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Abstract

This thesis investigate the scheduling on a single crane performing dual
command-cycles of storage and retrieval requests in an automated storage
and retrieval system. The system is assumed to operate online and heuristic
algorithms are developed, able to solve the problem in a short amount of time.
As the warehouse is usually connected to other manufacturing process, jobs
have to be processed on time and are subject to penalties if a delay on the
whole production process occurs; thus, the maximum lateness is considered
as objective function to be minimized. Jobs to be processed are considered
as components or items of a production process and therefore subjected to
precedence constraints, i.e. the requests can refer at the same item and the
retrieval and the storage have to be performed in a logical sequence. In ad-
dition, the crane is assumed to process at most one storage and one retrieval
request at a time, thus the existence of incompatibilities between jobs of the
same type. Two solving heuristic algorithms for this specific problem based
on different approaches are presented and evaluated.
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Chapter 1

Introduction

At the core of this work is a scheduling problem coming from the Automated
Storage Retrieval System (AS/RS). Warehouses represents a part of the pro-
duction or distribution process and their management affects the system’s
overall performances. AS/RS are largely adopted, because they can improve
performances compared with non automated warehouses, reducing inventory
and work force costs, increasing the throughput and optimizing operations
[Roodbergen and Vis (2009)]. It is particularly important in just-in-time
environments, where the management of the inventory has to be efficient
and reliable1, which a fully automated system can better fulfill. Still, the
improvement of performances has to be worth the high investment needed
and every factor influencing the value gained has to be carefully treated.
The design in the first place but also other features related to the system
configuration - e.g. racks size, number of cranes, number and position of
input/output (IO) points - have an impact on many performance measures
such as throughput and total travel time. Besides system design and con-
figuration features, also management and control decisions such as the way
cranes travel times are modelled, items are disposed on the shells and the
ordering inventory requests are processed influence system’s performances
[Gagliardi et al. (2011), Randhawa and Shroff (1995), Manda and Palekar
(1997)]. Every dimension has to be adapted to the performances needed in
the company and other specific needs of the surrounding system - such as
production facilities connected to the warehouse.

1Womack et al. (1994) first defined basic just-in-time concepts to reduce waste in
processes; among them, the need to reduce inventory level that requires as a consequence
a better management of the warehouse in order to fulfill all external requirements.
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1 – Introduction

The design and management of such a system is not easy at all. First,
because of the dynamism of production and distribution processes that often
requires high flexibility and adaptability to external changes and secondly,
because of the uncertainty deriving from the variability of requests. Demands
are hardly predictable, the availability of components depends on the reliabil-
ity of suppliers, production processes depend on many different variables and
availability on time of different resources. This results in a set of constraints
that restricts the freedom in the design phase, which as mentioned above -
depends on many connected decisions that have to be kept in consideration
as a whole. Gagliardi et al. (2011) and Roodbergen and Vis (2009) present
a review of all main assumptions to be considered and of past studies related
to the subject.

Within this framework, we consider here the problem of scheduling storage
and retrieval requests in order to minimize the maximum lateness of items
on the production phase. This decision problem affects the total travel time
of cranes and its related costs and the reliability of the system in terms of
processing tasks on time and returning items to the connected production or
distribution system when needed and possibly not late. It is assumed that
the system has one crane performing dual command cycles, being able to
first storage one item and then retrieving another one without going back
to the I/O point. This means that a storage and a retrieval request can
be batched together. The problem can be summarized as a scheduling of
jobs with incompatibilities and precedence constraints on a single batching
machine - 1|batch(b), prec, incomp|Lmax with Graham’s three field notation
[Graham et al. (1979)]. Incompatibilities derive from the fact that two
storage or two retrieval requests cannot be batched together and precedence
constraints relate to the case of dealing with the same physical item, that
has first to be stored and then retrieved.

Storage and retrieval requests arrive in most cases in a continuous flow,
storages coming from deliveries of external/internal suppliers and retrievals
from the demand of external/internal customers. As such, there are two
possible ways of proceeding: One could either re-schedule all requests (tasks)
a new, whenever a new request is received (dynamic sequencing) or select each
time a set of tasks, schedule them and then proceed with the next set (block
sequencing) [Han et al. (1987)]. The performance of both approaches differs
according to the situation but the second is simpler and more intuitive and
it is the one considered here.
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1 – Introduction

The same problem is presented and exactly solved by Emde et al. (2019),
where the authors use a logic-based Benders decomposition (B&BC) and
show it outperforms in terms of computational time previous solution meth-
ods [Cabo et al. (2015)]. The algorithm finds most of optimal values for
instances with 20 and 100 jobs in the time range of few seconds and many
optimal values for instances with 200 jobs within half an hour. Being an
exact method, it can provide optimal values for relatively small problems
but cannot address the same problem when growing in size within a useful
time period. The problem, being a generalization of the problem considered
by Brucker et al. (1998) - scheduling of n jobs on a batching machine to
minimize due date based scheduling criteria with batch restricted size - is
in fact known to be NP-hard. In other words, no algorithm is known that
can optimally solve the problem in polynomial time; instead, the time to
solve the problem increases exponentially with respect to the number of jobs
considered, becoming soon unfeasible. The aim of the work is therefore to
analyze performances of some heuristics thought for the specific problem in
comparison with the B&BC algorithm considering a real time system, where
the responses have to be fast, let’s say within a minute. Heuristic methods
do not guarantee optimality but can still provide some good and useful solu-
tions for industry purposes and improve the solution quality with respect to
some other simpler scheduling rule as the largely adopted First In First Out
(FIFO) or the Earliest Due Date (EDD) rule.

The reminder of the work is structured as follows: in chapter 2 it is pre-
sented a general background on scheduling problem and solving methods with
definitions, notation, application frameworks and examples from the litera-
ture. In part II the specific problem coming from the context of automated
storage and retrieval systems is addressed starting with chapter 3 where main
issues is such sytems modelling are mentioned; in chapter 4 the problem is
described in detail and a Mixed Integer Program formulation is presented; in
chapter 5 we have the description of proposed heuristics to solve the problem;
in chapter 6 results from the evaluation tests are discussed; finally, conclu-
sions are summarized in the last chapter to review the work done and present
possible future improvements.
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Chapter 2

Scheduling problems

Dealing with scheduling problems is a common issue for most industries,
from manufacturing to service providers [Pinedo (2016)]. The general idea
behind the scheduling process is to assign, in the best possible way, resources
to several tasks with respect to the firm’s processes needs and objectives.
Applications are many and various; objectives can be easily achievable or as
difficult as reaching the limit of computational feasibilty.

Scheduling problems often lead to combinatorial optimization problems
(COP) that are hard to be solved. The trade-off between the achievement of
the optimal solution and the necessity to obtain solutions in a feasible time
is at the core of scheduling. Problems solvable by polynomially growing time
algorithms are distinguished from those solvable by exponentially growing
time algorithms, the first being "easy" problems and the second "difficult".

In the AS/RS context, the system is required to accomplish all the storage
and retrieval requests in such a way as to satisfy on time, with respect to
some due dates, the retrieval of the parts needed. The resources available
to process tasks are one or multiple cranes and the objective is to assign a
sequence of items to each crane in such a way that the overall performances of
the AS/RS would satisfy the best the requests of the manufacturing process
requiring the items.

There is a broad variety of frameworks in which scheduling is applied. The
objectives can vary a lot depending on which framework is taken into account.
In the next sections, a brief overview of the most common deterministic
scheduling models is presented, followed by an overview on how algorithm’s
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2 – Scheduling problems

complexity is computed in order to understand the main issue around finding
the optimal schedules for most problems due to computational capacity limits
and next, some traditionally used scheduling rules and some other solutions
found in the literature. In the next chapter, the focus will be on the use of
heuristic algorithms to solve scheduling problems.

2.1 Scheduling models
Given a collection of jobs requiring processing in a certain machine environ-
ment, the issue in a scheduling problem is to sequence these jobs and assign
them to certain machines, subject to given constraints, in such a way that one
or more performance criteria are optimized. The objectives can be many and
various, depending on the production environment. Sometimes, the objective
may be the minimization of the completion time of the last task - when the
interest is posed on the duration of the whole process - and another may be
the minimization of the number of tasks completed after their respective due
dates - when emphasizing the need of having jobs ready on time. We now
first define the notation used to point out all different environments.

2.1.1 Notation
In deterministic scheduling problems we have a finite number of jobs and ma-
chines, each of them associated to some data describing their characteristics
that we assume being deterministic. First of all, we have a number of jobs
denoted by n and a number of machines denoted by m. A processing step or
operation of job j on machine i is described by the pair (i, j), where we use
the usual notation where the subscript j refers to a job while the subscript
i refers to a machine. Each job j can be associated to some additional data
and those are:

• the processing time pj as the time requested to complete the process on
the job j;

• the due date dj as the time where job j is expected to be finished,
otherwise a penalty is applied;

• the release time rj as the earliest date at which job j can be processed;

• the weight wj as the relative importance of that job.

14
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Depending on the final schedule, each job has some other related information
as:

• completion time Cj as the time where job j will be completed on the
last machine where it needs to be processed;

• lateness Lj computed as Cj - dj as the measure of how late is job j;

• tardiness Tj computed as the maximum between Lj and 0, s.t. tardiness
is never negative and is positive if job j is late;

• unit penalty Uj that takes the value 1 if job j is late, 0 otherwise.

2.1.2 Scheduling frameworks
A scheduling problem can be generally described by a triplet α|β|γ follow-
ing the notation as first introduced by Graham et al. (1979). The α field
describes the machine environment - such as single machine, m parallel ma-
chines, flow shop - and contains just one entry. The β field provides details
of processing characteristics and constraints - such as precedence constraints,
preemptions, batch processing - and may contain no entry at all, a single en-
try, or multiple entries. The γ field describes the objective to be minimized
and often contains a single entry. Some of them are: the makespan Cmax as
the completion time of the last job being processed; the maximum lateness
Lmax as the maximum of the lateness of all jobs; the total weighted tardiness
(q

wjT j) as a cost function that somehow measure the total cost of having
late jobs. As example the problem investigated in this work is taken. In
the notation described above it is denoted by 1|batch(2), prec, incomp|Lmax
meaning that there is a single batching machine that can process 2 jobs at
a time, that jobs have some incompatibilities and are subject to precedence
constraints and that the function to be minimized is the maximum lateness.

Each combination of some of the above mentioned characteristics describes
a scheduling framework with different parameters and objectives. Once the
model is defined, there will be the need for some scheduling rules to be
applied to the input tasks. One possible way would be of course to try out
all possible combinations of tasks and to choose the best one according to the
objective function, i.e. to solve the problem through complete enumeration.
However, this would usually lead to an exponentially increasing number of
computations that cannot be afforded in the case of an increasing number
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of tasks. Therefore, considerable efforts have been made in the literature to
find some solving algorithms that can operate polynomially increasing time
while still achieving the best solution. In the next section, the complexity
classes of solving algorithms are presented in detail.

2.2 Algorithm Complexity
Computational complexity serves as a mean to approximately indicate the
number of elementary operations contained in an algorithm. It is used in
computer science to classify algorithms according to how their running time
grow as the input size grows. If an algorithm performs one elementary op-
erations, one for all n elements, its running time is said to be of the order
of n. n defines the size of the problem and by scheduing algorithms, it is
usually identified as the number of elements to be scheduled. This is an
approximation since the number of elementary operations also depends on
how the solution is represented. For instance, a schedule can be represented
as a sequence of objects but also as a binary vector as long as the amount
of all possible elements containing a 1 or a 0 in position i whether element i
is included in the solution or left apart. However, the approximation to the
number of elements is generally accepted and useful to evaluate computing
times.

In general, the bigO notation [Bachmann (1894) and Landau (1909)] is
used, where just the fastest-growing term is represented. Formally, let f be
a real or complex valued function and g a real valued function, both defined
on some unbounded subset of the real positive numbers, such that g(x) is
strictly positive for all large enough values of x. One writes

f(x) = O(g(x)) as x→∞ (2.1)

if and only if for all sufficiently large values of x, the absolute value of f(x)
is at most a positive constant multiple of g(x). That is, f(x) = O(g(x)) if
and only if there exists a positive real number M and a real number x0 such
that

|f(x)| ≤ Mg(x) for all x ≥ x0 (2.2)

or simply
f(x) = O(g(x)). (2.3)
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For instance, in the case of an algorithm performing n2 + n elementary
operations, it is said to perform in a time O(n2), meaning that the time
required grows approximately by the square when increasing the number
of elements. A problem with complexity O(nx), x ∈ N is told to have a
polynomially increasing time, whether a problem with complexity O(2n) or
O(n!) is told to have an exponentially increasing time by the size of job
elements. It is of uttermost importance to understand the computational
complexity because the computational feasibility of an algorithm’s solution
depends on it.

For most combinatorial optimization problems such as many scheduling
problems - and also our problem - no algorithm with polynomially increasing
time is known. Many of those problems are known to be NP-hard. Modern
computational capability cannot afford an exhaustive search into whether
other kinds of problems - solvable in polynomial time - can easily be solved
in an optimal way. Moreover, the achieved quality of the solution can vary
significantly on a case-by-case basis.

Complexity classes In computational complexity theory, the following
main classes of problems are distinguished: problems solvable in polynomial
time (P), in a non-deterministic polynomial time (NP)1, in exponential time
(Exp) and finite time (R). Besides these categories, there are those problems
that cannot be solved in finite time.

In particular, the set NP differs from P in that it includes such problems
that could be solved in polynomial time via a “lucky” algorithm that could
choose the right path at each step of the decision tree. In other words, once
a solution is obtained, this can be verified in polynomial time but not the
same to find it.

P is clearly a subset of NP but it is not clear if P /= NP and it is a
major unsolved problem in computer science. Nonetheless, it is meaningful
to define the NP class because it computationally differs from P.

1The statement of P versus NP problems was introduced by Cook (1971) but the proof
of P /= NP is still to be found and it remains a major unsolved problem in computer
science. However, most scientists agree that it probably holds and we assume here the
same.
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Reduction Reduction is used to compare different problems in terms of
complexity. A problem C is told to reduces to a problem C’ if C is a special
case of C’ and this can be written as C ∝ C Í . Being C a special case of C’,
if we know a polynomial algorithm that solves C’, then we can say that this
works also for C, i.e.

if C Í ∝ C

and C Í ∈ P,

then C ∈ P.

Reduction is very useful to compare problems and many researches focused
on finding relations between problems using reduction. An example presented
by Pinedo (2016) follows.

Example. We have two very well known problems: the knapsack problem
(C) and the partition problem (C’).

In the knapsack problem, we deal with n items. Each item j is associated
to a size pj and a benefit wj and we want to fill a knapsack of total size d,
such as to maximize the total profit z of items contained in the knapsack.
Every solution can be represented as a binary vector with length n and a 1
in position j if item j is included in the knapsack and a 0 if not. This is
equivalent to the problem of minimizing of the total weighted unit penalty
(Uj = 1 if job comes after d, i.e. if it exceeds the knapsack size) of a set of
jobs with a common due date d.

In the partition problem, we have the same number n of positive integers
aj, j = 1, ..., n. We want to partition them in two disjoint subsets Si, i = 1,2,
such that for each subset the sum of contained integers is the same and equal
to b, i.e. Ø

j∈Si

aj = b.

