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Introduction

Una volta che abbiate conosciuto il
volo, camminerete sulla terra
guardando il cielo, perché la siete

stati e 14 desidererete tornare

Leonardo da Vinci

This famous sentece of Leonardo Da Vinci means literally ”once that you have ex-
perienced flight, you will walk on earth looking at the sky, since there you have been
and there you will desire to go again”. Since long time ago nature has been source
of great inspiration for human beings: Leonardo da Vinci had been a seek observer
of anatomy and flight of birds with the aim of both studying them and creating a
"flying machine” and he might deserve the title of ”forefather of biomimetics”. After
him many scientists began to investigate the complexity and beauty of nature, trying

to catch its perfection and exploit it for human progress and technology growth.

Figure 1.: Leonardo da Vinci’s design for a flying machine with wings based closely

upon the structure of bat wings.

The present work constitute another human attempt to explore the mightiness
of Mother Nature and to gain some useful insights from her. Our attention is

focused here on Morpho butterflies, which represent a numerous group of different
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butterfly species living mostly in South America, Central America and Mexico. The
large number of species translates in a broad variety of individuals with different
morphological and behavioural characteristics and attitudes. The range of wingspan
among the different species goes from 7.5 to 20 cm, the colours and patterns are
various and the shapes of the wings can have substantial differences. Some species
move around flapping -as almost all the insects- whereas others are able to perform
flap-gliding phases, which are typical in birds. Among the many interesting aspects

of this butterflies that can be studied, we will focus on the following goals:

1. define a robust set of tools, manners and methodologies which can represent
an exhaustive and appropriate process to approach the CFD study of Morpho
butterflies and, more in general, other insects operating in similar dynamical

conditions; these aspects are discussed in Chapter 2;

2. supported by field data, we reproduce gliding flight conditions using different
mathematical models to understand which ones are more capable to produce

realistic results; this part of the work is gathered in Chapter 3;

3. given the insights gained at the previous points, we use CFD to compare the
performances of two Morpho species, the cisseis and the deidamia, in both

gliding and flapping flight; these results are available in Chapter 4.

The computational simulations are performed with the CFD solver ReFRESCO,
taking great care of producing reliable results: rigorous procedures for the esti-
mations of numerical errors are carried out, together with accurate tuning of the
software and models used parameter.

Since the work consists of almost two hundredsof CFD simulations, for sake of
conciseness, clearness and understandability only the aspects of the results important
for the purposes of the work will be discussed; two appendixes report results which

didn’t find space inside the text.
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1. State of the Art

Well, I must endure the presence of
a few caterpillars if I wish to become

acquainted with the butterflies.

Antoine de Saint-Ezupéry, The
Little Prince

1.1. Meet the Morphos

1.1.1. Conventions and nomenclature in insect flight

The present work will adopt a terminology commonly used in insect flight literature
[9, 44, 24], borrowed from fixed wing aerodynamics: the wing will be considered as
an aerofoil; "wing span” refers to the length between the tips of the wings, whilst
”wing length” refers to the root-to-tip length of one wing. ”Wing chord”, instead,
refers to the section between the leading and trailing edge of the wing at any given
position along the span (Figure 1.1 (A)); the ratio between wingspan and mean
chord is a non-dimensional morphological parameter termed ”aspect ratio”. ” Angle
of attack” refers to the angle between the wing chord and the relative velocity vector
of the fluid in the "free-stream flow” or "mean flow”, i.e. the flow not influenced
by the presence of the wing. This limitation to the non-disturbed flow is necessary
since, close to the wing, the flow is influenced by the presence of the aerofoil, which
induces a downwash U’ that, even if small in magnitude compared to the ”free-
stream velocity” Uy, can significantly alter the direction of the local flow velocity,
with the effect of lowering the angle of attack. The angle of attack relative to the
mean flow will be from now on simply termed ”angle of attack” «, whilst the angle of
attack relative to the deflected flow is termed ”effective angle of attack” o/ (Figure

1.1 (B)); this two quantities are tied together by the relation:
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Figure 1.1.: Conventions and terminology. (A) Sketch of an insect. (B) Sectional
view of the insect wing. (C) Phases of insect wing kinematics. Wing
pronation occurs dorsally as the wing transitions from upstroke to down-
stroke, and wing supination occurs ventrally at the transition from
downstroke to upstroke. (D,E) gliding (or Linear) and flapping transla-

tion. Source: [44].

