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Introduction

Una volta che abbiate conosciuto il

volo, camminerete sulla terra

guardando il cielo, perché là siete

stati e là desidererete tornare

Leonardo da Vinci

This famous sentece of Leonardo Da Vinci means literally ”once that you have ex-

perienced flight, you will walk on earth looking at the sky, since there you have been

and there you will desire to go again”. Since long time ago nature has been source

of great inspiration for human beings: Leonardo da Vinci had been a seek observer

of anatomy and flight of birds with the aim of both studying them and creating a

”flying machine” and he might deserve the title of ”forefather of biomimetics”. After

him many scientists began to investigate the complexity and beauty of nature, trying

to catch its perfection and exploit it for human progress and technology growth.

Figure 1.: Leonardo da Vinci’s design for a flying machine with wings based closely

upon the structure of bat wings.

The present work constitute another human attempt to explore the mightiness

of Mother Nature and to gain some useful insights from her. Our attention is

focused here on Morpho butterflies, which represent a numerous group of different
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butterfly species living mostly in South America, Central America and Mexico. The

large number of species translates in a broad variety of individuals with different

morphological and behavioural characteristics and attitudes. The range of wingspan

among the different species goes from 7.5 to 20 cm, the colours and patterns are

various and the shapes of the wings can have substantial differences. Some species

move around flapping -as almost all the insects- whereas others are able to perform

flap-gliding phases, which are typical in birds. Among the many interesting aspects

of this butterflies that can be studied, we will focus on the following goals:

1. define a robust set of tools, manners and methodologies which can represent

an exhaustive and appropriate process to approach the CFD study of Morpho

butterflies and, more in general, other insects operating in similar dynamical

conditions; these aspects are discussed in Chapter 2;

2. supported by field data, we reproduce gliding flight conditions using different

mathematical models to understand which ones are more capable to produce

realistic results; this part of the work is gathered in Chapter 3;

3. given the insights gained at the previous points, we use CFD to compare the

performances of two Morpho species, the cisseis and the deidamia, in both

gliding and flapping flight; these results are available in Chapter 4.

The computational simulations are performed with the CFD solver ReFRESCO,

taking great care of producing reliable results: rigorous procedures for the esti-

mations of numerical errors are carried out, together with accurate tuning of the

software and models used parameter.

Since the work consists of almost two hundredsof CFD simulations, for sake of

conciseness, clearness and understandability only the aspects of the results important

for the purposes of the work will be discussed; two appendixes report results which

didn’t find space inside the text.
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1. State of the Art

Well, I must endure the presence of

a few caterpillars if I wish to become

acquainted with the butterflies.

Antoine de Saint-Exupéry, The

Little Prince

1.1. Meet the Morphos

1.1.1. Conventions and nomenclature in insect flight

The present work will adopt a terminology commonly used in insect flight literature

[9, 44, 24], borrowed from fixed wing aerodynamics: the wing will be considered as

an aerofoil; ”wing span” refers to the length between the tips of the wings, whilst

”wing length” refers to the root-to-tip length of one wing. ”Wing chord”, instead,

refers to the section between the leading and trailing edge of the wing at any given

position along the span (Figure 1.1 (A)); the ratio between wingspan and mean

chord is a non-dimensional morphological parameter termed ”aspect ratio”. ”Angle

of attack” refers to the angle between the wing chord and the relative velocity vector

of the fluid in the ”free-stream flow” or ”mean flow”, i.e. the flow not influenced

by the presence of the wing. This limitation to the non-disturbed flow is necessary

since, close to the wing, the flow is influenced by the presence of the aerofoil, which

induces a downwash U’ that, even if small in magnitude compared to the ”free-

stream velocity” U∞, can significantly alter the direction of the local flow velocity,

with the effect of lowering the angle of attack. The angle of attack relative to the

mean flow will be from now on simply termed ”angle of attack” α, whilst the angle of

attack relative to the deflected flow is termed ”effective angle of attack” α′ (Figure

1.1 (B)); this two quantities are tied together by the relation:
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α− α′ = tan−1
(

U′

U∞

)
.

Figure 1.1.: Conventions and terminology. (A) Sketch of an insect. (B) Sectional

view of the insect wing. (C) Phases of insect wing kinematics. Wing

pronation occurs dorsally as the wing transitions from upstroke to down-

stroke, and wing supination occurs ventrally at the transition from

downstroke to upstroke. (D,E) gliding (or Linear) and flapping transla-

tion. Source: [44].

During their flight, insects perform many different flapping patterns, which makes

it difficult to define unequivocally the kinematics of flapping flight; to overcome

this issue, researchers restricted their studies to hovering [44, 13].Terms ”upstroke”

and ”downstroke” are used here to describe ventral-to-dorsal and dorsal-to-ventral

motion of the wing respectively (Figure 1.1 (C)). If the insect moves forward, their

stroke plane bends forward. The term ”wing rotation” refers to any change in angle

2



Figure 1.2.: Wing shape of a Morpho deidamia specimen.

of attack around a chordwise axis. During the downstroke-to-upstroke transition

the wing ”supinates”, performing a rotation that brings the ventral surface of the

wing to face upward, whereas during upstroke-to-downstroke transition the wing

”pronates” bringing the ventral face of the wing to face downward (Figure 1.1).

From now on, ”gliding translation” will refer to aerofoils translating linearly (Figure

1.1 (D)), whereas ”flapping translation” will refer to an aerofoil revolving around a

central axis (Figure 1.1 (E)).

The insects considered here are Morpho butterflies, which comprise a large number

of different species that can be found mostly in Central and South America. They

boast important sizes, with wingspans reaching 20 cm ([22]), different wing shapes

between the various species and fly at velocities in the range 1-2 m/s, performing

different flying techniques.

1.1.2. How should we model Morpho butterflies?

Morpho butterflies are among the biggest insects on the entire planet and, thanks

to their dimensions, they are able to perform flap-gliding flight ([22]). This charac-

teristic, common in birds but not in insects, makes them of particular interest and

carries the question of how to simulate and reproduce their different flying tech-

niques. In the last years, attention to the flying behaviour of insects has drastically

grown, largely as a consequence of industrial and engineering interest for small size

flying vehicles; this led to an increment of studies about the performances of low

aspect-ratio airfoils at low Reynolds numbers (see [49, 33, 10]). Nonetheless, most of

3



(a) (b)

(c)

Figure 1.3.: Examples of techniques used to observe and study the aerodynamics of

butterflies. In (a) a Melitatea cinxia attached to a tether in a laboratory;

source: [37]. In (b) the insectary used in [22] to film various species of

Morpho butterflies. In (c) an artificial wing model used in [46].

them only take under consideration Reynolds number of the order of 104 − 105 and

cambered airfoil profiles. Here, instead we consider butterflies that mostly operate

at Reynolds numbers in the range of 5000-9000 with sharper and flatter profiles.

Some recent studies contributed in gaining some insights about the flight of but-

terflies ([23]). In [37] tethered-flight experiments in laboratory conditions have been

carried out, whereas in [22] various specimens of different Morpho species have been

recorded while flying in a large insectary (8 m x 4 m x 2.5 m). An interesting

work on gliding flight in butterflies was proposed in [46], where artificial wing mod-

els with various shapes were tested in a wind tunnel, varying angle of attack and

configuration of the fore and hind wings. Numerical simulations are also proposed

to reproduce experimental results using computational fluid dynamics. Another at-
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Figure 1.4.: Reproduction of a Swallowtail butterfly aerodynamics in a wind tunnel.

Angles of attack of 10 (top) and 15 (bottom) degrees. The Reynolds

number, with respect to the mean chord lenght, is in the range 5760-

8640. Source: [39].

tempt to study the flow characteristics surrounding a gliding butterfly is presented

in [39], where a wing model of a swallowtail butterfly -which has dimensions similar

to Morphos- is observed in a wind tunnel. The reported visualisations of the latter

(see Figure 1.4) provide interesting insights about the flow surrounding the wing,

with separation taking place at the leading edge, reattachment for low attack angles

and development of turbulent structures on and downstream the wing.

The analysis of flapping flight phase is much more complicated than the one of

gliding flight. To gain an insights about how to deal with it, we have to leave the

specific niche of butterflies in favour of the broader world of insect flight, where flap-

ping and hovering flight has been widely dissected ([44, 14, 25, 51]). While flapping,

an insect moves the wings following rapid oscillatory patterns that produce unsteady

air flows over the wing. To understand the connections that bond the aerodynamic

forces to the complex movements of the wings during flapping, different physic mech-

anisms have been observed, studied and modelled ([14, 44]). A possible approach to

the problem is represented by the combination of models of separate aerodynamic

mechanisms to build a comprehensive simulation of the various sources ([25, 51]).

5



Figure 1.5.: Time history of lift and drag forces during a flapping wingbeat of an

artificial reproduction of Drosophilia. Measured forces In red, forces

predicted by translation force coefficients in blue and rotational lift in

black. Translational (green) and rotational (purple) velocities of the

wing a the bottom. Source: [9].

Among the mechanisms accountable for the often unexpected high performances of

insects flight, of particular importance is the leading edge vortex (LEV) ([14, 44]).

In [25] it is shown that the LEV remains stably attached on a wing model that re-

volves around its base, despite it is shed, and thus not anymore capable of enhancing

the aerodynamic performances of the animal, after a few chord lengths of travel on

a translating model of the wing. Similarly, the experiments performed in [9] show

the importance of wing rotation in the production of forces that keep insects aloft.

In this latter work, a wing model of Drosophilia is used to reproduce the flapping

movement of the insect; the history of drag and lift forces during a wingbeat is then

decomposed into transitional and rotational component, highlighting the importance

of the latter (see Figure 1.5).

For this study two different setups has been taken into account: one for gliding
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flight, where the wing lies fixed in a box-shaped domain and is invested by the air flow

(a setup comparable to the one used in [46, 39]), and one for flapping flight, which

reproduces the rotational setup used in [25], with the wing lying in a cylindrical

domain and revolving around its hinge in still air.

1.2. Mathematical Modelling and Numerical Methods

The following section reports the physical equations describing the dynamics of fluids

and their interaction with immersed bodies immersed along with some of the models

developed to solve the resulting differential problem. A broad literature is available

on this topic, with a variety of different approaches having different efficiencies,

fields of application computational costs and other intrinsic characteristics. Here

we discuss only the methods that have been used for the simulations of the present

work.

1.2.1. The Navier-Stokes equations

The flow surrounding and aerofoil immersed in a Newtonian fluid (like air) is gov-

erned by the Navier-Stokes equations ([2, 50]). At low speeds, as it is the case for

this study, we can assume that compressibility of the flow is negligible ([2]), and thus

refer to the continuity equation and the incompressible Navier-Stokes equations; for

i,j=1,..,3 and summing over repeated indexes:

∂ui
∂xi

= 0, (1.1)

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

, (1.2)

where [u1(x, t), u2(x, t), u3(x, t)] is the velocity field of the flow, p is the pressure

field, ρ is the density and ν the kinematic viscosity of the fluid; the latter two are

considered to be constant in the present work.

1.2.2. Reynolds Number: dynamical similarity

We will now introduce two quantities characteristic of the phenomenon we are study-

ing: the length (L) and velocity (U) scales. This two quantities are meant to describe

the size of the apparatus we are considering and the rate at which the fluid is moving

through it ([50, Chapter 7]. For our case, L represents the mean chord length of the
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wing and U the free-stream velocity of the flow. We can now use this values to turn

the quantities at stake in dimensionless equations, by defining:

ũi =
ui
U
, x̃i =

xi
L
, t̃ = t

U

L
, p̃ =

p

ρU2
. (1.3)

And repkacing them in (1.2) and (1.1), we obtain:

U

L

∂ũ

∂x̃i
= 0, (1.4)

U2

L

∂ũi

∂t̃
+
U2

L

(
ũj
∂ũi
∂x̃j

)
= −U

2

L

∂p̃

∂x̃i
+
U

L2
ν
∂2ũi
∂x̃j∂x̃j

, (1.5)

which finally yields:
∂ũ

∂x̃i
= 0, (1.6)

∂ũi

∂t̃
+

(
ũj
∂ũi
∂x̃j

)
= − ∂p̃

∂x̃i
+

1

Re

∂2ũi
∂x̃j∂x̃j

, (1.7)

where Re = UL/ν is the Reynolds Number. If we now consider two geometrically

similar setups -meaning that one is just a scaled-up version of the other-, if they have

the same Reynolds Number, then the equations for the non-dimensional variables

are the same, and the problems have the same solutions and flow patterns ([50,

Chapter 7]). The Reynolds Number is thus a global parameter of great importance,

since it gives full information about the case studied, without any need to study the

inference of the other parameters (L, U, ρ, ν).

The Reynolds Number also has an important physical interpretation, since it can

be seen as the ratio between the inertia forces and the viscous forces thus playing a

fundamental role in defining the pattern of the flow topology.

1.2.3. The problem of turbulence

At low Reynolds regimes the flow pattern is simple and tidy. The streamlines of fluid

particles are smooth and arranged in layers that don’t mix with each other. With

the increase of the Reynolds number this heavenly situation eventually comes to an

end, due to small instabilities that start to mix such layers, entangling and ravelling

them, bringing the flow to a chaotic state where velocities and pressure at every

point are characterised by sudden and random variations. This process of slowly

and incrementally mixing and stirring the flow is called transition to turbulence and

the final state of chaos and randomness that follows it is called turbulence. The bond

8



between the Reynolds Number and the state of the flow (laminar or turbulent) is

clear and straightforward, even though the value of Re at which transition is kicked

depends on a wide range of factors ([2, 50, 32]).

There is no definition on turbulent flow, but we can still frame it listing its most

characterstic features ([6, Chapter 1], [48, Chapter 1]):

1. Irregularity. Any turbulent flow is highly irregular; the streamlines of fluid

particles are chaotic and highly entangled. The flow is made up of a spectrum

of different time and length scales (eddy sizes), some of them assuming a

particularly specific role. Such spectrum is bounded from above by the size of

the flow geometry and from below by the viscous forces exerted by molecular

viscosity.

2. Diffusivity. Turbulent motion has the outstanding ability to transport or

mix momentum, kinetic energy, heat, with rates of transfer and mixing several

orders of magnitude higher than the ones characteristic of laminar flow. This

high diffusivity has several effects on the flow pattern and on the generation

of forces.

3. Large Reynolds Numbers. As previously said, turbulence is highly re-

lated to the Reynolds number. Transition to turbulence is also case-dependent

though, occurring at different Reynolds numbers for different geometries and

conditions.

4. Three-Dimensional. Turbulence is always a three-dimensional phenomenon.

That said, modelling turbulence with time-averaging can bring to two-dimensional

flows.

5. Dissipation. Turbulence is a process that dissipates kinetic energy. In par-

ticular, the largest eddies gain energy from the mean flow, which is then trans-

ferred to smaller scale eddies, which in turn transfer it to smaller eddies; this

cascade process eventually brings kinetic energy to the smaller scales, where

the action of viscous forces turn it into internal energy. The whole process that

brings energy from the largest scales to the smallest is called cascade process.

As the flows becomes more turbulent, the spectrum of scales widens and the

smallest scale decreases. In particular, it can be demonstrated (see [7]) that the

9



relation between the length of the smallest scale of turbulence (also reffered to as

Kolmogorov microscales and written as η) and the Reynolds number is the following:

η = Re−3/4l, (1.8)

where l is the size of the large energy-containing eddies. When it comes to discretise

the spatial and temporal domain of a problem to perform numerical simulations,

in order to accurately reproduce the flow and all the phenomena concerning it, a

resolution that catches all the scales of the phenomenon is needed. Therefore, the

higher the Reynolds numbers -and, consequently, the smaller the smallest scales of

turbulence- the finer the discretisation needed. In practical terms, this means that in

most cases computational costs are prohibitive (see [7, p. 423-424]) and alternative

solutions must be adopted in order to be able to properly simulate the problem

under consideration at a reasonable cost. This problem leads to the question of how

to accurately model turbulence without directly resolving it.

1.2.4. The time-averaged Navier-Stokes equations

Although turbulent flows are chaotic, they are deterministic and described by the

Navier-Stokes equation which, as said, in most cases cannot be directly numerically

solved. To overcome this problem, when analizing a turbulent flow it can be useful

to decompose the instantaneous variables (velocity components and pressure) into

a mean and a fluctuating value ( [48, 6, 53, 7]):

ui = ūi + u′i

p = p̄+ p′,
(1.9)

where ūi, p̄ denote the time averaged value defined by:

ūi =
1

2T

∫ T

−T
uidt, (1.10)

where T is a sufficietly large time interval. Averaging (1.9) in time yields:

ūi = ūi + u′i = ūi + u′i, (1.11)

since ūi = ūi. Operating similarly on p we obtain:

u′i = 0, p′ = 0. (1.12)
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Insert Equation (1.9) into (1.1) and time-averaging, we find ([6]):

∂(ūi + u′i)

∂xi
=
∂ūi
∂xi

. (1.13)

With the same process for the Navier-Stokes equations we find:

∂(ūi + u′i)

∂t︸ ︷︷ ︸
T1

+ (ūj + u′j)
∂(ūi + u′i)

∂xj︸ ︷︷ ︸
T2

= −1

ρ

∂(p̄+ p′)

∂xi︸ ︷︷ ︸
T3

+ ν
∂2(ūi + u′i)

∂xj∂xj︸ ︷︷ ︸
T4

. (1.14)

We will now discuss each term of the last equation separately, as in [6]. The fist

term (T1) results in:

∂(ūi + u′i)

∂t
=
∂ūi
∂t

+
∂u′i
∂t

=
∂ūi
∂t

.

Note that, in case of a steady mean flow, this terms is zero. The second term (T2)

gives:

(ūj + u′j)
∂(ūi + u′i)

∂xj
= ūj

∂ūi
∂xj

+ u′j
∂ūi
∂xj

+ ūj
∂u′i
∂xj

+ u′j
∂u′i
∂xj

,

and using ūiūj = ūiūj , ūiu′j = ūiu′j = 0 and ūju′i = ūju′i = 0 (see [6, Chapter 8]) we

finally find:

(ūj + u′j)
∂(ūi + u′i)

∂xj
= ūj

∂ūi
∂xj

+ u′j
∂u′i
∂xj

= ūj
∂ūi
∂xj

+
∂u′ju

′
i

∂xj
− ūi

∂ūj
∂xj

,

with the last term being equal to zero thanks to the continuity equation. The third

term (T3) results in:
∂(p̄+ p′)

∂xi
=

∂p̄

∂xi
.

The fourth term (T4) results in:

∂2(ūi + u′i)

∂xj∂xj
=

∂2ūi
∂xj∂xj

.

This brings to the time averaged continuity equation and Navier-Stokes equations

(typically called Reynolds-Averaged Navier-Stokes equations, in short RANS):

∂ūi
∂xi

= 0, (1.15)

∂ūi
∂t

+ ūj
∂ūi
∂xj

= −1

ρ

∂p̄

∂xi
+

∂

∂xj

(
ν
∂ūi
∂xj
− u′iu′j

)
. (1.16)

This equations look very similar to the original Equations (1.1) and (1.2) if we don’t

consider the average operator, exception made for the second part of the last term,

which is new and, when multiplied by the density, goes with the name Reynolds

stress tensor :

τij = −ρu′iu′j . (1.17)
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Figure 1.6.: Representation of flow over a sphere at Re = 2 x 104: (a) real topology

of the flow and (b) time-averaged flow pattern (as it could be seen in a

time-lapse photograph). Source: [6].

