝑅

0

 (5.27) 

Evaluating the equation (5.26) in 𝑧 = 0: 

𝑣𝑧(𝑟, 0) = − ∫ ∫
𝑑𝑣𝑧(𝜎, 0)

𝑑𝜎
 𝜎 𝐽1(𝑠𝜎)𝐽0(𝑠𝑟)𝑑𝑠𝑑𝜎  

∞

0

𝑅

0

 (5.28) 

Placing 𝑣𝑧(𝜎, 0) = 𝑓(𝜎) and changing the integral extremes concerning 𝑑𝜎 

𝑣𝑧(𝑟, 0) = − ∫ ∫ 𝑓′(𝜎) 𝜎 𝐽1(𝑠𝜎)𝐽0(𝑠𝑟)𝑑𝑠𝑑𝜎  
∞

0

∞

0

 (5.29) 

The equation (5.30) shows the first-order Henkel transform obtained from 𝑓′(𝜎)  of 
equation (5.29) 

𝐺1(𝑠) = 𝐻1(𝑓′(𝜎)) = ∫ 𝑓′(𝜎) 𝜎 𝐽1(𝑠𝜎) 𝑑𝜎
∞

0

 (5.30) 

𝐹0(𝑠) = 𝐻0(𝑓(𝜎)) = ∫ 𝑓(𝜎) 𝜎 𝐽0(𝑠𝜎) 𝑑𝜎
∞

0

 
(5.31) 

The (5.31) is the Henkel transform of zero order. For the properties of the Henkel 
function, it is possible to obtain: 

𝐺1(𝑠) = 𝐻1(𝑓′(𝜎)) = −𝑠𝐹0(𝑠) (5.32) 

∫ 𝑓′(𝜎) 𝜎 𝐽1(𝑠𝜎) 𝑑𝜎
∞

0

= ∫ −𝑓(𝜎) 𝑠𝜎 𝐽0(𝑠𝜎) 𝑑𝜎
∞

0

 
(5.33) 
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Considering that this relation must be satisfied for all 𝜎 ≥ 0, it is obtained: 

𝑓′(𝜎) 𝜎 𝐽1(𝑠𝜎) = −𝑓(𝜎) 𝑠𝜎 𝐽0(𝑠𝜎) (5.34) 

Replacing the (5.34) equation in (5.25), (5.26) and (5.27), the velocities are 
functions of the axial one. 

𝑣𝑟(𝑟, 𝑧) = − ∫ ∫ 𝑣𝑧(𝜎, 0)𝑠 𝜎 𝐽0(𝑠𝜎)𝐽1(𝑠𝑟)𝑒−𝑠|𝑧|𝑑𝑠𝑑𝜎
∞

0

𝑅

0

 (5.35) 

𝑣𝑧(𝑟, 𝑧) = ∫ ∫ 𝑣𝑧(𝜎, 0)𝑠 𝜎 𝐽0(𝑠𝜎)𝐽0(𝑠𝑟)(2 − 𝑒−𝑠|𝑧|)𝑑𝑠𝑑𝜎  𝑖𝑓 𝑧 ≥ 0
∞

0

𝑅

0

 (5.36) 

𝑣𝑧(𝑟, 𝑧) = ∫ ∫ 𝑣𝑧(𝜎, 0)𝑠 𝜎 𝐽0(𝑠𝜎)𝐽0(𝑠𝑟)𝑒−𝑠|𝑧| 𝑑𝑠𝑑𝜎  𝑖𝑓 𝑧 < 0
∞

0

𝑅

0

 (5.37) 

Separating (5.36) into two integrals: 

𝑣𝑧(𝑟, 𝑧) = 𝐼1 − 𝐼2 = 2 ∫ ∫ 𝑣𝑧(𝜎, 0)𝑠 𝜎 𝐽0(𝑠𝜎)𝐽0(𝑠𝑟)𝑑𝑠𝑑𝜎 − ∫ ∫ 𝑣𝑧(𝜎, 0)𝑠 𝜎 𝐽0(𝑠𝜎)𝐽0(𝑠𝑟)(𝑒−𝑠|𝑧|)𝑑𝑠𝑑𝜎
∞

0

𝑅

0

∞

0

𝑅

0

 (5.38) 

