POLITECNICO DI TORINO

Corso di Laurea in Nanotechnologies for ICTs

Tesi di Laurea Magistrale

Implementation of neural networks
systems on FPGA for feature
detection

Relatore Studente
prof. Maurizio Zamboni Andrea PETRINI

prof. Carlo Ricciardi

Supervisore aziendale CSEM
Dr. Petar Jokic

ANNO ACCADEMICO 2018 — 2019

Abstract

Nowadays Neural Networks are fast developing for a large number of applications. In
particular, the detection of features inside images is an extensively investigated task for its
many purposes. Inside each image the network can recognize patterns, features and events
that may be used to automatically monitor the field of view, as well as taking decisions
without the intervention of an external human operator. For fast detection purposes,
high speed cameras are usually employed, which can generate a huge stream of data in
a very short time. The information stored inside these bits may exceed the transmission
capabilities of state-of-the-art systems. In order to apply the benefits that a Neural Network
can supply to a camera system without having to compress the information, FPGA-based
circuits have been developed, which can faster emulate the behavior of neural algorithms
requiring less space and power.

While the solution to integrate such features on FPGA already exists, each camera
system presents specific hardware implementation which needs to be combined with the
existing characteristics of the network. Moreover, the network response to incoming data
can be used inside the device to develop new features. The work of this thesis consists in
extending the existing FPGA framework in order to include new functionalities related to
the Neural Network embedded block to the system. A new technique to feed data to the
accelerator has been proposed. With the incoming data, a new block has been designed
inside the framework to state whether a significant change has occurred inside the field of
view, with the possibility of using this signal to trigger data acquisition.

During the work, a review of the existing sensor interface has resulted necessary in
order to proceed further with the hardware on disposal. This part consisted in adapting
the project design to a different model of FPGA in use, which has been successfully included
inside the latest version. As far as it concerns the data processing, much care was spent
to respect the preexistent characteristics of the framework, which presented an already
functioning apparatus able to capture images using the VIAIM CMOS sensor developed
inside CSEM company. In order to extend the functionalities, the thesis has also focused
on understanding the previous work done, trying to implemented the new features as
compatible as possible with the already included framework.

Acknowledgements

I would like to thank my thesis supervisors at Politecnico di Torino, Prof. Maurizio Zam-
boni and Prof. Carlo Ricciardi for their help and constant advice during the thesis. Fur-
thermore, I thank them for being such good teachers and for having provided me with the
best knowledge possible on the topic I am discussing in this document. A special thank to
my supervisor in CSEM, Dr. Petar Jokic, who gave me the possibility to work in CSEM
during my internship and assigned me a very interesting problem to solve during my thesis
work. The months spent in Zurich, in every sense, represented for me a very significant
change, from which I learnt a lot, both personally and professionally.

Finally, I would like to thank my parents, who supported me even during my worst
crises, in these five years.

Contents

List of Tables
List of Figures

1 Introduction

1.1 Neural Networks

1.2 High speed cameras
1.2.1 CCD cameras
1.2.2 CMOS cameras
1.2.3 Comparison between car
1.2.4 Fast camera electronics

1.3 Project description

1.4 Objectives of the thesis

1.5 Methodology

1.6 Organization of the thesis . .

2 Design and Implementation
2.1 The FastEye system

nera technologies

2.1.1 Main differences between k160 and k325 models
2.1.2 The analysis of the memory interface

2.1.3 The application analysis
2.1.4 The frame mem block
2.2 The accelerator_unit block . .
2.2.1 Data preprocessor . . .
2.2.2 Change trigger
2.3 Servo controller

3 Evaluation and Testing
3.1 Averaging feature
3.2 Implementation results
3.3 Servo controller functionalities

4 Conclusions and Future Work

Bibliography

11
12
13
13
13
14
15
16
17

19
19
20
21
22
23
24
26
30
34

37
37
40
42

45

49

List of Tables

3.1 Power consumption and worst slack of the Accellerator Unit and v2_fasteye
Projects.o 42

List of Figures

1.1

1.2

2.1

2.2

2.3

24
2.5
2.6

2.7

2.8
2.9
2.10
3.1
3.2
3.3
3.4
3.5

3.6

The basis structure of a NN, with an input layer, several hidden layers to
add depth to the computation and a final output layer to extract the result

of the calculation. 10
Camera system: the red circle highlights the part of the system on which
the work focused. 15

