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ABSTRACT  
In the recent years the automotive industry is in a revolution towards the electrified and 

intelligence mobility. The autonomous driving, which is the possible solution for the traffic 

congestion, accidents, and emission issues, is quickly becoming one of the hottest topics in the 

automotive field. However, the technology is still not mature enough for commercialization due 

to several technical challenges. The trajectory planning is one of them. Many researches 

regarding the trajectory planning have already been developed in the robotic field, however 

when it comes to the automotive field, it becomes extremely challenging due to the critical 

requirements on the system’s real-time performance and on the trajectory generation with multi-

objective optimization(Collision avoidance, occupant’s comfort, fuel economy, etc). The two 

targets are usually contradictory since the planning algorithms with better optimization 

performance will degrade the real-time performance. In this thesis an approach is proposed to 

solve this problem. First an off-line optimization based on Dynamic Programming method is 

implemented on a Hybrid Electric Vehicle to obtain the optimum control sequence considering 

multi-optimization targets. Then a rule-based planner is established based on the results of the 

off-line optimization to realize the real-time application. Finally, the results obtained from 

different algorithm are compared (PID, MPC, Polynomial, DP, rule-based) and it proved that 

this approach could be a feasible solution for the contradictory requirements on real-time and 

optimality of the trajectory planning algorithm. 
 

 
Key words: Trajectory planning, Multi-Objective Optimization, Hybrid Electric Vehicle, 

Dynamic Programming, Rule-based planner 
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Chapter 1 Introduction 

1.1 Introduction: Autonomous driving technology 
Since the 1970s, the research on the autonomous driving technology began in 

countries such as the United States, Germany, etc. In 1984 the Carnegie Mellon 

University launched the Autonomous land vehicle project intended to build vision 

and intelligence for an autonomous vehicle[1]. In 2004, the United States Defence 

Advanced Research Projects Agency organized the DARPA Grand Challenge pushed 

the development of the autonomous driving technology[2]. In the recent decades with 

the revolution towards the intelligent mobility and electrified vehicles in the 

automotive industry. The autonomous driving technology is becoming one of the 

hottest topics nowadays. On May 7, 2019 GM Cruise Secures $1.15 billion of 

additional investment from T.Rowe Price, SoftBank Vision Fund, and Honda, 

Increasing its post-money valuation to $19 billion[3]. Ford claimed to have fully 

autonomous vehicle in commercial operation by 2021[4]. There are no doubts that 

the autonomous driving technology is becoming one of the most intensive research 

and development fields in the automotive industry. 

There are several reasons why the autonomous driving technology is drawing 

such attention. First the autonomous driving technology can achieve a better fuel 

economy. The research of Taiebat shows that the automated vehicle can reduce the 

fuel consumption by optimizing the driving cycle[5]. According to Payre and Luettel, 

the autonomous driving cars can achieve a remarkable improvement on fuel economy 

through the optimization of the highway driving[6]-[7]. It would achieve 20%-30% 

fuel economy reduction implementing the platoon driving[8]. For instance, Volvo 

successfully realized partially automated highway platooning exploiting Cooperative 

Adaptive Cruise Control in California (CACC). Thanks to the V2V communication, 

it’s possible to have only one driver in the lead truck and realize the braking of all 

the vehicles at the same time. It enables vehicles to follow closer, not only reducing 

the aerodynamic drag, but also allows better highway utilization. 
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Second, it’s also beneficial for the overall social benefits. A study from INRIX 

revealed that Americans lost 97 hours a year due to congestion causing nearly $87 

billion in 2018, which is an average of $1,348 per driver. The autonomous driving 

might be the possible solution. Ross pointed out that the autonomous driving can 

reduce the required cars to 15% of the current amount[9] and decline 25% percent of 

the of the current parking space[10]. Also, the idea of car-sharing service could 

possible reduce the number of vehicles needed and reduce the congestion. 

Third the autonomous driving could be an ideal solution for the traffic accidents. 

World Health Organization reported that vehicle crashes kill more than 1.35 million 

people worldwide each year. While National Highway Traffic Safety Administration 

reported that the root of more than 90 percent of all crashes are caused by human 

error. According to AASHTO (American Association of States Highway and 

Transportation Officials), in 2006 16,000 serious lane departure accidents occured 

causing in total 25,082 death[11]. While the Lane Keeping Assisted System (LKAS) 

can effectively reduce the probability of the lane departure accidents and reduce the 

cost causing by the accidents[12]. The vehicles equipped with standard Automatic 

Emergency Braking (AEB) can achieve a reduction of striking rear-end crashed in 

50km/h around 55%[13]. The advantages of autonomous driving system in reducing 

accidents are obvious. The processer could achieve a responding time faster than the 

human brain in several orders of magnitude, which could avoid or reduce the severity 

of accidents in conditions where emergency maneuver is needed. For example, the 

system could start to brake as soon as an emergency braking maneuver is required. 

And the stop distance is drastically reduced compared with the human driver. Also, 

the combination of sensors can achieve a perception ability much better than human. 

For instance, the radar is less influence by the weather. Thus, in critical conditions 

like fog or rain, the radar can perceive the obstacle in front which are not visible for 

human eyes. Theoretical speaking, the autonomous driving system has the potential 

to achieve much better performance in terms of safety. 



7 
 

However, the autonomous driving technology still has many challenges, making it 

difficult for commercialization. Some researchers pointed out that the autonomous 

vehicle will increase the difficulty for the courts, regulators, public to identify the 

responsibility of an accident involving a robot car[14] and cause serious legislation 

and insurance challenges[15]-[16]. Second, the high cost of the AV platform is 

another hinder for large-scale market adoption. For instance, Shchetko notes that the 

Light Detection and Ranging(LIDAR) systems might cost up to $85,000 each[17]. 

With large scale production, it’s possible to reduce the cost of AV platform. Velodyne, 

one of the largest supplier for the Lidar, launched a $4,000 cost reduction for its most 

popular lidar sensor, the VLP-16 Puck thanks to its new megafactory in San Jose. 

While its original price was $8,000 when it first went on sale in 2016[18]. However, 

the current cost of the AV technology is still far to the customer’s expectation. A 

survey from J.D. Power and Associates found that 37% of the persons would 

purchase a vehicle equipped with autonomous driving capabilities in their next 

vehicle. Though after being asked to assume an additional $3000 purchase cost, this 

share dropped to 20%[19]. Thus, further research and development is needed in order 

to cut down AV’s technology cost. Third, security is another challenge for the 

connected and automated vehicles. In 2015, fellow white-hat hackers Charlie Miller 

and Chris Valasek remote hacked a Jeep. They managed to control the steering and 

even disable the brake[20]. Different attacks are also possible from the 

communication channel as well as sensor tampering of a connected vehicle[21]. Thus, 

it’s necessary that the automotive manufacturer take a series of countermeasures to 

guarantee the cyber security of the connected vehicles. 

In general, autonomous driving is a technology with huge potentials. It might be the 

solution for the safety, fuel economy, traffic congestion problems. However, further 

research effort is needed in the autonomous driving field to solve the current 

challenges. 

1.1.1 Autonomous driving system structure  
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Generally, the autonomous driving system can be divided into three layers. The 

perception layer, the decision-making layer and the control layer. Shown as follows, 

 

Figure 1 Autonomous driving system structure 

In the autonomous driving system, the environment information is gathered by the 

sensors. Typical sensors that autonomous vehicle equipped are camera, Radar(Radio 

Detection and Ranging), Lidar(Light Detection and Ranging), IMU(Inertia 

measurement unit), GPS(Global positioning system). Each sensor has its own 

advantages and disadvantages. 

The function of the perception layer is to process the signals from the sensors (Radar, 

lidar, camera, GPS, IMU) and generate reliable information of the environment for 

the decision-making layer. For example, classifies the obstacle, monitors the road 

lane, identifies the traffic signals, etc. The technologies used in this layer includes 

image processing, sensor fusion, object tracking, environment modeling, 

simultaneous localization and mapping (SLAM) etc. 

Then the decision-making layer will decide the behavior of the vehicle. The decisions 

can be divided into behavior planning, path planning, trajectory planning. The 

behavior planning layer will decide the current behavior of the vehicle according to 

the information from the perception layer. A common approach is the Finite State 

Machine method. For instance, for a Lane Keep Assist system, if the steering wheel 

torque sensor receive a large torque indicating the driver is willing to control the 
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vehicle, then the lane keep assist system will enter the Off state to avoid interference 

with the driver. Once the behavior planning layer decide the maneuver task the 

vehicle need to perform, the trajectory planning layer will generate the corresponding 

trajectory to achieve the task. This paper focus on the trajectory planning layer, thus 

it will be introduced in detail in the next chapter. 

Once the decision-making layer generated the target trajectory. The control layer will 

generate the throttle, brake pedal, and steering wheel commands so the vehicle could 

follow the target trajectory. During the trajectory generation vehicle dynamic 

constraints should be considered. The trajectory should be smooth enough so the 

vehicle can follow. Second a path tracking controller need to be properly designed. 

Different types of tracking algorithm are implemented, such as PID(proportional- 

integral-derivative), MPC(Model-predictive-controller), fuzzy controller, etc. A 

typical controller is the PID controller which is a negative feedback controller. The 

control signal is based on the error between the target trajectory from the decision-

making layer and the actual trajectory obtained from the perception layer. At each 

time instant the PID controller sends control signals to the Electric Power Steering 

controller or the throttle/brake controller, which will adjust the vehicle’s current 

position. Then the vehicle current trajectory will be captured by the sensors, 

processed by the perception layer and then used to calculate the path error in the next 

control iteration. Other control algorithms like Model Predictive Control are also 

used, but there's always a trade-off between performance and computational time. 

Thus, the PID controller is still popular for its computational efficiency and 

robustness. 

1.1.2 SAE levels 
In order to define the level of automation, the Society of Automotive Engineer(SAE) 

formulate the standard in SAE J3016: Taxonomy and Definitions for Terms Related 

to Driving Automation Systems for On-Road Motor Vehicles[22]. It's shown as 

follow in table 1. 
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Table 1 SAE levels 

 

In the table the OEDR(Object and event detection and response) means monitoring 

the driving environment and executing an appropriate response to such objects and 

events. For example, the vehicle should be able to detect the pedestrian suddenly 

crossing the road the brake the vehicle to avoid collision. While the DDT(dynamic 

L  

Desccription 

Longitudinal 

and lateral 

vehicle 

motion 

control 

Object 

and 

event 

detection 

and 

response 

Dynamic 

driving 

task 

fallback 

Operational 

design 

domain 

0 Driver perform the entire 

DDT 
Driver Driver Driver N/A 

 

1 

The system performs partially 

the longitudinal and lateral 

vehicle motion 

control(ex.Adaptive cruise 

control, lane keeping assist)  

 

Driver and 

system 

 

Driver 

 

Driver 

 

Limited 

2 The system performs the 

longitudinal/lateral vehicle 

motion control at the same 

time 

 

System 

 

Driver 

 

Driver 

 

Limited 

3 The system performs the 

whole DDT, the DDT 

fallback is on the driver 

System System Driver Limited 

4 The system performs the 

whole DDT, and the DDT 

fallback as well 

System System System Limited 

5 Full driving automation System System System Unlimited 
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driving task) includes the longitudinal and lateral motion control and the OEDR as 

well. The DDT fallback means the response when a DDT relevant system failure 

occur. For example, for Level 3 system the DDT fallback is on the driver, which 

means if a DDT relevant failure occurs, the system should warn the driver and the 

driver is responsible for taking control of the vehicle. While the Level 4 system the 

DDT fallback is on the system, which means the system itself has the ability to handle 

the DDT relevant failure and the driver is not responsible to handle the system failure. 

Thus, the level 4 automation has critical requirements on the reliability and 

robustness of the system. The typical solution includes increasing the 

redundancy(exploits more sensors) or use more expensive sensor(Lidar). However, 

either way will increase the cost of the system which is a challenge of the current 

technologies. K.P. Divakarla proposed an intermediate level 3.5 between level 3 

automation and level 4 automation[23]. For the level 3.5 automation the primary 

DDT fall back is on the driver, if the driver failed to take control of the vehicle then 

the secondary DDT fall back is on the system. It's a smart solution for the potential 

risks of the level 3 automation since it's risky to ask the driver to control and release 

control of the vehicle frequently. Finally the ODD(Operational design domain) 

means the driving automation function designed operating condition. For the level 4 

automation the vehicle can only drive autonomously in a certain region, while the 

level 5 automation the vehicle doesn't have this restriction. 

1.2 Motion planning 
1.2.1 Motion planning introduction 
The main work of this thesis focused on the motion planning layer. In this chapter 

the current technologies of the motion planning are introduced. Planning means the 

decisions the autonomous vehicle made in order to travel from a certain starting point 

to a certain destination. The self-driving vehicle should avoid the obstacle while at 

the same time optimize the trajectory to achieve safety, comfort, fuel efficiency, 

maneuver efficiency, etc. The trajectory is generated based on the environment 
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information obtained from the perception layer, and the generated trajectory is used 

as the reference path for the path tracking layer. 

Usually the motion planning is divided into global and local planning. Global 

planning focuses on planning the shortest path from starting point A to destination 

point B. An example is the google map. It's not necessary to plan the speed trajectory 

in the global planning. While for the local planning the planner will generate an exact 

trajectory the vehicle will follow during the maneuver, for example the trajectory of 

lane changing, overtaking, emergency collision avoidance, etc. In the local planning 

not only the path trajectory but also the speed trajectory is determined. The factors 

that influence the trajectory includes collision avoidance, occupant's comfort, fuel 

efficiency, etc. 