During their flight, insects perform many different flapping patterns, which makes
it difficult to define unequivocally the kinematics of flapping flight; to overcome
this issue, researchers restricted their studies to hovering [44, 13].Terms "upstroke”
and ”downstroke” are used here to describe ventral-to-dorsal and dorsal-to-ventral
motion of the wing respectively (Figure 1.1 (C)). If the insect moves forward, their

stroke plane bends forward. The term ”wing rotation” refers to any change in angle



Morpho deidamia

Hinge-to-tip length = 7.56 cm

Figure 1.2.: Wing shape of a Morpho deidamia specimen.

of attack around a chordwise axis. During the downstroke-to-upstroke transition
the wing ”supinates”, performing a rotation that brings the ventral surface of the
wing to face upward, whereas during upstroke-to-downstroke transition the wing
"pronates” bringing the ventral face of the wing to face downward (Figure 1.1).
From now on, ”gliding translation” will refer to aerofoils translating linearly (Figure
1.1 (D)), whereas ”flapping translation” will refer to an aerofoil revolving around a
central axis (Figure 1.1 (E)).

The insects considered here are Morpho butterflies, which comprise a large number
of different species that can be found mostly in Central and South America. They
boast important sizes, with wingspans reaching 20 cm ([22]), different wing shapes
between the various species and fly at velocities in the range 1-2 m/s, performing

different flying techniques.

1.1.2. How should we model Morpho butterflies?

Morpho butterflies are among the biggest insects on the entire planet and, thanks
to their dimensions, they are able to perform flap-gliding flight ([22]). This charac-
teristic, common in birds but not in insects, makes them of particular interest and
carries the question of how to simulate and reproduce their different flying tech-
niques. In the last years, attention to the flying behaviour of insects has drastically
grown, largely as a consequence of industrial and engineering interest for small size
flying vehicles; this led to an increment of studies about the performances of low

aspect-ratio airfoils at low Reynolds numbers (see [49, 33, 10]). Nonetheless, most of



Figure 1.3.: Examples of techniques used to observe and study the aerodynamics of
butterflies. In (a) a Melitatea cinzia attached to a tether in a laboratory;
source: [37]. In (b) the insectary used in [22] to film various species of

Morpho butterflies. In (c) an artificial wing model used in [46].

them only take under consideration Reynolds number of the order of 10* — 10° and
cambered airfoil profiles. Here, instead we consider butterflies that mostly operate
at Reynolds numbers in the range of 5000-9000 with sharper and flatter profiles.
Some recent studies contributed in gaining some insights about the flight of but-
terflies ([23]). In [37] tethered-flight experiments in laboratory conditions have been
carried out, whereas in [22] various specimens of different Morpho species have been
recorded while flying in a large insectary (8 m x 4 m x 2.5 m). An interesting
work on gliding flight in butterflies was proposed in [46], where artificial wing mod-
els with various shapes were tested in a wind tunnel, varying angle of attack and
configuration of the fore and hind wings. Numerical simulations are also proposed

to reproduce experimental results using computational fluid dynamics. Another at-



Figure 1.4.: Reproduction of a Swallowtail butterfly aerodynamics in a wind tunnel.
Angles of attack of 10 (top) and 15 (bottom) degrees. The Reynolds
number, with respect to the mean chord lenght, is in the range 5760-

8640. Source: [39].

tempt to study the flow characteristics surrounding a gliding butterfly is presented
in [39], where a wing model of a swallowtail butterfly -which has dimensions similar
to Morphos- is observed in a wind tunnel. The reported visualisations of the latter
(see Figure 1.4) provide interesting insights about the flow surrounding the wing,
with separation taking place at the leading edge, reattachment for low attack angles
and development of turbulent structures on and downstream the wing.

The analysis of flapping flight phase is much more complicated than the one of
gliding flight. To gain an insights about how to deal with it, we have to leave the
specific niche of butterflies in favour of the broader world of insect flight, where flap-
ping and hovering flight has been widely dissected ([44, 14, 25, 51]). While flapping,
an insect moves the wings following rapid oscillatory patterns that produce unsteady
air flows over the wing. To understand the connections that bond the aerodynamic
forces to the complex movements of the wings during flapping, different physic mech-
anisms have been observed, studied and modelled ([14, 44]). A possible approach to
the problem is represented by the combination of models of separate aerodynamic

mechanisms to build a comprehensive simulation of the various sources ([25, 51]).
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Figure 1.5.: Time history of lift and drag forces during a flapping wingbeat of an
artificial reproduction of Drosophilia. Measured forces In red, forces
predicted by translation force coefficients in blue and rotational lift in
black. Translational (green) and rotational (purple) velocities of the

wing a the bottom. Source: [9].

Among the mechanisms accountable for the often unexpected high performances of
insects flight, of particular importance is the leading edge vortex (LEV) ([14, 44]).
In [25] it is shown that the LEV remains stably attached on a wing model that re-
volves around its base, despite it is shed, and thus not anymore capable of enhancing
the aerodynamic performances of the animal, after a few chord lengths of travel on
a translating model of the wing. Similarly, the experiments performed in [9] show
the importance of wing rotation in the production of forces that keep insects aloft.
In this latter work, a wing model of Drosophilia is used to reproduce the flapping
movement of the insect; the history of drag and lift forces during a wingbeat is then
decomposed into transitional and rotational component, highlighting the importance
of the latter (see Figure 1.5).