Comparison between main features of the two FPGA models, k160 and k325;
the number of logic elements is presented, as well as the number of memory
instances and the available speed grade of the silicon chips. 20
Final appearance of the memory interface related block: the system is char-
acterized by a conditional frame, which is used to instantiate only one of the
internal components according to the framework requests. The two small
blocks on left and right side, called respectively debug in and debug out,

implement the added features described in Paragraph 2.1.2.. 22
An explicative sketch of the single multiplexer entity on the left with the

distributed structure on the right. L. 25
Structure of the accelator unit block. 26
Flow chart of the averaging process. 28
The original field, which is processed from the FPGA application, gets re-

duced into a smaller square, which will be then analyzed. 29

On the left side, an even tile number (N = 4) divided into top and bottom
parts, while on the right one, the middle line of tiles gets crossed by the
central row. In this case, since the tile number is odd (N = 5), top and
bottom rows must be considered together to calculate the average of this

portion of the image. o 29
Block schematics of the change trigger. 32
Flow chart of the algorithm to activate the change trigger. 33
Final implementation of the servo controller. 36
The original 1Mpx image obtained from the camera. 38
Subsampled 32x32 image. 38
Averaged 32x32 image. 39
Reconstructed 32x32 averaged image. L. 40
Utilization rate of the resources inside the k160 FPGA derived from the

implementation of the Accelerator Unit and v2_fasteye projects. 41
Final implementation of the setup that controls the servo motor (picture of

the servo motor taken from [15]). 0oL 44

Chapter 1

Introduction

This work presents the result of the implementation of a Neural Network system on a
high speed camera namely the Fasteye model, developed inside the CSEM (Centre Suisse
d’Electronique et Microtechnique) company. Most of the activity has focused on developing
new blocks on the FPGA (Field Programmable Gate Array) chip on the board to add new
functionalities to the framework. An embedded Neural Network was synthesized on the
FPGA using the solution in [1], which was extended to match the new characteristics of
the device.

The aspects studied in this thesis have great practical relevance, considering the nu-
merous applications for high speed cameras in such fields as automotive, transportation,
industrial manufacturing, consumer electronics, food recognition, entertainment, media,
and sports. This is confirmed by the trend of the market of fast cameras, which is expcted
to dramatically increase worldwide in the next few years [2].

Below, we first provide a short introduction to Neural Networks, then we discuss the
innovation brought by high speed cameras and the technology beyond them. Then we
provide an overview of the project, which has been the focus of this thesis work, its main
objectives, and the methodologies that have been adopted to address the main challenges
imposed. Finally, we detail the contents of the thesis.

1.1 Neural Networks

In this section, some background information on neural networks and on their application
within a camera system are provided. Neural Networks (NN) for feature detection in images
have been extensively developed for digit recognition [3]: Arabic characters displayed in a
low-resolution picture get analyzed by means of a layered structure, which is intended to
discover specific patterns for identification. Other works have designed networks capable
of detecting more elaborate features, even human faces and expressions [4][5]. Industrial
applications have been examined in [6] [7], specifically in the fields of automation for
the purpose of fast defect assessment. Such application could possibly save hundreds of
thousands of dollars. The computational architecture used in these works is based on the

9

Introduction

concept of Convolutional Neural Network (CNN), a multilevel, complex structure [8]. Each
layer is composed by a sequence of single cells, which can state with a certain accuracy
degree if a certain feature (presence of straight lines, edges, dots, ...) is present in the
picture. The larger the number of layers, the more complex will be the features identified by
the network, since at each step simple patterns get mixed with others, creating a complex
structure. The output will always show a certain approximation, but with very extensive
training and wide enough networks it is possible to obtain basically perfect results from
the classification process. This process can be extended to any kind of feature present in
the picture, since by changing the connections and the values inside the network, this can
be applied to any purpose. The basic structure of a common NN is displayed in Figure
1.1.

Hidden

Input

Output

N

;\,W,/':
Y\

Figure 1.1. The basis structure of a NN, with an input layer, several hidden layers to add
depth to the computation and a final output layer to extract the result of the calculation.

Nevertheless, the procedure requires sizable resources, and gets more and more com-
plicated as the image size increases. GPUs are usually employed for this purpose, this
implies that data must be continuously transmitted to the computational part in order to
obtain the result, which is not always possible. For large streaming of data, the acquisition
process may be too fast for the system to keep up, resulting in a loss of important infor-
mation. Many efforts have been spent to solve the issue, either by increasing the transfer
speed or simplifying the network, but the most promising solution relies on edge comput-
ing. Processing information at the source outputting only meaningful information instead
of raw data is the ultimate strategy to maximize the throughput of the process without
losing any advantage. Clearly this method requires further optimization of the embedded
system, since in this case the camera (or a generic sensor for image acquisition) must be
provided with an integrated system for feature recognition.