 

1.2.2 Motion planning State-of-the-art 
Usually the most commonly used motion planning techniques can be divided into the 

following groups: graph search, sampling based, interpolating curves. 

Graph search planners: The map which contains the starting point and destination 

is first discretized into lattice. Then the graph search algorithm will traverse the 

lattice from the starting point till the destination. Finally the cost is summarized and 

the best the path is the path with the lowest cost(For example minimum distance). 

Some typical graph search-based planners are introduced as follows. 

Dijkstra Algorithm: The Dijkstra algorithm was forward by Dutch computer scientist 

Edsger W. Dijkstra in 1959[24]. The algorithm is widely used in finding the shortest 

path from the starting point A to the destination B. A simple example is shown in 

Figure 1. 

 

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
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Figure 2 Dijkstra's algorithm example[25] 

The nodes can be classified into unvisited set and visited set. The edge weights 

between each node are already known. At the beginning all the nodes are in the 

unvisited set, and the node's value are infinite.  

First the starting node a will be add to the visited set and removed from the unvisited 

set. Since the distance of the starting node is 0, which is lower than infinite, thus the 

node value will be assigned as 0. 

Next the values of the nodes close to node A are evaluated. If the cost is lower than 

the value of the node, then the node's value will be assigned as the total cost to reach 

that node. After that the node with the lowest value will be selected as the next current 

node and it will be added into the visited set and removed from the unvisited set. 

In general, the basic idea of Dijkstra is that: the optimum solution of the partial path 

is independent from and will be part of the optimum solution of the whole path. For 

example, if the shortest path form node 1 to node 6 is 1->6 rather than 1->3->6, then 

in the final solution if the path starts from node 6, the previous path before 6 must be 

from 1->6. It tries to find the global optimum with the help of the local optimum. 

However, the searching space of Dijkstra algorithm is large. Since the information of 

the destination is not used so the search process is quite inefficient. In order to solve 

this problem, the A* algorithm is forwarded. 

A* Algorithm: The A* algorithm is the extension of Dijkstra's algorithm, thanks to 

the implementation of the heuristics, it reduces the calculation time compared with 

Dijkstra's algorithm. The main equation is shown as follows, 
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f(n)=g(n)+h(n) 

In this equation n means node n, while g(n) is the actual cost from the original node 

to the node n, h(n) is the estimation of the optimum cost from node n to the destination 

node, f(n) is the estimation cost from the initial node to node n. The searching process 

is similar to Dijkstra's algorithm. The difference is that for Dijkstra's algorithm the 

next node gets explored is the node with the minimum actual cost while for A* the 

next node gets explored is the node with the minimum estimated cost, which is the 

sum of actual cost from initial node to node n and the estimation cost from node n to 

the destination. A simple example is that the estimated cost h(0) is the distance 

between node n and destination node. Then the estimation cost will penalize the node 

farther from the destination and thus the node closer to the destination are likely to 

get explored. The searching process is more target orientated and the searching time 

is reduced. 

State Lattice Algorithm: Since the vehicle is a non-holonomic robot which means it's 

still under a certain constraint for example it cannot have translate movement 

perpendicular to the vehicle heading position. Thus, we should consider the dynamic 

constraints in the motion planning phase. M. Pivtoraiko proposed a novel approach 

to constrained path planning in 2005[26]. The planning space is a grid of hyper-

dimensional states. For instance apart from the translational coordinates(x,y), the 

searching states also include the information of vehicle heading 𝜃  and the 

curvature 𝜅. The problem can be described as finding the optimum solution from the 

initial set of states to the final set of states shown as follows, 

[xi, yi, 𝜃i, 𝜅i] → [xf, yf, 𝜃f, 𝜅f] 

By implementing the state constraints, for example the limit variation rate of the 

heading 𝜃, only a few states can be reached starting from the current states. Then 

vehicle dynamic constraints can also be considered and it's possible to make sure the 

generated trajectory is smooth enough which can be followed by the vehicle. It's also 

possible to implement a cost function to evaluate the cost of the path between each 

state. By evaluating the total cost it's possible to find the trajectory with minimum 
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cost which is the optimum trajectory. Also, it's possible to implement the searching 

algorithm we described before in the state lattice. For example, M. Rufli and R. Y. 

Siegwart implemented the d* search algorithm to time-based planning on lattice 

graph[27]. 

Sampling Based Planners: Generally speaking, the graph-based search first 

discretizes the configuration space, next connect the adjacent lattice with edge based 

on a certain optimum path searching algorithm. However, with increasing the number 

of the state variables the searching space will increase exponentially, thus the graph 

searching process will take too long time. Sampling based planner is a possible 

solution since a random lattice is picked instead of the adjacent lattice. 

Probabilistic Roadmap: The probabilistic roadmap method is proposed by L. E. 

Kavraki, P. Svestka in 1996[28], which then became the most popular path planning 

algorithm in the robotics field. The process is shown in the following figure. This 

method includes two phases, the first phase is to construct the roadmap. According 

to the map, several lattices are randomly selected and then connected to the closest 

lattice. To choose the closest lattice a distance function is implemented as follows, 

D=√(𝛴𝑖(𝑝𝑖 − 𝑞𝑖)2) 

In which 𝑝𝑖 and 𝑞𝑖 are the i-th state of the state lattice p and q. Then the lattice with 

the shortest distance are selected as the next lattice to be connected. While to connect 

the new lattice with the closest lattice a local deterministic planner is used. A common 

way of the local planner is to select a set of lattices evenly distributed on the straight 

line between the two lattices to be connected. Then a collision check function is used 

to check whether there is an obstacle on this path. If there is no obstacle on this path, 

then the two lattices are connected. This procedure will be repeated for several times 

until the map is dense enough. Once the path network is generated, the designated 

starting point and destination are added into the graph and connected to the existed 

network, then a certain graph-based searching algorithm(ex.Dijkstra) is implemented 

to find the optimum path between the starting point and the destination, this phase is 
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called the query phase. The advantage of probabilistic roadmap searching method is 

that it's faster to find the possible path between the starting point and the destination 

since it doesn't search all the adjacent lattice of the previous lattice, also the cost of 

constructing the roadmap can be amortized by running multiple queries. Thus, the 

probabilistic roadmap method is quite suitable for operating robot in the same 

environment. The disadvantage is that it cannot guarantee to find the optimum path. 

 

Figure 3 Probabilistic Roadmap trajectory planning algorithm [28] 

Rapidly exploring Random Tree: In 2001 S. M. LaValle and J. J. Kuffner proposed 

the rapidly exploring random tree method [30]. Similar as probabilistic roadmap, first 

a random lattice is selected in the configuration space which is called seed. Instead 

of connecting the new lattice with the nearest lattice, a path will be extended from 

the existed lattice towards the new lattice for a pre-defined length, the end lattice of 

this path is called a child node, then this node is added onto the tree. The RRT method 

encourages to extend the path to cover the whole searching space in a short time. 

However, it's difficult to find the optimum path from the initial point to the 

destination.  

RRT*: Based on RRT, RRT* method is proposed by S.Karaman[31]. This method 

could solve the problem introduced above. First a lattice is randomly selected from 
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the configuration space like RRT. Then instead the new child node is generated like 

RRT. Then each one of the nodes laid within a neighborhood of the newly added 

child is inspected. If the cost from the root to one of these nodes is lower, then this 

node will be the parent of the newly added child node. Thus, the path generated by 

RRT* will be much smoother since the algorithm tries to optimize the tree branches 

in each simulation step. However due to the reconnection process, the computational 

resources needed by RRT* is also larger. In case the optimum path is not required, 

RRT might be a better solution. The searching results of RRT and RRT* are shown 

as follows, it's clear that the graph generated by RRT* is more organized than RRT. 

 

Figure 4 RRT RRT* comparison [32] 

 

Interpolating curve planners: Instead of planning the path between two lattices, 

this set of planners will generate a segment of trajectory with pre-defined function. 

The parameters of the function are then tuned to fit the constraints of the two lattices 

(For example to guarantee the continuity of the connecting point). According to the 

different interpolating function used, commonly used algorithm includes polynomial 

curves [33], Bézier Curves [34], Clothoid Curves[35], Spline Curves, etc. The 

interpolating curve planners have advantages of low computational cost, since the 

segment of the trajectory is defined once the two lattices are defined. However, it 

cannot guarantee that the trajectory is the optimum and it's less versatile for complex 

real driving scenario. And also, it can generate the trajectory only if the initial and 
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final condition are given, while it’s still necessary to find out the optimum final 

condition(displacement, velocity, acceleration, etc.) 

 

Chapter 2 Dynamic programming 

2.1 Dynamic programming introduction 
Dynamic programming is an effective tool introduced by American mathematician 

Richard Bellman in 1953[36]. It's an effective tool which guarantees to find the 

global optimum solution of a complex problem with multiple states, constraints, and 

control inputs. However, the computational complexity increases exponentially with 

increasing the number of the state variables. Thus, the DP method is not suitable for 

real-time application (For example real-time path planning algorithm). 

The dynamic programming function can be described by the following equations, 

�̇�(𝑡) = 𝐹(𝑥(𝑡), 𝑢(𝑡), 𝑡)     (1) 

                              𝑚𝑖𝑛 𝐽(𝑢(𝑡))      (2) 

                   𝐽(𝑢(𝑡)) = 𝐺 (𝑥(𝑡𝑓)) + ∫ 𝐻(𝑥(𝑡), 𝑢(𝑡), 𝑡)𝑑𝑡
𝑡𝑓
0

   (3) 

Equation(1) is the state update equation of the system, which means the states in the 

next time step is a function of the current states and the control input at the current 

time steps. While equation(2) shows the optimization goal, which is to find the best 

control serials u(t) to minimize the cost function J(u(t)). Equation (3) demonstrates 

that the cost function consists of two terms. The first term 𝐺 (𝑥(𝑡𝑓)) means the cost 

on the final states. While the second term represents the cost generated during each 

step. 

In order to describe the system, we also need to implement constraints shown as 

follows, 

                   𝑥(𝑡𝑓) ∈ [𝑥𝑓,𝑚𝑖𝑛, 𝑥𝑓,𝑚𝑎𝑥]    (4) 
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        𝑥(𝑡) ∈ [𝑥(𝑡)𝑚𝑖𝑛, 𝑥(𝑡)𝑚𝑎𝑥]    (5) 

      𝑢(𝑡) ∈ [𝑢(𝑡)𝑚𝑖𝑛, 𝑢(𝑡)𝑚𝑎𝑥]    (6) 

The equation(4) shows the states constraint on the final states, while equation(5) and 

(6) shows the constraints on states and control inputs at each time step. 

For the problems with the state constraints on its final states, some researchers 

proposed the concept of the backward-reachable space[42]. Only the states lay inside 

the backward reachable space could reach the final states within the constraints, thus 

it's unnecessary to investigate the states outside the backward reachable region. This 

way, not only the computational effort is reduced but also the numerical errors caused 

by the states outside the backward-reachable region is reduced. As shown in the 

following figure, starting from the final states at k=N, only part of the states in the 

previous time instance are reachable. 

 

Figure 5 DP backward reachable space [42] 

The backward evaluation process can be described as follows, 

      𝒥𝑁(𝑥𝑖) = 𝑔𝑁(𝑥𝑖) + 𝜙𝑁(𝑥𝑖)    (7) 

For k = N-1 to 0, 

    𝒥𝑘(𝑥
𝑖) = min {ℎ𝑘(𝑥

𝑖 , 𝑢𝑘) + 𝜙𝑘(𝑥
𝑖) + 𝒥𝑘+1 (𝐹𝑘(𝑥

𝑖 , 𝑢𝑘))}  
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 (8) 

The equation (7) is used to calculate the state cost on the final state while the equation 

(8) is the cost from states at step k to the final step N. The possible states of the 

previous step are evaluated from the final states within the constraints of the states 

and input. While the cost of each step is also evaluated backward from the final step. 

In equation (8) ℎ𝑘(𝑥
𝑖 , 𝑢𝑘) represents the cost of implement control 𝑢𝑘 on the i-th 

state at k-th step while 𝜙𝑘(𝑥𝑖) represents the cost of constraints on i-th state at k-th 

step. Finally, the term 𝒥𝑘+1(𝐹𝑘(𝑥
𝑖, 𝑢𝑘)) is the summation of the cost from the final 

step back to the k+1-th step. Once 𝒥𝑘+1(𝐹𝑘(𝑥
𝑖 , 𝑢𝑘))  is calculated and stored, at 

each step we only need to calculate the cost at each step. 

2.2 Dynamic programming application 
Dynamic programming is a powerful tool to find the optimum solution of complex 

problem with multi-constraints on states and multi input. A typical example is the 

famous Lotka-Volterra fishery problem[39]. At the beginning a certain amount of 

fishes n0 are in the lake. Everyday uk amount of fish is caught from the lake. The 

relationship between the variation of the amount of fish and fishing volume is a non-

linear function shown as follows in equation (9), then the amount of fish inside the 

lake in the k+1 time step can be described using equation (10), which in a general 

sense is considered as the state update equation, 

                       𝑓(𝑥𝑘, 𝑢𝑘) = 𝑇𝑆 ∙ (
2

100
∙ (𝑥𝑘 −

𝑥𝑘
2

1000
) − 𝑢𝑘)   (9) 

                              𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘) + 𝑥𝑘     (10) 

Then the dynamic programming method can be used to determine a control serial uk 

at each day so that we've got the maximum total fishing volume. This target can be 

described by the objective function shown as follows in equation (11) 

                           𝑚𝑖𝑛 ∑ −𝑢𝑘 ∙ 𝑇𝑠
𝑁−1
𝑘=0      (11) 
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Another example is using DP to calculate the best torque split ratio control for the 

hybrid electric vehicle under given driving scenario to achieve the minimum fuel 

mass flow[40]-[41]. The state-of-charge (SOC) is the only state variable denoted as 

xk. The longitudinal powertrain is modeled including the engine, electric motor, 

battery, vehicle longitudinal model, etc. With a given driving cycle (For example 

Japanese 10-15 driving cycle, NEDC), the operational condition of the vehicle is pre-

defined. For example, the vehicle longitudinal speed vk, longitudinal acceleration ak, 

gear ratio ik at each step k are known. Then the state update equation is shown in 

equation(12) shown as follows, 

                     xk+1=f(xk, uk, vk, ak, ik)+xk    (12) 

Then the optimization target is expressed in equation (13), aiming to find the best 

power split ratio control serial to minimize the fuel mass consumption. 

