
POLITECNICO DI TORINO

Corso di Laurea Magistrale

in Ingegneria Matematica

Tesi di Laurea Magistrale

Apples recognition on trees with neural networks

Relatore

Prof. Francesco Vaccarino

Candidata

Debora Cravero

Anno Accademico 2018/2019

Contents

1 Introduction 1
1.1 Objective . 1
1.2 Introduction to Artificial Intelligence 2

1.2.1 Brief history of AI . 3

2 The neural networks 6
2.1 The biological model . 6
2.2 The artificial neuron’s structure 7
2.3 The neural network’s structure 8
2.4 Technical details . 9

2.4.1 The activation function 9
2.4.2 Gradient descent . 12
2.4.3 Stochastic gradient descent 14
2.4.4 Backpropagation algorithm 15
2.4.5 Regularization techniques 16

3 Types and examples of neural networks 19
3.1 Fully-connected neural networks 19

3.1.1 The Perceptron . 20
3.1.2 Multilayer Perceptron . 21
3.1.3 Linear associator . 22

3.2 Recurrent neural networks . 23
3.2.1 Hopfield Net . 25
3.2.2 Boltzmann machines . 26

3.3 Self-Organizing Maps: Kohonen Maps 28
3.4 Convolutional Neural Networks 29

3.4.1 LeNet-5 . 32
3.4.2 AlexNet . 33
3.4.3 VGG . 35
3.4.4 YOLO . 36
3.4.5 YOLOv3 . 37
3.4.6 Tiny YOLOv3 . 45

3.5 Generative Adversarial Networks 46

4 My project 48
4.1 Datasets . 48

4.1.1 Training set and validation set 49
4.1.2 Test set . 49

ii

4.2 Metrics . 50
4.3 Results on YOLOv3 . 52

4.3.1 Confidence score set to 0.25 53
4.3.2 Fine-tuning YOLOv3 . 54

4.4 Results on Tiny YOLOv3 . 58
4.4.1 Fine-tuning Tiny YOLOv3 60
4.4.2 Grid search on Tiny YOLOv3 62
4.4.3 Fine-tuning after grid-search 70
4.4.4 An oddity . 71

5 Conclusions 74

6 Images 76

Bibliography 129

iii

List of Figures

1.1 Example of apples with strong difference in sunlight 2
1.2 Examples of apples grouped in a cluster, hidden by leaves or

divided by branch . 2
1.3 The difference engine by Babbage 3
1.4 Frame of the match Deep Blue vs Kasparov 5

2.1 Human neurons’ structure . 6
2.2 Artificial neuron’s structure . 7
2.3 A fully-connected network . 9
2.4 Heaviside function . 9
2.5 Example of linear ramp . 10
2.6 Logistic sigmoid function . 10
2.7 Hyperbolic tangent function . 11
2.8 ReLU function . 11
2.9 Stationary points . 13
2.10 Examples of learning rate’s choice 13
2.11 Chain rule on a neuron . 15

3.1 Example of fully-connected neural network 19
3.2 Perceptron’s model . 20
3.3 Logic operators . 21
3.4 Space’s transformation for the XOR problem 22
3.5 General RNN’s structure . 23
3.6 Different types of RNNs . 25
3.7 Hopfield network’s structure . 25
3.8 Example of application with Hopfield network 26
3.9 General Boltzmann machine’s model 27
3.10 Other Boltzmann machines . 28
3.11 Kohonen Maps’ structure . 29
3.12 Example of max-pooling function on 2x2 regions with stride = 2 31
3.13 Examples of different zero-padding, everyone with kernel 3x3 and

stride 1 . 32
3.14 LeNet-5’s structure . 32
3.15 Table of connections between second and third layer 33
3.16 AlexNet’s architecture . 34
3.17 VGG-19 . 35
3.18 VGG’s configurations . 36
3.19 Example of residual blocks . 37
3.20 YOLOv3’s architecture . 38

iv

3.21 IoU definition . 39
3.22 Bounding box coordinates . 39
3.23 Combination of COCO and ImageNet with WordNet 42
3.24 Feature pyramid’s scheme . 43
3.25 Structure of Darknet-53 . 44
3.26 Difference between traditional and global averaging approach . . 45
3.27 Tiny YOLOv3 architecture . 46
3.28 Example of DCGAN model used to generate cats’ fake images . . 47

4.1 Some examples of pictures taken 50
4.2 Example of PR curve with its approximation 51
4.3 Overall results of YOLOv3 . 52
4.4 Prediction time with YOLOv3 53
4.5 Overall results of YOLOv3 with confidence 0.25 54
4.6 Prediction time of YOLOv3 with threshold of confidence score 0.25 54
4.7 General results after first fine-tuning on YOLOv3 56
4.8 Plot of average loss error during fine-tuning 57
4.9 Trend of mAP testing weights produced during fine-tuning . . . 57
4.10 Results of the second fine-tuning on YOLOv3 58
4.11 Prediction time with Tiny YOLOv3 59
4.12 Results with Tiny YOLOv3 and threshold 0.5 59
4.13 Results with Tiny YOLOv3 and threshold 0.25 60
4.14 Fine-tuning loss error and mAP 61
4.15 General statistics after fine-tuning on Tiny YOLOv3 62
4.16 Behaviour of average loss error and table of its mean over the last

1000 iterations . 63
4.17 Trend of average loss error during fine-tuning and its mean on

the last 1000 iterations . 64
4.18 Trend of average loss error and its mean on the last quarter of

re-training changing momentum 65
4.19 Trend of average loss error varying momentum 66
4.20 Development of average loss error varying decay and its mean on

last 1000 iterations . 67
4.21 Evolution of average loss error with different burn in and its mean

on last 1000 iterations . 68
4.22 Trend of average loss error using several resolutions and its mean

on last 1000 iterations . 69
4.23 Trend of average loss error with different mini-batch size and its

mean on the last quarter of training 70
4.24 Overall results after grid-search 71
4.25 Overall results on original Tiny YOLOv3 with threshold 0.25 on

JPEG images . 72
4.26 Overall results on fine-tuned Tiny YOLOv3 with JPEG images . 73

5.1 Recap on YOLOv3 statistics . 74
5.2 Recap on Tiny YOLOv3 statistics 74

6.1 First group of pictures with quite good predictions made by
YOLOv3 . 79

v

6.2 Second group of pictures with apples misclassificated as oranges
by YOLOv3 . 81

6.3 Third group of pictures with poor detection made by YOLOv3 . 83
6.4 Comparison of detection, setting threshold on confidence score to

0.5 and 0.25 for YOLOv3 . 88
6.5 Pictures selected for their good predictions on YOLOv3 91
6.6 Pictures with many misclassified apples in the original YOLOv3 93
6.7 Pictures with poor detection in original YOLOv3 95
6.8 Some pictures got after second fine-tuning of YOLOv3 102
6.9 Results with Tiny YOLOv3 using pictures that gave good out-

come with YOLOv3 . 105
6.10 Results with Tiny YOLOv3 using pictures that produced several

wrong prediction of oranges with YOLOv3 107
6.11 Some pictures returned by Tiny YOLOv3 after fine-tuning 112
6.12 Some pictures returned after grid-search on Tiny YOLOv3 118
6.13 Detection with Tiny YOLOv3 on pictures in JPEG format 123
6.14 Detection with fine-tuned Tiny YOLOv3 on pictures in JPEG

format . 128

vi

Abstract

Nowadays it is necessary to optimize the usage of resources in order to re-
duce costs and waste, especially in the field of agriculture, and technological
solutions can help us to pursue this objective, in particular neural networks are
a powerful and adaptive tool. There exist many kind of them, each one with
a particular structure and features that make it more suitable to accomplish a
specific task. In this thesis I am going to investigate about some types and ex-
amples of neural network, focusing on YOLO, a particular convolutional neural
network designed for object detection that I exploited to detect apples on images
taken in an orchard; I improved it with fine-tuning and grid search, getting a
remarkable upgrade in performance respect to the initial outcomes. The ability
to improve reveals the potential of this device, indeed it could be re-trained on a
custom dataset to detect apples or other fruits and used in the area of precision
agriculture, like the harvesting of the only fruits within a range of ripeness, the
discard of those fruits inner damaged by bacteria or other pathogen and eventu-
ally a complete automatic harvesting led by a rover equipped with a mechanic
arm; such system would be helpful for reasons of food safety, optimal usage of
resources and time and reduction of human physical efforts.

vii

Ringraziamenti

Sono molte le persone che hanno contribuito e mi hanno sostenuta nella re-
alizzazione di questa tesi, perciò vorrei impiegare questo spazio per esprimere
tutta la mia gratitudine nei loro confronti.
In primo luogo vorrei ringraziare il mio relatore, il Professore Vaccarino, che ha
creduto in me e nelle mie capacità, mi ha fornito indicazioni utili per lo svolgi-
mento di questo progetto e per la vita futura e mi ha fatto conoscere Vittorio
Mazzia e Angelo Tartaglia: grazie per la vostra pazienza e disponibilità; i vostri
consigli sono stati fondamentali per potermi destreggiare nell’immenso mondo
dell’intelligenza artificiale e poter ottenere dei risultati soddisfacenti.
In secondo luogo desidero ringraziare Luca Nazari per l’opportunità offertami
nella sua azienda, il mio tutor Alessandro Monge e Andrea Maccagno per avermi
guidato durante il tirocinio e tutti gli altri colleghi per avermi aiutato nelle dif-
ficoltà quotidiane, per le risate e le partite a calcio balilla durante la pausa
pranzo.
Sicuramente devo citare la mia famiglia: i miei genitori, che hanno reso possi-
bili i miei studi, che hanno gioito per i miei successi e mi hanno sostenuto nei
momenti difficili, mia sorella Elisa, che arricchisce la mia vita da quando é nata
e i miei cani e gatti, che grazie al loro calore e amore incondizionato sanno come
risollevarmi l’umore.
Un pensiero speciale va a Giacomo, presente pressoché dall’inizio di questo per-
corso universitario. Sarebbe riduttivo dirti semplicemente grazie dopo tutto
quello che hai fatto e fai per me: senza il tuo supporto morale, le tue esortazioni
e i tuoi suggerimenti probabilmente questo lavoro non sarebbe stato portato a
termine; per questo ti sono molto riconoscente.
Un omaggio particolare va a Daniela, la mia insegnante di danza orientale, e
alle mie compagne di ballo passate e presenti, per le belle serate passate insieme
a chiacchierare e ballare: sono state molto utili ad allentare la mia tensione e a
ricaricarmi con nuove energie per affrontare al meglio la settimana.
Inoltre ringrazio mio padrino, che é sempre presente nei momenti più importanti
della mia vita e i miei amici per il loro sostegno.
Infine complimenti a te, Debora, per aver affrontato e superato gli ostacoli in-
contrati nel corso degli studi, per la resilienza dimostrata di fronte ai fallimenti
e per la perseveranza con cui hai completato questo progetto. Sii orgogliosa di
questo lavoro, dei risultati che sei riuscita a raggiungere ed ora va’ ... ”verso
l’infinito e oltre!”.

viii

Chapter 1

Introduction

The research in artificial intelligence (AI), thanks to its versatility and potential,
has allowed and will allow more and more in the next years to create new tools
in order to optimize industrial processes, avoid car accidents, prevent building
collapses, report next failures, select products, enhance medical diagnosis... in
short AI helps us in many aspects of life.
Indeed, almost every area can benefit from some sort of solution involving ar-
tificial intelligence and in this thesis I will show an application of it in the
agricultural field, that is the detection of apples on images taken in a orchard
with a convolutional neural network.

1.1 Objective

The agricultural field has always known a constant development through the
invention of hoe and plough, the study of crop rotation, soil characteristics and
weather observation until the introduction of agricultural machinery, fertilizers
and OGM. Nowadays the research is focusing on further areas as the precise
monitoring of the field and crop in order to optimize the use of irrigation, fer-
tiliser and pesticide, the use of spectral cameras on fruit to detect damages or
infections and to determine the actual ripening and an ever more automatic
process of harvesting.
In this work I will investigate about how a neural network can be used to de-
tect fruit on trees, in particular apples, with a view to future application on a
rover able to navigate independently the field, day and night, to scan trees with
multiple cameras, to determine where the ripe fruits are and to take them with
a robot arm.
The main problems with this objective are well described in ”Estimation of
the number of apples in color images recorded in orchards” [1] and they can be
summed up in two main criticality: illumination and occlusion.

• As regard the first problem, light conditions affect heavily the results
of detection, in fact the sunbeams directed frontally on fruits can cause
saturation, so in this case the color information is lost. Moreover they can
create shaded zones that make very difficult to recognize apples in them.
Therefore it is suggested to work at the sunset, under diffusive sunlight or

1

to put black sheets behind trees and to use artificial illumination in order
to avoid strong changes in light on the field.

Figure 1.1: Example of apples with strong difference in sunlight

• The occlusion problem refers to the fact that in a real situation, apples
grow quite randomly on the tree, so they can form clusters or hide behind
leaves or branches, making their detection harder.

Figure 1.2: Examples of apples grouped in a cluster, hidden by leaves or divided
by branch

1.2 Introduction to Artificial Intelligence

Since ancient times among the principal topics of which philosophers and sci-
entists were thinking about, there were mental processes and not only how to
follow a proper reasoning, such as using deduction or syllogism, but also how
human brain works, if it can be reproduced and how to manufacture instru-
ments able to amplify mental capacity and to simplify some work.
Artificial intelligence fascinated many writers, cartoonists, directors and game
directors so that became a recurrent subject in sci-fi genre, hence we can mention
in literature masterpiece as ”Frankenstein” by Mary Shelley, ”The bicentennial
man” by Isaac Asimov, ”The voyage of the Jerle Shannara” by Terry Brooks
and among manga ”Ghost in the shell” by Masamune Shirow. In cinematic
history we can consider ”Metropolis”, ”2001: a space odyssey”, ”Blade run-
ner”, ”Matrix” and ”Io, robot”, that have handled with the theme of robotics,
androids, power detention and coexistence of human beings and robots, ”War

2

games” describes the consequences that can come from the misusing of an arti-
ficial intelligence system, in this case the unaware use of a military computer by
a student, ”Her” and ”Trascendence” deals with the possibility of a computer
to feel emotions, to have a love affair with it or to transfer a consciousness into
it and ”Big hero 6” presents Baymax, a kind of friendly robot, created to take
care and provide health assistance to the person assigned. Among video games
there are ”Portal”, in which the AI present in the game leads the player through
a series of rooms, where he must find a way out, ”System shock”, in which the
player have to combat an evil AI, willing to destroy humanity and in ”Hello
neighbor” the AI modifies the villain’s behaviour according to the past actions
made by the player to hinder him.
These are only few examples of the use of the topic ”artificial intelligence”
throughout culture, now we will explore the principal steps made by researchers
in AI field.

1.2.1 Brief history of AI [2, 3]

As regard the history of artificial intelligence we can enumerate Aristotle, who
used syllogism as reasoning in 4-th century B.C., Blaise Pascal in 17-th century
invented the Pascaline, a mechanical calculator able to do addition and sub-
traction, George Boole and Charles Babbage lived in 19-th century, the first is
famous for his method based on propositional logic and the second built ”The
difference engine” which computed differential calculus, and finally Alan Turing
devoted his live to logic, theory of computation and the creation of intelligent
machines according to his well-known ”Turing test”.

Figure 1.3: The difference engine by Babbage

In the 20-th century, thanks to the progress in neurobiology, information
theory and cybernetics, the researchers began to think about the possibility of
building an electronic brain and in 1943 Warren McCullouck and Walter Pitt
proposed the first work recognised as AI: a model of artificial neuron, that could
distinguish two different categories of inputs by testing whether a certain linear
function f(x,w) is positive or negative, but the weights had to be set correctly
by a human operator.
In the 50’s, John McCarthy, Marvin Minsky, Claude Shannon, Nathaniel Rochester,
Arthur Samuel, Allen Newell and Herbert Simon asserted themselves with their
projects in implementing programs which learn checkers strategies, solve word
problems in algebra, prove logical theorems and speak English.

