
POLITECNICO DI TORINO

Master of science
in Ingegneria Matematica

Master’s Thesis
Infer causality relationships in the motion of manned

and unmanned vehicles using transfer entropy

Supervisors Candidate
Prof. Alessandro Rizzo Denise Tumiotto
Dr. Stefano Primatesta

Academic Year 2018-2019





To anyone who believed
in me.



Summary

Recently, the interest in autonomous vehicles is steadily increasing. Many studies
are being conducted, and researchers are investigating the relationship between
automatic vehicles and human beings. Those studies focus on the relationship be-
tween autonomous vehicles and pedestrians, or between the drivers of vehicles and
their autonomous counterpart. In fact, the presence of autonomous vehicles on the
road is already a reality in some countries and studying how we can improve their
efficiency is key for future developments in the automotive and robotic fields. In
this thesis, we study the relationship between autonomous and manned vehicles,
since it is unlikely that since the inception of this technology autonomous vehicles
will be the only ones moving on our street grids.
Here, we aim at understanding the causal relationship between unmanned and
manned vehicles. In order to characterize this relationship, we first apply a sym-
bolic analysis to vehicle trajectories and, subsequently, we carry out a transfer
entropy analysis. We define and use many types of symbols to code vehicle tra-
jectories, and we test them, assessing their performance in four different cases:
when the two vehicles proceed along parallel routes, two cases in which two ve-
hicles move in opposite directions, facing each other, and the case in which the
two vehicles intersect their routes. Then, we make a parametric study using one
of the symbols that better performs in the first study. In particular, we analyze
those parameters that characterize each type of symbols and we study how the
transfer entropy varies with the parameters. We obtain interesting results. In our
results, it is clear that approximately two meters before the encounter there is a
flow of information from manned to unmanned vehicle that causes the variation
in the trajectory of the latter. The manned vehicle entails the movement of the
unmanned one, and during the encounter the unmanned vehicle moves away before
the manned one. Indeed, the transfer entropy method is able to detect not only
the instant, but also the direction in the flow of information between the vehicles.
This information allows us to infer the causal relationship between the vehicles.
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Chapter 1

Introduction

1.1 Motivation and related works
Recently, the presence of robots in our daily life is increasing. From the simpler
ones, such as the robotic vacuum cleaner, to the more complex, such as autonomous
cars, see Figure 1.1. This sector of research is called Service Robotics. A service

(a) Robotic vacuum cleaner (b) Autonomous vehicle prototype

Figure 1.1: Examples of different autonomous robots.

robot is a robot that directly interact with humans, offering them services. Usu-
ally, service robots do not perform repetitive tasks as industrial robots. On the
contrary, they operate in a human environment and cooperate with humans. The
dynamic and unstructured environments in which these types of robots work is a
key challenge in research.
Another type of robots are the industrial ones. Many robotic arms help human
work and, in some cases, they totally replace humans. For example, in the auto-
mobile assembly line many tasks, like the welding of the body, the assembly of a
windscreen and the production of many pieces is completely autonomous, Figure
1.2. Nevertheless, there are many issues that remain unknown, and many studies
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Introduction

Figure 1.2: Robotic arms in the automotive industry.

are performed to improve robot interaction with humans and their productivity.
Not only the presence of robots can help humans with their work, but it can also
provide a safer environment. In fact, it is likely to think that the presence of au-
tonomous vehicles on the streets will reduce the number of accidents, even if the
majority of people don’t trust completely this type of transportation.

The importance of trust in human-robot interaction is studied in depth in many
researches. In particular, [1, 2] analyze in different ways the trust issue. The for-
mer approaches the problem from the human point of view, in particular on how
to repair the trust between humans and robots after a major violation by the ma-
chine. The authors propose a study on how the trust can be violated, and a model
of the expected trust repair rate. The second article focuses more on quantify the
trust. First, the authors conduct a meta-analysis of the empirical studies. The
results reveal that human-robot trust is important and it depends on many factors.
In particular, it varies with the robot characteristics, as, for example, performance,
appearance, and proximity. In a second moment, the authors try to measure the
trust. They focus on what they measure, because in the literature there are mul-
tiples type of trust. The authors also ask themselves how to measure the trust

12



1.1 – Motivation and related works

(subjectively, objectively, etc) and when to measure it (prior to the interaction,
during the interaction, after the interaction, multiple times).
Moreover, autonomous cars are useful for many other reasons: they facilitate the
transportation of those people which cannot drive, they decrease congestion and
the number of parking lots, as the vehicle can return autonomously to its starting
location and it will reduce the overbuilding of the areas and, generally, it improves
the quality of life. On the other hand, there are not only positive consequences,
as we well know it is very important to understand if an automatic car can take
the right decision and if there exists always the right decision [3].
The process of decision making is deeply studied and it starts from the understand-
ing of human decisions. In [4], the authors try to generate a human-like motion
planning. To reach this goal they use a game theory approach and, in particular,
they refer to the problem as a game, in which solutions decided by humans are
the Nash equilibria. On the other hand, in [5] they focus on how the automatic
machines should communicate their decisions to humans. In fact, they underline
the importance for humans to understand why a certain decision is taken. Not
only it has to explain why the agents do a certain action, but also it has to explain
what is different from the previous plan, it is called the explainable planning.

1.1.1 Detecting Causality
What we want to add to the existent literature is the answer to the question "Is
it possible to understand the causal relationship between manned and unmanned
vehicles?". The problem is to know who causes the movement of whom in the en-
counter of two vehicles. The study of causality is a problem of central importance,
and understanding why something happens or acts in a certain way is crucial in
many fields of science. For what concern the probability, it is fundamental the
distinction between causality and correlation. In fact, two variables can be cor-
related, but this does not implicate that they are caused by each other. The
causality relationship implies that a certain variable changes its value because of
another one. Correlation does not entail causality: two series can be correlated,
that means they do have a certain relationship, but it is possible that they do not
cause each other, [6]. We will concentrate on causality because we want to detect
it.
In [7], the authors explain in details how the symbolic representation works and
how to apply the causation entropy to it. The evaluation of causality is exempli-
fied using the tent map. In [8], Rounge et al. present different types of causal
inference methods. They start showing the Granger Causality method, which can
detect the causal relationship between stochastic time series only if the relationship
is linear. Its nonlinear counterpart is the transfer entropy method [9]. Another
method is the convergent cross-mapping [10]. In this case, it is necessary to find
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the deterministic nonlinear attractor from the data, and demonstrate that the two
dynamical variables belong to the same dynamical system. Finally, they present
the causal network learning algorithms, as Peter and Clark Algorithm [11], and
the structural causal models, as in [12, 13, 14]. The former are based on the
reconstruction of large-scale causal graphical models, with two assumptions: the
Markov condition and the Faithfulness assumption, [15]. The latter methods are
able to discover causality even when the causation occurs instantaneously, because
assumptions on the class of the model are made.