Manipulating the last equation, the (5.39) is obtained: 

𝐼1 = 2 ∫ 𝑣𝑧(𝜎, 0) 𝜎 [∫ 𝑠𝐽0(𝑠𝜎)𝐽0(𝑠𝑟)𝑑𝑠
∞

0

 ] 𝑑𝜎
∞

0

 (5.39) 

The inner integral of equation (5.39) is possibly rewritten for the property of the 
Bessel function: 

∫ 𝑠𝐽0(𝑠𝜎)𝐽0(𝑠𝑟)𝑑𝑠 =
𝛿(𝜎 − 𝑟)

𝜎

∞

0

 (5.40) 

𝐼1 = 2 ∫ 𝑣𝑧(𝜎, 0) 𝛿(𝜎 − 𝑟) 𝑑𝜎
∞

0

 (5.41) 

Considering the properties of delta Dirac: 

𝐼1 = 2 ∫ 𝑣𝑧(𝜎, 0) 𝛿(𝜎 − 𝑟) 𝑑𝜎
∞

0

= 𝑣𝑧(𝑟, 0) (5.42) 

Thanks to the result obtained, the equation (5.26) is simplified as follows: 

𝑣𝑧(𝑟, 𝑧 ≥ 0) = 2𝑣𝑧(𝑟, 0) − 𝑣𝑧(𝑟, 𝑧 < 0) (5.42) 

Finally, the equations of the linearized theory to be implemented are, equation 
(5.42) and (5.44): 

𝑣𝑟(𝑟, 𝑧) = − ∫ ∫ 𝑣𝑧(𝜎, 0)𝑠 𝜎 𝐽0(𝑠𝜎)𝐽1(𝑠𝑟)𝑒−𝑠|𝑧|𝑑𝑠𝑑𝜎
∞

0

𝑅

0

 (5.43) 

𝑣𝑧(𝑟, 𝑧 < 0) = ∫ ∫ 𝑣𝑧(𝜎, 0)𝑠 𝜎 𝐽0(𝑠𝜎)𝐽0(𝑠𝑟)(𝑒−𝑠|𝑧|)𝑑𝑠𝑑𝜎
∞

0

𝑅

0

 (5.44) 



37 
 

6 – Propellers design 
In the previous chapters, all theories used for the design of the propeller were 
exposed; in the following chapter are listed the results obtained, the analysis of the 
chosen aerodynamic profiles, and the CAD model relative to the two propellers, 
one necessary for take-off and one for horizontal flight. 
The scenario refers to a height of 4000 m, where there are the following features: 

Table 5 - Atmospheric characteristics 

Temperature 262.15 [𝐾] 
Pressure in ISA condition 6.5 ∙ 104 [𝑃𝑎] 

Density 0.8631 [𝑘𝑔/𝑚3] 
Dynamic viscosity 1.665 ∙ 10−5 

Cinematic viscosity 1.929 ∙ 10−5 
Speed of sound 324.72 [𝑚/𝑠] 

Gravity acceleration 9.81 [𝑚/𝑠2] 

The drawing up of the following paragraphs is simplified in this way, the propeller 
developed for take-off is called propeller 1, while the propeller for horizontal flight 
is propeller 2. 

6.1 - Radius determination and angular velocity 
After determining the atmospheric characteristics, the radius relative to the two 
propellers is evaluated. Below there are the equations implemented on Matlab and 
the choice of the thrust coefficient 𝐶𝑇, the following value is determined on a 
statistical basis by referring to a propellers database developed by the company 
“APC propellers”:  

𝐶𝑇 =
𝜋2

4
∙

𝑇

𝜌𝑉𝑡𝑖𝑝
2 𝑅2

 (6.1) 

The equation (6.1) is equal to (3.18) of chapter 3 related to the Blade Element 
Theory, through an inverse equation it is possible to make explicit the radius of the 
disk R and determine the rotation speed. 

