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Abstract

Quantitative microbiological methods are aimed at counting the number of microorganisms in
a sample. They are extremely important in the pharmaceutical industry to ensure drug safety:
indeed, bacteria and toxins produced by microorganisms could contaminate medicines, which may
harm humans if the contamination remains undetected.

Many new technologies are being developed to measure the microbial content in a sample: they
are generally called rapid methods because they provide much quicker results than compendial
methods, which are standardized methods and need up to 14 days to produce a result. Rapid
methods need to be validated before being practically used and accuracy is one of the parameters
which need to be evaluated during validation. Essentially, the accuracy of the rapid method is
evaluated by comparing its expected measurement to the expected measurement of a compendial
method.

This Master thesis consists of an in-depth comparison of statistical methods to assess the
accuracy of a microbiological method. One approach is parametric, since it is based on the
estimation of two generalized linear models, while the other one is non-parametric, namely it does
not require estimation of a model. The former is referred to as model-based approach and the
latter is referred to as non model-based approach.

A simulation study is performed to compare the performances of the two approaches in terms
of ability to correctly assess the accuracy of the rapid method. The results show that it is not
possible to definitely declare that one of the two approaches is preferable to the other one in any
situations, but some interesting patterns can be derived in the performances of the two approaches.

Finally, the design used to estimate the linear models in the model-based approach is optimized
to improve the performance of this approach.

Some interesting conclusions can be derived from this analysis. However, many questions
remain unresolved and could be the basis for future work, especially with respect to the use of the
model-based approach and the optimal design.

Keywords: Microbiological method, validation, accuracy, equivalence, count data, confidence
interval, model-based approach, non model-based approach, simulation, optimal design.
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Executive Summary

This Master thesis is the result of a five-month work at Eindhoven University of Technology.
Previously, I did a three-month internship at the Center for Mathematical Sciences of MSD,
which is one of the leading pharmaceutical companies in the world: my work during that period
has also served as a preparation to deal with the topic of this thesis.

Quantitative microbiological methods are measurement methods used to count the number
of microorganisms in a sample. New technologies are being proposed to quantify the microbial
presence in a sample. They are generally called rapid methods because they can provide results
much faster than the standardized methods currently used, called compendial methods. Before
being practically used, rapid methods need to be validated, which means that their performance
parameters have to satisfy specified requirements.

One of the validation parameters is accuracy, which is essentially the closeness of the test result
of the method to a reference value. The accuracy of the rapid method is evaluated by comparing
its results to those of a compendial method, using an equivalence test: the null hypothesis states
that the ratio between the expected numbers of microorganisms counted by the two methods is
not included between the equivalence bounds 0.7 and 1.3. The Two-One Sided Tests procedure is
used to execute the equivalence test: it consists of rejecting the null hypothesis of non-equivalence
at a significance level α if and only if the two-sided 100(1− 2α)% confidence interval for the ratio
between the two expected counts is included in the equivalence range [0.7,1.3].

Two statistical methods to assess accuracy are proposed. The model-based approach is based
on the estimation of a generalized linear model between expected measurement and theoretical
concentration of the analysed sample, for each of the two microbiological methods; once these
models have been fitted, the estimated coefficients and standard errors are used to construct the
confidence interval at each concentration. Two types of linear models have been considered: one
is linear in the original scale, since it is represented by a straight line in a plot of expected count
versus concentration; the other one is linear in the log scale, since it is represented by a straight
line in a plot of log expected count versus concentration. On the other hand, the non model-based
approach does not require estimation of a model and permits to compute the confidence interval
using asymptotic statistical results: with this approach, only the repeated measurements at a
specific concentration are used to build the confidence interval at that concentration.

A simulation study is performed in order to compare the performances of the two approaches in
terms of ability to correctly evaluate the accuracy of the rapid method. The true expected numbers
of microorganisms counted by the two microbiological methods are known in the context of this
simulations study, so the decision about declaration of equivalence of each approach can be labelled
as correct or wrong. In the simulations, the model-based approach is tested only using a specific
design (homogeneous design) to estimate the linear models for the two microbiological methods,
while the non model-based approach is tested with different experimental designs, changing each
time the number of repeated measurements per concentration, to allow a more fair comparison of
different scenarios.

The results of this simulation study do not permit to conclude in general that one of the two
approaches is preferable to the other one. Even if the model-based approach seems to give better
results, it should be considered that it is based on the assumption that a specific relation between
expected measurements and concentrations exists, and this is not known to be true in reality.
Even if the non model-based approach needs many repeated measurements per concentration to
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obtain better results than those of the model-based approach, it is possible to think of a situation
in which the non model-based approach is more advisable.

Finally, the design used to estimate the linear models for the two microbiological methods
in the model-based approach is optimized in order to maximize the power of the equivalence
test. The results permit to derive some features of the optimal design. In addition, when testing
the model-based approach with the optimal design using simulations, the results show that the
performance of the model-based approach substantially improves, especially at concentrations
where the model-based approach with the homogeneous design has very poor performance.

The results of this analysis are not claimed to be valid in general and many further developments
are possible, especially with respect to the importance of showing goodness of fit when using the
model-based approach and with respect to the optimal design.
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Chapter 1

Introduction

1.1 Brief history of microbiology

Microbiology has a long and rich history, initially centered in the causes of infectious diseases but
now including practical applications of the science. Historians are unsure about who made the
first observations of microorganisms. In the 1670s and the decades thereafter, a Dutch merchant
named Antoni van Leeuwenhoek made careful observations of microscopic organisms, which he
called animalcules.

Louis Pasteur worked in the middle and late 1800s and he called attention to the importance of
microorganisms in everyday life and encouraged scientists to think that bacteria could cause human
illnesses. Pasteur postulated the germ theory of disease, which states that microorganisms are the
causes of infectious diseases. Pasteur’s attempts to prove the germ theory were unsuccessful.
However, the German scientist Robert Koch provided the proof by cultivating anthrax bacteria
apart from any other type of organism. He then injected pure cultures of the bacilli into mice and
showed that the bacilli invariably caused anthrax.

In the late 1800s and the first decades of the 1900s, many of the microorganisms causing
diseases were discovered, leading to the ability to halt epidemics by interrupting the spread of
microorganisms. Then, after World War II, the antibiotics were introduced in medicine.

Work with viruses could not be effectively performed until instruments were developed to
help scientists see these disease agents. In the 1940s, the electron microscope was developed and
perfected. In that decade, cultivation methods for viruses were also introduced, and the knowledge
of viruses developed rapidly.

Modern microbiology reaches into many fields of human endeavour, including the development
of pharmaceutical products, the use of quality-control methods in food and dairy products pro-
duction, the control of disease-causing microorganisms in consumable waters, and the industrial
applications of microorganisms. This information and much more details about the history of
microbiology and microbiological methods are described by Guardino [1].

1.2 Microbiological methods

The brief history of microbiology described in the previous section is useful to get a feel for
the importance of microbiology and, as a consequence, for the importance of microbiological
methods, which are measurement methods used to study microorganisms. Within pharmaceutical
industry, different microbiological methods are used for different purposes. The main purpose of
microbiological testing is to ensure drug safety: pathogenic bacteria, fungi and toxins produced by
microorganisms are all possible contaminants of medicines, which may harm human beings when
the contamination remains undetected. Microbiological methods can be essentially divided into
three categories.
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CHAPTER 1. INTRODUCTION

• Qualitative or sterility methods: provide a result on presence/absence of microorgan-
isms in a sample.

• Quantitative or enumeration methods: provide a result on the number of microorgan-
isms in a sample.

• Identification methods: provide a result on the type of microorganism (e.g., E. coli,
Mycoplasma) when a microorganism is found.

This Master thesis is focused on quantitative methods only and in the remainder, the phrase
microbiological method will always refer to a quantitative method.

Nowadays, the microbiological methods most commonly used and accepted are referred to as
compendial methods: they are standardized methods provided in the pharmacopoeias, that is,
they have been formally accepted and can be considered as references for any new method. Most
compendial methods count colony-forming units (CFUs). A CFU is a unit used to estimate the
number of culturable microorganisms in a sample, where culturable means that the microorganism
can grow and divide in a suitable environment. This way of counting microorganisms requires a lot
of time because the microorganisms need to be cultured in order to multiply and visual appearance
of a colony requires a significance growth. In addition, these methods do not permit to count dead
cells in the sample. Finally, there is uncertainty because a colony can arise from one cell or a
group of cells, but these methods are not able to distinguish between the two cases.

Before being practically used, microbiological methods need to be validated. Validation is a
necessary step to demonstrate that a microbiological method is fit for its intended use. In order to
deem a method validated, it is necessary to show that different performance characteristics of the
method satisfy specified requirements. The type of methods that are currently being validated in
pharmaceutical industry are referred to as rapid microbiological methods (RMMs), since they are
meant to replace the compendial microbiological methods by providing much faster results.

The European Pharmacopoeia (EP) [2] and the United States Pharmacopoeia (USP) [3] de-
scribe different types of rapid microbiological methods: they show potential for real-time or near
real-time results and they may or may not use the same underlying technology of the compendial
methods. Three techniques for measuring microorganisms are mentioned below.

• Methods based on bioluminescence deploy the ability of some microorganisms to release
adenosine triphosphate (ATP), which is a signal of cell viability and can be detected by light
emission, making a quantitative determination possible.

• Methods may also be based on vital staining: cells are stained or exhibit autofluorescence
and then can be directly counted, either microscopically or instrumentally.

• Flow cytometry is a technique which allows to count microorganisms based on the wavelengths
of the light scattered by the microorganisms when they are subject to a laser beam.

This means that RMMs do not necessarily obtain CFUs, like the compendial methods, and may
therefore result in different counts than those obtained by the compendial method.

1.3 Validation of microbiological methods

The validation of a quantitative microbiological method consists of verifying that certain per-
formance parameters meet the specified requirements in order to ensure that the method works
properly. This Master thesis is focused on the evaluation of accuracy, which is one of the valid-
ation parameters. In general (not only in microbiology), accuracy is the ability of a measurement
method to produce results which are close to or in agreement with known reference values [4].

In microbiology, precise reference values are not available due to the intrinsic uncertainty in
the number of microorganisms present in the samples. Even if samples are created by spiking a
“known” quantity of microorganisms or by diluting a sample with a specific theoretical and known
concentration, the true number of microorganisms in the sample can be substantially different from
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the expected or anticipated number of microorganisms. Thus, the accuracy of a RMM is evaluated
by means of a comparison between its results and those produced by a compendial method [2].

Another validation parameter which has an important role in this work is linearity. Gen-
erally speaking, it is the ability of the method to produce results which can be expressed as a
linear function of the theoretical concentration of the samples on which the method is performed.
Usually, the guidelines define linearity as the ability of the method to produce results which are
proportional to the theoretical concentration of microorganisms in the sample, but in practice also
non-proportional relations are accepted to declare the method linear [2]. Linearity is not the focus
of this thesis, but it plays a role because one of the described approaches to assess accuracy is
based on the estimation of a linear model between expected results and theoretical concentrations.

1.3.1 Mathematical definitions of accuracy and linearity

Before proceeding with a more precise description of this work and its goals, it is appropriate
to provide clear mathematical definitions of accuracy and linearity. These definitions have been
formalized during my internship at MSD [5]. They are based on a study of the literature, but are
not present in the literature in this format as far as it is known. In the remainder, linearity and
accuracy will always be used as specified in these definitions and in the remarks reported in this
subsection.

Definition 1 (Accuracy). Let Yr and Yc be two random variables representing the number of
microorganisms counted by the rapid microbiological method to be validated and the compendial
method, respectively, in samples with the same theoretical concentration X. The rapid microbio-
logical method is defined accurate at concentration x if

E[Yr|X = x] = E[Yc|X = x].

From a practical point of view, it is really too strict to require that the expected numbers of
microorganisms counted by the two methods are exactly equal in order to declare that the rapid
method is accurate. Indeed, the statistical methods described in the next chapters are all based
on the following equivalence formulation, where d is some prescribed equivalence margin.

H0 :

∣∣∣∣E[Yr|X = x]

E[Yc|X = x]
− 1

∣∣∣∣ ≥ d
H1 :

∣∣∣∣E[Yr|X = x]

E[Yc|X = x]
− 1

∣∣∣∣ < d

(1.1)

The new method is declared accurate at concentration x if and only if the null hypothesis in (1.1)
is rejected at a specified confidence level. Essentially, according to this formulation, the rapid
method is accurate if the ratio between the expected measurements by the two methods does not
differ too much from 1. The equivalence margin d will be set at 0.3 in the remainder of this thesis
[6].

The Two One-Sided Tests (TOST) procedure described by Schuirmann [7] is used in this
work to execute the equivalence test (1.1): it consists in declaring equivalence at a significance
level α if and only if the 100(1 − 2α)% two-sided confidence interval for the ratio between the
expected values is included in the interval [1− d, 1 + d].

Definition 2 (Linearity). Let Y be the number of microorganisms counted by the microbiological
method to be validated in a sample with theoretical concentration X. The microbiological method
is defined g-linear in f(x) if the relation between the expected measurement E[Y |X = x] and the
concentration x has the form

g(E[Y |X = x]) = α+ βf(x)

where g, f : R→ R are continuous invertible functions and α, β ∈ R.

Comparison of Parametric and Non-parametric Approaches for Accuracy
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This definition is extremely general and many relations between expected count and theoretical
concentration satisfy the requirements needed to define the method linear, for appropriate choices
of the functions g and f . The focus in the following chapters will mainly be on methods which
are log-linear in log (x): in this case

log(E[Y |X = x]) = α+ β log(x) (i.e., E[Y |X = x] = eαxβ) (1.2)

is the form of the relation between expected count of microorganisms and theoretical concentration.
Moreover, identity-linearity in x will be considered an alternative, with expected count and
theoretical concentration linked by the relation

E[Y |X = x] = α+ βx. (1.3)

It should be noted that both forms are strongly related to the concept of proportionality. If a
concentration x is diluted with factor ρ (i.e., the new concentration is x/ρ), then

E[Y |X = x/ρ] = E[Y |X = x]/ρ

when β = 1 for the “log-linear in log(x)” relation and when α = 0 for the “identity-linear in x”
relation. Thus, linearity is less strong than proportionality since the latter is a particular case of
the former.

Essentially, a linearity study consists of estimating a model having the form reported in Defin-
ition 2 between expected number of microorganisms counted by the microbiological method and
theoretical concentration. The specific form of the model to be estimated should be chosen ac-
cording to a visual analysis of the data or to a specific form which is needed to be verified between
measurements and concentrations. Finally, acceptable goodness of fit should be observed to declare
that linearity holds.

1.3.2 Remarks about the equivalence test

Testing equivalence between the two microbiological methods by looking at the ratio between
the expected numbers of microorganisms is suggested by the guidelines, which usually specify
acceptance criteria in terms of percentage number of microorganisms detected by the rapid method
[2, 6]. The equivalence formulation (1.1) makes no sense when E[Yc|X = x] is equal to 0: this is
likely to happen for x = 0, since usually the compendial methods are growth-based and therefore
they do not detect microorganisms in blank samples. On the other hand, rapid methods may
count something in blank samples, but the detection of microorganisms in blank samples by
the rapid method is an issue which is already covered by the evaluation of another validation
parameter, namely the specificity, defined as the ability of the method to quantify only the
required microorganisms, i.e. does not generate false positive results [2]. Therefore, accuracy at
concentration 0 is not needed.

It is appropriate to specify how the analysis in this thesis will deal with null expected values.
The expected number of microorganisms counted by a microbiological method will always be
assumed to have one of the forms (1.2) or (1.3) as a function of the theoretical concentration x.
In the first case, the model assumes that the expected value is 0 at concentration 0, so the blank
samples will not be taken into account to estimate the models for the two microbiological methods
when model (1.2) will be estimated. On the other hand, when using the model (1.3), the blank
samples will be used for the estimation in order to obtain a proper estimate of the intercept α.
Equivalence at x = 0 will be assessed only when using the model (1.3), even if this evaluation
concerns the specificity of the rapid method rather than its accuracy.

1.4 Problem description

This work compares essentially two different approaches to evaluate the accuracy in validation
of microbiological methods. As specified in Subsection 1.3.1, it is necessary to compute a two-
sided confidence interval for the ratio between the expected numbers of microorganisms counted
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by the two microbiological methods. The two approaches differ because of how they lead to the
computation of the confidence interval.

• Model-based approach: this is a parametric approach based on the estimation of a linear
model between expected measurements and theoretical concentrations, for each of the two mi-
crobiological methods. Once these two models have been estimated, it is possible to build the
confidence interval for the ratio between the two expected counts by using the estimates of the
model coefficients and their standard errors. Thus, this approach deploys the models used to
verify linearity in order to evaluate the accuracy of the rapid method at different concentrations.

• Non model-based approach: this is a non-parametric approach, because no parameter estim-
ation is required. For each concentration, the measurements obtained by the two methods are
used to build a confidence interval for the ratio between the expected counts at that specific con-
centration, so data obtained at different theoretical concentrations are not used simultaneously,
contrary to the model-based approach.

Both methods have of course advantages and disadvantages. A clear advantage of the model-
based approach is that it theoretically permits to evaluate accuracy also at concentrations at which
no measurements have been performed, assuming that the models describe the expected numbers of
microorganisms counted by the two methods correctly. Indeed, once the models between expected
counts and concentrations have been estimated, the confidence interval for the ratio between the
expected counts can be theoretically computed at each concentration in the analysed range. On
the other hand, the non model-based approach permits to compute the confidence interval only
at concentrations at which measurements are available. A drawback of the model-based approach
is that it leads to confidence intervals which are reliable under the hypothesis that the relation
between expected count and theoretical concentration has a specific functional form, while the
non model-based approach does not depend on any particular assumptions.

One of the goals of this work is to find out under which conditions it is possible to say that
one approach can be preferred to the other one in terms of ability to lead to the correct decision
about the accuracy of the rapid method. It is possible to judge the performances of each approach
because simulations are used throughout the work: in this way, the true values of the expected
counts of each method are known and the conclusion to which each approach leads can be judged
as correct or wrong. In case the model-based approach should be declared superior to the non
model-based approach, this would mean that the evaluation of accuracy can be linked to the study
of linearity, otherwise the two validation parameters should be studied independently of each other.
Using a study of linearity as starting point in the assessment of accuracy is uncommon and the
guidelines do not suggest any link between the two validation parameters, leaving the evaluations
of accuracy and linearity independent of each other [2, 6], even though they may often be based
on the same data. Another important objective is to try to understand how the performances of
the model-based approach can be maximized by using an appropriate design to estimate the linear
models for the rapid method and the compendial method.

1.5 Distributional assumptions and statistical framework

Quantitative microbiological methods measure the number of microorganisms in a sample, so they
provide count data. Count data are such that the observations can take only non-negative integer
values. The most immediate way of modelling count data is to use the Poisson distribution.
The distributional assumptions and the notation that will be used in the remainder are described
in this subsection.

As in Definition 1, Yr and Yc denote the number of microorganisms counted by the rapid method
and the compendial method, respectively, in samples with the same theoretical concentration. It
should be noted that the two methods do not necessarily measure the same sample, but, as it is
usually the case, they can measure the concentration of microorganisms in different samples taken
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from the same stock solution, thus having the same mean concentration in the stock solution. The
two measurements are assumed to have the following distributions:

Yr ∼ Poisson(λr) Yc ∼ Poisson(λc)

where λr, λc > 0 are the expected values and depend on the theoretical concentration of the
samples on which the measurements are performed.

The dependencies λr = Fr(x) and λc = Fc(x) between the expected counts and the theoretical
concentrations are not known exactly in practice. The model-based approach is based on the
hypothesis that the functions Fr and Fc have a specific form and they need to be estimated, while
the non model-based approach does not take these functional dependencies into account.

The Poisson distribution is a discrete probability distribution which expresses the number of
events occurring in a fixed interval of time or space, under the assumption that these events occur
with a constant rate and independently of the time since the last event. In addition, the Poisson
distribution can also be used to model the number of events in other specified intervals such as
distance, area or volume. This last usage is the most appropriate in the context of microbiological
methods, since here the Poisson distribution is used to model the number of microorganisms
measured in a sample. The assumption of Poisson distributed data is very common in microbiology
[8, 9]. The most important features of the Poisson distribution are summarized in Table 1.1.

Table 1.1: Main features of the Poisson distribution.

Y ∼ Poisson(λ)
Support k ∈ {0, 1, 2, . . .}

Probability density function P[Y = k] = e−λ λ
k

k!
Expected value λ

Variance λ

1.5.1 Generalized linear models

The statistical models used to link the expected number of microorganisms counted by each of the
two microbiological methods to the theoretical concentration are part of the Generalized Linear
Models (GLM) family. The basic definition of a GLM is provided in this subsection, following
McCullagh and Nelder [10].

Let Y = (Y1, . . . , YN )> be a random vector (the response variable) with independent com-
ponents and expectation E[Y ] = µ = (µ1, . . . , µN )>. A Generalized Linear Model is a statistical
model linking the expected value µ to a linear combination of parameters β = (β1, . . . , βk)> in
the following way:

g(µi) = (Zβ)i ∀i = 1, . . . , N.

• Z ∈ RN×k is the model matrix: its i-th row contains the values of the k covariates z1, . . . , zk
for the i-th component of the random vector Y . The covariates are the variables used to
explain the behaviour of the expectation of the response variable. (Zβ)i denotes the i-th
component of the vector Zβ ∈ RN .

• g : R→ R is the link function and can be any monotonic differentiable function linking each
component of the linear predictor (Zβ) to the corresponding component of the expected
response.

An important feature of a GLM is that each component of the random vector Y has a distribution
in the exponential family. This means that the probability density function of the generic Yi must
have the following form:

fYi(yi; θi, φ) = exp

{
yiθi − b(θi)

a(φ)
+ c(yi, φ)

}
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where θi ∈ R is a parameter related to the expected value µi, φ is a a nuisance parameter related to
the variance of Yi and a, b and c are some functions of the parameters. Many common distributions
are part of the exponential family (e.g., Normal, Poisson, Binomial).

Estimates for the coefficients in Generalized Linear Models are obtained by means of maximum
likelihood estimation. Since the focus of this work is not on GLM, the details are not reported.
The second chapter of the book written by McCullagh and Nelder [10] describes an algorithm to
fit these kinds of models.

In particular, the GLM used in this work is Poisson regression. The Poisson regression is
based on the assumption that each component Yi follows a Poisson distribution and that a function
g of its expected value can be modeled as a linear combination of unknown parameters β1, . . . , βk,
with the weights of the linear combination represented by the covariates z1, . . . , zk:

g(E[Yi]) = β1z1 + . . .+ βkzk.

The models actually used in this thesis depend on two parameters, and the covariates are
z1 = 1 and a function of the theoretical concentration x (either z2 = x or z2 = log(x)). In most
cases, the following models will be considered in the next chapters:

log(λr) = δr + βr log(x) log(λc) = δc + βc log(x)

where the subscripts identify the microbiological method to which the model refers (r for the rapid
method and c for the compendial method). In this case the link function is g(x) = log(x). As
already stated in Subsection 1.3.1, if these relations hold, the two methods are said to be log-linear
in log(x); in the next chapters, these models will often be referred to as linear in the log scale
since they are represented by a straight line in a plot of log expected counts versus log theoretical
concentrations. In the original scale, the dependencies between expected counts and theoretical
concentrations are represented by the following expressions:

λr = eδrxβr = αrx
βr λc = eδcxβc = αcx

βc . (1.4)

As described in Subsection 1.3.2, according to this model, λr and λc are 0 when x = 0: thus,
in the remainder, these models will be estimated only for concentrations greater than 0, avoiding
issues caused by taking the logarithm of 0.