By taking specific values for the knapsack problem, we see that it reduces
to the partition problem; that is, if

pj, wj = aj

and d, z = 1/2
tØ

j=1
aj = b,

then C Í ∝ C

18
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NP-hard problems A special subset of NP problems are those NP-complete.
They are the most difficult problems in NP. Formally, a problem is NP-
complete if any other problem in NP polynomially reduces to it. The fact is,
that if a polynomial algorithm would be found for a NP-complete problem,
then this would mean that all of them could be solved in polynomial time.

NP-complete problems define a border line around the NP set. Beyond
this, we have the so-called NP-hard problems.

The concept of NP-hardness refers to all problems that are at least as
hard to solve as every problem in NP. Some of them can be solved by a
polynomial algorithm for a certain solution encoding; these are called NP-
hard in the ordinary sense or simply NP-hard. Some other cannot be solved
in polynomial time in any encoding; these are told to be strongly NP-hard.

Exploring exhaustively all combinations of the components of NP-hard
or strongly NP-hard problems often leads to computational times increasing
exponentially in respect of the number of components. By real problems, this
could easily mean days or years of computation and it is of course unfeasible
to wait such a long time and the optimal solution may remain unknown.

Our problem is a specific case of the sequencing of jobs on a single batching
machine with restricted batch size (BMRS problem). As this has been shown
by Brucker et al. (1998) to be NP-hard, the problem considered is also
contained in this category. Hence, the need of some heuristic algorithms able
to solve the problem in a short amount of time but through the acceptance
of solutions that are just nearly-optimal, in order to prioritize the finding
of some feasible solution in limited time instead of the best one. Heuristics
have found large use in all optimization problems indeed to avoid the non
feasibility of many such problems and to come out with one - at least - feasible
solution.

In the following section, the most common approaches to solve them -
some leading to an optimal solution and some other not - are presented.

2.3 Solution approaches
As shown in the previous sections, every scheduling problem has to be ap-
proached specifically, depending on the framework. Every change in the prob-
lem design can affect the search procedures for a solution; In any case, the
first decision to be made when approaching a scheduling problem is whether
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to use an exact method - usually just possible for small sized problems - or a
heuristic method. Among exact methods, apart from exact enumeration, we
distinguish mathematical, dynamic and constraint programming methods,
Branch & Bound procedures and others. If the problem has certain char-
acteristics, also some simple dispatching rules can be enough to determine
some good - or optimal in very specific cases - solutions.

2.3.1 Dispatching rules
Dispatching rules are the simplest and most intuitive method to approach a
problem. They are rather simple ordering rules, whose aim is to prioritize
tasks on machines according to job-related data, e.g. the processing time, or
machine-related data, e.g. jobs queue at each machine. Dispatching rules are
based on some logical intuition, e.g. nearest due date ordering when trying to
minimize jobs lateness, which is a due date-related function. In some cases,
they lead to optimal solutions (if the problem belongs to class "P") but of
course - as they are purely greedy algorithms - they cannot be applied to
complex optimization problem hoping in very well performances.

However, dispatching rules are broadly used because they are the simplest
rules that can be implemented and work usually very fast. Thus, also in the
cases in which they do not lead to good solutions, they can still provide an
initial basis from which more satisfying solutions can be developed by means
of more complex methods. Also, various or combined ordering rules are used
as steps of complexer algorithms. Later, an application of dispatching rules
to evaluate differences in problem instances will be also mentioned.

Clearly, a dispatching rule can be also used as simple standardized ordering
method without any attempt of optimization. The widely adopted First
Come First Served rule (FCFS) order jobs according to their arrival time.
The Service in Random Order (SIRO) establishes as prioritizing rule a simple
random ordering. Efficiency of these rules is often poor and an attempt of
some kind of optimization is in most cases worth the effort.

2.3.2 Exact methods
Many efforts were made by researchers to develop mathematics and logic-
based algorithms to exactly solve problems reducing number of computations
required by a complete enumeration. Complete enumeration requires to list
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all possible combinations of components of a problem. In some combinatorial
problems, the ordering may be considered, in some other may be not. In any
case, it is not difficult to see that the number of combinations grows expo-
nentially as the number of components increases. For instance, to schedule
n items, we should consider n! different solutions and choose the best one.
By 3 items, this requires considering 6 solutions, by 10 items, 3,628,800 so-
lutions and by 100 items, to a number of solutions that has 157 cifers. Exact
methods try to find some logical way to reduce the number of solutions to
be considered.

Optimization problems are usually formulated as Linear Programs (LP) -
otherwise called Integer Programs (IP) or Mixed-Integer Programs (MIP) if
respectively all or some of the variables are integers. The formulation as LP,
IP or MIP simply gives the mathematical formulation for a problem with an
objective function to be minimized and some constraints to be fulfilled.

A formulation of a LP usually looks like the following:

minimize c1x1 + c2x2 + ...+ cnxn

subject to
a11x1 + a12x2 + ...+ a1nxn ≤ b1

a21x1 + a22x2 + ...+ a2nxn ≤ b2

...

am1x1 + am2x2 + ...+ amnxn ≤ bm

xj ≥ 0 for j = 1, ..., n.

or simply, using the matrix form

minimize cx

subject to
Ax ≤ b

x ≥ 0

A first option is to use some available softwares that solve the MIP for-
mulations of the problem. Broadly used is the commercial IBM’s software
CPLEX or the open source SYMPHONY.
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There are many procedures that systematically solve some classes of prob-
lems in a more sophisticated way. For Linear Programs the most common
methods are the simplex methods and the interior point methods; for the
IP the most common are cutting plane (polyhedral) techniques, branch-and-
bound and branch-and-price techniques.

Branch and bound Branch and bound techniques consider a partitioning
of the solution space in a branching tree and for each part, i.e. at each node,
compute a lower bound that gives an idea of the value of the best reachable
solution in that branch. By comparing the bounds in each region, it cuts off
the branches that surely do not contain the best solutions. For instance, if
in a branch the lower bound is higher than a solution already found, then
this branch can be diregarded as every solutions in it will be worse than
the already found solution. The lower bound is usually an approximation of
the best achievable solution. How it is computed, depends on the specific
problem. A lower bound is said to be tight, the more it is close to the optimal
solution. The tighter the lower bound, the more branches can be cut off and
the solution found in less time.

A successfully applied version of the branch-and-bound is the branch-and-
cut, where some cutting-plane techniques are applied at each node to gener-
ate stronger lower bounds. The cutting-plane techniques basically generate
additional constraints that are injected in the original problem.

Branch and price combines branch and bound with the pricing problem
that comes from the theory of linear programming, where variables are priced
with a so-called reduced cost. The pricing optimization problem is then used
to compute lower bounds.

Dynamic Programming Dynamic programming is used to solve a prob-
lem by recursively solving all subproblems, starting from the smallest up to
the original problem. It can be applied if the main problem can be decom-
posed in smaller and identical subproblems.

Every dynamic programming procedure is composed by an initial condi-
tion, a recursive function and the optimal value function.

For instance, for the problem 1||qi Ti with n elements, we first consider
all subproblems made of one element and we choose element k such that

f(k) = max(pk − dk,0), k=1,...,n.
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The initial condition is set and the recursive procedure starts. For every
subset S, we can compute the total tardiness as

f(S) = min
i∈S
{f(S − {i}) +max[pi − di,0]}.

The procedure stops and the optimal value function for the problem is found
when S = 1, ...n, i.e. it contains all elements.

2.3.3 Heuristic methods
Given the whole solution space of a problem, i.e. all feasible combinations
of tasks on machines, the core point of heuristic methods is exploring this
space and then just searching in the most promising regions without knowing
where the real optimal solution lies and if it can even be reached.

As they often represent the only way to reach a computationally feasible
solution, they are extensively applied to a large number of problems and
there are a lot of examples of heuristics that were successfully applied in
various fields - e.g. genetic algorithms in machine learning [Goldberg and
Holland (1998)] or the tabu search in artificial neural networks optimization
[Sexton et al. (2011)].

Figure 2.1. Intensification and diversification through the solution space

23



2 – Scheduling problems

Definitions The word heuristic comes from the Ancient Greek and literally
means "find", "discover". The term heuristic methods, or simply heuristics,
was first introduced by Foulds (1983). Generally, it refers to the fact that
a heuristic method simply tries to achieve a good solution in an easy and
intuitive way without any proof of optimality. On the contrary, exact meth-
ods systematically search through the whole solution space, until a provable
optimal solution is found. An exact method always finds the best solution,
however long it does take; on the contrary, heuristics take advantage of some
problem dependent properties and find some approximately good solutions
in a faster way.

In practice, heuristic methods are often preferred to exact ones as in many
cases they are the only possibility to reach a solution in a limited time.

In general, heuristic search principles can be defined by some simple prior-
ity rules or some common sense-based strategy built upon known information.

The definition of metaheuristic was instead introduced later by Glover
(1986) to define a high-level strategy which builds upon a particular basic
search principle2. The main underlying concept is to realize a balance be-
tween intensification, i.e. the exploitation of a specific region of the search
space, and diversification, i.e. the exploration of the whole solution space. In
other words, a good metaheuristic method should both explore different re-
gions of the solution space to broaden the view and find where good solutions
could lie and then focusing in finding the best solution in each region.

As an example, let’s suppose to have a problem with a certain solution
space as represented in Fig.2.1, where the x-axes represents all possible so-
lutions and the y-axis the value of the objective function produced by each
of them. A metaheuristic method can start by choosing - randomly or with
some simple basic heuristics - a starting solution A. To broaden the view on
the solution space, some other different and distant solutions will be chosen,
let’s say B and C and after that, the decision would be to better look at the
region around the solutions found, as done by solution C. In such a way, we
both explore different regions of the solution space by still analyzing them
deeply.

A very common search procedure is the local search - being part of the
search methods using solution modification explained in the next section -

2Metaheuristics Network Website URL: http://www.metaheuristics.org
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that exactly implements the intensified search in the region of a solution. For
instance, starting from solution C, it would look at its so called neighbours
and choose the one with the lowest objective function value and repeat the
procedure until the achievement of the optimum. It is easy to see that by re-
peating the search starting from solution A or B, the search would stay stuck
at the local optimum without possibly never reaching the global optimum.
This is why diversification plays an equally important role as intensification.

In a few words, metaheuristics define general and problem-independent
frameworks that help to efficiently apply a heuristic search throughout the
whole solution space.

The main issue by heuristic methods lies on the fact that they are often
strictly problem-dependent in terms of performances, i.e. by changing some
small parameters, the quality of solutions could worsen a lot. This is why
metaheuristic methods are much more preferable in many cases: they are
a sort of high-level strategy that "control" the performances of a particular
underlying heuristic method and can be easily adapted to many different
problems.

However, the distinction between heuristics and metaheuristics is often
neglected and it is common to refer to both as heuristics.

Methods Classification The definition of heuristic is very general and
simply refers to the fact of being a non-exact method but the underlying
search principles can be summarized together and grouped in some classes
as shown in Fig.2.2, where a general taxonomy of all solution methods is
represented. After the first distinction between exact and heuristic methods,
the latter are themselves split in constructive and search heuristics, the first
building a unique solution, the second starting from a solution and explor-
ing its "nearest" solutions. Considering how the nearest solutions are built,
search heuristics distinguish then the search by repeated solution construc-
tion, modification or recombination. Here, an overview on how they generally
work.

Constructive heuristics try to construct one single solution with the best
possible quality by selecting promising solution elements.

Search heuristics conceptually differ from the constructive heuristics, be-
cause they examine many different solutions of the solution space in order
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Figure 2.2. Taxonomy of solution methods [Zäpfel and Braune (2010)]

to find the best possible one. Depending on how solutions are generated, we
have three different categories, as follows.

• Search by solution construction, it implies a repeated solution construc-
tion by slightly changing added elements, e.g. by partially randomizing
the adding process or by keeping track of elements properties.

• Search by solution modification, it generates solutions starting from an
initial one - previously generated - by for example exchanging or inserting
some elements. Under this principle lies the concept of local search,
defined as the search through the whole neighbourhood of a starting
solution - where the neighbourhood contains all solutions that differs
from the first one by a small modification gained in a systematic way -
in order to find the nearest local minimum - supposing a minimization
problem. This kind of search guarantees the achievement of the best
solution given a specific region of the solution space.

• Search by solution recombination, it takes some from a previously gen-
erated pool of solutions and recombine their elements in order to create
a new "generation" of solutions.
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In all three cases, the method generates some final solutions and chooses the
best one.

Upon these general search principles, some metaheuristic methods can be
built by designing a framework that control and addresses in the right way
the underlying heuristic algorithms. In fact, there is the need of an entity that
can preserve an overlook on the whole process performances and find a way
of not being stuck in the first apparently good solution and instead keeping
exploring other regions of the solution space, fact above referred as creating
a balance between intensification and diversification. In the next section,
we look at some of the most popular metaheuristics that were successfully
applied to various optimization problems.

Metaheuristics Here, it is presented a list of the most popular metaheuris-
tics used in the literature emphasizing how intensification and diversification
are performed in each of them.

Zäpfel and Braune (2010) exhaustively discuss all principles underlying
metaheuristic methods and present in more detail all following methods.

The Greedy Randomized Adaptive Search Procedure (GRASP) is based on a
solution construction search and the idea behind it, is to insert some random-
ness while building the solution in order to bring some kind of diversification
in the process. On each partially random solution, a local search is performed
to reach the nearest local optimum.

The Ant Colony Optimization (ACO) is another metaheuristics based on
solution construction. The idea is to explore as many different paths between
elements as possible, leaving track on each path of the quality of solutions
found and by repeating the process many times. Thereby it will always choose
the path depending on how good the ”traces” are by keeping exploring many
different paths. ACO will therefore slowly converge to the best path thanks
to the progressive accumulation of positive tracks.

The Tabu Search algorithm is based on solution modification. The idea
behind it lies in the fact that by performing a simple local search, the prob-
ability of being stuck around a local minimum is very high. Therefore the
need arises of keeping track of past solutions in order to avoid them and
keeping exploring other regions of the space also if this implies a worsening
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of the solution. A so-called tabu list memorizes past solutions or elements
contained in them and they are simply avoided if found in the neighbourhood
during the local search.

The Treshold Accepting is another metaheuristics based on solution mod-
ification. The algorithm generates a neighbour from a starting solution and
accepts it, if it does not exceed a previously defined threshold. The threshold
is usually reduced at every iteration, so that even if at the beginning most of
the neighbours are explored only the best one will be accepted at the end.

The Simulated Annealing works similarly to the Threshold Accepting al-
gorithm; it generates a neighbour and accepts it with a certain probability
that depends on both the distance from the previous solution and a so-called
temperature that is reduced at each iteration.

The Genetic Algorithm works based on solution recombination. Starting
from a pool of previously generated solutions, it - partially randomly and par-
tially evaluating them - chooses two "parents" and recombine their elements
by exchanging all elements that stay over some cross-over point. Sometimes
some "child" solutions are mutated, in order to bring more diversification.
The idea is that by repeating the process many and many times, only the
best "features" of the solutions will survive and the best solutions will be
found.

The Scatter Search is similar to Genetic Algorithms but performs inten-
sification and diversification in a more visible and systematic way. From a
starting solution, it first generates some diversified solutions and intensifies
them with a local search. Starting out from this, it builds a ”reference set”
that contains both the best and the most diverse solutions; it recombines all
pairs to create the new starting pool of solutions.