1.1.2 Using Transfer Entropy
The transfer entropy method is one of the most accredited and used in the liter-
ature. This method was never used for the purpose we aim to achieve, but it is
well tested in many other fields.
In [16], transfer entropy is used to determine in an experiment with a zebrafish
and a robotic replica which is the leader. In the experiment the two fish, one
real and one robotic, move in two different portions of the same aquarium. Their
trajectories are coded with a symbolic analysis [17] and, then, the transfer entropy
is evaluated to determine which fish follows the other and understand who is the
leader.
The same method is applied to a different field in [18]. Here, the authors focus
their work on the policy diffusion in USA, represented as a network in which each
node is a State and the links between nodes represent information flows. This
is a problem of network reconstruction. They demonstrate that transfer entropy
quantifies the information transferred between nodes, and it is possible to predict
the causal relationship in policymaking.
Another field in which transfer entropy reveals efficient is neuroscience. For ex-
ample, in [19] transfer entropy is used in contrast with Granger Causality and
the dynamic causal modeling. Both are alternative methods to evaluate causality,
but they both require previous knowledge of the network and input. Moreover,
Granger Causality is not able to detect a nonlinear causal relationship. The au-
thors prove that transfer entropy is able to overtake those a priori problems.
Moreover, in [20] the authors actually demonstrate that Granger Causality and
transfer entropy are equivalent measures for Gaussian variables.
In conclusion, given the good results in different fields, we decide to use trans-
fer entropy for this study. Here, we want to understand the causal relationship
between manned and unmanned vehicles. Using transfer entropy we are able to
tell, during the encounter of the vehicles, which one causes the maneuver of the
other. We analyze four different scenarios: two scenarios in which the trajectories
have opposite direction; one scenario with two parallel trajectories; and, finally, a
scenario in which the two trajectories intersect.
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1.2 – Thesis outline

1.2 Thesis outline
In this section we describe the organization of this thesis. It is mainly divided into
two bigger chapters and a last one dedicated to the conclusions.

• In chapter 2 we describe the mathematical tool in details, such as what
symbols do we use and we give the definition of transfer entropy. Moreover, we
explain how transfer entropy is evaluated and used to find causal relationship.
We present symbol coding systems that use up to six different symbols. For
each one we give an example to understand how we used it;

• In chapter 3 we introduce ROS, Robot Operating System, used to execute
the experimental simulation. We adopt it to perform our simulations and to
extract the data. We present the simulations we made, studying first which
symbol system performs better and, then, we propose a parametric study
using the selected symbols in the previous part. Therein, we explain and
interpret the obtained results;

• Finally, in chapter 4 we discuss a possible future development using the
study done in this thesis. We discuss about a possible development of the
work, and possible future applications.

15



16



Chapter 2

Methodology

The mathematical tools for analyzing our problem are most of all two: the symbolic
analysis and the use of transfer entropy. The first one is very valuable to analyze
a dynamical system simplifying the expression of it. The second one is one of the
main tools to understand the causality between coupled dynamical systems.
We now describe in details them, focusing on how they will be used in the following
chapter.

2.1 Symbolic analysis
The symbolic analysis aims to simplify the given data. Using a symbol instead
of a pair of coordinates improves the way in which the data can be used. In
fact, some properties are highlighted by the frequency of the symbols, and that is
why it is simpler to analyze them. As defined in [7], the symbolization discretizes
a continuous variable in a finite partition of the space. That means that if we
indicate the space with M a partition is

M =
m⋃
i=0

Ai

where A = {A0, . . . , Am} is a finite set of disjoint open sets.
In our case we collect the trajectory as x− and y− coordinates at discrete time
steps of 4 Hz each, then we elaborate this data to work easily with them. In
the following, we will identify the partition and then we propose an explanatory
example.

2.1.1 Symbol 1
The first used approach is based on the symbolic trajectories presented by [16].
We consider a time series of coordinates, where a coordinate (xt, yt) is the position
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Methodology

of the robot at time t. First of all, we compute the ideal trajectory having as
starting point (x1, y1) and a fixed goal (xn, yn), where n is the number of total
time steps. Then, we choose a positive integer m� n, and we select m time steps
from (xk, yk) to (xk+m, yk+m). For each position we determine the distance d from
the ideal trajectory

dk = |axk + byk + c|√
a2 + b2

(2.1)

where a, b, c are the coefficients of the line ax + by + c = 0 that determines the
ideal trajectory. After that, we associate a symbol i with the following conditions:

1. dt+i1 ≤ dt+i2 ≤ · · · ≤ dt+im

2. is−1 < is if dt+is−1 = dt+is

The partition is the collection of m! tuples originated from the permutation of the
digits {0, . . . ,m}. In Figure 2.1 a graphical representation of the reworking of the
data is depicted.

Figure 2.1: A portion of trajectory to identify the distance used for determine the
Symbol 1. In red the ideal trajectory.

Example 1

Suppose to have the following positions: X = (1, 3, 4, 6, 7, 8, 9) and Y =
(2, 4, 3, 5, 3.5, 1.5, 2). In Figure 2.2 is represented the trajectory. The ideal
trajectory in this case is the segment from x = 1 to x = 9 in the line y = 2.
Let’s fix m = 3, so the total symbol are m! = 3! = 6. In this example the
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2.1 – Symbolic analysis

distance is d = |yk − 2|. So we first focus on the coordinates (1; 2), (3; 4), (4; 3),
the respective distances from the ideal trajectory are d1 = 0, d2 = 2, d3 = 1, and
the symbol that follows the previous rules is (0,2,1). The second coordinates in
exam are (3; 4), (4; 3), (6; 5), with distances d2 = 2, d3 = 1, d4 = 3, so the symbol
will be (1,0,2). The following symbols are evaluate in a similar way and they are
s = ((0 2 1), (1 0 2), (0 2 1), (2 1 0), (2 1 0)), as shown in Figure 2.3.

Figure 2.2: Example of a trajectory.