Identity-linearity in x will also be considered as an alternative. In this case, the models for the
expected counts by the two methods are

λr = αr + βrx λc = αc + βcx. (1.5)

These models will be referred to as linear in the original scale. In this case, the natural
logarithm, which is known as the canonical link function for the Poisson regression, is replaced
with the identity.

Both models (1.4) and (1.5) have the advantage of permitting to express the ratio between
the expected values in a form which is independent of the theoretical concentration under specific
conditions.

• When using linear models in the log scale, λr
λc

= αr
αc
xβr−βc is constant when βr = βc.

• When using linear models in the original scale, λr
λc

= αr+βrx
αc+βcx

is constant when αr = αc = 0.

Models with these characteristics are taken into account in microbiology when the ratio between
the expected values is believed to be constant over the analysed range of concentrations: some
situations like these will be analysed in Chapter 3.

1.5.2 Delta method

Both the model-based approach and the non model-based approach make strong use of asymptotic
distributions in order to compute the two-sided confidence interval for the ratio between the
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expected numbers of microorganisms counted by the rapid method and the compendial method
at a certain concentration. The main statistical result used to compute this confidence interval
when using the non model-based approach is the Delta Method.

The Delta Method permits to find a convergence in distribution for a function of a random
variable, which could be a scalar or a vector. In particular, the Multivariate Delta Method1

is used in this work: it permits to find a convergence in distribution for a function of a random
vector. In the next chapter, the Multivariate Delta Method in the form described in Theorem 1
will be used: this theorem is a particular case2 of Theorem 8.22 in Lehmann and Casella [11].
In Theorem 1 (and in the whole thesis), Nk(µ,Σ) denotes a k-dimensional multivariate Normal
distribution with expected value µ ∈ Rk and covariance matrix Σ ∈ Rk×k; when the subscript k
is omitted, the notation refers to an univariate Normal distribution. The symbol ∇ denotes the
gradient: given a function h : Rk → R, the gradient of h is defined as

∇h(x1, . . . , xk) =

(
∂h

∂x1
(x1, . . . , xk), . . . ,

∂h

∂xk
(x1, . . . , xk)

)>
∈ Rk.

Theorem 1 (Multivariate Delta Method). Let Y1, . . . , Yn ∈ Rk be a sequence of random vectors
such that √

n(Yn − θ)
D−→ Nk(0,Σ) with n→∞

for a vector of parameters θ = (θ1, . . . , θk) ∈ Rk and a covariance matrix Σ ∈ Rk×k. Given a
function h : Rk → R continuosly differentiable in a neighbourhood ω of θ and such that ∇h(x) 6= 0
for any x ∈ ω, the following holds:

√
n(h(Yn)− h(θ))

D−→ N (0,∇h(θ)> · Σ · ∇h(θ)) with n→∞.

In the remainder, the Delta Method as described in Theorem 1 will be used to find a convergence
in distribution for the (log) ratio between the average numbers of microorganisms counted by the
two microbiological methods at a specific concentration. Thus, the number n in Theorem 1 will
be the number of repeated measurements performed by each method at a specific concentration,
while the number k in Theorem 1 will always be equal to 2. Indeed, the convergence in distribution
appearing in the hypothesis of Theorem 1 will be the result of the Central Limit Theorem [11]
applied to the vector having as components the average numbers of microorganisms counted by
the two methods at a specific concentration.

1.6 General notation and assumptions

This section shows the main notation that will be used throughout the next chapters. This notation
reflects the experimental setting that has been used in the simulations described in this work.

Suppose that the rapid method and the compendial method measure the number of microor-
ganisms in n samples coming from a stock solution with theoretical concentration x. Actually,
in general, there are 2n samples, n of which measured by the rapid method and n by the com-

pendial method. The number n is referred to as number of replicates. Let Y
(r)
1 , . . . , Y

(r)
n and

Y
(c)
1 , . . . , Y

(c)
n be the number of microorganisms counted by the rapid method and the compendial

method, respectively, in the n samples each of them has to analyse. All the computations and
remarks in the next chapters will be based on the following three assumptions:

1. Y
(r)
i ∼ Pois(λr) and Y

(c)
i ∼ Pois(λc) ∀ i = 1, . . . , n;

2. Y
(r)
i |= Y (r)

j and Y
(c)
i |= Y (c)

j ∀ i, j = 1, . . . , n with i 6= j, namely the different measurements
by the same method are independent of each other;

1In the remainder, the phrase Delta Method will always refer to Multivariate Delta Method, if not specified.
There will be no confusion since the univariate version of the method will never be used in this work.

2Theorem 8.22 in Lehmann and Casella is more general because it deals with a function h : Rk → Rm, with
m ≥ 1.
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3. Y
(r)
i |= Y (c)

j ∀ i, j = 1, . . . , n, namely all measurements by the two different methods are
independent of each other.

These assumptions of independence between the different measurements by the same method
or between the measurements by different methods are realistic [9] and permit to substantially
simplify the computations, which even under these assumptions can lead to very complex expres-
sions.

It is important to keep in mind that Y
(r)
1 , . . . , Y

(r)
n and Y

(c)
1 , . . . , Y

(c)
n are all measurements

performed on samples coming from the same stock solution with theoretical concentration x. Thus,
the expected values λr and λc depend on the concentration x and the assumptions 1, 2 and 3 hold
for each possible value of x. The number of replicates n could in principle be different per each
concentration: however, it is assumed constant when not specified.

There is one last assumption which will be used in the remainder and which is necessary for the
estimation of the linear models used in the model-based approach: the measurements performed
by a microbiological method at different concentrations (i.e., in samples coming from different
stock solutions with different theoretical concentrations) are independent of each other.

Comparison of Parametric and Non-parametric Approaches for Accuracy
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Chapter 2

Confidence intervals for the ratio
between the expected
measurements by the two methods

As described in Subsection 1.3.1, the TOST procedure used for executing the equivalence test
(1.1) requires the computation of a two-sided confidence interval for the ratio between the
expected number of microorganisms counted by the rapid method and the expected number of
microorganisms counted by the compendial method at a certain concentration. In this chapter,
different model-based and non model-based approaches to compute a confidence interval for the
ratio λr/λc are described. It should be noted that all these intervals are approximate since all
the illustrated approaches are mainly based on approximate distributions derived from asymptotic
results.

2.1 Non model-based approaches

This section shows three different non model-based approaches to compute the confidence interval
of interest. The first one is based on a theoretical result which links the Poisson distribution to
the Binomial distribution, while the others are based on the Delta Method and differ from each
other because of the transformations they use.

2.1.1 Approach based on the Binomial distribution

The non model-based approach described in this subsection is referred to as binomial approach
because it is based on the following theoretical result which links the Poisson distribution to the
Binomial distribution.

Theorem 2. Let X1 ∼ Pois(λ1) and X2 ∼ Pois(λ2) be independent Poisson distributed random
variables and let S = X1 +X2 denote their sum. Then the following holds:

Xi|S ∼ Bin
(
S,

λi
λ1 + λ2

)
i = 1, 2.

Proof. The proof deals with the case i = 1; the proof for the other case is obtained by switching
the subscripts 1 and 2 in the formulas.
Because of the independence between X1 and X2, it is possible to conclude that S ∼ Pois(λ1+λ2)
[12]. Let k, n ∈ N, k ≤ n.

P(X1 = k|S = n) =
P(X1 = k, S = n)

P(S = n)
=

P(X1 = k,X1 +X2 = n)

P(S = n)
=
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=
P(X1 = k,X2 = n− k)

P(S = n)
=

P(X1 = k) · P(X2 = n− k)

P(S = n)
=

=
e−λ1λk1
k!

· e
−λ2λn−k2

(n− k)!
· n!

e−(λ1+λ2)(λ1 + λ2)n
=

=

(
n

k

)
·
(

λ1
λ1 + λ2

)k
·
(

λ2
λ1 + λ2

)n−k
=

=

(
n

k

)
·
(

λ1
λ1 + λ2

)k
·
(

1− λ1
λ1 + λ2

)n−k
.

This is the probability density function of a Binomial random variable with parameters n and
π = λ1/(λ1 + λ2). So X1|S ∼ Bin(S, λ1/(λ1 + λ2)).

Theorem 2 can be used to construct a confidence interval for λi/(λ1 + λ2), which can then be
transformed into a confidence interval for λ1/λ2 or λ2/λ1.

There are different methods for determining a confidence interval for the probability of success
of a Binomial random variable. In this work, the Wilson score interval [13] is used: it allows
to find an approximate confidence interval for the probability of success based on an asymptotic
approximation of the Binomial distribution by the Normal distribution.

In general, a Binomial random variable B ∼ Bin(N, q) can be defined as the sum of N
independent random variables Z1, . . . , ZN identically distributed as a Bernoulli with parameter

q. Then q̂ = (
N∑
i=1

Zi)/N is an unbiased estimator of q. The two-sided 100(1 − α)% Wilson score

confidence interval for q is given by

q̂ +
z21−α/2
2N ± z1−α/2

√
z2
1−α/2
4N2 + q̂

N (1− q̂)

1 +
z2
1−α/2
N

(2.1)

where z1−α/2 is the 100(1− α/2)%-quantile of the Standard Normal distribution1.
Going back to the ratio between the expected values of two Poisson random variables X1 and

X2, the expression (2.1) can be used to build a confidence interval for π = λ1/(λ1 + λ2), the
probability of success of X1|S (notation in Theorem 2), by using the following substitutions:

q̂ =
X1

S
N = S.

The ratio between the two expected values can be expressed as a strictly monotonic function of π:

λ1
λ2

=
π

1− π
.

Thus, if [πL, πU ] is a two-sided 100(1 − α)% confidence interval for π, a two-sided 100(1 − α)%
confidence interval for the ratio between the two expected values λ1 and λ2 is[

πL
1− πL

,
πU

1− πU

]
. (2.2)

It should be noted that the coverage probability remains the same because a monotonic function
is used to transform the bounds of the confidence interval: the same procedure is used for instance
by Breslow and Day [14].

The procedure just described can be used to find a two-sided confidence interval for the ratio
λr/λc between the expected numbers of microorganisms counted by the rapid method and the

1Z ∼ N (0, 1)⇒ P[Z < z1−α/2] = 1− α/2.

12 Comparison of Parametric and Non-parametric Approaches for Accuracy
of Quantitative Microbiological Methods



CHAPTER 2. CONFIDENCE INTERVALS FOR THE RATIO BETWEEN THE EXPECTED
MEASUREMENTS BY THE TWO METHODS

compendial method at a certain theoretical concentration x. Using the notation described in
Section 1.6, X1 and X2 used so far are respectively replaced with

Xr =

n∑
i=1

Y
(r)
i ∼ Pois(nλr) and Xc =

n∑
i=1

Y
(c)
i ∼ Pois(nλc),

namely the sums of the repeated measurements for the rapid method and the compendial method
at concentration x. Performing these substitutions in (2.1) and then transforming the interval into
(2.2), the following two-sided 100(1−α)% confidence interval for λr/λc is found: the lower confid-
ence limit is obtained by using the minus sign in the numerator and the plus in the denominator,
and vice versa for the upper bound, and z denotes the quantile z1−α/2.

2Xr + z2 ± z

√
z2(Xr +Xc) + 4XrXc

Xr +Xc

2Xc + z2 ∓ z

√
z2(Xr +Xc) + 4XrXc

Xr +Xc

(2.3)

2.1.2 First approach based on the Delta Method

Both this approach and the following one are based on two important asymptotic results in Stat-
istics: the Multivariate Central Limit Theorem [11] and the Delta Method (Theorem 1). In the
remainder, these two approaches will be referred to as delta approaches.

A confidence interval for the ratio λr/λc between the two expected counts can also be computed
by applying the Delta Method to the random vector (Y r, Y c), whose components are the average
numbers of microorganisms counted by the rapid method and the compendial method at a specific
concentration:

Y r =
1

n

n∑
i=1

Y
(r)
i Y c =

1

n

n∑
i=1

Y
(c)
i .

Using the Central Limit Theorem and the independence between the measurements by the two
methods, the following convergence in distribution can be derived:

√
n

((
Y r
Y c

)
−
(
λr
λc

))
D−→ N2

((
0

0

)
,

(
λr 0
0 λc

))
. (2.4)

Now the Delta Method with the function h(x1, x2) = x1/x2 can be applied to conclude that

√
n

(
Y r

Y c
− λr
λc

)
D−→ N (0, σ2)

where σ2 is computed as

σ2 =
(
∂h
∂x1

(λr, λc)
∂h
∂x2

(λr, λc)
)
·
(
λr 0
0 λc

)
·
( ∂h
∂x1

(λr, λc)
∂h
∂x2

(λr, λc)

)
=

=
(

1
λc
−λrλ2

c

)
·
(
λr 0
0 λc

)
·
(

1/λc
−λr/λ2c

)
=
λr
λ2c

+
λ2r
λ3c
.

(2.5)

In conclusion, the distribution of the ratio between the two averages can be approximated by
a Normal distribution with expected value λr/λc and variance σ2/n. From this approximate dis-
tribution, a confidence interval for the ratio λr/λc can be computed. Since the standard deviation
is a function of λr and λc, it is necessary to use their estimates to build the confidence interval:
in particular, the averages Y r and Y c are used to estimate λr and λc, respectively. In conclusion,
the two-sided 100(1− α)% confidence interval obtained by using this approach is

Y r

Y c
± z1−α/2

√√√√ 1

n

(
Y r

Y
2

c

+
Y

2

r

Y
3

c

)
. (2.6)
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It should be noted that the computed interval makes no sense when Y c = 0: in order to deal
with this situation in the simulations described in Chapter 3, the confidence interval will not be
computed when Y c = 0 and equivalence will be declared only if Y r = 0.

2.1.3 Second approach based on the Delta Method

In this subsection, another confidence interval for the ratio between λr and λc is proposed. The
interval is obtained again by means of the Delta Method, but using the function h(x1, x2) =
log(x1/x2) = log(x1) − log(x2) in order to get a confidence interval for the the logarithm of the
ratio λr/λc. This is useful in order to compare this interval to the one obtained in Subsection
2.2.4 using a model-based approach: the comparison between the intervals will be described in
Section 3.4.

Applying the Delta Method to the convergence in distribution (2.4) using the function h defined
in this subsection, it is possible to conclude that

√
n((log(Y r)− log(Y c))− (log(λr)− log(λc)))

D−→ N (0, σ2)

where

σ2 =
(

1
λr
− 1
λc

)
·
(
λr 0
0 λc

)
·
(

1/λr
−1/λc

)
=

1

λr
+

1

λc
. (2.7)

Thus, a two-sided 100(1− α)% confidence interval for the logarithm of the ratio between λr and
λc is

log(Y r)− log(Y c)± z1−α/2

√
1

n

(
1

Y R
+

1

Y C

)
. (2.8)

If [Llog, Ulog] is the interval in the logarithmic scale, the interval for the ratio is [eLlog , eUlog ]: the
confidence level remains the same because f(x) = ex is a strictly monotonic function. In conclu-
sion, the two-sided 100(1 − α)% confidence interval for λr/λc computed by using this approach
is

[
Y r

Y c
· e
−z1−α/2

√√√√√ 1

n

(
1

Y R
+

1

Y C

)
,
Y r

Y c
· e
z1−α/2

√√√√√ 1

n

(
1

Y R
+

1

Y C

)]
. (2.9)

Also in this case, the confidence interval makes no sense when Y c = 0: this situation will be
handled in the same way as described in the previous subsection.

2.1.4 Patterns in the length of the confidence intervals

The length of a confidence interval is one of the features which is taken into account for an
assessment of the quality of a confidence interval [15, 16]. This section shows how the theoret-
ical concentration x and the number of replicates n affect the length of the confidence intervals
computed by using the non model-based approaches.

In particular, Figures 2.1, 2.2 and 2.3 show how the mean lengths of the confidence intervals
vary when changing the number of replicates or the theoretical concentration. The mean length has
been computed over 1000 confidence intervals, each of them constructed using a different simulated
dataset. The confidence intervals used for Figure 2.1 and Figure 2.3 have been computed using
datasets simulated according to the models

λr = 1.2x λc = 1.1x,

while the confidence intervals used for Figure 2.2 have been computed using datasets simulated
according to the models

λr = 0.35 + 0.8x λc = 0.94 + 0.7x.
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These models represent the assumed true relations between expected values and theoretical concen-
trations: the data used for computing the confidence intervals have been simulated as realizations
of Poisson random variables with these expected values. Section 3.1 will explain in more details
how the confidence intervals are computed using simulated datasets.

Clear patterns can be observed in the figures: at a certain concentration, the lengths of the
intervals decrease when the number of replicates increases; for a certain number of replicates, the
higher the theoretical concentration is, the shorter the confidence intervals are. There is only an
exception: in the left panel of Figure 2.2, the mean length increases from x = 0 to x = 1, but the
main pattern is still observable.

These patterns in the intervals computed by using the delta approaches can be explained by
noting that the higher the number of replicates n is, the smaller the standard deviations of the
approximate distributions used to construct these intervals are. The dashed lines in Figures 2.2
and 2.3 represent the standard deviation σ2/n (multiplied by 2) of the approximate distribution
used to compute the confidence interval, where σ2 is given by the formula (2.5) for Figure 2.2 and
by the formula (2.7) for Figure 2.3. The right panels of Figure 2.2 and Figure 2.3 show that the
standard deviation and the mean length of the computed intervals have the same pattern also as
functions of the concentration x.

The average expected length of the Wilson score interval (2.1) is decreasing with the number of
trials N [17]. The number of trials N used to derive the interval (2.3) is given by N = Xr+Xc and
E[N ] = E[Xr]+E[Xc] = nλr+nλc is increasing both in the number of replicates and the theoretical
concentration since the expected values are increasing functions of x. Thus, the observed patterns
seem justified also for the binomial approach.

In this subsection, only two possible choices of true linear models have been taken into account.
However, since the true expected values λr and λc will always be modelled as increasing functions
of the concentration x, the observed trends should not depend on the choice of the true relations.
The remarks reported in this subsection will be useful to explain some results which will be
described in Chapter 3.
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Figure 2.1: Mean length of the confidence interval (2.3) computed by the binomial approach.
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(b) Concentration x = 5.

Figure 2.2: Mean length of the confidence interval (2.6) computed by the first delta approach.
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Figure 2.3: Mean length of the confidence interval (2.9) computed by the second delta approach.

2.2 Model-based approaches

The confidence intervals for the ratio between the expected numbers of microorganisms counted
by the two methods proposed in this section are computed using a generalized linear model es-
timated between expected count and theoretical concentration, both for the rapid method and
the compendial method. As described in the first chapter, two possible models for linking the
expected count to the theoretical concentration are considered:

• the linear model in the original scale E[Y ] = α+ βx;

• the linear model in the log scale E[Y ] = αxβ .

The general idea underlying the model-based approach is the following. Once a model between
expected count and theoretical concentration has been estimated for the rapid method and the
compendial method, asymptotic normality of the estimated coefficients and a variation of the
Delta Method are used to derive an asymptotic Normal distribution for the (log) ratio between
the estimates of the two expected counts. From these asymptotic distributions, an approximate
confidence interval can be immediately computed at any concentration. Before proceeding with
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the description of the computations leading to the confidence intervals, the next two subsections
describe the two theoretical results used to calculate the confidence intervals.

2.2.1 Approximate Normal distribution for a function of an
approximately Normal random variable

Let X ∈ R be a random variable having an approximate Normal distribution with expected value
µ and variance σ2:

X
approx.∼ N (µ, σ2).

The symbol
approx.∼ means that the distribution of X is not exactly N (µ, σ2), but it can be approx-

imated by a Normal distribution: in the remainder, the approximation will be the consequence of
a convergence in distribution.

Let h : R → R be a function such that h′(µ) exists and h′(µ) 6= 0: the intention is to derive
an approximate distribution for h(X). Using a Taylor expansion of h(X) in a neighbourhood of
h(µ) truncated to the first order, h(X) can be approximated by an affine function2 of X:

h(X) ≈ h(µ) + (X − µ)h′(µ).

Assuming that X is normally distributed, then also h(µ) + (X − µ)h′(µ) is normally distributed
because it is an affine transformation of a Normal random variable, and it has the following
expectation and variance [18]:

E[h(µ) + (X − µ)h′(µ)] = h(µ) V ar(h(µ) + (X − µ)h′(µ)) = (h′(µ))2σ2.

In conclusion, the distribution of h(X) can be approximated by a Normal distribution with ex-
pectation h(µ) and variance (h′(µ))2σ2:

h(X)
approx.∼ N (h(µ), (h′(µ))2σ2). (2.10)

This approach to compute the approximate distribution of a function of a random variable has
the same rationale behind the proof of the (univariate) Delta Method (Theorem 8.12 in Lehmann
and Casella [11]): indeed, the proof of the Delta Method makes a similar use of the Taylor
expansion of h(X) truncated to the first order and then uses some asymptotic results, such as the
Central Limit Theorem, to derive its conclusion.

The result (2.10) can be generalized to multivariate distributions. SupposeX ∈ Rk is a random
vector whose approximate distribution is

X
approx.∼ Nk(µ,Σ)

with µ ∈ Rk and Σ ∈ Rk×k (the vectors are column vectors). Let h : Rk → R be a function con-
tinuously differentiable in a neighbourhood of µ and such that ∇h(µ) 6= 0. Then, the distribution
of h(X) can be approximated by the following Normal distribution. The similarities to the result
of the Delta Method (Theorem 1) are evident.

h(X)
approx.∼ N (h(µ),∇h(µ)> · Σ · ∇h(µ)) (2.11)

2.2.2 Asymptotic normality of MLE in Poisson regression

As illustrated in Subsection 1.5.1, Poisson regression, either with log link function or with identity
link function, is used in this work to model the relation between expected number of microorgan-
isms counted by a microbiological method and theoretical concentration.

Let Y = (Y1, . . . , YN )> be the random vector with the N observations used to estimate the
model. Each component Yi has a Poisson distribution:

Yi ∼ Pois(λi) with g(λi) = β0 + β1zi ∀i = 1, . . . , N

2A function f : Rn → Rm is affine if f(x) = Ax+ b for a certain matrix A ∈ Rm×n and a certain vector b ∈ Rm.
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where β0 and β1 are the parameters which have to be estimated (β = (β0, β1)>), g is the link
function and the model matrix is

Z =

1 z1
...

...
1 zN

 ∈ RN×2.

The log likelihood for this model is [10]

LN (β;y) =

N∑
i=1

(yi log(λi)− λi − log(yi!))

where y = (y1, . . . , yn)> is a realization of the response Y = (Y1, . . . , YN )>. The Fisher informa-
tion matrix IN (β) is defined as the covariance matrix of the score function sN (β) [19]:

IN (β) = Cov(sN (β)) with sN (β) =

(
∂LN
∂β0

(β;Y ),
∂LN
∂β1

(β;Y )

)>
It is easy to see that IN(β) = E[−HN(β;Y )] [19] where HN(β;Y ) is the Hessian of the log
likelihood and the expectation has to be taken over the distribution of Y .