3

In particular, in 1956 at the Dartmouth conference (conference in which the
term ”artificial intelligence” was established) the first automatic demonstrator
of theorems was presented, the next year Frank Rosenblatt invented the Percep-
tron, the ancestor of neural networks, made by only one layer and just enough
to learn the weights of a linear function without human action and in 1959 Her-
bert Gelemter designed the ”Geometry Theorem Prover”, a program that, as
the name suggests, is capable of proof theorems of complex geometry.
The expectations in AI were so high that Herbert Simon believed that:

”machines will be capable, within twenty years, of doing any work a man can
do” [4, p. 96]

and Marvin Minsky stated that:

”within a generation ... the problem of creating ’artificial intelligence’ will
substantially be solved” [5, p. 2].

Unfortunately things did not run so smoothly, the issue of teaching a computer
to do what people do was much more complicated than expected.
In fact, in 1969 Minsky and Papert in their document ”Perceptrons” proved the
limitation of the Rosenblatt’s Perceptron, presenting as example the failure to
solve the trivial XOR problem, due to the non-linearity of the function to learn.
Also other promising programs began to show their incapacity to solve more
complex tasks and computational costs became unbearable for the technology
at the time, thus the majority of researchers turned their efforts towards differ-
ent areas and started the ”AI winter”.
In the next years expert systems were developed, such as DENDRAL and
MYCIN, respectively able to infer the structure of an organic molecule given its
chemical formula and to support medical decision about blood infection based
on an incomplete knowledge of symptoms.
In 1975 Paul Werbos managed to solve the XOR problem inventing the back-
propagation algorithm applied to a multi-layers perceptron and this algorithm
will be used in almost every neural network from then on.
In the 90’s the research in AI flourished again, thanks to the increasing com-
putational power and the ongoing scientific discoveries in robotics, medicine,
mathematics, physics and economics. In fact it is started again to code about
widely differing objectives: logistics, data mining, natural language processing,
visual recognition of images, medical diagnosis, etc; this resulted in very effec-
tive, high-performance and continually improving programs, to the extent that
nowadays many tasks are inconceivable without the aid of computer and it is
not foreseen an end to the development of artificial intelligence technology.
Many achievements were presented in public competition, one of the most fa-
mous is the ImageNet Large Scale Visual Recognition Challenge (ILSVRC),
where each research team tests its algorithm on a given data set of images
to classify and who reaches the highest accuracy wins the competition. In
such contest was presented AlexNet in 2012, that became a milestone among
convolutional neural network (CNN). In the same category we can remember
GoogLeNet, ResNet and YOLO.
Whereas for the recognition of handwritten digits, in 1998 Yann LeCun invented
LeNet-5, trained on the MNIST dataset.
As regard the development of game strategy, the 11-th May 1997 was a turning

4

point day for the level of ”intelligence” acquired by a machine, indeed Deep
Blue, the IBM supercomputer, became the first computer chess-playing system
to beat a reigning world chess champion, Garry Kasparov.

Figure 1.4: Frame of the match Deep Blue vs Kasparov

After that, other computers were developed to challenge humans in different
games. The most famous matches took place in 2011, when the IBM’s question
answering system, Watson, defeated the two greatest Jeopardy! champions,
Brad Rutter and Ken Jennings, by a significant margin. In March 2016 AlphaGo
won 4 out of 5 games of Go in a match with the champion Lee Sedol, beating a
professional Go player without handicaps and the next year the same computer
program won a three-game match with Ke Jie, ranked number one in the world
in Japan Go Association’s.
Recently chatbot have appeared, which are softwares able to have some sort of
conversation with human, especially created for online assistance.

5

Chapter 2

The neural networks

The basic unit for artificial intelligence project is the neural network, which is a
program designed to fulfill a given task, learning how to do it step by step and
improving with time.

2.1 The biological model

When someone thinks about the definition of ”artificial intelligence”, an answer
could be ”a machine that can undertake different human tasks that need a strat-
egy to be solved, that can learn from errors to improve and gain experience”,
therefore it is reasonable to consider to design this machine like a human brain
and to reproduce its functionalities.
Indeed a neural networks is a set of neurons connected each other in differ-
ent ways, that receive inputs, elaborate them, produce an output that spreads
through the network and finally take a decision.
Now let’s go in more detail on what is a neuron, how it works and how it
communicates with the other neurons present in the human brain.

Figure 2.1: Human neurons’ structure

A neuron is composed by a central cell body or soma, surrounded by many
short branching filaments, named dendrites, and only one long nerve fiber,

6

named axon. The soma contains the nucleus, which is the processing centre
where the information coming from other neural units, passing through den-
drites, is computed. Then the process result is one or more neurotransmit-
ters, electric signals made by ions of different chemical, such as sodium, potas-
sium, chloride and calcium, that are sent through the axon, which terminates
in synapses, nearby the dendrites of the next neuron. Here a voltage gradient
across these membranes is maintained, so that the ions can alter this gradient; if
this change is big enough, the ion channels allow the neurotransmitters to pass
the membrane, then they are received by the receptors of the next dendrites and
the signal is transmitted to the cell body of this new neuron, that will process
it and so on.
The signal can be excitatory or inhibitory, which can make more or less likely
that the next neuron will produce a similar signal, in order to reinforce the
answer to a given stimulus or to relax this reaction.
All these features were reproduced somehow in the artificial neuron’s pattern.

2.2 The artificial neuron’s structure

Figure 2.2: Artificial neuron’s structure

Each neuron needs:

• inputs xi

• weights wi

• bias b

• an activation function f

• a threshold θ

• a cost function C

• an output function o

And it produces an output y.
The inputs xi can be the outputs of previous neurons that are connected to
the actual neuron or can be the inputs of the network itself. Depending on the

7

objective of our work, the inputs may represent different things, like images,
words, texts, sound waves, measured values, etc; consequently they have differ-
ent forms (numbers or characters) and are often organized in vectors, matrices
or tensors.
The weights values change throughout the network training in order to minimize
the cost function C by using algorithms like gradient descent or stochastic gra-
dient descent and they have the task of reinforcing or easing the signal received,
therefore an high weight represents an excitatory synapse and a low weight an
inhibitory synapse.
Then inputs are combined linearly with the weights and it is added a bias:

U =
∑
i

xiwi + b

This value is passed to the activation function f , that corresponds in the biolog-
ical model at the ion channel, that can open the way for the neurotransmitter
if the voltage gradient overcomes the threshold θ. Hence if U ≤ θ, f does
not ”activate”, the transmission of that input is stopped (this means that it is
considered useless with respect to the task assigned) otherwise the neuron is
activated and the input keeps conveying its information through the activation
function; finally its output is passed to the output function o (that sometimes
is simply the identity function) that returns the final value y:

y = o(f(U, θ))

Now the output is spread across the network through the connections between
neurons and processed until the reaching of its end and the return the result
computed by the network.

2.3 The neural network’s structure

A neural network is a set of neurons organized in layers (or levels), where the
number of neurons in each layer is set by the programmer and usually varies
through the network, also the number itself of layers is not fixed and represents
the level of complexity achieved by the network, that is the more layers there are,
the more different and elaborate pattern can be distinguished by that model.
The first layer is called input layer because it receives the input and its neurons
are the first at processing it, just like the last layer is named output layer because
it produces the network’s final output. In between these extreme layers stand
the hidden layers that contribute at the final result, identifying new patterns,
applying linear transformation and changing their weights with the use of a
propagation function.
The layers are linked through connections that start from a neuron and end up
to another belonging to the next layer and they are associated to a weight that
provides the effectiveness of that synapse.
The most basic model is the fully-connected one, that consists of the connection
of each neuron to every neuron of the next layer but this makes the model
expensive in term of computational costs, especially when the network is very
deep and wide, so often techniques, like dropout and norm penalties, are applied
to speed up the process or a smaller network can be used, but I will talk about
that more in detail later.

8

Figure 2.3: A fully-connected network

2.4 Technical details

2.4.1 The activation function

The choice of the activation function determines the evolution of the learning
process and thus the effectiveness of the entire algorithm, so it is important to
select it correctly, moreover a good activation function should also satisfy some
properties, like linearity, continuity, derivability and simplicity in implementa-
tion.
Now we are going to outline some of the most used functions for this role. For
more details see [6] or [7, chapter 1].

• Heaviside function

-5 -4 -3 -2 -1 0 1 2 3 4 5

-0.5

0

0.5

1

1.5

Figure 2.4: Heaviside function

The Heaviside function was the first function used for this purpose because
it is a very simple and fast to implement function, it is continuous but not
derivable in zero, it makes hard decisions because it is defined as follows:

H(x) :

{
0 if x < 0
1 if x ≥ 0

therefore its output can only take 0 or 1 values and the turning point
is very clear-cut, so it falls easily into error if the value received by the

9

activation function is near to zero and this was the main reason why it
was abandoned and smoother functions are preferred to it.

• Linear ramp

-5 -4 -3 -2 -1 0 1 2 3 4 5

-0.5

0

0.5

1

1.5

Figure 2.5: Example of linear ramp

The function plotted is an example of the linear ramp:

f(x) :

0 if x < a

1

b− a
x− a

b− a
if a ≤ x < b

1 if x ≥ b

The linear ramp is continuous but not derivable in two points, that are
where the function changes the slope (in our case -1 and 1). It is quite
easy to implement and it reaches value one in a less sharp way than in the
previous case, so the decision is softer and this made it a good choice as
activation function for long time.

• Logistic sigmoid

-10 -8 -6 -4 -2 0 2 4 6 8 10

-0.5

0

0.5

1

1.5

Figure 2.6: Logistic sigmoid function

The sigmoid function has the following form: σ(x) =
1

1 + e−x

It is a function continuous, differentiable everywhere and its behaviour is
similar to that taken by the neuron in biology when it has to decide to
transmit the signal or not.
Disadvantages of using this function are its not linearity and the more
complexity in implementation than the previous piecewise linear function;
indeed it is not very often used as activation function.

10

• Hyperbolic tangent

-5 -4 -3 -2 -1 0 1 2 3 4 5

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 2.7: Hyperbolic tangent function

The hyperbolic tangent is defined as: tanh(x) =
sinh

cosh
=
ex − e−x

ex + e−x

and it is related to the logistic sigmoid by the following dependence:

tanh(x) = 2σ(2x)− 1

This function is continuous and differentiable everywhere, its peculiarity
is the output that can return also negative values because its image is the
interval [−1, 1], instead of the interval [0, 1] like the former functions, this
allows to avoid ”neuron saturation”, a phenomenon that happens when
most of the domain function returns zero which causes the stop of the
learning process for that input, perceived to be useless, but instead of
stopping its progress sometimes is preferable to give a little weight to it
and the hyperbolic tangent allows this.
This function is not linear and quite complex to compute so it is used only
in few cases.

• Rectified linear unit or ReLU

-5 -4 -3 -2 -1 0 1 2 3 4 5

-1

0

1

2

3

4

5

Figure 2.8: ReLU function

A ReLU function has the form: f(x) = max{0, x}, it is continuous and not
differentiable only in zero, it is piecewise linear, very simple to implement
and its image goes to infinite, rather than stop to one as seen before; all
these features contribute to make it the most used activation function.
A neuron with this activation function can run into saturation; to avoid
this there exist some generalizations of the original ReLU function that

11

can help for this purpose; some of them consist of adding a non-zero slope
α, thus the resulting function is:

f(x, α) = max{0, x}+ αmin{0, x}.

Depending on the choice of the value α we can obtain different activation
functions:

- Absolute value rectification: when α = −1 the ReLU function
reduces to the absolute value function f(x) = |x|. It is usually used
for object recognition from images because the neuron should be
invariant to a polarity reversal of the input illumination.

- Leaky ReLU: α is fixed to a small value, like 0.01

- Parametric ReLU or PReLU: α is a learnable parameter

Another generalization of ReLU is the Maxout unit: the inputs are
divided into groups of k values, each one assigned to a maxout unit that
returns the maximum element of the set. These kind of units are useful to
learn piecewise linear and convex function with up to k pieces. If k is big
enough any convex function can be approximated with a good accuracy.

• Softmax Unit

The softmax function is defined as:

softmax(x)i =
exi∑n
j=1 e

xj

This formula can be seen as a probability distribution of a Multinoulli
random variable with i possible values over n total trials, so it computes
the probability of event i.
For this reason the softmax function is often used in classification prob-
lem, in particular in the output layer because the result represents the
probability of the input to belong to the i-th class.
Moreover this function is continuous, differentiable and invariant to scalar
addition.

2.4.2 Gradient descent

The cost function C(w, b) measures the error made by the neural network in
processing an input sample; if it returns a small value, you would expect quite
accurate results, instead if it returns an high value, it means that the network
does not perform well in most cases and it needs some improvements regarding
its structure, its parameters or its learning algorithm. The cost function can be
defined in several ways, the most used are:

Mean Squared Error (MSE): C(w, b) =
1

2n

n∑
i=1

||yi − ŷi||2,

where yi is the desired output and ŷ(xi) is the estimated one, and:

Cross-entropy (CE): C(w, b) = − 1

n

n∑
i=1

[yi ln ŷi + (1− yi) ln (1− ŷi)].

12

In classification problem it is common to use a binary cross-entropy (BCE) cost
function that differs from the above equation only for the values taken by yi,
that are 0 and 1. According to which value yi takes, the cost function simpli-
fies to one of the two terms and since logarithm is an increasing function, to
minimize it is equivalent to minimize its argument, so the formula reduces to:{
− 1
n

∑n
i=1 ŷi if yi = 1

− 1
n

∑n
i=1(1− ŷi) if yi = 0

Indeed the objective is to minimize the cost function and it can be done in
multiple ways, one of the first and simplest method used is the gradient descent
algorithm.
The theoretical justification behind this algorithm is that if we choose whatever
function f(x) ∈ R and calculate its derivative f ′(x), then

f(x− εsign(f ′(x))) ≤ f(x)

so we can follow the opposite direction of the derivative, making small steps
with opportune values of ε, named also learning rate, until f ′(x) = 0, i.e. when
x is a stationary point.
A stationary point can be a local minimum or maximum, global minimum or
maximum or a saddle point; in our case we are looking for a global minimum
but it is not always simple to distinguish it from a local minimum or a saddle
point, especially when we are working in a very high dimensional space, where
is impossible to have a graphical idea of the function evolution.

Figure 2.9: Stationary points

That’s why the choice of the learning rate is of crucial importance, because
it has to be big enough to escape from flat regions, like those that can be
near saddle points, to avoid being stuck in a local minimum and to converge
in a reasonable time, but it also has to be small enough to not skip the global
minimum. It’s a trade-off between convergence’s speed and accuracy.

Figure 2.10: Examples of learning rate’s choice

Usually the learning rate is set to a small value and decreased during the

13

learning process or we can use the line search strategy, whereby we can try
different values of it and take only the one that gives the smallest objective
function value.
In a multidimensional space the derivative has to be replaced by the gradient
∇xif(x), which is a vector containing all the partial derivatives in respect to
the component xi. So a stationary point becomes a point where each partial
derivative is zero so its gradient is the null vector and we can reach it moving
towards the opposite direction of the gradient:

x′ = x− ε∇xf(x)

Thus going back to our case, this formula is used during the network training
to update weights wi and bias bi:

w′i = wi − ε∇wiC(w, b)

b′i = bi − ε∇biC(w, b)

Actually we are never sure to have reached the global minimum and not a
local one but we can settle for it if it gives a very low cost function value.