Such tensor is symmetric and represents the correlation between fluctuating veloc-

ities: if u′iu
′
j 6= 0 u′i and u′j are said to be correlated, otherwise they are said to

be uncorrelated ([48]). The Reynolds stress tensor is an additional term related to

turbulence, and brings six new unknowns, meaning that we need a model for u′iu
′
j to

close the equation system, which now has ten variables (three velocity components,

pressure, six Reynolds stress tensor components) but still only four equations. This

is known as the closure problem. Note that the continuity equation applies both for

the instantaneous velocity ui and the time-averaged term ūi, therefore it holds also

for the fluctuating velocity term u′i ([6]):

∂u′i
∂xi

= 0. (1.18)

The last term of Equation (1.16) represents the divergence of the total stress tensor

([18]). The first part is related to the net momentum flux by molecular motions,

while the second part is the net flux of the momentum ρu′i by the macroscopic

velocity fluctuations u′j . The molecular contribute to the stress tensor can be written

as:

− pδij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)
, (1.19)

12



where µ = νρ is the dynamic viscosity.

With the Reynolds-averaged formulation of the Navier-Stokes equations it is pos-

sible to define a useful quantity, the turbulent kinetic energy (per unit mass) as:

k =
1

2
u′ku

′
k. (1.20)

1.2.5. The Boussinesq assumption

As said, a model is necessary for the Reynolds stress tensor in order to solve the

system of equations describing the flow. One of the most popular models was in-

troduced by Boussinesq and is based on the introduction of an eddy viscosity to

reproduce the role of the u′iu
′
j terms. We start considering the diffusion terms in

Equation (1.16), with an explicit formulation of the viscous stress (we assume ν is

non-constant for the moment):

∂

∂xj

(
ν

(
∂ūi
∂xj

+
∂ūj
∂xi

)
− u′iu′j

)
. (1.21)

We define the Reynolds stress tensor terms as:

− u′iu′j = νt

(
∂ūi
∂xj

+
∂ūj
∂xi

)
, (1.22)

where νt is called kinematicturbulentviscosity ([m2/s]) and we use it in Equation

(1.21), thus yielding:
∂

∂xj

(
(ν + νt)

(
∂ūi
∂xj

+
∂ūj
∂xi

))
. (1.23)

The definition given in Equation (1.22) is not valid upon contraction ([6]), as the

right term is zero when i = j; for this reason we add the trace of the left side to the

right side obtaining:

u′iu
′
j = −νt

(
∂ūi
∂xj

+
∂ūj
∂xi

)
+

1

3
δiju′ku

′
k = −2νts̄ij +

2

3
δijk. (1.24)

The former equation is known as Boussinesq assumption. It will be useful in the

future to underline that the definition given in Equation (1.17) can be written as:

τij = 2µts̄ij −
2

3
δijk. (1.25)

Thus, this model is thus replacing the six turbulent stresses with one new unknown,

the turbulent viscosity νt. With such assumption Equation (1.16) reads:

∂ūi
∂t

+ ūj
∂ūi
∂xj

= −1

ρ

∂p̄B
∂xi

+
∂

∂xj

(
(ν + νt)

∂ūi
∂xj

)
, (1.26)
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where p̄B = p̄+ 2k/3. It is important to remember that ν is a property of the fluid,

whilst νt is a variable dependent on the flow, which means that it is function of time

and space: νt = νt(t, xi).

With this assumption we have a set of four equations and five variables; many

different models have been developed starting from the ReBoussinesq hypothesis.

They differ from each other in the way of defining the function νt and in the number

of equations added to close the problem. In the present work, the turbulence models

used are the Spalart−Allmaras model ([47]) and the SST κ− ω model ([30] ).

1.2.6. The Spalart-Allmaras model

The Spallart − Allmaras model ([47]) is a 1-equation model (meaning that one

equation is added to the starting system of Equations (1.15) and (1.26) to solve it)

which defines the turbulent viscosity by means of an auxiliary viscosity ν̃ and an

auxiliary function fv1 ([26, Chapter 8]):

νt = ν̃fv1. (1.27)

The equation added to the system is the transport equation for ν̃:

∂ν̃

∂t
+ uj

∂

∂xj
= cb1(1− fv1)S̃ν̃

+
1

σ

(
∂

∂xj
(ν + ν̃)

∂ν̃

∂xj

)
+ cb2

∂ν̃

∂xj

∂ν̃

∂xj

−
(
cw1fw −

cb1
k2
ft2

)(
ν̃

d

)2

+ ft1∆U
2.

(1.28)

In the right hand side, the first term represents the production term, the second the

diffusion term, the third the dissipation term and a transition related term. The

coefficients are:

cb1 = 0.1335, cb2 = 0.622, σ =
2

3
κ = 0.41,

cw1 =
cb1
κ2

+
1 + cb2
σ

, fw = g

(
1 + c6w3
g3 + c6w3

) 1
6

, cw2 = 0.3,

cw3 = 2, r ≡ ν̃

S̃κ2d2
, g = r + cw2(r

6 − r).

(1.29)

The auxiliary functions related to the flow close to wall are:

S̃ = S +
ν̃

κ2d2
fv2, S =

√
2s̄ij s̄ji, χ ≡ ν̃

ν
,

fv1 =
χ3

χ3 + c3v1
, fv2 = 1− χ

1 + χfv1
, cv1 = 7.1.

(1.30)
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The function connected to the transition related term are given by:

ft1 = ct1gt exp

(
− ct2

w2
t

∆U2

(
d2 + (gtdt)

2

))
, ft2 = ct3exp(−ct3χ2),

gt = min

(
0.1,

∆U

ωt∆xt

)
, ct1 = 1, ct2 = 2, ct3 = 1.2, ct4 = 0.5.

(1.31)

Here ωt is the vorticity, ∆U the norm of the difference between the velocity at the

transition and the velocity at any field point, ∆xt the grid size along the wall at the

transition point and d the distance to the wall.

1.2.7. The k − ω and SST k − ω models

The original k−ω model was introduced by David Wilcox in 1988 ([52]; it introduces

two transport equation to close the system represented by Equations (1.15) and

(1.26), one for the turbulent kinetic energy k and one for the characteristic frequency

of turbulence, ω). This model defines eddy viscosity as:

νt =
k

ω
. (1.32)

The equations that define the model are:

• Turbulent kinetic energy k equation:

∂k

∂t
+ ūj

∂k

∂xj
= τij

∂ūi
∂xj
− β∗kω +

∂

∂xj

(
(ν + σ∗νt)

∂k

∂xj

)
, (1.33)

• Specific dissipation rate ω equation:

∂ω

∂t
+ ūj

∂ω

∂xj
= α

ω

k
τij
∂ūi
∂xj
− βω2 +

∂

∂xj

(
(ν + σ∗νt)

∂ω

∂xj

)
, (1.34)

where Pk is called rate of production of turbulent kinetic energy ([26]) and is defined

as:

Pk = τij
∂ū

∂xj
. (1.35)

Writing as ∆y the distance between the cell center of the first cell adjacent to the

wall and the wall itself, the boundary conditions for the model a the wall are:

k = 0, ω = 10
6ν

β(∆y)2
, (1.36)

and the conditions outside the boundary layer are:

ω∞ = λ
ūref
Lref

, νt∞ = 10−3ν, k∞ = νt∞ω∞, (1.37)
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Uref and Lref being reference quantities and λ a parameter varying from 1 to 10.

This model has been revisited in terms of coefficients by David Wilcox in 1998 ([53]);

moreover, in 1993 Menter introduced a variation of it, called Shear Stress Transport

(SST) k − ω model ([31]). This new version is characterised by the new following

equations for k and ω:

∂k

∂t
+ ūj

∂k

∂xj
= Pk − β∗kω +

∂

∂xj

(
(ν + σωνt)

∂k

∂xj

)
, (1.38)

∂ω

∂t
+ ūj

∂ω

∂xj
= Pω − βω2 +

∂

∂xj

(
(ν + σωνt)

∂ω

∂xj

)
+ 2(1− F1)

σω2
ω

∂k

∂xj

∂ω

∂xj
.

(1.39)

Where the production term Pω is defined as:

Pω =
α

µt
Pk. (1.40)

In the various versions of the model given, various different closure coefficients where

proposed ([30, 53]); the ones used in the present work were presented in the most

recent SST k − ω version, and are the following:

F1 = tanh(arg4), arg = min

(
max

( √
k

β∗ωd
,
500ν

d2ω

)
,

4ρσω2k

CDkωd2

)
,

CDkω = max

(
2ρσω2

1

ω

∂k

∂xi

∂ω

∂xi
, 1× 10−10

)
,

(1.41)

where d is the distance from the wall and:

α = F1α1 + (1− F1)α2, β = F1β1 + (1− F1)β2,

σk = F1σk1 + (1− F1)σk2, σω = F1σω1 + (1− F1)σω2,
(1.42)

with:

β∗ = 0.09, α1 = 5/9, β1 = 0.075, σk1 = 0.85, σω1 = 0.5,

α2 = 0.44, β2 = 0.0828, σk2 = 1.0, σω2 = 0.856,
(1.43)

and the eddy viscosity νt defined by:

νt =
a1k

max(a1ω, F2S)
, a1 = 0.31,

F2 = tanh(arg22), arg2 = max

(
2
√
k

0.09ωd
,
500ν

ωd2
,

) (1.44)

with S =
√

2s̄ij s̄ij and Ω is the absolute value of the vorticity.

The SST k−ω is a blending of the k− ε ([26, 41]) and k−ω models, since close to

the wall F1 = 1, meaning the model is working as a k − ε, and F1 = 0 far from the
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walls, meaning the model is working as a k−ω. To prevent the rising of turbulence in

stagnation points, the production term Pk is bounded from above using the modified

production term:

P̃k = min(Pk, 10β∗ρkω). (1.45)

1.2.8. Transition modelling

All the previously mentioned models are developed to reproduce the effects of tur-

bulence but they have been developed based on the assumption that turbulence in

the flow is fully developed. For certain situations, in particular for low Reynolds

numbers, it can be argued that the phenomenon of transition from laminar to tur-

bulent flow plays a major role. The transition consists of the generation of small

perturbations that drive a laminar flow towards a turbulent state; it is a very del-

icate process ([20, 50, 40]) and it has been a great challenge to formulate proper

models to catch it and its consequences. In the present work we consider and use

the γ − Reθ model developed by Florian Menter and Robin Langtry ([32, 21]) in

2004. The model consists in adding two transport equations to the SST k−ω model,

one for the intermittency γ and one for the Reynolds momentum thickness, which is

defined as:

Reθ =
max(Rev)

2.193
, (1.46)

where Rev is the strain rate Reynolds number :

Rev =
ρy2n
µ
S, (1.47)

with S defined as in Equation (1.30) and y2n = d being the distance from the wall.

Outcomes of these two equations are then used inside the k equation being thus

embedded in the SST k − ω model. Due to its complexity the formulation of the

model is not reported here, but can be found in [32, 21] and [20, 26].

1.2.9. Partially averaged Navier-Stokes equations

The RANS models proved to predict the mean flow statistics with adequate acuracy

for many engineering applications, although the range of flow physics that can be

adequately represented by these models is limited. Many different turbulence models

have been developed to resolve all or most of the dynamically important scales of

motion ([26, 7, 53]), like Large Eddy Simulation (LES), Detatched Eddy Simulation

17



Figure 1.7.: A representation of transition to turbulence on a flat plate. δ is the

boundary layer thickness and V∞ the free stream velocity. Source: [45].

(DES) or Direct Navier-Stokes Simulation (DNS). As in most of engineering tools,

accuracy comes at a cost, that is, in many cases unbearable and/or unjustified. In

this work we will make use of another high accuracy model, the Partially Averaged

Navier-Stokes equations (PANS), introduced by Sharath Girimaji in 2006 ([15]).

PANS is a suite of turbulence closure models of various modeled-to-resolved scale

ratios ranging from RANS to DNS. The modelled-to-resolved scale ratio or the level

of physical resolution in PANS is quantified by two parameters: the unresolved-to-

total ratios of kinetic energy fk and dissipation fε. The unresolved stress is modelled

with the Boussinesq approximation and modelled transport equations are solved for

the unresolved kinetic energy and dissipation ([16]). The unresolved kinetic energy

and dissipation equations are derived from a parent RANS model, in this case the

SST k−ω. PANS models of different fk values require different numerical resolutions:

the lower the fk value, the smaller the finer time and space need to be discretized,

with fk = 1 representing RANS and fk = 0 representing DNS. If we write the

unresolved kinetic energy as ku, the unresolved energy dissipation as εu and the

unresolved specific dissipation as ωu, we can define the PANS coefficients as:

fk =
ku
k
, fω =

fε
fk

=
ωu
ω
. (1.48)

These values are then embedded in the RANS equations (in this case the SST k−ω).

A full explanation of the model is given in [15, 16] and its implementation in the

CFD solver used in this work is given in [26].

1.3. Numerical Errors and Uncertainty Estimation

The assessment of the quality and reliability of a numerical analysis is a fundamen-

tal step if we aim to issue a reliable work. Such procedure is commonly denoted
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as Verification & Validation. Following [12], ”Verification is a purely mathematical

exercise that intends to show that we are ’solving the equations right’, whereas Val-

idation is science/engineering activity that intends to show that we are ’solving the

right equations’. This means that Verification deals with numerical errors/uncer-

tainties whereas Validation is concerned with modelling errors/uncertainties”. Here

we mention errors and uncertainties, but it is important to state clear that these are

conceptually different: to define an error we need the knowledge of the ’true/exact

solution’, and such error has a sign; an uncertainty defines and interval in which

the ’true/exact solution’ should lie with a certain degree of confidence. It is usually

accepted ([12]) that the numerical error of a CFD prediction has three components:

1. round-off error

2. iterative error

3. discretisation error.

The first comes as a direct consequence of the finite precision of computers and

its relative importance tends to increase with grid refinement ([11, 12]). Iterative

error is unavoidable due to the non-linearity of the Navier-Stokes equations. The

discretisation error is a consequence of the approximations made to transform the

partial differential equations of the continuum formulation into a system of algebraic

equations, which are for us brought by the adoption of a finite-volume method

approach. The latter source of error, unlike the others, tends to decrease refining

the grid.

When we follow procedures to estimate the numerical error due to discretisation,

we assume that the other two error sources are negligible. The round-off errors are

unavoidable and their impact on the solution is difficult to estimate; for the present

work we will assume that they small compared to the others. The sensitivity to

the iterative error will be discussed case by case. The discretisation error will be

computed using the software suite developed following the procedure reported in

[12]. The latter chooses as estimator for the discretisation error εφ with power series

expansions:

εφ ' δRE = φi − φ0 = αhpi . (1.49)

φi stands for any integral or other functional of a local flow quantity, φ0 is the

estimate of the exact solution, α is a constant to be determined, hi is a typical cell
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size and p is the observed order of grid convergence. The index i refers to the i− th

grid and for i = 0 we are referring to the finest grid. The estimation of εφ requires

the determination of φ0, α and p. Therefore the minimum number of grids (ng)

required for the estimation of εφ is p+1.

The assumptions needed for the application of Equation (1.49) are ([12]):

1. φ does not include any singularities;

2. the grids must be in the ’asymptotic range’1 to guarantee that the leading

term of the power series expansion is sufficient to estimate the error;

3. the density of the grids is representable by a single parameter, the typical cell

size of the grids, hi; this requires the grids to be geometrically similar, that

is the grid refinement ratio must be constant in the complete field and grid

properties must remain unaffected.

In practical problems -and the present in one of these- it is not possible the respect

such constraints; to deal with these shortcomings in [12] three error estimators are

proposed (considering from now on that p = 2, as it is for the discretisation method

used in the present work):

εφ ' δ1 = φi − φ0 = αhi, (1.50)

εφ ' δ1 = φi − φ0 = αh2i , (1.51)

εφ ' δ1 = φi − φ0 = α1hi + α2h
2
i . (1.52)

These three alternatives are used when Equation (1.49) is not reliable, giving orders

of convergence either too large or small. Equation (1.52) can be used also for non-

monotonic convergence, whereas Equations (1.50) and (1.51) are suitable only for

monotonically convergent solutions.

As reported in [12], it is suggested to use at least four grids to have a reliable

estimation of the uncertainty. In such conditions (ng ≥ 4), it is possible to do the

1This means that the grids used are fine enough to give a single dominant term in a power series

expansion of the error.
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error estimation in the least-square sense, that is determining φ0 from the functions:

SRE(φ0, α, p) =

√√√√ ng∑
i=1

(φi − (φ0 + αhpi ))
2 (1.53)

S1(φ0, α) =

√√√√ ng∑
i=1

(φi − (φ0 + αhpi )) (1.54)

S2(φ0, α) =

√√√√ ng∑
i=1

(φi − (φ0 + αh2i ))
2 (1.55)

S12(φ0, α1, α2) =

√√√√ ng∑
i=1

(φi − (φ0 + α1hi + α2h2i ))
2. (1.56)

The approach can be slightly modified if one may wish to give more value to the finer

grid solutions, using weighting coefficients, and thus using the following functions

instead:

SwRE(φ0, α, p) =

√√√√ ng∑
i=1

wi(φi − (φ0 + αhpi ))
2 (1.57)

Sw1 (φ0, α) =

√√√√ ng∑
i=1

wi(φi − (φ0 + αhpi )) (1.58)

Sw2 (φ0, α) =

√√√√ ng∑
i=1

wi(φi − (φ0 + αh2i ))
2 (1.59)

Sw12(φ0, α1, α2) =

√√√√ ng∑
i=1

wi(φi − (φ0 + α1hi + α2h2i ))
2. (1.60)

The weights Wi are based on the typical cell size:

wi =
1
hi∑ng

i=1
1
hi

, (1.61)

for which the following holds:
ng∑
i=1

wi = 1. (1.62)

The least-square minimisation of the previous functions, together with data regres-

sions are presented in [12].
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2. Approach, Tools, Methodology

Nature, my friends, is the most

surprising spectacle man can

behold. Did you know ants have

herds of livestock that give them

milk and sugar? That spiders

invented the submarine millions of

years ago? Did you know that

butterflies have tongues? The

tongue of a butterfly is like an

elephant’s trunk, but very thin and

wound up like a watch spring.

Don Gregorio, Butterfly’s Tongue

2.1. Approach to the problem and main assumptions

The experimental data we refer to in this work ([22]) has been collected by the

PhD candidate at the Institute of Systematic, Evolution and Biodiversity (ISYEB)

Camille Le Roy, whom we raised a collaboration with. Mr. Le Roy spent several

month in South America to gather and study various species of Morpho butterflies.

Among the many specimen collected, some of them have been recorded while flying

in a large insectary (8 m x 4 m x 2.5 m). The three-dimensional trajectories of

this flights have been then reconstructed, thanks to the simultaneous use of several

cameras. Tracking the positions of head and tail of the butterfly and of left and right

wingtips allowed us to derive position, velocity and acceleration of the butterfly and

the angles of attack of the wings.