𝑅 =
𝜋

2 ∙ 𝑉𝑡𝑖𝑝
 √

𝑇

𝜌𝐶𝑇
 (6.2) 

Ω =
𝑉𝑡𝑖𝑝

𝑅
 (6.3) 

The values obtained for the two propellers are shown below: 

• Propeller 1: 
o 𝐶𝑇 = 0.085 
o 𝑉𝑡𝑖𝑝 = 0.85 ∙ 0.5 ∙ 𝑉𝑠 = 138 [𝑚/𝑠] 
o 𝑅 = 0.1316 [𝑚] 
o Ω = 1048.5 [𝑟𝑎𝑑/𝑠] 
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• Propeller 2. 
o 𝐶𝑇 = 0.065 
o 𝑉𝑡𝑖𝑝 = 0.85 ∙ 0.5 ∙ 𝑉𝑠 = 179.4 [𝑚/𝑠] 
o 𝑅 = 0.2316 [𝑚] 
o Ω = 774.78[𝑟𝑎𝑑/𝑠] 

6.2 – Application of the Vortex Theory 
In the following paragraph, the results obtained from the application of Vortex 
Theory are explained, in particular, differentiating the case for the propeller 
modeled for take-off (propeller 1) and the driving propeller (propeller 2). The 
Skywalker X8 has a cruising speed of around 19 [m / s]. 

The procedure described in chapter 4 is used to determine the optimum circulation: 

• The radius �̌� is determined by equation (4.39). 
• Parameter θ with: (4.42). 
• The dimensionless angular velocity �̅�: (4.41) 
• The circulation: (4.34) 
• The dimensionless circulation: (4.44). 

6.2.1 – Infinite number of blades 
In the dimensionless circulation, the Glauert load parameter is present (G), this 
parameter is calculated iteratively, in particular, G represents a Lagrange multiplier, 
and is an arbitrary parameter chosen to maximize the desired function, to 
determine it in the case of infinite number of blades, the following equation has 
been implemented: 

𝑇𝑁∞
= ∫ 𝑑𝑇(𝑟)

𝑅

0

= 2𝜋𝜌 ∫ (Ω −
𝜔

2
) 𝜔𝑟3𝑑𝑟

𝑅

0

 (6.4) 

Considering that the circulation of optimum is a function of the dimensionless 
angular velocity by (4.37) and the angular velocity 𝜔 can be determined as 𝜔 =

𝑢(𝑟)/𝑟, then determining the tangential velocity from (4.36) it is possible to 
establish the dependence of the thrust as a function of the Glauert load parameter.  

The G parameter is:  

• 0.0832 for propeller 1  
• 0.0457 for propeller 2. 
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6.2.2 – Finite number of blades 

In the case of the finite number of blades, the energy losses at the tip are 
considered using the Prandtl parameter. The following paragraph also calculates 
the Glauert load parameter G because the losses were not considered in the 
previous paragraph. 

Initially, the relative velocity between the wake and the disc is calculated: 

𝑣0 = ±Ω𝑟√
�̅�(𝐺)

2 − �̅�(𝐺)
 (6.5) 

Another essential variable is the inflow angle (𝜙), the following angle takes into 
account the inclination of the wake compared to the disc, so in the case of hovering, 
only the speed (𝑣0) acts, the equation is: 

𝜙 = arctan (
𝑣0

Ω𝑟
) (6.6) 

In the case of the propeller 2, in addition to the axial speed 𝑣0, there is the nominal 
cruising speed of the drone, which is about 19 [𝑚/𝑠], so the equation (6.6) 
becomes: 

𝜙 = arctan (
𝑣0 + 𝑉

Ω𝑟
) (6.6) 

Once the following values have been identified, the correct optimal circulation is 
calculated. 

A final precaution before exposing the results is relative to the thrust, which is used 
to determine the G factor, as shown in the previous paragraph. 

𝑇25% = 𝑁 ∙ 2𝜋 ∙ 𝜌Ω𝑅2𝐺2 ∫ (Ω𝑟 −
Γ̅𝑐𝑜𝑟𝑟Ω𝑅2𝐺2

2𝑟
)

𝑅

0.25 𝑅

Γ̅𝑐𝑜𝑟𝑟𝑑𝑟 (6.7) 

The parameters obtained are: 

• 0.0983 for propeller 1 
• 0.0567 for propeller 2 

The thrust is considered by 25% of the radius, up to the tip, because usually, the 
hub is up to 25%. 