2.1.2 Symbol 2
The second approach is based on the work proposed in [21]. We evaluate the
relative distances (σi) as

σi =

√
(yi+1 − yi)2 + (xi+1 − xi)2

maxi∈{1,...,n}(
√

(yi+1 − yi)2 + (xi+1 − xi)2)
(2.2)

where (xi, yi) is the position of the vehicle at the i − th step and the movement
directions (θi) is calculate with the following formula

θi =


arctan

(
yi+1−yi

xi+1−xi

)
xi+1 − xi ≥ 0

arctan
(
yi+1−yi

xi+1−xi

)
− π xi+1 − xi < 0 and yi+1 − yi ≤ 0

arctan
(
yi+1−yi

xi+1−xi

)
+ π xi+1 − xi < 0 and yi+1 − yi > 0

(2.3)
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Methodology

Figure 2.3: Example of symbols considering the trajectory of Figure 2.2. m = 3
and the ideal trajectory is y = 2 (the black line). The symbols are given evaluat-
ing the distance of each points from the ideal trajectory and then ordering those
distances in increasing order.

The relative distances and the movement directions take value respectively in [0,1]
and [−π, π]. Both σ and θ are graphically detailed in Figure 2.4. At this point we

Figure 2.4: A portion of trajectory to identify the distance and the angle used for
determine the Symbol 2.
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2.1 – Symbolic analysis

give two values εdist and εdir, and they are used to divide the intervals, 2π/εdir ×
1/εdist, obtaining a matrix as in Figure 2.5. In this way the symbol is defined by
the number associate with the coordinate (θi, σi). Suppose to consider the example

Figure 2.5: On the x-axis the movement direction with step εdir = π/2, on the
y-axis the relative distance with step εdist = 0.25.

1, shown in Figure 2.2. If we fix εdir = π/2 and εdist = 0.25, then the number of
symbol are 2π/εdir × 1/εdist = 4 · 4 = 16. The first movement direction is

θ1 = arctan(4− 2
3− 1) = π

4 ;

while the first relative distance is

σ1 =

√
(4− 2)2 + (3− 1)2

2
√

2
= 1.

The couple (π/4, 1) corresponds in Figure 2.5 to the symbol "15". Similarly, the
following symbols are, and for the cited example the symbolic trajectory will be
s = (15, 6, 15, 10, 14, 7).
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2.1.3 Symbol 3
This type of symbol is a different approach that emulates the Symbol 2. Using as
before the coordinates (xi, yi), we evaluate the ideal trajectory, that is the straight
line from the starting position to the goal, determined by the last position in the
vector of coordinates. We establish the angle between the actual trajectory, with
slope mi, and the ideal one, with a slope of mideal

θi =
| arctan(mi)− arctan(mideal)| mi ·mideal > 0
| arctan(mi)|+ | arctan(mideal)| mi ·mideal ≤ 0

(2.4)

and we evaluate the relative distance, as in equation (2.2). In this case the
movement direction θi is always positive and it takes values in [0, π]. Again, in
Figure 2.6 is illustrated the representation of the data in a portion of a possible
trajectory. As before, we fix εdir and εdist and, then, we associate a symbol that

Figure 2.6: A portion of trajectory to identify the distance used for determine the
Symbol 3. In red the ideal trajectory.

corresponds to one of the entry of a matrix similar to the one in Figure 2.5.
Specifically, the interval is [0, π] and the related matrix is reported in Figure 2.7.

Referring to the example 1, we now evaluate the symbols with the last described
approach. In this specific case the ideal angle is zero, and the angle between the
actual trajectory and the ideal one is simply the absolute value of the angle defined
by the trajectory with the x-axis. Let’s fix εdir = π/4 and εdist = 0.25, then the
number of symbol are π/εdir×1/εdist = 4 ·4 = 16. The first couple of value (θ1, σ1)
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Figure 2.7: On the x-axis the movement direction with step εdir = π/4, on the
y-axis the relative distance with step εdist = 0.25.

is
θ1 = arctan

(4− 2
3− 1

)
= π

4 ;

σ1 =

√
(4− 2)2 + (3− 1)2

2
√

2
= 1.

Even if the couple is exactly the same as before the symbol is different. In fact, the
matrix has different axis and the values are shifted. The first symbol is 13 and the
string of all the symbols that describe the trajectory is s = (13, 5, 13, 10, 14, 5).

2.1.4 Symbol 4
This symbol is determined using a process similar to the previous symbol. The
movement direction θi is the same evaluated in equation (2.4). This time the
relative distance is the distance between each point and the ideal trajectory

σi = |axi + byi + c|√
a2 + b2

(2.5)
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where a, b and c are the coefficient of the line ax + by + c = 0, that identifies
the ideal trajectory. With this type of symbol we focus on how much the vehicle
diverges from the trajectory. In Figure 2.8 we individuate the distance and the
angle on a portion of a possible trajectory, in order to show how the data are
manipulated. Even if the relative distance is different, the matrix which contains

Figure 2.8: A portion of trajectory to identify the distance and the angle used for
determine the Symbol 4. In red the ideal trajectory.

the symbol is the same shown in Figure 2.7. Anyway in this specific case the y-axis
correspond to the distance from the ideal trajectory at the end of the run segment
instead of the actual distance traveled.
Evaluating, as before, the symbols for the example 1 we obtain the following
symbolic vector s = (9, 5, 13, 6, 2, 1). In this case, fixing εdir = π/2 and
εdist = 0.25, the number of symbol are 2π/εdir × 1/εdist = 4 · 4 = 16 again. In
Figure 2.9 is shown the angle θ and the distance σ.

2.1.5 Symbol 5
This type of symbol is simpler than the others, and it takes into consideration
only the distance from the actual trajectory to the ideal trajectory. In particular,
the distance is divided into discrete steps. Each step has a different symbol, from
zero, if the vehicle is very close to the ideal trajectory, up to three if the vehicle is
getting far away to the ideal trajectory.
It is evident that this symbol is not very specific and it simplifies a lot, maybe too
much, the trajectory losing much information. In the following chapter, we will
study how those symbols perform and it would be clear how many information we
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2.1 – Symbolic analysis

Figure 2.9: For each portion of the trajectory represented in Figure 2.2, the relative
distance σ and the movement direction θ are shown, based on the proposed method
to compute the Symbol 4.

need to keep in order to have useful data.
As before, we refer to example 1 in order to better explain how the symbol works.
In Figure 2.10 we can obtain graphically the symbolic vector s = (0, 2, 1, 3, 1, 0, 0).
We underline a few things: first of all, when a position is exactly on the border
to the new value it takes the bigger value, on the other hand being over or under
the ideal line it doesn’t change the value of the symbol, instead the symbols are
symmetric with respect to the ideal trajectory. This means that even if we know
how far, more or less, the vehicle is from its ideal trajectory we don’t know which
direction it takes.