2.4.3 Stochastic gradient descent

The stochastic gradient descent is an enhancement of the previous algorithm
to limit the computational cost required to calculate the gradient of the cost
function during the training of a large dataset.
In fact we can think about the gradient as an expectation and this value can
be estimated using only a small dataset, instead of the entire one. So at each
step of the algorithm we sample a mini-batch of examples from the training set
of magnitude m B = (x1, x2, ...xm), usually a small number varying from 1 and
few hundred, that represents a little part of the original dataset.

∇C =
1

n

n∑
i=1

∇xiC(w, b) ≈ 1

m

m∑
j=1

∇xjC(w, b)

Thus the weights and bias are updated according to this new way of calculating
the gradient:

w′j = wj − ε
1

m

m∑
j=1

∇wjC(w, b)

b′j = bj − ε
1

m

m∑
j=1

∇bjC(w, b)

After the calculation of all weights and bias, a new mini-batch is sorted from
the remaining samples of the training set and the resulting estimated gradient,
weights and bias are computed repeatedly until all the inputs are used in this
algorithm. The union of mini-batch is called epoch and when one of this epoch
is completed, a new one is started until all the planned epochs (several thou-
sands) are completed.
The advantage of this algorithm is that does not depend on the size of the train-
ing set but only on m, the size of the mini-batch, so it is very used nowadays due
to the largeness of the training set needed and the corresponding computational
cost requested.

14

2.4.4 Backpropagation algorithm

As we have seen so far, the information flows from the input layer through the
network at the output layer, so this is called forward propagation. But infor-
mation can also flow backwards and the backpropagation algorithm does just
that; this is also to reduce the computational cost of calculating the gradient.
Now the gradient is computed using the chain rule, a technique which allows to
compose efficiently simple operations.

Figure 2.11: Chain rule on a neuron

In fact the cost function of a neuron depends on the following neurons that
are linked to it, so the gradient is the product of all these subsequent partial
derivatives.

∇
z

(l)
i
C(w, b) =

∑
i

∇
z

(l+1)
i

C(w, b) =
∑
i

n∏
j=l+1

∂C(w
(j)
i , b

(j)
i)

∂z
(j)
i

where z
(l)
i represents the i-th neuron in the l-th layer.

Obviously it is more convenient to compute each partial derivative individually,
save its value and pass it to its parent node, in this way we can optimize the
gradient calculus and avoid repeating the same computations.
In particular, it should be noted how this algorithm updates weights. Let’s start
from the output layer and make explicit the computation of the cost’s gradient

in respect to the weights, remembering that y
(l)
i = f

(∑
i w

(l)
i y

(l−1)
i

)
, where f

is the activation function:

∇
w

(l)
i
C(w, b) =

∂C(w, b)

∂y
(l)
i

∂y
(l)
i

∂
(∑

i w
(l)
i y

(l−1)
i

) ∂
(∑

i w
(l)
i y

(l−1)
i

)
∂w

(l)
i

=

= −(d
(l)
i − y

(l)
i)f ′

(∑
i

w
(l)
i y

(l−1)
i

)
y

(l−1)
i

So the adjustment of the weights has to follow the opposite direction of the
gradient and to be proportional to the learning rate η:

w
(l)
i (t+ 1) = w

(l)
i (t)− η ∇

w
(l)
i
C(w, b) = w

(l)
i (t) + η δ

(l)
i y

(l−i)
i ,

with δ
(l)
i = (d

(l)
i − y

(l)
i)f ′

(∑
i w

(l)
i y

(l−1)
i

)
.

This procedure is repeated for the previous layers in a similar way, only a bit

15

more complex, until the first one is reached.
So in the inner layers we obtain that weights are updated according to:

w
(j)
i (t+ 1) = w

(j)
i (t) + η δ

(j)
i y

(j−1)
i j ∈ [1, l − 1]

with δ
(j)
i = −

(∑
k δ

(j+1)
k w

(j+1)
k

)
f ′
(∑

i w
(l)
i y

(l−1)
i

)
.

If j = 1 then we are considering the first layer so new weights depend on the
input:

w
(1)
i (t+ 1) = w

(1)
i (t) + η δ

(1)
i xj .

The use of this algorithm combined to that of the stochastic gradient descent
can make the computational cost in the training phase much lighter than usual.
Moreover there exist optimized versions of this algorithm, the most common
one uses a momentum parameter.

Backpropagation algorithm optimized with momentum parameter

In the original algorithm the updating depends only on the previous time step,
instead in this version it depends on the previous two time steps, that reflects
a major attention to the evolution of the cost function.
In practical terms weights change following the equation:

w
(j)
i (t+ 1) = w

(j)
i + η δ

(j)
i y

(j−1)
i + α

(
w

(j)
i (t)− w(j)

i (t− 1)
)
,

where α is the momentum and it belongs to the interval [0, 1]; naturally if α is
set to zero the algorithm turns back to its original version, instead the more it
tends to one, the more regularization is applied, which benefits the convergence
process.
As we can notice from the formula above, if weights experienced a big change
in the previous steps, this means that the solution is still far, so it is convenient
to move fast and in this case the momentum term helps to do a bigger step
towards the minimum.
On the contrary, if weights change very little in the last moves, this outline the
closeness to at least a local minimum, so it should do a little step in order not
to overcome the stationary point; in this case the momentum term gives a very
low contribution so the update is determined mainly by the learning term.
In conclusion the momentum term helps the algorithm’s convergence, modifying
dynamically the magnitude of the step taken according to the recent history in
the process.

2.4.5 Regularization techniques

A neural network is considered good when it classifies well not only the training
and validation set but especially the test set, which contains samples never seen
by the network, so it is important to reach a low test error, even at the expense
of the training error; for this purpose regularization techniques were introduced.

Norm penalties

One of the most simple and used strategy of this kind consists in adding a norm
penalty Ω(w, b) to the cost function C(w, b):

C(w, b) = C(w, b) + αΩ(w, b)

16

where α ∈ [0,∞) is the hyper-parameter that determines how strong is the
penalty imposed to the objective function; obviously if α is set to zero, no
regularization is applied.
Furthermore Ω(w, b) is usually only a function of weights, this means that only
weights are regularized and bias are left unchanged.
The most used penalty functions are:

• L2 regularization: Ω(w) = 1
2‖w‖

2
2

This method is also known as weight decay or ridge regression or Tikhonov
regularization and it consists of encouraging the weights to go towards the
origin.

• L1 regularization: Ω(w) = ‖w‖1
This kind of regularization tends to reset many components of the vector
w, so this corresponds to a features selection.

Data augmentation

In order to obtain good performance, a neural network needs a big amount of
training samples consistent to the task assigned and different enough to give
a broad spectrum of all the variations present to identify the objective; it is
not always possible to get such a big and various dataset, so it is necessary an
integration with data augmentation.
This method implies the applying of transformations to the original samples,
that increase the variability of the dataset without changing the correct answer.
For instance if our dataset is composed by images, we can augment it applying
translation, rotation, flip or changing brightness and contrast of each original
image.
Another form of data augmentation, very used with sound waves samples, is
adding noise to the original dataset because a neural network has to be robust
to the presence of noisy samples, so the noise’s injection can affect positively its
performance.

Early stopping

Early stopping is used when during the training phase, we observe that the
training error keeps decreasing while the validation error starts to increase con-
siderably for several epochs, this behaviour can alert the beginning of overfitting,
so it is advisable to stop training and keep the parameters achieved when the
validation error was minimum.

Bagging or bootstrap aggregating

This technique is classified as an ensemble method because it involves the train-
ing of several models and their combination to obtain the final model.
Specifically from the original dataset of n instances k new datasets are created,
as large as the original one but where each input is sampled with replacement
from the initial set (so these new sets can contain duplicate of the same exam-
ples); then each new dataset is trained on a different model and finally tested
on the test set to get the best model.
This strategy is effective in reducing the general error because different models

17

do not make the same error on the same test set, furthermore the training errors
are independent so the resulting average model performs at least well as each
of its members.
The price to pay for the improvement is the increment in computation and
memory, so this is an aspect to take into account if the resources available are
limited.

Dropout

Dropout try to approximate bagging over a large number of neural networks, all
coming from a bigger one and generated by switching off randomly some of its
units. Dropout requires a learning algorithm based on mini-batch to build these
sub-networks; each time an input is loaded into a mini-batch a binary mask is
sorted and applied on input and hidden layers of the original network. This
mask generates the sub-network composed only by the units that are multiplied
by one because the others incur into a switch-off with the multiplication by zero,
and the sub-network is trained as usual. The masks are sampled independently
to each other and the hyper-parameter that defines the probability to include a
neuron is set before the beginning of the training, usually an input unit is kept
in the sub-network with probability 0.8 and an hidden unit with probability 0.5.
Differently from bagging, with this strategy models are no more independent
because they share parameters, inheriting them from the parent network; this
sharing system allows to train a smaller number of these sub-networks, saving
time and computation. Dropout and bagging are often utilised together to take
advantage of the efficiency of the first method and the precision of the second
one.

18

Chapter 3

Types and examples of
neural networks

In the past decades many different types of neural networks were developed in
order to accomplish their various tasks. Below I am going to consider some of
these categories and to present their most famous examples. For more informa-
tion see [8] and [7].

3.1 Fully-connected neural networks

One of the most simple and intuitive kind of neural network is the fully-connected
one; each neuron has to be connected to all the neurons present in the next layer.

Figure 3.1: Example of fully-connected neural network

This feature makes it likely the most used neural network especially at the
start of the AI epoch and nowadays by the beginners of this field, because it
gives you the serenity of not worrying about which connections have to be set
between neurons, since all the possible connection are switched on and during
the training phase the associated weights will change autonomously, strength-
ening or loosening that connection.

19

The number of layers and neurons is arbitrary but this has the drawback of
making the process very expensive in terms of computational cost if you choose
to build a big neural network, because at each connection corresponds at least
one parameter and the more deep or large is the network, the more connections
are needed. So it is often preferred not to create an entire fully-connected net-
work but to use this structure only in few layers and to lighten the remaining
part of the network with strategies that require less connections.

3.1.1 The Perceptron

One of the most famous neural network is the Perceptron, proposed by Frank
Rosenblatt in 1958.
It is a binary model able to learn simple patterns, like the logic function AND,
OR and NOT. In its original version, it receives only two inputs but it can be
generalized to more than that. These inputs xi are combined together with a

linear function f =

n∑
i=1

xiwi + b and according to a threshold λ, it returns the

final output y =

0 if

n∑
i=1

xiwi + b ≤ λ

1 if

n∑
i=1

xiwi + b > λ

.

The bias b can be considered as the weight w0 associated to the input x0 = 1,
so we can rewrite the previous formulas in a more compact way: the function

is f =

n∑
i=0

xiwi e the output y =

0 if

n∑
i=0

xiwi ≤ λ

1 if

n∑
i=0

xiwi > λ

Figure 3.2: Perceptron’s model

The big innovation in this model is that the weights wi are determined by a
learning algorithm and not fixed manually anymore, as happened previously.
Initially weights are small random variables, then they are adjusted by a simple
but quite effective learning algorithm.
Given the input x and its components xi, the true output a and the output
estimated by the linear function y, we can compute the error with the delta
rule, defined as the difference between the output values, δ = y − a and how
much to vary weights, ∆wi = δηxi, where η ∈ [0, 1] is the learning rate.
So, if the predicted output is correct, no changes are made on the weights,
otherwise they are updated according to: wi = wi + ∆wi.

20

Geometrically the correct classification of input consists of finding a line (or a
plane if we have three input units, or an hyperplane if we have four or more
input units) dividing the space in two parts, each containing only one class,
therefore classes have to be linearly separable.
Observing the following plots, we can notice that the classes composed with
logic function AND, OR are simply separable (and there is an example of line
separator), instead with XOR are not.

0 0.5 1 1.5

0

0.5

1

1.5

Function AND

0

1

0 0.5 1 1.5

0

0.5

1

1.5

Function OR

0

1

0 0.5 1 1.5

0

0.5

1

1.5

Function XOR

0

1

Figure 3.3: Logic operators

Minsky and Papert understood this limitation of the Perceptron and in 1969
they published a book, in which they presented the XOR example and this
represented a severe blow for artificial intelligence development.
Later in 1986 Rumelhart, Hinton and Williams proved that this obstacle can
be overcome by adding an additional layer to the original Perceptron, thus the
Multilayer Perceptron (MLP) was born.

3.1.2 Multilayer Perceptron

The Multilayer Perceptron can be seen as many perceptrons organized in lay-
ers, in fact it is a fully-connected network with at least one hidden layer, can
have two or more input units and can classify an arbitrary number of classes,
reflected in the number of output units.
In contrast to the original perceptron, it follows the backpropagation algorithm
for training and the neurons can take both linear and nonlinear activation func-
tion, like sigmoid, hyperbolic tangent or logistic function.
The major complexity in structure and flexibility in activation function’s choice
allows the network to divide the space into more sophisticated parts; in fact

21

with no hidden layer the network can only distinguish classes linearly separable,
introducing one hidden layer it can separate convex regions and with two or
more hidden layers it can crop regions arbitrarily complex, in that case the only
limitation is given by the number of neurons used.
Resuming the XOR problem, the insertion of an hidden layer with a linear acti-
vation function represents a linear transformation of the input space into a new
space that makes the classes separable.
One possible numerical solution is that one proposed in [8, p. 171-177], obtained

applying weights w =

[
1 1
1 1

]
and bias b =

[
0
−1

]
to the input x =

0 0
0 1
1 0
1 1

 and

using ReLU as activation function.

So xw + bT =

0 −1
1 0
1 0
2 1

 and employing the ReLU function we get the new co-

ordinates of the original inputs: x̃ = max(xw+ bT , 0) =

0 0
1 0
1 0
2 1

. Now it’s easy

to verify that the points are linearly separable in the new configuration.

0 0.5 1 1.5

0

0.5

1

1.5
Before transformation

0

1

?

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5
After transformation

0

1

separator

Figure 3.4: Space’s transformation for the XOR problem

3.1.3 Linear Associator

The linear associator is an easy and not so modern network able to learn asso-
ciations between input and output patterns.
It is composed only by input and output units, fully-connected by the weights
matrix, can take only the binary values {-1; 1} as input and the learning algo-
rithm follows the Hebb rule or the delta rule, that is the weights are given by
the outer product among the input pattern ip and the output pattern op with
a learning parameter η: w = ηop · iTp .
So when a new pattern is tested, we obtain the following output: ot = w · it =
ηop · iTp · it, thus the inner product (iTp · it) ∈ [−1, 1] gives a similitude measure
of the two vectors, in fact if it is equal to:

• 1 it means that the vectors are equal, so they represent the same pattern

22

• -1 the vectors are opposite and the patterns are complementary

• 0 the vectors are orthogonal and the patterns are unrelated

This argument can be extended to the case of more than one association to
learn, where the weights matrix will be a combination of all the associations

(ipk , opk): w = η
∑
k

opk · iTpk and the output of a test pattern is a combination

of the learned patterns: ot = η
∑
k

opk · (iTpk · it).

Here lies the limitation of this tool because it can identify correctly a pattern
only if the learning vectors are orthogonal to each other, otherwise hybrid patters
will be learned and there will be no way to return at the original pattern in the
test phase. So the total number of learnable associations is strictly limited by
geometrical motivation and that makes this model improper to use in many real
application; for this reason some variations and improvements were proposed,
like the Hopfield Nets (see subsection 3.2.1).