2.3.4 Hybrid methods
There are, apart from exact and heuristic methods, some other directions
in which researches are focusing with more and more attention. A set is
roughly identified and includes so-called matheuristics. Matheuristics are
informally referred to as hybrid methods, where the hybridization refers to
the combination of different methods to come up with a new approach that
exploits advantages of each of them.
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Matheuristics rose from some applications of metaheuristics by introducing
elements of mathematical programming or more generally, exact approaches.
Authors combined heuristic and exact methods in different ways. Della Croce
et al. (2011) addressed the minimization of the total completion time in a
2-machine flow shop and combined a Recovery Beam Search method for a
first heuristic search through the solution space and a neighbourhood search
based on a MILP formulation to solve it with a commercial solver. Hansen
and Mladenović (2005) developed a decomposition-based approach that mix
exact and heuristic procedures built upon a Variable Neighbourhood Search
metaheuristics to solve large instances of various problems.

Maniezzo et al. (2009) gives an overview on the state of the art of
matheuristics classification and presents many example applications.

2.4 Examples from the literature
The literature about scheduling problems is really broad and the approaches
are various. The simplest approaches refer to some simple ordering rules
that prioritize tasks according to the objective function; some split jobs in
subgroups and order them by different rules according to the subgroup; some
others use dynamic programming to adapt continuously the objective func-
tion or some kind of logic reasoning in order to ”cut” some paths that would
not lead to better solutions. To stay in line with the present work, key lit-
erature mainly regarding the single machine environment and some in line
with our specific problem are mentioned. We start with some dispatching
rules that simply order jobs (tasks) by their attributes and focus then on
some more problem-related strategies that could be of some interest for our
specific problem of modelling an AS/RS.

The Weighted Shortest Processing Time (WSPT) rule orders jobs by non
decreasing weighted processing time, i.e. wj/pj. It is shown to optimally
solve (Pinedo, 1994) the minimization of the total weighted completion time
1||qwjC j. The simpler variant derived from it is the Shortest Process-
ing Time rule (SPT), optimally solving the minimization of the makespan
1||qC j.

Lawler (1973) developed an algorithm to minimize the maximum cost
(MMC) that optimally solves the problem 1|prec|hmax, where hmax is the
maximum of a general due date related cost functions hj(C j), j = 1, ..., n
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such as jobs lateness and tardiness. It is a backwards algorithm that se-
quence the jobs from last to first, always choosing next, from among the
jobs which are currently available, i.e. jobs none of whose successors remain
unchosen, a job with the latest possible deadline [Lawler (1973)]. There are
n steps needed to schedule the n jobs. In each step at most n jobs have to be
considered. The overall running time of the algorithm is therefore bounded
by O(n2). The simpler variant is the Earliest Due Date (EDD) rule, ordering
jobs by non decreasing due date that optimally solve the problem 1||Lmax.

Johnson (1954) addressed the problem of scheduling jobs in a flow shop.
Flow shops refer to those processes where a number of operations have to be
done on all job. Every job goes through multiple machines set up in series
and has to follow the same route. Jobs can have different processing times on
different machines and we refer to the processing time of job j on machine i
as pij. Buffers between machines are often considered to be unlimited if the
products to be processed are very small; otherwise, a limit to buffer capacity
has to be specified.

The so-called Johnson’s rule finds an optimal schedule for the problem
F2||Cmax that is, the minimization of the makespan in a flow shop with two
machines. Jobs are first partitioned into two subset, the first containing all
jobs having p1j < p2j and the second all others. An optimal schedule is
generated scheduling first jobs in the first subset ordered by increasing p1j
(SPT) followed by jobs of the second subset ordered by decreasing p2j (LPT).
Such a schedule is also referred to as an SPT (1)− LPT (2) schedule.

This procedure - that leads to a polynomial algorithm - works only for
a flow shop with two machines. On the contrary, it can be proved that
increasing the number of machines the problem becomes strongly NP-hard
[Pinedo(2016)].

Han et al. (1987) evaluated the travel-time savings that can be achieved
by first pairing storage and retrieval requests using the Shortest-leg (SL) and
Nearest-neighbour (NN) heuristics compared with the scheduling with the
First Come, First Served (FCFS) rule being up to 60% of the time. The NN
heuristic selects a pair P = (s ∈ S, r ∈ R) with the minimum interleaving
time from the non-empty set of available retrieval requests (R) and the non-
empty set of available storage requests (S). The shortest-leg (SL) heuristic
sequence retrievals and considers both the travel time to a storage location
s and the interleaving time from s to a retrieval location r as one leg, and
executes the pair with the shortest leg.
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Possani (2001) defines a local search heuristics based on an exponentially
sized neighbourhood that can be searched in polynomial time to minimize
maximum lateness on a batching machine with restricted batch size (BMRS
problem), i.e. to solve the problem 1|batch(b)|Lmax. The procedure considers
splitting the initial solution in two disjoint subsequences and then merging
them by performing multiple insert moves. Given a split procedure, a feasible
batching to minimize maximum lateness can be achieved in polynomial time
with a dynamic programming algorithm.

Emde et al. (2019) developes a logic-based benders decomposition cut
algorithm to exactly solve the specific problem addressed in this work. Au-
thors decompose the problem into a master problem, where jobs are first
assigned to batches and a slave problem, where those batches are sequenced
with respect of all constraints minimizing the maximum lateness. In the
slave problem, feasibility and optimality cuts are generated and injected into
the master problem’s branch and cut tree as lazy constraints, following the
idea of the so-called branch and Benders cut approach. The master problem
is formulated as an Integer Programming model and whenever it finds an
integer solution, the slave problem is solved and new cuts injected until no
more feasible or unfathomed solution remains.

2.5 Knowledge discovery techniques: a sup-
port for scheduling

Aligned with the idea of hybridization, there are research lines that combined
the scheduling process with some methods coming from the field of knowledge
discovery, i.e. the field that contains support methods ranging from statistical
control charts to machine learning and artificial intelligence methods.

The reason lies in the fact that scheduling is the general process of se-
quencing tasks within a certain framework and this applies to such distant
environments that the scheduling process can take the most various forms.
Given the hypothesis that scheduling aims to optimize some kind of perfor-
mance, with small changes in the framework some solving methods could
return really poor performance if they are strictly problem specific. Espe-
cially simple heuristic procedures are often thought for specific problems and
cannot tolerate big changes without loosing solution quality. On the other
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side, complex methods that are able to solve problems well with more gen-
eral conditions are harder to implement and are often computationally more
expensive.

A support coming from data analysis and the understanding of their pat-
tern was therefore introduced to improve solutions in complex and diversified
environments and facilitate decision making. Harding et al. (2006) present
a review of data mining techniques used as decision making support in the
manufacturing industry from the beginning of 1990s. Ismail et al. (2009) re-
view Artificial Intelligence techniques such as the knowledge based method,
artificial neural networks, fuzzy logic, genetic algorithm and regression tree
used in production planning and, particularly, in job shop scheduling and
control.

2.5.1 Knowledge discovery
Knowledge discovery is the science of studying, analysing and finding infor-
mation or patterns about data. When dealing with a huge amount of data
that relate to the same flow of information as scheduling requests but also
http packages in a network, environmental statistics or personal data about
a community, it becomes important to find some common characteristics in
order to extract some knowledge from the whole quantity of data. Among all
features of a certain type of data, some are more relevant than others and the
goal is to understand which ones are of some meaning and which ones can
be, on the contrary, disregarded. The fact is that often the amount of data
required is too big to be analysed at whole and the extraction of the sole
important features is necessary or can still strongly reduce computational
efforts.

Data mining is in general the process of discovering patterns and get in-
formation from a large quantity of data that involves methods built around
Artificial Intelligence, Machine Learning, statistics and database systems. It
is defined [Honghua Tan. (2012)] as the automatic or semi-automatic anal-
ysis of a large quantity of data to extract previously unknown interesting
patterns, such as groups of data, records (cluster analysis), unusual relation-
ships (anomaly detection) and dependencies (association rule mining). This
step helps identifying the more meaningful features, possible classes of the
data and serves as a basis to effectively use other knowledge discovery tools.
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Data mining tasks are divided in predictive, i.e. that use some character-
istics to predict future data, using regression, classification, decision tree,
and descriptive, i.e. that describe task-relevant data in a concise way, using
segmentation, clustering, association, outliers analysis, classification, charac-
terization, clustering, discrimination. These techniques aim at constructing,
through machine learning models, a knowledge function that can map to-
gether data set values and extracted information.

Let’s suppose we want to monitor a network traffic in order to identify
possible intruders. Each network package represents an instance of the data
and is characterized by many features, such as content, sender, receiver,
path, size, format and so on. After collecting a certain amount of data, we
analyse them and extract some information that could for example be that
to identify intruders it is enough to look at the sender and the path of the
package. Based on this information, we build a model that classifies packages
in desirable and undesirable in respect of the sender and path. In this way,
we can train the computer to automatically extract information from a big
quantity of data.

Data mining in scheduling

It was already mentioned that this methodology can also be applied to
scheduling. There are past researches that consider solving scheduling prob-
lems using simple assignment/dispatching rules supported by knowledge dis-
covery methods to both select the most appropriate rule and to discover new
ones.

Sha and Liu (2005) studied the due-date assignment problem and devel-
oped a data mining approach for extracting knowledge on different due-date
assignment rules. They considered dispatching rules as a predictor for due-
date assignment rules and as a result, they obtained a decision tree that
makes a decision by selecting a due-date assignment rule for a given dis-
patching rule, number of jobs in the system, processing time requirement of
jobs and other parameters.

Li and Olafsson (2005) instead, proposed a datamining-based approach for
discovering new dispatching rules. They similarly used a set of dispatching
rules to extract knowledge depending on their performances. The final output
is a decision tree that is referred to as a new dispatching rule and which is
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later used to make a decision for releasing or not releasing a job to the
machine based on attribute values such as processing time requirement and
processing time difference. Geiger et al. (2006), and Geiger and Uzsoy (2006)
approached the same problem of new dispatching rule discovery by combining
simulation and GA techniques.

Metan et al. (2010) consider a job shop problem minimizing average tar-
diness and develop a model that selects dispatching rule through a decision
tree extracting knowledge from data using simulation, data mining and sta-
tistical process control charts. In addition, the model updates the decision
tree whenever the manufacturing conditions change. They define a number of
attributes such as total remaining processing time, maximum queue length
at time t, average remaining time until due-date, etc. that represent the
general characteristics of the manufacturing system and its status in time.
They identify attribute selection as a main issue because attributes affect
the quality of the tree in the construction phase as well as in the decision
phase concluding that increasing the number of attributes in the subset does
not necessarily improve the quality of the decision tree and that the effect
of each attribute in the subset on the performance of the generated decision
tree also depends on the other attributes in the subset, i.e. they are corre-
lated and their importance is hard to be determined. These techniques aim
at constructing through machine learning models a knowledge function that
can map together data set values and extracted information.
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Chapter 3

Automated storage and
retrieval systems

3.1 Automated storage and retrieval systems
modelling

Automated storage and retrieval systems (AS/RS) are warehousing systems
used in production and distribution systems for the storage and retrieval of
products or components.

Figure 3.1. A unit-load AS/RS example [Gagliardi et al. (2011)]

35



3 – Automated storage and retrieval systems

Fig. 3.1 schematically shows how they are structured. An AS/RS is com-
posed by some racks. Single or multiple cranes move along the racks storing
and retrieving components that lie on the shells. Components are picked or
returned to some I/O point, for instance, in front of the racks.

Their large adoption is mainly related to the savings in labour costs and
floor space, increased reliability and reduced error rates but they need to be
carefully managed to get all advantages and improve returns despite their
high investment costs.

Gagliardi et al. (2011) and Roodbergen and Vis (2009) present two litera-
ture reviews about the topic over the past decades. They point out the main
issues involved in AS/RS modelling, being system design and configuration,
travel time estimation, storage assignment and request sequencing. System
design and configuration deals with the determination of matters like the
number and size of the racks, number of cranes, where they can move and
other system-related decisions; travel time estimation poses the assumptions
on how travel times are modelled and their restrictions; storage assignment
relates on rules about where to store items; finally request sequencing is about
scheduling tasks in order to optimize some measure of system performances.

System design and configuration An AS/RS must be specifically de-
signed depending on the needs of the production or distribution system con-
nected. The capacity is the first decision to be met but also the shape of
the whole system, racks height, length and depth, number and capacity of
the cranes, number and position of I/O points have to be establish. About
cranes, there are a lot of possible configurations: number, capacity, degree of
freedom. Usually in a fully automated AS/RS they are unit-load, meaning
that components are batched in a pallet and the whole pallet is treated as
a inseparable unit and cranes are subsequently distinguished in single, dual
or multi-shuttle depending on the number of units they can contain. We
distinguish aisle-captive or aisle-changing systems weather cranes can move
through a single or multiple aisles; single command cycle or dual command
cycles cranes weather they can complete a request at a time, every time re-
turning to the I/O point or they can store an item and then retrieve another
without first returning to the I/O point. A lot of studies covered some of
these system configuration issues; for instance Randhawa and Shroff (1995)
studied system performances through simulation based on storage racks and
number and location of I/O points; Rosenblatt et al. (1993) studied system
performances depending on racks size, number of cranes, number and length
of aisles and number and location of I/O points both analytically and through
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simulation; Chang and Wen (1997) analytically studied system performances
based on storage racks.

Travel time estimation Travel time estimation influences the reliability
of the AS/RS model and its evaluation quality. Many analytical models of
travel times were studied in the literature; Bozer and White (1984) presented
in their work some of these models and estimated with a statistical approach
their expected travel times for single and dual command cycles in an AS/RS
for a discrete rack and a continuous model and compared them with the MHI
model originally presented by the AS/RS Product Section of The Material
Handling Institute, Inc. (MHI). They also examined some different strategies
in I/O and dwell-point location. These models can provide a general idea
on the system average performances but they are based on very strict as-
sumptions, such as independent cranes drives on both axes, that allow them
to travel horizontally and vertically simultaneously (i.e. travel time follows
a Chebyshev distance metric), physical capability to store any item at any
time of all storage locations, possibility to neglect acceleration and deceler-
ation of cranes and many others; therefore, simulation based models were
often adopted and resulted closer to the reality. For instance, Schwarz et
al. (1978) used a discrete rack simulation to extend the analytical models of
Hausman et al. (1976) and Graves et al. (1977) relating storage assignment
to travel-time performances.

Storage assignment It refers to policies adopted to assign items or class
of items to the shells. Main rules are the dedicated storage location, the ran-
dom storage location, the closest open location, full-turnover-based storage
assignment and the class based storage assignment. Based on the rule items
are respectively assigned to a fixed or random location, to the closest location
with free space, to a location assigned based on item demand frequency or to
the location assigned to the class the item belongs to. Gagliardi et al. (2010)
and Hausman et al. (1976) studied for instance the effect on travel times of
a turnover-based in comparison with the class-based and the pure random
storage assignment policy. The results showed that a turnover-based pol-
icy improves the travel time performances in respect of the random storage
location.

Request sequencing Request sequencing is actually a dynamic problem
that has to deal with the continuous flow of new storage/retrieval requests.
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Since this means continuously re-sequencing tasks and can be computation-
ally and timely expensive, it is often preferable to use the so called block
sequencing (Han et al., 1987) and sequencing one block of requests at a time.
Request sequences can have a great impact on system performances. Linn
and Xie (1993) concluded that prioritizing jobs with nearest due date can de-
crease 55%of the stockouts in a JIT environment. Han et al. (1987) studied
the effect of a request sequencing based on first pairing storage and retrieval
requests and then sequence them on the system performances, showing that
the throughput can increase of 10-15% in comparison with the FCFS (First
Come First Served) rule.