For this study two different setups has been taken into account: one for gliding



flight, where the wing lies fixed in a box-shaped domain and is invested by the air flow
(a setup comparable to the one used in [46, 39]), and one for flapping flight, which
reproduces the rotational setup used in [25], with the wing lying in a cylindrical

domain and revolving around its hinge in still air.

1.2. Mathematical Modelling and Numerical Methods

The following section reports the physical equations describing the dynamics of fluids
and their interaction with immersed bodies immersed along with some of the models
developed to solve the resulting differential problem. A broad literature is available
on this topic, with a variety of different approaches having different efficiencies,
fields of application computational costs and other intrinsic characteristics. Here
we discuss only the methods that have been used for the simulations of the present

work.

1.2.1. The Navier-Stokes equations

The flow surrounding and aerofoil immersed in a Newtonian fluid (like air) is gov-
erned by the Navier-Stokes equations ([2, 50]). At low speeds, as it is the case for
this study, we can assume that compressibility of the flow is negligible ([2]), and thus
refer to the continuity equation and the incompressible Navier-Stokes equations; for

i,j=1,..,3 and summing over repeated indexes:

8ui
= 1.1
5 =0 (1.1)

% n Aaui 1 Op &%,
ot b 8CCJ' a p@zl V&):z:jaxj’

where [uy(x,1t), ua(x,t), us(x,t)] is the velocity field of the flow, p is the pressure

(1.2)

field, p is the density and v the kinematic viscosity of the fluid; the latter two are

considered to be constant in the present work.

1.2.2. Reynolds Number: dynamical similarity

We will now introduce two quantities characteristic of the phenomenon we are study-
ing: the length (L) and velocity (U) scales. This two quantities are meant to describe
the size of the apparatus we are considering and the rate at which the fluid is moving

through it ([50, Chapter 7]. For our case, L represents the mean chord length of the



wing and U the free-stream velocity of the flow. We can now use this values to turn

the quantities at stake in dimensionless equations, by defining;:

- U B P
R S R 1.3
T P PiE (1.3)

And repkacing them in (1.2) and (1.1), we obtain:

U di

U 1.4

L 8; 0 (14)
U?0u; U?/(_ Ou ulop U 9y
Z L (g = 2 ey 1.
Lo I (“mgzj) L 0z 12 07,07, (1.5)

which finally yields:
o
=0 1.6
05, = O (1.6)

7’ 7’ 5 2
% <~ Guz>_ op 1 0%y (17)

ot “\"“0z,) = 0% " Reodz, 0
where Re = UL/v is the Reynolds Number. If we now consider two geometrically
similar setups -meaning that one is just a scaled-up version of the other-, if they have
the same Reynolds Number, then the equations for the non-dimensional variables
are the same, and the problems have the same solutions and flow patterns ([50,
Chapter 7]). The Reynolds Number is thus a global parameter of great importance,
since it gives full information about the case studied, without any need to study the
inference of the other parameters (L, U, p, v).

The Reynolds Number also has an important physical interpretation, since it can

be seen as the ratio between the inertia forces and the viscous forces thus playing a

fundamental role in defining the pattern of the flow topology.

1.2.3. The problem of turbulence

At low Reynolds regimes the flow pattern is simple and tidy. The streamlines of fluid
particles are smooth and arranged in layers that don’t mix with each other. With
the increase of the Reynolds number this heavenly situation eventually comes to an
end, due to small instabilities that start to mix such layers, entangling and ravelling
them, bringing the flow to a chaotic state where velocities and pressure at every
point are characterised by sudden and random variations. This process of slowly
and incrementally mixing and stirring the flow is called transition to turbulence and

the final state of chaos and randomness that follows it is called turbulence. The bond



between the Reynolds Number and the state of the flow (laminar or turbulent) is
clear and straightforward, even though the value of Re at which transition is kicked
depends on a wide range of factors ([2, 50, 32]).

There is no definition on turbulent flow, but we can still frame it listing its most

characterstic features ([6, Chapter 1], [48, Chapter 1]):

1. Irregularity. Any turbulent flow is highly irregular; the streamlines of fluid
particles are chaotic and highly entangled. The flow is made up of a spectrum
of different time and length scales (eddy sizes), some of them assuming a
particularly specific role. Such spectrum is bounded from above by the size of
the flow geometry and from below by the viscous forces exerted by molecular

viscosity.

2. Diffusivity. Turbulent motion has the outstanding ability to transport or
mix momentum, kinetic energy, heat, with rates of transfer and mixing several
orders of magnitude higher than the ones characteristic of laminar flow. This
high diffusivity has several effects on the flow pattern and on the generation

of forces.