3.2 Recurrent neural networks

The recurrent neural networks (RNN) are a family of networks designed for
processing sequential data, for instance in speech or handwriting recognition,
bioinformatics and time series.
It has a main characteristic: the sharing parameters across the network. This
allows a more general approach to data, because it can accept input of different
length and form; for example in speech recognition the input length is given by
the number of words in a sentence, that obviously changes from time to time;
moreover a particular word can appear in different positions of the sentences,
therefore a model aimed to this problem has to demonstrate flexibility in dealing
with inputs so varied. This feature is realized by the presence of backward
edges pointing to the hidden units, that make its graph cyclic and no more only
feedforward, so that each output is a function of the previous output computed:
h(t) = f(h(t− 1), x(t)), where the variable t not necessarily refers to time but
to a general step in the learning algorithm.

Figure 3.5: General RNN’s structure

According to which units backward edges link, different RNN can be created,
here some examples are presented:

23

• hidden to hidden: this structure strengthens the training so it is a very
powerful network, but also expensive in computational cost, due to its
interconnections. Moreover the hidden layer can return output at each
time step or only at the final time step

• output to hidden: this model is less effective than the previous one because
the task to catch all the necessary information and to transmit it to the
next node is assigned to the output units (instead of the hidden units,
as in the past case), but it is faster to train because each time step can
be computed independently from the others, so this results in a greater
parallelization of computation

• bidirectional: there are at least two hidden layers, one that propagates
the information forward in time and the other that propagates back the
information from next time step, so that at each iteration the output
can benefit from both past and future knowledge. This structure is very
useful in speech recognition because a single word can have more than
one meaning, so looking at the entire sentence is necessary in order to
understand which is the corrected one, hence it is important to look not
only at the words before the monitored word, but also at the subsequent
words.

• recursive: it is a generalization of RNN with a deep tree’s structure. The
advantage in using a recursive network instead of a traditional recurrent
one is the computational cost, if we consider an input of length l, the cost
is reduced from O(l) to O(log l), which also helps in dealing with long-term
dependencies. In general it is preferred to use a balanced binary tree but
other choices, depending on data, can be done. Actually the best decision
regarding the tree structure to use should be inferred by the network itself
but this solution often is not feasible. The recursive RNN is suitable for
processing data structures, like in natural language and computer vision.

24

Figure 3.6: Different types of RNNs

3.2.1 Hopfield Net

The Hopfield neural network owes its name to its inventor, John J. Hopfield,
who presented it in 1982.

Figure 3.7: Hopfield network’s structure

The network is composed by a single layer with a variable amount of recur-
rent neurons fully connected, that can take the binary values {0; 1} or {−1; 1}, it
is associated with an energy function E(x) as cost function to minimize and the
weight matrix is symmetrical with zero values on the diagonal. Its components
are updated during the training according to the following algorithm, given the
set of k vectors, representing the input patterns xk:

• wij =
∑
k

(2xki − 1)(2xkj − 1) for i 6= j if the input values are {0; 1}

• wij =
∑
k

xki x
k
j for i 6= j if the input values are {−1; 1}

25

After setting the weights, the output units are initialized with the test pattern:
yi(0) = xi. Then the following computation is iterated until the output con-

verges: yj(t+ 1) = f

(
xj +

∑
i

wijyi(t)

)
= f(ỹj) =

1 if ỹj > θj

yj(t+ 1) if ỹj = θj

0 if ỹj < θj
where f is a non-linear function with threshold θ. Then the output yj(t+ 1) is
spread through the network to all the other units.

The convergence of this process is verified by studying the energy function
of the network:

E(x) = −1

2
yWyT + θyT

It is a quadratic, non-increasing and bounded function, so the algorithm leads
the network to a local minimum, that is a stable equilibrium point, decreasing
its energy.
The Hopfield Nets are more powerful than the simple linear associator because
they don’t require the input patterns to be orthogonal, but only linearly inde-
pendent; it is estimated that this kind of network can memorize nearly 0.15N
different patterns, where N indicates the amount of neurons used.
For example it can be used to recognise digits or character, as shown in the next
example where the network can correctly identify and rebuild the pattern of the
digits proposed.

Figure 3.8: Example of applica-
tion with Hopfield network: in
the first column are shown the
digits proposed to the network
and in the second column there
are its answers

Moreover it is also suitable for classification; in this case inputs are elements
of the considered classes and the final output has to be compared with the
classes to decide which one it belongs to.

3.2.2 Boltzmann machines

The first Boltzmann machine was invented in 1985 by Geoffrey Hinton and Terry
Sejnowski [9].
It consists of a stochastic recurrent neural network based on an energy function,
so it is kind of a non-deterministic version of the Hopfield net. It is composed
by two types of units: visible v and hidden or latent h. The first ones fill in the
input layer and the second ones the hidden layer (in the simplest model there
is only one hidden layer but there exist more sophisticated models that arrange
the latent units in more than one layer, generating a deep neural network).

Typically this network receives n-dimensional binary random inputs x; on

26

Figure 3.9: General Boltzmann machine’s model

them the joint distribution is defined:

p(x) =
exp(−E(x))

P
,

where E(x) is the energy function and P is the partition function over the input
set that specifies the probability measure.
The energy function is given by:

E(x) = −xTWx− bTx,

where W is the weight matrix and b is the bias vector.
We can rewrite this formula according to the decomposition of visible and hidden
units:

E(x) = −vTRv − vTUh− hTSh− bT v − cTh.
The training process is driven by a simulated annealing algorithm, based on
maximum likelihood condition. This choice makes the updating weight depend-
ing only on the statistics of the linking neurons, so the learning rule is said to
be ”local”.
This procedure has a biological explanation, indeed it reflects that is more plau-
sible to think that a neuron cell is triggered by another cell directly connected
to it, rather than by a cell further located from it.

As previously said, this is only the original and simpler version of a Boltz-
mann machine, afterwards other models of these networks were presented. The
most used are briefly described below:

• Restricted Boltzmann machines
In the simplest version, it is structured with a layer of visible units and
other of hidden units, but this base model can be stacked to another to
generate a deeper network. The visible neurons are usually fully-connected
to the hidden ones, but there are no connections between units on the same
layer, thus it forms a bipartite undirected graph.
The joint probability function is equal to the previous case:

p(v, h) =
exp(−E(v, h))

P
,

and the energy function reduces to:

E(v, h) = −bT v − cTh− vTWh,

due to conditional independence of the units in the same layer.

27

• Deep belief networks
It has an hybrid model with undirected connections linking the first two
layers and directed connections among the remaining ones; hidden units
are arranged in multiple layers, fully-connected to the others but with no
inner connections; they usually receive binary inputs and the visible units
can deal with binary or real data.
Due to its complexity in training, it is not very used today but it still
remains an important model that gave significant results, like in the recog-
nition of handwritten digits on the MNIST dataset.

• Deep Boltzmann machines
It has an undirected graph, with several hidden layers and no intralayer
connections, it is bipartite with the odd and the even layers forming the
two groups, so they are mutually conditional independent.
This feature speeds up the training process because weights can be up-
dated in two steps, one for the odd layers and the second for the even
ones.

Figure 3.10: Other Boltzmann machines

3.3 Self-Organizing Map: Kohonen Maps

In 1984 Finnish Teuvo Kohonen presented the Kohonen self-organizing network;
it consists of a single-layer network, where neurons are fully-connected to the
input, output and each other; it learns with a competitive algorithm and it is
suitable for pattern recognition and clustering problems.
The units can be organized in line or, more frequently, in a grid and the distance
between them determines which weights update during the training phase as
shown in the previous image using different colours for the neurons.
In fact the competitive strategy that the network follows is characterized by the
search of the most similar neuron to the input sample presented; it represents
”the winner” and it is rewarded by updating its weight; but also the neurons
near it show a certain similarity to the input, so they deserve some rewards,
that will be lower but however sufficient to change their weights.
Specifically the interaction radius R is fixed; which defines how far a neuron
can affect the other, so this determines the neighborhood Ωi of every neuron i,
then it is computed the distance between the input x and every neuron with

the Euclidean norm: dist(x,w(i)) =

√√√√ n∑
j=1

(xj − w(i)
j)2; the i-th neuron that

28

minimizes the previous distance is selected and its value is updated by using:
w(i) = w(i) + η(x−w(i)). Also the weights of the i-th neighborhood have to be
changed and that can be done by following this rule:{

w(Ωi) = w(Ωi) + η
2 (x− w(Ωi)) if R = 1

w(Ωi) = w(Ωi) + ηe
−‖w(i)−w(Ωi)‖2

2σ2 if R > 1

In the first case the reward given is exactly half of the winner one and when
R > 1 to use a Gaussian function is preferred, which spreads the reward around
the winner with decreasing intensity.

Figure 3.11: Kohonen Maps’ structure

The training stops when no significant changes happens to the weights. At
this point, if we are considering a pattern recognition problem, each neuron rep-
resents an association among input and output and during testing new samples
will be identified with the most similar pattern; instead, if we want to create
clusters, the final result of the training is indeed the grouping of neurons in
classes representing each cluster, so when a new input is tested, the output will
be the class at which the most similar neuron belongs to.
This network is a good alternative to k-means because the best k value is not
fixed in advance but estimated via learning.

3.4 Convolutional Neural Networks

Convolutional neural networks (CNNs) are suitable for processing data struc-
tured in grid-form, like time series and images; for this reason I have chosen a
network of this type to develop my project.
The adjective ”convolutional” derives from the mathematical operation called
convolution, which is performed at least in one layer of a CNN in place of the
simple matrix multiplication. In general convolution is an operation between
two integrable functions defined on R and it can be expressed as:

z(t) = (f ∗ g)(t) =

∫ +∞

−∞
f(τ)g(t− τ)dτ,

29

where the first function f is known as input and it is a multidimensional array of
data, the second one g as kernel and it is a multidimensional array of parameters
and the result z as feature map.
For computational reasons we discretize the domain of the functions f and g,
now they have non-zero values only on the same finite set of points; we can
rewrite the previous formula as:

z(i, j) = (f ∗ g)(i, j) =
∑
m

∑
n

f(m,n)g(i−m, j − n).

Convolution is a symmetrical operation, so we can swap the indexes of the two
functions without changing the result. Sometimes this property is exploited to
implement a sort of different version of convolution, that is the cross-correlation
function:

z(i, j) = (f ∗ g)(i, j) =
∑
m

∑
n

f(i+m, j + n)g(m,n).

CNNs are based on three important ideas: sparse interactions, parameter shar-
ing and equivariance of representations.

• Sparse interactions
It means that connections among units are sparse thanks to a kernel
smaller than the entire input, which means that at each convolution the
kernel is applied to a small part of the input, so less parameters are needed
and the consequent memory and computational requirements are reduced.
In practice if we take into account an image as input, it is composed by
thousands or millions of pixels but only small groups of them depict mean-
ingful features, like edges or corners, so to highlight them it is needed a
kernel of a similar size.

• Parameter sharing
Like the name suggests, it consists of sharing parameters through the net-
work and using them multiple times instead of once, like happens in other
traditional neural networks. Also this technique contributes in reducing
the total amount of parameters necessary.

• Equivariance to translation
This property is derived directly from the previous characteristic and it
states that convolution is invariant to translation, so you can apply a trans-
lation then a convolution or vice versa and the result does not change.
This property is extremely important when processing time-series data or
images because a shift in time or space must not alter the skill to detect
relevant features, that actually most of the time occur more than once in
each input data.
On the contrary convolution is not invariant in respect to other transfor-
mations, like rotation or changes in scale of an image and other expedients
are used to get the invariance respect to these transformations.

Going deeper on the structure of a convolutional layer, we can discover that it
can be subdivided in three stages: convolution stage, detector stage and pooling
stage.

30

The first step consists in performing several convolution operations, called also
filters, in parallel to produce a set of linear activations, each one corresponding
to a feature extracted. In the detector phase a non-linear function, often ReLU,
is applied to each of the previous output. Finally it is used a pooling function
to determine the total output of the convolutional layer.
The pooling function returns an aggregate value of a given position and its
neighbourhood. This global value can be achieved computing the maximum,
the simple average, a weighted average or the L2 norm of the values considered.
The size of the neighbouring set, called kernel, is an arbitrary choice, usually it
takes form of a small square, like 3x3 or 4x4. Then it has to be determined the
stride, that is how many locations the algorithm have to skip in horizontal and
vertical direction before applying the next pooling function.
The output size depends on the input dimension N, the kernel size K and stride
S according to the equation: N−K

S + 1, so the choice of a big kernel or a stride
greater than one reduces the output size and consequently the computational
cost; for instance a stride equal to two nearly halves it, lightening the workload.
This is why a stride greater than one is commonly used.

Figure 3.12: Example of max-pooling function on 2x2 regions with stride = 2

In addition to this advantage, the pooling function helps to strengthen the
network’s ability to be invariant to translation and to achieve invariance towards
other transformations, like image rotation.
On the other hand the selection of big values for stride o kernel size causes
a drastic reduction in output size, limiting the number of convolutional layers
usable in the network, therefore also the number of detectable features. In
order to release this restriction, a zero-padding is applied to the input to enlarge
it, that consists of adding zeros on the input boundary; the quantity of zeros
determines the kind of padding used:

• Valid convolution: it is the ”basic” version with no zero-padding, so the
output pixels depends only by the same number of input pixels because
kernel considers no additional padding. With this choice the pixels near
the boundary are used less times than the others so their contribution to
the output is little.

• Same convolution: in this kind of padding enough zeros to keep the size
of the output equal to the size of the input are added. For instance, if we
use a kernel of size (k x k) and stride equal to one in every direction, we
have to add k − 1 zeros around the boundary. This choice increases the
use of pixels near the boundary respect to the previous case.

31

• Full convolution: is an extreme case that allows each pixel to be consid-
ered exactly k times, so the image with stride equal to one will be padded
with k − 1 zeros on each side.

(a) No zero-padding (b) Same convolution (c) Full convolution

Figure 3.13: Examples of different zero-padding, everyone with kernel 3x3 and
stride 1

Actually the most used zero-padding is a tradeoff between valid and same
convolution because it combines the advantage of a lower computation burden
with a less radical shrinking of input image.
Furthermore, the use of convolution instead of matrix multiplication allows the
network to deal with input of different sizes, because kernel can be applied as
many times as necessary to process the whole sample.
Now some examples of famous CNNs are presented.

3.4.1 LeNet-5

LeNet-5 [10] is a milestone in handwritten character recognition, actually it has
reached an accuracy of 99.2% on the MNIST dataset and it was implemented
by Yann LeCun in 1998.
Surprisingly it has a quite simple and not very deep structure, indeed it is
composed by only 7 layers, where convolution and average pooling take turns
three times, then it ends with a fully-connected layer and an output layer, that
returns the final response.

Figure 3.14: LeNet-5’s structure

32

LeNet-5 takes only B/W image of 32x32 pixels as input, it is multiplied
subsequently by 6, 16 and 120 kernels in the convolution layers, alternating
with two subsampling layers. The convolution layers use a kernel of size 5x5
with stride equal to one and for the average pooling, kernel of 2x2 with stride
equal to two. In the fifth layer each feature map is flattened to a single pixel,
next they are fully-connected to the next layer that connects to the final layer,
composed by 10 units, as the number of digits existing in our alphabet. The
softmax function as been selected as activation function in the last layer and
the hyperbolic tangent function for the previous layers.
One peculiarity of this network is that second and third layers are not fully-
connected to each other but links are carefully chosen, as described in Figure
3.15. The first six feature maps receive three consecutive inputs, the next six
four consecutive inputs, the next three four non-consecutive inputs and only the
last feature map works with all the outputs of the second layer.