           J=∑ ∆𝑚𝑓(𝑢𝑘, 𝑘) ∙ 𝑇𝑠
𝑁−1
𝑘=0     (13) 

In general, the characteristic of these two examples are: both of them are off-line 

optimization with future operation condition, disturbances already known, the 

computation time is quite long and not suitable for on-line application. They could 

find the global optimal control serial with the optimization target which can be used 

as a benchmark for other real-time controllers. 
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Chapter 3 Implementation: off-line optimization 

3.1 Off-line optimization introduction 
Since the dynamic programming method is used to find the global optimum solution 

for a complex multi-constraint, multi-control input problem. Many studies have 

already been done regarding the single state problem (For example fishery problem, 

power split ratio control to achieve the optimum fuel efficiency). P. Elbert and S. 

Ebbesen proposed the level-set dynamic programming method which is possible to 

solve the optimization problem accurately with n-dimension in an acceptable amount 

of time[42]. 

The trajectory planning problem can be also considered as a multi-states optimization 

problem with constraints on states at each step and on the final step, and with multiple 

optimization targets(For example maneuver efficiency, comfort, fuel economy, etc.) 

However, it's not feasible to implement this method due to the computational 

complexity as the trajectory planning algorithm which has strict real-time 

requirements.  

In this chapter, the trajectory planning problem is abstracted into a multiple-states, 

multiple constraints optimization problem and the feasibility to implement the DP 

method in the trajectory planning is verified. The approach contains three steps, first 

a constant speed overtaking scenario is investigated to verify the collision avoidance 

ability of the algorithm. Next the longitudinal speed variation is also considered to 

study the overtaking efficiency and longitudinal comfort of the ego vehicle. Finally, 

an Adaptive Cruise Control scenario is studied and the longitudinal powertrain of the 

vehicle is also included and the fuel economy is also considered as the optimization 

objective. 

Next in Chapter 4 other common algorithms including PID, MPC, polynomial are 

also established for the same given scenario to compare the performance of the DP-
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offline simulation algorithm. 

All these optimization problems are solved off-line which requires a long 

computational time, then in the next chapter a method is proposed to realize the real-

time implementation. 

 

3.2 DP implementation for overtaking scenario 
3.2.1 Driving scenario introduction 
First a simple overtaking scenario is investigated to study the obstacle avoidance 

ability of the trajectory planning algorithm using dynamic programming method. The 

driving scenario is shown as follows in figure 6. 

 

Figure 6 Obstacle avoidance scenario 

 

The ego vehicle is travelling on a road with constant vehicle speed, and at this stage 

the speed variation of the ego vehicle is not considered. The static obstacle in front 

of the ego vehicle is in the same road lane with a certain initial distance. The initial 

and final position of the ego vehicle are known. The dash lane indicates the limit 

position of the ego vehicle for collision avoidance. The target of the ego vehicle is to 
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perform a double-lane change maneuver to overtaking the obstacle in front and go 

back to the center of its original road lane. 

3.2.2 Vehicle lateral dynamic model 
In the first approach, in order to guarantee that the trajectory generated can be tracked 

by the vehicle, a 2 d-o-f vehicle lateral dynamic model is considered during the 

trajectory planning phase. 

Since in the highway overtaking scenario, the tire's side-slip angle (The angle 

between the speed of the tire and the equatorial plane of the tire) is large and thus the 

bicycle model is no longer suitable to describe the vehicle lateral dynamics. Thus, 

the two degree of freedom model is introduced as follows. 

Following figure shows the reference frame of the vehicle. The global reference 

frame XY is a inertial reference frame which is fixed. While the local reference frame 

x-y is a non-inertial reference frame move with the vehicle. Thus, the inertial forces 

should be considered during establishing the dynamic equation in the x-y reference 

frame. 

 

Figure 7 Reference frames in vehicle lateral model[54] 

 

The dynamic equations considering the longitudinal/lateral acceleration and yaw 

moment are established as follows, 
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          𝐹𝑥 = 𝑚(�̇� − 𝑟 ∙ 𝑣)       (14) 

          𝐹𝑦 = 𝑚(�̇� + 𝑟 ∙ 𝑢)       (15) 

              𝑀𝑧 = 𝐽𝑧 ∙ �̇�       (16) 

In this equation u, v represent the longitudinal and lateral vehicle speed along the 

local reference frame x and y direction. While r is the yaw rate of the vehicle. 

In high speed scenario the lateral force exerted by the tire is proportional to the side 

slip angle, the equations of the lateral force are shown as follows, 

             𝐹𝑦𝑓 = −𝐶𝑓 ∙ 𝛼𝑓     (17) 

             𝐹𝑦𝑟 = −𝐶𝑟 ∙ 𝛼𝑟     (18) 

The parameters all indicated is shown in the following figure, 𝐶𝑓 and 𝐶𝑓 are the 

cornering stiffness of the front and rear tires.  

Given the side slip angle 𝛽 and the yaw rate �̇�. It’s possible to estimate the side-

slip angle of the tire 𝜶[54], which is necessary to estimate the self-aligning torque 

of the tire. The geometric relationship between the front wheel center and the 

vehicle gravity center is reported as, 

 

Figure 8 Front tire center vehicle gravity center relationship[54] 

where, 
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 𝑋𝑌 − global reference frame 

 𝑥𝑦 − vehicle local reference frame 

 𝐺 − vehicle gravity center 

 𝑃𝑖 − wheel ground contact center of i-th wheel 

 𝑥𝑖 , 𝑦𝑖 − coordinate of the wheel center in the local reference frame(m) 

 𝑉 − vehicle speed(m/s) 

 𝑢 − vehicle center velocity component in longitudinal direction(m/s) 

 𝑣 − vehicle center velocity component in lateral direction(m/s) 

 𝑉𝑖 − speed of i-th wheel(m/s) 

 𝑢𝑖 − vehicle center velocity component in longitudinal direction(m/s) 

 𝑣𝑖 − vehicle center velocity component in lateral direction(m/s) 

 𝛽 − vehicle side slip angle(rad) 

 𝛽𝑖 − angle between 𝑣𝑖 and x axis 

 𝛼𝑖 − side slip angle of i-th wheel(rad) 

 𝛿𝑖 − steering angle of i-th wheel(rad) 

Given the vehicle speed V, side slip angle 𝛽, and yaw rate �̇�, the velocity of the 

contact area of the i-th wheel, is 

      𝑉𝑃𝑖
⃗⃗⃗⃗  ⃗ = 𝑉𝐺

⃗⃗⃗⃗ + �̇�Λ(𝑃𝑖 − 𝐺)̅̅ ̅̅ ̅̅ ̅̅ ̅̅      (19) 

The velocity component of the i-th tire is, 

      𝑣𝑖 = 𝑣 + �̇�𝑥𝑖      (20) 
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      𝑢𝑖 = 𝑢 − �̇�𝑦𝑖      (21) 

The angle of the i-the tire 𝛽
𝑖
 is, 

     𝛽𝑖  = arctan (
𝑣𝑖

𝑢𝑖
) = arctan (

𝑣+�̇�𝑥𝑖

𝑢−�̇�𝑦𝑖
)   (22)  

Since the term �̇�𝑦
𝑖
 is smaller than the vehicle longitudinal speed 𝑢 in the order of 

magnitude, and 𝛽
𝑖
 is a relatively small angle. The equation can be simplified as, 

      𝛽𝑖  =
𝑣+�̇�𝑥𝑖

𝑢
= 𝛽 +

�̇�𝑥𝑖

𝑢
     (23)  

Finally, the side slip angle of i-th wheel is, 

     𝛼𝑖  = 𝛽𝑖 − 𝛿𝑖 = 𝛽 +
�̇�𝑥𝑖

𝑢
− 𝛿𝑖     (24)  

where 𝑥𝑖 is the front axle distance a and under the estimation of (25) it’s possible 

to rewrite equation (24) in the form of equation (26), 

      𝑢 = 𝑉𝑐𝑜𝑠𝛽 ≈ 𝑉      (25)  

     𝛼𝑖  = 𝛽𝑖 − 𝛿𝑖 = 𝛽 +
�̇�

𝑉
∙ 𝑎 − 𝛿𝑖    (26) 

Finally, the two degree of freedom lateral dynamic model is obtained.  

                 𝑚𝑉(�̇� + 𝑟) = −𝐶𝑓 ∙ (𝛽 +
𝑙𝑓∙𝑟

𝑉
− 𝛿)−𝐶𝑟 ∙ (𝛽 −

𝑙𝑟∙𝑟

𝑉
)  (27) 

          𝐽𝑧 ∙ �̇� = −𝐶𝑓 ∙ 𝑙𝑓 ∙ (𝛽 +
𝑙𝑓∙𝑟

𝑉
− 𝛿)−𝐶𝑟 ∙ 𝑙𝑟 ∙ (𝛽 −

𝑙𝑟∙𝑟

𝑉
)  (28) 

Finally the state space equation can be derived from equation (27) and (28) shown in 

equation (29), 𝛿 is the steering wheel angle which is the control input of the system 

while 𝛽 and 𝑟 are the vehicle's side slip angle and yaw rate which are the states of 

the system. 
 

                  (�̇�
�̇�
) = [

−
𝐶1+𝐶2

𝑚𝑉

𝐶2𝑏−𝐶1𝑎

𝑚𝑉2
− 1

𝐶2𝑏−𝐶1𝑎

𝐽𝑧
−

𝐶1𝑎2+𝐶2𝑏2

𝐽𝑧𝑉

] (
𝛽
𝑟
) + [

𝐶1

𝑚𝑉
𝐶1𝑎

𝐽𝑧

] (𝛿)   (29) 
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3.2.3 Dynamic programming method implementation (Constant speed 

scenario) 

Under the assumption that the longitudinal speed is constant, the longitudinal 

position of the vehicle at each time instant is known thus it's not necessary to 

introduce one state variable to track the longitudinal displacement. While it's 

necessary to track the lateral displacement since the vehicle should change the road 

lane and avoid the obstacle. In order to guarantee the trajectory generated can be 

tracked by the vehicle the vehicle lateral dynamic model is also considered during 

the trajectory planning phase. 
Since in highway driving scenario the side slip angle β is small. Thus, the following 

assumption is established, 

                          𝑉𝑥 = 𝑉 ∙ 𝑐𝑜𝑠𝛽 ≈ 𝑉     (30) 

                          𝑉𝑦 = 𝑉 ∙ 𝑠𝑖𝑛𝛽 ≈ 𝑉𝛽     (31) 

The state space equation is shown as follows, the state variables are side slip angle 

β, yaw rate r, lateral displacement Y. The control input is the steering wheel angle at 

the front wheel δ. k stands for the state variables at k-th simulation step.  

           (
𝛽�̇�

𝑟�̇�
𝑌�̇�

) =

[
 
 
 −

𝐶1+𝐶2

𝑚𝑉

𝐶2𝑏−𝐶1𝑎

𝑚𝑉2 − 1 0

𝐶2𝑏−𝐶1𝑎

𝐽𝑧
−

𝐶1𝑎2+𝐶2𝑏2

𝐽𝑧𝑉
0

𝑉 0 0]
 
 
 
(
𝛽𝑘

𝑟𝑘
𝑌𝑘

) + [

𝐶1

𝑚𝑉
𝐶1𝑎

𝐽𝑧

0

] (𝛿𝑘)     (32) 

Thus, the state update equation is shown as follows, 

𝛽𝑘+1 = 𝛽𝑘 + 𝛽�̇� ∙ ∆𝑇 

𝑟𝑘+1 = 𝑟𝑘 + 𝑟�̇� ∙ ∆𝑇     (33) 

𝑌𝑘+1 = 𝑌𝑘 + 𝑌�̇� ∙ ∆𝑇 

Since the dynamic programming method is a numerical optimization process, the 

problem, the state variables and the control inputs should be properly discretized. 