3.2 Problem description
The problem analyzed comes from the logistics and is originally motivated
by the scheduling of requests on a single crane that moves in an automated
storage/retrieval system (AS/RS). However, the model is applicable also to
other systems dealing with other kind of batching machines. For instance,
some applications of the model without incompatibility and precedence con-
straints were studied in relation of semiconductors burn-in operations by Lee
et al. (1992) and Cabo et al. (2015).

Our logistic problem deals with a set of retrieval and storage requests that
need to be scheduled on a single crane performing a dual command cycle.

For every request (job), some items have to be stored in or retrieved from
the warehouse. The warehouse is composed by some racks and items are
disposed on shells. A single crane moves all racks long both horizontally and
vertically storing and retrieving items. In most automated system, the crane
cannot extract a specific number of items from a pallet but works instead with
unit-loads, meaning that if the production system requires 3 components and
unit-loads are made of 10, the crane picks up the whole pallet of 10 items and
the specific number of required components is selected by some employee at
the shells or at the input/output (I/O) point. In practice, cranes neglects the
exact number of components needed and every storage or retrieval request is
associated to one single pallet. We speak of storage requests if the unit-load
arrives at the I/O point and has to be brought to its storage location on the
shells and of retrieval request if the items are requested at the I/O point and
has to be picked up from the racks.

The crane performs a dual-command cycle, meaning that a unit-load can
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be stored and another retrieved without needing the crane to return to the
I/O point. The crane picks a unit to be stored from the I/O point, brings
it to the shells, retrieves a unit required and transports it back to the I/O
point. The crane is therefore referred to as a batching machine that can
processe at most two compatible requests at a time.

Incompatibilities rise from the capacity of the crane that can contain one
unit-load at a time. That is, just one storage and one retrieval request can
be processed in the same dual-command cycle.

Items can be first stored and later retrieved. Precedence constraints are
generated to fulfill the need of respecting the logical sequence of tasks on
same physical items.

As the AS/RS is usually connected to a production system and furnishes
it with required components, we want parts to be delivered possibly on time.
An objective function that minimizes the maximum lateness of jobs is there-
fore used. The problem is described by Graham’s three field notation as
1|batch(i), prec, incompatibility|Lmax (see chapter 2).

Let’s call J the set of requests (jobs) J = 1, . . . , n. Each job is characterized
by a processing time pj which refers to the time needed to complete the
storage/retrieval request and a due date dj which represents the time where
the job has to be completed, penalty a delay in the process.

Jobs can be incompatible to each other if they are of the same type (two
storage or two retrieval requests) and cannot be processed by the crane in
one cycle. Therefore we define the tuples containing incompatible jobs as
(j, jÍ) ∈ I, where I is the set which contains all of them.

Jobs are also subject to precedence relationships when referring to the
same physical items that have to be, for instance, first stored and lately
retrieved. These constraints are represented by the tuples (j, jÍ) ∈ F , where
j is the job that has to be processed before jÍ and F is the set that contains
all precedence relationships.

The objective is to generate a schedule of batches, i.e. a partition of jobs
into r subsets, to minimize the maximum lateness. Let’s call Bk the k-th
batch processed on the single machine and C the whole batch set. Each
batch has a maximum size b=2; its processing time P (Bi) is approximated
with the longest processing time of the jobs contained in that batch and its
completion time τ i equals its processing time plus the sum of the completion
times of batches previously scheduled, i.e. τ i’ = qi

iÍ=1 P (Bi). The due date of
a batch D(Bi) equals the minimum due date of batched jobs. The maximum
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lateness is computed as

Lmax = max
j∈J
{τπ(j) − dj|τπ(j) > dj} (3.1)

where πj is the position into the sequence of the batch job j is assigned to.
For the sake of simplicity, it is assumed that machine processing times are

discrete, neglecting crane’s acceleration, deceleration and its real technical
capabilities, and that shell access time is much smaller than travelling time
and can be therefore neglected.

Example. Let’s suppose that we have six requests j i = 1, ...,6 to be sched-
uled having respectively a processing time pi and a due date di as showed in
Table 3.1. The set of incompatibilities is defined by I = {(1,4), (1,5), (4,5), (2,3), (2,6), (3,6)}
and the set of precedence constraints by F = {(1,3), (2,6)}.

j 1 2 3 4 5 6
pj 3 5 8 1 11 7
dj 5 6 10 13 16 17

Table 3.1. Example problem data

A feasible solution could be, for instance, a schedule made of the following
three batches: B1 = {1,2}, B2 = {3,5}, B3 = {4,6} with a resulting maximum
lateness of 10 (see Fig. 3.2). Instead of batching last two jobs, they could be
processed separately and the resulting solution would be optimal and made of
the following four batches: B1 = {1,2}, B2 = {3,5}, B3 = {4, \}, B4 = {6, \}
with a resulting maximum lateness of 7 (see Fig. 3.3).

40



3.3 – MIP model

Figure 3.2. A feasible solution

Figure 3.3. An optimal schedule

3.3 MIP model
With the data described in the previous section and some additional vari-
ables (see Table 3.2 and 3.3), a MIP programming model for the problem is
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Notation Description
J set of jobs
C set of batches
F set of precedence constraints: each tuple (j, jÍ)

indicates that j has to be processed before jÍ

I set of incompatibilities: each tuple (j, jÍ) indicates
that j cannot be processed with jÍ

pj processing time of job j
dj due date of job j
b batch maximum size
M large integer value

Table 3.2. Input data

Notation Description
xc,j binary variable: 1, if job j is assigned to batch c;

0, otherwise
τc completion time of batch c
Pc processing time of batch c
Lmax maximum lateness

Table 3.3. Variables
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presented as originally proposed by Emde et al. (2019).

Minimize Lmax

subject to

q
c∈C xc,j = 1 ∀j ∈ J (1)q
j∈C xc,j ≤ b ∀c ∈ C (2)

Pc = q
j∈J pj ∗ xc,j ∀c ∈ C (3)

τ1 = P1 (4)
τc = τc−1 + Pc c ∈ C \ {1} (5)
Lmax ≥ τc− dj −M · (1− xc,j) ∀j ∈ J, c ∈ C (6)q
c∈C c · xc,j ≤

q
c∈C c · xc,jÍ − 1 ∀(j, jÍ) ∈ F (7)

xc,j + xc,jÍ ≤ 1 ∀c ∈ C, (j, jÍ) ∈ I (8)
xc,j ∈ {0,1} ∀j ∈ J, c ∈ C (9)
Lmax ≥ 0 (10)

First two constraints (1) and (2) ensure respectively that jobs are sched-
uled once and that batch size is not exceeded. Constraints (3) to (5) define
processing and completion times of batches. Condition (6) ensures that the
maximum lateness always exceed or equals lateness of all jobs. Conditions
(7) and (8) take in account precedence constraints and incompatibilities.
Condition (9) define the dummy variable representing the batch each job is
assigned to and finally condition (10) impose that just latenesses greater or
equal to zero are considered.

This MIP leads, as previously said, to a NP-hard problem. In addition, it
contains the big−M constraint (constraint (6)) that makes the MIP particu-
larly difficult for solvers to solve it at the optimum. The value of the big−M
has to be sufficiently large to ensure the correct working of the model but
the larger it is, the harder it is to solve the problem.
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Chapter 4

Solution approaches

Keeping in mind the goal of searching for some online-solving algorithm, we
propose in this chapter two heuristic approaches to find a feasible solution
for the problem. They were selected as a result of testing of various simple
and intuitive ordering rules as well as combinations of greedy approaches and
neighbourhood search.

Dealing with simple heuristic methods, means also dealing with high un-
certainity with regard of solution quality. In particular by greedy algorithms,
it can happen that they return good solution for some instances of a problem
and very bad for others. It is therefore important that a sufficient solution
quality stability is guaranteed in order to show them to be somehow use-
ful. Here, two heuristic based on different approaches are presented that
were shown to maintain a certain average gap with respect to a lower bound.
However, there are also some recent works that try to use the different be-
haviour of several greedy algorithms, e.g. dispatching rules, to differently
schedule problem instances. This kind of research deals with knowledge dis-
covery techniques, such as machine learning and artificial intelligence, and
use them to support the scheduling process. With regard of this, at the end
of this chapter also a possible application in this direction is mentioned.

Selected heuristics are respectively based on solution construction - one
feasible solution is generated - and on a local search applied on a solution.
The complexity is polynomial and quality of solutions are evaluated in com-
putational tests presented in the next chapter.

Beside heuristics, we developed a procedure to compute a lower bound to
compare our solutions with. The procedure is based on the consideration of
a partial schedule of just storage or retrieval requests. By considering just
one kind of jobs, we reduce our problem to the scheduling of a set of jobs
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subject to precedence constraints with no batching minimizing the maximum
lateness for which an algorithm exists that optimally solves it in O(n2).

The chapter is organized as follows. First, the procedure to compute
the lower bound is presented; then, the selected heuristic algorithms are
discussed in details; finally, some algorithm variations are presented and a
possible application with knowledge discovery methods is presented for future
developments.

4.1 Lower bound procedure

Figure 4.1. Lower Bound construction procedure

To compute a lower bound, we develop a scheduling procedure that con-
siders just one type of request (job) and can therefore disregard batching.
The procedure works as follows and it is illustrated in Fig. 4.1:

• we consider separately the set of storage and retrieval requests

• the two sets are scheduled following Lawler’s algorithm that minimizes
the maximum cost (MMC), optimal for the problem 1|prec|Lmax

• two batch schedules are created, one with just storage and the other
with just retrieval requests, respecting the MMC ordering and always
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leaving empty the second place in batch (all requests of the same type
are incompatible one to another)

• the maximum lateness for both batch schedules is computed and the
largest is taken as lower bound.

Rationale. The final schedule of all requests set is composed by a se-
quence of batches, each filled by one or two compatible jobs. Let’s first
consider just one type of jobs - let’s say retrieval requests - and schedule
them on the batching machine. The resulting schedule would be a sequence
of batches, each with one job inside and with a certain maximum lateness,
depending on their ordering. By considering the other type of jobs - let’s say
storage requests, we would have different scenarios.

First, storages are less than retrievals and all of them can be batched
together with retrievals without altering the maximum lateness, i.e. every
storage request finds a place in a batch where the processing time of the
current job is longer than its processing time and the due date larger or the
difference in both is such not to increase the maximum lateness of the whole
schedule. The maximum lateness is that of the first partial schedule.

Secondly, storages are less than retrievals but not every storage request
finds place in a batch without increasing the maximum lateness. The maxi-
mum lateness increases with respect of the maximum lateness of the partial
schedule.

If storage are more than retrieval requests, some storages would be batched
separately in additional batches and the maximum latenes can whether stay
the same or increase.

Therefore, we can say that the maximum lateness could increase but never
decrease with respect of the maximum lateness of a partial schedule of one
type of requests if the ordering of the partial schedule does not change.

To prove that the MMC ordering generates a lower bound, let’s suppose
that we find the optimal schedule and that we extract retrievals and they are
not ordered by the MMC ordering. As MMC is optimal to schedule one type
of request, the maximum lateness generated by the MMC ordering would
always be less or equal than that generated by this partial schedule of the
optimal schedule.

If we consider for the reasoning both retrieval and storage requests, than
the procedure holds and the lower bound never overcomes the maximum
lateness of the final schedule.
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4.2 Heuristics

In order to keep computing time small, proposed algorithms give little weight
to the basic principles that improves heuristic solutions in the form of meta-
heuristic methods - only a basic local search is used and no diversification
at all. As any greedy algorithm, the main critical aspects lies in the fact
that there is little information about the final solution quality during the
construction and the selection of items to be added to the solution can lead
to some contradictions. In our case, it is difficult to evaluate if it is preferred
batching together whenever possible compatible jobs - reducing completion
time of following jobs and subsequently their lateness - or prioritizing the
minimizing of the lateness of the current job at any stage of the solution
construction, i.e. choosing to batch a job alone when a second compatible
job chosen for the batching increase the lateness of the first.

Example. Consider two jobs j1 and j2, having respectively processing
times p1 = 3, p2 = 15 and due dates d1 = 7, d2 = 22. By trying to optimize
the completion time (to reduce completion time and maximum lateness of
jobs coming next), the algorithm would batch them together with respective
lateness L1 = 8, L2 ≤ 0 and Lmax = 8. On the other hand, by considering un-
coupling them in two different batches, we would instead have L1 = 3−7 ≤ 0
and L2 = 18− 22 ≤ 0, with a resulting Lmax ≤ 0.

Figure 4.2. Batching together vs processing jobs separately
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Therefore, two algorithms are developed, where the first takes the whole
requests set and builds a solution considering batching jobs whenever possi-
ble - let’s call it systematic batching procedure (see Fig.4.3) - and a second
one, which schedule separately retrieval requests, considering first a partial
schedule to get a clue of the final value of the objective function and then
completing batches with storage requests in a second stage - let’s call it
complementary batching procedure (see Fig.4.4).

Figure 4.3. Systematic batching procedure

4.2.1 Systematic batching procedure
Algorithms based on this procedure are built upon an initial solution that
basically orders the list of jobs to be scheduled following Lawler’s algorithm
that minimizes the maximum cost (MMC), which in our case is job’s lateness
and represents our objective function (see Chapter 2). This is done in order
to guarantee a first feasible solution in a limited time, despite the existence
of many constraints in the form of incompatibilities and precedence relations.
The algorithm that minimizes maximum cost would lead to an optimal solu-
tion in the case of the same problem without batching; thus we consider it
as a first rough good initialization of the job set.

After having ordered the whole job set, a solution is generated as follows.
Starting from the beginning, jobs are either batched or not batched together
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Figure 4.4. Complementary batching procedure

depending if the difference of the processing times of the jobs to be batched
together overcomes a certain threshold or not. Algorithm 1 shows how it
works.

The solution generated in this step is passed to a method that intensifies
the search in that region of the solution space through a local search in its
neighbourhood. The neighbourhood is defined as a 2-swap neighbourhood,
in which every job is swapped with all others, whenever it respects all con-
straints. Each new solution is evaluated and, if better, replace the previous
solution. At each iteration of the whole job set, the best solution is taken,
i.e. a best-improvement method is applied, and the search goes on until a
local minimum is reached or the time limit is overcome.

Parameters The performance of the algorithm is influenced by two pa-
rameters: a threshold t and the time limit T . t affects the number of jobs
that are batched together and the quality of the batching in terms of how
much processing times of jobs in the same batch differ at most. It is defined
as the percentage of the average processing time of the job set that is toler-
ated as maximum distance between processing time hence, the higher is the
threshold, the more jobs will be batched together.