Figure 3.15: Table of connections between second and third layer

This decision allows a minor number of connections, so a minor computa-
tional cost and also greater prediction accuracy because each unit receives a
different combination of inputs that implies the extraction of different features
and the improvement of the network’s ability to distinguish characters.
Finally, Euclidean radial basis function units are utilized in the last layer to
determine which digit the sample represents. They compute the distance be-
tween the output of the sixth layer and the parameter vectors, that take binary
values -1 or 1 and depict stylized representations of the digits. The character
that minimizes this distance will be the network’s answer at the recognition
question.
LeNet-5 was trained on a modified version of the MNIST in which the original
images, normalized to 20x20 pixels, were re-normalized to fit 28x28 pixels and
extended with background pixels to 32x32 images, then new images derived from
the previous ones were added and they were applied random distortions. It was
trained for 20 epochs with a dynamic learning rate, that decreases gradually
from 0.0005 to 0.00001 and the remarkable error rate of 0.8% was reached.

3.4.2 AlexNet

AlexNet [11] was created to compete in the ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC), a competition that requests to recognize 1000 classes
of different objects and in 2012, when Alex Krizhevsky entered AlexNet in the
challenge, it reached a top-5 error of 15,3%, more than ten percentage points
far from the runner-up.

AlexNet is composed by 8 layers, specifically 5 convolutional layers and 3

33

Figure 3.16: AlexNet’s architecture

fully-connected layers. It starts receiving 224x224 color images in RGB color
code (each color is called channel and they determine the depth of the input,
as drawn in Figure 3.16) and applying a convolution of kernel 11x11 with stride
4 on each channel. Then there is a sequence of convolutional layers with max
pooling function and eventually are placed fully-connected layers, integrated
with a dropout of probability 0.5 in order to reduce overfitting. The output
layer has 1000 neurons, as the number of different objects that the network can
detect. More details about AlexNet’s architecture can be pulled from Figure
3.16.
A ReLU function is used as activation function throughout the network and a
softmax function for the output layer. Pooling functions are designed to overlap
one another, employing a stride minor to the kernel size and this improves de-
tection accuracy of 0,4% and 0,3% respectively for top-1 and top-5 error rates.
The top-1 error rate is the fraction of how many correct labels do not match the
predicted labels and top-5 error rate is the fraction of how many correct labels
are not among the five labels considered most probable by the network.
As training set it was selected a partition of the ImageNet dataset, that orig-
inally contained over 15 millions labeled images belonging to approximately
22000 classes, therefore only the images including the categories present in the
ILSVRC were picked up; this resulted in a dataset of 1.2 million training images,
50.000 validation images and 150.000 testing images. Then they were resized
to the desired dimensions (256x256), from which random patches of dimension
224x224 are extracted, together with their horizontal reflection, in order to in-
crease the variability in the training set. Another technique to perform data
augmentation involves changing the intensity of the RGB channels of the sam-
pled patches.
At this point these patches were used for the training on two GPUs (that ex-
plains the split in two pipelines in the figure 3.16) to speed up the training time
and reduce the workload on each machine.
It was opted for a stochastic gradient descent with batch size of 128 examples,
momentum of 0.9, weight decay of 0.0005 and an initial learning rate of 0.01,
that decreases of an order of magnitude for three times.

34

After 90 epochs of training, AlexNet reached on the ILSVRC-2010 37,5% top-1
error rate and 17.0% top-5 error rate on the test set; a good result especially
compared to the best performance achieved during that challenge, respectively
47.1% and 28.2%.

3.4.3 VGG

VGG [12] is the result of the work of Karen Simonyan and Andrew Zisserman.
Nowadays it is known as VGG, taking its name from the lab Visual Geometry
Group at Oxford, where it was developed, but its original name was ConvNet
and it was designed for the ILSVRC-2014.
It is characterized by a series of convolutional layers with an increasing number
of filters in each of them, with kernel of small size (usually 3x3) and stride
equal to one. It is applied a zero-padding of one pixel to keep the resolution
constant. In addition, some convolutional layers are directly connected, others
are interspersed by a max-pooling layer with kernel 2x2 and stride equal to two.
After that there are three fully-connected layers, implemented with dropout
regularization of 0.5 for the first two layers, while the last one has 1000 units to
be able to detect all the categories present in the challenge and it uses softmax
function to determine the final output. All the previous layers are equipped
with ReLU as their activation function.
The network’s input is a color image of fixed-size 224x224, with its pixels re-
centered on the RGB mean values.
The desired partition of ImageNet dataset (namely only the images containing
the classes present in ILSVRC-2014 challenge) was used as training set, then
the images were scaled, cropped and submitted to random horizontal flip and
random RGB colour shift to augment variability. The network follows mini-
batch gradient descent algorithm, with batch size of 256, momentum of 0.9,
weight decay of 0.0005 and learning rate starting at 0.01, then decreased by a
factor of 10 for three times; it was trained for 74 epochs.
Actually there exist more than one VGG’s model, that mainly differ for the
number of hidden layers. More details can be found in the comprehensive outline
located in the next page (Figure 3.18). The deepest configuration (VGG-19,
Figure 3.17) achieved the best performance considering as test set the ILSVRC-
2012 dataset, with respectively top-1 and top-5 error rates of 25.5% and 8.0%.

Figure 3.17: VGG-19

35

Figure 3.18: VGG’s configurations

Some years later this project was resumed by Kaiming He, Xiangyu Zhang,
Shaoqing Ren, and Jian Sun to develop a different network, the Residual neural
network or, in short, ResNet [13].

3.4.4 YOLO

YOLO [14] stands for ”You Only Look Once” and it refers to the fact that this
CNN is able to detect objects directly from full images in one evaluation.
To actually succeed in implementing in a single neural network the object detec-
tion task was a remarkable result achieved in 2016 by Joseph Redmon, Santosh
Divvala, Ross Girshick and Ali Farhadi.
Before this achievement, the existing systems are used to employ a concatena-
tion of structures, where each one has a specific task to fulfill. For instance
we can include deformable parts models (DPM), that performs a classifier for
each detectable object on a sliding window, which means that at evenly spaced
regions of the whole image it evaluates the presence of a specific object; or R-
CNN, that generates potential bounding boxes in an image, then a classifier
is run on them to determine if an object is present or not, next the remain-
ing bounding boxes are refined, the duplicate detection are eliminated and the

36

boxes are rescored in respect to the other objects found in the image.
Anyway these pipelines are complex, slow and hard to optimize because they
are composed by several parts that have to be trained separately and this affects
the overall performance. Instead YOLO manages to generate bounding boxes
and to compute class probabilities for them, so its training reflects directly on
detection performance and this brings some benefits, like the speed in image
processing, so much that this system can claim real-time performance, or the
global reasoning, that improves the accuracy in detection and reduces back-
ground mistakes, or the generalization of the patterns learnt, that makes the
network more robust to custom dataset; whereas its weakness lies in the diffi-
culty of producing accurate object localization, in particular for small objects.
Nevertheless its precision can be enhanced with a specific fine tuning so, given
its superiority on many aspects over the current detection system, I have chosen
this neural network to conduct my project, specifically I have used the latest ver-
sion of YOLO and its ”reduced” version, that are called respectively YOLOv3
[15] and Tiny YOLOv3.
The complete code is available at https://github.com/pjreddie/darknet [16].

3.4.5 YOLOv3

Figure 3.19: Example of
residual blocks

The third version of YOLO strictly follows the novel-
ties and changes made in the second YOLO version,
called YOLO9000 [17], combined with a Residual net-
work’s structure [13].
Briefly, Residual network or ResNet has two main pe-
culiarities: residual blocks and shortcut connection.
Residual blocks are composed by two consecutive con-
volutional layers with ReLU activation function, fol-
lowed by a link to the next block and a residual layer
that sends the output to a deeper block. Usually it
skips the subsequent block and points to the next one,
as shown in the figure on the right.
This technique helps to avoid the problem of vanish-
ing gradients and to speed up the learning process.
For more details, you can read the report ”Deep resid-
ual learning for image recognition”[13].
Since object detection can be seen as built in two parts (objects classification
and localization), also YOLOv3 can be thought as a neural network composed
by two elements, each one responsible for a task.
This approach resulted in a very deep neural network, 106 layers, where the first
78 are devoted to features extraction to accomplish the classification task, and
the last 28 to identify the position of the objects.

37

That’s an overview of the whole structure.

Figure 3.20: YOLOv3’s architecture

At first sight we can notice from the above image that YOLOv3 is composed
mainly by convolutional layers, some pooling layers that upsample the image
and it returns detection at three different scales; but now let’s examine what all
this means and how it actually works.

Bounding box prediction

In order to identify bounding boxes, after an initial features extraction the
network receives an image of default size of 416x416 pixels (but we will see
that this resolution is not fixed and can be increased up to 832x832 with an
expedient), normalized it taking the top-left corner as origin, then divides it
into an (S x S) grid, where each cell is a square of 32x32 pixels, so we obtain
a 13x13 grid. Three anchor boxes (prior boxes of different shapes [18]) are
centered on each cell and employed as a guideline for drawing a bounding box
containing an object for each anchor.
Anchor boxes are rectangles of fixed dimension, centered on the current cell. In
Faster R-CNN [18] they are manually chosen, but according to the objects we
want to detect (small, thin, large, squared, ...), they can fail or at least make
more complex the task of producing precise bounding boxes if they do not fit
well the shape of our objects; in other words the Faster R-CNN anchor boxes
are inefficient to detect things of various shape and size. So there are basically
two options available: let the network learn to adjust boxes during training or
optimize them formerly using some machine learning algorithm. Since starting
with good priors helps the training in speed and accuracy, instead of learning
them during the process, the authors decided to optimize these choices running
a k-means clustering on the training set bounding boxes (also known as ground
truth boxes), with distance metric:

d(ground truth box, centroid box) = 1− IoU(ground truth box, centroid box),

38

where IoU stands for ”intersection over union” and it is the ratio between the
intersection of its arguments and the union of them.

Figure 3.21: IoU definition

With k = 9 the resulting anchor boxes, grouped into three different scale,
were: [(10, 13), (16, 30), (33, 23)], [(30, 61), (62, 45), (59, 119)], [(116, 90), (156,
198), (373, 326)]; that were quite different from the priors selected in Faster R-
CNN: (188, 111), (113, 114), (70, 92), (416, 229), (261, 284), (174, 332), (768,
437), (499, 501), (355, 715).
The neural network predicts 5 values for each bounding box: tx, ty, tw, th, to and
combining them with the position of the cell considered respect to the image
(cx, cy), the anchor dimensions pw, ph and the sigmoid function, the normalized
coordinates of the bounding box respect to the top-left corner of the image and
the ”objectness score” (a sort of probability of object presence in the bounding
box) are obtained:

bx = σ(tx) + cx by = σ(ty) + cy bw = pwe
tW bh = phe

th σ(to)

Figure 3.22: Bounding box coordinates

The objectness score σ(to) gives a measure of how well the predicted bound-
ing box fit the object so it should tend to 1. Then the network predicts con-
ditional class probabilities P(classi|object) for each class, that represent the
probability of that object of belonging to the class i; if we multiply each one
by the objectness score it results in a series of confidence scores, that give an
overall measure about the quality and trust of that prediction of being an object
of a specific class.
If the objects in images have been labeled, the objecteness score is computed

39

as P(object) ∗ IoU(bb, ground truth), where IoU(bb, ground truth) is the inter-
section over union between the predicted bounding box and the ground-truth
box and P(object) is equal to 1 if there is an object and 0 if there is not. If
the predicted bounding box overlaps the ground truth box more than any other
ones and more than a threshold chosen (0.5 in YOLOv3), then it is associated
to the ground truth box and according to the non-maximum suppression prin-
ciple all the other predictions that overlaps more than 0.5 with the considered
ground truth box are discarded, in order to have at most one prediction for
every ground truth box. Also predictions with IoU smaller than 0.5 with any
ground truth box are discarded.

Loss function

The total error is the sum of a localization error, a classification error and a
confidence error, computed over the three bounding box predicted for each of
the S2 cells.

• Localization error measures the distance between the predicted bounding
box and its ground truth box associated by calculating its mean squared
error (see subsection 2.4.2):

λcoord

S2∑
i=1

3∑
j=1

1objij
[
(xij − bxij)2 + (yij − byij)2

]
+

+λcoord

S2∑
i=1

3∑
j=1

1objij

[
(
√
wij −

√
bwij)

2 + (
√
hij −

√
bhij)

2
]
,

where 1objij is equal to 1 if there is an object in the j-th bounding box
of i-th cell, otherwise it is 0, λcoord is a parameter set to 5 that helps
model stability by increasing the importance of those bounding boxes that
contain an object and the square root is applied to both width and height
to diversify the weight of errors made on big or small boxes.

• Classification error computes the class probability error on each cell be-
longing to the ground truth box as binary cross-entropy (see subsection
2.4.2):

S2∑
i=1

1obji
∑

c∈classes

(pi(c)− p̂i(c))2

1obji is equal to 1 if in the cell i there is an object, pi(c) is the probability
of cell i of belonging to the class c as ground truth (so it will be 1 only in
one case and 0 for the other categories) and p̂i(c) is the conditional class
probability of class c in cell i.

• Confidence error quantifies the error due to objectness score using binary
cross-entropy, where the binary variable and considering both if the object
is detected or not:

S2∑
i=1

B∑
j=1

1objij (Cij − σ̂ij(to))2 + λnoobj

S2∑
i=1

B∑
j=1

1noobjij (Cij − σ̂ij(to))2

40

1objij , as previously, is equal to 1 if there is an object in cell i and bounding

box j, 0 otherwise, 1noobjij is defined in the opposite way, Cij is the area
of intersection between cell i and ground truth box, σ̂ij(to) is the object-
ness score of j-th bounding box of cell i and λnoobj = 0.5 is a parameter
that decreases the weight of cells without objects with the aim of model
stability.

So the complete loss function is:

λcoord

S2∑
i=1

B∑
j=1

1objij
[
(xij − bxij)2 + (yij − byij)2

]
+

+λcoord

S2∑
i=1

B∑
j=1

1objij

[
(
√
wij −

√
bwij)

2 + (
√
hij −

√
bhij)

2
]

+

+

S2∑
i=1

B∑
j=1

1objij (Cij − σ̂ij(to))2 + λnoobj

S2∑
i=1

B∑
j=1

1noobjij (Cij − σ̂ij(to))2+

+

S2∑
i=1

1obji
∑

c∈classes

(pi(c)− p̂i(c))2.

Multi-label classification

The choice to use the sigmoid function as classifier instead of the softmax (sub-
section 2.4.1), as commonly selected, is not random: the application of the
softmax function implies that classes are mutually exclusive but in real life an
object can belong to several categories (for instance: Border Collie, dog and
animal), so to build a more realistic model it is used a multi-label approach.
This method allows to merge multiple datasets that have different categories
or different levels of details (like a list of mammals and a list of dog breed)
and the tool used in this case is WordNet [19]. It is a lexical database which
organizes the English vocabulary in a directed graph: words are grouped into
set of synonyms (synsets), linked each other by semantic relations.
The datasets utilized in YOLOv3 are ImageNet [20] and COCO [21] and their
labels are merged in a tree according to WordNet hierarchy; in the next page is
present a piece of the resulting tree.
To perform classification over this new structure it is necessary to compute the
conditional probability of every node given its parent node, then to get the ab-
solute probability of a node we have to multiply all the conditional probabilities
existing on the path connecting it to the root. During training ground-truth
labels are propagated down the tree, so that a node gets the labels of its pre-
ceding nodes and during detection the tree is traversed from the root, following
the path with highest confidence at each split until some threshold (0.5 in the
default case) is reached. At this point it is returned the absolute probability
and the specific label of that node as final output.