The problem time length is set as T, the discretization number is set as N, thus the 
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time step can be derived as follows, 

                                   ∆𝑇 =
𝑇

𝑁
        (34)    

While the state constraints for each state at each time instant and the final time instant 

should be properly selected, as well as the constraints on the control input, 

                            𝑥(𝑡) ∈ [𝑥𝑚𝑖𝑛(𝑡), 𝑥𝑚𝑎𝑥(𝑡)]     (35) 

                         𝑥(𝑡𝑓) ∈ [𝑥𝑓,𝑚𝑖𝑛, 𝑥𝑓,𝑚𝑎𝑥]      (36) 

                          𝑢(𝑡) ∈ [𝑢𝑚𝑖𝑛(𝑡), 𝑢𝑚𝑎𝑥(𝑡)]     (37)    

In order to describe the obstacle in front of the ego vehicle, a time variant 

constraint is implemented for the lateral displacement state variable. The 

following constraints on state Y described that when the longitudinal 

displacement of the ego vehicle X is close to the longitudinal position of the 

obstacle, the lateral displacement of the ego vehicle should be larger than the 

upper boundary of the obstacle in Y direction in order to avoid collision. 

             if X ∈ [0, Xobs)      Y ∈ [Ylower, Yupper]       (38) 

              if X ∈ [Xobs, Xobs + Lobs]    Y ∈ [Yobs,upper, Yupper]     (39) 

              if X ∈ (Xobs + Lobs, Xf]     Y ∈ [Ylower, Yupper]         (40) 

Finally, the cost function is specified as follows. Here ∆𝛽𝑘 is used to represent the 

optimization of the occupant's comfort and α1 is the weight coefficient of this term. 

                    C=α1 ∙ |∆𝛽𝑘| = α1 ∙ |𝛽�̇� ∙ ∆𝑇|    (41) 

 

3.2.4 Dynamic programming method implementation (Varied speed 

scenario) 

Many researches have been done regarding the trajectory planning in the lane change 

or overtaking scenario. Usually the longitudinal speed variation is not considered by 



30 
 

assuming a constant longitudinal speed of the ego vehicle. However, in actual 

scenario usually the driver will decide to accelerate the vehicle to reduce the 

overtaking time. Some studies consider the trajectory planning and speed planning 

as two separate problem. First the trajectory is generated without considering the 

vehicle speed. Then the speed trajectory is planned based on the existed vehicle path. 

For instance, the speed is planned on the s-t graph shown as follows, 

 

Figure 9 S-T graph for speed planning 

In this case the ego vehicle is travelling on a straight road, thus the generated path 

trajectory is a straight line. S stands for the station, which is the distance that the ego 

vehicle travelled along the path trajectory. While T stands for the time. In this 

scenario the white vehicle will occupy the path trajectory of ego vehicle between 

station S0 and S1 during time interval from t0 to t1, which is represented as the 

yellow region in the S-T graph. Thus, the speed planner of the ego vehicle should 

generate a speed trajectory avoid the yellow region. The result is the ego vehicle 

tends to accelerate and travel pass S1 before t0 to avoid the obstacle. 

Since the path trajectory is planned without considering the vehicle speed, the global 

optimum solution is not found. Matthew McNaughton and Chris Urmson proposed 

the spatiotemporal lattice planner which could consider the path trajectory and speed 

trajectory planning at the same time[43]. However, at each state lattice a set of 
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velocities are assigned in order to reduce the searching space. Then a secondary 

optimization process is implemented to find the best speed profile. The real-time 

application is guaranteed after reducing the searching space however it still cannot 

guarantee to find the global optimum solution.  

For scenario considering varied longitudinal speed, vehicle's position in the 

longitudinal direction is not known. Thus, additional states should be added into the 

state space to track the vehicle's longitudinal displacement. The longitudinal 

displacement X is added as an additional state variable. However, if only the 

longitudinal displacement is monitored and the longitudinal speed is considered as a 

control input, the algorithm might return solution jerky speed profile with large 

acceleration. Thus, it's also necessary to include the longitudinal speed Vx as another 

state variable and the longitudinal acceleration as a control input. By implementing 

the boundary limit on the longitudinal acceleration, we can guarantee the speed 

trajectory is smooth enough which is able to be followed by a vehicle. 

However, adding two more state variables will result a system with five state 

variables. It's critical to notice that the searching space and computational time 

increases exponentially with increasing the number of state variables. Five state 

variables might result a simulation time more than ten hours. Thus, it's important to 

avoid unnecessary state variables. In the first attempt, the vehicle dynamic model is 

considered during the trajectory generation phase to guarantee the trajectory can 

satisfy the vehicle dynamic. However, another possible solution is to generate a 

trajectory smooth enough in the planning phase without considering the vehicle 

dynamics, then a trajectory tracking algorithm and a vehicle dynamic model are 

developed to verify that the trajectory can be followed by a vehicle.  

Thus, in order to reduce the computational time, the vehicle dynamic model is not 

considered during the trajectory planning phase. The state variable yaw rate is 

cancelled and instead of the steering wheel angle, the variation rate of the side slip 

angle is the control input of the system. The state update equations are shown as 

follows, 
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𝑉𝑥,𝑘+1 = 𝑉𝑥,𝑘 + 𝑎𝑥,𝑘 ∙ ∆𝑇     (42) 

𝑋𝑘+1 = 𝑋𝑘 + 𝑉𝑥,𝑘 ∙ ∆𝑇      (43) 

𝛽𝑘+1 = 𝛽𝑘 + 𝛽�̇� ∙ ∆𝑇      (44) 

𝑌𝑘+1 = 𝑌𝑘 + 𝛽𝑘 ∙ 𝑉𝑥,𝑘 ∙ ∆𝑇     (45) 

Since now the it's able to control the longitudinal speed variation of the ego vehicle, 

thus the longitudinal comfort and overtaking efficiency can be considered as the cost 

term influencing the trajectory generated. The cost function is shown in the following 

equation, 

      C=𝛼1 ∙ |∆𝑌| + 𝛼2 ∙ |𝑎𝑥,𝑘| + 𝛼3 ∙ |𝛽�̇�|    (46) 

In the cost term |∆𝑌| represent the overtaking efficiency. As long as the vehicle is 

not back into the original road center this term will add cost, thus it encourages the 

vehicle to finish the overtaking maneuver faster. While the term |𝑎𝑥,𝑘|  is the 

longitudinal acceleration representing the longitudinal comfort. The term |𝛽�̇�|  is 

used to describe the lateral comfort. 𝛼1, 𝛼2 and 𝛼3 are the weight coefficients of 

each term. 

3.3 DP implementation for ACC scenario 
The trajectory planning considering the obstacle avoidance, lateral comfort and 

longitudinal comfort have been discussed in the previous chapter. However, for the 

real-time trajectory planner it's quite difficult to consider the fuel economy. In this 

chapter, the longitudinal powertrain model of a hybrid electric vehicle is established 

and the fuel consumption is taken into consideration as a influencing factor of the 

trajectory generation.  

3.3.1 Longitudinal powertrain modelling 

In order to consider the fuel economy, it's necessary to model the longitudinal 

powertrain so that the energy consumption at each vehicle operating condition can 
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be derived (Longitudinal speed, acceleration, gear number, etc.). The P0-P4 hybrid 

electric vehicle longitudinal powertrain of the McMaster University EcoCar 

competition team is selected as the reference in this research. The architecture of the 

powertrain is shown as, 

 

Figure 10 P0-P4 Hybrid electric powertrain 

The vehicle is equipped with a 1.5L turbo engine and a Belt Alternator Starter (BAS) 

directly connected with the engine shaft. The BAS will work in the electric motor 

mode and drive the engine crank shaft. While in driving phase, it will generate an 

auxiliary torque to adjust the engine torque to its optimum efficiency region. And it 

will either charge or discharge a 12V low voltage battery. 

The rear axle is connected to the YASA P400 motor. During performance driving if 

high torque command is received from the acceleration pedal which exceed the 

torque limit of the turbo-engine and the BAS, the YASA motor will engage and 

supply the rest of the torque requested. 

The block diagram of the longitudinal powertrain is shown as, 
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Figure 11 Longitudinal powertrain model 

The inputs are the longitudinal acceleration and longitudinal speed at each operating 

condition, while the outputs are the fuel mass flow, low voltage battery current, and 

high voltage current. The outputs are used to evaluate the energy consumption. 

Longitudinal vehicle model: In order to evaluate the engine fuel mass flow, it's 

necessary to investigate the engine torque, which usually starts from the torque at the 

wheel. The longitudinal vehicle dynamic equation is described as, 

      𝑅 = (𝑚𝑔𝑐𝑜𝑠(𝛼) −
1

2
𝜌𝑉2𝑆𝐶𝑧) (𝑓0 + 𝑘𝑉2) +

1

2
𝜌𝑉2𝑆𝐶𝑥 + 𝑚𝑔𝑠𝑖𝑛(𝛼) (47) 

          𝑇𝑤ℎ𝑒𝑒𝑙

𝑅𝑒
= (𝑅 + 𝑚𝑒𝑞𝑢 ∙ 𝑎𝑥)      (48) 

R is the term representing the total resistance force, in which the term 𝑓0 + 𝑘𝑉2 

representing the rolling coefficient, 1

2
𝜌𝑉2𝑆𝐶𝑥  is the aerodynamic drag. In the 

longitudinal dynamic equation, mequ is the total equivalent mass considering the 

inertial of the rotating component, which is described in equation as follows. 

         𝑚𝑒 = 𝑚 +
𝐽𝜔

𝑅𝑒
2 +

𝐽𝑡

𝑅𝑒
2𝜏𝑓

2 +
𝐽𝑒

𝑅𝑒
2𝜏𝑓

2𝜏𝑔
2     (49) 

where 𝐽𝜔, 𝐽𝑡, 𝐽𝑒 are the moment of inertia of the wheel, the moment of inertial of 

the powertrain and of the engine. While 𝜏𝑓 and 𝜏𝑔 are the gear ratios of the final 

transmission and the gearbox.  

Engine model: Since engine is a complex mechanical and thermodynamic system, 

usually instead of modeling the engine in detail, the engine map is implemented to 

obtain the fuel mass flow. The engine map is a 2-D look-up table, given the engine 

rotation speed and engine torque it's possible to obtain the fuel mass flow rate 𝑚𝑓̇  
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interpolating the look-up table. 

Given the vehicle operating condition (longitudinal speed V, longitudinal 

acceleration ax, gear ratio of gearbox 𝜏𝑔), the engine operating condition can be 

directly obtained. The engine speed is reported as: 

                        ne=
60∙𝑉

2𝜋∙𝑅𝑒∙𝜏𝑓∙𝜏𝑔
      (50) 

Belt Alternator Starter (BAS) model: BAS is an electric motor connected to the 

engine crankshaft, it's an economic solution which could add mild-hybrid feature to 

the powertrain. It can provide assist torque to compensate the engine torque and 

guarantee the engine is working in its optimum region. It can either work in the power 

assist mode or the regenerative braking mode. A 12V low voltage battery is 

connected to the BAS system and available for charging and discharging. Similar as 

the engine map, the electric motor is modeled using the motor map. Given the battery 

voltage, motor speed, and torque command, the battery current and motor torque can 

be directly obtained from the motor map. Since the BAS efficiency is different when 

working in motor mode or in alternator mode. It's necessary to implement two maps, 

 

 

Figure 12 BAS motor map 

 

Low voltage battery model: The equivalent circuits models (ECM) are adopted to 

model the low-voltage battery [45]. Since the Dynamic programming method 

requires a large computational effort, it’s important to properly establish the model 

to reduce the computational complexity. The equivalent circuits models can capture 
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nonlinear electrochemical phenomena while avoid lengthy electrochemical process 

calculations. Which made it the perfect candidate for system-level modeling. The 

equivalent circuit is shown as, 

 

Figure 13 Equivalent circuit model for low voltage battery [45] 

 

where, 

 𝐸𝑚 − Battery open-circuit voltage, 𝐸𝑚 = 𝑓(𝑆𝑂𝐶, 𝑇) 

 𝑅𝑜 − Series resistance, 𝑅𝑜 = 𝑓(𝑆𝑂𝐶, 𝑇) 

 𝐶𝑏𝑎𝑡𝑡 − Series resistance, 𝐶𝑏𝑎𝑡𝑡 = 𝑓(𝑇) 

 𝑅𝑛 − Network resistance, 𝑅𝑛 = 𝑓(𝑆𝑂𝐶, 𝑇) 

 𝐶𝑛 − Network capacitance, 𝐶𝑛 = 𝑓(𝑆𝑂𝐶, 𝑇) 

The equivalent circuit is formulated in the way that several resistance-capacitance 

blocks are connected in serial with a series resistance. The resistance, capacitance, 

and the open circuit voltage are dependent on the battery state of charge and the 

temperature. Compared with modelling the electrochemical reaction in the battery in 

detail, the equivalent circuit can fit the experimental data quite well without 

increasing too much the computational effort.  

The voltage on each RC pair 𝑉𝑛, output voltage 𝑉𝑇, SOC can be derived in equation 
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the following equation, 

         𝑉𝑛 = ∫ (
𝐼𝑏𝑎𝑡𝑡

𝐶𝑛
−

𝑉𝑛

𝑅𝑛𝐶𝑛
)

𝑡

0
𝑑𝑡       

         𝑉𝑇 = 𝐸𝑚 − 𝐼𝑏𝑎𝑡𝑡𝑅𝑜 − ∑ 𝑉𝑛
𝑛
1      

         𝑆𝑂𝐶 =
−1

𝐶𝑏𝑎𝑡𝑡
∫ 𝐼𝑏𝑎𝑡𝑡𝑑𝑡

𝑡

0
    

The low voltage can be charged and discharged since the BAS can either work in 

electric motor mode or the generator mode. Given the battery current and temperature, 

the battery SOC and the battery voltage can be estimated. 

 

Figure 14 Simulink Equivalent circuit battery mode for low voltage battery 

3.3.2 Torque split rules 

For a hybrid electric vehicle with P0-P4 powertrain structure, it's critical to decide 

the torque split rules to achieve the optimum fuel economy. The function of the Belt-

Alternator-Starter is to generate an assist torque to guarantee that the engine is 

working in the region with optimum fuel efficiency. While the YASA motor 

connected to the rear axle could supply torque command exceed the limit of engine 

and BAS in performance driving. The logic diagram representing the torque split 

rules is reported as follows, 
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Figure 15 Torque split rules 

 

Given the torque request at the wheel and the ego vehicle speed, the engine speed is 

obtained. Then the optimum engine torque is determined based on the engine speed. 