3. Large Reynolds Numbers. As previously said, turbulence is highly re-
lated to the Reynolds number. Transition to turbulence is also case-dependent
though, occurring at different Reynolds numbers for different geometries and

conditions.

4. Three-Dimensional. Turbulence is always a three-dimensional phenomenon.
That said, modelling turbulence with time-averaging can bring to two-dimensional

flows.

5. Dissipation. Turbulence is a process that dissipates kinetic energy. In par-
ticular, the largest eddies gain energy from the mean flow, which is then trans-
ferred to smaller scale eddies, which in turn transfer it to smaller eddies; this
cascade process eventually brings kinetic energy to the smaller scales, where
the action of viscous forces turn it into internal energy. The whole process that

brings energy from the largest scales to the smallest is called cascade process.

As the flows becomes more turbulent, the spectrum of scales widens and the

smallest scale decreases. In particular, it can be demonstrated (see [7]) that the



relation between the length of the smallest scale of turbulence (also reffered to as

Kolmogorov microscales and written as ) and the Reynolds number is the following:
n=Re M, (1.8)

where [ is the size of the large energy-containing eddies. When it comes to discretise
the spatial and temporal domain of a problem to perform numerical simulations,
in order to accurately reproduce the flow and all the phenomena concerning it, a
resolution that catches all the scales of the phenomenon is needed. Therefore, the
higher the Reynolds numbers -and, consequently, the smaller the smallest scales of
turbulence- the finer the discretisation needed. In practical terms, this means that in
most cases computational costs are prohibitive (see [7, p. 423-424]) and alternative
solutions must be adopted in order to be able to properly simulate the problem
under consideration at a reasonable cost. This problem leads to the question of how

to accurately model turbulence without directly resolving it.

1.2.4. The time-averaged Navier-Stokes equations

Although turbulent flows are chaotic, they are deterministic and described by the
Navier-Stokes equation which, as said, in most cases cannot be directly numerically
solved. To overcome this problem, when analizing a turbulent flow it can be useful
to decompose the instantaneous variables (velocity components and pressure) into

a mean and a fluctuating value ( [48, 6, 53, 7]):

— /
U; = U; + U

(1.9)
p=p+p,
where w;, p denote the time averaged value defined by:
1 [T
U; = ﬁ . w;dt, (110)
where T is a sufficietly large time interval. Averaging (1.9) in time yields:
U = U + u, = 4 + ul, (1.11)
since u; = 4;. Operating similarly on p we obtain:
=0, p =0. (1.12)
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Insert Equation (1.9) into (1.1) and time-averaging, we find ([6]):

o(u; +uj)  Oug

= . 1.13
With the same process for the Navier-Stokes equations we find:
o(u; + u! o(u; + u! 10(p+7p 02 (u; + u!
(w; + ul) (@ + ) (@i +u;)  10(p+p) . (w; + ul) . (1.14)
ot J 81‘]‘ P 8:51 8£Ej8xj
— — —
71 T2 T3 T4

We will now discuss each term of the last equation separately, as in [6]. The fist

term (T1) results in: - _
o +uy) _ O | 0 O

ot _6t+6t_8t'

Note that, in case of a steady mean flow, this terms is zero. The second term (T2)

gives:

/%+a.
j8a:j J

ou , Ou
+ uf =+,
8.%']' Jaxj

_ 8(&1 + U/-) _ 0u;
. ’ i)
(u] + uj) 81‘j Y 6(13]‘

u

and using w;u; = w;u;, wu,;, = ﬂﬁué

: = 0 and u;u; = u;ju, = 0 (see [6, Chapter 8]) we
finally find:

ow; +uf)  ou; , 0ul ou;  Ouiui 9
— = U, u’; i — U=,
81‘j ]8:L‘j ]81‘]' jal'j aZL‘j 83:j

(4 +u})

with the last term being equal to zero thanks to the continuity equation. The third

term (T3) results in:
op+p) _ Op

axi B 8:62 '

The fourth term (T4) results in:

82(’[_Li + U;) . 82@-
a$]’al‘j a 8xj8xj '

This brings to the time averaged continuity equation and Navier-Stokes equations

(typically called Reynolds-Averaged Navier-Stokes equations, in short RANS):

ou; .

Dz, =0, (1.15)
ou; 7'6171‘ . _1 op 0 o v
BN + u; 9z, ~  pom + oz, <V8:Ej uu]> (1.16)

This equations look very similar to the original Equations (1.1) and (1.2) if we don’t

consider the average operator, exception made for the second part of the last term,
which is new and, when multiplied by the density, goes with the name Reynolds
stress tensor:

Tij = —puju. (1.17)
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(b

Figure 1.6.: Representation of flow over a sphere at Re = 2 x 10*: (a) real topology
of the flow and (b) time-averaged flow pattern (as it could be seen in a

time-lapse photograph). Source: [6].