41

Figure 3.23: Combination of COCO and ImageNet with WordNet

Multi-scale detection

One weakness of the first YOLO version was the struggle in detection of objects
of different size, especially the small ones, so in the next versions some changes
were introduced to improve its detection performance, namely the generation of
predictions at different scales and the use of feature pyramid concept [22].
The first detection is more suitable to identify the larger items because is made
only on the 13x13 grid that we have encountered before and it mainly detects
coarse-grained features, so at layer 79 after dividing the image in cells, the
feature pyramid structure is applied, that is a good component to strengthen
detection at different scales because it generates different sized feature maps at
multiple levels (that form the ”pyramid”), extracting information from each one
of them, which are used to determine more bounding boxes and to boost their
precision. This construction also involves a bottom-up pathway, a top-down
pathway and lateral connections.

• Bottom-up pathway: it consists of creating three feature maps at several
scales, each one halved respect to the previous. At every level is associated
an anchor of the anchor set assigned to work at this dimension, that
operates as described before for the bounding box prediction; then the
predicted boxes are passed up to the following level to enrich the structure
of details.

• Top-down pathway: it follows the opposite route, going from high to low

42

pyramid levels, doubling feature maps each time. If on one side this path
returns poor detection results, on the other these characteristics are spa-
tially very precise and their locations are sent to the lowest levels.

• Lateral connections: they allow to combine the richer feature maps re-
sulted in the bottom-up pathway with the more accurate feature maps
found in the top-down pathway

Then a final layer is queued to return bounding boxes, confidence scores and
class prediction for that scale.

Figure 3.24: Feature pyramid’s scheme

This process is iterated at layer 91 and 103, after upsampling the image of a
factor of 2 and concatenating it with an earlier layer (the 61-th for the second
detection phase and the 36-th for the third), hence a 26x26 cell grid for the
second detection scale and 52x52 cell grid for the third are obtained, which are
able to seek for finer details of the image and so to discover smaller objects.

The convolutional part

To perform features extraction, required for producing class prediction in the
following detection part of the network, it was designed a network taking a cue
from YOLO9000 and ResNet named Darknet-53 (because it has 53 convolutional
layers). It is structured according to subsequent residual blocks with, towards
the end, a global average layer [23], a fully-connected layer containing 1000 units
and an output layer that returns the prediction using the softmax function, as
we can observe from figure 3.25.

In convolutional layers leaky ReLU is used as activation function (see sub-
section 2.4.1):

φ(x) =

{
x if x > 0

0.1x otherwise

and batch normalization [24] is implemented, a regularization technique that
improves convergence, allowing to use greater learning rate, to be less careful
about initialization, and makes unnecessary the use of dropout.
Batch normalization applies on SGD algorithm (see subsection 2.4.3) and it

43

Figure 3.25: Structure of Darknet-53

consists of normalizing the input of every mini-batch to have mean of zero and
variance of one, so considering a layer with N units and the k-th mini-batch of
size m the resulting transformations are:

mean: µk =
1

m

m∑
i=1

xi

variance: σ2
k =

1

m

m∑
i=1

(xi − µk)2

normalization: x̂
(j)
i =

x
(j)
i − µ

(j)
k√

σ
2(j)
k + ε

, with j ∈ [1, N], i ∈ [1,m]

normalization transform: y
(j)
i = γ(j)x̂

(j)
i + β(j), with j ∈ [1, N], i ∈ [1,m]

where ε is a constant, arbitrarily small, added for numerical stability, while γ(j)

and β(j) are parameters that have to be learnt by the network, they scale and
shift the normalized value for the purpose of keeping the properties of the acti-
vation function, i.e. its linearity, derivability, etc.
When we deal with a convolutional layer we have to remember of its invariance
to translation and to ensure that our normalization does not alter this aspect,
so input are jointly transformed over all the locations present in a feature map
of size (p x q) using mini-batch of size (m x p x q) and the learnable parameters
γ(j) and β(j) are related to a single feature map.
Usually for classification in the last convolutional layer feature maps are flat-
tened into a vector, fed into the fully-connected layer and followed by the soft-
max layer that outputs the predicted class; although for detection is better to

44

take advantage of the features found in each map, so it is convenient to use a
global average pooling, that is a strategy consisting on the computation of the
average of each feature map and the transfer of the vector to the next layer. In
this way feature maps are enforced to match classes, enhancing correct classi-
fication; in addition the lack of parameters to optimize at this stage allows to
avoid overfitting, hence global average pooling can be seen as a regularizer.

Figure 3.26: Difference between traditional and global averaging approach

Training

YOLOv3 has a flexible structure thanks to its composition exclusively made
by convolutional and pooling layers, so it can adapt to images of different size
resizing its layout on the fly. This skill is exploited to learn to predict well
at various input resolution, therefore during training at every 10 iterations the
network changes its dimension picking at random a number between 320 and
832 and divisible by 32.
The network was submitted to two training: one for classification, over the
ImageNet dataset containing 1000 categories for 160 epochs, using an initial
learning rate of 0.1, decreasing of an order of magnitude for four times, weight
decay of 0.0005, momentum of 0.9 and data augmentation like random crops,
rotations and shifts in hue, saturation and exposure; the other for detection,
over the COCO dataset for 160 epochs, having a starting learning rate of 0.001
then reduced by a factor of 10 two times, weight decay of 0.0005, momentum
of 0.9 and data augmentation similar to the previous training. Then YOLOv3
reached mAP of 55.3% on COCO and mAP of 57.9% if the resolution is set to
608x608.

3.4.6 Tiny YOLOv3

Tiny YOLOv3 is basically a small version of YOLOv3: it works in the same
way, it alternates convolutional and maxpooling layers for the first 12 layers, that
represent the classification part, then detection are produced at two different
scale using the feature pyramid model (so in this case the anchors needed are 6,
no more 9) and after the first detection scale the feature maps are concatenated

45

to the outputs of the previous layers (13, 19 and 8), for a total of 23 layers.
Its slenderness makes it very fast in processing images of whatever size but at
the expense of detection accuracy, thus it requires a fine-tuning for a practical
application.

Figure 3.27: Tiny YOLOv3 architecture

3.5 Generative Adversarial Networks

Generative adversarial networks (GANs) are the last typology of networks that
we will investigate in this work. They were presented in 2004 by Ian Goodfellow
and his researchers and they have a very interesting aim: to recreate artificially
data similar to the inputs that were showed to during the training [25].
In order to accomplish this task, GANs are composed by two neural networks,
named generator and discriminator, that represent the opposing players of a
game, in which the generator try to deceive the discriminator by creating false
data and presenting to it as genuine. The ”game” stops when the generator
learns so well to replicate false data that the discriminator is no more able to
distinguish them from the true data.
More in detail, it consists of a zero-sum game where generator and discriminator
are trained on the dataset Z, that follows a certain distribution g(zi, θ1), then the
generator creates new samples xi according to the input distribution g(z, θ1),
next true and false data ki are randomly showed to the discriminator and it
produces the probability value d(ki, θ2) that ki is truly sampled from the training
set instead of being artificially drawn by the adversarial network.
The function v(θ1, θ2) determines the payoff of the discriminator, its opposite
−v(θ1, θ2) the payoff of the generator. Both network try to maximize their payoff

46

until convergence, that happen when the fake samples are indistinguishable from
the real ones for the discriminator, so it return 0.5 as probability of all data.
At this point the objective has been reached, thus the discriminator can be
discarded and only the generator network is used for further works.
The most common payoff function used is:

v(θ1, θ2) = Ek∼preal data log d(k, θ2) + Ek∼pfake data log(1− d(k, θ2)),

but generally it is difficult or even impossible to maximize if v(θ1, θ2) is not con-
vex in θ1 because the convergence process can be unstable and lead to describe
circular orbit rather than reach an equilibrium point.
A better formulation of the GAN game to improve its convergence requires that
the generator aims to increase the log probability that the discriminator makes
an erroneous prediction. The motivation is heuristic: it prevents the generator’s
cost function in occurring into neuron saturation, even when the discriminator
correctly rejects fake samples.
Another approach that gives good results consists in breaking the generation
process into steps, more and more detailed, and training the networks on sam-
ples that follow a conditional distribution p(x|y).
The choice of proper architecture, hyper-parameters and the use of dropout
remain fundamental; for instance very good models are the DCGAN (deep con-
volutional GAN) and LAPGAN (Laplacian pyramid GAN), as can we see in the
example below.

Figure 3.28: Example of DCGAN model used to generate cats’ fake images

This kind of networks have huge potential and are often used to replicate im-
ages, videos or files audio in several fields, like astronomy, autonomous-driving
system and video games.
Unfortunately this potentiality has not always been employed for positive scopes,
in fact it can be misused to generate deep fake to incriminate, to discredit or to
publicly shame with pornographic files people, often famous or with public of-
fices; for instance in a now popular video you can hear the ex-president of United
States Barack Obama to say sentences that actually he has never pronounced
[26].

47

Chapter 4

My project

The objective of my work is to produce an artificial intelligence tool able to
detect apples from images of apple trees, therefore I have followed these steps:

• I have chosen a suitable pre-trained neural network

• I have acquired pictures from an orchard to create my test set

• I have tested my dataset on the neural network and produced statistics to
determine what is the starting point of my project

• I have created a training set to fine-tune my model and compared the
results with the preceding ones

• I have performed a grid-search with cross-validation to optimize model’s
hyper-parameters

• I have fine-tuned the model with my new configuration on the previous
training set and presented the final results.

As I said before, I have selected YOLOv3 and Tiny YOLOv3 as pre-trained
neural networks suited for my project for their advantages in terms of complete-
ness on a single device, flexibility to different image sizes, speed processing and
good initial precision. YOLOv3 is based on Darknet, an open source neural
network framework written in C and CUDA, so it can support GPU computa-
tion; I run it on a GPU NVIDIA Quadro M2200, that was provided by Nazari
Automazioni s.r.l., the company where I have done an internship to conduct
this work. I executed the program on a Linux system by using the command
line interface.

4.1 Datasets

To test and re-train these model firstly I had to build datasets suitable for my
objective, i.e. to collect pictures containing apples, preferably on trees.

48

4.1.1 Training set and validation set

Initially I have retrieved from the Open Images v4 dataset [27] only the pictures
containing apples labeled individually thank to a toolkit developed by two re-
searchers of Politecnico di Torino: Vittorio Mazzia and Angelo Tartaglia [28].
Then I checked the labelling work made on these images and I found some mis-
takes (for instance peaches, cherries or plums mislabeled as apples) and stylized
apples that are quite different from real fruit (like drawn shapes or the Apple’s
brand), so I removed wrong labels and misleading images with apple depictions.
The remaining pictures formed a training set with 536 samples and a validation
set with 23 samples that I used only for the first fine-tuning on YOLOv3.
Next I added to these sets images derived from the same dataset which have
multiple apples classified as a unique fruit and I corrected their labelling with
LabelImg [29] to have a single apple correspond to each bounding box. Thus I
added 313 samples to the training set and 20 samples to the validation set.
Later I also retrieved images from COCO dataset [21], selected those contain-
ing apple as label, checked and corrected mislabeling mistakes and eliminated
inappropriate pictures, so I obtained 379 training samples and 190 validation
samples. Adding up all the previous samples I achieved a training set of 1228
images and a validation set of 233 images that I employed for the rest of my
project.

4.1.2 Test set

Since my object is to build a model able to identify apples on trees, it is necessary
to test it on images portraying this situation so in a sunny morning of last
summer the CEO Luca Nazari, my colleague Andrea Maccagno and I went on
an orchard in the countryside near Cuneo to acquire photographs. We used as
camera a Canon EOS 60D and we took 617 pictures in total at a resolution of
5184x3456, at different heights from the ground and at a distance of about one
meter from the nearest tree trunk depicted. The apple varieties portrayed are:
Gala, Crimson Crisp, Golden Delicious, Fuji Raku-Raku and Red Chief.

49

Figure 4.1: Some examples of pictures taken

Then I labeled all the images with LabelImg, neglecting apples on the back-
ground.

4.2 Metrics

In order to determine the quality of a model we have to state the measure in
respect to which it can be considered a good or poor algorithm. In classification
problems are usually used confusion matrix, accuracy, precision, recall and ROC
curve but we are dealing with an object detection problem, that is a bit more
complex than a simple classification task, so we have to reassess these metrics:

• True Positive (TP): is an object belonging to the positive category that is
correctly classified. In my case, apples correctly detected as apples.

• False Positive (FP): is an object misclassified as positive but it is false. It
happens when the neural network mistakes a different object for an apple.

• False Negative (FN): is an object misclassified as negative when it is pos-
itive. It represents all the apples not detected.

These measures form the confusion matrix with True Negative (TN), that
is an object correctly classified to its negative class, but in our case it does not
mean anything because it would include the ”not-apple” actually not found, so
I kept only the previous measures, not considering TN and its derived metrics
accuracy and ROC curve.
A necessary measure to determine if a detection is correct or wrong is the
Intersection over Union (IoU), that we have already encountered in YOLO’s
description. It computes the ratio between the overlapping region and the union
region of the predicted box and a ground-truth box and if this ratio is greater or

50

equal to a threshold then the predicted box is classified as TP if the two boxes
have the same label and as FP if labels do not match or if the ratio is lower
than the threshold.
Typically the threshold is fixed to 0.5 but it can be increased to a higher value
(often 0.75) if we want that only predicted boxes that overlap more strictly
the ground truth boxes are considered as TP. FN can be simply obtained by
subtracting TP from the total number of ground-truth boxes.
Now that we have defined the basic metrics TP, FP and FN, we can derive other
metrics from them.

• Precision: it evaluates how accurate are predictions with the ratio between

correct detection and all detection:
TP

TP + FP

• Recall (or Sensitivity): it represents how good the classifier is to find

positives, i.e. correct detections over all ground-truth boxes:
TP

TP + FN

• F1 score: it computes the harmonic mean of precision and recall to give
a more general idea about the accuracy of the model in producing correct

detections:
2 ∗ Precision ∗Recall
Precision+Recall

In object detection the ROC curve is replaced by the PR curve, where PR
stands for Precision-Recall. In the plot are drawn consecutively Precision and
Recall of each prediction over all the predictions considered up to that point,
so the curve goes up if the prediction is correct or it goes down if it is wrong.
Therefore the plot is characterized by a zig-zag pattern with Recall on x-axis
and Precision on y-axis. This graph is useful to compute the Average Precision
(AV) because it is represented by the area under the PR curve. Since it would
be too much complex to estimate the actual area with an integral, the curve
it is approximated into a piecewise constant function so that the calculation is
reduced to a simple sum of rectangles.

Figure 4.2: Example of PR curve with its approximation

Finally the mean Average Precision or mAP represents the mean of AP
computed over all the classes and it is the most used measure for assessing
the performance of an object detection model. Since my objective is to detect
only one class (apple), AP and mAP coincide. I used the code available at
https://github.com/Cartucho/mAP [30] to get the PR curve plot and mAP
value.

51

4.3 Results on YOLOv3

Firstly I processed my test set on YOLOv3. If we consider the complexity of
the task assigned due to the presence of foliage and branches that can partially
hide apples, the tendency of the fruits to grow close each other that complicates
individually detection, the contrast between sun brightness and foliage shade
that can greatly vary the hue between near pixels and make green apples similar
to leaves or red and yellow ones to oranges and the arbitrariness of angles from
which the photos have been taken can cut out partial apples or to highlight some
of the previous findings, the results are quite good, especially remembering that
this is a general-purpose network, so afterwards it can be forced to focus only
on apples, indeed there is considerable room for improvement.
I found three situations looking at the predictions returned by YOLOv3:

• In the first case is perceptible the potential of this neural network, it
can detect apples of different sizes, different colors, in different lighting
conditions and partially hidden (Figure 6.1).

• To the second case belong pictures with many errors, that are composed
almost entirely by the misclassification of apple as orange (Figure 6.2).

• In the third case are present pictures with few or none detection found
and this shows the current limitation of YOLOv3 in a real application and
the need of a new training (Figure 6.3).