Since the flight phases were recorded inside a closed insectary, we assume that

during the filming the air was still and any currents had negligible effect on the

trajectory drawn by the insects.
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2.1.1. Modelling the wing

Morpho’s wing shape has been studied in [22], together with the topology of its

thickness. Each wing consists of a front and hind wing that can vary their mutual

position. Using optical coherent tomography an important insight to the wing1

thickness was given. The membrane separating the dorsal side from the ventral

side is very thin and is covered with small scales which mostly curl upwards; when

the scales are nearly flat, wing thickness is about 30-50 µm, whilst considering the

distance between the tip of a scale and the tip of the corresponding scale on the

opposite side, the thickness reaches values of around 100-150 µm. The wings are

swept by veins, which represent the thickest parts of the wing itself, reaching values

of 1 mm. Such veins are mostly allocated close to the leading edge of the wing.

The technology used to pull out this information is though too expensive to be

applied to the entire wing, thus we don’t have a comprehensive precise data of the

behaviour of the thickness along the whole wing.

Here we model the wing starting from the configuration of the front and hind

wings used by the butterfly during gliding flight; the two-dimensional shape is traced

directly from the specimens gathered in [22], whereas the thickness is considered to

be uniform and equal to 1 mm. The three-dimensional model of the wing (visible in

Figure 2.2) is thus represented by a flat plate 1 mm thick shaped as mentioned, with

the edges rounded with a half-circumference having 0.5 mm radius. Motivations for

these assumptions are the following:

• the lenfth-scale of wing scales represents an impossible target in terms of com-

putational costs, geometry and meshing precision; moreover, the role of this

scales in the aerodynamics of the butterfly are arguable, since their size, com-

pared to the thickness of the expected boundary layer, is not sufficient to

produce any appreciable changes in the flow ([3]);

• as previously mentioned, it is not within our means to extrapolate the topology

of the whole wing’s thickness;

• in terms of flow development, we believe that the most important parameter

for thickness is its value at the leading edge, which, luckily, can be estimated

1The specimen used for this measurements was a Morpho cisseis.
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(a)

(b)

Figure 2.1.: Insight of a part of a Morpho cisseis wing: in (a) the ventral side and in

(b) the dorsal side. Note the scales curling upwards (with a thickness of

around 50-75 µm) and the vein sweeping the wing, having a thickness

considerably larger than the rest of the wing (up to 1 mm).
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with sufficient precision ([22]); thereby the decision of extending such thickness

to the whole wing;

• according to [22], the front and hind wings are most of the time one pressed

on the other, acting de facto as a single body.

As a final remark, looking at Figure 1.2, where wing shape and half of the trunck

of a Morpho deidamia is shown, it can be noticed that the latter is a tapered body

with a surface area at least one order of magnitude smaller than that of the wing;

thereby, we assume that the role of the butterfly’s body has negligible effects in the

production of aerodynamic forces and flow topology and thus we won’t model it but

we will consider only the wings.

2.1.2. Modelling gliding flight

Gliding flight might be thought as a steady phenomenon, but this is not the case

for Morpho butterflies. As expected, in order to maintain its gliding trajectory, the

animal is continuously correcting its maneuvers: in Figure 2.3 the kinematic details

of gliding trajectories of a Morpho cisseis and a Morpho deidamia are reported,

showing smooth trends of position, velocity and acceleration, in contrast with quick

changes of the angles of attack.

In the analysis of the gliding performances of the butterflies we will neglect this

observation and we will perform the simulations with a fixed angle of attack, as also

done in [46]. The motivations for this choice are the following:

• the changes in angle of attack are a consequence of the unsteadiness of the flow

encountered by the butterfly and they clearly have a random and difficult-to-

control nature; therefore, they are highly case-dependent and not reproducible:

trying to simulate them would lead to a very specific result with scarce meaning

and range of applicability;

• the purpose of this work is to investigate the mathematical models which

are more promising to efficiently reproduce the flow patterns around butterfly

wings and to look at the performances of different wings; from this perspective,

we need a highly controllable setting that would allow us to keep track of all

the parameters we want to investigate.
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(a)

(b)

Figure 2.2.: 3D model of a Morpho cisseis wing: in (a) an overview of the full wing;

in (b) a focus of the edge region.
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Figure 2.3.: Gliding trajectory of the specimens cisseis004 F05 glidingpart1 and

deidamia001 F7. In (a) the position field during the flight, in (b) the

velocity field, in (c) the acceleration field and in (d) the angles of attack

of the wings. Data source: [22].
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Figure 2.4.: Setup of a gliding simulation. The root of the wing is positioned on the

symmetry plane.

In light of this considerations, all the simulations of gliding flight presented here

have the following setup:

• domain: represented by a rectangular box, measuring 1 m in the y direction

and 2 m in the x and z directions; the wing’s root is laying on the y = 0 plane,

with the leading tip of the hinge centered in the origin;

• boundary conditions: a symmetry plane is imposed on the y = 0 plane; an

inflow velocity is set on the x = 1 plane, with direction reverse to the x axis;

on the wing a no-slip condition is imposed, whereas the remaining surfaces are

characterised by a zero-pressure condition;

such setup is the same used in [46] and is shown in Figure 2.4.

2.1.3. Modelling flapping flight

Reproducing the flapping flight of an insect represents a very complicated task.

Moreover, the direct simulation of a flapping trajectory can represent a very inter-

esting topic but also a honey trap when it comes to understanding where and how

the forces at stake are generated. In fact, with this type of approach it is possible to

observe the evolution of the flow surrounding the animal, but it is difficult to state

which are the physical mechanisms responsible for the production of forces. For this
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Figure 2.5.: Setup for the flapping simulations. The wing is positioned in the origin

of the cylinder and rotates (together with the whole grid) around its

hinge in still air.

reason, to evaluate the performance of flapping flight of Morpho butterflies, in this

work we use CFD to reproduce the experimental pattern proposed in [9] and [25],

using the following setup:

• domain: represented by a vertical cylinder, with a 1 m radius base and a height

of 2 m; the leading tip of the hinge is centered in the origin of the circumference

at half height;

• boundary conditions: on the wing a no-slip condition is imposed, whereas the

remaining surfaces are characterised by a zero-pressure condition;

such setup is shown in Figure 2.5. The simulations are then run revolving the grid

around the z axis for a total angle of 360◦, to reproduce the experiments mentioned

above.

2.1.4. Inverse dynamic model of a gliding butterfly

So far, we mentioned the experimental data collected in [22], but we didn’t specify

how we made use of it. When it comes to setting up the numerical simulations, in

addition to the geometry of the wing, we use the data at our disposal for the inflow
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velocity and the angle of attack of the wing. Furthermore, to validate the simulations

performed, we developed a procedure to extrapolate from the flight kinematics some

quantities that can be compared with the numerical results .

Since the flight phases were recorded inside a closed insectary, we assume that

during the filming the air was still and any air current had negligible effects on

the trajectory drawn by the insects. Under these circumstances, using an inverse

dynamics approach, we can estimate the aerodynamic lift L and drag D acting on

the animal at each time frame. To accomplish that, we start with a balance of the

forces acting on the insect during its recorded flight using Newton’s second law (see

Figure 2.6):

ma = mg + Faero. (2.1)

where m is the mass of the butterfly and g is the gravitational acceleration. Here

Faero represents the total aerodynamic force acting on the animal; since we know a,

we have all we need to define our unknown:

Faero = −mg +ma, (2.2)

The next step consists in pulling the drag and lift vectors out of the Faero vector.

The drag is defined as the aerodynamic force component in the free-stream airflow

direction, and is thus calculated as:

D =< v̂,Faero > v̂, (2.3)

where v̂ is the normalised velocity field vector and < v̂,Faero > is the scalar product

of v̂ and Faero. The lift was estimated as the difference between the total aerody-

namic force and drag as:

L = Faero −D. (2.4)

An example time-history of the computed aerodynamic forces during a gliding flight

phase are reported in Figure 2.7.

2.2. Tools

In the following section the software used for the numerical simulations, the produc-

tion of the meshes and the estimation of numerical uncertainties are briefly presented.
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Figure 2.6.: Free body diagram of a gliding butterfly, including vectors normal and

parallel to the flight direction, body acceleration vector and vectors of

all external force acting on the animal. The animal is depicted as a

lolly-pop whereby the circle is the head. Lift and drag can be estimated

from the acceleration and weight vectors (Eq. 2.2).
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sented.
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2.2.1. ReFRESCO CFD solver

In the present work all the numerical simulations are performed with the CFD solver

ReFRESCO ([28]). This is a viscous-flow CFD code solving multiphase unsteady

incompressible flows using the Navier-Stokes equations and turbulence models. The

equations are discretized using a finite-volume approach with cell-centered collo-

cated variables. Time integration is performed implicitly with first or second order

backward schemes. At each implicit time-step, the non-linear system for velocity

and pressure is linearised with Picard’s method and either a segregated or coupled

approach is used.

ReFRESCO works without GUI; it is launched directly from the terminal or via

batch file when ran on a Linux cluster. All the settings of the simulation are

gathered in the file controls.xml, as shown in Listing 2.1.

Listing 2.1: Example of a controls.xml file for Refresco

<controls>

<general>

<codeVersion>2.5</codeVersion>

<name>morpho</name>

<description>default description</description>

<caseid>cisseis</caseid>

<material>AIR</material>

<referenceLength>0.07</referenceLength>

<referenceVelocity>1.5</referenceVelocity>

<referenceMaterial>AIR</referenceMaterial>

<referencePressure>0.000000E+00</referencePressure>

<outFileName>outLam</outFileName>

<outFilePath>./data</outFilePath>

<nsave>-1</nsave>

<suppressOutput>false</suppressOutput>

</general>

.

.
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.

<timeLoop>

<unsteady>false</unsteady>

<solutionScheme>IMPLICIT_THREE_TIME_LEVEL</solutionScheme>

<maxTimesteps>4</maxTimesteps>

<timeDelta>0.25</timeDelta><!--default 0.0001-->

</timeLoop>

.

.

.

2.2.2. HEXPRESSTM mesher

Computational meshes are generated with the software HEXPRESSTM ([38]), an au-

tomated mesher developed by NUMECA International which generates non-conformal

body-fitted full hexahedral unstructured meshes. The generation of a mesh using

HEXPRESSTM goes through the following steps:

1. import of the geometry: a geometry.stl file is imported;

2. creation of the domain: a domain is defined around the geometry.stl file; in

this step names to the surfaces are given and multiple surface can be gathered

in one;

3. generation of initial mesh: a first coarse Cartesian grid is created, based on a

given number of cells in each direction (see Table 2.1 values ”n◦ cells”);

4. adaptation to geometry: specific options of refinements and refinement diffu-

sion are given for any desired surface; box refinements can be created;

5. snapping to geometry: the rough cells are adapted to the shape of the geome-

try;

6. optimisation: grid optimisation step; usually ran with default settings;

7. inserting of viscous layers: the settings for the insertion of the viscous layers

are defined; on each surface, the number of layers or the height of the first cell

needs to be defined.
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Figure 2.8.: An example of the estimation of the uncertainty due to spatial discreti-

sation for a gliding model of a Morpho deidamia at angle of attack 4◦.

On the x axis the refinement level of the grid (smaller = finer) and on

the y axis the relative values for drag.

2.2.3. MARIN internal software for numerical uncertainty estimation

As previously discussed in Section 1.3, any numerical simulation, to be reliable, has

to come with an estimation of the uncertainties brought by the numerical discreti-

sation. In this work, to evaluate the uncertainties due to spatial discretisation we

use a MARIN internal software, based on the theory presented in [12, 11]. We will

use it to check the trend of drag and lift forces with grid refinements. The software,

given for each mesh the values of a flow quantity and the typical cell sizes hi, will

minimise Equations 1.53 to 1.60 and will output an uncertainty estimation and the

observed order of convergence (respectively the ”U” and ”p” values visible in Figure

2.8).

2.3. Methodology

2.3.1. Generation of the grids and procedure for refinements

In this work the grids have been generated following this approach:

1. generation of a coarse grid which is already capable of catching the geometry

of the wing with sufficient precision to run simulations with low residuals and

acceptable results;
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2. starting from the previous coarse grid, finer grids are generated to accom-

plish a grid sensitivity study, for which at least four grids are used; when the

computational costs allowed it, five grids have been used.

To follow the first step of this process we found the following settings (referred to

the tweakable options in HEXPRESSTM, as reported in Subsection 2.2.2) to be

satisfactory:

• the domain is grossly divided in cubic cells with edges 16.7 cm long (referring

to the values in Table 2.1, this means that a 1 m x 1 m x 1 m cube is divided

with n◦ Cells X = n◦ Cells Y = n◦ Cells Z = 6);

• on the dorsal and ventral sides of the wing 8 refinements are requested, whereas

on the edge of the wing 10 refinements are requested, to deal with the sharper

curvatures (see Figure 2.9);

• a number of viscous layers is inserted to ensure y+ values always lower than 1;

in this range (y+ < 1), different number of layers have been used, depending

on the study case.

In HEXPRESSTM, every refinement consists in halving each cell’s edge, thus passing

from one to four cells with one refinements, to sixteen with two refinements, and so

on. This means that the number of cells increases as 23n and the size of their edges

decreases as 2−n, where n is the number of refinements. Thereby, if our domain

is made up of boxes with 16.7 cm long edges, after the refinements we obtain the

following typical sizes for the cells close to the wing:

• wing surface, 8 refinements: typical cell edge size of 0,65 mm;

• wing edge, 10 refinements: typical cell edge size of 0,16 mm.

The thickness of the wings is 1 mm, and the edges are modelled as a 0.5 mm radius

semi-circumference (see Figure 2.1); the latter is then about 1.57 mm long, which

means that with the previous settings for the refinements of the cells we are wrapping

around the edges of the wing with at least ten cells; an example of this is shown in

Figure 2.9.

Once the first grid is created, we pass to the step of creating finer grids to perform

the mentioned uncertainty estimation. As stated in Section 1.3 and in [12, 11], one of
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Figure 2.9.: Particular of the coarsest mesh used wrapping around the leading edge

of the wing. Note that twelve cells are used to cover the perimeter of

the edge. The section is taken at the symmetry plane.
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Figure 2.10.: Three meshes of the same geometry (a 0 angle of attack Morpho cisseis

wing), produced to preserve as much as possible geometrical similarity.

The section is taken at the symmetry plane.
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meshing parameters grid series

refinement level 1 2 3 4 5 6

n◦ cells X 12.0 18.0 24.0 30.0 36.0 42.0

n◦ cells Y 6.0 9.0 12.0 15.0 18.0 21.0

n◦ cells Z 12.0 18.0 24.0 30.0 36.0 42.0

diffusion 1 2 3 4 5 6

1st layer thickness 5.00E-05 3.23E-05 2.38E-05 1.89E-05 1.56E-05 1.33E-05

Table 2.1.: Example of HEXPRESSTM parameters used to produce a series of grids

(as much as possible) geometrically similar. n◦ cells represents the num-

ber of initial gross cells in the domain along each spatial dimension.

the constraints necessary for a proper study of the inference of spatial discretization

in the solution is represented by the use of structured grid -for which a scaling

preserving similarity is possible. Although the grids used here are unstructured,

they have been generated following the procedure developed in [5], which leads to

the production of close to geometrically similar meshes using HEXPRESSTM. An

example of the parameters used to produce such series of grids is given in Table 2.1

and the results are visible in Figure 2.10.

2.3.2. Rotation of the grids

With the aim of running simulations with different angles of attack, the following

aspects have to be considered:

• the production of a mesh from scratch goes through the use of RhinoTM ([42]),

McMesh and HEXPRESSTM;

• meshing two geometries of the same wing at different angle of attack would

result in important discrepancies between the grids, which would translate into

an added uncertainty when it comes to compare the results.

To overcome this limitations we found a solution to optimise the work and the time

needed for the large amount of meshes used. It consists in the following steps:

1. for each butterfly specie (i.e. wing shape) only two geometries are generated,

one as described in Subsection 2.1.2, with a 0◦ angle of attack and one as
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described in 2.1.3, with a 45◦ angle of attack;

2. for each of the two geometries the necessary grids are generated (various re-

finement levels, different y+);

3. the grid deformation option of ReFRESCO is used to generate grids with

different angles of attack starting from the ones built in the previous step.

The advantages brought by this approach are considerable: the use of RhinoTM,

McMesh and HEXPRESSTM is minimised and the grids with the wing at various

angles of attack share the same pattern, drastically reducing the uncertainties dis-

cussed before. Moreover, the rotation of the grid is easily embedded in the simulation

with a bash script. For example, with the aim of simulating the gliding flight of a

butterfly at ten different angles of attack, using five differently refined meshes per

angle of attack, twenty-five grids are needed. With this solution only five grids have

to be generated, whereas the others will be obtained by deformation.

The deformation of the grid in ReFRESCO is based on radial basis interpola-

tion functions ([8, 55, 54]); the method has been used with default settings and

a <supportRadius> value of one, which guarantees a deformation of the mesh far

enough from the wing, in order to reduce the added skewness in the region of main

importance (see Figure 2.11). The deformations are performed in 200 timesteps;

this solution proved to preserve the mesh quality almost, if not totally, unmodified.

Listing 2.2: Options for the grid deformation in ReFRESCO. Of particular interest

for us the parameter supportRadius which expresses the action area

where the cells are deformed; as shown in Figure 2.11 with this config-

uration the mesh pattern surrounding the wing is not warped.

<deformGridSetup name="general">

<general>

<deformGridApply>true</deformGridApply>

<deformGridGlobal>true</deformGridGlobal>

<deformGridUserDefined>false</deformGridUserDefined>

<exactWallDistanceInOuterLoop>false</exactWallDistanceInOuterLoop>

<exactWallDistanceFrequencyInTimeLoop>1</exactWallDistanceFrequencyInTimeLoop>

<updateFrequency>1</updateFrequency>
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</general>

</deformGridSetup>

<deformGridSetup name="deformMethod_RBF">

<deformMethod_RBF>

<supportRadius>1</supportRadius>

<maxiter>500</maxiter>

<convergenceTolerance>0.100000E-03</convergenceTolerance>

<greedyApply>true</greedyApply>

<reuseGreedyDataInOuterLoop>true</reuseGreedyDataInOuterLoop>

<resetGreedyFrequencyInTimeLoop>100</resetGreedyFrequencyInTimeLoop>

<exactNearWallCorrFrequencyInTimeLoop>100</exactNearWallCorrFrequencyInTimeLoop>

<greedyTolerance>0.100000E-01</greedyTolerance>

<absoluteGreedyTolerance>0.100000E-11</absoluteGreedyTolerance>

<maxCPUhourToAbort>0.500000E+00</maxCPUhourToAbort>

<updateStep>20</updateStep>

<exactNearWallCorrInOuterLoop>false</exactNearWallCorrInOuterLoop>

<solver>GMRES</solver>

<preconditioner>SUPERLU</preconditioner>

<coordinatesystem>

<CARTESIAN>

</CARTESIAN>

</coordinatesystem>

</deformMethod_RBF>

</deformGridSetup>

2.3.3. On the importance of grid refinements in the wake and of the

values of y+

A topic widely discussed in literature is represented by the importance of grid re-

finements in the wake. This particular attention to the mesh in the area following

the body comes largely from the following reasons:

• the flow details developing downwind the object can have an important role in

determining the pressure field close to the body, and, consequently, the forces
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Figure 2.11.: An initial grid is deformed with rotations of 2, 6, 12 and 18 degrees,

with the procedure proposed in Subsection 2.3.2. Note that the mesh

pattern close to the wing is almost not modified. The section is taken

at the symmetry plane.
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(a) (b)

Figure 2.12.: Plane section of the setups GridF (a) and GridC (b), defined in Sub-

section 2.3.3 and used for the sensitivity study about y+ values and

box refinements.

acting on it;

• the topology of the wake generated can represent an important parameter when

it comes to designing particular structures, for example in civil engineering ([4,

1]), for which a full comprehension of the phenomena taking place downwind is

important not only for the facility itself but also for the surrounding buildings

and people.