Such tensor is symmetric and represents the correlation between fluctuating veloc-
ities: if Tug # 0 u; and u; are said to be correlated, otherwise they are said to
be uncorrelated ([48]). The Reynolds stress tensor is an additional term related to
turbulence, and brings six new unknowns, meaning that we need a model for W to
close the equation system, which now has ten variables (three velocity components,
pressure, six Reynolds stress tensor components) but still only four equations. This
is known as the closure problem. Note that the continuity equation applies both for
the instantaneous velocity u; and the time-averaged term u;, therefore it holds also

for the fluctuating velocity term w; ([6]):

/
ngzzo. (1.18)

The last term of Equation (1.16) represents the divergence of the total stress tensor
([18]). The first part is related to the net momentum flux by molecular motions,
while the second part is the net flux of the momentum pu, by the macroscopic
velocity fluctuations u; The molecular contribute to the stress tensor can be written

as:

ou; Ou;
— b ! J 1.1
pj+u(&g+a%), (1.19)
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where p = vp is the dynamic viscosity.
With the Reynolds-averaged formulation of the Navier-Stokes equations it is pos-
sible to define a useful quantity, the turbulent kinetic energy (per unit mass) as:

1—
k= §u§€u§€ (1.20)

1.2.5. The Boussinesq assumption

As said, a model is necessary for the Reynolds stress tensor in order to solve the
system of equations describing the flow. One of the most popular models was in-
troduced by Boussinesq and is based on the introduction of an eddy viscosity to
reproduce the role of the Tu; terms. We start considering the diffusion terms in

Equation (1.16), with an explicit formulation of the viscous stress (we assume v is

non-constant for the moment):

— ). 1.21
8.Tj <V<8xj + al’Z) ulu] ( )
We define the Reynolds stress tensor terms as:
ou;  0u,
— ulu!, = : J 1.22
U U Vt<6$j + &L‘i)’ ( )

where v, is called kinematicturbulentviscosity ([m?/s]) and we use it in Equation

0 ou; 8Z_Lj

The definition given in Equation (1.22) is not valid upon contraction ([6]), as the

(1.21), thus yielding:

right term is zero when ¢ = j; for this reason we add the trace of the left side to the

right side obtaining:

2
3

u

< ou; 8ﬂj

1 = —
Ox; " 3xi> - g&juﬁgu;{: = —2u5ij + 30k (1.24)

T
Zuj— V¢

The former equation is known as Boussinesq assumption. It will be useful in the
future to underline that the definition given in Equation (1.17) can be written as:

2
Tij = 2,ut§ij — 5(51]]{3 (125)

Thus, this model is thus replacing the six turbulent stresses with one new unknown,

the turbulent viscosity v;. With such assumption Equation (1.16) reads:

5, O _10ms +-(<”+””§Z)’ (1.26)
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where pp = p+ 2k/3. It is important to remember that v is a property of the fluid,
whilst v, is a variable dependent on the flow, which means that it is function of time
and space: vy = v4(t, x;).

With this assumption we have a set of four equations and five variables; many
different models have been developed starting from the ReBoussinesq hypothesis.
They differ from each other in the way of defining the function v; and in the number
of equations added to close the problem. In the present work, the turbulence models

used are the Spalart — Allmaras model ([47]) and the SST x — w model ([30] ).

1.2.6. The Spalart-Allmaras model

The Spallart — Allmaras model ([47]) is a l-equation model (meaning that one
equation is added to the starting system of Equations (1.15) and (1.26) to solve it)
which defines the turbulent viscosity by means of an auxiliary viscosity 7 and an

auxiliary function f,; ([26, Chapter 8]):
Ve = i fy1. (1.27)

The equation added to the system is the transport equation for o:

ov 0 o
E + UjaTj = Cbl(l — fvl)SV
+ l i( + ")@ + Q@
o\ 0z; v Ox; Cb28xj Oz, (1.28)

o\ 2
- <Cw1fw - gfw) (;) + fu AU

In the right hand side, the first term represents the production term, the second the
diffusion term, the third the dissipation term and a transition related term. The

coefficients are:

2
e = 01335, p =062, 0= k=041

1
cpr | 1+ 1+c8,\8
= — s = _— , = 03’ 129
Cwl 2 + p fw g<g3 i 0?03 Cw2 ( )
o=V _ 6 _
Cw3_25T— gﬂde) g—T+Cw2(T T)‘

The auxiliary functions related to the flow close to wall are:

N U v
S=5+—F55fe S=1+/25;%i Xx=-,
r*d v (1.30)
i )
X X
==, = 1 - T - 71.
fn=yay =l g @
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The function connected to the transition related term are given by:

2
w
frn = cgrexp ( — Aé2 <d2 + (gtdt)2>>a fra = ezexp(—cix?),
AU (1.31)
g+ = min <O.1, >, cn=1, co=2,c3=1.2,¢c,4 =0.5.
thJZ‘t

Here wy is the vorticity, AU the norm of the difference between the velocity at the
transition and the velocity at any field point, Ax; the grid size along the wall at the

transition point and d the distance to the wall.