However the difference between the wheel torque command Twheel and the and the 

optimum engine torque Te,opt should be compensated by the BAS and the YASA 

motor. Thus, after the theoretical optimum engine torque is obtained, the 

compensating torque Tcomp is calculate and compared with the upper and lower torque 

limit of the BAS. If the compensating torque is larger than the upper limit of the BAS, 

it means the torque command at the wheel is too larger, the engine and BAS are not 

able to provide enough torque. Then the YASA motor will engage and provide the 

rest of the torque. While if the compensating torque is less than the lower limit of the 

BAS, the BAS will operate at its lower torque limit and the rest of the torque will be 

provided by the engine, which means it's not always feasible for the engine to work 

in its optimum region. It's also necessary to consider the torque limit of the BAS. 

Once the torque command of the engine, BAS, and YASA motor are known, the fuel 

mass flow 𝑚𝑓̇  and the current of the low voltage battery and high voltage battery 
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can be determined using the motor and battery model discussed in the previous 

chapter. Finally, it's possible to evaluate the energy consumption. 

3.3.3 Dynamic programming method implementation 

Since the overtaking and lane changing maneuver are transient maneuvers and last 

relatively a short time which has a negligible impact on the fuel economy. Also, the 

safety is most important consideration in these scenarios. Thus, the Adaptive-Cruise-

Control (ACC) scenario is a better candidate to study the speed trajectory planning 

considering the fuel efficiency. 

In the ACC driving scenario, the lateral motion of the vehicle is not considered, thus 

only the states related to the longitudinal motion are considered, the state updating 

equation are shown as follows, 

          𝑎𝑥,𝑘+1 = 𝑎𝑥,𝑘 + 𝑎𝑥,𝑘̇ ∙ ∆𝑇    (51) 

        𝑉𝑥,𝑘+1 = 𝑉𝑥,𝑘 + 𝑎𝑥,𝑘 ∙ ∆𝑇    (52) 

      𝐼𝑉𝐷𝑘+1 = 𝐼𝑉𝐷𝑘 + (𝑉𝑙𝑒𝑎𝑑,𝑘 − 𝑉𝑥,𝑘) ∙ ∆𝑇   (53) 

 

First the acceleration is described as an additional state instead of input in order to 

limit the sharp variation of the acceleration. While the variation rate of the 

acceleration is the new input of the system. Then instead of longitudinal displacement 

of the ego vehicle, the relative displacement is monitored as a state. Since in ACC 

scenario only the relative displacement matters. It’s also possible to implement a 

finer discretization tracking the relative displacement which guarantee a better DP 

performance. 

The energy consumption model has already been established in the previous chapter 

shown in figure 10, thus the fuel consumption is evaluated at each simulation step. 

          𝑚𝑓𝑢𝑒𝑙,𝑘 = 𝑓(𝑎𝑥,𝑘, 𝑉𝑥,𝑘)    (54) 

The cost function is formulated in the following form. The first term represents the 



40 
 

target to minimize the fuel consumption. The second term is used to limit the 

variation of acceleration, which is used to improve the comfort of the occupant. Here 

𝛼1  and 𝛼2  also represent the weight coefficient of the fuel mass flow and the 

longitudinal comfort. 

       C=𝛼1 ∙ |𝑚𝑓̇ | + 𝛼2(𝑖𝑓|𝑎𝑥,𝑘+1 − 𝑎𝑥,𝑘|>p)   (55) 
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Chapter 4 Dynamic programming performance 

comparison 

In order to compare the performance of the dynamic programming method. A 

polynomial based path trajectory planning algorithm is established for the overtaking 

scenario. While for the ACC scenario, the PID and MPC control algorithm are 

established as the references for the DP controller.  

4.1 Performance comparison for Overtaking scenario  
The polynomial path planning algorithm is commonly used for highway scenario. 

Neville Hogan proposed the jerk minimizing theory [44]. It’s proven that a jerk 

minimum trajectory should satisfy, 

𝑑𝑚𝑠

𝑑𝑡𝑚 = 0, ∀𝑚 ≥ 6     (56) 

𝑇𝑜𝑡𝑎𝑙 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑗𝑒𝑟𝑘 = 𝑚𝑖𝑛(∫ 𝑠
𝑡𝑓
0

(𝑡)2𝑑𝑡)   (57) 

Here s represents the longitudinal or lateral displacements, while 𝑚 represents the 

order of derivation of the polynomial function s. According to the power series 

expansion, a function can be written in the following form,  

𝑠(𝑡) = ∫  
∞

𝑛=0
𝛼𝑛𝑡𝑛     (58) 

Thus, the function satisfying the minimum jerk trajectory is reported as follows, 

which can satisfy the requirements reported in equation (56) 

𝑠(𝑡) = 𝛼0+ 𝛼1𝑡 + 𝛼2𝑡
2+ 𝛼3𝑡

3+ 𝛼4𝑡
4+ 𝛼5𝑡

5   (59) 

𝑠(𝑡)̇ = 𝛼1 + 2𝛼2𝑡+ 3𝛼3𝑡
2+ 4𝛼4𝑡

3+ 5𝛼5𝑡
4   (60) 

𝑠(𝑡)̈ = 2𝛼2+ 6𝛼3𝑡+ 12𝛼4𝑡
2+ 20𝛼5𝑡

3    (61) 

The polynomial equation has six unknown parameters and the unknown variable time 

t. Theoretically speaking, once the initial and final condition 𝑠𝑖,  𝑠𝑖̇ , 𝑠�̈�,  𝑠𝑓 ,  𝑠�̇� , 𝑠�̈�, 

initial and final time instances 𝑡𝑖 , 𝑡𝑓  are given. It’s possible to solve all the 
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parameters. And solve the trajectory. However, it’s possible to simplify the solving 

process by assuming that 𝑡𝑖 = 0, 𝑡𝑓 = 𝑇. The coefficient 𝛼0, 𝛼1, 𝛼2 are directly 

determined based on the initial condition, 

𝑠𝑖 = 𝑠(0) = 𝛼0      (62) 

�̇�𝑖 = �̇�(0) = 𝛼1      (63) 

�̈�𝑖 = �̈�(0) = 2𝛼2      (64) 

Substituting the parameters 𝛼0, 𝛼1, 𝛼2 in equation (59)-(61), given the maneuver 

duration T and the final condition, 𝑠𝑓 ,  𝑠�̇� , 𝑠�̈�. It’s possible to organize the equations 

above in the matrix form shown as follows, then the parameters 𝛼3, 𝛼4, 𝛼5 are 

solved inverting the matrix, 

[
𝑇3 𝑇4 𝑇5

3𝑇2 4𝑇3 5𝑇4

6𝑇 12𝑇2 20𝑇3

] × [

𝛼3

𝛼4

𝛼5

] = [

𝑠𝑓 − (𝑠𝑖 + 𝑠�̇�𝑇 +
1

2
𝑠�̈�𝑇

2)

𝑠�̇� − (𝑠�̇� + 𝑠�̈�𝑇)

𝑠�̈� − 𝑠�̈�

]  (65) 

Thus, given the initial and finial position, speed, acceleration, and maneuver time, 

it’s possible to solve the trajectory that minimize the jerk. However, the problem is 

how to find a good final state. Even the final lateral position is given by the decision 

layer, an appropriate lateral speed and acceleration are still unknown and need to be 

solved.  

While for the advantage of the DP algorithm is that it could derive the global 

optimum trajectory with the information of speed and acceleration at each point. 

Thus, the DP-based trajectory planner might be an appropriate candidate to overcome 

the drawback of the polynomial algorithm as is introduced above. 

Then the polynomial trajectory planning algorithm and the DP trajectory planning 

algorithm are established and compared. The maneuver efficiency which is 

represented by the maneuver duration, and the occupant’s comfort, which is 

represented by the accumulation of acceleration and jerk, reported as, 

𝑎𝑐𝑢𝑚 = ∫ |𝑦(𝑡)̈ |2𝑑𝑡     (66) 
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𝐽𝑐𝑢𝑚 = ∫ |𝑦(𝑡)|⃛ 2𝑑𝑡     (67) 

However, since the maneuver duration of the polynomial planning algorithm is a 

tunable variable. Longer duration will result lower maneuver efficiency but also a 

lower jerk accumulation which is good from the comfort point of view. How to 

specify the maneuver duration is critical for the performance comparison.  

The approach adopted to solve this problem in this thesis is the control variants 

method. First the DP planner runs off-line to solve the optimum path trajectory, the 

initial, overtaking, final positions, and maneuver time of polynomial algorithm are 

set to be the same as the trajectory obtained from the DP algorithm. The lateral speed 

and acceleration of the overtaking position are set as zero since the polynomial 

trajectory cannot find the optimum speed and acceleration by itself. By setting the 

maneuver duration as the same, the maneuver efficiency of the two approaches is the 

same. Then the accumulation of jerk and acceleration are compared to compare the 

performances of these two algorithms in terms of comfort. And we could verify the 

optimality of the algorithms. 

 

4.2 Performance comparison for ACC scenario 
Typical control algorithm implemented in ACC scenario include PID control, 

MPC(Model Predictive Control) algorithm, fuzzy control, etc. Each type of control 

algorithm has its advantages and drawbacks. 

4.2.1 Performance comparison PID algorithm 
The PID control algorithm is still widely used in the industry with intuitive principle. 

It’s easy to satisfy the real-time requirement of the system due to its simplicity. The 

PID control algorithm is a suitable candidate for the ACC driving scenario. A 

common approach is the multi-mode PID control. When the ego vehicle is travelling 

without any vehicle in front or with a vehicle in front of large distance. The control 

variable is the pre-defined vehicle speed. When the ego vehicle approaches the lead 
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vehicle in front, the cantor variable will change to the pre-defines safety distance. 

Though it’s adaptable to a wide range of system, the performance is not optimal when 

applying it to a specific system. For the Adaptive Cruise Control system, even the 

PID algorithm could simply satisfy the control target, it’s difficult to consider the 

occupant’s comfort and the fuel economy, which are the crucial factors influencing 

the customer’s experience.  

A predictive PID controller for ACC scenario is established as follows, 

         𝑇𝑤ℎ𝑒𝑒𝑙,𝑡𝑎𝑟 = 𝑘𝑝(𝐼𝑉𝐷𝑡𝑎𝑟 − 𝐼𝑉𝐷𝑝𝑟𝑒)   (68) 

       𝐼𝑉𝐷𝑝𝑟𝑒 = (𝑋𝑙𝑒𝑎𝑑 + 𝑉𝑙𝑒𝑎𝑑 ∙ 𝑡𝑝𝑟𝑒) − (𝑋𝑒𝑔𝑜 + 𝑉𝑒𝑔𝑜 ∙ 𝑡𝑝𝑟𝑒)  (69) 

The request torque at the wheel is proportional to the error between predictive inter-

vehicular distance and the target inter-vehicular distance. The predictive inter-

vehicular distance is the relative distance after the prediction time 𝑡𝑝𝑟𝑒 if both the 

vehicles are travelling at the same speed. 

Given the target torque, the ego vehicle longitudinal acceleration is obtained and the 

speed is updated. Then the speed will be the feedback of the predictive PID controller 

to determine the target acceleration in the next time step. The block diagram of the 

system is shown in the following figure. 

 
Figure 16 PID controller for ACC scenario 

Eventually the same energy consumption model of the DP optimization is exploited 

here for the PID ACC controller to compare the performance. The whole system is 

reported as follows, 
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Figure 17 Structure of PID ACC system 

The whole system is realized in Simulink as,  

 

Figure 18 Simulink PID ACC control system 

4.2.2 Performance comparison with MPC algorithm 

MPC introduction: Generally speaking, the trajectory planning problem is an 

optimization problem with multiple constraints on each state and input, aiming to 

minimize the cost function. The MPC(Model-Predictive-Controller) algorithm is also 

a common solution for this category of optimization problem. Thus, a MPC controller 

is developed to compare with the DP controller. 

MPC is an advanced control technology widely used in industry since 1980s[46]. 

This technology is popular in multiple industrial field such as chemical reaction 

control, energy efficiency control, flight control, satellite attitude control, blood 

glucose control, etc.[47].  

Like PID controller, the MPC algorithm also exploits the results obtained from the 

control plant through a negative feedback loop. Then the control sequence is 

generated to reduce the difference between the current state variables and its 

reference value. However, for PID controller the optimality of the control sequence 

is not guaranteed since it's not possible to predict the future state of the plant. While 
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the MPC controller could guarantee the optimality of the control since an internal 

model of a control system is evaluated at each time step to predict the future states 

of the system. 

The logic chart of the MPC control algorithm is reported, 

 

Figure 19 Structure of MPC controller 

Like the other controller, the input of the MPC controller is the actual output of the 

plant at n-th time step y(n), the target value of the output at n-th time step yref(n), the 

control input at the n-th time step u(n). Different from the PID controller, the MPC 

controller has a plant model(predictor), and an optimizer inside.  