2.1.6 Symbol 6
Finally, we derived a last symbol, which is different but related to the previous ones.
In particular, we define it as a 3-dimensional symbol, just because we evaluate not
only relative distances and movement directions, but also the velocity. In fact,
the third value evaluates the distance traveled from each point and the next one.
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Figure 2.10: The symbols {0, 1, 2, 3} are given by the position with respect to the
ideal line.

Hence, each point corresponds at the same period of time and the space traveled
corresponds to the scaled velocity. Summarizing, we evaluate the relative distances
as in equation (2.5), the movement direction as in equation (2.4) and the scaled
velocity (vi), as

vi =
√

(yi+1 − yi)2 + (xi+1 − xi)2 (2.6)

As in the previous symbols, in Figure 2.11 we illustrate the symbol, highlighting
the parameters used to compute the symbol 6. After evaluating all the data, we
associate a number, which will be the symbol for the segment, starting with a sort
of three-dimensional matrix as in Figure 2.12. In this case, even the evaluation
for a simple case as the example 1 it is not trivial. Fixing εdir = π/2, εdist = 0.25
and εvel = 0.25, we obtain a total number of symbols of 2π/εdir× 1/εdist× 1/εvel =
4 · 4 · 4 = 64. If we calculate the first values we obtain

θ1 = arctan
(4− 2

3− 1

)
= π

4

σ1 = 2
3

v1 =

√
(4− 2)2 + (3− 1)2

2
√

2
= 1

The corresponding symbol is 57, the following are s = (57, 21, 61, 38, 50, 17).
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2.1 – Symbolic analysis

Figure 2.11: A portion of trajectory to identify the distance, the velocity and the
angle used for determine the Symbol 6. In red the ideal trajectory.

Figure 2.12: The three axis are respectively the Relative Distance (σ), the Move-
ment Direction (θ) and the Scaled Velocity (v). The steps in which every dimen-
sions is plitted are respectively εdist = 0.25, εdir = π/4, and εvel = 0.25.

We observe that in Symbol 1 the total number of symbols used in order to
describe the trajectory is n −m + 1, where n is the total number of elements in
the time series and m is the integer that divides the series. In Symbol 5 there are
exactly n symbols. In the others, the number of symbols needed for completely
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describes the trajectory is n − 1. We can suppose that the first one could be
more solid even if less accurate than the others, while the fifth could be too much
sensible to differences in trajectory.

2.2 Transfer Entropy
Transfer entropy is a non-parametric measure of directed, asymmetric information
transfer between two processes. In particular, it can be used for coupled dynamical
systems in order to identify the direction of information flow and to infer which
process causes the other. In this work, we want to understand how many infor-
mation the two robot exchange and, if possible, which one influence the motion of
the other.
For this purpose, let s be the vector with all the symbols of the time sequence and
γ a symbol of the space Γ, the space with all the possible symbols. We define the
probability of each symbol in the sequence as

p(γ) = ]{si is of type γ}
]{s}

(2.7)

where ] is the cardinality of the set. This value, p(γ) is actually the frequency
of the symbol γ. Since we do not know the relation in the movement of the
robots, evaluating the frequency of the symbols is the only way to determine the
probability of them.

Using the equation (2.7), the Shannon entropy, [9], can be defined as

h(s) = −
∑
γ∈Γ

p(γ) log(p(γ)). (2.8)

In equation (2.8) the logarithm has base e, then the unit of measure will be nat.
In case of a base 2, the unit of measure would have been bit. This value is always
non-negative. Indeed, since p(γ) ≤ 1 the logarithm will always be non-positive,
and the minus before the sum permits the entropy to have a non-negative value.
Anyway, we are more interested in calculating the permutation transfer entropy
[pTE] from one sequence {yi} to another {xi}. In fact, this value quantifies the
information flow between the processes. If pTE is different from zero it means that
knowing the process y helps to understand and predict the process x. On the other
case, if the pTE is null it means that the process y doesn’t add any information
to the process x. The formula to derive the pTE is

pTEy→x = h(xt|xt−1)− h(xt|xt−1, yt−1) (2.9)
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2.2 – Transfer Entropy

where h(·|·) is the conditional permutation entropy. Given the joint probability
p(xy, yt) the conditional permutation entropy is calculate as follow

h(xt|yt) = h(xt, yt)− h(yt) (2.10)

This value represents how much uncertainty the knowledge of the sequence xt has,
knowing the sequence yt.

Since we want to understand the causal relationship between vehicles, we decide
not to evaluate the transfer entropy of the whole trajectory but using only parts
of the data. In the dynamical window approach, we account as useful data only
those data that refer to the interaction between the vehicles, or in our case the
two robots. In order to cut the data in smaller parts, we fix a dimension ∆ of the
window and we evaluate the pTE of the data xi · · ·xi+∆. With this process, we
intend to estimate the instantaneous pTE. In fact at time t we can observe the
∆ previous positions and with them compute the pTE at that time, if its value is
different from zero it means that there was a passage of information in the previous
time steps.
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Chapter 3

Simulations and Results

In this chapter, we firstly present the simulation environment and, then, all the
studies we made and the results we obtained. In the first part, we describe the
two tools for the simulations, ROS and Gazebo. After, we compare the symbols,
how they perform and which results they give in terms of transfer entropy. In the
third part, we made a parametric study of the parameters that characterize the
best symbols, derived from the previous section. Finally, we give a summary of
the results, along with a discussion of what we obtained.

3.1 Simulation Environment
We perform the simulations, made to validate the proposed approach, using two
software: ROS and Gazebo. In this section, we will describe them without entering
too much in technical details.