Fortunately, since the wake generated by a butterfly represents a harmless flow

pattern for the environment and our purpose lies mostly in gaining insights in the

forces acting on the insect, only the first of the two previous points represents a

concern to us.

Another parameter of great importance when it comes to CFD simulations stems

from the values of y+ characterising the grid. If the flow is directly solved to the wall

-which is our case- and not by means of wall functions, a rule of thumb commonly

used establishes that the value of y+ should always be lower than 1. Nevertheless,

in [11] it is showed that for the SST k − ω turbulence model -largely used in the

present work- the inference of y+ on the results can be considerable also for values

below 1 and that a more reliable range of value for y+ would then be close to 0.1.

For these reasons we studied the effects of these two aspects for our study case.

Using the SST k−ω turbulence model, we performed simulations of a gliding Morpho
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grid GridF GridC % difference

y+ drag [N] lift [N] y+ drag [N] lift [N] drag [N] lift [N]

1 0.170303E+00 9.19E-04 3.66E-03 0.522060E+00 9.72E-04 3.98E-03 -5.76E+00 -8.84E+00

2 0.128609E+00 8.89E-04 3.61E-03 0.417619E+00 9.20E-04 3.77E-03 -3.42E+00 -4.42E+00

3 0.991440E-01 8.85E-04 3.59E-03 0.352364E+00 8.97E-04 3.65E-03 -1.38E+00 -1.82E+00

4 0.744550E-01 8.85E-04 3.57E-03 0.307924E+00 8.91E-04 3.60E-03 -6.97E-01 -8.12E-01

Table 2.2.: Comparison of aerodynamic forces for two simulations of the same Mor-

pho cisseis wing in gliding flight condition with 10.91◦ angle of attack

and inflow velocity of 1.61 m/s. Grid numeration: 1=coarsest, 4=finest.

cisseis with an angle of attack of 10.91 degrees and inflow velocity of 1.61 m/s with

two different series of grids:

• the first with box refinements in the wake (see Figure 2.12) and y+ values close

to or lower than 0.1, which will be labelled GridF;

• the second without box refinements and a y+ value lower than 1, which will

be labelled GridC.

The values of drag and lift for the mentioned simulations are gathered n Table 2.2,

showing the percentage difference of the results from GridC setups with respect to

the ones from the GridF setups. Two things about them are worth mentioning:

1. for the finest grids, the difference in the results between the two setups is

lower than 1%, allowing us to consider setup GridC a good compromise for

our simulations;

2. the discrepancy between the two setups gets smaller as the grids are refined,

further strengthening the reliability of setup GridC.

In the light of this results, some of the simulations have been run with grid settings

similar to GridC without loss of validity.

2.3.4. On the size of the domain

A fundamental aspect in CFD numerical simulations lies in the sizing of the domain,

since we want to be sure that its boundaries are far enough not to pollute the results.

For this reason, we compared the solutions for a gliding deidamia at 6◦ and 14◦
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(a)

(b)

Figure 2.13.: Different domain sizes for a Morpho deidamia gliding with a 14◦ angle

of attack; in (a) the original mesh (DomainS) and in (b) the augmented

one (DomainB). Slice taken at the symmetry plane.

angles of attack using two domains with different size: one with the size used for the

other simulations (2 m x 1 m x 2 m, labelled DomainS in this subsection) and one

augmented of a 1.5 factor (3 m x 1.5 m x 3 m, labelled DomainB in this subsection),

as visible in Figure 2.13. The meshing settings used are the same, to mantain the

grids exactly the same in the aera of the wing.

The values of drag and lift force for the two different domains are compared in

Table 2.3, showing that the difference between the quantities in the two domains

are negligible.

2.3.5. On the time and space discretisation for flapping simulations

The simulations proposed in Subsection 2.1.3 are unsteady by definition. For this

reason, a numerical uncertainty estimation should be accomplished with respect to

both space and time discretisations. In practical terms, this means that any study

case would need at least 12 simulations with various timesteps and grids with dif-

ferent refinements. Since our goal was to run such simulations at different angles of

attack and for different species we estimated that at least 30 different cases would

have been required, making such analysis unaffordable in terms of computational
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Table 2.3.: Study on the effects of domain size on simulation results. Grid numera-

tion: 1=coarsest, 4=finest.

(a)

grid DomainB DomainS % difference

drag lift drag lift drag lift

1 4.3860E-04 2.1451E-03 4.3755E-04 2.1441E-03 2.3892E-01 4.5825E-02

2 4.2028E-04 2.1448E-03 4.1971E-04 2.1411E-03 1.3574E-01 1.6832E-01

3 4.1545E-04 2.1425E-03 4.1514E-04 2.1407E-03 7.5989E-02 8.6253E-02

4 4.1557E-04 2.1489E-03 4.1541E-04 2.1478E-03 3.8982E-02 4.9933E-02

5 4.1408E-04 2.1454E-03 4.1396E-04 2.1443E-03 3.0598E-02 5.1738E-02

(b)

grid DomainB DomainS % difference

drag lift drag lift drag lift

1 1.2093E-03 4.0330E-03 1.1962E-03 3.9802E-03 1.0813E+00 1.3089E+00

2 1.1177E-03 3.6769E-03 1.1026E-03 3.6154E-03 1.3457E+00 1.6738E+00

3 1.0757E-03 3.4981E-03 1.0765E-03 3.4982E-03 -7.5859E-02 -3.0874E-03

4 1.0724E-03 3.4588E-03 1.0734E-03 3.4622E-03 -9.8567E-02 -1.0027E-01

5 1.0651E-03 3.4146E-03 1.0638E-03 3.4081E-03 1.2055E-01 1.8957E-01
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Figure 2.14.: The time history of drag and lift forces during the rotation of the wing

in a flapping setup (2.1.3) at 45◦ angle of attack with three different

timesteps.

costs. For this reason we decided to perform a sensitivity study on the spatial and

time discretisation only for the 45◦ angle of attack case, which lies in the middle of

our range values of angles of attack for the flapping simulations. To accomplish this,

we started from the setting we found to be computationally-speaking affordable and

we ran simulations with refinements in time or in space to understand how reliable

such setup is. Being our target timestep ∆T0 = 6.66667E-04 s and calling our target

grid Grid0, for the sensitivity to time discretisation we performed simulations with

∆T = 7.0E-4, 3.5E-4, 1.75E-4 using Grid0 and for the sensitivity to space discretisa-

tion we ran computations using Grid0, Grid1 and Grid2 (where the subscript refers

to the refinement level: 0=coarsest, 2=finest) with ∆T = 7.0E-4.

The time history of drag and lift forces during the rotation of the wing for the

three different timesteps is reported in Figure 2.14 and for the three refinement levels

in Figure 2.15. To offer a more exhaustive idea of the discrepancies in the results

brought by the discretisation refinements, the L2 and L∞ norms of the drag and lift

differences between the various simulations (the integration is computed over all the

timesteps) are reported in Table 2.5: there, with L2 Diff01 we mean the L2 norm

of the difference of a quantity between the refinement (either in time or space) ”0”

(coarsest option) and the refinement ”1”. The results of Figure 2.14 and 2.15 and

of Table 2.5 show that the target timestep and grid represent a good compromise,

providing result with mild sensitivity to discretisation refinements at an affordable

computational cost.
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Figure 2.15.: The time history of drag and lift forces during the rotation of the wing

in a flapping setup (2.1.3) at 45◦ angle of attack with three different

refinement grids produced following Subsection 2.3.1.

timestep sensitiviy grid sensitivity

variable drag force [N] lift force [N] drag force [N] lift force [N]

‖Diff01‖L2 4.69520E-04 7.85363E-04 1.633138E-03 1.823789E-03

‖Diff12‖L2 2.67041E-04 2.40808E-04 9.78006E-04 1.128108E-03

‖Diff01‖L∞ 4.69520E-04 8.7358E-05 1.633138E-03 2.86365E-04

‖Diff12‖L∞ 1.32615E-04 1.14282E-04 1.20409E-04 1.45169E-04

Table 2.5.: Norms of the drag and lift differences between different levels of refine-

ment in either time or space. Diff01 stands for the the difference between

the ”level 0” refinement (coarsest option) and the ”level 1”.
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3. Reproduction of a Morpho Butterly’s

Gliding Flight Using Various

Turbulence Models and Comparison

with Experimental Data

Does the flap of a butterfly’s wings

in Brazil set off a tornado in Texas?

E. N. Lorentz

3.1. Setup and Considerations

In this chapter we approach the study of Morphos’ gliding flight using different

CFD models and we compare them with the experimental results provided by [22]

and postprocessed as described in Subsection 2.1.4. Here we aim at understanding

how close the predictions of the models used are to the experimental counterpart.

Moreover, we want to compare the different models to understand if consistent dif-

ferences arise between them. The numerical simulations try to reproduce the glid-

ing flight performed by specimen cisseis004 F05 glidingpart1 ([22]); the relative

kinematic data and aerodynamic forces deduced with inverse dynamics approach are

plotted in Figure 3.1 and Figure 3.2 and the average values of them are used for the

simulations (see Table 3.1). With respect to mean wing chord, the flight is charac-

terised by a Reynolds number of 5200. The setup is the one described in Subsection

2.1.2. In this chapter we use four grids with different refinements, generated and

rotated as described in Section 2.3; a side view of the coarsest is shown in Figure

2.12 (a) and the total number of cells of each grid is given in Table 3.2.

The choice of this specimen is a consequence of the smooth development in time
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Numerical setup and physical details

specie Morpho cisseis

inflow velocity 1.61 m/s

angle of attack 10.91◦

weight 0.58 g

mean wing chord 0.0482 m

hinge-to-tip length 0.085 m

Table 3.1.: Setup values for the numerical simulations discussed in this chapter. The

inflow velocity and the angle of attack are the results of averaging the

respective time histories during the gliding phase for which the kinematic

data are given in Figure 3.1 and the aerodynamic forces computed with

inverse dynamics approach in 3.2.

grid characteristics

grid n cells y

1 1,157,340 0.522060E+00

2 3,785,147 0.417619E+00

3 8,406,881 0.352364E+00

4 15,738,960 0.307924E+00

Table 3.2.: Characteristics of the grids used for the simulations discussed in this

chapter.
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cisseis004_F05_glidingpart1 - kinematic data resume

Figure 3.1.: Gliding trajectory of the specimen cisseis004 F05 glidingpart1,

taken as reference for the validation of the numerical results. In (a)

the position field during the flight, in (b) the velocity field, in (c) the

acceleration field and in (d) the angles of attack of the wings. These

values have been averaged to setup the CFD simulations. Data source:

[22].
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Figure 3.2.: Aerodynamic forces acting on the specimen

cisseis004 F05 glidingpart1 during its gliding phase flight that is

reproduced numerically in this chapter, computed with the procedure

of inverse dynamics. The time-average values of drag and lift are used

for the comparison with the CFD results.

not only of the velocities but also of the aerodynamic forces, suggesting that the

glide phase was not affected by significant external events. Five different models

have been chosen for the numerical simulations.

• The first model used is the SST k−ω. This model has been developed for aero-

dynamics applications ([30]) and has provided very reliable results in internal

MARIN applications using ReFRESCO.

• The second model chosen is the Spalart-Allmaras ([47]), which was also created

for aerodynamic purposes and has been extensively validated.

• Given the low Reynolds number at which these butterflies operate, we con-

sidered the possibility that transition could play an important role; for this

reason we also performed simulations equipping the SST k−ω model with the

γ − Reθ equations. Since this model is sensitive to the inflow conditions of

eddy viscosity, we used two different setups with inlet conditions of νt/ν equal

to 10 and 2.5, following some experiments performed in [21].

• As an alternative to the listed fully modelled approaches, we investigated the

study case using PANS, with the aim of solving directly part of the turbulence

and check if this could bring more detailed or more precise results.

The details of the options used in the CFD solver are presented in the following

subsections.
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Figure 3.3.: Boundary surfaces of the numerical domain.

3.1.1. Common configurations

Part of the numerical setup used for the different cases is shared by all the simula-

tions. Such configurations are listed below.

• Fluid properties:

– air density (ρ): 1.225E-00 kg/m3;

– air dynamic viscosity (µ): 1.81E-05 Pa·s;

• boundary conditions (see Figure 3.3):

– wing surface: velocity no-slip condition;

– inlet surface: velocity (-1.61E00, 0, 0)m/s, turbulence intensity 0.01;

– side: pressure 0 Pa (free stream);

– ceiling: pressure 0 Pa (free stream);

– floor: pressure 0 Pa (free stream);

– outlet: pressure 0 Pa (free stream);

– symmetry: all unknowns symmetry;

• outerloop:

– max n◦ iterations: 400;
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– check residual norm: L∞;

– convergence tolerance: 1E-06;

– convergence check skipped for: k − ω equations, γ − ReΘ (when

present);

• solver type: segregated;

• momentum equations:

– solver: GMRES;

– preconditioner: BJACOBI;

– convergence tolerance: 1E-03;

– max n◦ iterations: 1200;

– min implicit relaxation: 0.50E+00;

– max implicit relaxation: 0.90E+00;

– implicit relaxation factor: 1;

– explicit relaxation: 2.5E-01;

– convective flux discretisation: total variation diminishing (TVD)

harmonic scheme;

– gradient calculations method: Gauss;

– apply eccentricity correction: true;

• pressure equation:

– solver: conjugate gradient method;

– preconditioner: BJACOBI;

– convergence tolerance: 1E-03;

– max n◦ iterations: 1200;

– explicit relaxation: 1E-01;

– gradient calculations method: Gauss;

• transition equations (when present):

– solver: GMRES;
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– preconditioner: BJACOBI;

– convergence tolerance: 1E-03;

– max n◦ iterations: 200;

– min implicit relaxation: 0.50E+00;

– max implicit relaxation: 0.95E+00;

– implicit relaxation factor: 1;

– explicit relaxation: 2.0E-01;

– convective flux discretisation: first order upwind scheme;

– gradient calculations method: Gauss;

– tolerance apply gamma: 10;

– relaxation gamma: 1.

3.1.2. Configurations for turbulence equations

The Spalart-Allmaras, SST k−ω and SST k−ω with γ−Reθ share the same configu-

ration for the solution of the turbulent equations, whereas for PANS different setting

have been used. This choice derives from the difficulties in reaching convergence for

the PANS simulations, which, with the same settings used for the other models,

were affected by L∞ norms of residuals never decreasing under values of 1E+00 and

L2 norms of residuals never decreasing under values of 1E-02. As it will be shown

later, the changes made for this purpose showed considerable improvements in the

residuals trend. For the first three models, the following options have been used:

• turbulence equations (SST k − ω, Spalart-Allmaras):

– model type: k − ω SST (Spalart-Allmaras for Spalart-Allmaras simula-

tions);

– solver: GMRES;

– preconditioner: BJACOBI;

– convergence tolerance: 1E-03;

– max n◦ iterations: 200;

– min implicit relaxation: 0.95E+00;
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– max implicit relaxation: 0.95E+00;

– implicit relaxation factor: 1;

– explicit relaxation: 2.5E-01;

– convective flux discretisation: first order upwind scheme;

– gradient calculations method: Gauss;

– apply eccentricity correction: true;

– turbulent intensity initialisation: 0.01;

– turbulent viscosity initialisation: 0.01 (2.5 and 10 for SST k−ω

+ γ −Reθ simulations).

For the PANS simulations, the following options have been used:

• turbulence equations (SST k − ω, Spalart-Allmaras):

– model type: k − ω SST (Spalart-Allmaras for Spalart-Allmaras simula-

tions);

– solver: GMRES;

– preconditioner: BJACOBI;

– fk value: 0.2;

– fε value: 1;

– convergence tolerance: 1E-03;

– max n◦ iterations: 200;

– min implicit relaxation: 0.99E+00;

– max implicit relaxation: 0.99E+00;

– implicit relaxation factor: 1;

– explicit relaxation: 1.0E-01;

– convective flux discretisation: total variation diminishing (TVD)

harmonic scheme;

– gradient calculations method: Gauss;

– apply eccentricity correction: false;

– turbulent intensity initialisation: 0.01;

– turbulent viscosity initialisation: 0.01.
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3.1.3. Configurations for the timestep

All the simulations in this chapter are run as unsteady. For the various model a first

attempt has been done with the following settings:

• timeloop:

– unsteady: true;

– solution scheme: implicit three time level scheme;

– time delta: 0.0008 s.

This value of the timestep was chosen such that the mean flow needs more than

fifty timesteps to sweep the whole wing. The Spallart-Allmaras and SST k − ω

model based simulations converged to a steady state, whereas the ones using PANS

resulted in an unsteady state. For this reason PANS simulations were run with

various refinements in timesteps, in order to estimate their uncertainty not only with

respect to the spatial but also to the temporal discretisation. The combinations of

grids and timesteps used are reported in Table 3.3, together with the respective

Courant Number, which is defined as:

CN = ||u||L2

∆t

∆x
, (3.1)

∆t being the timestep and ∆x the maximum cell size. Since the PANS model is re-

solving directly part of turbulence, we aim at always having a Courant number lower

than 1, since otherwise the spatial resolution of the grid is finer than the temporal

resolution, meaning that we are not catching part of the turbulence spectrum that

our mesh would allow us to catch. Looking at Table 3.3, one could argue that this

condition is never respected in the simulations lead here. This is true in absolute

terms, but since the maximum Courant number is not really descriptive of what is

happening on the whole domain, in Figure 3.4 we show, for the finest configuration

both in space and time, the cells in the whole domain which have a Courant number

higher than 1. As it can be seen, these cells are limited to small regions around the

edges, where turbulence is either absent or not fully developed; moreover, most of

this cells are still characterised by a Courant number below 2, thus we believe the

timestep used is adequate, since it is below one in the fluctuating regions of the flow.

This aspect is confirmed by the the timestep sensitivity study showed in Figure 3.8.
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(a)

(b)

Figure 3.4.: Distribution of cells with Courant number greater than 1 throughout

the domain for the PANS simulaton with the finest grid and timestep

refinement. In (a) the dorsal side (left) and ventral side (right) of the

wing and in (b) a zoom on the pressure side leading leading edge, where

the cells with the highest values of CN lie.
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PANS simulations: resume of discretisation steps

n◦ cells ∆t max Courant n.