Below there are the optimal circulations respect to the dimensionless circulation. 
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Figure 30 - Circulation for infinite number of blade (propeller 1) 

 
Figure 31 - Circulation for infinite number of blade (propeller 2) 

In Figures 30 and 31 are reported the correct circulation taking in to account the 
Prandtl’s factor (F). 
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Figure 32 – Propeller 1 

 
Figure 33 - Propeller 2 

The relative speed (𝑣0) between the disk and the swirling surfaces is: 

• Propeller 1: 12.02 [𝑚/𝑠] 
• Propeller 2: 9.4 [𝑚/𝑠] 

Finally, the axial velocity of the disk is determined, which is calculated as: 

𝑣𝑖 =
1

2
√

Γ𝑐𝑜𝑟𝑟(𝑟)Ω

𝜋
 (6.8) 
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Figure 34 - Propeller 1 axial velocity 

 
Figure 35 - Propeller 2 axial velocity 

The propeller 1 has a higher distribution of values because the equation (6.8) is 
proportional to the square circulation and angular velocity, which in the propeller 1 
are higher than propeller 2. 
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6.3 – Propellers Geometry 
The Blade Element Theory is applied to determine the geometry of the rotors, 
shown in chapter 3, which allows the identification of the distribution of the chords 
and the distribution of pitch angle. The aerodynamic characteristics, such as the 
lift coefficient and the drag coefficient, are determined by an analysis of profiles 
conducted on XFOIL. 

The pitch angle is determined by equation (3.3), as explained in paragraph 6.2.2, 
it is necessary to pay attention to the inflow angle to be used. 

The distribution of the chords is identified as: 

𝑐(𝑟) =
2 𝑑𝑇/𝑑𝑟

𝜌 ∙ cos(𝜙)(Ω𝑟)2𝐶𝑙
 

(6.9) 

𝑑𝑇

𝑑𝑟
=

1

2
𝜌 cos 𝜙 (Ω𝑟)2𝐶𝑙𝑐𝑑𝑟 

(6.10) 

6.3.1 – Airfoils used 

To identify the type of profiles to be used for a propeller, in the case of a low 
Reynolds number, reference was made to: (Zalewski, 2015), (Werme, 1984). 

First, the distribution and the mediated value of the Reynolds number were 
calculated to identify the input data to perform the analysis. Furthermore, this 
XFOIL study was carried out without considering the compressibility, because the 
average value of the Mach number along the opening is less than 0.3. 

 
Figure 36 - Mach distribution propeller 2 and propeller 1 

• Mach average propeller 2: 0.28 
• Mach average propeller 1: 0.22 
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.  
Figure 37 - Reynolds distribution propeller 1 

 
Figure 38 – Reynolds distribution propeller 2 

The Reynolds number averages are: 

• Propeller 1: 9 ∙ 104 
• Propeller 2: 6.5 ∙ 104 
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Figure 39 - Profiles analyzed 

Figure 38 shows all the profiles analyzed for the indicated Reynolds numbers. 

Only two profiles have been chosen (Figure 39), CLARK-Y and MH116, which have 
a very similar thickness and similar aerodynamic characteristics, then the 
distribution determined by XFOIL is reported below, and which of the two is chosen 
for each propeller. 
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• Propeller 1 

 
Figure 40 – Chosen profiles 

o MH116 9.84% 

 
Figure 41 - Lift and drag coefficient 

 
Figure 42 - Efficiency 
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• CLARK-Y 11.7% 

 
Figure 43 - Lift and drag coefficient 

 
Figure 44 - Efficiency 

The CLARK-Y profile has a maximum efficiency of 49 compared to the MH 116 
profile which has an efficiency of 59, moreover the following profile is characterized 
by a slightly lower thickness than the CLARK-Y, in fact, MH 116 has a range of 
incidence angles with lower resistance than the CLARK-Y. 

Table 6 contains all the aerodynamic characteristics calculated at the operating 
angle. The angle of incidence is chosen at 8° and constant throughout the blade. 
This angle is chosen to have maximum efficiency. 