As proved by Fahrmeir and Kaufmann [19], the following convergence in distribution for the
vector of coefficients’ estimators β̂N holds: the subscript N underlines that the estimates depend
on the number of observations. As described in the paper, this convergence holds for any GLM,
not only for Poisson regression.

(IN (β)1/2)>(β̂N − β)
D−→ N2

(
0,

(
1 0
0 1

))
with N →∞. (2.12)

IN (β)1/2 denotes the square root of IN (β). Given a positive definite matrix A, a square root of
A is a matrix, denoted as A1/2, such that A1/2(A1/2)> = A [19]. In addition, if the matrix A
is symmetric (it should be noted that this is the case for the Fisher information matrix), then a
symmetric square root exists and is given by the spectral decomposition of A [20] after replacing
the diagonal matrix containing the eigenvectors with the diagonal matrix containing the square
roots of the eigenvectors. The convergence in distribution (2.12) allows to approximate - for big
N - the distribution of the vector of estimated coefficients by the following Normal distribution:

β̂N
approx.∼ N2(β, IN (β)−1). (2.13)

In conclusion, the entries of the inverse of the Fisher information matrix represent the asymptotic
variances and covariance of the estimated coefficients:

IN (β)−1 =

(
σ2
β0

σβ0β1

σβ0β1 σ2
β1

)
.

In the next subsections, the number of observations is equal to N = np, where p is the
number of concentrations used to estimate the model and n is the number of replicates at each
concentration3. Thus, the convergence in distribution (2.12) holds in any of the following cases:

• n fixed and p→∞;

• p fixed and n→∞;

• both n→∞ and p→∞.

3It is assumed here that the same number of replicates is used at each concentration. In a more general situation,

np should be replaced with
p∑
i=1

ni, where ni is the number of replicates used at concentration xi to estimate the

model ∀i = 1, . . . , p.
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2.2.3 Linear models in the original scale

In this case, the linear model in the original scale E[Y ] = α + βx is used to express the relation
between expected number of microorganisms counted by each microbiological method and theor-
etical concentration. Since Y is distributed as a Poisson random variable, this model is known as
Poisson regression with identity link function.

The coefficients α and β are estimated by maximizing the log likelihood function, as usual in
the estimation of generalized linear models. In this case, the approximate distribution (2.13) of
the coefficients’ estimators becomes(

α̂

β̂

)
approx.∼ N2

((
α

β

)
,

(
σ2
α σαβ

σαβ σ2
β

))
.

Starting from this approximate distribution and using the approach described in Subsection
2.2.1 with the function h(a, b) = a + bx, it is possible to find the following approximate Normal
distribution for the estimated expected value at concentration x:

α̂+ β̂x
approx.∼ N (α+ βx, σ2

x) (2.14)

where σ2
x = σ2

α + 2xσαβ + x2σ2
β .

Now suppose that the expected numbers of microorganisms counted by the rapid method and
the compendial method at concentration x are estimated as

λ̂r = α̂r + β̂rx λ̂c = α̂c + β̂cx.

Since (2.14) holds for both methods and because of the assumption of independence between the
measurements by the two methods, it is possible to derive the following approximate distribution:(

α̂r + β̂rx

α̂c + β̂cx

)
approx.∼ N2

((
αr + βrx

αc + βcx

)
,

(
σ2
r,x 0
0 σ2

c,x

))
(2.15)

where σ2
r,x and σ2

c,x are the variances of the estimated expected counts at concentration x for the
rapid method and the compendial method, respectively.

Starting from (2.15), the last step consists of using the approach described in Subsection 2.2.1
with the function h(a, b) = a/b to derive an approximate Normal distribution for the ratio between
the two estimated expected counts:

α̂r + β̂rx

α̂c + β̂cx

approx.∼ N
(
αr + βrx

αc + βcx
,

σ2
r,x

(αc + βcx)2
+

(αr + βrx)2

(αc + βcx)4
σ2
c,x

)
. (2.16)

A confidence interval for the ratio between the two expected values can be immediately derived
using this approximate distribution. Since the coefficients αr, βr, αc, βc appear in the expression
of the standard deviation, it is necessary to replace them with their estimates to compute the
confidence interval. In conclusion, the following two-sided 100(1−α)% confidence interval for the
ratio between the two expected counts is derived.

α̂r + β̂rx

α̂c + β̂cx
± z1−α/2

√
σ2
r,x

(α̂c + β̂cx)2
+

(α̂r + β̂rx)2

(α̂c + β̂cx)4
σ2
c,x (2.17)

Figure 2.4 shows the confidence intervals computed using a dataset simulated according to the
true models λr = 0.35+0.8x and λc = 0.94+0.7x. It should be noted that the shortest confidence
interval occurs at a concentration around the middle of the range (x = 5) and the length of the
interval increases when the concentration approaches the boundaries of the range. However, this
pattern is not symmetric: concentrations 0 and and 10 are equidistant from x = 5, but the interval
at x = 0 is much wider than the interval at x = 10. This pattern is due to two main factors. First,
the standard errors σ2

r,x and σ2
c,x in (2.17) are minimum at a concentration x̃ towards the middle
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of the range and the further from x̃ the concentration is, the higher σ2
r,x and σ2

c,x are. Second, the
intervals at x = 0 and x = 1 are much wider than in the rest of the range due to a combination
of rather high standard errors and small estimated expected count for the compendial method
α̂c + β̂cx, which appears in the denominator in the length of the interval (2.17). Even if σ2

r,x and
σ2
c,x are higher at concentrations towards the upper bound of the range rather than at x = 0 or

x = 1, α̂c + β̂cx is much bigger at high concentrations than at x = 0 or x = 1 and this contributes
to make the intervals at high concentrations much shorter than the intervals at low concentrations.
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Figure 2.4: Confidence intervals obtained with the model-based approach with linear models in
the original scale.

2.2.4 Linear models in the log scale

The relation E[Y ] = αxβ is represented by a straight line in the logarithmic scale: log(E[Y ]) =
log(α) + β log(x) = δ + β log(x). With Y distributed as a Poisson random variable, this model
is known as Poisson regression with canonical (log) link function. In this case, the approximate
distribution (2.13) of the coefficients’ estimators becomes(

δ̂

β̂

)
approx.∼ N2

((
δ

β

)
,

(
σ2
δ σδβ

σδβ σ2
β

))
.

Starting from this approximate distribution and using the approach described in Subsection
2.2.1 with the function h(a, b) = a + b log(x), it is possible to find the following approximate
Normal distribution for the estimated log expected value at concentration x:

δ̂ + β̂ log(x)
approx.∼ N (δ + β log(x), σ2

x) (2.18)

where σ2
x = σ2

δ + 2 log(x)σδβ + log2(x)σ2
β .

Now suppose that the linear models in the log scale are estimated for the rapid method and
the compendial method as

ˆlog(λr) = δ̂r + β̂r log(x) ˆlog(λc) = δ̂c + β̂c log(x).

Since (2.18) holds for both methods and because of the assumption of independence between the
measurements by the two methods, it is possible to derive the following approximate distribution:(

δ̂r + β̂r log(x)

δ̂c + β̂c log(x)

)
approx.∼ N2

((
δr + βr log(x)

δc + βc log(x)

)
,

(
σ2
r,x 0
0 σ2

c,x

))
(2.19)
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where σ2
r,x and σ2

c,x are the variances of the estimated log expected counts at concentration x for
the rapid method and the compendial method, respectively.

Starting from (2.19), the last step consists of using the approach described in Subsection 2.2.1
with the function h(a, b) = a− b to derive an approximate Normal distribution for the difference
between the two estimated log expected counts:

(δ̂r + β̂r log(x))− (δ̂c + β̂c log(x))
approx.∼ N ((δr + βr log(x))− (δc + βc log(x)), σ2

r,x + σ2
c,x). (2.20)

The following two sided 100(1 − α)% confidence interval for the logarithm of the ratio between
the two expected values can be found using this approximate distribution.

(δ̂r + β̂r log(x))− (δ̂c + β̂c log(x))± z1−α/2
√
σ2
r,x + σ2

c,x (2.21)

As already done in Subsection 2.1.3, this interval can be transformed into an interval for the ratio
λr/λc by applying the function f(x) = ex to the two confidence bounds. Thus, the following
two-sided 100(1− α)% confidence interval for λr/λc is obtained:[

eδ̂rxβ̂r

eδ̂cxβ̂c
· e−z1−α/2

√
σ2
r,x+σ

2
c,x ,

eδ̂rxβ̂r

eδ̂cxβ̂c
· ez1−α/2

√
σ2
r,x+σ

2
c,x

]
. (2.22)

Figure 2.5 shows the confidence intervals computed using a dataset simulated according to the
true models λr = 1.2x and λc = 1.1x. Also in this case, the shortest confidence interval occurs at
a concentration around the middle of the range (x = 7) and the length of the interval increases
when the concentration approaches the boundaries of the range. As in the previous situation, this
pattern is not symmetric: concentrations 2 and 12 are equidistant from x = 7, but the interval at
x = 2 is much wider than the interval at x = 12. This pattern is due to the trend of the standard
errors σ2

r,x and σ2
c,x in (2.22): they are minimum at a concentration towards the middle of the

range, then they increase when the concentration approaches the boundaries of the range, being
much higher at very low concentrations than in the rest of the range.
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Figure 2.5: Confidence intervals obtained with the model-based approach with linear models in
the log scale.

2.3 Estimation of coverage probability

This section deals with the estimation of the coverage probability of the confidence intervals
described in this chapter. The coverage probability is defined as the probability that the confidence
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interval contains the true value of the ratio between the two expected counts [21]: it can be
estimated as the proportion of times that the computed confidence interval contains the true
ratio. The intention is to verify that the estimated coverage probability of these intervals is
actually close to the theoretical value 90% that they should have (90% is the value used in the
simulation described in Chapter 3).

Given 1000 confidence intervals for the ratio λr/λc at a certain concentration, each of them
computed on a different simulated dataset, suppose that S is a random variable denoting the
number of times that the computed confidence interval includes the ratio between the true expected
counts. Then S can be modelled as a random variable S ∼ Bin(1000, π), where π represents the
probability that the true ratio is included in the confidence interval. This probability should be
equal to the coverage probability of the confidence interval, set at 90%. In order to verify the
coverage probability, the following procedure has been followed: 1000 datasets are simulated (see
Section 3.1 for more details about the simulations), each time the confidence interval is computed
at every concentration and a check is done to see if the true ratio is included in the computed
confidence interval. At the end, a two-sided 95% confidence interval for π is computed4: if 0.90
is included in the confidence interval, the simulations support that the confidence interval has a
coverage probability of 90%. This procedure used to estimate the coverage probability follows the
approach described by Wicklin [22]: he actually suggests to compute the confidence interval 10000
times, but this would have required too much time.

The coverage probability has been checked both for the intervals computed using the model-
based approach and the intervals computed using the non model-based approaches. Some of the
configurations of linear models that will be used in Chapter 3 have been taken into account. For
the model-based approach, the models for the two microbiological methods have been estimated
using the homogeneous design which will be described in Section 3.1 (p concentrations, each with
N/p replicates). On the other hand, the coverage probabilities of the intervals computed by
the binomial approach and the delta approach using n = 20 replicates per concentration have
been checked. When the true relations between expected count and concentration for the two
microbiological methods used to simulate the datasets are linear in the original scale, the model-
based approach leading to the interval (2.17) and the delta approach leading to the interval (2.6)
have been used; on the other hand, the intervals (2.22) and (2.9) have been used with linear in
the log scale relations. For each concentration and for each approach, the following tables show
the lower and upper 95% confidence limits for the coverage probability.

The results obtained for all configurations confirm that the coverage probabilities of the com-
puted intervals are reasonably close to their theoretical value: 0.90 is almost always included in
the confidence interval for the coverage probability. This does not happen only at concentration
x = 0 in Table 2.5, where the lower confidence limit is above 0.90, suggesting that the coverage
probability is likely to be higher than its theoretical value 0.90. In conclusion, this analysis shows
that the proposed approaches lead to confidence intervals with a coverage probability very close
to the desired value, despite all the approximate distributions used to compute these intervals.

4The Wilson score interval for the binomial proportion [13] is computed.
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Table 2.1: Coverage probability for the first configuration.

Configuration 1: λr = 1.2x λc = 1.1x
Model Binomial (n = 20) Delta (n = 20)

x 95% LCL 95% UCL 95% LCL 95% UCL 95% LCL 95% UCL
1 0.878 0.915 0.883 0.920 0.887 0.923
2 0.880 0.917 0.886 0.923 0.886 0.923
3 0.881 0.918 0.888 0.924 0.891 0.926
4 0.881 0.918 0.888 0.924 0.888 0.924
5 0.881 0.918 0.871 0.910 0.871 0.910
6 0.885 0.922 0.871 0.910 0.872 0.911
7 0.884 0.921 0.882 0.919 0.882 0.919
8 0.886 0.923 0.858 0.900 0.858 0.900
9 0.879 0.916 0.884 0.921 0.884 0.921
10 0.872 0.911 0.883 0.920 0.883 0.920
11 0.871 0.910 0.877 0.914 0.877 0.914
12 0.867 0.906 0.885 0.922 0.885 0.922

Table 2.2: Coverage probability for the second configuration.

Configuration 2: λr = 0.8x λc = 0.9x
Model Binomial (n = 20) Delta (n = 20)

x 95% LCL 95% UCL 95% LCL 95% UCL 95% LCL 95% UCL
1 0.880 0.917 0.870 0.909 0.883 0.920
2 0.879 0.916 0.884 0.921 0.887 0.923
3 0.884 0.921 0.890 0.925 0.891 0.926
4 0.892 0.927 0.885 0.922 0.887 0.923
5 0.887 0.923 0.869 0.908 0.869 0.908
6 0.877 0.914 0.873 0.912 0.874 0.913
7 0.870 0.909 0.864 0.903 0.864 0.903
8 0.865 0.904 0.868 0.907 0.868 0.907
9 0.862 0.901 0.881 0.918 0.882 0.919
10 0.862 0.901 0.881 0.918 0.881 0.918
11 0.868 0.907 0.899 0.933 0.899 0.933
12 0.864 0.903 0.873 0.912 0.874 0.913

Table 2.3: Coverage probability for the third configuration.

Configuration 3: λr = 1.05x1.3 1.31x1.1

Model Binomial (n = 20) Delta (n = 20)
x 95% LCL 95% UCL 95% LCL 95% UCL 95% LCL 95% UCL
1 0.864 0.903 0.883 0.920 0.891 0.926
2 0.866 0.905 0.895 0.930 0.896 0.931
3 0.865 0.904 0.893 0.928 0.894 0.929
4 0.866 0.905 0.887 0.923 0.887 0.923
5 0.865 0.904 0.879 0.916 0.879 0.916
6 0.866 0.905 0.865 0.904 0.866 0.905
7 0.877 0.914 0.865 0.904 0.868 0.907
8 0.880 0.917 0.881 0.918 0.881 0.918
9 0.885 0.922 0.871 0.910 0.872 0.911
10 0.876 0.913 0.877 0.914 0.878 0.915
11 0.871 0.910 0.897 0.932 0.897 0.932
12 0.868 0.907 0.871 0.910 0.871 0.910
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Table 2.4: Coverage probability for the fourth configuration.

Configuration 4: λr = 1.3x1.1 1.1x1.32

Model Binomial (n = 20) Delta (n = 20)
x 95% LCL 95% UCL 95% LCL 95% UCL 95% LCL 95% UCL
1 0.881 0.918 0.884 0.921 0.887 0.923
2 0.874 0.913 0.893 0.928 0.894 0.929
3 0.873 0.912 0.896 0.931 0.896 0.931
4 0.879 0.916 0.883 0.920 0.884 0.921
5 0.870 0.909 0.867 0.906 0.867 0.906
6 0.869 0.908 0.864 0.903 0.865 0.904
7 0.873 0.912 0.862 0.901 0.862 0.901
8 0.874 0.913 0.890 0.925 0.893 0.928
9 0.879 0.916 0.881 0.918 0.881 0.918
10 0.874 0.913 0.882 0.919 0.882 0.919
11 0.870 0.909 0.895 0.930 0.895 0.930
12 0.867 0.906 0.876 0.913 0.876 0.913

Table 2.5: Coverage probability for the seventh configuration.

Configuration 7: λr = 0.35 + 0.8x λc = 0.94 + 0.7x
Model Binomial (n = 20) Delta (n = 20)

x 95% LCL 95% UCL 95% LCL 95% UCL 95% LCL 95% UCL
0 0.935 0.962 0.890 0.925 0.881 0.918
1 0.900 0.934 0.886 0.923 0.885 0.922
2 0.881 0.918 0.892 0.928 0.886 0.923
3 0.882 0.919 0.882 0.919 0.880 0.917
4 0.879 0.916 0.880 0.917 0.874 0.913
5 0.885 0.922 0.877 0.914 0.879 0.916
6 0.879 0.916 0.866 0.905 0.862 0.901
7 0.887 0.923 0.878 0.915 0.873 0.912
8 0.887 0.923 0.878 0.915 0.882 0.919
9 0.899 0.933 0.859 0.900 0.866 0.905
10 0.900 0.934 0.885 0.922 0.894 0.929
11 0.899 0.933 0.876 0.913 0.874 0.913
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Chapter 3

Simulations

As described in Subsection 1.3.1, the evaluation of the accuracy of a rapid microbiological method
is done by means of an equivalence test, which consists in a comparison between the results of the
rapid method and those of a compendial method. Essentially, the rapid method is accurate at a
specific theoretical concentration if the expected number of microorganisms counted by the rapid
method at that concentration is between 70% and 130% of the expected number of microorganisms
counted by the compendial method at the same concentration.

Let Yr ∼ Poisson(λr) and Yc ∼ Poisson(λc) denote the numbers of microorganisms counted
by the rapid method and the compendial method, respectively, in two samples coming from the
same stock solution with theoretical mean concentration x. The equivalence formulation (1.1) can
be written in the following form.

H0 :
λr
λc
≤ 0.7 or

λr
λc
≥ 1.3

H1 : 0.7 <
λr
λc

< 1.3

(3.1)

According to the TOST procedure [7], the null hypothesis of non equivalence is rejected at
the significance level α if and only if the two-sided 100(1− 2α)% confidence interval for λr/λc is
included in the equivalence range [0.7, 1.3]. In this work, the significance level is set at α = 0.05,
so 90% confidence intervals for the ratio between the two expected counts are used to make
the decision about the accuracy of the rapid method.

The confidence interval for the ratio λr/λc can be computed by using a model-based approach
or a non model-based approach, as described in Chapter 2. This chapter describes a simulation
study aimed at investigating the results of the model-based approach and the non model-based
approach. In particular, the main intention is to compare the performances of the two approaches
in terms of ability to correctly evaluate accuracy in order to at least get a feel for which of the
two approaches should be preferred under specific conditions. The SAS programs used for the
simulations described in this chapter are reported in Appendix C.

3.1 Description of the simulations

The numbers of microorganisms counted by the two methods are simulated from Poisson dis-
tributions with expected value depending on the theoretical concentration x through one of the
following relations:

• linear models in the log scale λr = αrx
βr and λc = αcx

βc ;

• linear models in the original scale λr = αr + βrx and λc = αc + βcx.

Choosing the coefficients of the models relating the expected count to the theoretical concentration
permits to know the true ratio λr/λc at any concentration x, so the decision that the computed
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confidence interval leads to take can be considered correct or wrong. In particular, according to
the true values, equivalence should be declared if the ratio between the true expected values is
strictly greater than 0.7 and strictly lower than 1.3.

The simulations illustrated in this chapter have been performed following the procedure de-
scribed below.

1. A configuration of models and parameters is chosen. A configuration consists of a model between
linear in the original scale and linear in the log scale and of the coefficients αr, αc, βr, βc which
characterise the relations for the two microbiological methods. Once this configuration has been
established, the measurements performed by each method can be simulated as realizations of
Poisson random variables with expected values depending on the concentration x through the
chosen true models.

2. A set of concentrations X ⊂ N 1 at which equivalence should be evaluated is chosen and p = |X |
denotes the number of concentrations. In addition, a number of total available measurements
per method N is fixed.

3. 1000 datasets with p concentrations and n = N/p replicates per concentration are simulated.
This means that each dataset contains 2N rows (N for the rapid method and N for the com-
pendial method). An example dataset is shown in Figure 3.1. For each of these 1000 datasets,
the model-based approach and the non model-based approaches (binomial approach and delta
approach) are performed. Each time, the decision that each approach leads to take is labelled
as correct or wrong and the number of correct decisions per each approach is updated.

4. For each possible value of number of replicates n equal to a factor of N and greater than
N/p (N/p < n ≤ N), 1000 datasets are simulated as before and only the non model-based
approaches are performed. As in step 3, the number of correct decisions per each approach is
updated after each simulation.

Figure 3.1: An example simulated dataset. The set of concentrations is X = {1, 2, 3} and the
number of replicates per concentration is equal to 2. Method 1 is the rapid method, method 2 is the
compendial method. Correct decision is 1 if the true ratio λr/λc ∈ (0.7, 1.3), otherwise it is 0. The
last column contains the simulated number of microorganisms measured by the microbiological
method.

The tables reported in the following section will show the number of times (out of 1000 sim-
ulations) that each approach leads to the correct decision about declaring equivalence; for the

1In this thesis, N denotes the set of non-negative integer numbers, including 0.
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non model-based approaches, the results are reported for any numbers of replicates used. As the
tables will show, the non model-based approaches give terrible results when using N/p replicates
per concentration. The purpose of testing the non model-based approaches with different values
of number of replicates per concentration is to investigate how many samples are needed for these
approaches to give results comparable to those obtained by using the model-based approach. It
should be noted that the model-based approach is run only with a specific design used to estimate
the linear models for the rapid method and the compendial method: in the remainder, this design
will be referred to as homogeneous design since it consists of all p concentrations in X , with
N/p replicates per concentration.

The idea behind testing the non model-based approaches with numbers of replicates equal to a
factor of the total number of experiments N is to investigate if it is possible to find a value ñ such
that using the non model-based approach only on N/ñ concentrations (with the same number of
replicates per concentration) permits to obtain results comparable to the model-based approach.
If this is the case, then the non model-based approach could be used when accuracy needs to be
evaluated only at some concentrations in the set X .

The number of available experiments is always N = 60 and the number of concentrations
is always p = 12. When linear models in the log scale are estimated, the set of concentration
is X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, while the set is X = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} when
linear models in the original scale are used. The blank sample (x = 0) is used only when linear
models in the original scale are estimated because these models do not assume that the expected
number of microorganisms counted at concentration 0 is equal to 0.

Two non model-based approaches are used for each of the simulated datasets. One approach
is the binomial approach leading to the interval (2.3), while the other one is one of the two delta
approaches leading to the intervals (2.6) or (2.9): the former is used when the chosen true model
is linear in the original scale (λ = α+ βx), while the latter is used when the true model is linear
in the log scale (λ = αxβ). Also the model-based approach which is used depends on the chosen
true linear model: if linear models in the original scale are used, the interval (2.17) is computed,
otherwise the interval (2.22) is used with linear models in the log scale.