First of all, the problem is discretized into several step, the sampling time is TS. All 

the states variables and the inputs, outputs are assumed to maintain the same value 

during each time step. The plant at n-th time step can be described using the state 

space equation as, 

       �̇�(𝑘 ∙ 𝑇𝑠) = 𝑓(𝑥(𝑘 ∙ 𝑇𝑠), 𝑢(𝑘 ∙ 𝑇𝑠))    (70) 

     𝑦(𝑘 ∙ 𝑇𝑠) = ℎ(𝑥(𝑘 ∙ 𝑇𝑠), 𝑢(𝑘 ∙ 𝑇𝑠))    (71) 

The time period from current time step n till the (n+k)-th step is called prediction 

period. While the number of time step within the prediction period k is called the 

prediction horizon. Starting from the current time step n, a serial of control sequence 

is generated from n till n+k at each time step(u(n), u(n+1),... u(n+k)) by the optimizer. 

Then a serial of estimated output �̂�(𝑛) to �̂�(𝑛 + 𝑘) is evaluated using the internal 

plant model with the actual plant state x(n) as the initial condition based on the control 
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sequence from u(n) to u(n+k). From n-th to (n+k)-th time step, the error between the 

reference output yref (𝑛 + 𝑘)  and estimated output  �̂�(𝑛 + 𝑘)  is evaluated as 

e(n+k). Finally, the optimizer can evaluate a control serial from u(n) to u(n+k) that 

minimize the total cost during the prediction period using the cost function within 

the constraints on the states and the inputs. A typical example of cost function is 

shown as,  

         𝐽𝑦 = ∑ ∑ {𝑤𝑖,𝑗[𝑟𝑗(𝑛 + 𝑖) − 𝑦�̂�(𝑛 + 𝑖)𝑘
𝑖=1

𝑛𝑦

𝑗=1
]}2   (72) 

Here, 

 𝑛𝑦 − number of outputs 

 𝑘 − prediction horizon 

 𝑤𝑖,𝑗 − weight coefficient of j-th output on n+i-th step 

 𝑟𝑗(𝑛 + 𝑖) − reference value of j-th output on n+i-th step 

 𝑟𝑗(𝑛 + 𝑖) − reference value of j-th output on n+i-th step 

 𝑦�̂�(𝑛 + 𝑖) − estimated value of j-th output on n+i-th step 

The calculated control sequence within the prediction horizon is the sequence that 

the minimum of the cost function is achieved,  

       𝑧𝑛 = [𝑢(𝑛)𝑇 𝑢(𝑛 + 1)𝑇 …  𝑢(𝑛 + 𝑘)𝑇]𝑇   (73) 

         𝐽𝑦,𝑚𝑖𝑛 = 𝐽𝑦(𝑧𝑛)     (74) 

This is a typical optimization problem with constraints on states can be considered 

as a Quadratic Programming (QP) problem. Different kinds of algorithm can be 

implemented to solve the optimization problem such as, 

 interior point 

 active set 
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 augmented Lagrangian 

 conjugate gradient 

 gradient projection 

Once the control sequence 𝑧𝑛 is evaluated, only the control signal at the current time 

step 𝑢(𝑛) is implemented to the plant. Then the state variables of the plant are 

updated and 𝑥(𝑛 + 1) is obtained. Then the optimization process will be repeated 

in the next time step.  

In general, the results obtained from the MPC controller has a better performance 

compared with the PID controller since the future states of the model is predicted and 

the cost function is solved to obtained better control sequence. However, it still has 

several drawbacks as follows, 

 The performance of the MPC controller depends on the fidelity of the plant model, 

which is usually difficult to obtain.  

 The computational complexity of the MPC is high. It's applicable to slow dynamic 

process with high performance computer such as chemical plants and oil refineries. 

Nowadays with the increase of the computational power it's possible to implement 

the MPC on system with fast response requirements. However, the large 

computational power required by the algorithm is still a challenge.  

 The MPC algorithm doesn't guarantee to find the global optimum solution since 

the control signal at time step 𝑢(𝑛) is derived by solving the optimization equation 

within the prediction horizon. While the DP method introduced above guarantees to 

obtain the global optimum solution. Thus, it's interesting to compare the results 

obtained from DP and MPC. 

Establishing MPC controller: The same state space equation used to describe the 

adaptive cruise control scenario in the dynamic programming method is adopted in 

order to make the comparison, it's described as follows, 

          𝑎𝑥,𝑘̇ = 𝑢𝑘      (75) 



49 
 

        𝑉𝑥,𝑘
̇ = 𝑎𝑥,𝑘      (76) 

      𝐼𝑉𝐷𝑘
̇ = 𝑉𝑙𝑒𝑎𝑑,𝑘 − 𝑉𝑥,𝑘      (77) 

With the state variables, input, output reported as follows, 

      𝑥 = {𝐼𝑉𝐷, 𝑉𝑥, 𝑎𝑥}
𝑇     (78) 

       𝑢 = 𝑎�̇�      (79) 

       𝑦 = 𝐼𝑉𝐷      (80) 

In order to compare the performance of the DP controller, the term representing the 

fuel economy is included in the cost function of the MPC controller. Given the 

operation condition of the vehicle (Vx, ax), the fuel mass flow rate 𝑚𝑓𝑢𝑒𝑙̇  can be 

obtained using the longitudinal powertrain model described in the previous chapter. 

The cost function for the MPC controller is shown as follows, 

     𝐽 = ∑ {
𝑤𝑦

𝑠𝑦
[𝑟(𝑛 + 𝑖) − 𝑦 ̂(𝑛 + 𝑖)𝑘

𝑖=1 ]}2 + ∑ [
𝑤𝑚

𝑠𝑚
(𝑚𝑓𝑢𝑒𝑙̇𝑘

𝑖=1 )]2  (81) 

here, 

 𝑤𝑦 − weight coefficient of the output error 

 𝑘𝑦 − scale factor of the output error 

 𝑤𝑚 − weight coefficient of fuel mass flow rate 

 𝑘𝑚 − scale factor of the fuel mass flow rate 

The scale factor is introduced in the cost function. The scale factor is the range of a 

state variables, for instance for the scale factor 𝑠𝑦, 

        𝑠𝑦 = 𝑦𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 − 𝑦𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡    (82) 

Since that different state variables might have difference in the order of magnitude. 

While the scale factor can scale different cost term into the same order of 

magnitude, which could avoid the dominance of a certain cost term due to its large 
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order of magnitude. 

While the weight coefficient can be used to emphasize the importance of a certain 

cost term, since it's common that two cost term has contradictory requirement on the 

control input. For example, from the comfort point of view a small acceleration is 

preferred while from the efficiency point of view a large acceleration is preferred to 

reduce the maneuver time. 

Once the internal model and the cost function are specified, the MPC planner for 

vehicle speed trajectory in the ACC scenario is established as, 

 

Figure 20 MPC planner for ACC 

The input of the MPC planner is the target inter-vehicular distance, lead vehicle speed. 

The output is the variation rate of the longitudinal acceleration of ego vehicle. Then 

the longitudinal speed 𝑣𝑥 and longitudinal acceleration 𝑎𝑥 are used to evaluate the 

fuel mass flow rate 𝑚𝑓̇ . Then the fuel mass flow is integrated and the total fuel 

consumption is obtained. 

Finally, the speed profile and the total fuel consumption obtained using the Dynamic 

Programming, PID, and the Model Predictive Control are plot together and the 

performance are compared. The results are shown in Chapter 5. 
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Chapter 5 Rule-based real time controller 

5.1 Rule-based controller introduction and implicit MPC analogy 
Since the principle of DP method is to search all the possible control solution and 

guarantee to find out the global optimal solution. A solution was forwarded for a 

similar problem in the Model Predictive Control application: The explicit MPC[48], 

which could be applied to realize the DP algorithm in this thesis as well. 

The traditional MPC require running on-line optimization algorithms to solve the 

optimization problem at each time step. The computational effort for the MPC is 

large thus is has been labeled as a technology for slow processes. In field having 

critical real-time requirements, such as automotive field, the MPC application is quite 

limited. 

The idea of the explicit MPC is that, instead of solving the optimum control using 

the MPC online, the optimum control for all the x(t) is computed off-line. Then the 

optimum control input for each state are recorded. Then the explicit relationship 

between the state and the control input are found out which could be then 

implemented in the real-time application. Thus, instead of solving the optimization 

problem on-line, the optimum control is directly searched based on the rules given 

the system’s current state. 

For instance, the relationship of the optimum control and system states obtained off-

line can be plotted into a look-up table as, 
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Figure 21 Explicit MPC look-up table[49] 

During real-time implementation, for give states satisfying the inequity constraints, 

(the states are within the 𝑖-𝑡ℎ polyhedron as shown in figure above 

𝐴0
𝑖 𝑥 ≤ 𝑏𝑖      (83) 

The optimum control inputs are obtained solving the linear equation, 𝐹𝑖 and 𝐺𝑖 

are constants obtained from the off-line DP optimization. 

𝑢 = 𝐹𝑖𝑥 + 𝐺𝑖     (84) 

Once the states of the system are estimated, then it’s possible to derive the control 

exploiting the look-up table. The computational effort is reduced and it’s possible 

to implement the DP in the real-time application. 

Thus, it’s also possible to adapt the principle of explicit MPC to the application using 

DP. First runs the DP optimization algorithms off-line and obtain the global optimum 

solution. Then a control rule is generated from the obtained data. For example, the 

rule between the states variables and the control input can be tabulated into a n-D 

look-up table. Finally, a real-time controller is established using the obtained rule and 

ready for real-time implementation. Several studies have implemented this method 

to build the real-time controller for the hybrid electric vehicle powertrain control to 
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optimize the fuel consumption. Pier Giuseppe proposed a based real-time control 

algorithm for an HEV derived from an offline energy management strategy using the 

Power-weighted Efficiency Analysis for Rapid Sizing (PEARS) algorithm[50]. 

ZHANG Ya Hui introduced a hybrid dynamic programming-rule based algorithm to 

achieve energy optimization on plug-in hybrid electric bus[51], which exploiting the 

result obtained off-line from the dynamic programming method to update the control 

rules of the real-time controller. 

Since nowadays the most common approach to guarantee real-time trajectory planner 

is to reduce the searching space to achieve the real-time target, and the global 

optimum solution is not guaranteed. In this paper the possibility of exploiting the 

results from the off-line optimization results to build the real-time controller for the 

trajectory planner is studied and verified. 

5.2 Rule-based controller implementation for Overtaking scenario 

With the results obtained from the dynamic programming optimization for 

overtaking scenario. A rule-based trajectory planner is established. In order to test 

the planner, a trajectory tracking algorithm and the vehicle models are developed. 

The model build in Simulink is shown as, 

 

Figure 22 Model in loop test for real-time rule-based planner 
Assuming the lead vehicle information (for example the lead vehicle speed, the inter-

vehicular displacement) are known conditions from the perception layer. The rule-

based real time trajectory planner will then plan the target lateral displacement at 

each time step based on the lead vehicle and ego vehicle dynamic information.  

Then a predictive path error controller is established to control the vehicle model in 
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order to track the trajectory generated by the trajectory planner.  

Finally, the vehicle model is built. The electric power steering (EPS), 2 degree of 

freedom vehicle lateral model, and the tire model are established. The ego vehicle 

dynamic information will then be updated at each time step and will be the input of 

the rule-based planner in the next time step. The whole loop is closed to realize the 

feedback control. 

 

5.2.1 Real time path planner 
Since in the previous chapter the optimum control solutions in an overtaking scenario 

with different initial speeds and inter-vehicular distances are obtained using off-line 

dynamic programming method. With the known state history at each simulation step, 

it's possible to plot the lateral displacement and longitudinal acceleration with respect 

to the inter-vehicular distance and longitudinal speed difference. It’s shown as, 

 

Figure 23 2-D look-up table for target lateral displacement and longitudinal acceleration 

 

where, the z-axis represents the target lateral displacement, while the color indicates 

the target longitudinal acceleration at each operation point. 

 

By interpolating the curve a 2-D look up table is tabulated. For each inter-vehicular 
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distance and longitudinal speed difference a target lateral displacement can be found, 

corresponding to the optimum lateral displacement considering all the optimization 

target. While the color at each step represents the longitudinal acceleration of the ego 

vehicle. 

Once the 2-D look up table is built, it's possible to implement it in the rule-based 

trajectory planner shown as follows. The input are the inter-vehicular-distance and 

speed difference between the ego vehicle and the obstacle. While the outputs are the 

target lateral displacement Ytarget and the target longitudinal acceleration atarget. 

 
Figure 24 Real-time rule-based controller 

 

Based on the current driving condition, the rule-based trajectory planner could 

generate the target lateral displacement and longitudinal acceleration profile in real-

time at each time step. Then the planned trajectory will be the reference of the motion 

control layer. 

5.2.2 Trajectory tracking algorithm 
Since during the trajectory planning phase the vehicle dynamic model is not 

considered, the trajectory tracker and a vehicle dynamic model are established to 

verify that the trajectory can be followed by the vehicle. 

The PID(Proportional-integral-derivative) control algorithm is adopted to build the 

tracking controller. For the lateral position control a predictive PID controller is 

adopted. The block diagram of the controller is shown as, 
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Figure 25 Predictive path tracking controller 

The target steering angle is proportional to the error between the target lateral 

displacement and actual ego vehicle displacement.  

Since the response of the lateral dynamic model has a delay, the correction will be 

too late if the target steering wheel angle is proportional to the current lateral 

displacement error. It's necessary to exploit a predictive PID controller. The 

equations are shown as follows, 

                            𝑌𝑝𝑟𝑒 = 𝑌𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑉𝑌 ∙ 𝑡𝑝𝑟𝑒    (85) 

                            𝜃𝑡𝑎𝑟𝑔𝑒𝑡 = 𝐾𝑦(𝑌𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑌𝑝𝑟𝑒)    (86) 

The target steering wheel angle is proportional to the predictive path error instead of 

the current path error. The predicted lateral displacement is the lateral displacement 

after prediction time tpre assuming the vehicle maintaining the current lateral speed. 