3.1.1 ROS: Robot Operating System
The Robot Operating System (ROS) is an open-source meta-operating system for
robot software development [22, 23]. It provides hardware abstraction, low-level
device control, message-passing between processes and package management [24].
At the moment, ROS is the most popular robotic framework, and the reason for
its popularity has to be reached in its philosophical goals.
First of all, it is based on a peer-to-peer network. In this network each ROS
process is called node, and it communicates with the other nodes thanks to two
communication models: topics or services. The former is based on the model in
which each node can be publisher or subscriber of a series of topics, the latter is
used for synchronous transactions, i.e. a directed communications between nodes.
The second philosophical goal is lingual independence. Indeed, the ROS code
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can be implemented with different coding languages, such as C++, Python, Lips.
Finally, it is free and open-source, this means that the full source code is publicly
available. Moreover, it is tool-based, i.e. every system built on ROS is made
of multiple components. In particular, each node is part of a package, and each
package is part of a stack. The navigation stack, one of those stack, will be
discussed later in this section.

3.1.2 Gazebo simulator
Gazebo is a robot simulator, it offers the possibility of simulate populations of
robots in complex indoor and outdoor environments [25]. It has some interesting
feature, such as dynamic simulations of physic engines, robot models, high-quality
graphics even in three dimensions, it could be used on the cloud and it is free.
For our work, it is important to underline the possibility to use ROS in a Gazebo
simulation. In Figure 3.1 the ROS’s packages used by Gazebo are presented. They
provide the necessary interfaces to simulate a robot in Gazebo using ROS messages
and services.

Figure 3.1: ROS packages for the Gazebo interface.
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3.1.3 ROS navigation stack

One of the most important stack in ROS is the navigation stack that provides au-
tonomous navigation task to a robot. The 2D navigation stack takes in information
from odometry and sensor streams. Given a goal pose, the Navigation Stack de-
termines safe velocity commands that are sent to a mobile base [26] providing the
motion from the current robot position and the desired goal pose. It means that
an autonomous robot can be modeled and simulated. Nevertheless, in order to
move correctly we have to find the answers to three main questions: where is the
robot?, where is it going?, and how does it get there?. The solution is shown in
Figure 3.2. Starting from the left, the sensors permit to sense of the environment.

Figure 3.2: The see-think-act cycle. Image from [27]

Sensors data are used to create the map of the environment with the so-called
SLAM (Simultaneous Localization and Mapping) algorithms or, if the map is al-
ready created, provide the localization task, i.e. the estimation of the robot pose in
the map. Knowing the position on the global map and given the goal position, the
path planning searches for the path to reach the target avoiding obstacles detected
by sensors. This path is executed by a motion control algorithm that computes
the control commands to the actuators and, as a consequence, moves the robot.
This cycle, called see-think-act, continues until the robot reaches the goal posi-
tion. This stack allows the simulation of the autonomous robots in a predefined
environment.
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3.1.4 Experimental simulations
We perform a simple simulation in which two robots navigate in the same environ-
ment interacting with each other. The first robot is an unmanned one, controlled
by an autonomous navigation algorithm provided by the ROS Navigation Stack.
The other robot is manned, i.e. it is moved by a human using a teleoperation ROS
node, using the arrow keys on the keyboard. Both robots are Turtlebot 2 robots.
Turtlebot 2 is a mobile robot with differential drive equipped with several sensors,
such as a Microsoft Kinect depth camera, IMU (Inertial Measurement Unit), wheel
encoders, etc. In Figure 3.3 both the real and the simulate Turtlebot 2 are shown.
For the simulation, we use the tools described in the previous sections. In par-

(a) Real Turtlebot 2. (b) Simulated Turtlebot 2.

Figure 3.3: In (a) the real Turtlebot 2 robot, while in (b) the simulated robot in
the Gazebo simulator.

ticular, both the Gazebo and ROS have a graphical user interface that allows to
follow the simulation directly from the screen. In Figure 3.4(a) is illustrated a
screen of the simulation in Gazebo, while in Figure 3.4(b) the same scenario is
reported by the RViz tool, a ROS topic visualizer, that allows to show topic data
in a graphical interface. Moreover, this is the starting position for the simulation
we will describe in the following lines.
Many simulations are performed, but the most interesting one is the test where

the two robots move with opposite trajectories and they face each other. To do
this, we fixed the goal position of the robot to be coincident with the start position
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(a) Screen of the simulation in Gazebo.

(b) Screen of the simulation in ROS.

Figure 3.4: Comparison between the two simulator environment.

of the opposite robot. The ideal path is the line that links the two starting points,
for both robots. During the simulation, they start to modify their path in order
to avoid the other robot. Until they met and avoid each other, as illustrated in
Figure 3.5a and Figure 3.5b. Finally, they can proceed without any obstacles until
they reach the goal positions, as in Figure 3.5c.
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(a) Experimental simulation: approach.

(b) Experimental simulation: encounter.

(c) Experimental simulation: departure.

Figure 3.5: Experimental simulation.

36



3.2 – Different symbol approaches

3.2 Different symbol approaches
In order to compare the results, we made several simulations, many with the same
scenario. For every simulation, we collect the data as the position (x, y) of each
vehicle at discrete time steps with a fixed frequency of 4 Hz. The frequency is
chosen taking into account the variability and dynamic of the setup. In our case,
the two robot have a maximal velocity of 0.2 m/s. A lower frequency could cause
the loose of too many information, while a higher frequency would add noise to
the data. Anyway, having such a small distance between two consecutive position
allows us to approximate the trajectory between two consecutive points with a line
without losing information. We apply the symbolic study and then we compute
the transfer entropy as presented in chapter 2. We underline the value of parame-
ters. The width of the window for the evaluation of the pTE is ∆ = 30, in Symbol
1 we fix m = 4, for Symbol 2, 3, 4 and 6 we fix εdist = 0.2, εdir = π/6, εvel = 0.2,
finally for Symbol 5 we set the dimension of the bands to d = 0.05. Moreover we
want to specify that the first and last values are not interesting and useful, in fact,
it can happen that one of the vehicles already stopped and the other one didn’t.
All the values are fixed after an accurate empirical work.

The first scenario is the simplest one: two vehicles proceed with parallel trajec-
tories, as in Figure 3.6. In blue the trajectory traveled by the unmanned vehicle
and in red the trajectory of the manned vehicle. In this case, we expect to see
no relationship between the two vehicles. They move independently and they do
not change any information. In fact, the task for each vehicle is to reach the goal
and it is not to maintain the same distance from the other vehicle, in which case
we expect the transfer entropy to be different from zero. In Figure 3.7 and 3.8
we can observe the permutation transfer entropy [pTE], in blue the pTE from the
manned vehicle to the unmanned one [pTEm→u] and in violet the pTE from the
unmanned vehicle to the manned one [pTEu→m]. As we expected all the values
are zeros, except for the first two symbols. The reason is the way in which the
symbols are evaluated. Indeed the Symbol 1 will have a different n-tuple even for
small displacements from the ideal trajectory, while the Symbol 2 does not refer
to the ideal trajectory and even a small change in the angle will be noticed.