Now let’s investigate more in detail these results. I have marked 29356
apples in my test set, YOLOv3 has identified 3960 apples, of which 3641 are
true positive respect to IoU ≥ 0.5 and the remaining 319 are false positive.
There are other 283 false positive, that are mainly formed by oranges. Then
false negatives are 25715, precision 0.858, recall 0.124, F1 score 0.217 and mAP
12.09%.

Ground truth 29356
TP 3641
FP 602
FN 25715

Precision 0.858
Recall 0.124

F1 Score 0.217
mAP 12.09%

Figure 4.3: Overall results of YOLOv3

52

Regarding time performance YOLOv3 achieves remarkable outcomes; in fact
it can process each image in 5/6 seconds and produce the prediction in just over
one tenth of a second, precisely the mean prediction time is 0.12 seconds.

Figure 4.4: Prediction time with YOLOv3

4.3.1 Confidence score set to 0.25

Later I lowered the threshold of confidence score, that determines what is the
minimum value accepted to define a prediction, from 0.5 to 0.25. By doing this
change I expected an increase in the amount of apples found but also in wrong
detection, so I wanted to understand which one of these two aspects would
prevail to determine if the choice of a lower threshold can be useful in order to
have a better performance.
Comparing pictures with original threshold to those with threshold 0.25, we can
note several situations:

• Pictures with almost only apples detected increase their number of apples
identified (Figure 6.4 (a))

• Pictures with many misclassified apples worsen their results introducing
new wrong predictions (Figure 6.4 (b))

• Pictures with few wrong detection either emphasize this characteristic or
keep the ratio between correct and wrong predictions almost constant by
raising them proportionally (Figure 6.4 (c))

However the overall outcome is positive because the mAP grows from 12.09%
to 17,10% and in general all the other statistics do so, except for precision that
suffers from the increment of false positives.

53

Ground truth 29356
TP 5333
FP 1919
FN 24023

Precision 0.735
Recall 0.182

F1 Score 0.291
mAP 17.10%

Figure 4.5: Overall results of YOLOv3 with confidence 0.25

The performance in time is almost equal to that of the previous case, nearly
6 seconds to process the image through the network and on average 0.12 seconds
to output predictions.

Figure 4.6: Prediction time of YOLOv3 with threshold of confidence score 0.25

4.3.2 Fine-tuning YOLOv3

Now that we know what is the starting point of YOLOv3, we can try to im-
prove its achievements with a fine-tuning, so I followed the advice provided at

54

https://github.com/AlexeyAB/darknet#yolo-v3-and-yolo-v2-for-windows-and-linux
[31]. Therefore I set class to one, number of filters for detection to 18 (accord-
ing to the presence of a unique class), height and width to 608 because higher
resolution allows more precision, batch size equal to 64 without subdivision due
to resources constraints and I used the pre-trained weights of YOLOv3.

First fine-tuning

I remind that the first training set was retrieved from Open Images v4 dataset,
dividing it in 536 samples for the actual training set and 23 samples for the
validation set. I trained YOLOv3 for 4000 iterations, that corresponds to almost
458 epochs, saving weights at every 200 iterations after the 2000-th iteration
and it took nearly 34 hours to complete the training.

In this graph average loss
errors arisen during fine-
tuning are drawn. These
values are computed ac-
cording to the formula:
average loss error(i + 1) =
0.9 * average loss error(i)
+ 0.1 * loss error(i + 1),
where i refers to the i-th
iteration. Error values de-
crease quickly until they
stabilize around 0.4.

Here is presented in detail
the trend of average loss
errors in the last 2000 iter-
ations and its fluctuating
behavior is clear.

Table 4.1: Behaviour of the average loss error during fine-tuning

Nevertheless the training went well and average loss errors achieved small
values; results are not much satisfying, probably because the training set was
not sufficient for this task, indeed false positives are reduced significantly but
true positives are not enough to raise the general statistics and the best result
is achieved at iteration 2800 with 12,16% as mAP, considering confidence score
down to 0.25. Overall results are summarized in the following page.

55

Ground truth 29356
TP 3619
FP 183
FN 25737

Precision 0.952
Recall 0.123

F1 Score 0.218
mAP 12.16%

Figure 4.7: General results after first fine-tuning on YOLOv3

Since the network is forced to detect only apples, pictures that contained
predictions of oranges now often show predictions of apples (Figure 6.6). As
regard other pictures, there are some with a good amount of apples detected
(Figure 6.5) and others with little detection (Figure 6.7).

Second fine-tuning

In order to improve detection performance I attempted a second fine-tuning with
a larger training, thus I added to the previous dataset new samples re-labeled
by myself coming from Open Images v4 dataset and some selected pictures
from COCO dataset, for a total of 1228 samples in the training set and 233
samples in the validation set. I kept the configuration script unchanged, having
already modified it for the first fine-tuning. I fine tuned YOLOv3 with its
pre-trained weights for 4000 iterations, that corresponds to nearly 175 epochs,
saving weights at every 200 iterations after the 2000-th. It took almost 35 hours
to execute the full fine-tuning.

56

Since the dataset used is larger and labeled in a more refined way, the task of
predicting all the existing apples is more difficult and this aspect reflects on
greater average loss errors, that in the end converged over 2.

(a) (b)

Figure 4.8: Plot of average loss error (a) during the whole fine-tuning and (b)
between iteration 2000 and 4000

Greater average loss errors do not necessarily mean worse detection perfor-
mance, indeed with fine-tuned weights YOLOv3 reached better results than the
previous cases with over than 7000 apples correctly detected and little more
than 200 false positives with a consequent mAP of 24.55%, achieved by weights
returned at iteration 3400 and threshold on confidence score of 0.25.

Figure 4.9: Trend of mAP testing weights produced during fine-tuning

I have placed the same pictures I have shown for the first fine-tuning in
the last chapter so that they can be compared to check the bounding boxes
predicted (Figure 6.8). It is clear from the statistics below the enhancement
in detection performance. Also pictures highlight this change, especially those
ones with good results since the beginning and there is a little improvement in
photos that had little detection.

57

Ground truth 29356
TP 7272
FP 239
FN 22084

Precision 0.968
Recall 0.248

F1 Score 0.394
mAP 24.55%

Figure 4.10: Results of the second fine-tuning on YOLOv3

4.4 Results on Tiny YOLOv3

Later I repeated my analysis on Tiny YOLOv3. Since it is a small version of
YOLOv3 I expected faster prediction rate but also worst precision in object
detection and it is exactly what happened. It took about 3 seconds to process
an image of my test set through the network (half of the time taken by YOLOv3)
and 0.016 seconds on average to produce predictions (almost one tenth respect
to YOLOv3).

(a) threshold on confidence score: 0.5

58

(b) threshold on confidence score: 0.25

Figure 4.11: Prediction time with Tiny YOLOv3

Unfortunately this speed time is at the expense of detection rate, indeed it
is not uncommon to find pictures with no detection at all and it is difficult to
have pictures with many apples identified, so mAP is only 1.06% and 2.77% for
the lowered threshold on confidence score.

Ground truth 29356
TP 317
FP 90
FN 29039

Precision 0.779
Recall 0.011

F1 Score 0.021
mAP 1.06%

Figure 4.12: Results with Tiny YOLOv3 and threshold 0.5

59

Ground truth 29356
TP 848
FP 514
FN 28508

Precision 0.623
Recall 0.029

F1 Score 0.055
mAP 2.77%

Figure 4.13: Results with Tiny YOLOv3 and threshold 0.25

I have displayed in chapter 6 the same pictures used previously to show
the poor results achieved by Tiny YOLOv3 also with the lowered threshold on
confidence score of 0.25 on images that gave good results with YOLOv3 (Figure
6.9). Getting less predicted objects means that there are less misclassified apples
also on those pictures that presented many wrong detection of oranges (Figure
6.10).

4.4.1 Fine-tuning Tiny YOLOv3

Given the great performance in time and the much room for improvement, a fine-
tuning on Tiny YOLOv3 is in order, so in the configuration file I set the number
of classes to one, filter before detection to 18, batch size of 64, mini-batch size
of 8 and image resolution to 608x608. Then I fine-tuned my network with its
pre-trained weights for 4000 iterations directly on the last dataset that I created
for the second fine-tuning on YOLOv3 (that one composed by images coming
from Open Images v4 and COCO), I saved weights at every 200 iterations in
the second half of re-training and it took 1.5 hours to finish the fine-tuning.
The result of this process was very satisfying because I reached, at iteration
3400 and considering confidence score of at least 0.25, a mAP of 22.62%, a rate
similar to that achieved by YOLOv3 after the second fine-tuning (24.55%), but
using a not very deep neural network and that took less than 2 hours to re-train.

60

Figure 4.14: Fine-tuning loss error and mAP

Despite Tiny YOLOv3 succeeding in detecting correctly a greater number of
apples in respect to the best result achieved by YOLOv3, identifying 7351 true
positives; the overall output is worst due to the prediction of several bounding
boxes not fitting well apples and the misclassification of many leaves as fruits,
that resulted in 2954 false positives, causing a reduction in precision, F1 score
and mAP.

61

Ground truth 29356
TP 7351
FP 2954
FN 22005

Precision 0.713
Recall 0.250

F1 Score 0.371
mAP 22.62%

Figure 4.15: General statistics after fine-tuning on Tiny YOLOv3

The improvement in object detection is also visible on images put in the
dedicated chapter, not only on pictures where apples have been easily detectable
since the beginning (Figure 6.11 (a)) but especially on those with many fake
oranges classified (Figure 6.11 (b)) or those with few or none object detected in
the preceding analysis (Figure 6.11 (c)).

4.4.2 Grid search on Tiny YOLOv3

Given the little amount of time spent to execute the fine-tuning on Tiny YOLOv3,
it is possible to optimize the hyper-parameters of this neural network with a grid
search.
Grid search is a process that allows to compare several values of hyper-parameters
and to choose the best configuration according to a selected measure. The values
to be tested are picked principally in two ways:

• manually: the developer selects for every hyper-parameter the values that
he wants to be tested

• randomly: the developer provides a likely probability distribution for each
hyper-parameter and the computer sorts out the values from those distri-
butions to be tested

The second method usually outperform the first one but only if the probability
distributions are carefully selected, so I preferred to choose manually the values
to evaluate.
After that I had to decide if to optimize an hyper-parameter at a time or to test
every possible combination of values. The second option gives better results but
it is very time consuming so, unless the values to test are few or the available
resources are big, it is recommended to optimize parameters one by one and
so I did. In addition grid search is often combined with cross-validation to get
a more general evaluation of performance, so I implemented a cross-validation
k-fold with k = 5, training for 4000 iterations over the union of training and
validation set that I used before and I have chosen as performance measure the
average over the last 1000 average loss errors of the training.
Now I am going to reproduce the steps I followed to accomplish my grid search.

Learning rate

The most important hyper-parameter of a neural network is the learning rate
so I started from here to optimize. In the configuration script learning rate

62

starts at 0.001 and I decided to evaluate also [0.1, 0.01, 0.002, 0.0005]. During
re-training with learning rate = 0.1 the loss error, after an initial drop, increased
until it overflowed, so the process could not converge and that value had to be
removed.

Learning rate Mean of average loss error
0.01 4.014
0.002 4.302
0.001 4.524
0.0005 4.803

Figure 4.16: Behaviour of average loss error and table of its mean over the last
1000 iterations

From the plot and table above is well visible that the best performance is
reached by setting the learning rate to 0.01. Then I examined two values around
it: 0.005 and 0.02 to check if they can achieve lower error.
The result is graphically less clear this time because the paths of average loss
error overlap each other and a numerical measure is required to determine which
value of learning rate is the best to use for further optimization. According to
the mean of average loss error on the last quarter of fine-tuning learning rate
set to 0.01 is still the best choice, so I opted for it.

63

Learning rate Mean of average loss error
0.02 4.075
0.01 4.014
0.005 4.125

Figure 4.17: Trend of average loss error during fine-tuning and its mean on the
last 1000 iterations

Momentum

Another hyperparameter that comes into play in the backpropagation algorithm
is the momentum. It can take values between [0; 1] and in Tiny YOLOv3 it is
equal to 0.9, thus I tested [0.2, 0.4, 0.6, 0.8].

64

Momentum Mean of average loss error
0.9 4.014
0.8 4.121
0.6 4.240
0.4 4.318
0.2 4.444

Figure 4.18: Trend of average loss error and its mean on the last quarter of
re-training changing momentum

As we can note from the second graph in 4.18, the usage of momentum = 0.9
gives slightly better performances and the computation of means confirms this
observation. Then I also checked momentum equal to 0.95 but the mean value of
errors is 4.095, greater than the one got by momentum = 0.9, so this parameter
can be considered as already optimal and I kept momentum unchanged.

65

Momentum Mean on average loss error
0.95 4.095
0.9 4.014
0.8 4.121

Figure 4.19: Trend of average loss error varying momentum

Decay

To cost function is added a weight decay, a penalty term that discourages the
network to choose large values for weights in order to avoid overfitting. This
term depends on decay, that usually has a very low value, 0.0005 in our case
and I decided to evaluate Tiny YOLOv3 with decay equal to 0.001 and 0.0001.
The plots of average loss error achieved during training are quite confusing but
according to the mean computed on the last 1000 iterations the default decay
reaches lower error values so I kept decay = 0.0005 without any further tests.

66

Decay Mean on average loss error
0.001 4.074
0.0005 4.014
0.0001 4.065

Figure 4.20: Development of average loss error varying decay and its mean on
last 1000 iterations

Burn in

As we have seen before in the description of YOLO and other CNN, it is com-
mon to start training with a greater learning rate and afterwards to reduce it.
However it has been noted empirically that if you choose a lower learning rate
for a short period of time at the beginning of training then its speed rises, with
a consequent increase in detection rate. The period and magnitude of learning
rate reduction is driven by the burn in hyper-parameter.
In Tiny YOLOv3 burn in is set to 1000 and it states that for the first 1000 (or

67

burn in value) iterations the learning rate is given by:

learning rate ∗
(
current iteration

burn in

)4

I tested values 500, 1200 and 1500 but without any positive result so I main-
tained burn in equal to 1000.

Burn In Mean on average loss error
1500 4.077
1200 4.066
1000 4.014
500 4.060

Figure 4.21: Evolution of average loss error with different burn in and its mean
on last 1000 iterations

Resolution

Height and width in the configuration file represent the maximal resolution at
which an input image can be resized during training. I have already introduced

68

a sort of optimization by increasing the default size from 416x416 to 608x608, so
I checked that my guess was right and I also tested size 640x640, 704x704 and
832x832. With the highest resolution I had an ”out of memory” error therefore
I discarded it.

Resolution Mean of average loss error
704x704 4.075
640x640 4.108
608x608 4.014
416x416 4.050

Figure 4.22: Trend of average loss error using several resolutions and its mean
on last 1000 iterations

The plot of error development is very chaotic but the mean values reveal
that the best resolution between those evaluated is just 608x608.

Subdivision

The subdivision parameter allows to define the size of mini-batches and usually a
smaller value gives better results, even though this means to increase, sometimes

69

significantly, the computational cost. Since 8 is already the lowest possible value,
I did not expect to achieve better performance using 16 or 32 but I verified it.

Subdivision Mean of average loss error
32 4.392
16 4.224
8 4.014

Figure 4.23: Trend of average loss error with different mini-batch size and its
mean on the last quarter of training

It is quite clear already from the graph above, that the choice of subdivision
equal to 8 is the best available so I kept it.

4.4.3 Fine-tuning after grid-search

I fine-tuned Tiny YOLOv3 with the new configuration obtained by grid-search
for 4000 iterations but this time saving weights every 200 iterations between
2000-3000 and then every 100 iterations. I reached the highest mAP of 26.23%
at iteration 3400 with threshold on confidence score 0.25 and this result is better
than the previous mAP by almost 4 percentage points.