The simulations have been performed for seven different configurations of linear models and
parameters, reported in Table 3.1. In the table, Xeq denotes the subset of concentrations where
equivalence is theoretically true: Xeq = {x ∈ X | 0.7 < λr(x)/λc(x) < 1.3}. Graphical repres-
entations of the models used for the simulations are shown in Appendix A. The first and the second
configurations used in the simulations (see Table 3.1) are characterised by models which are linear
both in the log scale and in the original scale. In these cases, linear models in the log scale are
estimated because Poisson regression with canonical link function (log) seems the most appropri-
ate choice for Poisson distributed data since it prevents the expected value from being potentially
modelled as a negative number. The sixth configuration (λr = 0.2 + 0.8x and λc = 0.01 + 0.9x)
has been analysed to take into account a situation in which the rapid method counts something
in the blank sample, while the compendial method does not. However, since an intercept for the
compendial method exactly equal to 0 causes numerical problems in the simulations, αc has been
set equal to a very small value. The following legend applies to the tables in the next section:

• M: model-based approach;

• B: binomial approach;

• D: delta approach.

• Eq: theoretical equivalence (Y stands for “yes” and N stands for “no”), according to the
ratio between the true expected counts.
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Table 3.1: Configurations used in the simulations.

Configuration Linear models X eq Results
1 λr = 1.2x λc = 1.1x {1, . . . , 12} Table 3.2
2 λr = 0.8x λc = 0.9x {1, . . . , 12} Table 3.3
3 λr = 1.05x1.3 λc = 1.31x1.1 {1, . . . , 11} Table 3.4
4 λr = 1.3x1.1 λc = 1.1x1.32 {1, . . . , 10} Table 3.5
5 λr = 0.6x1.1 λc = 0.7x1.1 {1, . . . , 12} Table 3.6
6 λr = 0.2 + 0.8x λc = 0.01 + 0.9x {1, . . . , 11} Table 3.7
7 λr = 0.35 + 0.8x λc = 0.94 + 0.7x {1, . . . , 11} Table 3.8

3.2 Results of the simulations

For each configuration, a table reporting the results of the performed simulations is shown on the
next pages. In these tables, the blue horizontal line separates the concentrations where equivalence
is theoretically true from those where the true ratio is outside the interval (0.7,1.3).

It is clear from the results of the simulations that the two non model-based approaches (bino-
mial and delta) are essentially equivalent in terms of number of correct decisions. In the majority
of cases, either they lead to the correct decision the same number of times or the differences are
very small. Some more evident differences between the performances of the binomial approach and
the delta approach can be observed in the results for the sixth and seventh configurations (Table
3.7 and Table 3.8). However, the highest difference is of around 70 correct decisions (x = 10 and
n = 15 in Table 3.7) and the results in general do not suggest that one of the two approaches has
always higher performances than the other one (the binomial approach seems superior in Table
3.7, but in Table 3.8 there are cases in which the delta approach performs better). In the sixth
configuration (Table 3.7), the delta approach has much higher performances than the binomial
approach at x = 0. This is due to numerical issues in the binomial approach caused by very small
simulated measurements, but since equivalence at blank samples does not directly concerns the
accuracy of the rapid method (see Subsection 1.3.2), this situation will not be investigated further.

It should be noted that when the true ratio λr/λc is outside the interval (0.7, 1.3), all the
approaches lead to correctly not rejecting the null hypothesis of non-equivalence in almost all of
the cases. On the other hand, when the true ratio is between 0.7 and 1.3 but close to one of the
two equivalence bounds (0.7 and 1.3), it is very difficult to correctly reject the null hypothesis
using any approach. Examples of this situation are concentrations x = 10 or x = 11 in the third
configuration (Table 3.4), x = 9 or x = 10 in the fourth configuration (Table 3.5) and x = 1 in
the seventh configuration (Table 3.8).

Usually, the higher the number of replicates used at a specific concentration is, the better
the performances of the non model-based approaches at that concentration are. However, when
the true ratio is close to one of the two equivalence bounds 0.7 and 1.3, sometimes no improvements
in the performances of the non model-based approaches are observed when increasing the number
of replicates: an example is x = 11 in the third configuration (Table 3.4).

When the ratio between the true expected counts is constant over the analysed range of con-
centrations (Tables 3.2, 3.3 and 3.6), for a given number of replicates, the higher the theoretical
concentration is, the better the performances of the non model-based approaches are. This pat-
tern can be observed also for the sixth and the seventh configurations (Table 3.7 and Table 3.8),
where the true ratio is not constant.

The results of the model-based approach follow a very specific pattern: the best performance
is obtained at a certain concentration x̃ towards the middle of the range, and the more the
concentration moves away from x̃, the more the performance declines. This pattern is especially
clear for the first, second, fifth and sixth configurations (Tables 3.2, 3.3, 3.6 and 3.7, respectively),
where the true ratio is either constant or far from the equivalence bounds 0.7 and 1.3. The best
performance can be observed at a concentration between 5 and 8 and the results get worse when
the theoretical concentration gets closer to the boundaries of the analysed range. The same pattern
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can be observed also for the other configurations in the range of concentrations where theoretical
equivalence holds. It should be noted that the decrease in performances is not always symmetric
around x̃: for instance, in the fifth configuration (Table 3.6), even if concentrations 4 and 12 are
equidistant from x̃ = 8, where the best performance is observed, the numbers of correct decisions
at these concentrations are substantially different (338 and 557, respectively).

The last remark concerns very low concentrations: the model-based approach hardly ever
succeeds in correctly declaring equivalence at x = 1 and at x = 2.

Table 3.2: Results of the simulations for configuration 1 (λr = 1.2x and λc = 1.1x).

Number of correct decisions (out of 1000)
n = 5 n = 10 n = 12 n = 15 n = 20 n = 30 n = 60

x Eq (λr/λc) M B D B D B D B D B D B D B D
1 Y (1.091) 0 0 0 0 0 0 0 0 0 0 0 0 0 97 93
2 Y (1.091) 3 0 0 0 0 0 0 0 0 0 0 105 100 406 406
3 Y (1.091) 243 0 0 0 0 0 0 4 3 117 107 242 241 567 567
4 Y (1.091) 465 0 0 0 0 13 12 94 91 240 235 370 370 662 662
5 Y (1.091) 615 0 0 25 19 105 100 195 191 354 354 480 480 752 752
6 Y (1.091) 750 0 0 110 105 183 183 278 277 370 370 545 545 829 829
7 Y (1.091) 822 0 0 182 180 246 243 368 366 461 459 609 609 842 842
8 Y (1.091) 820 1 1 209 205 315 315 417 417 484 484 685 685 898 898
9 Y (1.091) 767 3 1 281 280 356 352 472 472 550 550 704 704 915 915
10 Y (1.091) 702 18 15 347 343 410 410 458 458 590 590 759 759 941 941
11 Y (1.091) 642 54 51 383 382 449 449 526 524 637 636 775 775 963 963
12 Y (1.091) 581 97 91 395 395 453 453 553 553 667 667 815 815 982 982

Table 3.3: Results of the simulations for configuration 2 (λr = 0.8x and λc = 0.9x).

Number of correct decisions (out of 1000)
n = 5 n = 10 n = 12 n = 15 n = 20 n = 30 n = 60

x Eq (λr/λc) M B D B D B D B D B D B D B D
1 Y (0.889) 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3
2 Y (0.889) 0 0 0 0 0 0 0 0 0 0 0 2 1 363 363
3 Y (0.889) 149 0 0 0 0 0 0 0 0 6 6 200 198 621 619
4 Y (0.889) 467 0 0 0 0 0 0 7 7 134 128 400 399 751 750
5 Y (0.889) 721 0 0 0 0 7 5 98 88 236 234 508 506 853 852
6 Y (0.889) 850 0 0 3 3 56 52 182 181 407 405 618 617 901 901
7 Y (0.889) 902 0 0 39 34 145 141 285 279 459 455 700 700 940 940
8 Y (0.889) 909 0 0 116 108 214 210 396 394 555 553 781 780 946 946
9 Y (0.889) 872 0 0 170 168 302 295 460 455 625 623 807 807 967 967
10 Y (0.889) 819 0 0 254 249 356 355 523 518 681 676 837 835 985 985
11 Y (0.889) 749 1 1 319 314 439 434 596 592 745 745 861 861 989 989
12 Y (0.889) 662 3 3 365 361 498 492 619 616 768 767 895 895 994 994
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Table 3.4: Results of the simulations for configuration 3 (λr = 1.05x1.3 and λc = 1.31x1.1).

Number of correct decisions (out of 1000)
n = 5 n = 10 n = 12 n = 15 n = 20 n = 30 n = 60

x Eq (λr/λc) M B D B D B D B D B D B D B D
1 Y (0.802) 0 0 0 0 0 0 0 0 0 0 0 0 0 86 86
2 Y (0.921) 84 0 0 0 0 0 0 0 0 21 20 259 254 700 700
3 Y (0.998) 491 0 0 0 0 7 5 106 99 301 290 523 522 905 905
4 Y (1.058) 647 0 0 64 60 166 161 271 267 441 440 597 597 881 881
5 Y (1.106) 668 0 0 175 172 237 234 311 310 441 441 576 576 794 794
6 Y (1.147) 621 2 2 213 212 224 222 309 309 370 370 486 485 709 709
7 Y (1.183) 518 28 26 188 186 192 192 227 227 258 258 372 372 570 570
8 Y (1.215) 377 66 66 121 121 154 154 170 170 204 204 256 255 416 416
9 Y (1.244) 204 57 57 89 89 122 122 122 122 140 140 153 153 251 251
10 Y (1.270) 110 76 75 56 56 84 84 75 74 87 87 114 114 129 129
11 Y (1.295) 57 39 39 52 52 68 68 52 52 46 46 40 40 66 66

12 N (1.318) 965 950 950 958 958 964 964 971 971 959 959 967 967 973 973

Table 3.5: Results of the simulations for configuration 4 (λr = 1.3x1.1 and λc = 1.1x1.32).

Number of correct decisions (out of 1000)
n = 5 n = 10 n = 12 n = 15 n = 20 n = 30 n = 60

x Eq (λr/λc) M B D B D B D B D B D B D B D
1 Y (1.182) 0 0 0 0 0 0 0 0 0 0 0 0 0 72 69
2 Y (1.015) 94 0 0 0 0 0 0 0 0 16 12 224 219 695 695
3 Y (0.928) 531 0 0 0 0 8 8 133 121 344 339 629 627 929 929
4 Y (0.871) 702 0 0 88 80 178 175 326 322 490 490 701 700 913 912
5 Y (0.829) 704 0 0 185 183 276 274 329 327 421 418 581 580 854 854
6 Y (0.797) 659 5 5 207 206 265 263 282 282 373 373 474 474 738 738
7 Y (0.770) 515 51 45 180 179 211 207 216 216 297 296 346 346 561 561
8 Y (0.748) 327 58 55 140 137 147 147 154 153 205 205 251 251 386 386
9 Y (0.729) 180 64 62 99 99 115 115 104 104 120 120 160 160 212 212
10 Y (0.712) 87 67 67 83 82 80 80 72 72 92 92 88 87 131 131

11 N (0.697) 948 957 957 958 958 960 961 964 964 963 963 954 954 966 967
12 N (0.684) 974 964 966 966 966 963 963 968 968 975 975 985 985 991 991

Table 3.6: Results of the simulations for configuration 5 (λr = 0.6x1.1 and λc = 0.7x1.1).

Number of correct decisions (out of 1000)
n = 5 n = 10 n = 12 n = 15 n = 20 n = 30 n = 60

x Eq (λr/λc) M B D B D B D B D B D B D B D
1 Y (0.857) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 Y (0.857) 0 0 0 0 0 0 0 0 0 0 0 0 0 209 205
3 Y (0.857) 35 0 0 0 0 0 0 0 0 0 0 92 87 436 432
4 Y (0.857) 338 0 0 0 0 0 0 0 0 42 36 250 245 569 567
5 Y (0.857) 556 0 0 0 0 0 0 34 27 146 146 375 373 697 697
6 Y (0.857) 696 0 0 1 1 23 22 137 129 297 297 486 484 774 774
7 Y (0.857) 779 0 0 20 20 97 93 218 212 358 355 541 539 831 829
8 Y (0.857) 809 0 0 64 58 146 144 290 286 435 430 635 635 860 860
9 Y (0.857) 772 0 0 141 138 231 226 387 384 497 494 674 674 906 906
10 Y (0.857) 712 0 0 216 213 306 304 434 431 539 538 755 753 943 943
11 Y (0.857) 635 1 1 262 256 359 359 483 479 615 615 745 745 956 956
12 Y (0.857) 557 5 5 300 298 404 401 507 507 628 628 806 806 963 963
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Table 3.7: Results of the simulations for configuration 6 (λr = 0.2 + 0.8x and λc = 0.01 + 0.9x).

Number of correct decisions (out of 1000)
n = 5 n = 10 n = 12 n = 15 n = 20 n = 30 n = 60

x Eq (λr/λc) M B D B D B D B D B D B D B D
0 N (20) 1000 783 647 619 888 568 932 474 968 383 987 318 999 535 1000

1 Y (1.100) 1 0 0 0 0 0 0 0 0 0 0 0 0 28 13
2 Y (0.994) 82 0 0 0 0 0 0 0 0 0 0 10 5 464 451
3 Y (0.959) 682 0 0 0 0 0 0 0 0 13 1 245 216 735 732
4 Y (0.942) 871 0 0 0 0 0 0 8 6 137 92 449 407 880 862
5 Y (0.931) 901 0 0 0 0 1 2 81 72 313 288 571 556 935 916
6 Y (0.924) 899 0 0 7 1 81 37 220 171 425 394 697 667 965 951
7 Y (0.919) 877 0 0 55 25 173 105 341 286 535 483 782 766 975 969
8 Y (0.915) 857 0 0 122 104 270 219 431 378 627 578 820 794 979 977
9 Y (0.912) 842 0 0 222 181 349 293 503 450 676 629 891 863 992 990
10 Y (0.910) 820 0 0 289 235 385 364 601 526 751 720 884 864 995 995
11 Y (0.908) 797 0 0 341 291 469 414 624 570 777 727 921 899 997 996

Table 3.8: Results of the simulations for configuration 7 (λr = 0.35 + 0.8x and λc = 0.94 + 0.7x).

Number of correct decisions (out of 1000)
n = 5 n = 10 n = 12 n = 15 n = 20 n = 30 n = 60

x Eq (λr/λc) M B D B D B D B D B D B D B D
0 N (0.372) 1000 994 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

1 Y (0.701) 0 0 0 0 0 0 0 0 0 0 0 0 0 33 21
2 Y (0.833) 214 0 0 0 0 0 0 0 0 0 0 70 50 351 279
3 Y (0.905) 704 0 0 0 0 0 0 0 0 33 12 275 229 726 683
4 Y (0.949) 914 0 0 0 0 0 0 14 9 166 117 479 438 894 881
5 Y (0.980) 954 0 0 0 0 7 1 95 63 300 294 583 579 933 944
6 Y (1.002) 936 0 0 4 2 77 39 211 194 394 400 675 695 924 939
7 Y (1.019) 902 0 0 38 19 158 108 292 288 481 483 715 732 953 962
8 Y (1.032) 848 0 0 98 70 233 228 328 335 545 571 734 761 948 959
9 Y (1.043) 815 0 0 177 148 255 262 411 428 550 583 710 752 955 965
10 Y (1.052) 779 0 0 181 207 319 329 435 461 600 631 748 783 951 962
11 Y (1.059) 740 0 0 259 249 374 397 473 511 608 647 755 785 951 957
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3.3 Discussion of the results

This section is divided into two parts: first, an explanation of the results highlighted in Section 3.2
is provided; after that, a comparison between the model-based approach and the non model-based
approach is discussed.

3.3.1 Explanation of the results

1. The extremely good performances of all the approaches when equivalence is not theoretically
true are due to the fact that the probability of rejecting a true null hypothesis has been set
equal to 0.05. Thus, when the true ratio is below 0.7 (resp. above 1.3), it is almost sure that
the lower (resp. upper) confidence bound is below 0.7 (resp. above 1.3).

2. All the approaches have bad results at concentrations where the true ratio is close to one of
the two equivalence bounds 0.7 and 1.3 because the confidence interval in these cases should
be very small in order to entirely fall in the equivalence range.

3. The performances of the non model-based approaches at a certain concentration are strongly
affected by the number of replicates. This is due to the effect of the number of replicates on
the length of the intervals computed by using the binomial approach and the delta approach,
as discussed in Subsection 2.1.4: the more replicates are used, the shorter the computed in-
terval is. The length of the interval is of course a factor which affects the number of correct
decisions: when equivalence is theoretically true, the smaller the interval is, the more likely
to be included in the equivalence range it is. However, when the true ratio is close to 0.7
or 1.3, the performances of the non model-based approaches do not improve when increasing
the number of replicates: in these cases, the differences in the performances for the different
values of n are extremely low and more due to randomness than to changes in the number of
replicates; more than 60 replicates would be needed in these cases to substantially improve the
performances. The length of the intervals constructed by the non model-based approaches is
also affected by the theoretical concentration, as described in Subsection 2.1.4: however, the
effect of the theoretical concentration (the higher x, the better the performances) can not be
observed when the true ratio approaches 0.7 or 1.3 because the ratio mainly affects the number
of correct decisions in these situations.

4. Because of the bad performances due to a true ratio close to 0.7 or 1.3, it would be reasonable
to observe that, for a given number of replicates, the closer to 1 the true ratio at a certain
concentration x is, the better the performances of the non model-based approaches at that
concentration are. However, this pattern can not be observed because the magnitude of the
concentration must be taken into account too. For instance, in the third configuration (Table
3.4), only with n = 60 the best performances are obtained at x = 3, where the closest to 1 true
ratio occurs. Using less replicates, the best results are observed at concentrations where the
true ratio is further from 1 (e.g., the best performances are at x = 4 when n = 30). This is
due to the effect of the concentration on the performances of the non model-based approaches.
If the true ratio remains reasonably close to 1, namely approximately between 0.9 and 1.1, the
number of correct decisions, for a given n, is mainly affected by the theoretical concentration
rather than by the value of the ratio (see for example Table 3.7), at least up to a certain number
of replicates (e.g., when using n = 60 in the third configuration, the best results are obtained
at x = 3).

5. The pattern in the performances of the model-based approach is very similar to the trend of
the lengths of the confidence intervals described in Section 2.2: the shortest interval occurs at
a concentration x̃ towards the middle of the range and the more the concentration moves away
from x̃, the more the length increases. However, this pattern in the lengths of the intervals is not
symmetric around x̃, and the same happens for the trend in the performances. In particular,
the intervals are much wider at low concentrations than in the rest of the range and this is
reflected in the poor performances of the model-based approach at low concentrations.
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3.3.2 Comparison between the two approaches

The main purpose of this simulation study is to try to understand which approach (model-based
or non model-based) is preferable in terms of ability to correctly evaluate the accuracy of the
rapid method, at least under certain conditions. In the simulations described in this chapter, the
model-based approach has been performed only using the homogeneous design to estimate the
linear models for the two microbiological methods, while the non model-based approach has been
tested with different values of number of replicates per concentration.

In the majority of cases, 30 or 60 replicates are needed for the non model-based approach
to have performances comparable to those of the model-based approach. This could lead to the
conclusion that the model-based approach should be preferred, but it is necessary to consider
that the model-based approach is based on the assumption that the relation between expected
count and concentration has a certain form. In this simulation study, this assumption holds
because of how the measurements are simulated. However, in practice the true relation between
expected counts and concentrations is not known. Since the non model-based approach is not
based on such an assumption, it should be investigated if there are conditions in which the non
model-based approach can be preferred to the model-based approach.

Suppose we are willing to believe that if accuracy holds at two concentrations xL and xU ,
then the rapid method is accurate at all concentrations between xL and xU . This could be
a reasonable assumption, based for instance on the results of other analyses performed on the
microbiological method, and can be considered true especially if the concentrations at which
accuracy is evaluated are not too far from each other. It should be noted that this is the case
in the described simulations, where a range of concentrations from 0 to 12 is taken into account,
with two consecutive concentrations being two consecutive integer numbers. If we consider the
first configuration (Table 3.2), we could choose xL ∈ {2, 3} and xU ∈ {10, 11, 12} and use the non
model-based approach with 30 replicates for each of the two chosen concentrations: indeed, with
30 replicates, the non model-based approach gives better results than the model-based approach
at these concentrations (or at least results very close to those of the model-based approach).
Moreover, the non model-based approach has higher performance than the model-based approach
at concentration 12 already with n = 20: choosing xU = 20 and using imbalanced numbers of
replicates per concentration would probably permit to further increase the performance of the non
model-based approach at xL (we may use n = 20 at xU = 12 and n = 40 at xL = 2 or xL = 3).
These remarks hold for many of the analysed configurations.

One of the results discussed in the previous subsection is the effect of the theoretical concen-
tration on the performance of the non model-based approach: the higher the concentration is, the
shorter the confidence interval at that concentration is and so the better the performance at that
concentration is (unless there are issues due to the value of the true ratio). This could suggest
that a comparison between the two approaches may give different results if performed on a range
with higher concentrations than those used in the simulations. In order to investigate this, Table
3.9 reports the results of the simulations for the first configuration of models and coefficients,
using as set of concentrations X = {10, 20, 30, . . . , 100, 110, 120}, containing the concentrations
previously used multiplied by 10 (only the binomial approach has been tested, since the results
of the delta approach are almost equivalent, as previously observed). The results show that a
number of replicates between 10 and 15 is enough to obtain almost equal performances using the
model-based approach or the non model-based approach at concentrations greater than 60. At
lower concentrations, more replicates are needed for the non model-based approach to produce
results comparable to those of the model-based approach: however, the performances are quite
similar already with n = 20. These remarks permit to underline that the results discussed in
this chapter should be considered valid when dealing with low concentrations, approximately in a
range from 0 to 20; when dealing with higher values, substantial improvements can be observed
in the performances of the non model-based approach.
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Table 3.9: Results of the simulations for configuration 1 (λr = 1.2x and λc = 1.1x) with
X = {10, 20, . . . , 120}.

Number of correct decisions (out of 1000)

n = 5 n = 10 n = 12 n = 15 n = 20 n = 30 n = 60

x Eq (λr/λc) M B B B B B B B

10 Y (1.091) 607 26 338 403 477 609 743 944
20 Y (1.091) 868 351 607 654 743 828 942 1000
30 Y (1.091) 987 482 753 810 899 949 987 1000
40 Y (1.091) 999 579 853 899 955 984 998 1000
50 Y (1.091) 1000 700 907 952 979 993 999 1000
60 Y (1.091) 1000 746 944 973 994 999 1000 1000
70 Y (1.091) 1000 788 974 983 996 999 1000 1000
80 Y (1.091) 1000 860 980 992 1000 999 1000 1000
90 Y (1.091) 1000 882 989 997 1000 1000 1000 1000
100 Y (1.091) 1000 904 994 998 1000 1000 1000 1000
110 Y (1.091) 1000 921 994 999 1000 1000 1000 1000
120 Y (1.091) 1000 945 1000 999 1000 1000 1000 1000

3.4 Sample size calculation for the delta approach

The confidence intervals (2.6) and (2.8) obtained by using the non model-based approach based
on the delta method have the following form, in the original scale or in the log scale, respectively:

T̂ ± z1−α/2
√
σ2 (3.2)

where T̂ is an estimate of the (log) ratio and
√
σ2 is its standard error. The intervals (2.17) and

(2.21) computed by the model-based approaches also appear in the form (3.2), the former in the
original scale and the latter in the log scale. A comparison between the lengths of the intervals
computed by the model-based approach and the delta approach can give an estimate of the number
of replicates necessary for the delta approach to produce a confidence interval shorter than the
interval computed by the model-based approach. The intention of this analysis is to check if the
results are in agreement with what has been observed in the results of the simulations.