The challenge presented is to match the characteristics of edge processing with the
limitations of the integrated system, which present only a limited amount of space available
and power consumption to instantiate all the required assets for computation. In these

10

1.2 — High speed cameras

systems, the usual approach is to use an FPGA chip to create the netlist (nodes and
electronic components) to process and transmit data from the sensor, which could then
be exploited as well for inserting the computational system of the neural network. Many
efforts have been spent through the last years to identify a feasible way of inserting all the
functionalities of the NN into a configurable chip, and a viable solution has been lately
proposed [1].

A new popular method consists in using a BNN (Binarized Neural Network) as FPGA
accelerator to overcome the issue related to the limitation of the framework. Usually the
computation exploits floating point data to increase the accuracy of the result, but it is
possible to show that, even with binary values, the final outcome can be quite reliable.
Several assumptions have to be taken into account, but when the obtained output can still
be considered accurate when checked against expected results. The idea of substituting
weights and activation functions with much simpler expressions must be matched with the
framework requirements. The architecture is generated through a Python code which takes
as inputs the number of layers and the number of cells per layer and produces as output a
synthesizable implementation on RTL.

Given these conditions, the previous work has been extended inside CSEM project
in order to obtain a more general instantiation of the components. The system which
has been integrated inside the camera can, in the latest implementation, process floating
point numbers with the same architecture given in [1], which improves the flexibility and
accuracy of the system. The framework created is so peculiar for its flexibility and space
required, but this must be included inside the camera system, in order to correctly process
the incoming data. This means that an adequate interface between the preexistent design
and the newly added feature must be as instantiated looking to the current state of the
framework, with the following requirements:

o NN parameters (weight, biases) must be transferred to the FINN accelerator from
outside: since the network is only computational, it cannot be trained and therefore
must be fed with the correct values obtained with an external trial.

o Sensor data from the actual system must be processed in order to correctly transfer
those values to the accelerator unit in the standard format, specified during the
creation of the synthesizable code.

e The result must be wisely acquired and processed, since it is application-based and
must be used inside the framework to trigger the acquisition process or another output
which can be designed.

1.2 High speed cameras

The human eye is unable to distinguish the transition between two consecutive images in
a stream when the two are displayed in fast succession. At the beginning of the cinemato-
graphic era, the frame rate (or fps, frame per second) for movies was set to just 24 fps.
This frame rate was high enough for the images to appear as a video to the human eye. As

11

Introduction

far as it concerns the maximum required time lapse not to perceive the transition between
different pictures, it seems that 50 ms is an accurate esteem.

For many purposes, recording videos or streams of images at a higher rate than 120
fps seems useless for what concerns the human vision capability. Nevertheless, many phe-
nomena are indeed observable only at very high speed, faster than the eye can manage to
perceive. In order to “see” these kind of events, electronic systems have been developed.
Eyes take advantage of biologic structures to sample the light intensity and frequency,
using this information to reconstruct an image of the surrounding world. On the other
hand, an electronic chip exploits the property of materials like silicon to retrieve the same
information using photogenerated charges. Certainly, no electronic chip is currently able
to emulate the totality of the functionalities of the human eye, but at the same time it can
surpass some of its limitations.

Surely, the restraints posed by the human eye can be overcome, but the camera cannot
state the presence of specific features inside images or detect a certain pattern as an
observer would. With such a continuous and fast image streaming, real time adjustments
of camera settings seem unachievable, giving only a partial control on the system during the
data acquisition. The use of special computational architectures, such as Neural Networks,
which can be trained to emulate the human response for specific applications, seems a
viable option. Many algorithms have been developed to autonomously analyze the content
of pictures, and the results are automatically used for further applications. With this
solution, the devices may take independently decisions without communicating with other
entities, which is particularly advantageous for saving resources. With machine learnings
techniques, it seems that the separation between human and electronic devices in terms of
image recognition could be further reduced.