70

Ground truth 29356
TP 8658
FP 4475
FN 20698

Precision 0.659
Recall 0.295

F1 Score 0.408
mAP 26.23%

Figure 4.24: Overall results after grid-search

In the last chapter I have listed some pictures already seen to show the final
bounding boxes predicted 6.12. Considering the statistics above it can be noted
that true positives are grown so a greater amount of apples was detected but
also false positives are increased significantly, partly due to bounding boxes not
matching well ground-truth, partly for completely wrong classification of leaves
as apples. In order to reduce false positives I think it would be a good idea to
create training and validation set more appropriate to the task to carry out, i.e.
composed only by pictures portraying apples on trees made in a real orchard.

4.4.4 An oddity

In the description of YOLO’s benefits I mentioned its capability to generalize
the patterns learnt in order to allow the detection of the same object in several
light and exposure conditions or from different points of view, allowing to get an

71

overall higher mAP on different datasets. An example of YOLO robustness can
be highlighted by changing the format of the images in the test set. For all my
previous analysis I used images in PNG format, but if I convert them into JPEG
format I can reach better performance in mAP both with the original weights
of Tiny YOLOv3 and with those returned by its fine-tuning, even if every pixel
of the new pictures differs from its corresponding pixel in the original photo.

Ground truth 29356
TP 2292
FP 497
FN 27064

Precision 0.8218
Recall 0.0781

F1 Score 0.1426
mAP 7.46%

Figure 4.25: Overall results on original Tiny YOLOv3 with threshold 0.25 on
JPEG images

72

Ground truth 29356
TP 7746
FP 3521
FN 21610

Precision 0.6875
Recall 0.2639

F1 Score 0.3814
mAP 23.58%

Figure 4.26: Overall results on fine-tuned Tiny YOLOv3 with JPEG images

These results can be justified by considering that the neural network was
trained and fine-tuned on JPEG images, so probably the patterns learnt are
more easily identifiable on pictures of the same type rather than on different
formats.
At the end of this thesis I listed some pictures returned by using the original
weights 6.13 and fine-tuned weights 6.14 of Tiny YOLOv3 using threshold on
confidence score of 0.25. The apples detected in PNG and JPEG images are not
exactly the same but globally predictions are similar.

73

Chapter 5

Conclusions

In this work I have examined the problem of apples detection from images taken
in a real orchard using an innovative and high-performing CNN. The initial
results showed the difficulty of accomplishing this task by the original YOLOv3
and Tiny YOLOv3 and the necessity of a specific fine-tuning of them in order to
get better values of mAP. In summary the main outcomes achieved by YOLOv3
and Tiny YOLOv3, setting always minimum confidence score at 0.25, were:

Original
YOLOv3

After first fine-
tuning

After second
fine-tuning

Ground truth 29356 29356 29356

TP 5333 3619 7272

FP 1919 183 239

FN 24023 25737 22084

Precision 0.735 0.952 0.968

Recall 0.182 0.123 0.248

F1 Score 0.291 0.218 0.394

mAP 17.10% 12.66% 24.55%

Figure 5.1: Recap on YOLOv3 statistics

Original Tiny
YOLOv3

After fine-
tuning

After grid-
search

Ground truth 29356 29356 29356

TP 848 7351 8658

FP 514 2954 4475

FN 28508 22005 20698

Precision 0.623 0.713 0.659

Recall 0.029 0.250 0.295

F1 Score 0.055 0.371 0.408

mAP 2.77% 22.62% 26.23%

Figure 5.2: Recap on Tiny YOLOv3 statistics

74

The improvements introduced by fine-tuning are remarkable, in particular
for the Tiny YOLOv3, that reached higher average precision than the com-
plete YOLOv3 and in a time significantly smaller, therefore I think that Tiny
YOLOv3 is more suitable for practical applications. Certainly there is still large
room for improvement because a mAP of 26.23% is not optimal but considering
that the test set is made by pictures taken outside in a real orchard, so with all
the illumination problems, the big amount of apples to detect, their position not
always clearly visible and that the training set is composed by only few pictures
of this kind and the greater part of pictures portrays a little amount of apples
well distinguishable in a inner space, hence I think the results can be reassessed
as pretty good.

The next step in detecting apples on images should be definitely the collec-
tion of new pictures of apple trees in different periods of the day and of the
year to use them as training set. This approach should help the neural network
to have a more complete knowledge about how apples look like on a tree in
different light conditions and at different stage of ripening.
Then a possible future application of this neural network could be the integra-
tion in a bigger system aimed at the automatic harvesting of apples or fruit
in general. This device should employ the usage of an hyperspectral camera
sensitive to near-infra-red or ultra-violet waves because it could determine very
precisely the level of ripeness of each fruit detected by the neural network but
also the presence of damages caused by weather conditions or by pathogen and
hence allow an accurate selection of fruit, as well described in ”Recent progress
of hyperspectral imaging on quality and safety inspection of fruits and vegeta-
bles: a review” [32]. Images can offer information about the position of the fruit
only in two dimensions but to harvest it, it is needed to know its correct position
in 3-D space so it could be used stereo system or lidar to determine at which
depth it is located. Finally a robotic arm, put on a rover able to navigate the
orchard autonomously, should reach the fruit and take it in the proper manner
without causing damages by breaking some branches or tearing leaves. Some
preliminary experiments have been reported in ”A survey of computer vision
methods for locating fruit on trees” [33] but the way to built a working system
of this kind is still long and complex.

75

Chapter 6

Images

Here are listed the pictures that I have selected to show some output returned
by YOLOv3 and Tiny YOLOv3 before and after fine-tuning and optimization.
In the original networks I have chosen light blue to mark the apple bounding
boxes and after fine-tuning I used light pink to mark them, while the wrong
labels are colored with yellow.

First of all are presented some images returned by the original YOLOv3 and
they will be used as reference point to the subsequent improvements.

76

77

78

Figure 6.1: First group of pictures with quite good predictions made by YOLOv3

79

80

Figure 6.2: Second group of pictures with apples misclassificated as oranges by
YOLOv3

81

82

Figure 6.3: Third group of pictures with poor detection made by YOLOv3

83

Then I compared images with different minimum confidence score; the first
picture of each page has the default threshold on confidence score of 0.5 and the
second picture has the threshold lowered to 0.25.

84

(a) Pictures with better classification results reducing the confidence accepted

85

(b) Picture that have bad results with both threshold settings

86

87

(c) Pictures that increase their number of detection, both correct and wrong

Figure 6.4: Comparison of detection, setting threshold on confidence score to
0.5 and 0.25 for YOLOv3

88

Here I reproposed the first pictures in order to see the improvement brought
by the first fine-tuning of YOLOv3 setting confidence score to 0.25.

89

90

Figure 6.5: Pictures selected for their good predictions on YOLOv3

91

92

Figure 6.6: Pictures with many misclassified apples in the original YOLOv3

93

94

Figure 6.7: Pictures with poor detection in original YOLOv3

95

After the second fine-tuning on YOLOv3 these are the predictions made on
the pictures setting confidence score to 0.25.

96

97

(a) Same images reported in figure 6.5

98

99

(b) Same images reported in figure 6.6

100

101

(c) Same images reported in figure 6.7

Figure 6.8: Some pictures got after second fine-tuning of YOLOv3

102

Pictures processed by Tiny YOLOv3 with minimum confidence score set to
0.25.

103

104

Figure 6.9: Results with Tiny YOLOv3 using pictures that gave good outcome
with YOLOv3

105

106

Figure 6.10: Results with Tiny YOLOv3 using pictures that produced several
wrong prediction of oranges with YOLOv3

107

Results returned after fine-tuning on Tiny YOLOv3 and threshold on confi-
dence score of 0.25.

108

(a) Some pictures on which the detection task is considered ”easy” by the network

109

(b) Some pictures that presented many misclassified objects

110

111

(c) Some pictures that had few or none detected object

Figure 6.11: Some pictures returned by Tiny YOLOv3 after fine-tuning

112

Final pictures returned by the fine-tuned Tiny YOLOv3 using the configu-
ration of hyper-parameters found in the grid search and considering object with
at least confidence score of 0.25.

113

114

115

116

117

Figure 6.12: Some pictures returned after grid-search on Tiny YOLOv3

Here are shown the apples detected by Tiny YOLOv3 on JPEG images and
confidence score of at least 0.25

118

119

120

121

122

Figure 6.13: Detection with Tiny YOLOv3 on pictures in JPEG format

Detection results on JPEG images identified by the fine-tuned Tiny YOLOv3
and confidence score of 0.25.

123

124

125

126

127

Figure 6.14: Detection with fine-tuned Tiny YOLOv3 on pictures in JPEG
format

128

Bibliography

[1] Oded Cohen, Raphael Linker, and Amos Naor. Estimation of the number
of apples in color images recorded in orchards. In International Conference
on Computer and Computing Technologies in Agriculture, pages 630–642.
Springer, 2010.

[2] Wikipedia contributors. Artificial intelligence — Wikipedia, The
Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=

Artificial_intelligence&oldid=907702868, 2019.

[3] Marco Somalvico, Francesco Amigoni, and Viola Schiaffonati. Trec-
cani: La grande scienza. Intelligenza artificiale. http://www.treccani.

it/enciclopedia/la-grande-scienza-intelligenza-artificiale_

%28Storia-della-Scienza%29, 2003.

[4] Herbert Alexander Simon. The shape of automation for men and manage-
ment, volume 13. Harper & Row New York, 1965.

[5] Marvin Lee Minsky. Computation. Prentice-Hall Englewood Cliffs, 1967.

[6] Elio Piccolo. https://areeweb.polito.it/didattica/gcia/Materiale_
Didattico/Lucidi_Corso/6_Lucidi_retineur_nuovi, 2010.

[7] Ivan Nunes and Hernane Spatti Da Silva. Artificial neural networks: a
practical course. Springer, 2018.

[8] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016.

[9] Wikipedia contributors. Boltzmann machine — Wikipedia, the free ency-
clopedia. https://en.wikipedia.org/w/index.php?title=Boltzmann_

machine&oldid=912503270, 2019.

[10] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[11] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-
sification with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105, 2012.

[12] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

129

https://en.wikipedia.org/w/index.php?title=Artificial_intelligence&oldid=907702868
https://en.wikipedia.org/w/index.php?title=Artificial_intelligence&oldid=907702868
http://www.treccani.it/enciclopedia/la-grande-scienza-intelligenza-artificiale_%28Storia-della-Scienza%29
http://www.treccani.it/enciclopedia/la-grande-scienza-intelligenza-artificiale_%28Storia-della-Scienza%29
http://www.treccani.it/enciclopedia/la-grande-scienza-intelligenza-artificiale_%28Storia-della-Scienza%29
https://areeweb.polito.it/didattica/gcia/Materiale_Didattico/Lucidi_Corso/6_Lucidi_retineur_nuovi
https://areeweb.polito.it/didattica/gcia/Materiale_Didattico/Lucidi_Corso/6_Lucidi_retineur_nuovi
https://en.wikipedia.org/w/index.php?title=Boltzmann_machine&oldid=912503270
https://en.wikipedia.org/w/index.php?title=Boltzmann_machine&oldid=912503270

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016.

[14] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You
only look once: Unified, real-time object detection. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 779–
788, 2016.

[15] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement.
arXiv, 2018.

[16] Darknet. https://github.com/pjreddie/darknet.

[17] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In
Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pages 7263–7271, 2017.

[18] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn:
Towards real-time object detection with region proposal networks. In Ad-
vances in neural information processing systems, pages 91–99, 2015.

[19] George A Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross, and
Katherine J Miller. Introduction to wordnet: An on-line lexical database.
International journal of lexicography, 3(4):235–244, 1990.

[20] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Ima-
genet: A large-scale hierarchical image database. In 2009 IEEE conference
on computer vision and pattern recognition, pages 248–255. Ieee, 2009.

[21] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona,
Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco:
Common objects in context. In European conference on computer vision,
pages 740–755. Springer, 2014.

[22] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariha-
ran, and Serge Belongie. Feature pyramid networks for object detection. In
Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pages 2117–2125, 2017.

[23] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv
preprint arXiv:1312.4400, 2013.

[24] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[25] Wikipedia contributors. Generative adversarial network — Wikipedia,
the free encyclopedia. https://en.wikipedia.org/w/index.php?title=
Generative_adversarial_network&oldid=912874477, 2019.

[26] BuzzFeedVideo. You wont believe what obama says in this video! https:

//www.youtube.com/watch?v=cQ54GDm1eL0.

130

https://github.com/pjreddie/darknet
https://en.wikipedia.org/w/index.php?title=Generative_adversarial_network&oldid=912874477
https://en.wikipedia.org/w/index.php?title=Generative_adversarial_network&oldid=912874477
https://www.youtube.com/watch?v=cQ54GDm1eL0
https://www.youtube.com/watch?v=cQ54GDm1eL0

[27] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin,
Jordi Pont-Tuset, Shahab Kamali, Stefan Popov, Matteo Malloci, Tom
Duerig, et al. The open images dataset v4: Unified image classification,
object detection, and visual relationship detection at scale. arXiv preprint
arXiv:1811.00982, 2018.

[28] Angelo Vittorio. Toolkit to download and visualize single or multiple
classes from the huge open images v4 dataset. https://github.com/

EscVM/OIDv4_ToolKit, 2018.

[29] Labelimg. https://github.com/tzutalin/labelImg.

[30] map (mean average precision). https://github.com/Cartucho/mAP.

[31] Yolo-v3 and yolo-v2 for windows and linux. https://github.com/

AlexeyAB/darknet#yolo-v3-and-yolo-v2-for-windows-and-linux.

[32] Yuan-Yuan Pu, Yao-Ze Feng, and Da-Wen Sun. Recent progress of hy-
perspectral imaging on quality and safety inspection of fruits and vegeta-
bles: a review. Comprehensive Reviews in Food Science and Food Safety,
14(2):176–188, 2015.

[33] AR Jimenez, R Ceres, and JL Pons. A survey of computer vision methods
for locating fruit on trees. Transactions of the ASAE, 43(6):1911, 2000.

131

https://github.com/EscVM/OIDv4_ToolKit
https://github.com/EscVM/OIDv4_ToolKit
https://github.com/tzutalin/labelImg
https://github.com/Cartucho/mAP
https://github.com/AlexeyAB/darknet#yolo-v3-and-yolo-v2-for-windows-and-linux
https://github.com/AlexeyAB/darknet#yolo-v3-and-yolo-v2-for-windows-and-linux

	Introduction
	Objective
	Introduction to Artificial Intelligence
	Brief history of AI

	The neural networks
	The biological model
	The artificial neuron's structure
	The neural network's structure
	Technical details
	The activation function
	Gradient descent
	Stochastic gradient descent
	Backpropagation algorithm
	Regularization techniques

	Types and examples of neural networks
	Fully-connected neural networks
	The Perceptron
	Multilayer Perceptron
	Linear associator

	Recurrent neural networks
	Hopfield Net
	Boltzmann machines

	Self-Organizing Maps: Kohonen Maps
	Convolutional Neural Networks
	LeNet-5
	AlexNet
	VGG
	YOLO
	YOLOv3
	Tiny YOLOv3

	Generative Adversarial Networks

	My project
	Datasets
	Training set and validation set
	Test set

	Metrics
	Results on YOLOv3
	Confidence score set to 0.25
	Fine-tuning YOLOv3

	Results on Tiny YOLOv3
	Fine-tuning Tiny YOLOv3
	Grid search on Tiny YOLOv3
	Fine-tuning after grid-search
	An oddity

	Conclusions
	Images
	Bibliography