For these computations, it is assumed that the models between expected count and theoretical
concentration for the two microbiological methods have been estimated, so the standard errors
and the estimated coefficients used in (2.17) and (2.21) are known. In particular, the models
have been estimated using the homogeneous design with p concentrations and N/p replicates per
concentration used in the previous simulations.

When the linear model in the log scale λ = αxβ is used, the comparison between the two
intervals is performed in the log scale, where both intervals are in the form (3.2).

• Model-based approach: (δ̂r + β̂r log(x))− (δ̂c + β̂c log(x))± z1−α/2
√
σ2
r,x + σ2

c,x.

• Delta approach: log(Y r)− log(Y c)± z1−α/2

√
1

n

(
1

Y R
+

1

Y C

)
.

It should be noted that the average measurements Y r and Y c in the standard error in the inter-
val computed by the delta approach have been used to estimate the expected values λr and λc,
respectively, as explained in Subsection 2.1.2. In the following computations for the minimum
sample size, the true expected values are used, since they are known in the context of this simu-
lation study. In order to obtain a shorter confidence interval by using the delta approach rather
than by using the model-based approach, the number of replicates n must be such that√

1

n

(
1

λr
+

1

λc

)
≤
√
σ2
r,x + σ2

c,x
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and the following condition on the number of replicates is found:

n ≥ 1

σ2
r,x + σ2

c,x

(
1

λr
+

1

λc

)
.

Thus, the minimum number of replicates nmin such that the previous condition is satisfied is given
by the following expression, where dte denotes the rounding of t to the first integer greater than t.

nmin =

⌈
1

σ2
r,x + σ2

c,x

(
1

λr
+

1

λc

)⌉
(3.3)

When the linear model in the original scale λ = α + βx is used, the comparison between the
two intervals is performed in the original scale.

• Model-based approach:
α̂r + β̂rx

α̂c + β̂cx
± z1−α/2

√
σ2
r,x

(α̂c + β̂cx)2
+

(α̂r + β̂rx)2

(α̂c + β̂cx)4
σ2
c,x.

• Delta approach:
Y r

Y c
± z1−α/2

√√√√ 1

n

(
Y r

Y
2

c

+
Y

2

r

Y
3

c

)
.

Also in this case, the average counts appearing in the standard error of the interval computed by
the delta approach are replaced with the true expected counts in order to compute the minimum
sample size. The condition to be satisfied in order to obtain a shorter confidence interval by using
the delta approach rather than by using the model-based approach is√

1

n

(
λr
λ2c

+
λ2r
λ3c

)
≤

√
σ2
r,x

(α̂c + β̂cx)2
+

(α̂r + β̂rx)2

(α̂c + β̂cx)4
σ2
c,x

which becomes the following condition for the number of replicates:

n ≥ λr/λ
2
c + λ2r/λ

3
c

σ2
r,x

(α̂c+β̂cx)2
+ (α̂r+β̂rx)2

(α̂c+β̂cx)4
σ2
c,x

.

Thus, the minimum number of replicates nmin such that the previous condition is satisfied is given
by

nmin =

⌈
λr/λ

2
c + λ2r/λ

3
c

σ2
r,x

(α̂c+β̂cx)2
+ (α̂r+β̂rx)2

(α̂c+β̂cx)4
σ2
c,x

⌉
. (3.4)

Table 3.10 contains the values of the minimum number of replicates nmin per each value of
the theoretical concentration for each of the seven configurations used in the simulations. The
intention is to see if there is correspondence between the theoretical value of the minimum sample
size and the minimum number of replicates needed for the non model-based approach to obtain
results comparable to the model-based approach in the simulations.

The results show that the minimum sample size is maximum at a specific concentration around
the middle of the range and decreases for values x approaching the boundaries of the range. This
trend is in agreement with what has been observed in the results of the simulations: in order
to get results comparable to those of the model-based approach, the non model-based approach
needs a number of replicates which is lower for high concentrations and higher for concentrations
in the middle of the range, while it is difficult to compare the performances for low concentrations
because both approaches give bad results. This trend is observed especially for the configurations
with a constant true ratio (configurations 1, 2, 5) or with a variable true ratio which remains far
from 0.7 or 1.3 (configuration 6). When the true ratio changes and approaches 0.7 or 1.3, it is
more difficult to compare the results in Table 3.10 to the results of the simulations because the
true ratio substantially affects the number of correct decisions.
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Table 3.10: Minimum sample size to achieve the same length of the confidence interval with the
delta approach and the model-based approach for each of the seven configurations when N = 60.

x Conf. 1 Conf. 2 Conf. 3 Conf. 4 Conf. 5 Conf. 6 Conf. 7
0 - - - - - - 17
1 26 26 30 30 28 8 41
2 28 29 28 28 28 28 61
3 35 35 32 31 33 53 76
4 43 44 38 38 40 68 80
5 53 53 47 46 49 68 73
6 58 58 53 53 55 60 61
7 56 56 54 55 55 51 49
8 47 47 48 48 47 43 40
9 37 37 38 38 37 37 33
10 29 29 28 29 28 32 27
11 22 22 21 22 21 28 23
12 17 17 16 16 16 - -

It should be noted that in most cases more than 30 replicates are needed for the delta approach
to give a shorter interval than that computed by the model-based approach. This result seems
to confirm that, with 60 available experiments, the non model-based approach can give results
comparable to those of the model-based approach only if used at 2 concentrations, as discussed in
Subsection 3.3.2.

The results in Table 3.10 may suggest that if the number of total experiments N increases, the
non model-based approach could be used at more concentrations and provide better performances
than the model-based approach. For instance, if N = 120, looking at the results in Table 3.10 for
the first configuration, the non model-based approach could be used at concentrations 1, 6 and 11
with 30, 60 and 30 replicates, respectively, and provide shorter intervals than those constructed by
the model-based approach. However, it should be noted that the standard errors of the estimated
expected counts at a certain concentration σ2

r,x and σ2
c,x in (3.3) and (3.4) depend on N , which

is the number of observations used to estimate the linear models for the two microbiological
methods. Thus, if N = 120 and the homogeneous design is used, the linear models are estimated
using 12 concentrations and 10 replicates per concentration. As a consequence, the minimum
sample size should be computed again after estimating the models using 120 observations. Table
3.11 shows that nmin substantially increases at all concentrations when the linear models are
estimated with 120 observations (only the first configuration is analysed). The results suggest
that, as in the previous case, the non model-based approach can give better results than the
model-based approach when used at only 2 concentrations, located towards the boundaries of the
range.

Table 3.11: Minimum sample size to achieve the same length of the confidence interval with the
delta approach and the model-based approach for configuration 1 when N = 120.

x 1 2 3 4 5 6 7 8 9 10 11 12
nmin 45 48 59 75 93 107 108 94 75 58 44 34

3.5 Main conclusions

The simulations illustrated in this chapter have been performed to investigate the performances
of the model-based approach and the non model-based approach described in Chapter 2 in terms
of number of correct decisions about declaration of equivalence between the rapid method and
the compendial method at a specific theoretical concentration. In this section, no distinction
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among the different non model-based approaches is specified since they have shown approximately
equivalent performances. The model-based approach has been tested only using a homogeneous
design to estimate the linear models for the two microbiological methods, while the non model-
based approach has been used with different values of number of replicates per concentration. The
following list summarizes the main patterns observed in the results of the simulations.

• Both approaches correctly lead to not declare accuracy when theoretical equivalence does not
hold. On the other hand, issues in declaration of equivalence using any approaches occur when
equivalence holds but the true ratio is very close to one of the two equivalence bounds 0.7 and
1.3.

• The performances of both approaches are poor at low concentrations when equivalence is the-
oretically true: at x = 1 and x = 2, the model-based approach hardly ever leads to the correct
decision, while the non model-based approach needs 30 or 60 replicates to obtain a non-negligible
percentage of correct declarations of equivalence.

• The performances of the model-based approach follow a specific pattern: the number of correct
decisions is maximum at a certain concentration x̃ towards the middle of the range and it
decreases when the concentration moves away from x̃.

• In general, the higher the number of replicates used at a certain concentration is, the better
the performance of the non model-based approach at that concentration is. For a given number
of replicates, the higher the theoretical concentration is, the better the performance of the non
model-based approach is.

As far as the comparison between the two approaches is concerned, in most cases the non model-
based approach needs 30 or 60 replicates to obtain results comparable to those of the model-based
approach: this has been observed in the results of the simulations and confirmed by the calculation
of the minimum sample size described in Section 3.4. However, this does not mean that the
model-based approach should be considered superior to the non model-based approach, because
the model-based approach is based on the assumption that the relation between the expected
count and the theoretical concentration has a certain functional form, and this assumption is not
known to be true in a real validation study. Thus, in Subsection 3.3.2, a situation in which the
non model-based approach could be preferred to the model-based approach has been described:
under the assumption that if accuracy holds at two concentrations xL and xU then it holds at all
concentrations between xL and xU , the non model-based approach could be used just at these two
concentrations to assess accuracy. The results of the simulations have shown that the non model-
based approach with n = 30 performs better than the model-based approach at concentrations
towards the boundaries of the analysed range of concentrations, thus xL and xU could be chosen
in this way.

The remarks reported in Subsection 3.3.2 have highlighted that the conclusions about the
comparison between the two approaches should be carefully considered to be valid only with
concentrations in a range approximately between 0 and 20. Indeed, when dealing with higher
concentrations, the performances of the non model-based approach substantially improve and are
comparable to those of the model-based approach even with numbers of replicates per concentra-
tion between 10 and 15.

It should be always taken into account that the model-based approach in this simulation
study has been tested only with a homogeneous design used to estimate the linear models for the
two microbiological methods, while the non model-based approach has been tested with different
values of number of replicates per concentration. Both the results of the simulations and the
computation of the minimum sample size have shown that the concentrations where the model-
based approach has the worst performances are located towards the boundaries of the analysed
range: these are the concentrations where the non model-based approach has better results even
with 30 or less replicates. This suggests that it would be appropriate to investigate how to improve
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the performances of the model-based approach, especially at concentrations where the non model-
based approach could be preferred. Chapter 4 will focus on optimizing the design used to estimate
the linear models in order to improve the performance of the model-based approach.
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Optimal design for the
model-based approach

The simulations described in the previous chapter have been performed to investigate the per-
formance of each approach in terms of ability to correctly evaluate equivalence between the rapid
method and the compendial method at a certain concentration. More specifically, the interest is
in computing the statistical power of the equivalence test, that is, the probability of correctly
rejecting the null hypothesis of non-equivalence. Indeed, problems in the evaluation of accuracy
arise when equivalence is theoretically true, namely the ratio between the true expected counts is
included between the equivalence bounds 0.7 and 1.3. On the other hand, when the null hypo-
thesis is not true (i.e., there is no equivalence), both approaches correctly lead to not reject the
null hypothesis.

The simulations have allowed to investigate how the performance of the non model-based
approach changes for different values of number of replicates, while the model-based approach
has been performed only once for each configuration, using a homogeneous design made of p
concentrations and N/p replicates per concentration to estimate the linear models for the two
microbiological methods. In this chapter, the objective is to find out how the performance of the
model-based approach can improve by changing the design used to estimate the linear models for
the rapid method and the compendial method. In particular, the optimal design is found by
maximizing the statistical power of the equivalence test over the analysed range of concentrations.

First, the computation of the statistical power of the equivalence test when using the model-
based approach to compute the two-sided confidence interval is described. After that, the pro-
cedure used to find the optimal design is illustrated, focusing on the optimization problem which
needs to be solved. Finally, the results for different configurations of parameters are reported and
discussed.

4.1 Power calculation

This section shows an approach to the computation of the statistical power of the equivalence test
(3.1) when the model-based approach is used to compute the confidence interval, both with linear
models in the log scale and linear models in the original scale. The described computations follow
the approach used by Zhu [23].

In order to compute the statistical power of the test, the equivalence formulation (3.1) is split
in the following two hypothesis tests.

H
(1)
0 :

λr
λc
≤ 0.7

H
(1)
1 :

λr
λc

> 0.7

(4.1)
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H
(2)
0 :

λr
λc
≥ 1.3

H
(2)
1 :

λr
λc

< 1.3

(4.2)

The TOST procedure used for executing the equivalence test consists in rejecting the null hypo-

thesis of non-equivalence if and only if both H
(1)
0 and H

(2)
0 are rejected at a chosen significance

level.

4.1.1 Linear models in the log scale

The confidence interval (2.22) is computed using the models

λr = αrx
βr λc = αcx

βc

estimated between expected count and theoretical concentration for the rapid method and the
compendial method, respectively. These relations can be expressed in the log scale as

log(λr) = log(αr)+βr log(x) = δr+βr log(x) log(λc) = log(αc)+βc log(x) = δc+βc log(x) (4.3)

Assuming these expressions of the log expected counts, the logarithm of the ratio λr/λc can be
expressed as

log(λr/λc) = δr + βr log(x)− δc − βc log(x) = δ + β log(x),

where δ = δr − δc and β = βr − βc. Using this notation, the equivalence test (3.1) can be written
in the log scale as

H0 : δ + β log(x) ≤ log(0.7) or δ + β log(x) ≥ log(1.3)

H1 : log(0.7) < δ + β log(x) < log(1.3)
(4.4)

and the two hypothesis tests (4.1) and (4.2) can be expressed in the log scale as

H
(1)
0 : δ + β log(x) ≤ log(0.7)

H
(1)
1 : δ + β log(x) > log(0.7)

(4.5)

H
(2)
0 : δ + β log(x) ≥ log(1.3)

H
(2)
1 : δ + β log(x) < log(1.3)

(4.6)

It is now necessary to derive the rejection rule for each of the two hypothesis tests. The probability
of type 1 error is set at 0.05 because 90% confidence intervals have been used to make the decision
about accuracy in the simulations. The estimates of δ and β are given by

δ̂ = δ̂r − δ̂c β̂ = β̂r − β̂c

where δ̂r, δ̂c, β̂r and β̂c are the estimates of the coefficients in the models (4.3).

Given δ̂ and β̂ estimates of δ and β, the rejection rules are derived using the approximate
distribution (2.20) which has been found in Subsection 2.2.4:

δ̂ + β̂ log(x)
approx.∼ N (δ + β log(x), σ2(x))

where the variance σ2(x) depends on the standard errors of the estimated coefficients in the models
for the rapid method and the compendial method. The variance σ2(x) has the following expression:

σ2(x) = V ar(δ̂ + β̂ log(x)) = V ar(δ̂r + β̂r log(x)− (δ̂c + β̂c log(x))) =
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= V ar(δ̂r + β̂r log(x)) + V ar(δ̂c + β̂c log(x)) = σ2
r,x + σ2

c,x

where the variances of the estimated log expected values σ2
r,x and σ2

c,x are given by the expression
(B.2) reported in Appendix B.

To derive the rejection rule in (4.5), a value KL needs to be found such that

P[Reject H
(1)
0 |H

(1)
0 true] = P[δ̂+β̂ log(x) > KL|δ+β log(x) = log(0.7)] ≈ P

[
Z >

KL − log(0.7)√
σ2(x)

]
= 0.05

where Z ∼ N (0, 1). Thus, H
(1)
0 in (4.5) is rejected when δ̂+ β̂ log (x) > log (0.7)−z

√
σ2(x)

where z is the quantile of the Standard Normal distribution z = z0.05.
Similarly, to derive the rejection rule in (4.6), a value KU needs to be found such that

P[Reject H
(2)
0 |H

(2)
0 true] = P[δ̂+β̂ log(x) < KU |δ+β log(x) = log(1.3)] ≈ P

[
Z <

KU − log(1.3)√
σ2(x)

]
= 0.05.

Thus, H
(2)
0 in (4.6) is rejected when δ̂+ β̂ log (x) < log (1.3) + z

√
σ2(x) where z = z0.05.

In order to compute the power of the equivalence test, it is necessary to calculate the probability

of rejecting at the same time H
(1)
0 in (4.5) and H

(2)
0 in (4.6): this corresponds to the probability

that KL < δ̂ + β̂ log(x) < KU . However, it can happen in principle that KL > KU : this is due
to the fact that the rejection rules for the two hypothesis tests (4.5) and (4.6) have been derived
independently of each other. When KL > KU , the power of the test is equal to 0, since the
null hypothesis H0 in (4.4) would never be rejected. Thus, when KL < KU , the power of the
equivalence test (4.4) is given by:

P[Reject H0|H0false] = P[KL < δ̂ + β̂ log(x) < KU |δ, β such that the null hypothesis is false] =

= P[δ̂ + β̂ log(x) < KU |δ, β]− P[δ̂ + β̂ log(x) < KL|δ, β] =

= P[δ̂ + β̂ log(x) < log(1.3) + z
√
σ2(x)|δ, β]− P[δ̂ + β̂ log(x) < log(0.7)− z

√
σ2(x)|δ, β] ≈

≈ Φ

(
log(1.3) + z

√
σ2(x)− (δ + β log(x))√
σ2(x)

)
− Φ

(
log(0.7)− z

√
σ2(x)− (δ + β log(x))√
σ2(x)

)

where Φ is the cumulative distribution function of the Standard Normal distribution.
In conclusion, the power of the equivalence test when using the model-based approach with the

linear models in the log scale is given by the following formula. The formula contains a maximum
between the just computed expression and 0 in order to ensure that the power is non-negative
even when KL > KU : as previously explained, the power of the equivalence test is 0 in this case,
but the expression computed above would be negative.

P (x) = max

{
Φ

(
log(1.3) + z

√
σ2(x)− (δ + β log(x))√
σ2(x)

)
−Φ

(
log(0.7)− z

√
σ2(x)− (δ + β log(x))√
σ2(x)

)
, 0

}

4.1.2 Linear models in the original scale

The confidence interval (2.17) is computed using the models

λr = αr + βrx λc = αc + βcx

estimated between expected count and theoretical concentration for the rapid method and the
compendial method, respectively. In this case, the computations are performed in the original
scale, so it is necessary to derive the rejection rule in each of the two hypothesis tests (4.1) and
(4.2) in which the equivalence formulation (3.1) can be split. The computations are based on the
approximate distribution (2.16) described in Subsection 2.2.3

λ̂r

λ̂c
=
α̂r + β̂rx

α̂c + β̂cx

approx.∼ N
(
λr
λc
, σ2(x)

)
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where

σ2(x) =
σ2
r,x

λ2c
+
λ2r
λ4c
σ2
c,x (4.7)

with σ2
r,x = V ar(λ̂r) and σ2

c,x = V ar(λ̂c). The formula for the variance σ2(x) can be found by
replacing σ2

r,x and σ2
c,x in (4.7) with the expression (B.1) reported in Appendix B.

To derive the rejection rule in (4.1), a value KL needs to be found such that

P[Reject H
(1)
0 |H

(1)
0 true] = P[λ̂r/λ̂c > KL|λr/λc = 0.7] ≈ P

[
Z >

KL − 0.7√
σ2(x)

]
= 0.05.

Thus, H
(1)
0 in (4.1) is rejected when λ̂r/λ̂c > 0.7− z

√
σ2(x) where z is the quantile of the

Standard Normal distribution z = z0.05.
Similarly, to derive the rejection rule in (4.2), a value KU needs to be found such that

P[Reject H
(2)
0 |H

(2)
0 true] = P[λ̂r/λ̂c < KU |λr/λc = 1.3] ≈ P

[
Z <

KU − 1.3√
σ2(x)

]
= 0.05.

Thus, H
(2)
0 in (4.2) is rejected when λ̂r/λ̂c < 1.3 + z

√
σ2(x) where z = z0.05.

In order to compute the power of the equivalence test, it is necessary to calculate the probability

of rejecting at the same time H
(1)
0 in (4.1) and H

(2)
0 in (4.2): this corresponds to the probability

that KL < λ̂r/λ̂c < KU . As explained in the previous subsection, it can happen that KL > KU :
in this case, the power is equal to 0. When KL < KU , the power of the equivalence test (3.1) is
given by:

P[Reject H0|H0false] = P[KL < λ̂r/λ̂c < KU |λr, λc such that the null hypothesis is false] =

= P[λ̂r/λ̂c < KU |λr, λc]− P[λ̂r/λ̂c < KL|λr, λc] =

= P[λ̂r/λ̂c < 1.3 + z
√
σ2(x)|λr, λc]− P[λ̂r/λ̂c < 0.7− z

√
σ2(x)|λr, λc] ≈

≈ Φ

(
1.3 + z

√
σ2(x)− λr/λc√
σ2(x)

)
− Φ

(
0.7− z

√
σ2(x)− λr/λc)√
σ2(x)

)
.

In conclusion, the power of the equivalence test when using the model-based approach with
the linear models in the original scale is given by the following formula, where the maximum is
used to avoid that the power is negative when KL > KU , as in the previous subsection.

P (x) = max

{
Φ

(
1.3 + z

√
σ2(x)− λr/λc√
σ2(x)

)
− Φ

(
0.7− z

√
σ2(x)− λr/λc)√
σ2(x)

)
, 0

}

4.2 Optimization problem

This section illustrates the procedure used to find the optimal design, focusing in particular on the
description of the optimization problem which needs to be solved. Optimality in this context is with
respect to the mean power of the equivalence test over the analysed range of concentrations. More
precisely, given a set X of p concentrations that could be potentially used to estimate the linear
models, the intention is to find a subset Xk ⊆ X , containing k concentrations (2 ≤ k ≤ p), and
numbers of replicates n1, . . . , nk, such that estimating the linear models for the two microbiological
methods using concentrations in Xk with the determined number of replicates per concentration
permits to maximize the power of the equivalence test at the concentrations in X where theoretical
equivalence holds. In order to describe the procedure used to find the optimal design, it is necessary
to first illustrate the notation used.

• X ⊂ N: set of concentrations that could be potentially used to estimate the linear models for
the rapid method and the compendial method. p = |X | denotes the number of concentrations.
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• N : number of total available experiments to estimate the linear model for each of the two
microbiological methods.

• k: number of concentrations used to estimate the linear models. Then k ∈ {2, . . . , p} because
each linear model has two coefficients, so at least 2 different concentrations are needed to
estimate them.

• Xk ⊆ X : given a value k, Xk denotes the subset of X including the k concentrations used to
estimate the models.

• ni: if Xk = {x1, . . . , xk}, ni denotes the number of replicates at concentration xi ∈ Xk used to
estimate the models. This holds for any i = 1, . . . , k.