Nevertheless, even with the best algorithms available, the camera payload might result
too abundant for the rest of the system to handle. Modern devices can provide 10’s of Gb/s
of data [9] that, at the current state of the transmission technology, cannot be sent with the
same rate to an external receiver. It is still possible to provide some additional memory to
the boards, but this can only store a limited number of pictures before getting full. At the
same time, due to matters like privacy rights, collecting pictures from camera in specific
area may result in the violation of norms. The solution to these issues consists in keeping
the Neural Network on the camera itself, outputting only the result of the computation.
Exploiting this method, there is no necessity to bring all the data outside the camera itself,
given that the same application performed on the images with an external hardware can
be implemented on the camera.

Common imaging sensors exploit two different technologies for the chip architecture:
CCD and CMOS, which will then be presented in more detail.

1.2.1 CCD cameras

These devices can provide information on the intensity of a light source by measuring
the photogenerated charge inside a doped semiconductor material. On the surface of the
chip, MOS capacitors are designed in triplets, which are intended to create regions inside
the semiconductor where the charge can effectively be stored for short periods of time
(depending mainly on the semiconductor characteristics and the capacitor leakage current).
During exposure time, during which the objective shutter remains open, only one of the

12

1.2 — High speed cameras

three capacitors can effectively store the charge, being the terminal voltage opportunely
set. Once the sampling has been completed, the charge is then moved through the pixel
rows using multiple clock signals, synchronized so as to output the intensity result. The
charge is shifted from the pixel position to the collection border of the chip, where it
is sampled using digital-to-analog converters (DACs) and sent to the application board
for data processing. According to the characteristics of the device, different wavelengths
can be investigated changing the geometry and the material properties. Moreover, it is
possible to add color filters on the surface of the chip in order to let only a certain range
of frequencies being sampled by a single pixel. In this way, colored images can be obtained
without massively changing the device.

1.2.2 CMOS cameras

The latter category of imaging sensors is still realized with silicon technology, but it fully
exploits the potentialities of the CMOS architecture. The photoactive element is a pho-
todiode which collects the photogenerated carriers. This changes the value of the voltage
through the diode, which is then amplified using a source-follower configuration. This
means that normally more transistors are required for a single pixel. Moreover, each pixel
is provided with a reset transistor, which connects the diode directly to the power source
node and a row and column selectors, for the readout. Many configurations are possible
for the CMOS standard cell, but usually these all comprehend the photoactive element, an
amplifier and a reset transistor.

1.2.3 Comparison between camera technologies

When comparing the two technologies, it appears that the CMOS sensor requires more
area than the CCD one for the same number of pixels. Also, the insertion of several tran-
sistors and an amplifier inevitably increases the noise of the output signal. Nevertheless,
the readout mechanism of CMOS architecture lets a single DAC converter to be put in
each pixel, which greatly fastens the readout of the image. This is the main reason why
for fast cameras, the CMOS technology is the predominant one. Nowadays most of the
disadvantages with respect to CCD sensors have been overcome [10], a difference between
image quality is no more noticeable as in previous sensor models.

State-of-the-art systems with the ability of recording more than 1 thousand kiloframes
per second (more than 1kpfs) have become common use. These can be exploited for many
different applications, such as high-speed imaging in fluids [11] or biological events detection
[12], but these may as well be used for industrial purposes [13].

1.2.4 Fast camera electronics

To be considered a fast camera, one system must display at least the following character-
istics:

o A frame rate greater than 250 fps;

e an exposure time lower than 1 ms.

13

Introduction

To match these requirements, it is mandatory to run the system with high speed, MHz
clocks, in order to process the whole image in a short fraction of second. This is the
reason why processing architecture for image data manipulation needs to perform many
parallel, pipelined computations, in order to increase the elaboration throughput to match
the requirements. The number of pixels a single chip may possibly contain can reach
millions of units. All of these must be processed and eventually stored in a fraction of
seconds, which means that a fast readout mechanism of the sensor is needed. Furthermore,
the interface between the sensor and the rest of the application board must be able to
consider and avoid possible lags in the sensor output. Usually, in order to achieve larger
outputs, the data from the chip are sampled twice per clock cycle, with a method called
Double Data Rate sampling (DDR). In this way the throughput of the chip is doubled as
well, but the rest of the system must then be able to handle more data than normally.
This can be achieved, as mentioned previously, by parallelizing the dataflow. A further
trick to simplify the system is to divide the framework into different clock domains, each
controlled with a clock signal with a specific frequency. The sensor clock will be assigned
the higher valued, while for the rest of the system a slower clock will let the computational
parts on the application board more flexible. Nevertheless, when crossing the border of
two clock domains, some of the data might end being mistaken due to the oversampling of
the signals. Specific synchronization blocks must be added to ensure that whenever a new
meaningful data cross the border, the next clock domain receives the correct information.