Table 6 - Aerodynamic characteristics 

𝛼𝑜𝑝𝑒𝑟 8° 
𝐶𝑙𝐶𝑙𝑎𝑟𝑘−𝑦

 1.1868 
𝐶𝑙𝑀𝐻116

 1.2474 
𝐶𝑑𝐶𝑙𝑎𝑟𝑘−𝑦

 0.0242 
𝐶𝑑𝑀𝐻116

 0.0227 

The chosen profile is the MH 116 thanks to the high efficiency and the wide range 
characterized by low resistance 
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In Figure 45 is report the chords distribution and in Figure 47 the pitch distribution. 

 
Figure 45 - Chord distribution 

 
Figure 46 – Chords normalized 
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Figure 47 - 𝜃 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

Table 7 - Coefficients Max. propeller 1 

 MH116 
𝛼𝑀𝑎𝑥 12 
𝐶𝑙𝑀𝑎𝑥 1.3395 
𝐶𝑑𝑀𝑎𝑥 0.0595 
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• Propeller 2 

Also, for this propeller, the chosen profiles are shown in Figure 40 

o CLARK-Y 11.7% 

 
Figure 48 - Lift and drag coefficient 

 
Figure 49 - Efficiency  
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o MH 116 9.84% 

 
Figure 50 - Lift and drag coefficient 

 

 
Figure 51 – Efficiency 

Table 8 - Aerodynamic characteristics 

𝛼𝑜𝑝𝑒𝑟 8° 
𝐶𝑙𝐶𝑙𝑎𝑟𝑘−𝑦

 1.16 
𝐶𝑙𝑀𝐻116

 1.24 
𝐶𝑑𝐶𝑙𝑎𝑟𝑘−𝑦

 0.03 
𝐶𝑑𝑀𝐻116

 0.026 

Also in this case, the MH116 profile is chosen because it has a higher efficiency 
than the CLARK-Y, moreover considering the operating angle, which corresponds 
to the maximum efficiency angle. 
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Figure 52 – Chords distribution 

 
Figure 53 - Chords normalized 
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Figure 54 – 𝜃 first method 

Table 9 - Coefficients Max. propeller 2 

 MH116 
𝛼𝑀𝑎𝑥 11.36 
𝐶𝑙𝑀𝑎𝑥 1.36 
𝐶𝑑𝑀𝑎𝑥 0.06 
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6.4 – Propeller performance 
In the following paragraph, the performances of the two propellers are calculated 
by referring to the Blade Element Theory in chapter 3, in particular reporting the 
results of the equations: (3.25), (3.26), (3.27), (3.23). 

Table 10 - Propeller 1 performance 

Propeller 1 
𝐶𝑃 0.038726 
𝐶𝑄 0.006163 
𝐶𝑇 0.117536 

𝐹. 𝑀. 0.8465 
𝐹. 𝑀. 25% 0.7521 

𝑇[𝑁] 13.74 
𝑄[𝑁 ∙ 𝑚] 0.19 

𝑃[𝑊] 196.34 
𝑇25% [𝑁] 13.285 

Table 11 - Propeller 2 performance 

Propeller 2 
𝐶𝑃 0.019961 
𝐶𝑄 0.003177 
𝐶𝑇 0.038081 
𝐽 0.072461 

𝐹. 𝑀. 0.3180 
𝐹. 𝑀. 25% 0.285 

𝑇 [𝑁] 23.29 
𝑄 [𝑁 ∙ 𝑚] 0.89 

𝑃[𝑊] 688.14 
𝑇25% [𝑁] 22.13 

Table 11 also calculates the advance ratio, because for propeller 2 is considered 
the cruise speed. 
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6.5 – Induced field 
The equations given in chapter 5 are used to determine the induced flow field, in 
particular (5.44), (5.42). 

The domain is evaluated from 𝑧 = −5[𝑚] to 𝑧 = 5 [𝑚]. The radius goes from 0 to 
R, which in the case of the propeller 1 is 0.1316 [m], while for the propeller 2, the 
value is: 0.2316 [m]. Thanks to these intervals, it is possible to determine a grid to 
analyze the flow. 

The tangential speed does not depend on the distance from 𝑧, for this reason, the 
distribution evaluated in chapter 4 is shown in Figure 55 and 56 for both propellers. 

 
Figure 55 – tangential speed, propeller 1 

 
Figure 56 - Tangential speed, propeller 2 
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The axial velocities are reported based on the proximity to the disk, both for the 
propeller 1 and the propeller 2. 