• Xeq ⊆ X : subset of X including the concentrations at which equivalence is theoretically true.
In formulas, Xeq = {x ∈ X | 0.7 < λr(x)/λc(x) < 1.3}. For concentrations in the set Xeq
it is actually appropriate to talk about statistical power, since at these concentrations the null
hypothesis of non-equivalence is false.

• P (n1, . . . , nk;Xk, x): power of the equivalence test (when the model-based approach is used to
compute the confidence interval) computed at concentration x when the linear models for the
two microbiological methods are estimated using concentrations in Xk = {x1, . . . , xk} with ni
replicates at concentration xi ∀i = 1, . . . , k. This is considered as a function of the numbers of
replicates n1, . . . , nk, while the set Xk and the concentration x are treated as fixed parameters.
This power is computed using one of the two formulas derived in the previous section, depending
on the type of model that is chosen for the two microbiological methods.

For each possible value of k, there are
(
p
k

)
possible subsets of the p concentrations that can be

used to estimate the models. For each possible value of k and for each possible subset Xk, the
following optimization problem is solved.

max
n1,...,nk

∑
x∈Xeq

P (n1, . . . , nk;Xk, x)

s.t.

k∑
i=1

ni = N

1 ≤ ni ≤ N − k + 1 ∀i = 1, . . . , k

ni ∈ N ∀i = 1, . . . , k

(4.8)

The solution of this optimization problem consists in the allocation of replicates to the k
concentrations in the set Xk used to estimate the linear models which maximizes the mean power
of the equivalence test over the set Xeq. According to the first constraint, the experiments used
at each concentration must sum up to the total number of available experiments. The second
constraint specifies bounds on each number of replicates: the lower bound is necessary to ensure
that each concentration in Xk is used at least once to estimate the models, while the upper bound
is actually redundant because the first constraint and the lower bound on each ni imply that each
number of replicates can not exceed the value N − k + 1.

Overall,
p∑
k=2

(
p
k

)
optimization problems like (4.8) are solved for each configuration. Each of

these problems is solved by means of a Genetic Algorithm in MATLAB and the programs used
are reported in Appendix C. Finally, the combination of concentrations and numbers of replicates
giving the best value of the objective function is identified as optimal design.

4.3 Optimal designs for the different configurations

The optimal design has been determined for each of the seven configurations of linear models and
parameters used in the simulations described in Chapter 3. The number of available experiments
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is always equal to N = 60. The set of possible concentrations is X = {1, . . . , 12} when linear
models in the log scale are used, while it is X = {0, . . . , 11} when linear models in the original scale
are used. The following subsections illustrate the optimal designs for the different configurations.
Moreover, for each configuration, once the optimal design has been determined, simulations to
evaluate the number of correct decisions when using the model-based approach with the optimal
design have been performed in order to observe the improvements in the performance of the model-
based approach. In the tables referring to the results of these simulations, the most substantial
improvements in comparison to the results obtained with the homogeneous design used in the
simulations described in the previous chapter are highlighted in red. These tables also report the
theoretical power computed using the formulas derived in Section 4.1, both using the homogeneous
design and using the optimal design to estimate the linear models.

4.3.1 First configuration

This configuration is characterised by the linear models in the log scale

λr = 1.2x λc = 1.1x.

With this choice of models and parameters, the optimal design consists of 3 concentrations.
Almost half of the experiments are used at concentration 12 and the remaining experiments are
approximately equally distributed between concentrations 2 and 3. As far as the power of the
equivalence test is concerned (Table 4.2), there is a substantial improvement in the performances
at concentration 2 and at high concentrations (10, 11, 12). The number of correct decisions at
x = 2 increases from 3 to 113: of course, 11.3% is not an acceptable power, but the improvement
in comparison to the previous case is considerable. The optimal design permits to reach a power
of around 80% at x ∈ {10, 11, 12}, while with the homogeneous design the maximum value at
these concentrations is 70% (x = 10). When the power is lower with the optimal design rather
than with the homogeneous design (x ∈ {5, 6, 7}), the differences are not so remarkable as for the
observed improvements.

Table 4.1: Optimal design for configuration 1 (λr = 1.2x and λc = 1.1x).

Concentration Number of replicates
2 16
3 17
12 27

Table 4.2: Results of the model-based approach with the two designs for configuration 1
(λr = 1.2x and λc = 1.1x).

Number of correct decisions (out of 1000) Theoretical power
x Eq (λr/λc) Optimal design Homogeneous design Optimal design Homogeneous design
1 Y (1.091) 0 0 0 0
2 Y (1.091) 113 3 0.12 0
3 Y (1.091) 342 243 0.35 0.25
4 Y (1.091) 490 465 0.51 0.46
5 Y (1.091) 613 615 0.64 0.63
6 Y (1.091) 727 750 0.74 0.76
7 Y (1.091) 807 822 0.81 0.83
8 Y (1.091) 836 820 0.84 0.83
9 Y (1.091) 837 767 0.85 0.80
10 Y (1.091) 822 702 0.84 0.75
11 Y (1.091) 797 642 0.81 0.67
12 Y (1.091) 758 581 0.77 0.60
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4.3.2 Second configuration

This configuration is characterised by the linear models in the log scale

λr = 0.8x λc = 0.9x.

The optimal design consists of 3 concentrations also for this configuration: however, while the
allocation of replicates is nearly homogeneous between concentrations 3 and 12, only 10 replicates
are used at concentration 2. The results of the simulations (Table 4.4) show again evident improve-
ments for high concentrations; in addition, the power considerably increases at concentrations 3
and 4. It should also be noted that in this case the optimal design has permitted to obtain better
results at all concentrations in the range (in the simulations).

Table 4.3: Optimal design for configuration 2 (λr = 0.8x and λc = 0.9x).

Concentration Number of replicates
2 10
3 25
12 25

Table 4.4: Results of the model-based approach with the two designs for configuration 2
(λr = 0.8x and λc = 0.9x).

Number of correct decisions (out of 1000) Theoretical power
x Eq (λr/λc) Optimal design Homogeneous design Optimal design Homogeneous design
1 Y (0.889) 0 0 0 0
2 Y (0.889) 12 0 0 0
3 Y (0.889) 342 149 0.31 0.14
4 Y (0.889) 605 467 0.58 0.48
5 Y (0.889) 775 721 0.76 0.73
6 Y (0.889) 872 850 0.86 0.86
7 Y (0.889) 912 902 0.91 0.92
8 Y (0.889) 928 909 0.92 0.92
9 Y (0.889) 939 872 0.92 0.89
10 Y (0.889) 915 819 0.91 0.84
11 Y (0.889) 895 749 0.88 0.77
12 Y (0.889) 860 662 0.85 0.69

4.3.3 Third configuration

This configuration is characterised by the linear models in the log scale

λr = 1.05x1.3 λc = 1.31x1.1.

With this configuration of models and parameters, the optimal design consists of concentra-
tions 3 and 12. In addition to the number of concentrations, the most remarkable difference in
comparison to the optimal designs obtained for the previous configurations is in the allocation of
experiments to x = 12: only 14 replicates are used at this concentration, with more than 75% of
the available experiments used at x = 3. A possible explanation, which is also confirmed by the
results obtained for the next configurations, is that the ratio between the true expected counts
at x = 3 is between 0.7 and 1.3, while this does not happen at x = 12. As far as the results
of the simulations are concerned (Table 4.6), increases in power can be observed especially at
x ∈ {2, 3, 4}, while in this case it is not possible to compare the results at high concentrations
since the true ratios are too close to the equivalence bound 1.3 or theoretical equivalence does not
hold. At concentrations 7, 8 and 9, the results seem considerably worse using the optimal design
than using the homogeneous design: however, the power is already low with the homogeneous
design, probably due to the values of the true ratios, and the differences in the performances are
not so evident as at concentrations 2, 3 and 4.
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Table 4.5: Optimal design for configuration 3 (λr = 1.05x1.3 and λc = 1.31x1.1).

Concentration Number of replicates
3 46
12 14

Table 4.6: Results of the model-based approach with the two designs for configuration 3
(λr = 1.05x1.3 and λc = 1.31x1.1).

Number of correct decisions (out of 1000) Theoretical power
x Eq (λr/λc) Optimal design Homogeneous design Optimal design Homogeneous design
1 Y (0.802) 3 0 0 0
2 Y (0.921) 509 84 0.51 0.10
3 Y (0.998) 808 491 0.82 0.52
4 Y (1.058) 812 647 0.82 0.67
5 Y (1.106) 755 668 0.75 0.67
6 Y (1.147) 627 621 0.63 0.63
7 Y (1.183) 446 518 0.45 0.52
8 Y (1.215) 273 377 0.28 0.35
9 Y (1.244) 149 204 0.16 0.20
10 Y (1.270) 93 110 0.09 0.10
11 Y (1.295) 56 57 0.06 0.06

12 N (1.318) 961 965 - -

4.3.4 Fourth configuration

This configuration is characterised by the linear models in the log scale

λr = 1.3x1.1 λc = 1.1x1.32.

The optimal design for this configuration is identical to the optimal design obtained for the
third configuration. Concentrations 3 and 12 are selected, with 46 and 14 replicates, respectively.
As before, equivalence at x = 3 is theoretically true, while the ratio between the true expected
counts at concentration 12 is lower than 0.7. Using the optimal design permits to substantially
increase the power at concentrations 2, 3, 4 and 5, while it is not possible to see improvements
for high concentrations because of the true ratios being very close to 0.7 or because theoretical
equivalence does not hold (Table 4.8).

Table 4.7: Optimal design for configuration 4 (λr = 1.3x1.1 and λc = 1.1x1.32).

Concentration Number of replicates
3 46
12 14

4.3.5 Fifth configuration

This configuration is characterised by the linear models in the log scale

λr = 0.6x1.1 λc = 0.7x1.1.

The optimal design consists of concentrations 3 and 12 also for this configuration. However,
there is an evident difference in the number of replicates in comparison to the previous two con-
figurations: 33 replicates are used at x = 3 and 27 replicates at x = 12. This gives a further
confirmation of the effect of theoretical equivalence on the allocation of experiments to the con-
centrations selected for the optimal design: equivalence holds at both concentrations in this case
and the available experiments are almost equally split between the two concentrations. As the
results of the simulations show (Table 4.10), using the optimal design permits to substantially
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Table 4.8: Results of the model-based approach with the two designs for configuration 4
(λr = 1.3x1.1 and λc = 1.1x1.32).

Number of correct decisions (out of 1000) Theoretical power
x Eq (λr/λc) Optimal design Homogeneous design Optimal design Homogeneous design
1 Y (1.182) 10 0 0.01 0
2 Y (1.015) 513 94 0.50 0.11
3 Y (0.928) 870 531 0.85 0.56
4 Y (0.871) 892 702 0.87 0.72
5 Y (0.829) 827 704 0.80 0.72
6 Y (0.797) 673 659 0.67 0.66
7 Y (0.770) 453 515 0.47 0.54
8 Y (0.748) 288 327 0.28 0.35
9 Y (0.729) 150 180 0.15 0.18
10 Y (0.712) 80 87 0.08 0.09

11 N (0.697) 954 948 - -
12 N (0.684) 973 974 - -

increase the power at concentrations 3, 10, 11 and 12, confirming the results observed for the
other configurations.

Table 4.9: Optimal design for configuration 5 (λr = 0.6x1.1 and λc = 0.7x1.1).

Concentration Number of replicates
3 33
12 27

Table 4.10: Results of the model-based approach with the two designs for configuration 5
(λr = 0.6x1.1 and λc = 0.7x1.1).

Number of correct decisions (out of 1000) Theoretical power
x Eq (λr/λc) Optimal design Homogeneous design Optimal design Homogeneous design
1 Y (0.857) 0 0 0 0
2 Y (0.857) 0 0 0 0
3 Y (0.857) 130 35 0.13 0.03
4 Y (0.857) 384 338 0.38 0.32
5 Y (0.857) 582 556 0.56 0.55
6 Y (0.857) 705 696 0.69 0.71
7 Y (0.857) 784 779 0.78 0.79
8 Y (0.857) 833 809 0.83 0.81
9 Y (0.857) 851 772 0.84 0.78
10 Y (0.857) 830 712 0.83 0.71
11 Y (0.857) 793 635 0.80 0.64
12 Y (0.857) 742 557 0.76 0.56

4.3.6 Configurations 1, 2, 3, 4, 5 with different sets of concentrations

The optimal designs found for the five configurations just described never include the lowest
concentration x = 1 and only for the first and second configurations x = 2 is included. In order to
understand if the lowest concentration in the range is never included in the optimal design or if
there are other reasons behind these results, some other analyses have been performed with these
configurations, changing the set of concentrations which could be potentially used to estimate
the models. In particular, concentration 1 has not been included in the set X for the first two
configurations, while concentrations 2 and 3 have not been included in the set X for the third,
fourth and fifth configurations. The results are summarised in Table 4.11.

It should be noted that, with a restricted set of concentrations that could be potentially used
to estimate the linear models, the lowest concentration in the range is always included in the
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Table 4.11: Optimal design for configurations 1, 2, 3, 4, 5 with restricted sets of concentrations.

Optimal design
Configuration X Concentrations Numbers of replicates

First {2, . . . , 12} x1 = 2, x2 = 3, x3 = 12 n1 = 16, n2 = 17, n3 = 27
Second {2, . . . , 12} x1 = 2, x2 = 3, x3 = 12 n1 = 10, n2 = 25, n3 = 25
Third {3, . . . , 12} x1 = 3, x2 = 4, x3 = 12 n1 = 17, n2 = 28, n3 = 15
Fourth {3, . . . , 12} x1 = 3, x2 = 4, x3 = 12 n1 = 15, n2 = 30, n3 = 15
Fifth {3, . . . , 12} x1 = 3, x2 = 12 n1 = 33, n2 = 27

optimal design. For the first, second and fifth configurations, the designs are exactly the same
as those obtained using the set X = {1, . . . , 12}. The designs obtained for the third and fourth
configurations are very similar: they are made of three concentrations, with around 50% of all
the available experiments used at concentration 4 and the other half almost equally split between
concentrations 3 and 12.

Since in the first, second and fifth configurations the true ratio λr/λc does not depend on x, it
is possible to look for the optimal design also on other ranges of concentrations, without obtaining
results that are affected by values of the ratio between the true expected counts (it probably has
an effect, as described in Subsection 4.3.3).

For example, using the first configuration of models and parameters and allowing for concentra-
tions in the set X = {5, . . . , 16}, the optimal design consists of concentrations x1 = 5 and x2 = 16,
with numbers of replicates n1 = 33 and n2 = 27. With the second configuration and the set
X = {20, . . . , 31}, the optimal design includes concentrations x1 = 20 and x2 = 31 with numbers
of replicates n1 = 35 and n2 = 25. Using the fifth configuration and the set X = {30, . . . , 41},
the optimal design consists of concentrations x1 = 30 and x2 = 41, with 34 and 26 replicates,
respectively.

Overall, the results illustrated in this subsection aim to show that the lowest concentration in
the range is usually included in the optimal design. This seems in agreement with what happens
for the D-optimal design in linear regression, thus under the assumption of Normally distributed
observations. The D-optimal design maximizes the determinant of the Fisher information matrix;
with an intercept and a slope to be estimated, the D-optimal design consists of the lowest and
highest values of the covariate [24].

A possible explanation why the lowest concentration is not included in the optimal design for
the analysed five configurations when the set of possible concentrations is X = {1, . . . , 12} could
be that the power of the test at concentrations x = 1 and x = 2 is very low, due to high standard
errors of the estimated log expected counts at these concentrations. As a result of such a low
power, it could happen that the optimization solver ignores these concentrations, focusing on a
range where a higher power can be achieved.

4.3.7 Sixth configuration

This configuration is characterised by the linear models in the original scale

λr = 0.2 + 0.8x λc = 0.01 + 0.9x.

It should be noted that x = 0 is included in the optimal design even if equivalence is not
theoretically true at this concentration. This can be justified by noting that with a linear model
in the original scale it is necessary to have observations at x = 0 in order to obtain a proper
estimate of the intercept. The resulting allocation of experiments suggests again that theoretical
equivalence has an effect on the optimal number of replicates per concentration: around 75% of the
experiments are used at x = 11, where theoretical equivalence holds. Outstanding improvements
are observed in the performances of the model-based approach at concentrations 1 and 2 when
using the optimal design (Table 4.13).
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Table 4.12: Optimal design for configuration 6 (λr = 0.2 + 0.8x and λc = 0.01 + 0.9x).

Concentration Number of replicates
0 16
11 44

Table 4.13: Results of the model-based approach with the two designs for configuration 6
(λr = 0.2 + 0.8x and λc = 0.01 + 0.9x).

Number of correct decisions (out of 1000) Theoretical power
x Eq (λr/λc) Optimal design Homogeneous design Optimal design Homogeneous design
0 N (20) 1000 1000 - -

1 Y (1.100) 384 1 0.35 0
2 Y (0.994) 805 82 0.85 0.15
3 Y (0.959) 884 682 0.91 0.72
4 Y (0.942) 864 871 0.90 0.91
5 Y (0.931) 849 901 0.90 0.91
6 Y (0.924) 836 899 0.86 0.89
7 Y (0.919) 827 877 0.85 0.88
8 Y (0.915) 821 857 0.85 0.87
9 Y (0.912) 811 842 0.85 0.86
10 Y (0.910) 802 820 0.84 0.85
11 Y (0.908) 801 797 0.84 0.83

4.3.8 Seventh configuration

This configuration is characterised by the linear models in the original scale

λr = 0.35 + 0.8x λc = 0.94 + 0.7x.

As in the previous configuration, x = 0 is included in the optimal design even if there is no
power at this concentration (the null hypothesis of non-equivalence is true). This confirms the
need to have data at x = 0 when linear models in the original scale are estimated. The optimal
number of replicates per concentration is almost identical to that of the previous configuration,
confirming that theoretical equivalence at a certain concentration seems to determine how many
replicates should be used at that concentration. The number of correct decisions increases at
all concentrations using the optimal design: the most substantial improvements are observed at
concentrations 2, 3, 8, 9, 10 and 11 (Table 4.15).

Table 4.14: Optimal design for configuration 7 (λr = 0.35 + 0.8x and λc = 0.94 + 0.7x).

Concentration Number of replicates
0 17
11 43
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Table 4.15: Results of the model-based approach with the two designs for configuration 7
(λr = 0.35 + 0.8x and λc = 0.94 + 0.7x).

Number of correct decisions (out of 1000) Theoretical power
x Eq (λr/λc) Optimal design Homogeneous design Optimal design Homogeneous design
0 N (0.372) 1000 1000 - -

1 Y (0.701) 3 0 0.05 0.03
2 Y (0.833) 367 214 0.39 0.30
3 Y (0.905) 836 704 0.80 0.71
4 Y (0.949) 969 914 0.95 0.90
5 Y (0.980) 980 954 0.98 0.95
6 Y (1.002) 981 936 0.99 0.95
7 Y (1.019) 972 902 0.98 0.92
8 Y (1.032) 962 848 0.97 0.88
9 Y (1.043) 943 815 0.96 0.84
10 Y (1.052) 915 779 0.95 0.80
11 Y (1.059) 890 740 0.93 0.75

4.4 Main conclusions

The results illustrated in this chapter permit to derive some conclusions about the optimal design
which should be used to estimate the linear models for the rapid method and the compendial
method in order to improve the performance of the model-based approach. It should be noted
that nothing about the optimal design has been really proved mathematically, but based on the
performed tests it is at least possible to suppose some characteristics of the optimal design.

• The optimal design consists of 2 or 3 concentrations. When using linear models in the original
scale, 2 concentrations are included in the optimal design. On the other hand, sometimes 3
concentrations are selected for linear models in the log scale. When this happens, two consecutive
concentrations towards the beginning of the range are selected, while the third one is the highest
concentration in the range. Maybe in this case allowing for non-integer concentrations could
permit to obtain an optimal design with two concentrations. For instance, using the first
configuration of models and parameters and using {1, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} as set of
possible concentrations, the optimal design which comes out from the optimization consists
of concentrations 2.5 and 12, with 34 and 26 replicates, respectively. In addition, this design
permits to achieve a higher average theoretical power than that obtained with the optimal design
using only integer concentrations.

• The highest concentration in the range is always included in the optimal design.

• The lowest concentration in the range is usually included in the optimal design. This does
not happen for linear models in the log scale when the lowest concentration in the set is 1. A
possible explanation is that, as shown by the results of the simulations in the third chapter, the
power at this concentration is very low, due to high standard errors of the estimated log expected
counts. Thus, it could happen that the optimization solver does not consider that including this
concentration in the design can be useful for increasing the mean power and focuses only on
the range of concentrations higher than x = 2 (or higher than x = 3 for some configurations).
Concentration x = 0 is always included in the optimal design when linear models in the original
scale are estimated, even if the test has no power at this concentration. When estimating such
a model, data at x = 0 are necessary in order to get a reasonable estimate of the intercept.

• The distribution of experiments among the concentrations depends on theoretical equival-
ence. When the optimal design consists of 2 concentrations, the following trend is observed: if
equivalence holds at both concentrations x∗1 and x∗2 included in the design, then the number of
replicates at x∗1 is approximately equal to the number of replicates at x∗2; on the other hand,
if equivalence holds only at one of the two concentrations, around 75% of the available exper-
iments (N) are allocated to the concentration where equivalence is theoretically true. In the
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first and second configurations, where the optimal design consists of concentrations 2, 3 and
12 and equivalence holds at all concentrations in X , the sum of the numbers of replicates used
at concentrations 2 and 3 is roughly equal to the number of replicates used at concentration
12. As described in the first point of this list, allowing to use the non-integer concentration
2.5 in the first configuration would result in an optimal design made of concentrations 2.5 and
12, with 34 and 26 replicates, respectively: this would be another example of approximately
equal distribution of experiments when equivalence holds at both concentrations included in the
design.

For each of the seven configurations, after determining the optimal design, the model-based
approach with the optimal design has been tested on 1000 simulated datasets in order to investi-
gate its performance. The results have shown substantial improvements in the power of the test
at concentrations far from the value x̃ where the highest power is reached using the homogene-
ous design. Of course, these improvements can be observed only when the true ratios at these
concentrations are not too close to the equivalence bounds 0.7 and 1.3.

Overall, using the optimal design permits to achieve higher power at extreme concentra-
tions in the range in comparison to what happens when using the homogeneous design. On
the other hand, sometimes the numbers of correct decisions obtained using the optimal design are
lower in the middle of the range, but the differences are not as evident as for the observed im-
provements. It should also be noted that the concentrations at which the optimal design permits
to achieve a substantially higher power than that obtained using the homogeneous design are the
concentrations at which the non model-based approach needs less replicates (20 or 30) to reach
the same performance of the model-based approach with the homogeneous design. Thus, a con-
sequence of using the optimal design is that the number of replicates which the non model-based
approach needs to obtain results comparable to those of the model-based approach increases at
concentrations towards the boundaries of the range.

In conclusion, the following design to estimate the linear models for the rapid method and the
compendial method in the model-based approach is proposed. Given a set of possible concentra-
tions X = {x1, . . . , xp} ⊂ N (x1 < x2 < . . . < xp) and a number of available experiments N , the
optimal design consists of concentrations x∗1 and x∗2 given by

x∗1 = x1 x∗2 = xp

with n∗1 replicates at x∗1 and n∗2 replicates at x∗2 determined in the following way.