1.3 Project description

The overall camera system, on which the thesis work has focused, is depicted in Figure
1.2. This is the Fasteye model, designed from CSEM company. The image (or video)
captured by the sensor is transferred to the FPGA board which processes the data and
feeds them into the external, main memory. From the latter the data are then moved
through the USB interface toward the USB connector, and eventually to a peripheral
device (e.g., a laptop). The main aim was to create a reliable, generic interface between
the sensor interface in Figure 1.2 (hereinafter also referred to as application) and the FINN
accelerator block within the Datapath, adding new features. The addition of a neural
network to the camera is motivated by the possibility to create an extremely fast feature
recognition tool for images and video recordings, which allows for interesting applications..
The aforementioned interface is intended to feed the FINN with meaningful data for furhter
elaboration.

As an additional goal, the work aimed at making the existing k325-mercury enclustra-
based framework compatible with a simpler FPGA system (k160-mercury board), adding
new features and without losing the preexistent functionalities. A version for the k160
board had already been developed, but with less features. The final purpose of the project
has not been fully achieved though, since some components still need to be included and
properly tested inside the framework.

The camera itself, which had been developed by the CSEM company during the previous
years, was characterized by a good percantage of unused FPGA instances. This represented
a major opportunity to add new functionalities to the system. With the introduction of
the FINN accelerator for fast detection of peculiar features or events during the acquisition

14

1.4 — Objectives of the thesis

FPGA
SENSOR VEIRBLWEIMIRY

SENSOR by MEMORY UsB UsB
NTERFACE AAeATH INTERFACE || {cONNECTOR
o e
MEMORY INTERFACE u_

MEMORY

Figure 1.2. Camera system: the red circle highlights the part of the system on
which the work focused.

of images or video recordings, now it is possible to execute on camera specific recognition
algorithms. The content of chapters 2 and 3 will describe in detail the following steps of
the work:

« adaptation of the k325 model to the k160 model was performed;
o the difficulties found in the above migration and how they have been overcome;

o the new average sampling functionality that has been added to the accelerator block
in order to make the system more flexible and powerful;

o the introduction of a PWM generator so that an external peripheral device can be
controlled by the accelerator output;

o the setup for a possible demonstration, with the aim to show the operation of the
PWM generator;

 the testing of the developed solutions and the obtained results;

o the future work that would be needed in order to complete the aforementioned tasks.

1.4 Objectives of the thesis

The objective of the project consists in developing an FPGA-based Neural Network on a
high speed camera. The purpose of this innovation is to have a system that:

o Processes thousands of images per second.
o Generates an output based on the application for which it was trained.

15

Introduction

» Fits inside the preexistent model of camera, using the space left unused on the FPGA.

o Can be easily reconfigured for different applications as soon as the parameters of the
system are modified.

In order to achieve these objectives, the following challenges have to be faced:

e The architecture must consider the large amount of data and the limited amount of
time to perform the required computations.

o Load inside the internal memory of the chip the weights and biases obtained with a
training consistent with the application the system will tackle.

o Use an appropriate model of FPGA able to contain the necessary circuitry.

1.5 Methodology

The first step was to acquire the necessary knowledge on the characteristics of the frame-
work available at CSEM, which was the object of this thesis. To this end, the initial scheme
of the system has been analyzed in detail. To access the schematics, we used HDL designer
tool from Mentor Graphics, which helped visualizing the dataflow of the device. A pre-
liminary phase to test what was already implemented resulted necessary to fully analyze
the characteristics of the device. During this phase, the work leveraged ModelSim (v. 9.1)
to run the scripts referring to the VHDL implementation of the project. Next, in order to
fully understand how the camera worked, the existing hardware functionality (e.g., data
acquisition and sensor configuration) have been validated, using a Matlab (v. 2019) script
to initialize the parameters of the device. The code already implemented at each step has
been properly modified whenever needed, to test different device configurations.

We then we had to develop some functions in order to create the interface between the
sensor and the accelerator, namely, the function of averaging of the input to the accelerator
and the trigger to acquire a stream of images. For each of the functions, we adopted the
following approach for their implementation. First, an initial version of the solution was
drafted, considering different possible implementations, their pros and cons, and choosing
the optimal one, based on the characteristics of the device. The selected solution was
then implemented using VHDL and other programming languages, which were particularly
suitable for the purpose.