1.2.7. The k —w and SST k£ — w models

The original k—w model was introduced by David Wilcox in 1988 ([52]; it introduces
two transport equation to close the system represented by Equations (1.15) and
(1.26), one for the turbulent kinetic energy k& and one for the characteristic frequency

of turbulence, w). This model defines eddy viscosity as:

k
=—. 1.32
v= - (1.32)
The equations that define the model are:
o Turbulent kinetic energy k equation:
ok ok 0t 0 ok
— tuj— =1 — — Bk — ) — |, 1.
ot Yige, = gy, PRt 5 <(”+" ”t)ax) (1.33)
e Specific dissipation rate w equation:
ow Ow w 0y 5 0 ow
— 4t U = QT — — v)— |, 1.34
ot T ga, T % ey, P T gy <(”+‘”t)axj> (1.34)

where Py, is called rate of production of turbulent kinetic energy ([26]) and is defined
as:

ou

Writing as A, the distance between the cell center of the first cell adjacent to the

wall and the wall itself, the boundary conditions for the model a the wall are:

6v

and the conditions outside the boundary layer are:

Upe f

Lref7

Vi, = 10730, koo = Vi Woo, (1.37)

oo

Woo = A
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Urer and L,.; being reference quantities and A a parameter varying from 1 to 10.
This model has been revisited in terms of coefficients by David Wilcox in 1998 ([53]);
moreover, in 1993 Menter introduced a variation of it, called Shear Stress Transport
(SST) k — w model ([31]). This new version is characterised by the new following

equations for k£ and w:

ok ok 0 ok
L = — P, — B* — o) — |, 1.
o T ou; = Tk B*kw + o, <(u—|— o Vt)amj) (1.38)
aw _i_ﬁ‘] 8(,0 Pw —5&)2 + - (V_i_o_wyt)i
ot Ox; Ox; Ox;
(1.39)
+2(1-F )@%ai
Y O0x; Ox;j
Where the production term P, is defined as:
P, =2p,. (1.40)

e
In the various versions of the model given, various different closure coefficients where
proposed ([30, 53]); the ones used in the present work were presented in the most

recent SST k — w version, and are the following:

vk 500u> 4p0w2/£>

Fy = tanh(arg?), arg = min <max <

w10 72 J 2
CD;,, = max 2paw2———w,1 x 10710 ,
w O0z; 0x;
where d is the distance from the wall and:
a=Fo+(1—-F)a, B=F/p+(1—F)b,
(1.42)
o = Fiop + (1 = F1)oge, 0w = Frow + (1 — F1)oue,
with:
f*=0.09, a3 =5/9, p1=0.075 ok =0.85 0, =0.5,
(1.43)
a9 = 0.44, 52 = 0.0828, Ok2 — 1.0, 0w2 = 0.856,
and the eddy viscosity v, defined by:
alk‘
= — =0.31
. max(ajw, F»S)’ a1 =031,
(1.44)

2vk  500v )

5 = tanh(argy), args = max (0.09wd’ R

with S = ,/25;;5;; and € is the absolute value of the vorticity.
The SST k —w is a blending of the k£ — € ([26, 41]) and k —w models, since close to

the wall F; = 1, meaning the model is working as a k — ¢, and F} = 0 far from the
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walls, meaning the model is working as a k—w. To prevent the rising of turbulence in
stagnation points, the production term Py is bounded from above using the modified
production term:

Py, = min(Py, 108" pkw). (1.45)

1.2.8. Transition modelling

All the previously mentioned models are developed to reproduce the effects of tur-
bulence but they have been developed based on the assumption that turbulence in
the flow is fully developed. For certain situations, in particular for low Reynolds
numbers, it can be argued that the phenomenon of transition from laminar to tur-
bulent flow plays a major role. The transition consists of the generation of small
perturbations that drive a laminar flow towards a turbulent state; it is a very del-
icate process ([20, 50, 40]) and it has been a great challenge to formulate proper
models to catch it and its consequences. In the present work we consider and use
the v — Reg model developed by Florian Menter and Robin Langtry ([32, 21]) in
2004. The model consists in adding two transport equations to the SST k£ —w model,
one for the intermittency v and one for the Reynolds momentum thickness, which is

defined as:

max(Re,)
= v 1.4
Reo =595 (1.46)
where Re, is the strain rate Reynolds number:
Y
Rev = Tns, (147)

with S defined as in Equation (1.30) and y2 = d being the distance from the wall.
Outcomes of these two equations are then used inside the k equation being thus
embedded in the SST k£ — w model. Due to its complexity the formulation of the

model is not reported here, but can be found in [32, 21] and [20, 26].