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Obviously, the concentrations at which theoretical equivalence holds are not known in a real
validation study. However, previous knowledge of the method may be used to suppose that
equivalence holds in a certain range of concentrations. The proposed design is similar to the
optimal designs found for configurations 3, 4, 5, 6 and 7, while the differences with the optimal
designs found for the first two configurations are more evident, since the optimal design consists
of 3 concentrations in these cases. The proposed design has been derived as a synthesis of the
features highlighted in this section. Even if this design is different from the optimal one, it
permits to achieve a higher mean power (according to the formulas derived in Section 4.1) than
that obtained with the homogeneous design, increasing the power especially at concentrations
towards the boundaries of the range. Thus, this design may be used as a starting point and
then further optimized by testing the model-based approach with designs similar to this one using
simulations.
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Chapter 5

Conclusions

This Master thesis has dealt with the evaluation of accuracy in validation of quantitative microbi-
ological methods. As described in Chapter 1, the accuracy of a rapid microbiological method has
been evaluated by comparing its results to those of a compendial method.

The assessment of accuracy at a certain theoretical concentration x has been performed by
means of the equivalence test (1.1). In this thesis, the TOST procedure has been used to execute
this equivalence test. In particular, with the significance level and the equivalence margin used
throughout the text, the rapid method has been declared accurate at concentration x if the two-
sided 90% confidence interval for the ratio between the expected numbers of microorganisms
counted by the rapid method and the compendial method at concentration x was included in the
equivalence range [0.7,1.3].

In Chapter 1, two types of approaches to compute the confidence interval have been presented:
the model-based approach is based on estimation of linear models between the expected number
of microorganisms counted by each of the two microbiological methods and the theoretical con-
centration of the samples on which the measurements are performed, while the non model-based
approach does not require any parameter estimation. In Chapter 2, a description of the compu-
tations used to build the confidence interval using the different approaches has been provided.

Chapter 3 has illustrated a simulation study aimed at comparing the performances of the
model-based approach and the non model-based approach in order to understand if one of them
can be considered preferable to the other in terms of probability of leading to the correct decision
about accuracy of the rapid method.

Finally, in Chapter 4, the focus has been on the model-based approach and on how to improve
its performance. In particular, the purpose has been optimizing the design used to estimate the
linear models for the two microbiological methods in order to increase the power of the equivalence
test when using the model-based approach to compute the two-sided confidence interval for the
ratio between the two expected values λr and λc.

5.1 Main results

The simulations described in Chapter 3 have allowed to compare the results of the model-based
approach and the non model-based approach. The main purpose has been trying to understand
how many measurements per concentration are needed for the non model-based approach in order
to obtain results comparable to those produced by the model-based approach. In this simulation
study, the model-based approach has always been tested with a homogeneous design used to estim-
ate the linear models for the two microbiological methods: this design consists of all concentrations
in the analysed set, with the same number of replicates at each concentration.

The simulations have been run for seven different configurations of linear models and coefficients
used to represent the true relations between the expected number of microorganisms counted by
each method and the theoretical concentration. The results have shown some interesting features
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in the performances of the two approaches.

• As far as the model-based approach is concerned, the main result that can be derived from the
simulations is the pattern in the performance. There is a concentration x̃ around the middle
of the analysed range where the model-based approach reaches the highest number of correct
decisions and then the performance decreases when the theoretical concentration moves away
from x̃.

• The higher the number of replicates used at a certain concentration is, the better the performance
of the non model-based approach at that concentration is. The performance of this approach is
also affected by the theoretical concentration: the higher it is, the better the performance is.

• Both approaches lead almost always to the correct decision when equivalence between the two
methods is not theoretically true.

• Both approaches give bad results when equivalence is theoretically true, but the ratio between
the true expected numbers of microorganisms counted by the rapid method and the compendial
method is close to one of the two equivalence bounds 0.7 and 1.3.

As far as the comparison between the two approaches is concerned, at almost all of the con-
centrations 30 or more replicates are needed for the non model-based approach to give results
comparable to those produced by the model-based approach. Having 60 available measurements,
this means that accuracy can be evaluated at most at 2 concentrations in the range using the
non-model based approach to get results as good as or better than those of the model-based ap-
proach. This may lead to the conclusion that the model-based approach should be preferred to
the non model-based approach to assess accuracy. However, the model-based approach is based
on the assumption that the relation between expected number of microorganisms counted by each
microbiological method and theoretical concentration has a specific form, and this assumption is
not known to be true in reality. Thus, Subsection 3.3.2 has described a situation in which the non
model-based approach could be preferred. If we are willing to believe that if accuracy holds at
two concentrations xL and xU , then the rapid method is accurate at all concentrations between
xL and xU , then the non model-based approach could be used at xL and xU , choosing these con-
centrations towards the boundaries of the analysed range, where the non model-based approach
needs less replicates to reach better performances than the model-based approach.

Since the results of the simulations have shown that the theoretical concentration affects the
performances of the non model-based approach, a comparison between the two approaches has been
done at higher concentrations than those used in the simulations. This analysis has shown that the
non model-based approach needs much less replicates to give results comparable to those of the
model-based approach when accuracy is evaluated at concentrations higher than 20, approximately.
Thus, the main results highlighted in this thesis about the comparison between the two approaches
have to be considered valid when dealing with low concentrations, approximately up to 20.

Chapter 4 has described a general procedure to find an optimal design to estimate the linear
models for the rapid method and the compendial method in the model-based approach. Optimality
in this context has been considered with respect to the mean power of the equivalence test over the
analysed range of concentrations when using the model-based approach to compute the confidence
interval.

Given a set of concentrations X that could be potentially used to estimate the linear models
and a total number of available experiments N , a design consists of a subset of X containing the
concentrations used to estimate the models and the number of replicates that should be used at
each concentration in this subset; the numbers of replicates at the different concentrations must
sum up to N . The optimal designs have been computed for the seven configurations of models and
parameters used in the simulations described in Chapter 3. The optimal design has been found
by solving many optimization problems using a heuristic algorithm, so the results do not allow
to prove exactly that the optimal design for the model-based approach has a certain structure.
However, the results obtained for the different configurations permit to hypothesise some features
of the optimal design.
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• The optimal design is made of 2 or 3 concentrations.

• The highest concentration in the range is always included in the optimal design.

• The lowest concentration is usually included in the optimal design.

• The distribution of the experiments among the concentrations included in the optimal design
depends on theoretical equivalence at these concentrations. More replicates are used at con-
centrations where the ratio between the true expected numbers of microorganisms counted by
the two microbiological methods is included between 0.7 and 1.3. When equivalence holds at
all concentrations included in the optimal design, the available experiments are approximately
equally split among the different concentrations (especially when the optimal design consists of
2 concentrations).

For each configuration, once the optimal design has been determined, new simulations have
been performed in order to compare the performances of the model-based approach using the
optimal design to those of the model-based approach using the homogeneous design. The results
have shown that the optimal design permits to substantially increase the number of correct declar-
ations of equivalence between the two microbiological methods at concentrations located towards
the boundaries of the analysed range. It should be noted that the non model-based approach needs
less replicates at these concentrations rather than in the rest of the range to obtain better results
than the model-based approach with the homogeneous design. Thus, the optimal design permits
to increase the number of replicates that the non model-based approach needs to have perform-
ances comparable to those of the model-based approach at these concentrations. Sometimes, the
performances of the model-based approach with the optimal design are lower at concentrations
towards the middle of the range, where the model-based approach with the homogeneous design
gives the best results, but the differences are not as evident as for the observed improvements.

5.2 Further developments

Although some interesting conclusions can be derived from the analysis described in this thesis,
there is still a lot of work to do on this topic. The main possible developments listed below concern
the verification of the assumptions behind the model-based approach and the optimal design for
the model-based approach.

• The model-based approach is based on the estimation of linear models between the expected
number of microorganisms counted by each microbiological method and the theoretical concen-
tration. In order to consider the results of the model-based approach reliable, it should be proved
that the relations between expected counts and concentrations are reasonably represented by
the estimated linear models. What really matters to evaluate accuracy is that the ratio between
the expected numbers of microorganisms counted by the two methods is estimated correctly
and without a very high standard error which would increase the length of the two-sided con-
fidence interval used to make the decision about equivalence. Thus, two wrong models for the
two methods could still provide a good estimate of the true ratio, but probably high standard
errors in the estimates of the coefficients would lead to wide confidence intervals which would
negatively affect the power of the equivalence test. In conclusion, a measure of goodness of fit
of the linear models should be taken into account and it would be appropriate to specify for
which values of this metric the results of the model-based approach can be considered reliable.

• Another possible development, which is strongly related to the previous one, could be investig-
ating how the optimal design can be adapted to be at the same time as useful as possible both to
maximize the power of the equivalence test and to understand how the estimated models fit the
measurements. The optimal designs obtained in Chapter 4 consist of only 2 or 3 concentrations
out of 12, located towards the boundaries of the range. However, it would be appropriate to
also have measurements at other concentrations to show that the estimated models reasonably
fit the data.
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• In this thesis, only integer concentrations have been taken into account, but in practice it is also
possible to have non-integer theoretical concentrations. Allowing for non-integer concentrations
may permit to further optimize the design for the model-based approach, as briefly shown for
only one case in Section 4.4.

• The optimal designs found in Chapter 4 have been obtained using a heuristic algorithm, without
any mathematical proof of the highlighted features of the optimal design. A possible future step
could be analysing if it is possible to prove any characteristic of the optimal design, trying
to be as general as possible with respect to the used linear model and the analysed range of
concentrations.

Overall, many developments are possible for the analysis described in this thesis. The main
results are not claimed to be valid in general, but they have allowed to derive some interesting
conclusions which have been reasonably justified and supported by comparing the results obtained
for the different analysed cases. The hope is that this work can give at least some good insights
and ideas to people involved in the validation of quantitative microbiological methods, providing
at the same time a starting point for further and deeper analyses.
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Appendix A

Graphical representation of the
true models used in the
simulations

This appendix shows graphical representations of the true models used in the simulations described
in Chapter 3. Each of the following sections is about one of the seven configurations of models
and coefficients reported in Table A.1. For each configuration, a figure showing how the expected
values λr and λc vary as a function of the concentration x is provided. When the models are linear
in the log scale, a plot in the log scale is also shown. In addition, for each configuration, the true
ratio λr/λc is plotted as a function of the concentration x.

Table A.1: Configurations used in the simulations.

Configuration Linear models X eq

1 λr = 1.2x λc = 1.1x {1, . . . , 12}
2 λr = 0.8x λc = 0.9x {1, . . . , 12}
3 λr = 1.05x1.3 λc = 1.31x1.1 {1, . . . , 11}
4 λr = 1.3x1.1 λc = 1.1x1.32 {1, . . . , 10}
5 λr = 0.6x1.1 λc = 0.7x1.1 {1, . . . , 12}
6 λr = 0.2 + 0.8x λc = 0.01 + 0.9x {1, . . . , 11}
7 λr = 0.35 + 0.8x λc = 0.94 + 0.7x {1, . . . , 11}
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APPENDIX A. GRAPHICAL REPRESENTATION OF THE TRUE MODELS USED IN THE
SIMULATIONS

A.1 First configuration

λr = 1.2x λc = 1.1x

0 0.5 1 1.5 2 2.5

log(x)

0

0.5

1

1.5

2

2.5

3

lo
g
(

)

Equivalence always true

log(
r
) = log(1.2) + log(x)

log(
c
) = log(1.1) + log(x)

(a) Log scale.

0 2 4 6 8 10 12

x

0

5

10

15

Equivalence always true

r
 = 1.2x

c
 = 1.1x

 = x

(b) Original scale.

Figure A.1: Expected values versus concentration for the first configuration.
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Figure A.2: λr/λc versus concentration for the first configuration.
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A.2 Second configuration
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Figure A.3: Expected values versus concentration for the second configuration.
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Figure A.4: λr/λc versus concentration for the second configuration.
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A.3 Third configuration
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Figure A.5: Expected values versus concentration for the third configuration.
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Figure A.6: λr/λc versus concentration for the third configuration.
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A.4 Fourth configuration
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Figure A.7: Expected values versus concentration for the fourth configuration.
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Figure A.8: λr/λc versus concentration for the fourth configuration.
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A.5 Fifth configuration
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Figure A.9: Expected values versus concentration for the fifth configuration.
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Figure A.10: λr/λc versus concentration for the fifth configuration.
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A.6 Sixth configuration
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Figure A.11: Expected values versus concentration for the sixth configuration.
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Figure A.12: λr/λc versus concentration for the sixth configuration.
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A.7 Seventh configuration
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Figure A.13: Expected values versus concentration for the seventh configuration.
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Figure A.14: λr/λc versus concentration for the seventh configuration.
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Appendix B

Asymptotic covariance matrix of
MLE in Poisson regression

This appendix contains detailed computations to derive the expression of the asymptotic covariance
matrix of Maximum Likelihood estimators of model coefficients in the models used throughout
the text. As described in Subsection 2.2.2, the vector β̂N of ML coefficients’ estimators in Poisson
regression has the approximate Normal distribution

β̂N
approx.∼ N2(β, IN (β)−1)

where IN (β) is the Fisher information matrix. Both the vector of coefficients’ estimators and the
Fisher information matrix depend on the number of observations N used to estimate the model.
This approximate distribution is a consequence of the convergence in distribution (2.12): for this
reason, the inverse of the Fisher information matrix is referred to as asymptotic covariance matrix.
This appendix essentially shows how to derive an expression for this matrix. In particular, the
first subsection deals with the computations in the case of a linear model in the original scale,
namely Poisson regression with identity link function, while the second section is about a linear
model in the log scale, that is, Poisson regression with canonical (log) link function.

B.1 Linear model in the original scale

Using the linear model in the original scale, the number of microorganisms Y measured in a sample
with theoretical concentration x is modelled in the following way:

Y ∼ Pois(λ) with λ = α+ βx.

Suppose that p concentrations x1, . . . , xp are used to estimate the model, with ni replicates at
concentration xi ∀i = 1, . . . , p, and let λi = α+ βxi denote the expected value at concentration

xi. The total number of observations used to estimate the model is N =
p∑
i=1

ni. Finally, let

Y
(j)
i be the number of microorganisms measured at concentration xi at the j-th experiment:

according to this model, Y
(j)
i ∼ Pois(λi) for any j = 1, . . . , ni and for any i = 1, . . . , p, and all

the measurements are independent of each other. The random vector Y collects all the replicated
measurements at all concentrations.

The Fisher information matrix can be expressed as the expectation of minus the Hessian matrix
of the log likelihood.

IN (α, β) =

 E
[
− ∂2

∂α2LN (α, β;Y )

]
E
[
− ∂2

∂α∂βLN (α, β;Y )

]
E
[
− ∂2

∂α∂βLN (α, β;Y )

]
E
[
− ∂2

∂β2LN (α, β;Y )

]

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where LN (α, β;Y ) is the log likelihood and the expectation is taken with respect to the probability
distribution of Y . Given y realization of Y , the log likelihood function is

LN (α, β;y) =

p∑
i=1

ni∑
j=1

(y
(j)
i log(α+ βxi)− (α+ βxi)− log(y

(j)
i !)).

In order to compute the Fisher information matrix, it is necessary to calculate the second deriv-
atives of LN with respect to the model coefficients α and β.

∂LN
∂α

=

p∑
i=1

ni∑
j=1

(
y
(j)
i

α+ βxi
− 1

)
∂LN
∂β

=

p∑
i=1

ni∑
j=1

(
y
(j)
i xi

α+ βxi
− xi

)

∂2LN
∂α2

=

p∑
i=1

ni∑
j=1

− y
(j)
i

(α+ βxi)2
∂2LN
∂β2

=

p∑
i=1

ni∑
j=1

− y
(j)
i x2i

(α+ βxi)2
∂2LN
∂α∂β

=

p∑
i=1

ni∑
j=1

− y
(j)
i xi

(α+ βxi)2

Since E[Y
(j)
i ] = λi for any j = 1, . . . , ni and for any i = 1, . . . , p, the Fisher information matrix is

given by

IN (α, β) =

p∑
i=1

(
ni/λi nixi/λi
nixi/λi nix

2
i /λi

)
.

Thus, the asymptotic covariance matrix of the vector of ML coefficients’ estimators (α̂, β̂) is

IN (α, β)−1 =
1

D

p∑
i=1

(
nix

2
i /λi −nixi/λi

−nixi/λi ni/λi

)
where D is the determinant of the Fisher information matrix

D = det(IN (α, β)) =

( p∑
i=1

ni

α+ βxi

)( p∑
i=1

nix
2
i

α+ βxi

)
−
( p∑
i=1

nixi

α+ βxi

)2

.

In conclusion, the asymptotic variances of the coefficients’ estimators σ2
α and σ2

β and the asymptotic
covariance between the two estimators σαβ have the following expressions.

σ2
α =

1

D

p∑
i=1

nix
2
i

α+ βxi
σ2
β =

1

D

p∑
i=1

ni

α+ βxi
σαβ = −

1

D

p∑
i=1

nixi

α+ βxi

The variance of λ̂ = α̂+ β̂x, which is the estimated expected value at concentration x, is given by
the following expression, depending on the variances and covariance of the coefficients’ estimators.

σ2
x = σ2

α + 2xσαβ + x2σ2
β (B.1)

B.2 Linear model in the log scale

Using the linear model in the log scale, the number of microorganisms Y measured in a sample
with concentration x is modelled in the following way:

Y ∼ Pois(λ) with log(λ) = δ + β log(x).

Suppose that p concentrations x1, . . . , xp are used to estimate the model, with ni replicates at

concentration xi ∀i = 1, . . . , p, and let λi = eδxβi denote the expected value at concentration xi.

The total number of observations used to estimate the model is N =
p∑
i=1

ni. Finally, let Y
(j)
i be

the number of microorganisms measured at concentration xi at the j-th experiment: according to
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this model, Y
(j)
i ∼ Pois(λi) for any j = 1, . . . , ni and for any i, . . . , p, and all the measurements

are independent of each other. The random vector Y collects all the replicated measurements at
all concentrations.

In this case, given y realization of Y , the log likelihood function is

LN (δ, β;y) =

p∑
i=1

ni∑
j=1

(y
(j)
i (δ + β log(xi))− eδxβi − log(y

(j)
i !)).

The second derivatives of the log likelihood function are given by the following expressions.

∂LN
∂δ

=

p∑
i=1

ni∑
j=1

(y
(j)
i − e

δxβi )
∂LN
∂β

=

p∑
i=1

ni∑
j=1

(y
(j)
i log(xi)− eδxβi log(xi))

∂2LN
∂δ2

=

p∑
i=1

(−nieδxβi )
∂2LN
∂β2

=

p∑
i=1

(−nieδxβi log2(xi))
∂2LN
∂δ∂β

=

p∑
i=1

(−nieδxβi log(xi))

With this model, the expectation in the definition of the Fisher information matrix has no effect.
Thus, the Fisher information matrix is

IN (δ, β) =

p∑
i=1

(
niλi niλi log(xi)

niλi log(xi) niλi log2(xi)

)
and the asymptotic covariance matrix is given by

IN (δ, β)−1 =
1

D

p∑
i=1

(
niλi log2(xi) −niλi log(xi)
−niλi log(xi) niλi

)
where D is the determinant of the Fisher information matrix

D = det(IN (δ, β)) =

( p∑
i=1

nie
δxβi

)( p∑
i=1

nie
δxβi log2(xi)

)
−
( p∑
i=1

nie
δxβi log(xi)

)2

In conclusion, the asymptotic variances of the coefficients’ estimators σ2
δ and σ2

β and the asymptotic
covariance between the two estimators σδβ have the following expressions.

σ2
δ =

1

D

p∑
i=1

(nie
δxβi log2(xi)) σ2

β =
1

D

p∑
i=1

(nie
δxβi ) σδβ = − 1

D

p∑
i=1

(nie
δxβi log(xi))

The variance of ˆlog(λ) = δ̂+β̂ log(x), which is the estimated log expected value at concentration x,
is given by the following expression, depending on the variances and covariance of the coefficients’
estimators.

σ2
x = σ2

δ + 2 log(x)σδβ + log2(x)σ2
β (B.2)
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Developed programs

This appendix contains the main programs developed to obtain the results described in this thesis.
In particular, Section C.1 consists of the SAS code used for the simulations described in Chapter
3: the first subsection contains the code used when linear models in the original scale are chosen to
represent the relation between expected numbers of microorganisms counted by the two methods
and theoretical concentration, while linear models in the log scale are used in the code reported
in the second subsection. Section C.2 contains the MATLAB code used to find the optimal design
as described in Chapter 4: the first subsection deals with the case of linear models in the original
scale, while the second subsection contains the code for the case of linear models in the log scale.