As far as the implementation of the interface as embedded blocks on FPGA is concerned,
the task consisted mainly in the transposition of the algorithms chosen to realize the
averaging and trigger functions in a hardware description, which could be synthesized by
the tool. After the realization of the embedded part, a first validation was performed using
an opportune testbench written only to verify the accurate transposition of the algorithm
in the hardware description. This step was particularly important, because it allowed the
detection of possible bugs or overlooks in the algorithm. A specific simulation was run
on ModelSim to check the characteristics and timing of each signal, with appropriate test
inputs intended to emulate possible data coming from inside the design.

Once verified that the embedded block performed as intended, the next step consisted
in introducing this inside the design. Due to the particular requirements in terms of

16

1.6 — Organization of the thesis

parallelization, data acquisition and timing, new constraints for the algorithm needed to
be considered. Again, during this phase, many different parts of the project needed to be
adjusted to introduce the new part and/or functionality. Particular attention was paid
to assess possible conflicts between the implemented algorithm and the existing design.
In order to facilitate the insertion of new blocks, the HDL designer tool showed to be
particularly handy, as it allowed us to handle basic blocks inside the schematics. By
generating automatically higher hierarchy components, it was easier to conclude the task
without inadvertently modifying other parts of the design.

A second validation phase of the new framework was performed after the inclusion of
the new functionalities. This step regarded the generation of the code describing the new
hardware and the modifications to the simulation script in order to take into account the
new parts. Inside ModelSim environment meaningful signals were checked to verify the
intended behavior and timing, with respect to the existing part of the circuit.

After having validated the system through simulation, the circuit was then synthesized
on the FPGA chip mounted inside the camera. During this step, some errors due to an
incorrect timing assessment report and resources utilization rates must be addressed, in
order to match the new design with the characteristics of the device. In some cases, this
led to a reconsideration of the implemented algorithm itself, which could not be properly
synthesized on the board.

The last step was to load the synthetized design on the device. Using a MATLAB script,
the chip was configured as intended and the system started acquiring data, according to
the configuration settings. During this phase, the MATLAB script had sometimes to be
changed to include the new functionalities adopted in the framework. These were then
tested to verify their behavior on camera. If case of any error occurred during acquisition,
debugging using MATLAB commands was performed to point out the origin of the flaw.

1.6 Organization of the thesis

The thesis content is organized as follows:

e Chapter 1: Introduction
A state-of-the-art description of the current technologies in the field of high speed
cameras and Neural Networks is presented. The objectives of the project is presented,
as well as the methodology adopted to obtain the final results

o Chapter 2: Design and Implementation

This chapter introduces the main work, what has been implemented on the camera
and how. First, issues with matching the current FPGA model with the synthesized
project are shown and how they have been solved. Then in the implementation part,
the algorithm to elaborate a change trigger embedded block and a compression aver-
aging system for the Neural Network are described. The algorithm of each component
is represented with a flow chart. These components have been inserted inside an ac-
celeration block, which also comprehends the Neural Network instance. Eventually,
a servo controller system to interface the Neural Network output with a servo motor
is described, which is intended to move accordingly to the result of the computation
of the accelerator.

17

Introduction

o Chapter 3: Evaluation and Testing
The third chapter shows the results of the implementation work on the camera. The
averaging feature is first investigated, showing the input data buffer content of the
accelerator. The image is scaled down to the size accepted from the accelerator with
different modes for different purposes. The results from the FPGA synthetization are
then reported to highlight the differences in terms of timing and utilized resources
produced by the new features introduced. Last the servo controller functionality is
shown, describing the work to connect the embedded block to the peripheral device.

o Chapter 4: Conclusions and Future Work
A short recap of the objectives and the achievements of the project are presented.
Each step of the work is analyzed in terms of what has been done and what has
still to be fully developed. A final description of possible future steps to improve the
introduced functionalities and complete the work is then presented.

18

Chapter 2

Design and Implementation

In this section, the characteristics of the FastEye system are first introduced (Section 2.1),
highlighting the differences between the k325 and the k160 boards. It is also described
the analysis of the internal memory interface block and the application one, aimed at
verifying whether the integration issues are related to this part of the system. Then, in
Section 2.2, the accelerator unit is presented, along with its sub-components, namely, data
preprocessor, change trigger, and eventually the servo controller in Section 2.3.