1157340 2.000E-03 0.721E+03

1157340 1.000E-03 0.360E+03

1157340 5.000E-04 0.180E+03

3785147 1.340E-03 0.700E+03

3785147 6.700E-04 0.350E+03

3785147 3.350E-04 0.175E+03

8406881 1.040E-03 0.726E+03

8406881 5.200E-04 0.363E+03

8406881 2.600E-04 0.181E+03

15738960 8.200E-04 0.738E+03

15738960 4.100E-04 0.369E+03

15738960 2.050E-04 0.184E+03

15738960 1.025E-04 0.923E+02

Table 3.3.: Resume of grid sizes and timesteps used for the PANS simulations, to-

gether with the respective maximum Courant number.
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3.1.4. Configuration of the fk value

As discussed in Subsection 1.2.9, what defines the amount of turbulence directly

resolved in a PANS simulation is the fk value. At the state of the art, different

techniques exist to determine the correct value to use ([15, 16, 19]). Here, we refer

to the oldest but also most robust ([19]) of these methods, which consists in choosing

a fixed value for fk and then to run simulations refining both in space and time to

reach an asymptotical trend of the results.

3.2. Results

Here we report the plots of various flow quantities of the simulations with the dif-

ferent models and then we compare the relative values of drag and lift with the ones

extrapolated from the butterfly’s kinematics. If not differently specified, the results

refer to the simulations performed with the finest grid (and smallest timestep for

PANS). Since the SST k − ω and Spalart-Allmaras models lead to a steady state,

the results at the last timestep represent a fully descriptive dataset. Regarding the

PANS model, the plots shown that are not depending on time are the result of a

time-averaging of the solutions of various timesteps (here, the finest simulation in

both space and time is used).

3.2.1. Residuals

For the simulations run with SST k − ω and Spalart-Allmaras the trends of the

residuals at each timestep are mostly monotically decreasing, reaching orders of

magnitude lower than 10−10. Here, an important remark is needed regarding the

iteration error: in Figure 3.5 the L2 and L∞ norm residuals of the simulation run

with SST k− ω are plotted together with the time history of drag and lift forces; it

can be noticed that the latter two reach a constant value while the residuals keep

decreasing. This means that the inference of the iterative error on the results is null

or negligible. The other simulations with Spalart-Allmaras and γ−Reθ have similar

trends for the residuals norms, which will not be reported.

For the PANS simulations the trend of the residuals is checked at the iteration

level and not at the timestep level, due to their unsteady nature. In 3.6 it can be

seen that at each timestep the L2 and L∞ norms of residuals decrease of almost four
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orders of magnitude.
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Figure 3.5.: L2 and L∞ norm residuals of the simulation run with SST k−ω on the

finest grid, together with the history of lift and drag forces.
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Figure 3.6.: L2 and L∞ norm residuals for the last 2000 iterations of a PANS simula-

tion using the finest grid available and the smallest timestep (0.0001025

s).

3.2.2. Numerical uncertainty

In the following pages the numerical results will be often presented with an un-

certainty. This has been computed using the internal MARIN software based on

[12, 11]. For the Spalart-Allmaras, SST k − ω and γ −Reθ simulations, the estima-

tion of the uncertainty is performed with respect to space discretisation only, due to

their steady nature. The theory behind this estimation is briefly recalled in Section

1.3, and computes the trend of the integral parameters we are considering (in our

case, drag and lift force) against grid refinement; in Figure 3.7 such trend for the

drag force using SST k − ω model is shown. For PANS simulations the uncertainty

is estimated for both space and time discretisation, resulting in the prediction of

a trend surface instead of a trend line. The theory used for this estimation is not

discussed in the present work but can be found in [43, 11, 27]. In Figure 3.8 the

drag trend for PANS simulations is shown, underlining that the sensitivity to the

timestep is much larger than the sensitivity to the grid. All the uncertainties are

here gathered as error bars in Figure 3.33. For sake of shortness, the full plots are

however reported in Appendix A.
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Figure 3.7.: Trend of drag force values with grid refinements and respective numer-

ical uncertainty estimation for the SST k − ω simulations.

Figure 3.8.: Trend of drag force values with grid refinements and respective numer-

ical uncertainty estimation for the PANS simulations. Here the uncer-

tainty is represented by the green bar, whereas the red dots represent

the position of the simulations in the timestep-gridsize-value space.
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3.2.3. Velocity field in the stream direction

Figures 3.9, 3.10, 3.11, 3.12 and 3.13 show, for the different models, the field of the

dimensionless x-component of the velocity on a slice at 1 cm from the symmetry

plane. All the cases highlight the same flow pattern, with separation occurring at

the leading edge and a separation bubble sweeping the whole wing chord. The SST

k − ω model shows a wider and more developed bubble than the Spalart-Allmaras

and γ −Reθ with νt/ν=10 inflow, which are instead characterised by a narrow and

short bubble; the other γ − Reθ simulation lies in between the other results. The

PANS model predicts the widest and most elongated separation, resulting in a very

neat area of reverse flow.

Figure 3.9.: dimensionless velocity (ux/u∞) field at y = 0.01 m using the SST k−ω

model.
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Figure 3.10.: dimensionless velocity (ux/u∞) field at y = 0.01 m using the Spalart-

Allmaras model.

Figure 3.11.: dimensionless velocity (ux/u∞) field at y = 0.01 m using the SST

k−ω turbulence model with γ−Reθ transition model; νt/ν=2.5 inflow

condition.
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Figure 3.12.: dimensionless velocity (ux/u∞) field at y = 0.01 m using the SST

k−ω turbulence model with γ−Reθ transition model; νt/ν=10 inflow

condition.

Figure 3.13.: dimensionless velocity (ux/u∞) field at y = 0.01 m using the PANS

turbulence model (time-averaged solution).

Figure 3.14 shows some slices of instantaneous dimensionless velocity for different

timeframes of the PANS simulation: the first part of the pattern is very similar to the

one of the other models, but after about one third of chord length the unsteadiness

of the flow becomes clear, with noticeable fluctuations being shed from the wing.
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Figure 3.14.: PANS simulations: slice of dimensionless velocity field in x direction

at y = 0.01 m at various timesteps.
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Figure 3.15.: Evolution in time of drag and lift forces for PANS simulation: finest

grid, ∆t = 0.0001025.

3.2.4. Unsteadiness of PANS simulations

As we already mentioned, PANS simulations produce unsteady results. Figure 3.15

shows the evolution in time of drag and lift force of the finest PANS simulation. It

can be seen that the forces have random fluctuations of up to 3% of the mean value.

3.2.5. Development of turbulence in the flow

Since all the models used here are solving the same equation ((1.26)) and they differ

from each other in the way of defining and computing νt, this parameter plays a

key role in understanding the different behaviour of the various models. Figures

3.16, 3.17, 3.18 and 3.19 show the field of νt/ν on a domain slice at 1 cm from the

symmetry plane. This variable represents the ratio of the magnitude of modelled

turbulence to the viscosity of the fluid, telling us when the effects of the former are

negligible and when they are not. In the plots, a white contour line highlights the

region where νt/ν = 2, which can be considered as a gross threshold between the

laminar and the turbulent part of the flow. As it can be seen, the various models all

draw a similar pattern: turbulence kicks in at around one sixth of the wing length,

with the SST k − ω having the least νt generation and the Spalart-Allmaras being

the most productive. As visible in Figures 3.11 and 3.12, for the transition model a

lower value of eddy viscosity in the free flow results in a more intense production of
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it in the wake. The awkward shape of the white contour line in Figure 3.19 is due to

the high inflow νt/ν value of 10, which is brought from the inflow to the wing. This

is not happening for the same model with an inflow νt/ν ratio of 2.5 (Figure 3.18)

because, as shown in [11], the lower the inflow amount of νt, the faster its decay

will be, meaning that for this inflow value, through its path to the wing the eddy

viscosity will decrease significantly.

Figure 3.16.: Eddy viscosity intensity (νt/ν) field at y = 0.01 m sing the SST k − ω

model. A white contour line marks where νt/ν = 2, value for which

the effect of turbulence kicks in.
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Figure 3.17.: Eddy viscosity intensity (νt/ν) field at y = 0.01 m using the Spalart-

Allmaras model. A white contour line marks where νt/ν = 2, value for

which the effect of turbulence kicks in.

Figure 3.18.: Eddy viscosity intensity (νt/ν) field at y = 0.01 m using the SST

k−ω turbulence model with γ−Reθ transition model; νt/ν=2.5 inflow

condition. A white contour line marks where νt/ν = 2, value for which

the effect of turbulence kicks in.
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Figure 3.19.: Eddy viscosity intensity (νt/ν) field at y = 0.01 m using the SST

k−ω turbulence model with γ−Reθ transition model; νt/ν=10 inflow

condition. A white contour line marks where νt/ν = 2, value for which

the effect of turbulence kicks in.

An evaluation of the turbulent state of the flow is not that straightforward for

PANS simulations, since νt becomes only the source of turbulence for the unresolved

scales and is thus not describing the total level of turbulence. To overcome this

problem, we tracked the values of instant velocity and pressure for seven points

through the wing and we performed a fast Fourier transform on them to see which

frequencies were characterising the flow in that positions. Figure 3.20 shows the

location of the points on the wing in the xz plane (y = 0.01 m) and Figures 3.21

and 3.22 shows the evolution in time of the respective velocity components and

their frequency response. This sequence of images shows how, sweeping the wing,

the velocity field becomes unsteady and fluctuates with an increasing spectrum of

(smaller) frequencies.
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Figure 3.20.: Distributions of the points tracking velocity and pressure along the

wing (black line); the y coordinate is 0.01 (as the previous plots of

velocity and νt/ν). From right to left (inflow direction): leadingEdge,

wing1, wing2, wing3, trailingEdge, wing4, wake.
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Figure 3.21.: Time history of velocity and respective FFT transform for the tracking

points leadingEdge, wing1 and wing2 (See Figure 3.20) used in the

PANS simulations. ∆t = 0.0001025s.
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Figure 3.22.: Time history of velocity and respective FFT transform for the tracking

points wing3, wing4, trailingEdge, wake (See Figure 3.20) used in

the PANS simulations. ∆t = 0.0001025s.
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3.2.6. Turbulent intensity

We can compare the development of turbulence of PANS with the other models also

in a quantitative sense and not only in the qualitative sense discussed in the previous

subsection. The quantity we can use for this purpose is turbulence intensity, which

is defined as (with reference to the nomenclature used in Chapter 1):

IT =
u′

u
, (3.2)

where for sake of compactness we are using u′ instead of ‖u′‖L2 and u instead of

‖u‖L2 . Turbulence intensity is then a ratio between the magnitude of the fluctuations
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of velocity from its mean value and the magnitude of the mean value itself. In the

case of RANS models, where turbulence is fully modelled, the velocity solution

corresponds to the average velocity, whereas the fluctuations are modelled by the

eddy viscosity. Thus, we can define the modelled turbulence intensity as:

Im =

√
2/3k

u
. (3.3)

If, like for PANS, part of turbulence is resolved, the velocity solution doesn’t cor-

respond anymore to the average velocity, so we compute it averaging the velocity

solutions in time considering all the timesteps simulated. The contribution to tur-

bulence intensity given by the resolved scales of turbulence will then be:

Ir =
uRMS

u
, (3.4)

with:

uRMS =
√
u2i,RMS ; (3.5)

u2i,RMS =

√√√√ 1

N

N∑
j=1

(u′i,j)
2 =

√√√√ 1

N

N∑
j=1

(ui,j − ui), (3.6)

where N is the number of timesteps taken into consideration and as ui,j is the i-

th velocity component at the j-th timestep. Thus, for SST k − ω, γ − Reθ and

Spalart-Allmaras simulations the total turbulence intensity will be:

IT = Im, (3.7)

whereas for PANS simulations it will be computed as:

IT = Im + Ir. (3.8)

Table 3.4 reports the values of turbulent intensity of the various models in the

seven points tracked along the wing (See Figure 3.20). Interestingly, the PANS

model produces the highest values of IT at the leading edge and in the last three

points downwind. In the former case, the modelled term (Im) is dominant, whereas

in the latter the resolved term (Ir) is the dominant one.

3.2.7. Pressure distribution

Figures 3.23, 3.24, 3.25, 3.26, and 3.27 show the pressure field acting on the wing,

where the left wing represents the dorsal (suction) side and the right wing represents
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turbulence intensity

model leadingEdge wing1 wing2 wing3 wing4 trailingEdge wake

Spalart-Allmaras 4.157E-04 5.127E-01 6.312E-01 6.294E-01 3.423E-01 2.508E-01 8.024E-02

SST k − ω 8.194E-04 8.083E-01 4.718E-01 5.807E-01 1.919E-01 2.840E-01 9.140E-02

γ −Reθ 10 2.474E-02 2.225E+00 2.844E-01 2.708E-01 2.316E-01 1.840E-01 4.313E-02

γ −Reθ 2.5 1.273E-02 9.709E-01 3.601E-01 3.743E-01 2.625E-01 2.275E-01 6.143E-02

PANS, Im only 5.377E-01 5.172E-01 3.379E-01 1.661E-01 1.552E-01 1.168E-01 1.069E-01

PANS, Ir only 4.069E-03 1.103E-02 1.231E-01 6.369E-01 2.559E+00 9.722E-02 3.647E-01

PANS 5.418E-01 5.283E-01 4.609E-01 8.030E-01 2.715E+00 2.140E-01 4.716E-01

Table 3.4.: Turbulent intensity at the seven tracked points (See Figure 3.20) for

the various models used. Among them, PANS is the most productive

at the leading edge -where the modelled turbulent intensity (Im) term is

dominant- and in the wake region -where the resolved turbulent intensity

(Ir) is dominant.

the ventral (pressure) side. The simulations using SST k−ω, SST k−ω with γ−Reθ
with inflow condition νt/ν = 2.5 and PANS result in milder values than the other

two, which highlight more intense suction (on the dorsal side) and pressure (on the

ventral side) in the region close to the leading edge.

Figure 3.23.: Pressure field on the wing using the SST k−ω model. On the left the

dorsal (suction) side, on the right the ventral (pressure) side.
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Figure 3.24.: Pressure field on the wing using the Spalart-Allmaras model. On the

left the dorsal (suction) side, on the right the ventral (pressure) side.

Figure 3.25.: Pressure field on the wing using the SST k−ω turbulence model with

γ − Reθ transition model; νt/ν=2.5 inflow condition. On the left the

dorsal (suction) side, on the right the ventral (pressure) side.

Figure 3.26.: Pressure field on the wing using the SST k−ω turbulence model with

γ − Reθ transition model; νt/ν=10 inflow condition. On the left the

dorsal (suction) side, on the right the ventral (pressure) side.
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Figure 3.27.: Pressure field on the wing using the PANS turbulence model. On the

left the dorsal (suction) side, on the right the ventral (pressure) side.

3.2.8. Limiting streamlines

Figures 3.28, 3.29, 3.30, 3.31 and 3.32 show the limiting velocity streamlines on the

wing (where, again the left wing represents the dorsal side and the right wing the

ventral side). Such streamlines consist in the wall shear stress vector field, which is

defined as:

τw,i = µ

(
∂ui
∂y

)
y=0

, (3.9)

where here y represents the direction normal to the wing. From the figures it is

possible to observe that the separation bubble sweeps the whole chord length on

the entire wing and that whereas the Spalart-Allmaras simulation results in tidy

streamline pattern on both the wing sides, the other models highlight the rise of

more curly streamlines close to the wingtip on the dorsal side. The ventral side has

a very tidy streamline pattern in all the cases.
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Figure 3.28.: Limiting streamlines (shear stress field) on the wing using the SST

k − ω model. On the left the dorsal (suction) side, on the right the

ventral (pressure) side.

Figure 3.29.: Limiting streamlines (shear stress field) on the wing using the Spalart-

Allmaras model. On the left the dorsal (suction) side, on the right the

ventral (pressure) side.

Figure 3.30.: Limiting streamlines (shear stress field) on the wing using the SST

k−ω turbulence model with γ−Reθ transition model; νt/ν=2.5 inflow

condition. On the left the dorsal (suction) side, on the right the ventral

(pressure) side.
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Figure 3.31.: Limiting streamlines (shear stress field) on the wing using the SST

k−ω turbulence model with γ−Reθ transition model; νt/ν=10 inflow

condition. On the left the dorsal (suction) side, on the right the ventral

(pressure) side.

Figure 3.32.: Limiting streamlines (shear stress field) on the wing using the PANS

turbulence model. On the left the dorsal (suction) side, on the right

the ventral (pressure) side.

3.3. Comparison of the numerical simulations with

experimental results

Figure 3.33 shows a comparison of the experimental results and the values of drag

and lift of the numerical simulations, which are plotted with an error bar showing

the discretisation uncertainty; this plot shows that, considering the force values

and their range of uncertainty, the simulation using γ − Reθ model and νt/ν=10

inflow condition is the only one that can be clearly discarded, whereas the others

provide results comparably close to the experimental ones. Nevertheless, Table

3.5, gathering the values of this comparison with the difference percentage with
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respect to the experimental results, shows instead that if we only consider the exact

force values, PANS model gives the closest results to experiments, followed by SST

k − ω. Table 3.6 reports the values of the ratio between lift and drag forces of

the experimental values and the numerical simulations, together with the respective

numerical uncertainty estimation and the percentage difference between experiments

and simulations. This parameter, which will be discussed more in detail in the next

chapter, gives a measure of the global efficiency of the wing during flight and here it

confirms again that the best results are achieved by PANS model, followed by SST

k − ω.
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Figure 3.33.: Drag and lift of experiments and numerical simulations compared. The

values are taken from the finest grid setups and the error bars repre-

sent numerical uncertainty due to spatial (and temporal for PANS)

discretisation.
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aerodynamic forces comparison

drag [N] lift [N] % drag Err % lift Err

experimental -1.587E-03 4.944E-03 - -

Spalart-Allmaras -1.880E-03 7.906E-03 18.42 59.90

SST k − ω -1.770E-03 7.136E-03 11.52 44.32

γ −Reθ 10 -1.947E-03 8.663E-03 22.64 75.21

γ −Reθ 2.5 -1.899E-03 8.025E-03 19.63 62.30

PANS -1.748E-03 6.689E-03 10.15 35.28

Table 3.5.: Resume of drag and lift values of the numerical simulations (with the

finest grid and timestep) ad the experimental values; the last two columns

show the percentage difference of the values with respect to the experi-

mental ones.

lift-to-drag ratio comparison

L/D [-] % L/D numerical uncertainty % L/D Err

experimental 3.115 -

Spalart-Allmaras 4.206 3 -0.350

SST k − ω 4.031 7.4 -0.294

γ −Reθ 10 4.450 3.5 -0.429

γ −Reθ 2.5 4.226 2.5 -0.357

PANS 3.825 5.53 -0.228

Table 3.6.: Resume of lift-to-drag ratio values of the numerical simulations (with

the finest grid and timestep) ad the experimental values; the last col-

umn shows the percentage difference of the values with respect to the

experimental ones.
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3.4. Discussion

The results show that in terms of flow topology the models give similar answers,

with the main difference lying in the unsteady nature of the PANS solution, which

is the only one able to catch the stream oscillations that are suggested by Figure

1.4. This difference is though not playing a fundamental role if we consider the time-

averaged flow of the PANS simulation, which gives the same pattern showed by the

other models. Table 3.5 shows that the predicted forces provided by the numerical

simulations overestimate the drag and lift of 10-20% and 35-70% respectively. Thus,

if for the prediction of drag all the models lie in a small range, for the lift prediction

the SST k − ω and PANS models give considerably better results, with the latter

giving the ones closest to experimental values. Nevertheless, none of the computa-

tional results, together with their uncertainty range, matches with the experimental

values. The reasons for this discrepancies could come from different sources:

• the simplifications made for the wing model are significant: modelling the body

of the butterfly could for example bring to changes in lift and drag production;

• [22] reports that the indoor conditions of the insectary could alter the be-

haviour of the insects, which sometimes followed more frenetic trajectories;

this could lead to some noise in the experimental data;

• by averaging the values of drag and lift extrapolated, we could neglect some

unsteady processes playing a role in the production of aerodynamic forces;

• we assume that the flight kinematics were recorded in still air conditions;

considering the weight of the butterfly ( around 0.5 grams) though, it is not

hard to believe that mild air currents can easily affect the natural trajectory of

the insects, which translates in a source of error in the drag and lift estimation

using inverse dynamics;

• the numerical simulations are based on the geometry of non damaged wings;

in practical terms, [22] shows that, during their lifetime, Morpho butterflies

are subjected to wing deterioration, which can result in losses of flight perfor-

mances.