The time limit T serves as a limit to the local search, thus we don’t know
how long would it take to reach a local minimum.
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input : The list l of jobs to be processed
output: The best found admissible batch schedule
order list l by MMC ;
while time limit is not overcome do

while list is not empty do
take the first job j1 from l;
while all jobs j2 /= j1 have been considered do

take job j2;
if j1, j2 have no predecessors still to be scheduled and j1, j2
are compatible then
if p2 − p1 > t · avg(p) then

add j1 alone to an empty batch;
remove j1 from l;

else
add j1, j2 to an empty batch;
remove j1, j2 from l;

end
add batch to the batch schedule s;

else
proceed in the list l;

end
end

end
localSearch();

end
Algorithm 1: Systematic batching procedure

4.2.2 Complementary batching procedure

The complementary batching procedure starts from a partial schedule ob-
tained by a subset of jobs. The subset contains whether all storage or re-
trieval requests depending on which of them - once optimally scheduled -
generated a larger value of the objective function. The purpose is to obtain
a clue of the final maximum lateness that is possibly close to the real value
of the final schedule before jobs are batched together. This procedure ini-
tializes the problem and it is the same used to compute the lower bound.
The structure of the algorithm is described by Algorithm 3. Once the partial

51



4 – Solution approaches

input : A batch schedule s
output: The best found batch schedule in the neighbourhood
Lmax∗=maximum lateness of schedule s;
s∗=input schedule;
while time limit is not overcome do

Lmax∗ = Lmax;
s∗ = s;
while all swaps have been tried do

pick a job in the first batch;
pick a job from another batch;
if the swap doesn’t violate constraints then

swap the jobs;
if currentLmax < Lmax then

Lmax =current Lmax;
s=current s

end
end
undo swap;

end
end

Algorithm 2: Search in a 2-swap neighbourhood

input : requests set
take all retrieval requests;
take all storage requests;
create a batch schedule with just retrievals r ordered by MMC;
create a batch schedule with just storages s ordered by MMC;
if Lmax(s) > Lmax(r) then

swap schedules name;
end
return r;

Algorithm 3: LB procedure / initialization for the CBP

schedule is defined, the algorithm proceeds with the batching of jobs. For
simplicity, we call jobs contained in the partial schedule retrievals and those
to be batched storages.
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The batching procedure takes the partial batch schedule with just re-
trievals and the storages list as inputs and works as follows: job k, k =
1,2,...,ns, with ns the number of storages, is taken and batched with retrievals
where there is a free place left and the maximum lateness is minimized. At
the beginning of the procedure all places available for storages are free and
the job can be placed in all batches where the current job has a longer - or
the less shorter - processing time.

The core point is that every time the maximum lateness of the whole par-
tial schedule (at the beginning our lower bound) is taken in account and not
the maximum lateness of the current job. It is pretty different from under-
standing how to minimize the maximum lateness while creating a schedule
from the beginning.

Example. Let’s suppose that first retrieval requests are j1, j3, j4, having
repectively a processing time p1 = 3, p3 = 1, p4 = 7 and due dates d1 =
10, d3 = 12, d4 = 13. The first storage request to be placed is j2, whose
processing time and due date are p2 = 8 and d2 = 11. Because d2 is in

Figure 4.5. Example of a batch assignment decision (a)

between d1 and d3, would be reasonable to schedule the job with one of them
since the due dates of first two jobs are still larger than p2 and in order not
to reduce due date of j4 that is already pretty tight. However, it is more
convenient to batch j2 with j4 because they have nearer processing times. In
fact, batching it with first two jobs (for instance, see batching with first job
in Fig. 4.6) would increase the lateness of all following jobs respectively of 5
and 7 (the difference between processing times), which is more than 1 which
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would be the increase when if batching it with j4.

Figure 4.6. Example of a batch assignment decision (b)

This is why it is helpful to have a first clue of the value of the final objec-
tive function. It helps to overcome the trade-off that has to be made when
batching jobs together since it is very difficult to evaluate the impact in some
other greedy way.

The main issue is that the quality of batching, i.e. how much processing
times of jobs batched together differ is not taken in account once it is verified
that the increase of the maximum lateness of the partial schedule is mini-
mized. First jobs are placed in the first batch where the current job has a
greater processing time.

Many ways could avoid inefficient batching but it not always clear how
this would influence the batching of following jobs. The selected procedure
basically adds a level of recursion on the creation of its solution. That is,
during the batching procedure it is considered admissible to replace a storage
request already scheduled if the new job has a processing time, which is nearer
to the retrieval request in the same batch. If this is the case, the job replaced
is scheduled once again and if no better place than the previous is found, i.e.
there is no position for which the maximum lateness is not increased, the
algorithm returns to the original solution and keeps going on with the usual
procedure. A complete recursion would improve the solution but it would
also require an exponentially increasing time. That is why only a first level
is permitted. In addition, a time limit is imposed at this step meaning that
once overcome, the basic procedure completes the solution construction.
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N.B. The time limit is imposed to the recursive procedure and not as
a limit to the whole algorithm. This last step of completing the solution
construction, i.e. without the recursion level, can still require some time
and that is why in computational results of next chapter, the time limit is
overcome of some seconds by larger instances.

4.2.3 Combining algorithms via knowledge discovery
techniques

Figure 4.7. Model scheme

The goal of this section is to briefly present another possible approach
to use simple heuristic algorithms to schedule jobs and improve solutions.
The purpose is to give an overview and propose future developments on the
subject. Some tests were run but as it is out of the scope of this work, it is
not further discussed.

In line with the goal of keeping solving time short, instead of developing
a single - and more time consuming - effective heuristics for all requests sets
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(instances), those could be analyzed through data mining techniques from a
set of sample data in order to find some common patterns and identify some
sub categories of instances to be solved with an easier and more effective
algorithm for the specific instance.

This way of proceeding has its roots in the field of knowledge discovery
that generally aims in extracting knowledge from large quantities of data.
When dealing with problem instances, we deal in practice with a set of data
identified as processing times, jobs id, etc. That is, it is not considered all
various forms the problem can take but instead, it is here taken in account
one specific concretization, i.e. a set of request assiociated with a defined pro-
cessing time, due date, the set of incompatibilities and so on. On each con-
cretization of the problem, simple heuristics achieve different performances.
For instance, the CBP - that recursively replace already scheduled shorter
jobs - works better in the case of instances where jobs at the beginning of
the request set have longer processing time than those of jobs at the end of
the set. For the opposite case, the same algorithm implemented backwards
would lead to the same solution in less time.

With regard on this, a model was tested, that considers various heuristics
and a Machine Learning model that supports the selection of the proper
heuristics for each instance. Fig. 4.7 shows the general scheme of such a
model, where an instance is received by the Machine Learning (ML) model,
evaluated according to its characteristics (attributes), assigned to a heuristics
and scheduled returning the found solution.

In other words, an amount of different heuristic algorithms able to find
an admissible schedule for a set of jobs have to be developed. No matter
how good the quality of the solution can be, once receiving a request of
scheduling a set of jobs, each algorithm returns a feasible schedule. The ML
classification algorithm chooses which of them should receive the request. Its
work is looking on the sequences of job requests given as input and assign
them - depending on their characteristics - to the best solving heuristics. The
"intelligence" is all assigned to this higher level and the quality of the output
depends mostly on it. The underlying heuristics return good solutions just in
specific cases and without a well working algorithm that can recognize some
patterns in the requests and assign them to the best performing heuristics,
this becomes pretty useless.

Parameters describing their characteristics are assigned to each instance
as attributes while the best solving heuristics describes the class which the
instance is assigned to. The two components are input data for the machine
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learning tools that construct a model on them that can be re-used to classify
future instances.

The quality of the model developed depends on various factors but mainly
on the set of attributes that are selected - and on which heuristics selection
is based - and on the algorithm used to construct a ML model. For the tests,
a multi-class classifier algorithm implemented in the Weka libraries for Java
was used. The strength of such a model is that it could be easily adapted to
similar problems because of the simplicity of the heuristics.

Attributes As attributes, we need some measures such as statistics on
data or representation of unusual characteristics, to effectively summarize all
relevant information in order to be able to distinguish different types of in-
stances. As Metan et al.(2010) point out, each attribute should capture some
portion of the important information about the system and it is important
to define attributes so that their values can be calculated easily. This is due
to the fact that when dealing with heuristic procedures it is often a key issue
to keep time short and hence the time required to select a new dispatching
rule should be negligible.

Attributes considered as characterizing our instances were the tightness
of due date, the expected number of successors, the difference between num-
ber of storage and retrieval requests, the position of the batch generating
the maximum lateness on the partial scheduled and other similarly defined
attributes.

Algorithms set The simplest way to build a pool of algorithms from which
the ML model chooses the best one for every instance type would be to use
different dispatching rules or a combination of those.

Let’s suppose that we have two instances of our problem and we want to
schedule them. The first having all jobs with similar processing times and
the second one with processing times ranging on a wide interval. For the
first one, it would be better to create a schedule based on an earliest due
date scheduling, while for the other an additional sub-ordering by longest
processing time, e.g. in every subset of k jobs, with k << n would probably
lead to a more interesting solution.

The more algorithms would reflect real instances characteristics, the more
they would be suitable to better solve the specific problem. In addition, the
more algorithms would be clearly diversified in the solution, the easier would
be to rightly assign them as solver to specific instances.
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As a test, some variants on CBP were developed that first schedule longer
jobs and to limit maximum difference between processing times of jobs and
on SBP by changing the batching threshold and reducing the local search to
the most critical portion of the schedule. The general idea of algorithms is
shown in Table 4.1, where p1 is the processing time of the job in the currently
considered batch and p2 the processing time of the job that comes next to
be scheduled and for which the decision has to be taken, to batch it or not
with the other job.

Tests were run on instances from the literature [Emde et al. (2019)] and
showed some dependencies between best solving algorithm and some of in-
stance attributes and the model was shown to improve average solutions in
comparison with single heuristics. As it is out of purpose of this work, fur-
ther evaluations are left apart and the model is kept as a basis for future
developments.
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input : batches - a batch schedule with only retrievals, storages - a
list of storage requests, best - the best current batch schedule

best = retrievals;
M = big integer;
while k < size(storages) do

Lmax∗ = M ;
take job jk;
while i<size(batches) do

take batch bi;
if bi contains successors of jk then

add a batch with job jk at position i− 1;
if currentLmax < Lmax∗ then

Lmax∗ < currentLmax;
best = current schedule;

end
remove batch created;

else
if bi has empty place and predecessors of jk are scheduled in
previous batches then
add jk to bi;
if current Lmax < Lmax∗ then

Lmax∗<current Lmax;
best = current schedule;

end
remove jk from bi;

end
end
i++;
if no place was found then

add jk in a new batch at the end of the schedule;
batches = best;
k++;

end
end

end
return batches;

Algorithm 4: Complementary batching procedure
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Heuristics Description
systematic batching procedure-based heuristics

A batch first ten jobs separately and optimize subschedule through
local search; batch all other jobs whenever possible

B batch all jobs separately
C batch all compatible jobs when p2 − p1 < 0.1t
D batch all compatible jobs when p2 − p1 < 0.3t
E batch all compatible jobs when p2 − p1 < 0.5t
F batch all compatible jobs when p2 − p1 < 0.7t
G batch all compatible jobs when p2 − p1 < 0.9t

complementary batching procedure-based heuristics

H
storage requests scheduled only if the difference of processing times
between jobs is minimal, i.e. less than 1/10 of maximum
processing time

I to MMC ordering of storages, follows LPT ordering for every
subgroup of 20 jobs

K first third of longest storage requests is scheduled first by LPT, the
rest by MMC

L
EDD ordering prevails and it is maintained during the batching
process, i.e. storage requests are batched only if their due date
doesn’t overcome that of current job in batch

M order storage requests by LPT

Table 4.1. Algorithms
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Computational study

5.1 Test data
Instances used to test the algorithms are generated following the generation
scheme presented by Emde et al. (2019) that studied the same problem.

Each instance contains n jobs - each associated to an integer processing
time uniformly distributed from 1 to 100 and a due date. Depending on
the tightness of the due date λ, the due date of each job is a randomly
drawn (uniform distribution) integer from the interval [1 : (λ/b) · q

j∈J [pj]],
with b=2, hence the lower is λ, the tighter is the time window. Each job
has 0.5 probability of being a storage or retrieval request. Each instance is
additionally characterized by a degree of disagreement between due dates
and precedence relations δ and the expected number of successors per job
ρ. Depending on these two parameters, precedence relations are determined
as follows: a random permutation of jobs S = (s1, ..., sn) is generated and
for each pair of distinct sequence positions k, kÍ ∈ 1, ..., n, k /= kÍ jobs are
switched if dsk

< dskÍ and k − kÍ > δ · n; given the new sequencing, each
job is successor of previous with a certain probability, such that the expected
number of successors of each job is ρ. In practice, δ determines how having an
early due date for a job matches the fact of having few predecessors, i.e. a low
value implies that jobs with an early due date tend to have few predecessors
and vice versa and ρ determines the number of precedence relations. We
finally call the real number of instance’s precedence relations θ.

The data correspond to 300 instances, 5 for each combination of λ, ρ and
δ, where the values taken by them are shown in Table 5.1.
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parameters description values
n number of jobs 100, 200, 300,

400, 500
λ tightness of due dates 0.5, 1
δ degree of disagreement between due dates 0.125, 0.5

and precedence relations
ρ expected number of successors per job 0.125, 0.25, 0.5

Table 5.1. Parameters values

Heuristics are implemented in Java 8.201 and tested on a x64 PC equipped
with a 1.7 GHz Intel i3-4005U CPU and 4 GB of RAM. Results are shown
in the next section.

5.2 Algorithms performance
The two algorithms presented in chapter 5 are tested on all sample instances
and results of different tests are compared in this section. Complete results
can be found in appendix A.

All tables show first instances id, then the value of the lower bound LB (see
Chapter 5) followed by the values of the objective function f , the percentage
gap in respect of the lower bound computed as (f − LB)/LB ∗ 100 and
time needed to get the solution in CPU seconds. Instances are named with
parameters values, following the scheme n_λ_δ_ρ and all data are averages
of the 5 instances per each combination of parameters n, λ, δ, ρ. Tests are
run with different time limits.

Results within 60 CPU seconds

Table 5.2 and 5.3 respectively summarize results of the complementary batch-
ing procedure (CBP) and the systematic batching procedure (SBP) when
λ = 0.5 and λ = 1. A time limit of 50 CPU seconds is assigned depending on
the instance size with a resulting computing time that stays within 60 CPU
seconds (once the time limit is overcome, algorithms still go on finishing some
operations).