The second scenario, in Figure 3.9, represents the manned vehicle traveling on
its route without changing it, and the unmanned vehicle turns in order to avoid
the manned vehicle. As before the red line represents the manned vehicle, and it
starts to the left and it goes to the right direction, while the blue line represents
the route of the unmanned vehicle, which starts in the right position and it travels
through the left direction. In order to better understand the results, we plot the
data differently. In Figure 3.10 the x-axis represents the time steps instead of the
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Figure 3.6: The axes are the x and y coordinates and they are measured in meters.
In blue the unmanned vehicle, it starts to the left and it goes in the right direction;
in red the manned vehicle, as the unmanned one it starts on the left and it routes
towards the right direction. For both the robots the starting point is the green
square and the goal is the black circle.

space, using this type of representation we are able to select the exact time step
in which the unmanned changes its position and, subsequently, we can observe if
there are any differences in the value of the entropy. Having the same parameters
used in the previous case, we analyze the results. Figure 3.11 and 3.12 shows the
pTE, in blue the pTE from the manned to the unmanned vehicle, in violet on the
contrary the pTE from the unmanned to the manned vehicle. All the parameters
are fixed as before. We observe that the Symbol 1 reports, as we expect, a positive
value in the pTEm→u around t = 55. In fact, if we focus on Figure 3.10, the turn
in the unmanned trajectory is at time t ∼ 55. The other positive values appear
when the two vehicles already pass each other, then we can conclude that they do
not give us any information. The Symbols 2, 3 and 6 give similar results with the
strong presence of a positive component of the pTEu→m. We explain this value ob-
serving the velocity of the unmanned vehicle. In fact, the velocity of the unmanned
vehicle changes much more than the velocity of the manned one, and those three
symbols are the only one which takes in account the velocity. Moreover, we can
observe that after t ∼ 80 − 100 the pTE become zero in both the directions. We
expect this result observing the trajectory. Indeed they both proceed in opposite
directions without causing the movement of the other.

The third scenario is similar to the second one, but, in this case, the manned
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Figure 3.7: The permutation transfer entropy [pTE] for the parallel scenario, sym-
bols from 1 to 3. In blue the pTE from the manned to the unmanned vehicle, in
violet the pTE form the unmanned to the manned vehicle. The parameters are
∆ = 30, m = 4, εdist = 0.2, εdir = π/6, εvel = 0.2, d = 0.05.
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Figure 3.8: The permutation transfer entropy [pTE] for the parallel scenario, sym-
bols from 4 to 6. In blue the pTE from the manned to the unmanned vehicle, in
violet the pTE form the unmanned to the manned vehicle. The parameters are
∆ = 30, m = 4, εdist = 0.2, εdir = π/6, εvel = 0.2, d = 0.05.
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Figure 3.9: The axes are the x and y coordinates and they are measured in meters.
In blue the unmanned vehicle, it starts to the right and it goes in the left direction;
in red the manned vehicle, opposite to the unmanned one it starts on the left and
it routes towards the right direction. For both the robots the starting point is the
green square and the goal is the black circle.

Figure 3.10: The x-axis is the time and the y-axis is the value of the y-coordinate
measured in meters as before. In blue the unmanned vehicle; in red the manned
vehicle.
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Figure 3.11: The permutation transfer entropy [pTE] for the second scenario,
symbols from 1 to 3. In blue the pTE from the manned to the unmanned vehicle,
in violet the pTE form the unmanned to the manned vehicle. The parameters are
∆ = 30, m = 4, εdist = 0.2, εdir = π/6, εvel = 0.2, d = 0.05.
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Figure 3.12: The permutation transfer entropy [pTE] for the second scenario,
symbols from 4 to 6. In blue the pTE from the manned to the unmanned vehicle,
in violet the pTE form the unmanned to the manned vehicle. The parameters are
∆ = 30, m = 4, εdist = 0.2, εdir = π/6, εvel = 0.2, d = 0.05.
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vehicle tries to avoid the unmanned while the unmanned try to avoid the manned
one. We present the data both with the x- and y-axis as the coordinates in meters,
Figure 3.13, and with the x-axis that represents the time, Figure 3.14. We can

Figure 3.13: The axes are the x and y coordinates and they are measured in meters.
In blue the unmanned vehicle, it starts to the right and it goes in the left direction;
in red the manned vehicle, opposite to the unmanned one it starts on the left and
it routes towards the right direction. For both the robots the starting point is the
green square and the goal is the black circle.

notice, in Figure 3.15 and 3.16, that using ∆ = 30 the Symbol 1 is not able to
detect the flow of information at time t = 60. On the contrary, all the other sym-
bols detect the flow of information when the unmanned turns. We also see that
the value of the pTE is higher than before, we expect it to be higher because the
trajectory deviates more from the ideal trajectory. Focusing on who causes who,
we notice that in the last four symbols the pTEm→u is the first one which changes
its value from zero to a positive one. Given many other simulations, we can infer
that this means that the manned vehicle causes the turn in the unmanned trajec-
tory. The following higher value in the pTEu→m is most probably due to the fact
that the unmanned trajectory is more irregular and it is more difficult to explain
it starting from what we know of the manned trajectory. Or, in other words, the
irregularity in the unmanned trajectory sends more information to the manned
vehicle rather than the number of information that the manned sent to the un-
manned one. For this reason, is easier to explain the movement of the manned
knowing the unmanned than otherwise.

Finally, we present the same study with a new scenario. In Figure 3.17 the
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Figure 3.14: The x-axis is the time and the y-axis is the value of the y-coordinate
measured in meters as before. In blue the unmanned vehicle; in red the manned
vehicle.

unmanned and the manned vehicles intersect their routes. The red line, cor-
responding to the manned vehicle, start from left and travel towards the right
direction, the blue line, corresponding to the unmanned vehicle, do the same, but
it has its goal on the opposite side. The two vehicles are obliged to cross the path
of the other. This simulation appears more irregular and we expect a higher value
of the pTE. Even in this case, we prefer to plot the data along the time axis in
order to better understand the pTE values. We now focus on Figure 3.19 and
3.20, the parameters remain the same as the previous simulations. We notice the
big difference between a symbol an another. In fact, the Symbol 1 almost does
not detect any flow of information, the value of the pTE is very low. The most
reasonable explanation is that the number of times in which the vehicle moves
away or approaches the ideal trajectory is low and the position is almost the same
during all the trajectory. With the other symbols, it is relatively difficult to say
which vehicle causes the other, they both change information with the other, but
probably there is not one who obliges the other to change its route. Only using
Symbol 3 we can actually observe a major flow of information from manned to
unmanned vehicle.