To sum up, the results highlight that if we are only interested in the forces acting

on the butterfly and in the mean flow topology, the various models used give com-
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parable results, showing small relative differences, although none of them matches

the experimental results. Compared to the other models, PANS gives an interesting

option to catch the unsteadiness nature of the flow that experimental results have

shown; it is important though to say that this comes at a much higher computa-

tional cost. In practical terms, if we also take into account the number of timesteps

needed to reach a reliable solution and the trend of the residuals, we consider the

SST k − ω to be the best solution in terms of results-to-costs ratio.
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4. Comparing Different Morpho Species

By Means Of Computational Fluid

Dynamics

Float like a butterfly, sting like a

bee.

Muhammad Ali

4.1. Setup and Considerations

In this chapter we perform several simulations for two different Morpho species,

the cisseis and the deidamia. Following [22], the former belongs to the canopy

group, which gathers butterfly species characterised by the tendency of flying at a

considerable height from the ground, above the trees, whereas the latter belongs

to the understory specie group, which gathers butterfly species which generally fly

closer to the ground, inside the forest. The cisseis is a gliding specialist, performing

flap-gliding flight characterised by long and neat gliding phases ([22]). Here, using

the setups discussed in Chapter 2, we aim at evaluating the flight performances

of the two species in the range of 2-20 degrees of angle of attack for gliding flight

and in the range of 15-75 degrees for flapping flight. The two species have different

morphological characteristics, with the cisseis being bigger and lighter than the

deidamia. A resume of size and flight details of the two butterflies is given in Table

4.1.

Since in Chapter 3 we stated that the model with the best performance-on-cost

ratio is the SST k − ω, all the simulations have been run using this model.
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specie
Mean glide

velocity [m/s]

mean

weight [g]

mean chord

length [cm]

wing surface

area [cm2]

hinge-to-tip

length [cm]

aspect ratio

[-]

Reynolds

Number [-]

cisseis 1.50E+00 5.80E-01 4.82E-02 4.40573E+03 8.75E+00 3.63E+00 4.89E+03

deidamia 2.07E+00 6.39E-01 3.91E-02 2.57824E+03 7.56 E+00 3.86E+00 5.47E+03

Table 4.1.: Morphological and flight characteristics of Morpho cisseis and deidamia.

4.1.1. Gliding setup

Regarding the ReFRESCO options, for gliding flight the same choises made for the

SST k − ω based simulations of Chapter 3, except for the following points:

• outerloop:

– max n◦ iterations: 15000;

– check residual norm: L∞;

– convergence tolerance: 1E-14;

– convergence check skipped for: false;

• momentum equations:

– explicit relaxation: 1.5E-01;

• pressure equation:

– explicit relaxation: 1.0E-01;

• turbulence equations:

– explicit relaxation: 1.5E-01;

• timeloop:

– unsteady: false.

The option of running steady simulations comes naturally from the results of Chapter

3, which are represented by a steady state flow.

Simulations are run for angles of attack from 2 to 20 degrees with steps of two

degrees. For each angle of attack five different grids are used, in order to perform

an estimation of the uncertainty due to spatial discretisation. The processes for the

generation and rotation of the grids are the ones described in Sections 2.3.1 and

2.3.2. The coarsest mesh is generated with the following settings:
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• number of gross cells in the x, y and z directions respectively: 12, 6, 12;

• number of refinements on the top and bottom surfaces of the wing: 8;

• number of refinements on the wing edge: 10;

• first viscous layer height: 1.0E-05 m.

The number of cells and the y+ values at various angles of attack are gathered in

Tables B.1 and B.2 of Appendix B. No box refinements are applied, as in Chapter 2

it has been stated that they play a negligible role in the computation of aerodynamic

forces. The side view of the used grids is visible in Figure 2.12 (a).

For these simulations, we chose an inflow velocity such that the two wings were

operating at the same Reynolds number of 5200, in order to have the same dynamical

conditions for the different species; to achieve that, simulations for the cisseis are

run with an inflow velocity value of -1.59 m/s, whereas for the deidamia such value

has been set to -1.97 m/s.

4.1.2. Flapping setup

The surfaces composing the domain are shown in Figure 4.1; the simulations are

performed rotating the wing around its hinge for 360◦ in still air at a fixed angle of

attack and constant rotational velocity.

The ReFRESCO options used for this simulations differing from the SST k − ω

ones performed in Chapter 3 are the following:

• boundary conditions (see Figure 3.3):

– wing surface: velocity no-slip condition;

– side: pressure 0 Pa (free stream);

– ceiling: pressure 0 Pa (free stream);

– floor: pressure 0 Pa (free stream);

• outerloop:

– max n◦ iterations: 300;

– check residual norm: L∞;

– convergence tolerance: 1E-6;
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– convergence check skipped for: k − ω equations;

• momentum equations:

– explicit relaxation: 3E-01;

• pressure equation:

– explicit relaxation: 3E-01;

• turbulence equations:

– explicit relaxation: 3E-01;

• timeloop:

– unsteady: true;

– solution scheme: implicit three time level scheme;

– time delta: 6.66667E-04 s;

– total timesteps: 360.

Simulations are run for angles of attack from 15 to 75 degrees with steps of two

degrees; for each of them a total of 360 timesteps is considered (using a timestep

of 6.66667E-04 s and a rotational velocity of 1500 ◦/s implies that one timestep

corresponds to one degree of revolution). With these settings we avoid that the

wing captures its own wake, which would produce effects that we don’t want to take

into account in our study. For each simulation, results of drag and lift are taken at

the last timestep. Only one grid is used, due to computational cost limitations. The

grids have been generated with the same criteria used for the coarsest gliding meshes

(number of initial cells, number of surface refinements, first layer thickness, absence

of box refinements). A first grid was generated with α = 45◦ and then rotated to

the various α studied; this choice minimizes the skewness of the generated meshed

caused by the deformation applied, since α lies in the range 15◦ − 75◦. The number

of cells and the y+ values at various angles of attack are gathered in Tables B.3 and

B.4.

For these simulations we didn’t follow the same Reynolds number-equalising idea

as in the gliding flight simulations, since the definition of the Reynolds number for

a rotational simulation is not as neat and straightforward as it is for the gliding

87



Figure 4.1.: Boundary surfaces of the numerical domain for the flapping simulations.

setup. The rotational velocity of the wing used for all these simulations has a value

of -1500◦/s, which is compatible with the flapping flight kinematics reported in [22].

4.2. Results

4.2.1. Residuals

For gliding flight simulations the trends of L2 and L∞ norms of residuals is generally

monotically decreasing to values lower than 10−10. For some angles of attack, simu-

lations with the coarser grids show stagnation of residuals at higher values: since for

all these cases the finer grids provide again decreasing residual trends, we can link

this flaw to the coarseness of the grid that might originate problems in the conver-

gence. This phenomenon is visible for the cisseis simulations with angles of attack

of 16, 18 and 20 degrees and for the deidamia ones with angles of attack of 12, 14

and 16 degrees. For sake of continuity and readability only the case of the deidamia

at α = 12◦ is reported in Figure 4.2, where the difference in residuals trend between

the coarsest and finest meshes is clearly noticeable.
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Figure 4.2.: L2 and L∞ norms of residuals for deidamia gliding at α = 12◦, for the

coarsest (a) and finest (b) grids.

To double check the achievement of convergence of the various simulations, this

approach has been followed: first of all we define the functions D(iteration) and

L(iteration), which are respectively the drag and lift force at each iteration; then,

we define Davg and Lavg as constant functions being equal to the average values of

the previous functions. This allows us to define the following quantities:

ResD,Nij = ||(D −Davg)||L2 , (4.1)

ResL,Nij = ||(L− Lavg)||L2 , (4.2)

where N here means that the last N iterations of the simulations are considered, i is

the angle of attack and j the grid refinement level (0 = coarsest, 4 = finest). At this

point, since we are expecting a steady solution, we also expect that for a reasonable

value of N values should tend to zero. This quantities are reported in Tables B.5

and B.6, showing values close to zero (<1E-17) for all the simulations run on the

finest grids. Nevertheless, for the coarser grids this is not always the case, due to

the convergence issues previously discussed.

The residuals of the flapping simulations can’t be checked with the same proce-

89



dure, since we are dealing there with unsteady simulations. Figure 4.3 shows the

norms of the residuals of the last 600 iterations of a flapping simulation: it is clearly

visible that for each timestep (up to 300 iterations) the residuals decrease of about

four orders of magnitude.

4.2.2. Numerical uncertainties

For gliding flight simulations, the numerical uncertainties due to spatial discretisa-

tion are computed using the data from the five levels of grid refinement as previously

explained. They can be visualised as errorbars in Figure 4.41, whereas the full trend

of convergence for each angle of attack is reported in Appendix B. It is important

to point out that the high uncertainty computed for the lift of the cisseis at α = 8◦

is most likely overestimated, since the respective trend is not of order 2 but the

oscillations of lift between the different grids are very small: it is possible that the

fitting procedure reacts with an exaggerated safety factor.

4.2.3. Drag and lift coefficients

The main goal of this chapter lies in the investigation of the performances of the

two wingshapes. For this reason, we may be less interested in the details of the flow

for now. The first quantity we want to compare between the two wingshapes is the

drag coefficient, defined as:

CD =
D

1
2ρu

2
∞Aα

, (4.3)

where D is the drag force, u∞ is the free stream velocity, for us the inflow velocity,

and Aα is the surface area of the wing multiplied by the cosine of the angle of attack.

Similarly, we want to compare the two wings by means of the lift coefficient, which

is defined as:

CL =
L

1
2ρu

2
∞Aα

, (4.4)

where L is the lift force.

These two dimensionless coefficients allow us to make a comparison of the two

wings aerodynamics taking into account the whole dynamical pattern characterising

1The uncertainties have been computed on the force values, but since for a fixed angle of attack

the respective coefficients are obtained only by a multiplication with a constant value, they can

be applied also to the coefficients themselves.
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Figure 4.3.: L2 (a) and L∞ (b) norms of residuals for cisseis flapping at α = 45◦,

for the last 600 iterations.
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Figure 4.4.: Comparison of drag coefficient (CD) and lift coefficient (CL) of cisseis

and deidamia wingshapes during gliding flight at angles of attack in the

range 2◦-20◦.

the two cases -which means that not only drag (or lift) force but also free stream

velocity, air density and geometry of the object are considered. Figure 4.4 reports

the two coefficients versus the angle of attack for gliding flight, showing that the

cisseis produces more intense aerodynamic forces.

The same comparison for flapping flight is visible in Figure 4.5, where again the

cisseis appears to produce more intense aerodynamic forces.

4.2.4. Lift-to-drag ratio

In practical terms, the two previous coefficients don’t provide complete insights

about the performances of the two butterflies, since they don’t evaluate the flight

efficiency and energy consumption of the insects. To answer this question we will

use another dimensionless parameter, the lift-to-drag ratio, which is defined as:

L/D =
CL
CD

=
L

D
. (4.5)

This parameter brings very precise information about the flight efficiency of the an-

imal ([34]), since it takes into account simultaneously both how much it ”costs” to

advance through the fluid and how much this cost is paid back in terms of vertical
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Figure 4.5.: Comparison of drag coefficient (CD) and lift coefficient (CL) of cisseis

and deidamia wingshapes during flapping flight at angles of attack in

the range 15◦-75◦.

thrust. Figures 4.6 and 4.7 show the evolution of L/D with the angle of attack for

gliding and flapping flight respectively, showing an important aspect: whereas in

gliding conditions the difference between the two species reaches values of around

10% (See Figure 4.6, angle of attack 6◦) of the lift-to-drag ratio, in flapping condi-

tions this percentage plummets to values close to zero. This fact explains why the

cisseis -the gliding specialist- performs such neat and smooth gliding phases during

its flight, whereas the deidamia needs to flap with higher frequency. The following

part of this section will analize different aspects of the flow pattern to investigate

the different behaviour of the two species.

4.3. Pressure distribution in gliding flight

In Chapter 3 we compared the pressure field on the wing for the different models.

Nevertheless, to accomplish a more thorough analysis of the differences between the

two species, we will now use the pressure coefficient instead, which, since our free

stream pressure is null, can be defined as:

Cp =
p

1
2ρv

2
∞
. (4.6)
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wingshapes during gliding flight at angles of attack in the range 2◦-20◦.
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Figure 4.7.: Comparison of lift-to-drag coefficient (L/D) of cisseis and deidamia

wingshapes during flapping flight at angles of attack in the range 15◦-

75◦.
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As for the previously introduced coefficients, Cp allows us to look at pressure values

which are taking into account the whole dynamical pattern of the flow (in this case,

the different inflow velocity). Figure 4.8 shows, for the two wings with an angle

of attack of 6◦, the distributions of Cp: we are focusing on this angle of attack

since it shows the biggest difference in lift-to-drag ratio between the two species and

therefore we reckon it could show more precisely the discrepancies between the two

wings.

The values of Cp on the ventral side of the two wings have the same magnitude and

pattern, whereas some differences are visible on the dorsal side: the rear boundary

of the zone of negative Cp -which translates to a more conspicuous suction- tends to

follow the shape of the rear wing edge. For this reason the cisseis, having a regular

and straight shape linking the wingtip to the rear wing root, keeps negative values

of Cp (represented in Figure 4.8 by green colours) for more than half of the wing

surface, whereas the deidamia, with its inner-arched wingshape, can’t extend such

values of Cp for the same area percentage. The distribution of Cp on the wing at

the various α studied is available in Appendix B.

4.3.1. Limiting streamlines in gliding flight

Appendix B reports the velocity limiting streamlines for all the angles of attack

studied. These plots show us that for both the wingshapes, whereas the stream

pattern on the ventral side is always tidy and hardly influenced by the angle of

attack, the flow on the dorsal side for both the species is fully attached only for

α = 2◦, whereas it separates at the leading edge and reattaches later on the surface

for α = 4◦ and α = 6◦ and turns into a fully separated configuration starting from

α = 8◦.

This considerations help us to understand the trend of the lift-to-drag ratio curves

of the two butterflies, which increase to reach their maximum value at α = 6◦ and

then drop as full separation occurs, even though they are not descriptive of the

differences between the two species.

4.3.2. Vortex structures on the wing in gliding flight

In Figure 4.9 we use the λ2 criterion to detect vortex structures surrounding the

wing. This parameter is generated by an algorithm which manipulates the velocity
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(a)

(b)

Figure 4.8.: Cp distribution on the wing for the two butterfly species ((a) Morpho

cisseis, (b) Morpho deidamia) tested at 6◦ angle of attack, which brings

the biggest difference in terms of lift-to-drag ratio between the two in-

sects. On the left the dorsal side of the wing, on the right the ventral

side.
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(a)

(b)

Figure 4.9.: Contours of λ2 criterion with value 0.1 on the wing coloured with the

νt/ν ratio for the two butterfly species ((a) Morpho cisseis, (b) Morpho

deidamia) tested at 6◦ angle of attack, which brings the biggest differ-

ence in terms of lift-to-drag ratio between the two insects. On the left

the dorsal side of the wing, on the right the ventral side.

vector field to define if a point is part of a vortex core ([17]). The figure shows

the contour surface for λ2=0.1, coloured with value of νt/ν. From these plots it is

clearly visible that both the species shed a laminar vortex from the wingtip, but the

deidamia (Figure 4.9 (b)) also produces a vortex in the rear root of the wing which

quickly becomes turbulent. This phenomenon is probably due to the loss in chord

length close to the wing root that characterises the deidamia wingshape: this loss

translates in a reduction of lift production in that area, which, as a consequence,

produces a root vortex. Another difference between the two species lies in the

vortex structures developing on the lateral edge of the wing, which are smooth and

homogeneous for the cisseis and snapped and discontinuous for the deidamia.
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Appendix B gathers the same plots of λ2 for the various angles of attack studied,

which show that the two wings have similar behaviours as we increase the angle of

attack, according to the lift-to-drag ratio trend: multiple vortices are released from

the side-rear edges in the range of α = 10◦− 12◦; for higher values of α this vortices

tend to gather together in a single shed turbulent structure. The vortex released

from the wingtip is always visible and mostly characterised by a laminar state.

4.4. Discussion

This chapter underlines some interesting features of the two butterfly species studied

and some important differences between them. At the Reynolds number considered

(5200) for gliding flight, the two wings have the same stall angle (4◦) and experience

a separation without reattachment at α = 8◦; nevertheless, according to the drag

and lift coefficients the Morpho cisseis produces higher aerodynamic forces. For

what concerns flapping flight simulations, using a different Reynolds number for the

two different species but the same rotational velocity of 1500◦/s, the same conclusion

can be drawn in terms of force coefficients. Interestingly, if we consider the lift-to-

drag ratio, which is commonly used in insect and animal flight studies to evaluate

the efficiency and performances of flight ([34, 36, 35]), things go in a different way. In

fact, in gliding flight the cisseis boasts higher L/D values for all the angles of attack

studied, reaching a maximum of around 10% better performances with respect to

the deidamia at α = 6◦. On the contrary, in flapping flight condition the L/D of

the two species, except for α in the range 15◦-21◦, is almost identical. With the goal

of explaining the difference in performances in glide conditions, we looked at the Cp

distribution on the two wings for α = 6◦, noticing that the inner-arched lateral shape

of the deidamia could play a role in not letting the low pressure regions extend along

the wing as much as it happens with the cisseis (Figure 4.8); moreover, Figure 4.9

underlines that the loss in chord length close to the wing root, which characterises the

deidamia, triggers a turbulent vortex on the dorsal side of the insect which can also

represent a source of performance loss. The latter phenomenon has been observed

in previous studies carried out on bats and birds ([36]), allowing us to roughly link

the aerodynamic relationship between Morpho cisseis and Morpho deidamia to the

one between birds and bats respectively. This work shows thus that at dynamical
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conditions typical of Morpho butterflies, the shape of the wing plays a fundamental

role in the performances of gliding flight but not in the ones of flapping flight. This

matches with the data provided by [22], confirming the gliding specialist profile of

the cisseis and explaining why it is able to perform longer gliding flight phases at

higher altitudes.
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5. Conclusions and Final Remarks

In this thesis we approach the study of Morpho butterfly aerodynamics by means

of computational fluid dynamics. Firstly, we investigate the optimal criteria to

model the morphology and physics of the insects, defining important parameters

for the discretisation of the geometries and the setups of the simulations. As a

second step, we reproduce gliding flight conditions using different turbulence models.