Within the given time limit, CBP returns pretty stable performances for
all instances size, having an average gap on the lower bound of ...% for λ = 0.5
and of ...% for λ = 1. Instead, SBP returns comparable solutions within the
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instance LB CBP gap% CPU sec. SBP gap% CPU sec.
100_0.5_0.125_0.125 1889.8 1999.2 5.9 0.0 2023.0 7.1 0.0
100_0.5_0.125_0.25 1740.0 1902.8 9.7 0.0 1870.2 7.0 0.0
100_0.5_0.125_0.5 1859.8 2077.8 10.6 0.0 2013.8 6.8 0.0
100_0.5_0.5_0.125 1789.6 1906.6 4.8 0.0 1920.8 4.9 0.0
100_0.5_0.5_0.25 2151.8 2230.8 3.9 0.0 2252.4 4.9 0.0
100_0.5_0.5_0.5 1816.6 1959.0 7.9 0.0 1957.8 7.9 0.0
average 7.1 0.0 6.4 0.0
200_0.5_0.125_0.125 3439.8 3663.8 7.1 2.2 3676.8 7.1 9.4
200_0.5_0.125_0.25 3602.0 3818.6 5.9 1.2 3864.0 6.6 6.8
200_0.5_0.125_0.5 3707.8 3935.2 5.8 2.0 3997.0 7.4 8.4
200_0.5_0.5_0.125 3642.2 3881.8 6.8 2.0 3863.4 5.3 8.6
200_0.5_0.5_0.25 3688.2 3826.8 4.4 1.2 3911.4 6.4 8.6
200_0.5_0.5_0.5 3775.0 3899.0 3.4 0.8 3951.2 4.8 8.2
average 5.6 1.6 6.3 8.3
300_0.5_0.125_0.125 4923.0 5312.8 8.2 19.4 5324.8 8.3 57.4
300_0.5_0.125_0.25 5263.8 5614.0 6.5 26.8 5655.8 6.6 51.0
300_0.5_0.125_0.5 5217.8 5506.4 5.4 18.2 5727.6 8.0 59.6
300_0.5_0.5_0.125 4981.8 5528.2 8.4 32.6 5426.2 7.1 57.4
300_0.5_0.5_0.25 5221.4 5582.0 7.2 16.8 5653.2 8.3 50.8
300_0.5_0.5_0.5 5500.4 5760.6 5.0 13.0 5879.8 7.2 58.4
average 6.8 21.1 7.6 55.8
400_0.5_0.125_0.125 6753.4 7010.6 4.0 55.4 10670.4 58.5 62.2
400_0.5_0.125_0.25 6531.2 7060.6 8.3 65.6 10350.0 58.5 62.0
400_0.5_0.125_0.5 6743.4 7344.6 8.9 54.2 10587.0 57.0 61.4
400_0.5_0.5_0.125 6772.0 7299.0 8.0 65.6 10849.2 60.4 62.6
400_0.5_0.5_0.25 6334.8 6965.8 10.0 60.8 10379.6 63.9 61.8
400_0.5_0.5_0.5 6796.6 7197.4 6.1 59.8 10473.2 54.5 61.6
average 7.5 60.2 58.8 61.9
500_0.5_0.125_0.125 7927.4 8907.2 12.3 68.0 14104.8 77.9 64.6
500_0.5_0.125_0.25 8390.6 9276.2 10.8 68.4 14745.8 76.1 63.4
500_0.5_0.125_0.5 8762.0 9199.6 5.1 68.2 15131.4 72.6 62.8
500_0.5_0.5_0.125 8095.6 9307.4 15.1 70.2 14149.0 74.8 62.2
500_0.5_0.5_0.25 8522.4 8970.4 5.5 66.8 14324.8 68.3 63.2
500_0.5_0.5_0.5 8037.4 9578.8 19.3 70.4 14015.4 74.6 65.0
average 11.3 68.7 74.1 63.5

Table 5.2. Average results (λ = 0.5)

same time limits just for instances with 100, 200 and 300 jobs, whereas for
larger instances it does not reach useful solutions on time. Up to 300 jobs
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instance LB CBP gap% CPU sec. SBP gap% CPU sec.
100_1_0.125_0.125 1244.4 1430.4 15.1 0.0 1468.4 18.8 0.0
100_1_0.125_0.25 1263.0 1471.6 17.4 0.0 1449.4 15.0 0.0
100_1_0.125_0.5 1352.2 1439.6 7.2 0.0 1456.4 8.2 0.0
100_1_0.5_0.125 1211.0 1346.8 11.9 0.0 1384.4 14.9 0.0
100_1_0.5_0.25 1264.0 1362.0 9.2 0.0 1395.2 11.4 0.0
100_1_0.5_0.5 1287.6 1438.2 12.1 0.0 1466.0 14.3 0.0
average 12.2 0.0 13.8 0.0
200_1_0.125_0.125 2386.2 2692.0 13.6 6.6 2750.6 16.0 6.6
200_1_0.125_0.25 2402.8 2605.0 3.6 2.8 2783.8 10.6 6.8
200_1_0.125_0.5 2351.8 2590.6 11.1 1.4 2727.4 16.5 7.0
200_1_0.5_0.125 2438.6 2642.0 8.5 3.8 2620.0 7.5 6.8
200_1_0.5_0.25 2376.2 2675.6 12.5 6.8 2707.2 14.1 5.6
200_1_0.5_0.5 2258.6 2597.6 15.7 3.0 2611.6 16.1 5.8
average 10.8 4.1 13.5 6.4
300_1_0.125_0.125 3252.4 3793.2 17.9 43.2 3709.2 14.9 47.6
300_1_0.125_0.25 3522.8 3970.0 6.2 58.8 3948.0 8.2 52.2
300_1_0.125_0.5 3739.0 3940.6 6.0 20.8 4125.2 10.8 47.4
300_1_0.5_0.125 3364.2 3701.0 10.4 55.0 3870.6 15.4 45.6
300_1_0.5_0.25 3187.4 3792.4 19.4 44.0 3749.6 17.7 48.4
300_1_0.5_0.5 3548.2 3820.2 8.0 42.2 3932.2 11.1 46.8
average 11.3 44.0 13.0 48.0
400_1_0.125_0.125 4322.6 4976.0 15.0 69.2 7856.2 82.2 62.4
400_1_0.125_0.25 4581.2 5143.0 13.2 71.2 7754.4 70.4 62.0
400_1_0.125_0.5 4282.6 4763.0 11.3 67.6 7912.6 85.2 61.0
400_1_0.5_0.125 4271.4 4614.2 8.1 69.8 7725.0 81.1 61.4
400_1_0.5_0.25 4548.6 4842.6 6.8 68.8 7937.8 74.7 61.4
400_1_0.5_0.5 4270.2 5039.2 18.1 68.6 7778.4 82.4 61.8
average 12.1 69.2 79.3 61.7
500_1_0.125_0.125 4729.0 5597.6 18.5 66.8 10086.0 113.7 63.2
500_1_0.125_0.25 5876.0 6179.6 5.4 62.2 10688.6 82.4 63.4
500_1_0.125_0.5 5313.6 6181.0 16.0 65.4 10785.8 103.1 63.2
500_1_0.5_0.125 5102.0 5969.0 17.7 64.8 10227.8 100.8 63.0
500_1_0.5_0.25 5871.6 6256.2 7.1 63.0 11035.6 89.4 65.0
500_1_0.5_0.5 5468.8 5846.6 7.0 64.0 10722.4 96.6 64.2
average 12.0 64.4 97.7 63.7

Table 5.3. Average results (λ = 1)

also, algorithms return comparable solutions and there is no evident pattern
that identifies which performs better in which case.
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The difference average percentage gap between instances where λ = 0.5
and λ = 1 can be explained by the fact that by distant due dates instances
are more difficult to schedule. The latter means that there are more possible
combinations of jobs without changing the value of the maximum lateness
and it is therefore more difficult to schedule them with simple combination
of heuristic procedures.

There is no visible pattern or dependence with regard of other instance
parameters, i.e. δ and ρ meaning that the algorithms tend to maintain equal
performances under some different request conditions.

Comparison with an algorithm with linear time

n CBP SBP EDD
100 7.1 6.4 34.8
200 5.6 6.3 37.0
300 6.8 7.6 39.5
400 7.5 58.8 45.3
500 11.3 74.1 47.4

Table 5.4. Average percentage gap for each instance size (λ = 0.5)

n CBP SBP EDD
100 12.2 13.8 51.2
200 10.8 13.5 55.1
300 11.3 13.0 55.7
400 12.1 79.3 61.6
500 12.0 97.7 64.4

Table 5.5. Average percentage gap for each instance size (λ = 1)

For further comparison, instances are evaluated with an algorithm O(n).
Those are often inefficient but are still sometimes used in industry environ-
ments where no scheduling optimization is used for various reasons.

For the problem on a single machine minimizing the maximum lateness
without batching, the simplest dispatching rule would be the Earliest Due
Date (EDD) ordering (optimal without constraints). Therefore, we schedule
jobs ordering jobs by EDD and systematically batching together whenever
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possible, i.e. whenever all constraints are satisfied. The exact procedure is
the one used for the SBP (chapter 5) and let’s refer to it as EDD.

EDD finds all solutions in negligible time - less than 1 CPU second -
and average solutions and percentage gap with respect to the lower bound
of CBP, SBP and EDD are shown in Table 5.4 and 5.5. Percentage gaps
slightly increase the larger are instances ranging from 34.8% for 100 jobs and
47.4% for 500 jobs. Both CBP and SBP largely overcome EDD results.
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5.3 Time comparison

Figure 5.1. Algorithms behaviour vs CPU time (λ = 0.5)

Figure 5.2. Algorithms behaviour vs CPU time (λ = 1)
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In graphs contained in Fig.5.1 and 5.2 we compare the time behaviour of
the two heuristic procedures considered as the size of the problem increase.
We already saw that within the time limit of 60 CPU seconds, instances up
to 300 jobs can be solved at the best of algorithms capability. CBP is shown
to be much faster than SBP for instances where due dates are in average
tighter, while in the other case, the time required by the two algorithms to
find their solutions is similar (still, CBP returns better solutions).

It is clear that the computing time grows more than linearly. A rough eval-
uation of computing steps for each procedure is therefore made to understand
the growth in time with respect of size of the problem.

Main steps of the CBP are (we call here nr the number of retrieval requests,
i.e. jobs contained in the subset of jobs scheduled first by the CBP):

• the partitioning of requests in storage and retrieval requests that requires
n steps,

• the MMC ordering that was proved working in O(n2
r),

• the batching procedure that it is complexer to be evaluated in advance.
Finding the best place for every storage request approximately requires
(nr(nr + 1)/2) steps that is the sum of nr + nr − 1 + ... + 1 steps to
place every storage request. But in many cases the sum stops earlier
than trying all available place and this happens both if storage request
are less than retrievals and whenever a successor of the job to be placed
is encountered. If the recursive is considered, we add a quadratic factor
of (nr(nr + 1)/2)− 1 leading to an algorithm bounded in the worst case
by a n4

r factor. If we consider the number of nr = n/2, this is equal to
O((n/2)4).

As a result, we have that CBP works in O((n)4).

Main steps of the SBP are instead:

• the MMC ordering, working in O(n2),

• the batching procedure, working in O(n) (it goes through all jobs and
simply decide if it is batched with previous job or separately),

• the local search working in O(n2
l ) for every new best neighbour encoun-

tered. Since the final schedule considers also partially filled batches, the
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number of elements considered for the local search nl is larger than the
real size of the problem n, i.e. nl > n. The difference depends on the
initial sequence of jobs. If this had pairwise all jobs having similar (i.e.
not overcoming the batching threshold) processing times, then nl = n.
Viceversa, in the opposite case, nl = 2n.

The resulting computing time is an algorithm O(n2).

Both algorithms work in a polynomially increasing computing times bounded
respectively by n4 or n2. CBP is more time-expensive by very large n. Any-
way, the difference in the basis - CBP considers approximately the half of
jobs and SBP could hypotetically consider up to the double of the jobs - is
significant when looking at the computing time in terms of seconds. We see
in fact from the graphs above and from results from Table 5.2 and 5.3 that
both algorithms complete their procedure in a negligible time - less than 1
CPU second - by instances with 100 jobs. By 200 jobs, CBP reaches its
solutions within 5 CPU seconds and SBP within 10 and the more the size
increases, the larger the difference. By larger problems both procedures do
not complete their normal algorithm and computing times are determined
by the time limit. Anyway, as by SBP the local search is essential part of
the scheduling process, leading otherwise to a really bad schedule, CBP still
leads to acceptable solutions when the recursive procedure is applied just to
first jobs (see results in previous section).
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Chapter 6

Conclusions

In AS/RS environments such as in other manufacturing or distribution en-
vironments dealing with a large quantity of requests to be processed, the
need of fast algorithms for scheduling them is essential. A trade-off between
solution quality and the time to get a response is a core point and has to
be determined by the system management. Quality of final schedules have
usually an impact on operating costs and lead to system inefficiencies but
on the other side, when continuously receiving new sets of requests, it is not
plausible to reserve a lot of time just for the scheduling.

Within this trade-off, find place plenty of heuristic methods that serve for
this purpose. Heuristics cover a broad variety of problems and cases and stay
on the opposite side of exact methods that find optimal solutions but often
lead to excessively large computing times. Heuristics instead, are methods
that find approximate solutions within a relatively short period of time.

In this work, two fast heuristic algorithms are developed using different
approaches based on simple dispatching rules, neighbourhood search and a
combination of both. Sample instances were generated as proposed in the
literature to compare and evaluate the two heuristics. Both algorithms work
in a polynomially increasing time with respect of the problem size. They solve
the problem - deriving from the AS/RS context - of scheduling of jobs on a
single machine with incompatibilities and precedence constraints minimizing
the maximum lateness.

The problem is a generalization of the batching machine with restricted
batch size problem (BMRS) without constraints known from the literature
to be NP-hard. As for any NP-hard problem, no algorithm is known that
could solve it optimally in polynomial time and it leads soon to unfeasibility

71



6 – Conclusions

as the problem size increases.
Emde et al. (2019) studied the same problem and presented an exact

algorithm based on branch and benders-cut that can solve instances up to
100 jobs optimally within few seconds but cannot afford larger instances in
a short amount of time. Proposed heuristics are tested in comparison with
a lower bound and shown to return useful solutions within few minutes for
instances size up to 500 jobs.

As a review, we have two heuristic procedures that work as follows.
The first one - referred in the report as systematic batching procedure

(SBP) - orders all requests by Lawler’s algorithm (MMC) and then system-
atically batches them when all constraints are respected and the processing
time of the two jobs is similar; on this initial solution a local search is per-
formed.

The second one - referred to as complementary batching procedure (CBP) -
divides the problem into two steps by first scheduling just one type of request
and then optimizing batching of the other type of requests.

The first is based on the classical concept of intensification on an initial
solution, the second schedules a subset of jobs and than uses the information
of the maximum lateness of this partial schedule to batch the rest of the jobs.

Results from computational tests showed that the latter results in better
performances. It often overcomes solutions found by the first one; however,
on smaller problem size, the first one improves many results. CBP maintained
a pretty stable percentage gap with respect of a lower bound and can be
therefore considered to solve also larger instances by a feasible time and
still largely improving solutions returned by other dispatching rules-based
algorithms, e.g. EDD ordering adapted to the batching procedure.
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Appendix A

Evaluation Results

All results from the computational test are listed below. As in chapter 6, we
have first the instance ID that follows the name scheme n_λ_δ_ρ_i, where
i is an integer from 0 to 4 used to univocally identify instances with same
parameters value. Then, we have the value of the lower bound, the maximum
lateness of the solution found with the CBP algorithm, the percentage gap
with respect to the lower bound and the CPU time. It follows the same for
the SBP algorithm. Finally, in last two columns, there is the value of the
maximum lateness found with an EDD-schedule and its percentage gap.

Instance ID LB CBP gap% CPU SBP gap% CPU EDD gap%
sec. sec.