• Propeller 1 

 
Figure 57 – Axial velocity for z=0.64R and z=0.32R 

 
Figure 58 - Axial velocity for z=0 and z=-0.32R 

 
Figure 59 - Axial velocity for z=-0.64R 
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Figure 60 - Axial Velocities 
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• Propeller 2 

 
Figure 61 - Axial velocity for z=0.64R and z=0.32R 

 
Figure 62 - Axial velocity for z=0 and z=-0.32R 

 
Figure 63 - Axial velocity for z=-0.64R 
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Figure 64 - Axial Velocities 
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6.6 – CAD 
Propeller 1 

 

 

 
Figure 65 - Propeller 1 CAD 

 

 

 

 

 

 



61 
 

Propeller 2 

 

 

 
Figure 66 - Propeller 2 CAD 
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Table 12 - Geometry of the propeller 1 

Stations Chords Pitch 
1 0,037 38,71 

2 0,0352 33,78 
3 0,0331 30,01 
4 0,0308 27,09 
5 0,0286 24,81 
6 0,0266 22,99 
7 0,0248 21,52 
8 0,0231 20,29 
9 0,0216 19,26 

10 0,0203 18,39 
11 0,0190 17,63 
12 0,0179 16,97 
13 0,0168 16,39 
14 0,0157 15,86 
15 0,0146 15,36 
16 0,0134 14,89 
17 0,0120 14,42 
18 0,0102 13,91 
19 0,0075 13,30 
20 0 12,44 
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Table 13 - Geometry of the propeller 2 

Stations Chords Pitch 
1 0,0354 77,98 
2 0,0322 64,96 
3 0,0283 54,61 
4 0,0248 46,88 
5 0,0219 41,11 
6 0,0195 36,71 
7 0,0175 33,28 
8 0,0158 30,54 
9 0,0143 28,32 

10 0,0131 26,47 
11 0,0120 24,92 
12 0,0110 23,59 
13 0,0100 22,43 
14 0,0091 21,42 
15 0,0082 20,51 
16 0,0073 19,68 
17 0,0063 18,92 
18 0,0051 18,18 
19 0,0036 17,45 
20 0 16,62 

The station 20 has not been reported for both propellers, while station 1 refers to 
15% of the total radius for the propeller 1 and to 7% of the total radius of the 
propeller 2 to obtain a hub of about 3.2 cm for both propellers. Furthermore, the 
choice of hub dimensions is related to that used for the first propeller of the 
Skywalker X8, which is the one used for low altitude operations. 
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Conclusions 
In the following study, several models have been implemented with them is 
possible to represent the composition of motion. Initially, the two impulsive theories 
were implemented; with the Simple Impulsive Theory the induced power was 
determined without taking into account the rotation of the wake, while with the 
extended impulsive theory the rotation of the wake is considered, in fact, the flux 
in addition to having a given axial speed also has a tangential speed. The two 
theories have been implemented for 600 scenarios, in particular, 20 masses and 
30 diameters. 

However, more sophisticated theories have been implemented, such as the Vortex 
Theory, which has been adapted to the Blade Element Theory. With the vortex 
theory, it is possible to obtain the circuitry in optimal condition through the Glauert 
parameter (G) and the velocity field components. 

Subsequently, having chosen a profile with high aerodynamic performances on the 
base of the Reynolds number obtained, the geometries of the two propellers were 
determined by the Blade Element Theory. 

By applying the linearized theory of the actuator disk, the axial velocity was 
obtained for a flow tube of a given size.  

It is necessary to validate the study done with: 

• Perform CFD analysis on the propellers for vertical take-off 
• Perform CFD analysis on the driving propeller 
• Check how the front propellers act on the rear 
• Check out the motion field produced by the propellers for vertical take-

off on the driving propeller 
• Check how the body of the drone changes the range of motion of the 

propellers 
• Of course, the analyzes must be conducted considering a real flow and 

compressibility, which reduces the aerodynamic characteristics. 
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Sitography 
https://www.apcprop.com/technical-information/performance-data/ 

https://m-selig.ae.illinois.edu/props/propDB.html 
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