These results are compared with experimental results pulled out from recorded flight

kinematics using inverse dynamics. Then we reproduce both gliding and flapping

flight for two different Morpho species at various angles of attack. The reliability of

the results is ensured by uncertainty estimations and sensitivity studies.

The results obtained allow us to answer to the questions issued in the Introduction,

as discussed next.

5.1. Which CFD model should we use to reproduce the

flight of Morpho butterflies?

If we are only looking at the closeness of the simulation to the experimental results,

the answer is easy: PANS model performs best in this aspect: in the gliding flight

study case we focused on, looking at the global efficiency parameter lift-to-drag ratio,

this model provides a result 20% different from the experimental one, whereas the

others differ of about 30% to 43%. Moreover, among the models used, PANS is the

only one able to catch the unsteady nature of the flow, in contrast with the others,

converging to a steady result. Nevertheless, PANS demands high computational

costs, not affordable for a wide range of study cases. Among the RANS models,

SST k − ω proved to be the most reliable, providing results not far from PANS

values at a much lower computational cost.

It is important to underline that all the numerical simulations overestimate the
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values of drag and lift forces: reasons for this inconsistency could lie in the modelling

assumptions and/or in uncertainties in the experimental data, which are unknown.

5.2. Do different Morpho species have different

aerodynamic performances?

The present work limits its focus on the two species cisseis and deidamia, which

belong respectively to the canopy species group and the understory species group.

The results of the simulations highlight some differences between the two specimens,

showing how the cisseis boasts higher performances in gliding flight, whereas the two

butterflies have equal performances in flapping flight. This result is in accordance

with the flying behaviour adopted by the two species, as reported in [22].

5.3. Future work

Ranging from defining an approach to proposing meaningful results about the flying

behaviour and aerodynamic features of the two species studied, this work can rep-

resent a solid starting point for a complete study of Morpho butterflies and other

insects operating at similar Reynolds numbers. Nevertheless, some aspects can be

improved to increment validity and precision of the results. Important assumptions

have been made while modelling the geometry of the insect: it would be interest-

ing to investigate the role of the body in the production of aerodynamic forces and

definition of the flow pattern. Moreover, it would be of great interest to perform

PANS simulations for different setups, both in gliding and flapping flight, to gain

precise insights of the flow behaviour in several conditions. For time and computa-

tional power constrictions, not only the number of PANS simulations but also the

number of species studied was limited: [22] suggests that other flying behaviour are

adopted by different species, representing a further object of interest. As a last con-

sideration, the inference of other parameters -like gliding velocity- should be studied

to give more comprehensive answers about the different behaviours of the various

species.
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A. Support Plots for Chapter 3

A.1. Numerical uncertainties

Figure A.1.: SST k − ω model: numerical uncertainty.

Figure A.2.: Spalart-Allmaras model: numerical uncertainty.
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Figure A.3.: SST γ −Reθ νt/ν = 2.5 model: numerical uncertainty.

Figure A.4.: SST γ −Reθ νt/ν = 10 model: numerical uncertainty.

Figure A.5.: PANS model: numerical uncertainty. Here the results are interpolated

with a surface dependent on the space and time discretisation; for the

finest grid and timestep (red dot highlighted by green bar) drag force

has an uncertainty of 0.723% and lift of 4.83%.
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B. Support Material for Chapter 4

B.1. Numerical uncertainties

Figure B.1.: Morpho cisseis: numerical uncertainty of drag and lift forces at 2◦ angle

of attack.

Figure B.2.: Morpho cisseis: numerical uncertainty of drag and lift forces at 4◦ angle

of attack.

104



Figure B.3.: Morpho cisseis: numerical uncertainty of drag and lift forces at 6◦ angle

of attack.

Figure B.4.: Morpho cisseis: numerical uncertainty of drag and lift forces at 8◦ angle

of attack.

Figure B.5.: Morpho cisseis: numerical uncertainty of drag and lift forces at 10◦

angle of attack.

105



Figure B.6.: Morpho cisseis: numerical uncertainty of drag and lift forces at 12◦

angle of attack.

Figure B.7.: Morpho cisseis: numerical uncertainty of drag and lift forces at 14◦

angle of attack.

Figure B.8.: Morpho cisseis: numerical uncertainty of drag and lift forces at 16◦

angle of attack.
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Figure B.9.: Morpho cisseis: numerical uncertainty of drag and lift forces at 18◦

angle of attack.

Figure B.10.: Morpho cisseis: numerical uncertainty of drag and lift forces at 20◦

angle of attack.

Figure B.11.: Morpho deidamia: numerical uncertainty of drag and lift forces at 2◦

angle of attack.

107



Figure B.12.: Morpho deidamia: numerical uncertainty of drag and lift forces at 4◦

angle of attack.

Figure B.13.: Morpho deidamia: numerical uncertainty of drag and lift forces at 6◦

angle of attack.

Figure B.14.: Morpho deidamia: numerical uncertainty of drag and lift forces at 8◦

angle of attack.
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Figure B.15.: Morpho deidamia: numerical uncertainty of drag and lift forces at 10◦

angle of attack.

Figure B.16.: Morpho deidamia: numerical uncertainty of drag and lift forces at 12◦

angle of attack.

Figure B.17.: Morpho deidamia: numerical uncertainty of drag and lift forces at 14◦

angle of attack.
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Figure B.18.: Morpho deidamia: numerical uncertainty of drag and lift forces at 16◦

angle of attack.

Figure B.19.: Morpho deidamia: numerical uncertainty of drag and lift forces at 18◦

angle of attack.

Figure B.20.: Morpho deidamia: numerical uncertainty of drag and lift forces at 20◦

angle of attack.

110



T
ab

le
B

.1
.:

M
o
rp

h
o

ci
ss

ei
s,

gl
id

in
g

fl
ig

h
t:

re
su

m
e

of
gr

id
sp

ec
ifi

ca
ti

o
n

s.

M
o
rp

h
o

ci
ss

ei
s

-
gl

id
in

g
gr

id
s

re
su

m
e

y
+

g
ri

d
n
◦

ce
ll

s
A

oA
2
◦

A
oA

4
◦

A
o
A

6
◦

A
oA

8
◦

A
oA

10
◦

A
oA

12
◦

A
oA

1
4
◦

A
oA

1
6
◦

A
o
A

18
◦

A
oA

2
0
◦

0
6
98

8
0
4

7
.3

36
E

-0
1

7
.3

3
9E

-0
1

7.
3
45

E
-0

1
7.

34
7E

-0
1

7.
34

5E
-0

1
7.

34
2E

-0
1

7
.3

3
6E

-0
1

7
.3

3
7E

-0
1

7.
3
45

E
-0

1
7
.3

6
2E

-0
1

1
18

1
0
19

6
5
.8

51
E

-0
1

5
.8

5
7E

-0
1

5.
8
59

E
-0

1
5.

86
6E

-0
1

5.
87

3E
-0

1
5.

87
7E

-0
1

5
.8

8
4E

-0
1

5
.8

9
5E

-0
1

5.
9
05

E
-0

1
5
.9

1
5E

-0
1

2
33

7
7
71

6
4
.9

48
E

-0
1

4
.9

4
9E

-0
1

4.
9
52

E
-0

1
4.

95
0E

-0
1

4.
95

3E
-0

1
4.

97
0E

-0
1

4
.9

6
0E

-0
1

4
.9

6
5E

-0
1

4.
9
68

E
-0

1
4
.9

7
4E

-0
1

3
57

1
5
51

0
4
.3

18
E

-0
1

4
.3

2
0E

-0
1

4.
3
19

E
-0

1
4.

32
0E

-0
1

4.
32

6E
-0

1
4.

33
2E

-0
1

4
.3

3
5E

-0
1

4
.3

3
6E

-0
1

4.
3
42

E
-0

1
4
.3

5
2E

-0
1

4
96

5
8
29

2
3
.8

46
E

-0
1

3
.8

4
8E

-0
1

3.
8
47

E
-0

1
3.

84
9E

-0
1

3.
85

1E
-0

1
3.

85
5E

-0
1

3
.8

5
3E

-0
1

3
.8

6
5E

-0
1

3.
8
56

E
-0

1
3
.8

6
0E

-0
1

T
ab

le
B

.2
.:

M
o
rp

h
o

d
ei

d
a
m

ia
,

gl
id

in
g

fl
ig

h
t:

re
su

m
e

of
gr

id
sp

ec
ifi

ca
ti

on
s.

M
o
rp

h
o

d
ei

d
a
m

ia
-

gl
id

in
g

gr
id

s
re

su
m

e

y
+

g
ri

d
n
◦

ce
ll

s
A

oA
2
◦

A
oA

4
◦

A
o
A

6
◦

A
oA

8
◦

A
oA

10
◦

A
oA

12
◦

A
oA

1
4
◦

A
oA

1
6
◦

A
o
A

18
◦

A
oA

2
0
◦

0
4
81

5
0
3

8
.1

75
E

-0
1

8
.1

7
0E

-0
1

8.
1
77

E
-0

1
8.

18
4E

-0
1

8.
18

9E
-0

1
8.

18
9E

-0
1

8
.1

8
8E

-0
1

8
.1

9
4E

-0
1

8.
2
05

E
-0

1
8
.2

2
3E

-0
1

1
12

4
9
73

3
6
.5

16
E

-0
1

6
.5

1
8E

-0
1

6.
5
21

E
-0

1
6.

52
0E

-0
1

6.
53

0E
-0

1
6.

53
6E

-0
1

6
.5

3
8E

-0
1

6
.5

3
6E

-0
1

6.
5
38

E
-0

1
6
.5

4
3E

-0
1

2
23

1
2
93

3
5
.5

07
E

-0
1

5
.5

0
8E

-0
1

5.
5
08

E
-0

1
5.

50
7E

-0
1

5.
51

0E
-0

1
5.

51
3E

-0
1

5
.5

1
7E

-0
1

5
.5

2
2E

-0
1

5.
5
27

E
-0

1
5
.5

3
2E

-0
1

3
39

1
1
93

6
4
.8

06
E

-0
1

4
.8

0
7E

-0
1

4.
8
06

E
-0

1
4.

80
3E

-0
1

4.
80

3E
-0

1
4.

80
6E

-0
1

4
.8

0
6E

-0
1

4
.8

0
5E

-0
1

4.
8
08

E
-0

1
4
.8

0
6E

-0
1

4
66

4
3
21

5
4
.2

82
E

-0
1

4
.2

8
3E

-0
1

4.
2
83

E
-0

1
4.

28
7E

-0
1

4.
29

1E
-0

1
4.

29
4E

-0
1

4
.2

9
5E

-0
1

4
.3

0
0E

-0
1

4.
3
05

E
-0

1
4
.3

1
1E

-0
1

111



T
ab

le
B

.3
.:

M
o
rp

h
o

ci
ss

ei
s,

fl
ap

p
in

g
fl

ig
h
t:

re
su

m
e

of
gr

id
sp

ec
ifi

ca
ti

o
n

s.

M
o
rp

h
o

ci
ss

ei
s

-
fl

ap
p

in
g

gr
id

s
re

su
m

e

y
+

g
ri

d
n
◦

ce
ll

s
A

oA
1
5
◦

A
oA

1
7
◦

A
o
A

19
◦

A
oA

21
◦

A
oA

23
◦

A
oA

25
◦

A
oA

2
7
◦

A
oA

2
9
◦

A
o
A

31
◦

A
oA
◦

0
12

0
3
56

9
8
.9

22
E

-0
1

8
.9

0
0E

-0
1

8.
8
73

E
-0

1
8.

85
3E

-0
1

8.
83

6E
-0

1
8.

81
9E

-0
1

8
.8

1
2E

-0
1

8
.8

0
2E

-0
1

8.
7
94

E
-0

1
8
.7

8
2E

-0
1

M
o
rp

h
o

ci
ss

ei
s

-
gl

id
in

g
gr

id
s

re
su

m
e

y
+

g
ri

d
n
◦

ce
ll

s
A

oA
3
5
◦

A
oA

3
7
◦

A
o
A

39
◦

A
oA

41
◦

A
oA

43
◦

A
oA

45
◦

A
oA

4
7
◦

A
oA

4
9
◦

A
o
A

51
◦

A
oA

5
3
◦

0
12

0
3
56

9
8
.7

69
E

-0
1

8
.7

6
2E

-0
1

8.
7
50

E
-0

1
8.

73
6E

-0
1

8.
72

9E
-0

1
8.

73
2E

-0
1

8
.7

3
6E

-0
1

8
.7

4
0E

-0
1

8.
7
42

E
-0

1
8
.7

4
3E

-0
1

M
o
rp

h
o

ci
ss

ei
s

-
gl

id
in

g
gr

id
s

re
su

m
e

y
+

g
ri

d
n
◦

ce
ll

s
A

oA
5
5
◦

A
oA

5
7
◦

A
o
A

59
◦

A
oA

61
◦

A
oA

63
◦

A
oA

65
◦

A
oA

6
7
◦

A
oA

6
9
◦

A
o
A

71
◦

A
oA

7
3
◦

0
12

0
3
56

9
8
.7

52
E

-0
1

8
.7

5
5E

-0
1

8.
7
55

E
-0

1
8.

75
1E

-0
1

8.
74

2E
-0

1
8.

73
2E

-0
1

8
.7

3
5E

-0
1

8
.7

3
6E

-0
1

8.
7
35

E
-0

1
8
.7

3
1E

-0
1

112



T
ab

le
B

.4
.:

M
o
rp

h
o

d
ei

d
a
m

ia
,

fl
ap

p
in

g
fl

ig
h
t:

re
su

m
e

of
gr

id
sp

ec
ifi

ca
ti

o
n

s.

M
o
rp

h
o

d
ei

d
a
m

ia
-

gl
id

in
g

gr
id

s
re

su
m

e

y
+

g
ri

d
n
◦

ce
ll

s
A

oA
1
5
◦

A
o
A

17
◦

A
oA

1
9
◦

A
oA

21
◦

A
oA

23
◦

A
oA

25
◦

A
oA

2
7
◦

A
o
A

29
◦

A
o
A

31
◦

A
o
A
◦

0
8
5
90

0
1

7
.7

09
E

-0
1

7.
70

9
E

-0
1

7
.7

0
9E

-0
1

7.
70

9E
-0

1
7.

70
8E

-0
1

7.
70

8E
-0

1
7
.7

0
7E

-0
1

7.
7
07

E
-0

1
7.

7
07

E
-0

1
7.

7
08

E
-0

1

M
o
rp

h
o

d
ei

d
a
m

ia
-

gl
id

in
g

gr
id

s
re

su
m

e

y
+

g
ri

d
n
◦

ce
ll

s
A

oA
3
5
◦

A
o
A

37
◦

A
oA

3
9
◦

A
oA

41
◦

A
oA

43
◦

A
oA

45
◦

A
oA

4
7
◦

A
o
A

49
◦

A
o
A

51
◦

A
o
A

53
◦

0
8
5
90

0
1

7
.7

08
E

-0
1

7.
70

9
E

-0
1

7
.7

0
9E

-0
1

7.
71

0E
-0

1
7.

71
0E

-0
1

7.
71

1E
-0

1
7
.7

1
1E

-0
1

7.
7
12

E
-0

1
7.

7
12

E
-0

1
7.

7
13

E
-0

1

M
o
rp

h
o

d
ei

d
a
m

ia
-

gl
id

in
g

gr
id

s
re

su
m

e

y
+

g
ri

d
n
◦

ce
ll

s
A

oA
5
5
◦

A
o
A

57
◦

A
oA

5
9
◦

A
oA

61
◦

A
oA

63
◦

A
oA

65
◦

A
oA

6
7
◦

A
o
A

69
◦

A
o
A

71
◦

A
o
A

73
◦

0
8
5
90

0
1

7
.7

14
E

-0
1

7.
71

4
E

-0
1

7
.7

1
5E

-0
1

7.
71

5E
-0

1
7.

71
6E

-0
1

7.
71

6E
-0

1
7
.7

1
6E

-0
1

7.
7
17

E
-0

1
7.

7
17

E
-0

1
7.

7
17

E
-0

1

113



T
a
b

le
B

.5
.:

M
o
rp

h
o

ci
ss

ei
s,

g
li

d
in

g
fl

ig
h
t:

L
2

n
or

m
of

va
ri

at
io

n
of

ae
rd

oy
n

am
ic

fo
rc

es
fo

r
th

e
la

st
20

00
it

er
at

io
n

s.
T

h
e

m
ea

n
in

g
of

th
is

va
lu

es

is
ex

p
la

in
ed

in
S

u
b

se
ct

io
n

4
.2

.1
.

L
2

n
or

m
of

d
ra

g
fo

rc
e

va
ri

a
ti

o
n

fo
r

th
e

la
st

2
0
0
0

it
er

a
ti

on
s

[N
]

gr
id

A
oA

2
◦

A
oA

4
◦

A
oA

6
◦

A
oA

8
◦

A
o
A

1
0

◦
A

o
A

1
2

◦
A

o
A

1
4

◦
A

o
A

1
6

◦
A

o
A

1
8

◦
A

o
A

2
0

◦

0
4.

53
6E

-1
8

0.
00

0E
+

00
1.

36
1E

-1
7

1.
81

4E
-1

7
1
.8

1
4
E

-1
7

1
.8

1
4
E

-1
7

4
.7

9
6
E

-0
8

1
.8

8
7
E

-0
3

3
.5

1
5
E

-0
3

4
.4

5
0
E

-0
3

1
4.

53
6E

-1
8

9.
07

1E
-1

8
1.

36
1E

-1
7

1.
81

4E
-1

7
0
.0

0
0
E

+
0
0

4
.7

1
7
E

-0
9

1
.8

1
4
E

-1
7

1
.8

1
4
E

-1
7

3
.6

2
8
E

-1
7

1
.0

1
7
E

-0
8

2
9.

07
1E

-1
8

0.
00

0E
+

00
0.

00
0E

+
00

9.
07

1E
-1

8
9
.0

7
1
E

-1
8

1
.8

1
4
E

-1
7

3
.6

2
8
E

-1
7

0
.0

0
0
E

+
0
0

5
.4

4
3
E

-1
7

0
.0

0
0
E

+
0
0

3
4.

53
6E

-1
8

0.
00

0E
+

00
1.

81
4E

-1
7

9.
07

1E
-1

8
9
.0

7
1
E

-1
8

0
.0

0
0
E

+
0
0

1
.8

1
4
E

-1
7

3
.6

2
8
E

-1
7

1
.8

1
4
E

-1
7

0
.0

0
0
E

+
0
0

4
0.

00
0E

+
00

0.
00

0E
+

00
9.