Using the pTE we are able to detect when a movement is caused by the other
vehicle and when it is not. In fact in the second and third cases when the vehicle
makes the turn the pTEm→u has a peak, with almost every symbol. Another
important consideration is that after a certain point, in particular, the point in
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Figure 3.15: The permutation transfer entropy [pTE] for the third scenario, sym-
bols from 1 to 3. In blue the pTE from the manned to the unmanned vehicle, in
violet the pTE form the unmanned to the manned vehicle. The parameters are
∆ = 30, m = 4, εdist = 0.2, εdir = π/6, εvel = 0.2, d = 0.05.
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Figure 3.16: The permutation transfer entropy [pTE] for the third scenario, sym-
bols from 4 to 6. In blue the pTE from the manned to the unmanned vehicle, in
violet the pTE form the unmanned to the manned vehicle. The parameters are
∆ = 30, m = 4, εdist = 0.2, εdir = π/6, εvel = 0.2, d = 0.05.
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Figure 3.17: The axes are the x and y coordinates and they are measured in meters.
In blue the unmanned vehicle, it starts to the left and it goes in the right direction;
in red the manned vehicle, as the unmanned one it starts on the left and it routes
towards the right direction. For both the robots the starting point is the green
square and the goal is the black circle.

Figure 3.18: The x-axis is the time and the y-axis is the value of the y-coordinate
measured in meters as before. In blue the unmanned vehicle; in red the manned
vehicle.
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Figure 3.19: The permutation transfer entropy [pTE] for the fourth scenario, sym-
bols from 1 to 3. In blue the pTE from the manned to the unmanned vehicle, in
violet the pTE form the unmanned to the manned vehicle. The parameters are
∆ = 30, m = 4, εdist = 0.2, εdir = π/6, εvel = 0.2, d = 0.05.
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Figure 3.20: The permutation transfer entropy [pTE] for the fourth scenario, sym-
bols from 4 to 6. In blue the pTE from the manned to the unmanned vehicle, in
violet the pTE form the unmanned to the manned vehicle. The parameters are
∆ = 30, m = 4, εdist = 0.2, εdir = π/6, εvel = 0.2, d = 0.05.
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which they surpass each other, the value of pTE loses its importance. In many
cases it goes to zero as expected, in other cases due to changes in the trajectory
it remains positive, but without any connotation. We also observe that the most
significant symbols are the Symbol 1 and the Symbol 6, that is why we choose
those two symbol for the following study, i.e. the parametric analysis. Studying
more deeply the performance of the symbols we realize that a bigger width of the
transfer entropy window is preferable, so in the following, we fix it to ∆ = 40.

3.3 Parametric study
In this section, we will analyze the trend of the pTE changing some parameters.
We will use only the Symbol 1 and the Symbol 6 apply to the second case of study,
see Figure 3.9. We also fix the width of the pTE window, ∆ = 40.

For the Symbol 1 the only parameters which can vary is m. In Figure 3.21 there
are the results of four different values of m, i.e. m = 4, m = 6, m = 10, m = 20.
First of all we notice that increasing the parameter m means to increase the num-
ber of total possible symbols. In fact, with this type of symbol the possible symbols
are m!, i.e. the tuples containing all the permutation of the numbers {1, . . . ,m}.
The increasing number of symbols make the trajectory more irregular in its sym-
bolization and the value of the transfer entropy increases. In fact, for simplicity
we already display in Figure 3.21 the values of pTE at the same point, showing
that this value is increasing with m, that is with the number of symbols. After
this consideration, with the help of Figure 3.22, we observe that the moment in
which the pTE from manned to unmanned has its first peak shifts. For example,
the point at t = 55 is the moment in which the unmanned has its turn, see Figure
3.22(b). Using the Symbol 1 we detect the turn m time steps before it happens,
but it is actually due to the way in which the symbol is evaluated. Indeed, each
symbol takes into account m time steps. Now we focus on the second peak, the
one in the pTE form unmanned to manned. We notice, thanks to Figure 3.22(a),
that at this point t = 98 the two vehicles already surpass each other. It is very
unlikely that the two robots have got a change of information at this point. We
believe that the values from this point on are no longer significant to determine
the causal relationship between the vehicles.

Using the Symbol 6 we can study the effect of three parameters: εdist, εvel,
εdir. Changing those parameters, as changing m in Symbol 1, means to change
the number of total possible symbols. In fact, if εdist decreases it means that the
number of subdivisions increases and so do the total symbols. For this type of
symbols the total number of symbols is 1

εdist
× 1

εvel
× π

εdir
.
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Figure 3.21: pTE varying the value of the parameter m. In blue the pTE from
manned to unmanned, in violet the pTE from unmanned to manned.

We start focusing on the first parameters: εdist. In Figure 3.23 there are four
different value of it, i.e. εdist = 0.5, εdist = 0.2, εdist = 0.1, εdist = 0.01, it means
that we subdivide the interval of the distance from the ideal trajectory in two, five,
ten or one hundred parts. As well as the Symbol 1 the increasing in the number
of total symbols corresponds to an increase in the value of the transfer entropy
both from manned to unmanned and in the opposite direction. Nevertheless due
to the fact that the manned robot differs little from the ideal trajectory the pTE
value from manned to unmanned increases very little compared to the pTE from
unmanned to manned. Moreover, there is a threshold over which the pTE does
not have any significance. In Figure 3.23 the last plot is extremely confusing and
it does not give us any information. We notice that even in this case the time
in which the pTE from manned to unmanned has the first peak is detected more
rapidly with a greater number of symbols. On the contrary the first peak in the
pTE from unmanned to manned remains at time t = 70. From Figure 3.22 it
is clear that the two robot do not surpass each other yet, so it is possible that
the unmanned influences the manned one. This influence wasn’t detected by the

52



3.3 – Parametric study

(a)

(b)

Figure 3.22: The representation of the two trajectories using different reference
systems. In blue the unmanned trajectory; in red the manned trajectory. Critical
points are labeled for better understanding of the pTE results.
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Figure 3.23: pTE varying the value of the parameter εdist. In blue the pTE from
manned to unmanned, in violet the pTE from unmanned to manned.