Finally, the predictive PID controller could generate a steering correction in real time 

to guarantee trajectory tracking ability. 

5.2.3 Establishing control models.  

In order to verify the effectiveness of the control algorithm, it’s necessary to establish 

the model of the control plant. In the overtaking scenario, it’s assumed that the 

vehicle lateral motion is controlled by the Electric Power Steering. Thus, the path 

tracking controller will send the target steering wheel angle request to the EPS 

controller. Then the front wheel is steered and the reaction force between the ground 

and the tire will steer the vehicle. Thus, the EPS, vehicle lateral dynamic, and tire 

models are established. In real time application the lateral displacement information 
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is obtained from the perception layer (for example the camera) to perform the 

feedback lateral motion control. In this research, instead of the camera a state 

estimation block is built to estimate the lateral displacement of the ego vehicle based 

on the vehicle dynamic information from the vehicle model. The model is controlled 

by the path error tracker. The output of the model is the ego vehicle dynamic 

information, is exploited by the ego vehicle trajectory planner and tracker to perform 

the feedback control, the system is shown in figure below. 

While the subsystem of the model containing EPS module, vehicle dynamic model, 

tire model and state estimation block are shown as, 

 
Figure 26 Vehicle system model  

Vehicle dynamic model: The vehicle dynamic model adopted in the real-time 

control loop is the same as the vehicle dynamic model implemented in the offline DP 

optimization int Chapter 3. The state variables are the vehicle side slip angle 𝛽 and 

the yaw rate �̇�. And the input is the steering wheel angle at the front wheel 𝛿. 

 

(�̇�
�̇�
) = [

−
𝐶1+𝐶2

𝑚𝑉

𝐶2𝑏−𝐶1𝑎

𝑚𝑉2 − 1

𝐶2𝑏−𝐶1𝑎

𝐽𝑧
−

𝐶1𝑎2+𝐶2𝑏2

𝐽𝑧𝑉

] (
𝛽
𝑟
) + [

𝐶1

𝑚𝑉
𝐶1𝑎

𝐽𝑧

] (𝛿)   (87) 

 

Tire model: In highway overtaking scenario it’s necessary to take into consideration 

also the tire model. Since we need to estimate the self-aligning torque induced by the 

side-slip angle in order to solve the dynamic equation of the steering system. 

Considering the side slip angle of a vehicle travelling on a highway is small, it’s 

reasonable to assume that the tire works in the linear region, thus the self-aligning 
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torque is proportional to the tire side-slip angle, described as[54], 

 

𝑇𝑠𝑎 = 𝑀𝑧(𝛼)𝛼     (88)  

where, 

  𝑴𝒛(𝜶) − self-aligning torque coefficient (𝑁𝑚/𝑟𝑎𝑑) 

 𝜶 − tire side slip angle (𝑟𝑎𝑑) 
 

 

EPS model: The structure of the Electric Power steering is described in the following 

figure. The steering rod is connected to the electric motor via a reduction gear. Then 

the steering rod is connected to a rack and pinion transmission mechanism to control 

the front wheel steering angle. Thus, the transmission ratio between the electric motor 

angle and steering rod angle, and the transmission ratio between the steering rod 

angle and the front wheel angle should be taken into consideration. A potentiometer 

is exploited to monitor the angular position of the steering wheel. The steering wheel 

angular position information is then used by the EPS controller to perform the close 

loop control. 

 
Figure 27 EPS structure[52] 

The EPS model contains two parts, the mechanical part and the electrical part. For 
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the mechanical part, assuming the steering mechanism is a rigid body. The 

deformation, damping, and friction are neglected, the dynamic equation of the 

steering system is described as, 

             𝐽𝑡𝑜𝑡𝜃�̈� = 𝑇𝑒 −
𝑇𝑠𝑎

𝐾𝑒∙𝐾𝑠𝑤
     (89) 

here, 

 𝑱𝒕𝒐𝒕 − total equivalent moment of inertia at the electric motor side (𝑘𝑔𝑚2) 

 𝜽�̈� − electric motor angular acceleration (𝑟𝑎𝑑

𝑠2 ) 

 𝑻𝒆 − electric motor torque (𝑁𝑚) 

 𝑻𝒔𝒂 − self-aligning torque (𝑁𝑚) 

 𝑲𝒆 − transmission ratio between electric motor and steering rod 

 𝑲𝒔𝒘 − transmission ratio between steering rod and front wheel steering angle 

The steering wheel angle 𝜃𝑒  can be derived from the steering system dynamic 

equation given the previous states, self-aligning torque 𝑻𝒔𝒂 , and electric motor 

torque 𝑻𝒆. The self-aligning torque can be evaluated using the tire model, while the 

electric motor torque can be obtained from the electric motor model. 

Electric motor model: The equivalent circuit of DC brush motor can be described 

as, 

 
Figure 28 Motor equivalent circuit [53] 

which consists of a resistance, inductance and electric motor. The system can be 

described using the following electric circuit equation, 
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      𝐿𝑎
𝑑𝐼𝑎

𝑑𝑡
+ 𝑅𝑎𝐼𝑎 + 𝑣𝑒 = 𝑣𝑎    (90) 

             𝑣𝑒 = 𝐾𝑈
𝑑𝜃𝑒

𝑑𝑡
     (91) 

             𝑇𝑒 = 𝐾𝑇𝐼𝑎      (92) 

where,  

 𝑳𝒂 − electric motor inductance (H) 

 𝑹𝒂 − electric motor resistance (𝛺) 

 𝒗𝒆 − electric motor voltage (V) 

 𝑲𝑼 − electric motor voltage coefficient ( 𝑉

𝑟𝑎𝑑/𝑠
) 

 𝑲𝑻 − electric motor torque coefficient (𝑁𝑚

𝐴
) 

 

State estimation block: In order to estimate the longitudinal and lateral 

displacement of the vehicle, it’s necessary to transform the vehicle speed from the 

local reference frame into the global reference frame. 

 

Figure 29 Vehicle local and global reference frame[54] 

The side slip angle of the vehicle 𝛽 is a small angle, thus it’s reasonable to introduce 
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the following assumptions,  

𝑢 = 𝑉𝑐𝑜𝑠(𝛽) ≈ 𝑉      (93) 

𝑣 = 𝑉𝑠𝑖𝑛(𝛽) ≈V𝛽     (94) 

The longitudinal and lateral speed int the global reference frame 𝑽𝑿 and 𝑽𝒀 are 

derived as (95), (96). Then the longitudinal and lateral displacement are obtained 

integrating the speed as equations (97), (98). The yaw angle in the global reference 

frame 𝝍 is estimated integrating yaw rate �̇� as equation (99). 

𝑉𝑋 = 𝑉𝑐𝑜𝑠(𝜓) −  𝑉𝛽𝑠𝑖𝑛(𝜓)     (95) 

𝑉𝑌 = 𝑉𝑠𝑖𝑛(𝜓) + 𝑉𝛽𝑐𝑜𝑠(𝜓)     (96) 

𝑋𝑒𝑔𝑜 = ∫ 𝑉𝑋(𝑡)𝑑𝑡
𝑡

0
     (97) 

𝑌𝑒𝑔𝑜 = ∫ 𝑉𝑌(𝑡)𝑑𝑡
𝑡

0
     (98) 

𝜓(𝑡) = ∫ 𝑟(𝑡)𝑑𝑡
𝑡

0
     (99) 

The state estimation block is realized in Simulink as, 

Then the estimated states of the ego vehicle will be exploited by the rule-based 

trajectory planner and path error controller to perform the feedback control. 

Finally, it’s possible to run the model-in-loop test of the real-time rule-based planner. 

Given initial condition with different inter vehicular distance and different vehicle 

speeds, the real time trajectory planner could generate the optimum trajectory in real-

time. The results are shown in Chapter 6. 

5.3 Rule-based controller implementation for ACC scenario 

Similar as the trajectory planner in the overtaking scenario, the results obtained 

solving off-line DP for the ACC scenario is recorded and processed. Given different 

initial speed difference and inter vehicular distances. The target acceleration solved 

using off-line DP are plotted as, 
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Figure 30 DP off-line optimization results for ACC scenario (oblique view) 

 

Figure 31 DP off-line optimization results for ACC scenario (top view) 

It obvious that the acceleration trajectory with different initial conditions form a 
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regular surface, thus a control rule can be extracted from the surface for real-time 

implementation. However, in order to tabulate a 2-D look-up table, the data on the x 

and y axle need to be gridded. An interpolation algorithm is implemented to traverse 

each data lattice of the x and y axis. Next all the operating points of the DP 

optimization are traversed and the closest point to the grid lattice is selected, then the 

target acceleration value is assigned to the grid lattice. Once all the grid latticed are 

traversed, the 2-D look up table is established. It’s reported as, 

 

Figure 32 2-D look-up table for target acceleration 

Increasing the number of DP offline datasets and discretization of the grid data 

(discretization of the axle of the look-up table), the results obtained from the real-

time controller will approach the result obtained from the offline DP. Since the DP 

optimization is solved off-line, it’s possible to increase the performance of the real-

time controller by increasing the number of off-line DP tests. It will not cause any 
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increase of the online computational complexity. While increasing the discretization 

of the axle-of the look-up table will increase the searching effort for the on-line 

controller and increase the computation time.  

Next the rule-based trajectory planner can be implemented in the loop, the same 

longitudinal powertrain and energy consumption model are established as the ACC 

scenarios exploiting the PID and MPC controller. Finally, the longitudinal speed 

trajectory and the fuel consumption are plotted to compare with the performance of 

PID, MPC, DP off-line optimization results. 
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Chapter 6 Results and conclusion 

6.1. Results of DP offline simulation  

The simulation results obtained from the DP offline algorithm are presented in this 

chapter. The results of the overtaking scenario and the adaptive cruise control 

scenario are presented separated. 

6.1.1 Overtaking scenario considering varied vehicle speed 

As mentioned in the chapter 3, during the overtaking scenario considering the varied 

vehicle speed, the longitudinal displacement 𝑋 and speed 𝑉𝑥, lateral displacement 

𝑌  and side slip angle 𝛽  are considered state variables. While the longitudinal 

acceleration 𝑎𝑥 and side slip angle variation rate 𝛽 
̇ are considered as control inputs, 

the state updating equation is shown as, 

𝑉𝑥,𝑘+1 = 𝑉𝑥,𝑘 + 𝑎𝑥,𝑘 ∙ ∆𝑇 

𝑋𝑘+1 = 𝑋𝑘 + 𝑉𝑥,𝑘 ∙ ∆𝑇 

𝛽𝑘+1 = 𝛽𝑘 + 𝛽�̇� ∙ ∆𝑇 

𝑌𝑘+1 = 𝑌𝑘 + 𝛽𝑘 ∙ 𝑉𝑥,𝑘 ∙ ∆𝑇 

The cost term is formulated as follows to represent the overtaking efficiency, 

longitudinal comfort and lateral comfort, 

      C=𝛼1 ∙ |∆𝑌| + 𝛼2 ∙ |𝑎𝑥,𝑘| + 𝛼3 ∙ |𝛽�̇�|    

Considering a driving scenario with a lead vehicle in front of the ego vehicle in the 

same road lane. The lead vehicle is travelling at a constant speed and the ego vehicle 

is travelling at a certain initial speed. The scenario is shown in the following figure, 
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Figure 33 Overtaking scenario 

 

The data of the lateral dynamic model of the vehicle and the electric power steering 

model are presented in the following table, 

Vehicle dynamic data  

Front wheel base a[m] 1.04 

Wheel base l[m] 2.6 

Sprung mass 𝒎𝒔[kg] 1111 

Unsprung mass 𝒎𝒖𝒔[kg] 120 

Moment of inertia 𝑱𝒛[𝒌𝒈 ∙ 𝒎𝟐] 2031.4 

Front tire cornering stiffness 𝑪𝟏[
𝑵

𝒓𝒂𝒅
] 98194 

Rear tire cornering stiffness 𝑪𝟐[
𝑵

𝒓𝒂𝒅
] 69318 

Self-aligning torque coefficient 𝑵𝒎/𝒓𝒂𝒅 1606.6 

Table 2 Data of vehicle dynamic model 

Electric power steering data 

Equivalent resistance 𝑹𝒎(𝜴) 0.167 

Equivalent inductance 𝑳𝒎(𝑯) 0.001 
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Voltage coefficient 𝑲𝒗(𝑽/(
𝒓𝒂𝒅

𝒔
)) 0.02 

Torque coefficient 𝑲𝒕(𝑵𝒎/𝑨) 0.04 

Steering wheel front wheel transmission ratio 𝑮𝒔𝒘 16.5 

Electric motor steering wheel transmission ratio 𝑮𝒎 15 

Electric motor moment of inertia 𝑱𝒎[𝒌𝒈 ∙ 𝒎𝟐] 0.0024 

Steering wheel moment of inertia 𝑱𝒎[𝒌𝒈 ∙ 𝒎𝟐] 0.1 

Steering moduel equivalent mass 𝑴𝒓[𝒌𝒈] 32 

Table 3 Data of electric power steering model 

 

In order to study the influence of the initial condition on the trajectory planning, two 

sets of tests are designed. For one set the speed difference of the ego vehicle and lead 

vehicle is fixed while the initial inter-vehicular distance is changed. While for the 

other set the initial inter vehicular distance is fixed and the speed difference is varied. 