1.2.9. Partially averaged Navier-Stokes equations

The RANS models proved to predict the mean flow statistics with adequate acuracy
for many engineering applications, although the range of flow physics that can be
adequately represented by these models is limited. Many different turbulence models
have been developed to resolve all or most of the dynamically important scales of

motion ([26, 7, 53]), like Large Eddy Simulation (LES), Detatched Eddy Simulation
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Figure 1.7.: A representation of transition to turbulence on a flat plate. § is the

boundary layer thickness and Vi, the free stream velocity. Source: [45].
(DES) or Direct Navier-Stokes Simulation (DNS). As in most of engineering tools,
accuracy comes at a cost, that is, in many cases unbearable and/or unjustified. In
this work we will make use of another high accuracy model, the Partially Averaged
Navier-Stokes equations (PANS), introduced by Sharath Girimaji in 2006 ([15]).
PANS is a suite of turbulence closure models of various modeled-to-resolved scale
ratios ranging from RANS to DNS. The modelled-to-resolved scale ratio or the level
of physical resolution in PANS is quantified by two parameters: the unresolved-to-
total ratios of kinetic energy fr and dissipation f.. The unresolved stress is modelled
with the Boussinesq approximation and modelled transport equations are solved for
the unresolved kinetic energy and dissipation ([16]). The unresolved kinetic energy
and dissipation equations are derived from a parent RANS model, in this case the
SST k—w. PANS models of different fi values require different numerical resolutions:
the lower the fj value, the smaller the finer time and space need to be discretized,
with fr = 1 representing RANS and fr = 0 representing DNS. If we write the
unresolved kinetic energy as k,, the unresolved energy dissipation as ¢, and the

unresolved specific dissipation as w,, we can define the PANS coefficients as:

k

Fu _ fe _wu
k?

== (1.48)

These values are then embedded in the RANS equations (in this case the SST k—w).

fk: fw

A full explanation of the model is given in [15, 16] and its implementation in the

CFD solver used in this work is given in [26].

1.3. Numerical Errors and Uncertainty Estimation

The assessment of the quality and reliability of a numerical analysis is a fundamen-

tal step if we aim to issue a reliable work. Such procedure is commonly denoted
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as Verification & Validation. Following [12], ” Verification is a purely mathematical
exercise that intends to show that we are ’solving the equations right’, whereas Val-
idation is science/engineering activity that intends to show that we are ’solving the
right equations’. This means that Verification deals with numerical errors/uncer-
tainties whereas Validation is concerned with modelling errors/uncertainties”. Here
we mention errors and uncertainties, but it is important to state clear that these are
conceptually different: to define an error we need the knowledge of the ’true/exact
solution’, and such error has a sign; an uncertainty defines and interval in which
the ’true/exact solution’ should lie with a certain degree of confidence. It is usually

accepted ([12]) that the numerical error of a CFD prediction has three components:

1. round-off error
2. iterative error

3. discretisation error.

The first comes as a direct consequence of the finite precision of computers and
its relative importance tends to increase with grid refinement ([11, 12]). Iterative
error is unavoidable due to the non-linearity of the Navier-Stokes equations. The
discretisation error is a consequence of the approximations made to transform the
partial differential equations of the continuum formulation into a system of algebraic
equations, which are for us brought by the adoption of a finite-volume method
approach. The latter source of error, unlike the others, tends to decrease refining
the grid.

When we follow procedures to estimate the numerical error due to discretisation,
we assume that the other two error sources are negligible. The round-off errors are
unavoidable and their impact on the solution is difficult to estimate; for the present
work we will assume that they small compared to the others. The sensitivity to
the iterative error will be discussed case by case. The discretisation error will be
computed using the software suite developed following the procedure reported in
[12]. The latter chooses as estimator for the discretisation error e, with power series
expansions:

€5~ OpE = ¢; — o = ahl’. (1.49)
¢; stands for any integral or other functional of a local flow quantity, ¢y is the

estimate of the exact solution, « is a constant to be determined, h; is a typical cell
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size and p is the observed order of grid convergence. The index ¢ refers to the i —th
grid and for 7 = 0 we are referring to the finest grid. The estimation of €4 requires
the determination of ¢g, a and p. Therefore the minimum number of grids (n,)
required for the estimation of ey is p+1.

The assumptions needed for the application of Equation (1.49) are ([12]):
1. ¢ does not include any singularities;

2. the grids must be in the ’asymptotic range’’ to guarantee that the leading

term of the power series expansion is sufficient to estimate the error;

3. the density of the grids is representable by a single parameter, the typical cell
size of the grids, h;; this requires the grids to be geometrically similar, that
is the grid refinement ratio must be constant in the complete field and grid

properties must remain unaffected.