C.1 SAS programs used for the simulations

C.1.1 Linear models in the original scale

DM LOG "CLEAR";

DM OUTPUT "CLEAR";

DM ODSRESULTS "CLEAR";

proc datasets library=WORK kill; run; quit;

options nonotes nosource nosource2 errors=0;

%LET NSIMULATIONS = 1000;

%LET ALPHA = 0.1; /*2 TIMES THE PROBABILITY OF TYPE 1 ERROR*/

%MACRO COMPUTE_CI_MODEL (DATASET = ); /*MODEL-BASED APPROACH*/

DATA DATASET;

SET &DATASET;

RUN;

ODS SELECT NONE;

PROC NLMIXED DATA=DATASET;

PARMS BR=0.5 BC=0.5 AR=0.5 AC=0.5;

MU = (METHOD=1)*(AR+BR*X) + (METHOD=2)*(AC+BC*X);

PREDICT AR+BR*X OUT = EXPECTED_RMM;

PREDICT AC+BC*X OUT = EXPECTED_COMP;

MODEL MEASURED~POISSON(MU);

RUN;

ODS SELECT ALL;

PROC SORT DATA = EXPECTED_RMM(DROP = MEASURED METHOD) OUT = EXPECTED_RMM (KEEP = X

CORRECT_DECISION PRED STDERRPRED) NODUPKEY;

BY X;

RUN;

PROC SORT DATA = EXPECTED_COMP(DROP = MEASURED METHOD) OUT = EXPECTED_COMP (KEEP = X

CORRECT_DECISION PRED STDERRPRED) NODUPKEY;

BY X;
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RUN;

DATA EXPECTED;

MERGE EXPECTED_RMM (RENAME = (PRED = PRED1 STDERRPRED = STDE1))

EXPECTED_COMP (RENAME = (PRED = PRED2 STDERRPRED = STDE2));

BY X;

RUN;

DATA INTERVALS_RATIO;

SET EXPECTED;

LOWER = PRED1/PRED2 - QUANTILE("NORMAL",1-&ALPHA/2)*SQRT(STDE1**2/PRED2**2+PRED1**2/PRED2**4*

STDE2**2);

UPPER = PRED1/PRED2 + QUANTILE("NORMAL",1-&ALPHA/2)*SQRT(STDE1**2/PRED2**2+PRED1**2/PRED2**4*

STDE2**2);

IF LOWER>=0.7 AND UPPER<=1.3 THEN DO;

DECISION = 1;

END;

ELSE DO;

DECISION = 0;

END;

IF DECISION = CORRECT_DECISION THEN DO;

CORRECT = 1;

END;

ELSE DO;

CORRECT = 0;

END;

KEEP X CORRECT_DECISION LOWER UPPER DECISION CORRECT;

RUN;

%MEND;

%MACRO COMPUTE_CI_BIN (DATASET = ); /*BINOMIAL APPROACH*/

DATA DATASET;

SET &DATASET;

RUN;

PROC SORT DATA = DATASET;

BY X METHOD;

RUN;

PROC MEANS DATA = DATASET NOPRINT;

VAR MEASURED;

BY X METHOD TRUE_RATIO CORRECT_DECISION;

OUTPUT OUT = SUMS_PER_CONC_METHOD SUM(MEASURED) = SUM_MEAS;

RUN;

DATA SUMS_PER_CONC_METHOD;

SET SUMS_PER_CONC_METHOD;

DROP _TYPE_ _FREQ_;

RUN;

PROC FREQ DATA = SUMS_PER_CONC_METHOD NOPRINT;

BY X TRUE_RATIO CORRECT_DECISION;

TABLES METHOD / BINOMIAL(WILSON) ALPHA = &ALPHA;

WEIGHT SUM_MEAS / ZEROS;

OUTPUT OUT = BINOMIAL_TEST BIN;

RUN;

DATA BINOMIAL_TEST;

SET BINOMIAL_TEST;

KEEP X TRUE_RATIO CORRECT_DECISION L_W_BIN U_W_BIN;

RENAME L_W_BIN = LOW_WILS U_W_BIN = UP_WILS;

RUN;

DATA INTERVALS_RATIO;

SET BINOMIAL_TEST;

LOW_RATIO = LOW_WILS/(1-LOW_WILS);

UP_RATIO = UP_WILS/(1-UP_WILS);
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IF LOW_RATIO>=0.7 AND UP_RATIO<=1.3 THEN DO;

DECISION = 1;

END;

ELSE DO;

DECISION = 0;

END;

IF DECISION = CORRECT_DECISION THEN DO;

CORRECT = 1;

END;

ELSE DO;

CORRECT = 0;

END;

KEEP X CORRECT_DECISION LOW_RATIO UP_RATIO DECISION CORRECT;

RUN;

%MEND;

%MACRO COMPUTE_CI_DELTA (DATASET = ); /*DELTA APPROACH*/

DATA DATASET;

SET &DATASET;

RUN;

PROC SORT DATA = DATASET;

BY X METHOD;

RUN;

PROC MEANS DATA = DATASET NOPRINT;

VAR MEASURED;

BY X METHOD CORRECT_DECISION;

OUTPUT OUT = MEANS_PER_CONC_METHOD MEAN(MEASURED) = MEAN_MEAS N = N_MEAS;

RUN;

DATA MEANS_PER_CONC_METHOD;

SET MEANS_PER_CONC_METHOD;

DROP _TYPE_ _FREQ_;

RUN;

DATA MEANS_METHODS_PER_CONC;

MERGE MEANS_PER_CONC_METHOD (WHERE = (METHOD = 1) RENAME = (MEAN_MEAS = MEAN1 N_MEAS = N))

MEANS_PER_CONC_METHOD (WHERE = (METHOD = 2) RENAME = (MEAN_MEAS = MEAN2 N_MEAS = N2));

DROP METHOD N2;

RUN;

DATA INTERVALS_RATIO;

SET MEANS_METHODS_PER_CONC;

IF MEAN2 ^= 0 THEN DO;

LOWER = MEAN1/MEAN2 - QUANTILE("NORMAL",1-&ALPHA/2)*SQRT(1/N*(MEAN1/MEAN2**2+MEAN1**2/MEAN2

**3));

UPPER = MEAN1/MEAN2 + QUANTILE("NORMAL",1-&ALPHA/2)*SQRT(1/N*(MEAN1/MEAN2**2+MEAN1**2/MEAN2

**3));

IF LOWER>=0.7 AND UPPER <=1.3 THEN DO;

DECISION = 1;

END;

ELSE DO;

DECISION = 0;

END;

END;

ELSE DO;

LOWER = .;

UPPER = .;

IF MEAN1 = 0 THEN DO;

DECISION = 1;

END;

ELSE DO;

DECISION = 0;

END;

END;

IF DECISION = CORRECT_DECISION THEN DO;
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CORRECT = 1;

END;

ELSE DO;

CORRECT = 0;

END;

RUN;

%MEND;

DATA FINAL_INFO_MODEL;

INPUT X COUNT;

DATALINES;

0 0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

10 0

11 0

;

RUN;

DATA FINAL_INFO_BIN;

INPUT X COUNT;

DATALINES;

0 0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

10 0

11 0

;

RUN;

DATA FINAL_INFO_DELTA;

INPUT X COUNT;

DATALINES;

0 0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

10 0

11 0

;

RUN;

/*SIMULATE THE DATASETS AND PERFORM THE DIFFERENT APPROACHES*/

/*LINEAR MODELS IN THE LOG SCALE: LAMBDA_R = AR + BR*x

LAMBDA_C = AC + BC*x*/

%MACRO DECISION_EVALUATION(NSIM=, AR=, BR=, AC=, BC=,);

%DO i = 1 %TO &NSIM;

DATA DATASET (DROP = REP);

CALL STREAMINIT(&i);
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DO X = 0 TO 11;

TRUE_RATIO = (&AR+&BR*X)/(&AC+&BC*X);

IF TRUE_RATIO > 0.7 AND TRUE_RATIO < 1.3 THEN DO;

CORRECT_DECISION = 1;

END;

ELSE DO;

CORRECT_DECISION = 0;

END;

DO METHOD = 1 TO 2;

DO REP = 1 TO 5;

IF METHOD = 1 THEN DO;

MEASURED = RAND("POISSON",&AR+&BR*X);

END;

ELSE DO;

MEASURED = RAND("POISSON",&AC+&BC*X);

END;

OUTPUT;

END;

END;

END;

RUN;

/*COMPUTE CONFIDENCE INTERVALS AND UPDATE THE NUMBER OF CORRECT DECISIONS*/

%COMPUTE_CI_MODEL(DATASET = DATASET);

DATA FINAL_INFO_MODEL;

MERGE FINAL_INFO_MODEL INTERVALS_RATIO;

BY X;

COUNT = COUNT + CORRECT;

KEEP X COUNT;

RUN;

%COMPUTE_CI_BIN(DATASET = DATASET);

DATA FINAL_INFO_BIN;

MERGE FINAL_INFO_BIN INTERVALS_RATIO;

BY X;

COUNT = COUNT + CORRECT;

KEEP X COUNT;

RUN;

%COMPUTE_CI_DELTA(DATASET = DATASET);

DATA FINAL_INFO_DELTA;

MERGE FINAL_INFO_DELTA INTERVALS_RATIO;

BY X;

COUNT = COUNT + CORRECT;

KEEP X COUNT;

RUN;

%END;

%MEND;

%DECISION_EVALUATION(NSIM=&NSIMULATIONS,AR=0.35,BR=0.8,AC=0.94,BC=0.7);

PROC PRINT DATA = FINAL_INFO_MODEL;

TITLE "MODEL";

RUN;

PROC PRINT DATA = FINAL_INFO_BIN;

TITLE "BINOMIAL";

RUN;

PROC PRINT DATA = FINAL_INFO_DELTA;

TITLE "DELTA";

RUN;

C.1.2 Linear models in the log scale

DM LOG "CLEAR";

DM OUTPUT "CLEAR";

DM ODSRESULTS "CLEAR";

proc datasets library=WORK kill; run; quit;

options nonotes nosource nosource2 errors=0;
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%LET NSIMULATIONS = 1000;

%LET ALPHA = 0.1; /*2 TIMES THE PROBABILITY OF TYPE 1 ERROR*/

%MACRO COMPUTE_CI_MODEL (DATASET = ); /*MODEL-BASED APPROACH*/

DATA DATASET;

SET &DATASET;

LOG_X = LOG(X);

RUN;

PROC SORT DATA = DATASET OUT = DATASET;

BY METHOD;

RUN;

ODS SELECT NONE;

PROC GENMOD DATA = DATASET;

BY METHOD;

MODEL MEASURED = LOG_X / DIST = POISSON;

OUTPUT OUT = ESTIMATES STDXBETA = STDE XBETA = PRED_LOG;

RUN;

ODS SELECT ALL;

DATA ESTIMATES;

SET ESTIMATES;

DROP MEASURED;

RUN;

PROC SORT DATA = ESTIMATES OUT = ESTIMATES NODUPKEY;

BY X METHOD;

RUN;

DATA ESTIMATES;

MERGE ESTIMATES (WHERE = (METHOD = 1) RENAME = (PRED_LOG = PRED_LOG1 STDE = STDE1))

ESTIMATES (WHERE = (METHOD = 2) RENAME = (PRED_LOG = PRED_LOG2 STDE = STDE2));

BY X LOG_X;

DROP METHOD;

RUN;

/*COMPUTE THE CONFIDENCE INTERVAL FOR THE DIFFERENCE BETWEEN THE LOG ESTIMATED EXPECTED COUNTS*/

DATA INTERVALS_LOG_SCALE;

SET ESTIMATES;

LOWER = (PRED_LOG1 - PRED_LOG2) - QUANTILE("NORMAL",1-&ALPHA/2)*SQRT(STDE1**2 + STDE2**2);

UPPER = (PRED_LOG1 - PRED_LOG2) + QUANTILE("NORMAL",1-&ALPHA/2)*SQRT(STDE1**2 + STDE2**2);

RUN;

/*MOVE CONFIDENCE INTERVALS TO THE ORIGINAL SCALE*/

DATA INTERVALS_RATIO;

SET INTERVALS_LOG_SCALE;

LOWER_ORIG = EXP(LOWER);

UPPER_ORIG = EXP(UPPER);

IF LOWER_ORIG>=0.7 AND UPPER_ORIG<=1.3 THEN DO;

DECISION = 1;

END;

ELSE DO;

DECISION = 0;

END;

IF DECISION = CORRECT_DECISION THEN DO;

CORRECT = 1;

END;

ELSE DO;

CORRECT = 0;

END;

KEEP X CORRECT_DECISION LOWER UPPER LOWER_ORIG UPPER_ORIG DECISION CORRECT;

RUN;

%MEND;

%MACRO COMPUTE_CI_BIN (DATASET = ); /*BINOMIAL APPROACH*/
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DATA DATASET;

SET &DATASET;

RUN;

PROC SORT DATA = DATASET;

BY X METHOD;

RUN;

PROC MEANS DATA = DATASET NOPRINT;

VAR MEASURED;

BY X METHOD TRUE_RATIO CORRECT_DECISION;

OUTPUT OUT = SUMS_PER_CONC_METHOD SUM(MEASURED) = SUM_MEAS;

RUN;

DATA SUMS_PER_CONC_METHOD;

SET SUMS_PER_CONC_METHOD;

DROP _TYPE_ _FREQ_;

RUN;

PROC FREQ DATA = SUMS_PER_CONC_METHOD NOPRINT;

BY X TRUE_RATIO CORRECT_DECISION;

TABLES METHOD / BINOMIAL(WILSON) ALPHA = &ALPHA;

WEIGHT SUM_MEAS / ZEROS;

OUTPUT OUT = BINOMIAL_TEST BIN;

RUN;

DATA BINOMIAL_TEST;

SET BINOMIAL_TEST;

KEEP X TRUE_RATIO CORRECT_DECISION L_W_BIN U_W_BIN;

RENAME L_W_BIN = LOW_WILS U_W_BIN = UP_WILS;

RUN;

DATA INTERVALS_RATIO;

SET BINOMIAL_TEST;

LOW_RATIO = LOW_WILS/(1-LOW_WILS);

UP_RATIO = UP_WILS/(1-UP_WILS);

IF LOW_RATIO>=0.7 AND UP_RATIO<=1.3 THEN DO;

DECISION = 1;

END;

ELSE DO;

DECISION = 0;

END;

IF DECISION = CORRECT_DECISION THEN DO;

CORRECT = 1;

END;

ELSE DO;

CORRECT = 0;

END;

KEEP X CORRECT_DECISION LOW_RATIO UP_RATIO DECISION CORRECT;

RUN;

%MEND;

%MACRO COMPUTE_CI_DELTA (DATASET = ); /*DELTA APPROACH*/

DATA DATASET;

SET &DATASET;

RUN;

PROC SORT DATA = DATASET;

BY X METHOD;

RUN;

PROC MEANS DATA = DATASET NOPRINT;

VAR MEASURED;

BY X METHOD CORRECT_DECISION;

OUTPUT OUT = MEANS_PER_CONC_METHOD MEAN(MEASURED) = MEAN_MEAS N = N_MEAS;

RUN;
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DATA MEANS_PER_CONC_METHOD;

SET MEANS_PER_CONC_METHOD;

DROP _TYPE_ _FREQ_;

RUN;

DATA MEANS_METHODS_PER_CONC;

MERGE MEANS_PER_CONC_METHOD (WHERE = (METHOD = 1) RENAME = (MEAN_MEAS = MEAN1 N_MEAS = N))

MEANS_PER_CONC_METHOD (WHERE = (METHOD = 2) RENAME = (MEAN_MEAS = MEAN2 N_MEAS = N2));

DROP METHOD N2;

RUN;

DATA INTERVALS_RATIO;

SET MEANS_METHODS_PER_CONC;

IF MEAN2 ^= 0 THEN DO;

LOWER_LOG = LOG(MEAN1)-LOG(MEAN2) - QUANTILE("NORMAL",1-&ALPHA/2)*SQRT(1/N*(1/MEAN1+1/MEAN2));

UPPER_LOG = LOG(MEAN1)-LOG(MEAN2) + QUANTILE("NORMAL",1-&ALPHA/2)*SQRT(1/N*(1/MEAN1+1/MEAN2));

LOWER = EXP(LOWER_LOG);

UPPER = EXP(UPPER_LOG);

IF LOWER>=0.7 AND UPPER<=1.3 THEN DO;

DECISION = 1;

END;

ELSE DO;

DECISION = 0;

END;

END;

ELSE DO;

LOWER = .;

UPPER = .;

IF MEAN1 = 0 THEN DO;

DECISION = 1;

END;

ELSE DO;

DECISION = 0;

END;

END;

IF DECISION = CORRECT_DECISION THEN DO;

CORRECT = 1;

END;

ELSE DO;

CORRECT = 0;

END;

RUN;

%MEND;

DATA FINAL_INFO_MODEL;

INPUT X COUNT;

DATALINES;

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

10 0

11 0

12 0

;

RUN;

DATA FINAL_INFO_BIN;

INPUT X COUNT;

DATALINES;

1 0

2 0

3 0
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4 0

5 0

6 0

7 0

8 0

9 0

10 0

11 0

12 0

;

RUN;

DATA FINAL_INFO_DELTA;

INPUT X COUNT;

DATALINES;

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

10 0

11 0

12 0

;

RUN;

/*SIMULATE THE DATASETS AND PERFORM THE DIFFERENT APPROACHES*/

/*LINEAR MODELS IN THE LOG SCALE: LAMBDA_R = AR*x^BR

LAMBDA_C = AC*x^BC*/

%MACRO DECISION_EVALUATION(NSIM=, AR=, BR=, AC=, BC=,);

%DO i = 1 %TO &NSIM;

DATA DATASET (DROP = REP);

CALL STREAMINIT(&i);

DO X = 1 TO 12;

TRUE_RATIO = &AR*X**&BR/(&AC*X**&BC);

IF TRUE_RATIO > 0.7 AND TRUE_RATIO < 1.3 THEN DO;

CORRECT_DECISION = 1;

END;

ELSE DO;

CORRECT_DECISION = 0;

END;

DO METHOD = 1 TO 2;

DO REP = 1 TO 5;

IF METHOD = 1 THEN DO;

MEASURED = RAND("POISSON",&AR*X**&BR);

END;

ELSE DO;

MEASURED = RAND("POISSON",&AC*X**&BC);

END;

OUTPUT;

END;

END;

END;

RUN;

/*COMPUTE CONFIDENCE INTERVALS AND UPDATE THE NUMBER OF CORRECT DECISIONS*/

%COMPUTE_CI_MODEL(DATASET = DATASET);

DATA FINAL_INFO_MODEL;

MERGE FINAL_INFO_MODEL INTERVALS_RATIO;

BY X;

COUNT = COUNT + CORRECT;

KEEP X COUNT;

RUN;

%COMPUTE_CI_BIN(DATASET = DATASET);
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DATA FINAL_INFO_BIN;

MERGE FINAL_INFO_BIN INTERVALS_RATIO;

BY X;

COUNT = COUNT + CORRECT;

KEEP X COUNT;

RUN;

%COMPUTE_CI_DELTA(DATASET = DATASET);

DATA FINAL_INFO_DELTA;

MERGE FINAL_INFO_DELTA INTERVALS_RATIO;

BY X;

COUNT = COUNT + CORRECT;

KEEP X COUNT;

RUN;

%END;

%MEND;

%DECISION_EVALUATION(NSIM=&NSIMULATIONS,AR=1.2,BR=1,AC=1.1,BC=1);

PROC PRINT DATA = FINAL_INFO_MODEL;

TITLE "MODEL";

RUN;

PROC PRINT DATA = FINAL_INFO_BIN;

TITLE "BINOMIAL";

RUN;

PROC PRINT DATA = FINAL_INFO_DELTA;

TITLE "DELTA";

RUN;

C.2 MATLAB programs used for the optimal design

C.2.1 Linear models in the original scale

clear all

close all

clc

%NOTE: after pasting the code in MATLAB, cancel and rewrite the single quotes

%Coefficients in the models lambda_r = ar+br*x lambda_c = ac+bc*x

ar = 0.35;

br = 0.8;

ac = 0.94;

bc = 0.7;

N = 60; %Total number of experiments

X = 0:11; %Concentrations that can be used to estimate the model

p = length(X); %Number of concentrations

X_eq = 1:11; %Concentrations where equivalence holds

alpha = 0.05; %Probability type 1 error

%Determinants of the Fisher information matrix in the models for the two methods

Dr = @(n,x) sum(n./(ar+br*x))*sum(n.*(x.^2)./(ar+br*x))-(sum(n.*(x./(ar+br*x))))^2;

Dc = @(n,x) sum(n./(ac+bc*x))*sum(n.*(x.^2)./(ac+bc*x))-(sum(n.*(x./(ac+bc*x))))^2;

%Variance of the estimator of lambda_r

Vr = @(n,x) 1/Dr(n,x)*(sum(n.*(x.^2)./(ar+br*x))+X_eq.^2*sum(n./(ar+br*x)) -...

2*X_eq*sum(n.*(x./(ar+br*x))));

%Variance of the estimator of lambda_c

Vc = @(n,x) 1/Dc(n,x)*(sum(n.*(x.^2)./(ac+bc*x))+X_eq.^2*sum(n./(ac+bc*x)) -...

2*X_eq*sum(n.*(x./(ac+bc*x))));

%Variance of the ratio between the two estimated expected counts

V = @(n,x) Vr(n,x)./((ac+bc*X_eq).^2) + ((ar+br*X_eq).^2)./((ac+bc*X_eq).^4).*Vc(n,x);

%Statistical power

P = @(n,x) -sum(max(normcdf((1.3+norminv(alpha)*sqrt(V(n,x))-(ar+br*X_eq)./(ac+bc*X_eq))./...

(sqrt(V(n,x)))) - ...
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normcdf((0.7-norminv(alpha)*sqrt(V(n,x))-(ar+br*X_eq)./(ac+bc*X_eq))./...

(sqrt(V(n,x)))),0));

results = cell(length(X)-1,3);

j = 1;

for k = 2:length(X)

val = zeros(nchoosek(p,k),1);

options = nchoosek(X,k);

replicates = zeros(nchoosek(p,k),k);

for i = 1:size(options,1)

opts = optimoptions(’ga’,’Display’,’off’);

lb = ones(1,k);

ub = (N-1)*ones(1,k);

rng(1);

IntCon = 1:k;

obj = @(n) P(n,options(i,:));

[n_best,fval,exitflag] = ga(obj,k,[-ones(1,k);ones(1,k)],[-N;N],[],[],lb,ub,[],IntCon,opts);

val(i) = -fval;

replicates(i,:) = n_best;

end

[~,index] = max(val);

results{j,1} = options(index,:);

results{j,2} = replicates(index,:);

results{j,3} = val(index);

j = j + 1;

end

C.2.2 Linear models in the log scale

clear all

close all

clc

%NOTE: after pasting the code in MATLAB, cancel and rewrite the single quotes

%Coefficients in the models lambda_r = ar*x^br lambda_c = ac*x^bc

ar = 1.2;

br = 1;

ac = 1.1;

bc = 1;

N = 60; %Total number of experiments

X = 1:12; %Concentrations that can be used to estimate the model

p = length(X); %Number of concentrations

X_eq = 1:12; %Concentrations where equivalence holds

alpha = 0.05; %Probability type 1 error

%Determinants of the Fisher information matrix in the models for the two methods

Dr = @(n,x) sum(n.*(ar*x.^br))*sum(n.*(ar*x.^br).*(log(x).^2))-(sum(n.*(ar*x.^br).*log(x)))^2;

Dc = @(n,x) sum(n.*(ac*x.^bc))*sum(n.*(ac*x.^bc).*(log(x).^2))-(sum(n.*(ac*x.^bc).*log(x)))^2;

%Variance of the difference between the estimated log expected counts

V = @(n,x) 1/Dr(n,x)*(sum(n.*(ar*x.^br).*(log(x).^2))+log(X_eq).^2*sum(n.*(ar*x.^br))-...

2*log(X_eq).*sum(n.*(ar*x.^br).*log(x))) + ...

1/Dc(n,x)*(sum(n.*(ac*x.^bc).*(log(x).^2))+log(X_eq).^2*sum(n.*(ac*x.^bc))-...

2*log(X_eq).*sum(n.*(ac*x.^bc).*log(x)));

%Statistical power

P = @(n,x) -sum(max(normcdf((log(1.3)+norminv(alpha)*sqrt(V(n,x))-...

(log(ar)-log(ac)+(br-bc)*log(X_eq)))./(sqrt(V(n,x)))) - ...

normcdf((log(0.7)-norminv(alpha)*sqrt(V(n,x))-...

(log(ar)-log(ac)+(br-bc)*log(X_eq)))./(sqrt(V(n,x)))),0));

results = cell(length(X)-1,3);

j = 1;

for k = 2:length(X)
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val = zeros(nchoosek(p,k),1);

options = nchoosek(X,k);

replicates = zeros(nchoosek(p,k),k);

for i = 1:size(options,1)

opts = optimoptions(’ga’,’Display’,’off’);

lb = ones(1,k);

ub = (N-1)*ones(1,k);

rng(1);

IntCon = 1:k;

obj = @(n) P(n,options(i,:));

[n_best,fval,exitflag] = ga(obj,k,[-ones(1,k);ones(1,k)],[-N;N],[],[],lb,ub,[],IntCon,opts);

val(i) = -fval;

replicates(i,:) = n_best;

end

[~,index] = max(val);

results{j,1} = options(index,:);

results{j,2} = replicates(index,:);

results{j,3} = val(index);

j = j + 1;

end
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