2.1 The FastEye system

The Fasteye camera is essentially composed by the image sensor VIAIM developed in
CSEM, which is capable of producing 1Mpx images with a 2kfps (2000 frames per second)
rate, a Xilinx XC7K325T (or XC7K160T) FPGA for data processing and an external
memory, namely a DDR3 SDRAM, which is intended to store images during fast mode
acquisition, being thedata streaming channel too narrow for real time acquisition through
the USB connector applied to the camera. Inside the framework it has been possible to
implement the acquisition of single images, streams of images or short videos, according
to the capacity of the external memory. The camera itself can be furthermore controlled
through a MATLAB script which is used to set those parameters required to specify image
dimensions, acquisition rate, etc.

Data from the sensor is acquired through a DDR sampling procedure, to be then further
processed for memory storage. Many stages are intended to sort, prepare and count the
bits which are sent to the GTM part, which contains the memory chip and interface. To
the existent framework, the FINN accelerator for detection of specific features inside the
images directly on camera has been added, which occupies the remaining space on the
FPGA board. This structure, which is generated through a python script, can instantiate
automatically a convolutional neural network for processing the images, analyzing internal
patterns to figure out whether certain features are present inside the raw data fed to
this. The new feature which has been added is the possibility to pass from a software-
triggered system to an automatic triggering produced when the neural network part detects
something along the image, which will then be recorded. This is quite important, since
the memory only has space for about a second fast-speed video, so for long acquisition

19

Design and Implementation

and sudden events, only certain portions of time, in which something meaningful happens,
should be recorded.

Two different versions of the system exist, the original one has been developed for the
k160 FPGA model, which is slower and smaller, and the k325, which contains more cells
and therefore is more indicated to host the FINN accelerator, being that the large network
requires larger spaces to be efficiently synthetized by the tool provided on the board. Part
of the project has as well been spent for eliminating the incompatibilities between these
two different systems, with the creation of a single script able to efficiently switch between
the models without the need of changing part of the code.

XC7K160T XC7K325T
Logic cells 162240 326080
FFs 82000 202800
RAM (kb) 838 2188
Available 4 B

speed grade

Figure 2.1. Comparison between main features of the two FPGA models, k160 and k325;
the number of logic elements is presented, as well as the number of memory instances and
the available speed grade of the silicon chips.

2.1.1 Main differences between k160 and k325 models

The two boards on which the FPGA chips are mounted present many similarities, they are
both provided with a USB connector and an 12C communication block, but what really
changes is the overall performance. The k325 contains twice the logic cells and flipflops
that are inside the k160 model, plus it is also characterized with a larger RAM and BRAM.
Moreover, the speed grade of the two FPGA’s was different, marked with a -2 for the k325
model and a -1 for the k160 one. Such differences between the two boards are summarized
in Figure 2.1. The aforementioned factors lead to two conclusions:

o large FINN networks which can be synthetized on the k325 board may not be feasible
on the k160 due to the limitation of area available for the system;

» certain processes, which are correctly timed on k325 may result in creating a negative
slack in the k160 model, which is slower and therefore subject to increased timing
issues.

20

2.1 — The FastEye system

The latter of these two consequences represents the reason why, at first, the latest k325
project was not able to be run onto the k160 framework. When executing the MATLAB
script for acquiring images with the camera, after a few captures the system abruptly
stopped, ceasing the process and forcing the user to restart the whole apparatus. The
reasons and the explanation on how this issue has been solved will be presented in the
next part. For more information on the two FPGA models, it is possible to consult the
reference datasheets [14].

2.1.2 The analysis of the memory interface

Given that the system execution stopped when trying to read out the content of the
external memory, it was at first hypothesized that the problem was related to the memory
interface, which was used to transfer data from the application part to the DDR3 RAM
chip, or during the USB read out. Several tests have been performed using the MATLAB
script to check different functionalities and debugging options, but none could find the
cause of the system flaw.

After evaluating some possible options, instead of continuing trying to adapt the k325
version to the k160 board, it was decided to proceed with an opposite strategy: taking the
old version of the code and updating the different parts to restore it to the newest version.
During this phase, memory interfaces and control blocks have been substituted, looking
for specific problems that could generate the issue. Some of the control registers had been
modified, and so were some of the control signals which were related to specific functions.

The most important feature to check was represented by a small adaptation added to
the memory buffer: the interfaces of the two systems were instantiated automatically from
a predefined hardware schematics, which was provided from the manufacturer. Inside HDL
designer, instances for both versions (k160 and k325) were inserted with a specific com-
mand that was intended to only generate one of the two components, since the dimension
of the address connected to the memory buffer was not equal. Originally, the address input
size was not generically defined and each time the project was run on a different hardware,
its length needed to be adjusted accordingly. It was foreseen that this small inconvenience
would have been easily fixed by adding the necessary library and reference to the signal in
order to automatically switch between different sizes whenever required and adapt auto-
matically. In theory, this simple procedure would not create any issue to the framework,
but when the block was generated through the HDL designer tool, an additional error
prevented the software from completing correctly the instantiation of the block.