In practical problems -and the present in one of these- it is not possible the respect
such constraints; to deal with these shortcomings in [12] three error estimators are
proposed (considering from now on that p = 2, as it is for the discretisation method

used in the present work):

€p = 01 = ¢; — o = ahy, (1.50)
€p = 01 = ¢ — do = ah?, (1.51)
€p = 01 = ¢y — ¢o = arh; + Ozgh%. (1.52)

These three alternatives are used when Equation (1.49) is not reliable, giving orders
of convergence either too large or small. Equation (1.52) can be used also for non-
monotonic convergence, whereas Equations (1.50) and (1.51) are suitable only for
monotonically convergent solutions.

As reported in [12], it is suggested to use at least four grids to have a reliable

estimation of the uncertainty. In such conditions (ng > 4), it is possible to do the

!This means that the grids used are fine enough to give a single dominant term in a power series

expansion of the error.
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error estimation in the least-square sense, that is determining ¢ from the functions:

g

Sre(¢o,a,p) = | D (i — (¢o + ah))?

i=1

g

Si(o, @) = 4| (¢ — (b0 + k)

i=1

g

(o, ) = \ > (¢i — (¢o + ah?))?

i=1

g

S12(o, ar, a2) = \ D (65 — (b0 + rhi + azh?))?.

i=1

(1.53)

(1.54)

(1.55)

(1.56)

The approach can be slightly modified if one may wish to give more value to the finer

grid solutions, using weighting coefficients, and thus using the following functions

instead:

S%Ewo,a,p):\sz i — (60 + ahl))?

S (¢o, ) = \ sz ¢i — (¢o + ahl))

S5 (¢o, ) = \ sz ¢i — (¢o + ah?))?

S1a(¢o, o1, a2) = \ sz ¢i — (do + arhi + aghi))2.

The weights W; are based on the typical cell size:

for which the following holds:

(1.57)

(1.58)

(1.59)

(1.60)

(1.61)

(1.62)

The least-square minimisation of the previous functions, together with data regres-

sions are presented in [12].

21



2. Approach, Tools, Methodology

Nature, my friends, is the most
surprising spectacle man can
behold. Did you know ants have
herds of livestock that give them
milk and sugar? That spiders
invented the submarine millions of
years ago? Did you know that
butterflies have tongues? The
tongue of a butterfly is like an
elephant’s trunk, but very thin and

wound up like a watch spring.

Don Gregorio, Butterfly’s Tongue

2.1. Approach to the problem and main assumptions

The experimental data we refer to in this work ([22]) has been collected by the
PhD candidate at the Institute of Systematic, Evolution and Biodiversity (ISYEB)
Camille Le Roy, whom we raised a collaboration with. Mr. Le Roy spent several
month in South America to gather and study various species of Morpho butterflies.
Among the many specimen collected, some of them have been recorded while flying
in a large insectary (8 m x 4 m x 2.5 m). The three-dimensional trajectories of
this flights have been then reconstructed, thanks to the simultaneous use of several
cameras. Tracking the positions of head and tail of the butterfly and of left and right
wingtips allowed us to derive position, velocity and acceleration of the butterfly and
the angles of attack of the wings.

Since the flight phases were recorded inside a closed insectary, we assume that
during the filming the air was still and any currents had negligible effect on the

trajectory drawn by the insects.
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2.1.1. Modelling the wing

Morpho’s wing shape has been studied in [22], together with the topology of its
thickness. Each wing consists of a front and hind wing that can vary their mutual
position. Using optical coherent tomography an important insight to the wing!
thickness was given. The membrane separating the dorsal side from the ventral
side is very thin and is covered with small scales which mostly curl upwards; when
the scales are nearly flat, wing thickness is about 30-50 pm, whilst considering the
distance between the tip of a scale and the tip of the corresponding scale on the
opposite side, the thickness reaches values of around 100-150 pgm. The wings are
swept by veins, which represent the thickest parts of the wing itself, reaching values
of 1 mm. Such veins are mostly allocated close to the leading edge of the wing.

The technology used to pull out this information is though too expensive to be
applied to the entire wing, thus we don’t have a comprehensive precise data of the
behaviour of the thickness along the whole wing.

Here we model the wing starting from the configuration of the front and hind
wings used by the butterfly during gliding flight; the two-dimensional shape is traced
directly from the specimens gathered in [22], whereas the thickness is considered to
be uniform and equal to 1 mm. The three-dimensional model of the wing (visible in
Figure 2.2) is thus represented by a flat plate 1 mm thick shaped as mentioned, with
the edges rounded with a half-circumference having 0.5 mm radius. Motivations for

these assumptions are the following:

e the lenfth-scale of wing scales represents an impossible target in terms of com-
putational costs, geometry and meshing precision; moreover, the role of this
scales in the aerodynamics of the butterfly are arguable, since their size, com-
pared to the thickness of the expected boundary layer, is not sufficient to

produce any appreciable changes in the flow ([3]