100_0.5_0.125_0.125_0 1859 1980 6.5 0 2032 9.3 0 2657 42.9
100_0.5_0.125_0.125_1 1805 1865 3.3 0 1889 4.7 0 2528 40.1
100_0.5_0.125_0.125_2 2056 2056 0.0 0 2144 4.3 0 2610 26.9
100_0.5_0.125_0.125_3 1812 2019 11.4 0 1959 8.1 0 2356 30.0
100_0.5_0.125_0.125_4 1917 2076 8.3 0 2091 9.1 0 2514 31.1
100_0.5_0.125_0.25_0 2046 2188 6.9 0 2170 6.1 0 2934 43.4
100_0.5_0.125_0.25_1 1660 1757 5.8 0 1756 5.8 0 2385 43.7
100_0.5_0.125_0.25_2 1516 1742 14.9 0 1681 10.9 0 2099 38.5
100_0.5_0.125_0.25_3 1811 1814 0.0 0 1876 0.0 0 2437 0.0
100_0.5_0.125_0.25_4 1667 2013 20.8 0 1868 12.1 0 2541 52.4
100_0.5_0.125_0.5_0 1885 1974 4.7 0 1997 5.9 0 2543 34.9
100_0.5_0.125_0.5_1 1706 1825 7.0 0 1834 7.5 0 2510 47.1
100_0.5_0.125_0.5_2 1936 2079 7.4 0 2040 5.4 0 2681 38.5
100_0.5_0.125_0.5_3 2020 2168 0.0 0 2183 0.0 0 2856 0.0
100_0.5_0.125_0.5_4 1752 2343 33.7 0 2015 15.0 0 2560 46.1
100_0.5_0.5_0.125_0 1762 1799 2.1 0 1816 3.1 0 2458 39.5
100_0.5_0.5_0.125_1 1716 1794 4.5 0 1836 7.0 0 2279 32.8
100_0.5_0.5_0.125_2 1891 2077 0.0 0 2123 0.0 0 2737 0.0
100_0.5_0.5_0.125_3 1593 1847 15.9 0 1760 10.5 0 2414 51.5
100_0.5_0.5_0.125_4 1986 2016 1.5 0 2069 4.2 0 2612 31.5
100_0.5_0.5_0.25_0 2226 2334 4.9 0 2328 4.6 0 2718 22.1
100_0.5_0.5_0.25_1 2101 2115 0.7 0 2168 3.2 0 2731 30.0
100_0.5_0.5_0.25_2 1730 1838 6.2 0 1891 9.3 0 2679 54.9
100_0.5_0.5_0.25_3 2573 2588 0.6 0 2645 2.8 0 3069 19.3
100_0.5_0.5_0.25_4 2129 2279 7.0 0 2230 4.7 0 3064 43.9