Symbol 1.
The analysis of the second parameter is similar to the first one, we fix the εvel with
four different values: εvel = 0.5, εvel = 0.2, εvel = 0.1, εvel = 0.01. Premise that in
our simulations the velocity of the robots is quite constant and they both have the
same maximum velocity it is clear why in Figure 3.24 the first plot it appears null
in almost all the positions. In fact, if εvel = 0.5 it means that the interval of the
velocity is divided into two parts. The number of symbols is very limited and the
trajectory is probably represented by the same symbol in all its parts. Increasing
the divisions in the interval of velocity we observe the usual increase in the pTE
values. However it is unlikely that the plot with εvel = 0.1 in Figure 3.24 would
be realistic. Comparing these results with the previous ones, it appears clear that
the best value for εvel is 0.2.
Finally, we study the behavior of the pTE changing εdir. We notice that changing
this parameter does not interfere with the solution, except for a large number of
subdivisions, see Figure 3.25. The reason could be that they do not vary a lot. In
fact, we can plot the angle. For the manned trajectory, the angle is represented
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3.4 – Discussion

Figure 3.24: pTE varying the value of the parameter εvel. In blue the pTE from
manned to unmanned, in violet the pTE from unmanned to manned.

in Figure 3.26, we notice that it does not vary and this is the reason why the
parameter εdir it is not primary in this study. However, the angle of the unmanned
trajectory vary much more than the manned one, see Figure 3.27. This condition
is not sufficient to see a change in the pTE.

3.4 Discussion
The main question was: which robot causes the movement of the other? To find
the answer we take into account four scenarios performing several simulations. In
the first study, the one about the performance of the symbols, we are able to see
that the majority of the time the manned robot is the cause of the unmanned.
Indeed, in the second and third scenario the unmanned robot tries to avoid the
manned one. As we expect, the major information flow is from manned to un-
manned, and the symbols that better detect the causation are Symbols 1 and 6.
In the third simulation, see Figure 3.13 and 3.14, at time t = 59 the transfer en-
tropy reveals that the manned causes the unmanned. This causation is due to the
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Figure 3.25: pTE varying the value of the parameter εdir. In blue the pTE from
manned to unmanned, in violet the pTE from unmanned to manned.

fact that the manned vehicle proceeds on its route, while the autonomous robot,
using the on-board sensors, perceives the presence of the obstacle and, then, the
navigation algorithm tries to avoid it.
Moreover, the absolute value changes based on the trajectory. In particular, more
irregular the trajectory is, higher is the information transferred to the other vehi-
cle. This explains why in almost every plot the pTEu→m value increases more than
the pTEm→u value. Indeed, in the second scenario, where the manned robot fol-
lows its trajectory without deviating from it, the higher values of pTE are reached
by the flow of information from unmanned to manned.
As said before, usually the most irregular trajectory has the highest values of pTE.
Nevertheless, in the second and third scenarios, the peak of pTE from manned to
unmanned occurs when the unmanned vehicle changes its route, while the manned
one proceeds on its trajectory. This situation, apparently an exception, is the proof
that the manned vehicle causes the unmanned vehicle. In fact, the pTE detects
the causality. The manned robot, persistent in following its route, forces the un-
manned robot to change its path.
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3.4 – Discussion

Figure 3.26: The x-axis is the Movement Direction it goes from −π to π, the y-axis
is the Relative Velocity and it varies in the interval [0,1]. In red the value of each
data of the manned vehicle.

Figure 3.27: The x-axis is the Movement Direction it goes from −π to π, the y-axis
is the Relative Velocity and it varies in the interval [0,1]. In red the value of each
data of the unmanned vehicle.
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After many comparisons we observe that the first and sixth symbols perform bet-
ter than the others. The first detects with precision the instant in which one robot
causes the other. Anyway, it needs to evaluate more information, i.e. a bigger
width of the window, which was fixed at ∆ = 30 for the first study. The sixth
symbol always finds the robot that causes the other, even with less data. Never-
theless, in some cases, e.g. the fourth scenario, it is a bit confusing and not precise.
We choose these two type of symbols for the second part of the study. As we ex-
pected, the values of pTE increase a lot when the number of total symbols of each
type increases. In fact, having more symbols the space is splitted into more sets
and the average probability decrease. The more variability in the symbols reflects
a more irregular sequence and, as a consequence, a more unpredictable trajectory.
Remembering that the entropy is a measure of the degree of uncertainty, it is clear
why increasing the total number of symbols is a cause of the increase in the pTE
value.
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Chapter 4

Conclusions and future
works

This thesis aims to study the causal relationship between vehicles. In order to
achieve our purpose we use the transfer entropy method, a method already tested
and validated in the literature but in other fields.
In particular, we perform our study simulating two robots, one autonomous and
one teleoperated by a human. The two robots are involved in four different sce-
narios. In each scenario, each robot has a starting position and a goal position
fixed on the map. During the simulations, the robot position is sampled at a rate
of 4 Hz. Then, the data are reworked with the symbolic analysis in order to be
suitable for the transfer entropy method. The results we obtained are in line with
our prediction. In particular, the plots of transfer entropy have a positive jump
when one robot causes the other.

Starting from this thesis, there are many possible developments. One develop-
ment could be changing the method for evaluating the causality. In the literature,
many causation methods are used. It is possible, then, to apply a different method
to our study and verify the correctness of the results. On the other hand, different
results may help to better comprehend the information contained in the results. A
second expansion of this work, it could be done with new simulations using differ-
ent characteristics. For example, it is possible to vary the velocity of the robots,
their trajectory, their tasks, i.e. do not give a fixed point as a goal but, for ex-
ample, impose the robots to maintain a certain distance between them. Finally, a
possible development is making a real experiment for the validation of the method.
Recreate the scenarios in a real environment, using an autonomous robot and a
piloted one. In this case, a filter should be applied to the data in order to make it
useful. In fact, the data may be affected by noise, and their precision could be low.
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Conclusions and future works

In conclusion, we would like to address the possible use of this work. Knowing
the causal relationship is a piece of important information, and it could be used
in many ways. Future works could be the creation of new navigation models and
algorithms or a revision of the existing ones.
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