The tests are designed according to the following table, 

 

Test 1 2 3 4 5 

𝑽𝒅𝒊𝒇𝒇(km/h) 100 100 100 90 70 

𝑰𝑽𝑫(𝒎) 150 110 50 50 50 

Table 4 Initial variables of overtaking scenario test 

The side slip angle, longitudinal speed profile, and the overtaking trajectory are 

plotted as follows, 
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(a) Side slip angle 

  

   (b) Overtaking trajectory 

 

      (c) Longitudinal speed   

Figure 34 Test 1 𝑉𝑑𝑖𝑓𝑓 = 100km/h 𝐼𝑉𝐷 = 150𝑚 
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(a) Side slip angle 

     

   (b) Overtaking trajectory 

 

(c) Longitudinal speed 
 

Figure 35 Test 2 𝑉𝑑𝑖𝑓𝑓 = 100km/h 𝐼𝑉𝐷 = 110𝑚 
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(a) Side slip angle 

 

(b) Overtaking trajectory  

 

(c) Longitudinal speed 
Figure 36 Test 3 𝑉𝑑𝑖𝑓𝑓 = 100km/h 𝐼𝑉𝐷 = 50𝑚 
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(a) Side slip angle 

 

(b) Overtaking trajectory  

 

(c) Longitudinal speed 
Figure 37 Test 4 𝑉𝑑𝑖𝑓𝑓 = 90km/h 𝐼𝑉𝐷 = 50𝑚 
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(a) Side slip angle 

 

(b) Overtaking trajectory  

 

(c) Longitudinal speed 
Figure 38 Test 5 𝑉𝑑𝑖𝑓𝑓 = 70km/h 𝐼𝑉𝐷 = 50𝑚 

 

Analyzing the results obtained from the test above, it's easy to conclude that when 

the initial inter vehicular distance is long enough, the ego vehicle tends to travel 

straight, and starts to change the lane only at a certain distance behind the ego vehicle. 
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During the lane changing maneuver it also tends to maintain its speed. Since the 

initial inter vehicular distance is large and the ego vehicle has enough space to 

perform the lane change maneuver, the DP algorithm finds out it's unnecessary to 

vary the speed which could degrade the occupant's comfort. 

While for the case that the initial inter-vehicular distance is short, the ego vehicle 

tends to accelerate to increase the lateral speed in order to shorten the lane change 

maneuver time and avoid the collision. 

Then simulations with different longitudinal speed difference and inter vehicular 

distance are run, the optimization results are recorded which could be exploited to 

build the rule-based real time controller. It will be introduced in the next chapter. 

6.1.2 Adaptive Cruise Control scenario considering fuel economy  

The state space equation and cost function of the ACC scenario are established as 

introduced in the Chapter 3. The driving scenario is reported as follows, 

 

 

Figure 39 Adaptive Cruise Control driving scenario 

Given the different initial ego vehicle speeds V0, lead vehicle speeds Vx,lead, and 

initial inter-vehicular distance d1, both of the vehicles will arrive at a known final 

states with ego vehicle speed equals to the lead vehicle speed Vx,lead and a certain 

inter vehicular distance d2. Tests with different initial speed are shown as follows, 
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 (a)Longitudinal displacement   

 

   (b) Longitudinal speed 

 

         (c) Longitudinal acceleration 

Figure 40 Test 1 𝑉𝑑𝑖𝑓𝑓 = 10km/h 𝐼𝑉𝐷 = 50𝑚 



75 
 

 

(a) Longitudinal displacement   

 
(b) Longitudinal speed  

 
(c) Longitudinal acceleration 

Figure 41 Test 2 𝑉𝑑𝑖𝑓𝑓 = 10km/h 𝐼𝑉𝐷 = 70𝑚 
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(a) Longitudinal displacement 

 

(b) Longitudinal speed  

 

(c) Longitudinal acceleration 

Figure 42 Test 3 𝑉𝑑𝑖𝑓𝑓 = −10km/h 𝐼𝑉𝐷 = 50𝑚 
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(a) Longitudinal displacement 

 
(b) Longitudinal speed 

 
(c) Longitudinal acceleration 
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Figure 43 Test 4 𝑉𝑑𝑖𝑓𝑓 = −10km/h 𝐼𝑉𝐷 = 70𝑚 

 

6.2 Performance comparison of DP and common planning algorithm  

Theoretically speaking, the DP method can find the global optimum control sequence. 

Thus, in order to verify the optimality, several other types of mainstream algorithms 

are established to verify the performance of the results obtained from the DP 

controller. 

6.2.1 DP result comparison with polynomial for overtaking scenario 

The polynomial trajectory planning algorithm is adopted to compare the performance 

of the DP off-line algorithm as introduced in chapter 3. First the DP trajectory 

planning algorithm run offline and the optimum overtaking trajectory is determined. 

Then the initial, overtaking, and final position, and the maneuver time of the two 

phases of the DP algorithm will be the input of the polynomial solver. By doing this 

the maneuver efficiency of both algorithms is kept as the same. Finally, the square of 

the accumulation jerk derived from the results of both algorithms are compared. 

The path trajectory is reported as follow. The initial position, overtaking position, 

and final position the both trajectories have the same lateral displacement. 
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Figure 44 Path trajectory comparison 

The history of the side slip angle is reported as, 

 

 

 

 

 

 

 

 

Figure 45 Side slip angle comparison 

From figure above we learnt that at the overtaking position the side slip angle 𝛽 

doesn’t equal to 0 and the peak is also smaller than the trajectory obtained from the 

polynomial solver. While for the second phase the trajectories obtained from both 

algorithms almost coincident. 

 

 DP    DP      Polynomial 

∫|𝑦(𝑡)̈ |2𝑑𝑡 17.6 20.1 

∫|𝑦(𝑡)|⃛ 2𝑑𝑡 32.6 35.3 

 
Table 5 Jerk and acceleration accumulation comparison 

The results show that the DP method could achieve a smaller jerk accumulation, 

which means it has a better performance in terms of comfort. The reason is that it 

could overcome the drawback of the polynomial algorithm. The DP algorithm can 

find an optimum overtaking position as well as the speed and acceleration. While for 

the Polynomial solver this information should be the input and it’s necessary to find 
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a way to define the optimum value. Thus, DP might also be a reasonable candidate 

to solve this problem. 

 

6.2.2 DP result comparison with PID and MPC for ACC scenario 

In order to compare the performance of the speed trajectory planning algorithm DP, 

PID, and MPC. An adaptive cruise control scenario with same initial and final states 

are specified for each condition. Shown as the following table, 

 IVD(m) Vego(km/h) Vlead(km/h) 

Initial condition 70 90 100 

Final condition 60 100 100 

Table 6 ACC scenario initial and final condition 

Then the results obtained from these three different controllers are compared. The 

speed profile and the total fuel consumption are plotted as, 

 

Figure 46 Speed profile of DP and PID controller 
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Figure 47 Fuel consumption plot of DP and PID controller 

 

 

Figure 47 shows that given the same initial and final condition, the MPC controller 

has the highest maneuver efficiency. However, the speed variation is also the highest. 

While the DP controller can achieve a smaller speed variation with the same 

maneuver time compared with the PID controller. 

Even if the MPC controller has the highest maneuver efficiency, figure 48 shows that 

it also has the highest fuel consumption. While the DP controller can achieve the 

lowest fuel consumption. 

In general, the dynamic programming method can possibly achieve a better 

performance in terms of fuel economy and occupant’s comfort. It can be exploited to 

find the optimum control sequence which can be used as a benchmark of the other 

controllers. 

6.3 Rule based real time planner 

6.3.1 Overtaking scenario  

The control sequences obtained from the dynamic programming offline optimization 

under different driving scenario are obtained in chapter 4. Then all the data are 

gathered together and a interpolation algorithm is implemented to tabulate a 2-D look 
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up table based on the DP optimization results, in which the target lateral displacement 

can be found given the current inter-vehicular distance IVD and the vehicle speed 

difference Vdiff. Then a predictive PID trajectory tracking controller is developed to 

control a vehicle dynamic model to follow the trajectory.  

The trajectory planned by the DP off-line optimization, rule-based real-time planner, 

and actual trajectory of the vehicle model are plot on the same figure. The results 

with different initial conditions are shown as follows,  

 

Figure 48 IVD=50m Vdiff=50km/h 

 

 

Figure 49 IVD=50m Vdiff=60km/h 
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Figure 50 IVD=50m Vdiff=70km/h 

 

Figure 51 IVD=50m Vdiff=90km/h 

 

The plot shows that the trajectory generated by off-line dynamic programming, rule-

based controller and ego vehicle model are close to each other but are not exactly 

coincided on the same curve. It’s intuitive that the poor performance of the PID path 

tracking controller results the deviation between the ego vehicle trajectory and the 

trajectory generated by the real-time rule-based planner. While for the deviation 

between the trajectory generated by DP optimization and rule-based planner. There 

are two main reasons. First, during the interpolation process some deviation occurs, 

which makes the 2-D look up table not the same with the results obtained from DP 

optimization. Second, the rule-based trajectory planner will re-plan the trajectory at 

each time instant. Even if the initial state is the same with DP optimization, any 

difference in the state will cause the different planned trajectory, which will further 
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result the difference in the state. Finally, the trajectory obtained from the DP off-line 

optimization will deviate from the trajectory generated by the real-time rule-based 

controller. 

6.3.2 Adaptive cruise control scenario 

Similar as the overtaking scenario, the fuel consumption and the longitudinal speed 

trajectory obtained from off-line DP, rule-based, MPC, and PID are plotted on the 

same figure to compare the performance, the results are reported as, 

 
Figure 52 Fuel consumption of different controllers in ACC scenario 
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Figure 53 Longitudinal speed of different controllers in ACC scenario 

 

The fuel consumption, peak acceleration value, and maneuver time are reported in 

as, 

 𝒎𝒇(kg) 𝒂𝒑𝒆𝒂𝒌 (m/s) t(s) 

PID 0.05176 2.3049 21.07 

MPC 0.04876 1.7658 7.2 

DP 0.04698 1.5600 10.2 

Rule based 0.04856 1.4969 12.07 

Table 7 Performance comparison of different approach 

 

The parameters of the PID controller is tuned to have the best trade-off between 

overshoot and rise time. However, it’s not possible to have the control results close 

to that obtained from off-line DP. And it’s obvious that the PID controller has the 

worst performance, since it has the highest fuel consumption, the highest speed 

variation indicating a poor performance in terms of occupant’s comfort, the longest 

maneuver time representing a poor performance in terms of maneuver efficiency.  

The MPC controller shows a quite good performance. It has the shortest maneuver 

time and lowest longitudinal speed variation. And a better fuel economy compared 

with the PID controller. 

The DP off-line controller achieves a speed profile with the lowest acceleration, 

which is good from the occupant’s comfort point of view. Also, it achieves the best 

fuel economy.  

The rule-based controller is established based on the results obtained solving DP in 

off-line. It’s exploited to express the explicit function between the system’s states 

and the target control input. However, due to the sampling process when establishing 
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the look-up table, some numerical issues occurs making the results of the real-time 

rule-based controller deviated from the DP off-line controller, and the performance 

is also reduced. It’s possible to reduce the deviation by increasing the number of data 

sets obtained from off-line DP, increasing the grid density of the look-up table, or 

adopting better interpolation algorithm during data processing. 

The DP off-line controller achieves a speed profile with the lowest acceleration, 

which is good from the occupant’s comfort point of view. Also, it achieves the best 

fuel economy. 

 

6.4 Conclusion 

In this paper, the possibility of implementing an off-line optimization algorithm 

based on Dynamic Programming in the trajectory planning is studied. Then the 

overtaking and adaptive cruise control scenarios are studied. The vehicle lateral 

model and a longitudinal powertrain model of a hybrid electric vehicle are 

established for each case. Then the DP algorithm is implemented to plan the path 

trajectory and speed trajectory for each case considering the occupant’s comfort, 

maneuver efficiency, collision avoidance, and the fuel economy off-line. Next, the 

results obtained from the off-line DP are processed using an interpolation method 

and the real time controller are established for each scenario. Then it is embedded in 

the loop. Tests with different initial states are run and the effectiveness of the real-

time controller are verified. In order to compare the performance, the polynomial 

algorithm is implemented in the overtaking scenario to compared with the path 

trajectory generated by DP algorithm and real-time rule-based planner. While for the 

ACC scenario a PID and a MPC controller are established to compare the 

performance.  

It’s proved that it’s possible to adopt the off-line DP in trajectory planning for simple 

scenario like overtaking and adaptive cruise control, and established the rule-based 

control based on the results. The rule-based controller can achieve a good control 
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performance at the same time overcome the drawback of computational effort of the 

off-line DP controller. 

However, several aspects could be discussed further regarding this approach. First, 

even the Dynamic Programming is a powerful tool to solve the optimization problem 

of system with multi-states, multi-constraints, and multi-optimization targets. A deep 

comprehending of the vehicle dynamic is required to specify the constraints in order 

to guarantee that the optimization problem is solvable. Thus, a large effort is required 

in tuning of the DP algorithm, especially with increasing the number of the state 

variables. Also, the specification of the sampling time and the whole simulation time 

need to be properly specified. Second, it’s proven that the rule-based controller works 

well in relatively simple scenario with fewer disturbances. However, it’s still 

necessary to verify the effective of the rule-based controller in scenario with fast 

varying real-time disturbances. Finally, the performance of the rule-based controller 

depends on the amount of data obtained from the DP-offline simulation and the 

performance of the interpolation algorithm. A better interpolation algorithm should 

be adopted to reduce the deviation of the rule-based controller from the results 

obtained from off-line DP.  
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