73



A – Evaluation Results

100_0.5_0.5_0.5_0 1973 2037 3.2 0 1986 0.7 0 2797 41.8
100_0.5_0.5_0.5_1 1866 2035 9.1 0 2031 8.8 0 2814 50.8
100_0.5_0.5_0.5_2 1748 1809 3.5 0 1853 6.0 0 2305 31.9
100_0.5_0.5_0.5_3 1799 2086 16.0 0 2063 14.7 0 2592 44.1
100_0.5_0.5_0.5_4 1697 1828 7.7 0 1856 9.4 0 2304 35.8
100_1.0_0.125_0.125_0 1486 1596 7.4 0 1594 7.3 0 2044 37.6
100_1.0_0.125_0.125_1 1118 1280 14.5 0 1435 28.4 0 2118 89.4
100_1.0_0.125_0.125_2 1374 1685 22.6 0 1572 14.4 0 1986 44.5
100_1.0_0.125_0.125_3 1142 1341 17.4 0 1443 26.4 0 2142 87.6
100_1.0_0.125_0.125_4 1102 1250 13.4 0 1298 17.8 0 1923 74.5
100_1.0_0.125_0.25_0 1197 1287 0.0 0 1284 0.0 0 1811 0.0
100_1.0_0.125_0.25_1 1480 1620 9.5 0 1586 7.2 0 2148 45.1
100_1.0_0.125_0.25_2 906 1388 53.2 0 1292 42.6 0 1710 88.7
100_1.0_0.125_0.25_3 1555 1731 11.3 0 1777 14.3 0 2248 44.6
100_1.0_0.125_0.25_4 1177 1332 13.2 0 1308 11.1 0 1755 49.1
100_1.0_0.125_0.5_0 1527 1527 0.0 0 1602 4.9 0 1967 28.8
100_1.0_0.125_0.5_1 1283 1323 3.1 0 1360 6.0 0 1832 42.8
100_1.0_0.125_0.5_2 1345 1445 7.4 0 1463 8.8 0 2207 64.1
100_1.0_0.125_0.5_3 1109 1356 22.3 0 1297 17.0 0 1805 62.8
100_1.0_0.125_0.5_4 1497 1547 3.3 0 1560 4.2 0 2229 48.9
100_1.0_0.5_0.125_0 1256 1576 25.5 0 1650 31.4 0 2291 82.4
100_1.0_0.5_0.125_1 1388 1419 2.2 0 1443 4.0 0 1910 37.6
100_1.0_0.5_0.125_2 1079 1132 4.9 0 1130 4.7 0 1546 43.3
100_1.0_0.5_0.125_3 1015 1285 26.6 0 1295 27.6 0 1750 72.4
100_1.0_0.5_0.125_4 1317 1322 0.4 0 1404 6.6 0 1737 31.9
100_1.0_0.5_0.25_0 1647 1651 0.2 0 1700 3.2 0 2106 27.9
100_1.0_0.5_0.25_1 976 1269 30.0 0 1210 24.0 0 1646 68.6
100_1.0_0.5_0.25_2 1227 1245 1.5 0 1304 6.3 0 1615 31.6
100_1.0_0.5_0.25_3 1278 1326 3.8 0 1426 11.6 0 1850 44.8
100_1.0_0.5_0.25_4 1192 1319 10.7 0 1336 12.1 0 1738 45.8
100_1.0_0.5_0.5_0 1345 1448 7.7 0 1453 8.0 0 1700 26.4
100_1.0_0.5_0.5_1 1146 1307 14.0 0 1445 26.1 0 2071 80.7
100_1.0_0.5_0.5_2 1403 1403 0.0 0 1512 7.8 0 1980 41.1
100_1.0_0.5_0.5_3 1294 1447 11.8 0 1440 11.3 0 1865 44.1
100_1.0_0.5_0.5_4 1250 1586 26.9 0 1480 18.4 0 1859 48.7
200_0.5_0.125_0.125_0 3498 3567 2.0 1 3740 6.9 10 5020 43.5
200_0.5_0.125_0.125_1 3819 3833 0.4 3 3926 2.8 10 5055 32.4
200_0.5_0.125_0.125_2 3193 3477 8.9 3 3486 9.2 10 4719 47.8
200_0.5_0.125_0.125_3 3066 3757 22.5 3 3385 10.4 7 4861 58.5
200_0.5_0.125_0.125_4 3623 3685 1.7 1 3847 6.2 10 5320 46.8
200_0.5_0.125_0.25_0 3475 3909 12.5 2 3998 15.1 5 5353 54.0
200_0.5_0.125_0.25_1 3456 3824 10.6 1 3806 10.1 3 4822 39.5
200_0.5_0.125_0.25_2 3659 3811 4.2 1 3820 4.4 10 5170 41.3
200_0.5_0.125_0.25_3 3830 3880 0.0 1 3987 0.0 6 5238 0.0
200_0.5_0.125_0.25_4 3590 3669 2.2 1 3709 3.3 10 5312 48.0
200_0.5_0.125_0.5_0 4230 4246 0.4 1 4385 3.7 8 5483 29.6
200_0.5_0.125_0.5_1 3800 3982 4.8 0 4153 9.3 9 5452 43.5
200_0.5_0.125_0.5_2 3425 3921 14.5 5 3977 16.1 9 5010 46.3
200_0.5_0.125_0.5_3 3519 3635 0.0 2 3621 0.0 8 4951 0.0
200_0.5_0.125_0.5_4 3565 3892 9.2 2 3849 8.0 8 5310 48.9
200_0.5_0.5_0.125_0 3709 3824 3.1 2 3922 5.7 9 5031 35.6
200_0.5_0.5_0.125_1 3863 4156 7.6 1 4013 3.9 10 5343 38.3
200_0.5_0.5_0.125_2 3660 3683 0.0 1 3835 0.0 8 5128 0.0
200_0.5_0.5_0.125_3 3659 3666 0.2 2 3772 3.1 9 4889 33.6
200_0.5_0.5_0.125_4 3320 4080 22.9 4 3775 13.7 7 5102 53.7
200_0.5_0.5_0.25_0 4150 4150 0.0 1 4276 3.0 10 5265 26.9
200_0.5_0.5_0.25_1 3632 3746 3.1 1 3880 6.8 8 5108 40.6
200_0.5_0.5_0.25_2 3530 3587 1.6 1 3752 6.3 10 4910 39.1
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200_0.5_0.5_0.25_3 4100 4107 0.2 1 4275 4.3 6 5391 31.5
200_0.5_0.5_0.25_4 3029 3544 17.0 2 3374 11.4 9 4728 56.1
200_0.5_0.5_0.5_0 3661 3865 5.6 0 3847 5.1 8 5035 37.5
200_0.5_0.5_0.5_1 3802 3818 0.4 1 3922 3.2 6 5041 32.6
200_0.5_0.5_0.5_2 3965 3965 0.0 0 4034 1.7 10 5262 32.7
200_0.5_0.5_0.5_3 3551 3939 10.9 2 3911 10.1 8 4863 36.9
200_0.5_0.5_0.5_4 3896 3908 0.3 1 4042 3.7 9 5200 33.5
200_1.0_0.125_0.125_0 2299 2931 27.5 11 2780 20.9 10 3684 60.2
200_1.0_0.125_0.125_1 2298 2600 13.1 2 2626 14.3 6 3497 52.2
200_1.0_0.125_0.125_2 2836 2840 0.1 9 2897 2.2 8 3940 38.9
200_1.0_0.125_0.125_3 2125 2627 23.6 10 2665 25.4 4 3521 65.7
200_1.0_0.125_0.125_4 2373 2462 3.8 1 2785 17.4 5 4067 71.4
200_1.0_0.125_0.25_0 2104 2724 0.0 8 2572 0.0 8 3514 0.0
200_1.0_0.125_0.25_1 3369 3369 0.0 1 4150 23.2 10 4490 33.3
200_1.0_0.125_0.25_2 2185 2294 5.0 1 2330 6.6 4 3573 63.5
200_1.0_0.125_0.25_3 2318 2436 5.1 2 2648 14.2 7 3804 64.1
200_1.0_0.125_0.25_4 2038 2202 8.0 2 2219 8.9 5 3354 64.6
200_1.0_0.125_0.5_0 1871 2390 27.7 1 2317 23.8 7 3826 104.5
200_1.0_0.125_0.5_1 2486 2740 10.2 2 2723 9.5 5 3601 44.9
200_1.0_0.125_0.5_2 2327 2470 6.1 1 2865 23.1 5 3882 66.8
200_1.0_0.125_0.5_3 2375 2580 8.6 2 2683 13.0 10 3724 56.8
200_1.0_0.125_0.5_4 2700 2773 2.7 1 3049 12.9 8 4205 55.7
200_1.0_0.5_0.125_0 2444 2457 0.5 3 2531 3.6 8 3578 46.4
200_1.0_0.5_0.125_1 2304 2487 7.9 3 2583 12.1 5 3728 61.8
200_1.0_0.5_0.125_2 2400 2446 1.9 2 2550 6.3 8 3919 63.3
200_1.0_0.5_0.125_3 2402 3101 29.1 10 2661 10.8 6 3803 58.3
200_1.0_0.5_0.125_4 2643 2719 2.9 1 2775 5.0 7 4127 56.1
200_1.0_0.5_0.25_0 2280 2759 21.0 3 2831 24.2 4 3628 59.1
200_1.0_0.5_0.25_1 2195 2334 6.3 5 2513 14.5 4 3232 47.2
200_1.0_0.5_0.25_2 2543 3011 18.4 11 2776 9.2 9 3823 50.3
200_1.0_0.5_0.25_3 2407 2590 7.6 10 2651 10.1 6 3343 38.9
200_1.0_0.5_0.25_4 2456 2684 9.3 5 2765 12.6 5 3707 50.9
200_1.0_0.5_0.5_0 2180 2882 32.2 1 2613 19.9 6 3509 61.0
200_1.0_0.5_0.5_1 2079 2575 23.9 2 2542 22.3 7 3396 63.3
200_1.0_0.5_0.5_2 2427 2494 2.8 1 2632 8.4 3 3472 43.1
200_1.0_0.5_0.5_3 2141 2500 16.8 10 2597 21.3 8 3283 53.3
200_1.0_0.5_0.5_4 2466 2537 2.9 1 2674 8.4 5 3855 56.3
300_0.5_0.125_0.125_0 5332 5577 4.6 17 5752 7.9 49 7827 46.8
300_0.5_0.125_0.125_1 5353 5416 1.2 25 5634 5.2 60 6854 28.0
300_0.5_0.125_0.125_2 4616 5419 17.4 24 5022 8.8 60 7048 52.7
300_0.5_0.125_0.125_3 4799 5228 8.9 18 5166 7.6 58 7343 53.0
300_0.5_0.125_0.125_4 4515 4924 9.1 13 5050 11.8 60 6966 54.3
300_0.5_0.125_0.25_0 5078 5546 9.2 20 5649 11.2 60 7105 39.9
300_0.5_0.125_0.25_1 5674 5752 1.4 9 5997 5.7 60 7575 33.5
300_0.5_0.125_0.25_2 5473 5541 1.2 29 5718 4.5 58 7601 38.9
300_0.5_0.125_0.25_3 5293 5427 0.0 13 5551 0.0 39 7599 0.0
300_0.5_0.125_0.25_4 4801 5804 20.9 63 5364 11.7 38 7325 52.6
300_0.5_0.125_0.5_0 5428 5766 6.2 15 5973 10.0 61 7819 44.0
300_0.5_0.125_0.5_1 4995 5277 5.6 13 5644 13.0 60 7281 45.8
300_0.5_0.125_0.5_2 5471 5847 6.9 25 5934 8.5 60 7700 40.7
300_0.5_0.125_0.5_3 5128 5164 0.0 13 5598 0.0 60 7205 0.0
300_0.5_0.125_0.5_4 5067 5478 8.1 25 5489 8.3 57 7430 46.6
300_0.5_0.5_0.125_0 5101 5309 4.1 46 5446 6.8 60 7043 38.1
300_0.5_0.5_0.125_1 4577 5961 30.2 64 5398 17.9 60 7338 60.3
300_0.5_0.5_0.125_2 4900 5644 0.0 31 5408 0.0 60 7047 0.0
300_0.5_0.5_0.125_3 5352 5425 1.4 10 5601 4.7 47 7713 44.1
300_0.5_0.5_0.125_4 4979 5302 6.5 12 5278 6.0 60 7436 49.3
300_0.5_0.5_0.25_0 5109 5496 7.6 47 5505 7.8 40 7421 45.3
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300_0.5_0.5_0.25_1 5351 5465 2.1 7 5603 4.7 50 8134 52.0
300_0.5_0.5_0.25_2 4937 5639 14.2 10 5387 9.1 44 7603 54.0
300_0.5_0.5_0.25_3 5674 5687 0.2 10 6167 8.7 60 7637 34.6
300_0.5_0.5_0.25_4 5036 5623 11.7 10 5604 11.3 60 7501 48.9
300_0.5_0.5_0.5_0 6558 6558 0.0 9 6808 3.8 60 8016 22.2
300_0.5_0.5_0.5_1 4907 5325 8.5 14 5720 16.6 60 7310 49.0
300_0.5_0.5_0.5_2 5482 5568 1.6 13 5747 4.8 60 7305 33.3
300_0.5_0.5_0.5_3 5366 5855 9.1 13 5580 4.0 54 7185 33.9
300_0.5_0.5_0.5_4 5189 5497 5.9 16 5544 6.8 58 7426 43.1
300_1.0_0.125_0.125_0 3222 3420 6.1 29 3462 7.4 42 5167 60.4
300_1.0_0.125_0.125_1 3127 4150 32.7 57 3644 16.5 61 5071 62.2
300_1.0_0.125_0.125_2 2809 3774 34.4 66 3598 28.1 45 5166 83.9
300_1.0_0.125_0.125_3 3147 3625 15.2 51 3695 17.4 30 5379 70.9
300_1.0_0.125_0.125_4 3957 3997 1.0 13 4147 4.8 60 5806 46.7
300_1.0_0.125_0.25_0 3029 4204 0.0 66 3712 0.0 55 5650 0.0
300_1.0_0.125_0.25_1 4158 4229 1.7 61 4356 4.8 46 5729 37.8
300_1.0_0.125_0.25_2 3681 3693 0.3 62 4016 9.1 60 5640 53.2
300_1.0_0.125_0.25_3 3362 3784 12.6 67 3868 15.1 55 5176 54.0
300_1.0_0.125_0.25_4 3384 3940 16.4 38 3788 11.9 45 5439 60.7
300_1.0_0.125_0.5_0 3796 3807 0.3 18 4158 9.5 39 5251 38.3
300_1.0_0.125_0.5_1 3215 3854 19.9 35 3812 18.6 44 5107 58.8
300_1.0_0.125_0.5_2 3611 3819 5.8 22 3938 9.1 60 5360 48.4
300_1.0_0.125_0.5_3 3618 3768 4.1 17 4117 13.8 52 5813 60.7
300_1.0_0.125_0.5_4 4455 4455 0.0 12 4601 3.3 42 6301 41.4
300_1.0_0.5_0.125_0 3227 3627 12.4 63 3766 16.7 50 4939 53.1
300_1.0_0.5_0.125_1 3239 3511 8.4 63 3557 9.8 40 4932 52.3
300_1.0_0.5_0.125_2 3329 3800 14.1 56 3985 19.7 33 5317 59.7
300_1.0_0.5_0.125_3 3841 3851 0.3 32 4085 6.4 59 5658 47.3
300_1.0_0.5_0.125_4 3185 3716 16.7 61 3960 24.3 46 5158 61.9
300_1.0_0.5_0.25_0 3293 3762 14.2 16 3959 20.2 36 5568 69.1
300_1.0_0.5_0.25_1 3371 3778 12.1 34 3934 16.7 50 5271 56.4
300_1.0_0.5_0.25_2 2919 3991 36.7 65 3472 18.9 53 5355 83.5
300_1.0_0.5_0.25_3 3312 3858 16.5 55 3840 15.9 43 5568 68.1
300_1.0_0.5_0.25_4 3042 3573 17.5 50 3543 16.5 60 5079 67.0
300_1.0_0.5_0.5_0 3119 3698 18.6 53 3736 19.8 47 5405 73.3
300_1.0_0.5_0.5_1 3958 4161 5.1 68 4229 6.8 59 5409 36.7
300_1.0_0.5_0.5_2 3797 3953 4.1 12 4136 8.9 42 5895 55.3
300_1.0_0.5_0.5_3 3489 3736 7.1 30 3925 12.5 38 5379 54.2
300_1.0_0.5_0.5_4 3378 3553 5.2 48 3635 7.6 48 5309 57.2
400_0.5_0.125_0.125_0 7396 7415 0.3 60 11000 48.7 63 10087 36.4
400_0.5_0.125_0.125_1 6391 6967 9.0 37 10681 67.1 62 9356 46.4
400_0.5_0.125_0.125_2 6558 6819 4.0 63 10467 59.6 63 9658 47.3
400_0.5_0.125_0.125_3 6424 6807 6.0 64 11055 72.1 62 9521 48.2
400_0.5_0.125_0.125_4 6998 7045 0.7 53 10149 45.0 61 9801 40.1
400_0.5_0.125_0.25_0 6381 6855 7.4 64 10011 56.9 62 9786 53.4
400_0.5_0.125_0.25_1 6387 7360 15.2 72 10106 58.2 60 9471 48.3
400_0.5_0.125_0.25_2 6296 6727 6.8 66 10070 59.9 63 9063 43.9
400_0.5_0.125_0.25_3 7135 7135 0.0 62 11231 57.4 63 9557 33.9
400_0.5_0.125_0.25_4 6457 7226 11.9 64 10332 60.0 62 9799 51.8
400_0.5_0.125_0.5_0 7299 7958 9.0 33 11526 57.9 60 10772 47.6
400_0.5_0.125_0.5_1 6447 7135 10.7 54 10599 64.4 62 9630 49.4
400_0.5_0.125_0.5_2 6795 7407 9.0 67 11060 62.8 61 9383 38.1
400_0.5_0.125_0.5_3 6538 7233 10.6 66 9873 51.0 62 9221 41.0
400_0.5_0.125_0.5_4 6638 6990 5.3 51 9877 48.8 62 9995 50.6
400_0.5_0.5_0.125_0 6568 6952 5.8 65 10776 64.1 62 9576 45.8
400_0.5_0.5_0.125_1 6981 7750 11.0 68 11050 58.3 63 9762 39.8
400_0.5_0.5_0.125_2 7139 7363 3.1 64 11027 54.5 63 10049 40.8
400_0.5_0.5_0.125_3 6253 7275 16.3 66 10428 66.8 62 9427 50.8
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400_0.5_0.5_0.125_4 6919 7155 3.4 65 10965 58.5 63 9916 43.3
400_0.5_0.5_0.25_0 6461 6941 7.4 68 10621 64.4 63 9588 48.4
400_0.5_0.5_0.25_1 5911 6631 12.2 68 10039 69.8 60 8980 51.9
400_0.5_0.5_0.25_2 6425 7201 12.1 59 10461 62.8 63 9704 51.0
400_0.5_0.5_0.25_3 6517 7305 12.1 67 11161 71.3 63 9570 46.8
400_0.5_0.5_0.25_4 6360 6751 6.1 42 9616 51.2 60 9534 49.9
400_0.5_0.5_0.5_0 6379 7446 16.7 65 10982 72.2 61 9537 49.5
400_0.5_0.5_0.5_1 6652 7103 6.8 49 10238 53.9 62 9569 43.9
400_0.5_0.5_0.5_2 7357 7410 0.7 61 10589 43.9 62 10061 36.8
400_0.5_0.5_0.5_3 6824 7069 3.6 64 9935 45.6 61 9657 41.5
400_0.5_0.5_0.5_4 6771 6959 2.8 60 10622 56.9 62 9669 42.8
400_1.0_0.125_0.125_0 4477 4667 4.2 75 7636 70.6 62 6777 51.4
400_1.0_0.125_0.125_1 4595 4827 5.0 55 7524 63.7 62 7474 62.7
400_1.0_0.125_0.125_2 4496 6302 40.2 82 9008 100.4 64 7436 65.4
400_1.0_0.125_0.125_3 4223 4791 13.5 69 7691 82.1 60 6619 56.7
400_1.0_0.125_0.125_4 3822 4293 12.3 65 7422 94.2 64 6399 67.4
400_1.0_0.125_0.25_0 4505 5030 11.7 71 7806 73.3 63 7051 56.5
400_1.0_0.125_0.25_1 5017 5063 0.9 73 7648 52.4 60 7371 46.9
400_1.0_0.125_0.25_2 4051 5458 34.7 75 7527 85.8 62 7165 76.9
400_1.0_0.125_0.25_3 4403 5185 17.8 68 8376 90.2 62 7407 68.2
400_1.0_0.125_0.25_4 4930 4979 1.0 69 7415 50.4 63 7461 51.3
400_1.0_0.125_0.5_0 4377 4585 4.8 71 7870 79.8 61 7152 63.4
400_1.0_0.125_0.5_1 4399 5147 17.0 70 7598 72.7 62 6946 57.9
400_1.0_0.125_0.5_2 4451 4697 5.5 73 7838 76.1 61 6685 50.2
400_1.0_0.125_0.5_3 4234 4979 17.6 63 8434 99.2 61 7271 71.7
400_1.0_0.125_0.5_4 3952 4407 11.5 61 7823 98.0 60 7022 77.7
400_1.0_0.5_0.125_0 4509 4695 4.1 67 8425 86.8 61 7458 65.4
400_1.0_0.5_0.125_1 4158 4356 4.8 68 7829 88.3 62 6875 65.3
400_1.0_0.5_0.125_2 4347 4846 11.5 77 7094 63.2 61 6735 54.9
400_1.0_0.5_0.125_3 4010 4601 14.7 66 7758 93.5 63 6999 74.5
400_1.0_0.5_0.125_4 4333 4573 5.5 71 7519 73.5 60 6731 55.3
400_1.0_0.5_0.25_0 4903 4903 0.0 71 8169 66.6 62 7582 54.6
400_1.0_0.5_0.25_1 4530 4706 3.9 72 7939 75.3 62 7452 64.5
400_1.0_0.5_0.25_2 4076 4721 15.8 70 7155 75.5 62 6615 62.3
400_1.0_0.5_0.25_3 4927 5123 4.0 67 8612 74.8 60 7711 56.5
400_1.0_0.5_0.25_4 4307 4760 10.5 64 7814 81.4 61 7167 66.4
400_1.0_0.5_0.5_0 3971 4601 15.9 71 7618 91.8 63 6461 62.7
400_1.0_0.5_0.5_1 4083 4634 13.5 69 7718 89.0 63 6528 59.9
400_1.0_0.5_0.5_2 4608 4894 6.2 70 8288 79.9 61 7130 54.7
400_1.0_0.5_0.5_3 4278 6029 40.9 61 7578 77.1 60 7092 65.8
400_1.0_0.5_0.5_4 4411 5038 14.2 72 7690 74.3 62 7080 60.5
500_0.5_0.125_0.125_0 7867 8467 7.6 64 13987 77.8 67 12265 55.9
500_0.5_0.125_0.125_1 7694 8411 9.3 69 13660 77.5 66 11465 49.0
500_0.5_0.125_0.125_2 8076 9439 16.9 70 13942 72.6 62 11930 47.7
500_0.5_0.125_0.125_3 8083 8904 10.2 69 14891 84.2 64 12003 48.5
500_0.5_0.125_0.125_4 7917 9315 17.7 68 14044 77.4 64 11445 44.6
500_0.5_0.125_0.25_0 8413 9331 10.9 67 14968 77.9 64 12300 46.2
500_0.5_0.125_0.25_1 8572 8946 4.4 69 14585 70.1 62 12928 50.8
500_0.5_0.125_0.25_2 8859 9921 12.0 68 15048 69.9 63 12453 40.6
500_0.5_0.125_0.25_3 7655 9308 21.6 71 14614 90.9 62 11482 50.0
500_0.5_0.125_0.25_4 8454 8875 5.0 67 14514 71.7 66 11995 41.9
500_0.5_0.125_0.5_0 8378 8872 5.9 69 13996 67.1 64 12317 47.0
500_0.5_0.125_0.5_1 8359 9152 9.5 70 14474 73.2 62 11791 41.1
500_0.5_0.125_0.5_2 9038 9471 4.8 68 15435 70.8 65 13094 44.9
500_0.5_0.125_0.5_3 8992 9328 3.7 67 16107 79.1 60 13078 45.4
500_0.5_0.125_0.5_4 9043 9175 1.5 67 15645 73.0 63 13090 44.8
500_0.5_0.5_0.125_0 8130 10150 24.8 72 14591 79.5 64 12505 53.8
500_0.5_0.5_0.125_1 8085 9018 11.5 71 13914 72.1 61 12176 50.6
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500_0.5_0.5_0.125_2 8479 8715 2.8 69 14570 71.8 62 12374 45.9
500_0.5_0.5_0.125_3 7791 9382 20.4 69 13285 70.5 62 11603 48.9
500_0.5_0.5_0.125_4 7993 9272 16.0 70 14385 80.0 62 12066 51.0
500_0.5_0.5_0.25_0 8266 9039 9.4 69 13831 67.3 61 11991 45.1
500_0.5_0.5_0.25_1 8090 8458 4.5 66 13612 68.3 66 12087 49.4
500_0.5_0.5_0.25_2 9015 9040 0.3 65 15256 69.2 60 12708 41.0
500_0.5_0.5_0.25_3 9161 9199 0.4 66 14705 60.5 64 12645 38.0
500_0.5_0.5_0.25_4 8080 9116 12.8 68 14220 76.0 65 12110 49.9
500_0.5_0.5_0.5_0 8020 8475 5.7 72 13754 71.5 67 11650 45.3
500_0.5_0.5_0.5_1 7537 9487 25.9 76 14370 90.7 67 11849 57.2
500_0.5_0.5_0.5_2 8404 10105 20.2 66 14273 69.8 65 12534 49.1
500_0.5_0.5_0.5_3 7984 10375 29.9 71 13643 70.9 66 12195 52.7
500_0.5_0.5_0.5_4 8242 9452 14.7 67 14037 70.3 60 12029 45.9
500_1.0_0.125_0.125_0 5196 5951 14.5 65 10583 103.7 60 9220 77.4
500_1.0_0.125_0.125_1 4600 6176 34.3 75 10413 126.4 63 7645 66.2
500_1.0_0.125_0.125_2 4374 5165 18.1 65 9527 117.8 61 7882 80.2
500_1.0_0.125_0.125_3 5012 5674 13.2 67 10264 104.8 67 8407 67.7
500_1.0_0.125_0.125_4 4463 5022 12.5 62 9643 116.1 65 8444 89.2
500_1.0_0.125_0.25_0 6097 6859 12.5 64 10716 75.8 63 9719 59.4
500_1.0_0.125_0.25_1 5724 5816 1.6 60 10898 90.4 61 8889 55.3
500_1.0_0.125_0.25_2 6124 6188 1.0 63 11917 94.6 65 9516 55.4
500_1.0_0.125_0.25_3 5021 5572 11.0 64 9383 86.9 63 7519 49.8
500_1.0_0.125_0.25_4 6414 6463 0.8 60 10529 64.2 65 9388 46.4
500_1.0_0.125_0.5_0 5304 6279 18.4 69 10302 94.2 60 8192 54.4
500_1.0_0.125_0.5_1 5246 5535 5.5 59 10262 95.6 65 9134 74.1
500_1.0_0.125_0.5_2 5138 5470 6.5 66 11557 124.9 61 8706 69.4
500_1.0_0.125_0.5_3 5607 7658 36.6 63 11326 102.0 62 9521 69.8
500_1.0_0.125_0.5_4 5273 5963 13.1 70 10482 98.8 68 8816 67.2
500_1.0_0.5_0.125_0 5766 5767 0.0 59 10845 88.1 64 8341 44.7
500_1.0_0.5_0.125_1 4703 6593 40.2 70 9328 98.3 65 8546 81.7
500_1.0_0.5_0.125_2 5186 6339 22.2 62 10708 106.5 64 8668 67.1
500_1.0_0.5_0.125_3 4938 5588 13.2 66 10095 104.4 62 8908 80.4
500_1.0_0.5_0.125_4 4917 5558 13.0 67 10163 106.7 60 8120 65.1
500_1.0_0.5_0.25_0 5267 5974 13.4 65 11515 118.6 68 8920 69.4
500_1.0_0.5_0.25_1 6670 6670 0.0 58 11029 65.4 65 9595 43.9
500_1.0_0.5_0.25_2 6333 6337 0.1 60 11521 81.9 66 9482 49.7
500_1.0_0.5_0.25_3 5429 6303 16.1 69 10400 91.6 65 8341 53.6
500_1.0_0.5_0.25_4 5659 5997 6.0 63 10713 89.3 61 9393 66.0
500_1.0_0.5_0.5_0 5326 5840 9.7 68 10508 97.3 67 8931 67.7
500_1.0_0.5_0.5_1 5445 5603 2.9 69 10438 91.7 62 8556 57.1
500_1.0_0.5_0.5_2 5873 6160 4.9 61 10374 76.6 64 9604 63.5
500_1.0_0.5_0.5_3 5435 5935 9.2 61 10537 93.9 60 8555 57.4
500_1.0_0.5_0.5_4 5265 5695 8.2 61 11755 123.3 68 9590 82.1
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