07
1E

-1
8

0.
00

0E
+

0
0

2
.7

2
1
E

-1
7

2
.7

2
1
E

-1
7

1
.8

1
4
E

-1
7

1
.8

1
4
E

-1
7

3
.6

2
8
E

-1
7

5
.4

4
3
E

-1
7

L
2

n
or

m
of

li
ft

fo
rc

e
va

ri
a
ti

o
n

fo
r

th
e

la
st

2
0
0
0

it
er

a
ti

o
n

s
[N

]

gr
id

A
oA

2
◦

A
oA

4
◦

A
oA

6
◦

A
oA

8
◦

A
o
A

1
0

◦
A

o
A

1
2

◦
A

o
A

1
4

◦
A

o
A

1
6

◦
A

o
A

1
8

◦
A

o
A

2
0

◦

0
0.

00
0E

+
00

1.
81

4E
-1

7
0.

00
0E

+
00

3.
62

8E
-1

7
7
.2

5
7
E

-1
7

7
.2

5
7
E

-1
7

2
.0

0
2
E

-0
7

7
.5

3
7
E

-0
3

1
.2

3
3
E

-0
2

1
.3

8
0
E

-0
2

1
9.

07
1E

-1
8

3.
62

8E
-1

7
3.

62
8E

-1
7

1.
08

9E
-1

6
3
.6

2
8
E

-1
7

2
.8

5
8
E

-0
8

8
.6

7
0
E

-0
9

7
.2

5
7
E

-1
7

0
.0

0
0
E

+
0
0

2
.6

9
0
E

-0
8

2
1.

81
4E

-1
7

1.
81

4E
-1

7
3.

62
8E

-1
7

7.
25

7E
-1

7
3
.6

2
8
E

-1
7

3
.6

2
8
E

-1
7

1
.4

5
1
E

-1
6

1
.0

8
9
E

-1
6

7
.2

5
7
E

-1
7

7
.2

5
7
E

-1
7

3
9.

07
1E

-1
8

5.
44

3E
-1

7
0.

00
0E

+
00

0.
00

0E
+

0
0

7
.2

5
7
E

-1
7

3
.6

2
8
E

-1
7

7
.2

5
7
E

-1
7

0
.0

0
0
E

+
0
0

1
.4

5
1
E

-1
6

7
.2

5
7
E

-1
7

4
1.

81
4E

-1
7

0.
00

0E
+

00
0.

00
0E

+
00

3.
62

8E
-1

7
3
.6

2
8
E

-1
7

3
.6

2
8
E

-1
7

1
.0

8
9
E

-1
6

3
.6

2
8
E

-1
7

0
.0

0
0
E

+
0
0

1
.4

5
1
E

-1
6

114



T
a
b

le
B

.6
.:

M
o
rp

h
o

d
ei

d
a
m

ia
,

g
li

d
in

g
fl

ig
h
t:

L
2

n
or

m
of

va
ri

at
io

n
of

ae
ro

d
y
n

am
ic

fo
rc

es
fo

r
th

e
la

st
2
00

0
it

er
a
ti

on
s.

T
h

e
m

ea
n

in
g

o
f

th
is

va
lu

es
is

ex
p

la
in

ed
in

S
u

b
se

ct
io

n
4
.2

.1
.

L
2

n
or

m
of

d
ra

g
fo

rc
e

va
ri

a
ti

o
n

fo
r

th
e

la
st

2
0
0
0

it
er

a
ti

o
n

s
[N

]

gr
id

A
oA

2
◦

A
oA

4
◦

A
oA

6
◦

A
oA

8
◦

A
o
A

1
0

◦
A

o
A

1
2

◦
A

o
A

1
4

◦
A

o
A

1
6

◦
A

o
A

1
8

◦
A

o
A

2
0

◦

0
4.

84
9E

-1
8

9.
69

7E
-1

8
9.

69
7E

-1
8

1.
09

8E
-0

5
2
.4

7
9
E

-0
4

1
.0

1
7
E

-0
3

2
.0

6
7
E

-0
3

0
.0

0
0
E

+
0
0

3
.8

7
9
E

-1
7

5
.8

1
8
E

-1
7

1
4.

84
9E

-1
8

0.
00

0E
+

00
0.

00
0E

+
00

2.
84

5E
-0

8
3
.4

4
8
E

-0
4

8
.8

7
6
E

-0
4

1
.5

2
6
E

-0
3

2
.1

4
6
E

-0
7

0
.0

0
0
E

+
0
0

3
.8

7
9
E

-1
7

2
4.

84
9E

-1
8

4.
84

9E
-1

8
1.

45
5E

-1
7

9.
69

7E
-1

8
2
.2

0
4
E

-0
8

5
.3

4
6
E

-0
4

1
.1

9
1
E

-0
3

1
.3

1
2
E

-0
5

3
.8

7
9
E

-1
7

7
.7

5
8
E

-1
7

3
4.

84
9E

-1
8

9.
69

7E
-1

8
9.

69
7E

-1
8

0.
00

0E
+

0
0

9
.6

9
7
E

-1
8

5
.6

2
7
E

-0
9

2
.8

9
2
E

-0
4

4
.1

9
4
E

-0
6

1
.5

6
2
E

-0
8

1
.9

3
9
E

-1
7

4
4.

84
9E

-1
8

4.
84

9E
-1

8
4.

84
9E

-1
8

9.
10

6E
-0

9
1
.9

3
9
E

-1
7

2
.9

0
9
E

-1
7

3
.8

7
9
E

-1
7

1
.5

0
7
E

-0
8

3
.8

7
9
E

-1
7

3
.8

7
9
E

-1
7

L
2

n
or

m
of

li
ft

fo
rc

e
va

ri
a
ti

o
n

fo
r

th
e

la
st

2
0
0
0

it
er

a
ti

o
n

s
[N

]

gr
id

A
oA

2
◦

A
oA

4
◦

A
oA

6
◦

A
oA

8
◦

A
o
A

1
0

◦
A

o
A

1
2

◦
A

o
A

1
4

◦
A

o
A

1
6

◦
A

o
A

1
8

◦
A

o
A

2
0

◦

0
1.

94
E

-1
7

0.
00

E
+

00
0.

00
E

+
00

1.
08

E
-0

4
1
.8

5
E

-0
3

5
.6

1
E

-0
3

9
.2

8
E

-0
3

7
.7

6
E

-1
7

7
.7

6
E

-1
7

1
.5

5
E

-1
6

1
1.

94
E

-1
7

0.
00

E
+

00
0.

00
E

+
00

2.
46

E
-0

7
2
.3

1
E

-0
3

4
.8

4
E

-0
3

6
.8

4
E

-0
3

7
.9

1
E

-0
7

3
.8

8
E

-1
7

7
.7

6
E

-1
7

2
9.

70
E

-1
8

1.
94

E
-1

7
7.

76
E

-1
7

3.
88

E
-1

7
1
.4

0
E

-0
7

2
.7

7
E

-0
3

5
.1

9
E

-0
3

4
.8

8
E

-0
5

3
.8

8
E

-1
7

7
.7

6
E

-1
7

3
0.

00
E

+
00

0.
00

E
+

00
3.

88
E

-1
7

3.
88

E
-1

7
3
.3

6
E

-0
8

3
.1

7
E

-0
8

1
.2

4
E

-0
3

1
.5

6
E

-0
5

2
.6

5
E

-0
8

7
.7

6
E

-1
7

4
9.

70
E

-1
8

1.
94

E
-1

7
0.

00
E

+
00

9.
58

E
-0

8
3
.8

8
E

-1
7

0
.0

0
E

+
0
0

3
.8

8
E

-1
7

1
.7

1
E

-0
8

7
.7

6
E

-1
7

3
.8

8
E

-1
7

115



L/D % uncertainty

α [◦] cisseis deidamia

2 4.7 4.1

4 5.1 4.3

6 5.2 4.4

8 14.5 9.1

10 27.3 11.5

12 17.1 9.8

14 4.9 6.9

16 2.1 4.6

18 1.5 2.4

20 1.4 2

Table B.7.: Values of numerical uncertainty for lift-to-drag ratio in gliding flight

simulations.

B.2. Morpho cisseis: pressure coefficient on the wing

Figure B.21.: Morpho cisseis: pressure coefficient on the wing at 2◦ angle of attack.

On the left the dorsal side, on the right the ventral side of the wing.
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Figure B.22.: Morpho cisseis: pressure coefficient on the wing at 4◦ angle of attack.

On the left the dorsal side, on the right the ventral side of the wing.

Figure B.23.: Morpho cisseis: pressure coefficient on the wing at 6◦ angle of attack.

On the left the dorsal side, on the right the ventral side of the wing.

Figure B.24.: Morpho cisseis: pressure coefficient on the wing at 8◦ angle of attack.

On the left the dorsal side, on the right the ventral side of the wing.
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Figure B.25.: Morpho cisseis: pressure coefficient on the wing at 10◦ angle of attack.

On the left the dorsal side, on the right the ventral side of the wing.

Figure B.26.: Morpho cisseis: pressure coefficient on the wing at 12◦ angle of attack.

On the left the dorsal side, on the right the ventral side of the wing.

Figure B.27.: Morpho cisseis: pressure coefficient on the wing at 14◦ angle of attack.

On the left the dorsal side, on the right the ventral side of the wing.
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Figure B.28.: Morpho cisseis: pressure coefficient on the wing at 16◦ angle of attack.

On the left the dorsal side, on the right the ventral side of the wing.

Figure B.29.: Morpho cisseis: pressure coefficient on the wing at 18◦ angle of attack.

On the left the dorsal side, on the right the ventral side of the wing.

Figure B.30.: Morpho cisseis: pressure coefficient on the wing at 20◦ angle of attack.

On the left the dorsal side, on the right the ventral side of the wing.
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B.3. Morpho deidamia: pressure coefficient on the wing

Figure B.31.: Morpho deidamia: pressure coefficient on the wing at 2◦ angle of at-

tack. On the left the dorsal side, on the right the ventral side of the

wing.

Figure B.32.: Morpho deidamia: pressure coefficient on the wing at 4◦ angle of at-

tack. On the left the dorsal side, on the right the ventral side of the

wing.
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Figure B.33.: Morpho deidamia: pressure coefficient on the wing at 6◦ angle of at-

tack. On the left the dorsal side, on the right the ventral side of the

wing.

Figure B.34.: Morpho deidamia: pressure coefficient on the wing at 8◦ angle of at-

tack. On the left the dorsal side, on the right the ventral side of the

wing.
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Figure B.35.: Morpho deidamia: pressure coefficient on the wing at 10◦ angle of

attack. On the left the dorsal side, on the right the ventral side of the

wing.

Figure B.36.: Morpho deidamia: pressure coefficient on the wing at 12◦ angle of

attack. On the left the dorsal side, on the right the ventral side of the

wing.
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Figure B.37.: Morpho deidamia: pressure coefficient on the wing at 14◦ angle of

attack. On the left the dorsal side, on the right the ventral side of the

wing.

Figure B.38.: Morpho deidamia: pressure coefficient on the wing at 16◦ angle of

attack. On the left the dorsal side, on the right the ventral side of the

wing.
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Figure B.39.: Morpho deidamia: pressure coefficient on the wing at 18◦ angle of

attack. On the left the dorsal side, on the right the ventral side of the

wing.

Figure B.40.: Morpho deidamia: pressure coefficient on the wing at 20◦ angle of

attack. On the left the dorsal side, on the right the ventral side of the

wing.
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B.4. Morpho cisseis: velocity limiting streamlines on the

wing

Figure B.41.: Morpho cisseis: velocity limiting streamlines on the wing at 2◦ angle

of attack. On the left the dorsal side, on the right the ventral side of

the wing.

Figure B.42.: Morpho cisseis: velocity limiting streamlines on the wing at 4◦ angle

of attack. On the left the dorsal side, on the right the ventral side of

the wing.
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Figure B.43.: Morpho cisseis: velocity limiting streamlines on the wing at 6◦ angle

of attack. On the left the dorsal side, on the right the ventral side of

the wing.

Figure B.44.: Morpho cisseis: velocity limiting streamlines on the wing at 8◦ angle

of attack. On the left the dorsal side, on the right the ventral side of

the wing.
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Figure B.45.: Morpho cisseis: velocity limiting streamlines on the wing at 10◦ angle

of attack. On the left the dorsal side, on the right the ventral side of

the wing.

Figure B.46.: Morpho cisseis: velocity limiting streamlines on the wing at 12◦ angle

of attack. On the left the dorsal side, on the right the ventral side of

the wing.
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Figure B.47.: Morpho cisseis: velocity limiting streamlines on the wing at 14◦ angle

of attack. On the left the dorsal side, on the right the ventral side of

the wing.

Figure B.48.: Morpho cisseis: velocity limiting streamlines on the wing at 16◦ angle

of attack. On the left the dorsal side, on the right the ventral side of

the wing.
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Figure B.49.: Morpho cisseis: velocity limiting streamlines on the wing at 18◦ angle

of attack. On the left the dorsal side, on the right the ventral side of

the wing.

Figure B.50.: Morpho cisseis: velocity limiting streamlines on the wing at 20◦ angle

of attack. On the left the dorsal side, on the right the ventral side of

the wing.
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B.5. Morpho deidamia: velocity limiting streamlines on the

wing

Figure B.51.: Morpho deidamia: velocity limiting streamlines on the wing at 2◦

angle of attack. On the left the dorsal side, on the right the ventral

side of the wing.

Figure B.52.: Morpho deidamia: velocity limiting streamlines on the wing at 4◦

angle of attack. On the left the dorsal side, on the right the ventral

side of the wing.
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Figure B.53.: Morpho deidamia: velocity limiting streamlines on the wing at 6◦

angle of attack. On the left the dorsal side, on the right the ventral

side of the wing.

Figure B.54.: Morpho deidamia: velocity limiting streamlines on the wing at 8◦

angle of attack. On the left the dorsal side, on the right the ventral

side of the wing.
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Figure B.55.: Morpho deidamia: velocity limiting streamlines on the wing at 10◦

angle of attack. On the left the dorsal side, on the right the ventral

side of the wing.

Figure B.56.: Morpho deidamia: velocity limiting streamlines on the wing at 12◦

angle of attack. On the left the dorsal side, on the right the ventral

side of the wing.
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Figure B.57.: Morpho deidamia: velocity limiting streamlines on the wing at 14◦

angle of attack. On the left the dorsal side, on the right the ventral

side of the wing.

Figure B.58.: Morpho deidamia: velocity limiting streamlines on the wing at 16◦

angle of attack. On the left the dorsal side, on the right the ventral

side of the wing.

133



Figure B.59.: Morpho deidamia: velocity limiting streamlines on the wing at 18◦

angle of attack. On the left the dorsal side, on the right the ventral

side of the wing.

Figure B.60.: Morpho deidamia: velocity limiting streamlines on the wing at 20◦

angle of attack. On the left the dorsal side, on the right the ventral

side of the wing.
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B.6. Morpho cisseis: vortex structures

Figure B.61.: Morpho cisseis: contour surface of λ2 criterion for the value 0.1

coloured with ut/u at 2◦ angle of attack. On the left the dorsal side,

on the right the ventral side of the wing.

Figure B.62.: Morpho cisseis: contour surface of λ2 criterion for the value 0.1

coloured with ut/u at 4◦ angle of attack. On the left the dorsal side,

on the right the ventral side of the wing.
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Figure B.63.: Morpho cisseis: contour surface of λ2 criterion for the value 0.1

coloured with ut/u at 6◦ angle of attack. On the left the dorsal side,

on the right the ventral side of the wing.

Figure B.64.: Morpho cisseis: contour surface of λ2 criterion for the value 0.1

coloured with ut/u at 8◦ angle of attack. On the left the dorsal side,

on the right the ventral side of the wing.

Figure B.65.: Morpho cisseis: contour surface of λ2 criterion for the value 0.1

coloured with ut/u at 10◦ angle of attack. On the left the dorsal

side, on the right the ventral side of the wing.
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Figure B.66.: Morpho cisseis: contour surface of λ2 criterion for the value 0.1

coloured with ut/u at 12◦ angle of attack. On the left the dorsal

side, on the right the ventral side of the wing.

Figure B.67.: Morpho cisseis: contour surface of λ2 criterion for the value 0.1

coloured with ut/u at 14◦ angle of attack. On the left the dorsal

side, on the right the ventral side of the wing.

Figure B.68.: Morpho cisseis: contour surface of λ2 criterion for the value 0.1

coloured with ut/u at 16◦ angle of attack. On the left the dorsal

side, on the right the ventral side of the wing.
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Figure B.69.: Morpho cisseis: contour surface of λ2 criterion for the value 0.1

coloured with ut/u at 18◦ angle of attack. On the left the dorsal

side, on the right the ventral side of the wing.

Figure B.70.: Morpho cisseis: contour surface of λ2 criterion for the value 0.1

coloured with ut/u at 20◦ angle of attack. On the left the dorsal

side, on the right the ventral side of the wing.
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B.7. Morpho deidamia: vortex structures

Figure B.71.: Morpho deidamia: contour surface of λ2 criterion for the value 0.1

coloured with ut/u at 2◦ angle of attack. On the left the dorsal side,

on the right the ventral side of the wing.

Figure B.72.: Morpho deidamia: contour surface of λ2 criterion for the value 0.1

coloured with ut/u at 4◦ angle of attack. On the left the dorsal side,

on the right the ventral side of the wing.

Figure B.73.: Morpho deidamia: contour surface of λ2 criterion for the value 0.1

coloured with ut/u at 6◦ angle of attack. On the left the dorsal side,

on the right the ventral side of the wing.
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Figure B.74.: Morpho deidamia: contour surface of λ2 criterion for the value 0.1

coloured with ut/u at 8◦ angle of attack. On the left the dorsal side,

on the right the ventral side of the wing.

Figure B.75.: Morpho deidamia: contour surface of λ2 criterion for the value 0.1

coloured with ut/u at 10◦ angle of attack. On the left the dorsal side,

on the right the ventral side of the wing.

Figure B.76.: Morpho deidamia: contour surface of λ2 criterion for the value 0.1

coloured with ut/u at 12◦ angle of attack. On the left the dorsal side,

on the right the ventral side of the wing.
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Figure B.77.: Morpho deidamia: contour surface of λ2 criterion for the value 0.1

coloured with ut/u at 14◦ angle of attack. On the left the dorsal side,

on the right the ventral side of the wing.

Figure B.78.: Morpho deidamia: contour surface of λ2 criterion for the value 0.1

coloured with ut/u at 16◦ angle of attack. On the left the dorsal side,

on the right the ventral side of the wing.

Figure B.79.: Morpho deidamia: contour surface of λ2 criterion for the value 0.1

coloured with ut/u at 18◦ angle of attack. On the left the dorsal side,

on the right the ventral side of the wing.
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Figure B.80.: Morpho deidamia: contour surface of λ2 criterion for the value 0.1

coloured with ut/u at 20◦ angle of attack. On the left the dorsal side,

on the right the ventral side of the wing.
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estimates, International Journal of Heat and Fluid Flow, 80 (2019), p. 108484.

[20] R. B. Langtry and F. R. Menter, Transition Modeling for General CFD

Application in Aeronautics, 43rd AIAA Aerospace Sciences Meeting and Exhi-

bition, (2005), pp. 1–14.

[21] R. B. Langtry, F. R. Menter, S. R. Likki, Y. B. Suzen, P. G. Huang,
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