The problem seemed to lay on the fact that the new framework, with the generic
parameter included, was checking the matching of the input address signal with both the
instances, which of course were characterized by a different length. Since one of those
inevitably mismatched the actual address size, the generation process stopped abruptly,
and no HDL description was created for the component.

In order to extend the framework to both versions, a small component was developed
to instantiate the component as intended. Furthermore, this mismatch characterized both
input and output signals, so a double solution was studied: since the two pieces required
different inputs, in order not to add more signals to the higher hierarchy design, a mux-like
structure was generated, which would have automatically taken into account the difference
in sizes. From a single input, the component generates a pair of outputs with different

21

Design and Implementation

length, each compatible with the desired value. The same idea was applied to the output,
but in this case two different inputs were then routed to the same output. At this point,
whenever the required address size changed, the system automatically instantiated a new
component without displaying any error and without requiring additional modifications of
the code. Figure 2.2 shows the schematics of the newly instantiated component.

Conditional frame

4 D

K160 component

\ J

> Debug out - >
4)

—> Debug in

> K325 component

- J

Figure 2.2. Final appearance of the memory interface related block: the system is
characterized by a conditional frame, which is used to instantiate only one of the
internal components according to the framework requests. The two small blocks on
left and right side, called respectively debug in and debug out, implement the added
features described in Paragraph 2.1.2.

This configuration was compatible with the k160 version, on which the testing process
was correctly carried out, but when testing the components on the k325 version, it was
not possible to further proceed with the generation, due to a bad assignment of the in-
put/outputs sizes connected to this part. Unfortunately, due to lack of time, this part
could not be investigated more and currently requires completion. However, the idea was
still adopted for the k160 hardware, in which the implementation was inserted, simulated
and tested, showing the same results as before.

After updating all the instances, when checking both the simulation and the actual
implementation of the system, the old k160 project with updated memory-related parts
was still perfectly working as expected. Since no other possible inference could have derived
from this part, it was decided to move on to the rest of the framework, in order to check
the remaining possible causes.

2.1.3 The application analysis

The remaining portion of the system consisted in the part assigned to the organization of
the data flow from the sensor to the memory. Information was sorted and arranged to be
correctly stored, passing inside different clock domains.

22

2.1 — The FastEye system

One of the first tries consisted in reducing the clock speed related to the sensor part:
longer periods between clock edges would have given signals more time to settle, obtaining
a better worst slack parameter. While the k325 could be overclocked at higher frequencies
showing a small negative slack, the k160 version was run at lower speed, with the same
effect. Since the clock frequency should not have been reduced further, at the minimum
acceptable value the slack was still negative, which could have compromised the operation
of the camera.

This factor however was in the first place overlooked, since more promising causes were
examined first (since the fastest hardware could run even when showing a negative slack).
Parts were updated to the latest version to check if any change with respect to the old
project could be the cause of the failing mechanism due to a desynchronization in the data
path. The piece which regulated the acquisition of data from the sensor was examined
more in details, since the actual implementation was characterized by a series of embedded
components which had been inserted just to adjust the flow of information from the VIA1IM
chip.

When tested these changes eventually presented the same error which characterized the
325k model, since in this case the image acquisition abruptly stopped. After some trials
though it was evident that the reason why this happened depended on desynchronization
of the sensor data, a separate reason with respect to the cause that was searched. At last,
the timing report of the synthetization was analyzed and the real problem was discovered.

2.1.4 The frame mem block

Inside the sorting path that connects the sensor to the memory controller block, a specific
part of the design called frame__mem is used to sort out the data packets which arrive from
the previous portion of the elaboration system. Its behavior can be summarized as a line
1024-pixel wide buffer which stores the incoming data through a specific algorithm, able
to rearrange the pixels order to be better inserted and processed by the memory. When
analyzing the code from the two different systems, it was noticed that these only matched
in part. In the k325 case, which could not be synthetized on the k160 model, the sorting
process was clocked, while in the other case its behavior was related to some assessment
signals, which were intended to synchronize the whole dataflow.

Since the algorithm basically store a pixel value in the buffer according to its position in
the packet and in the packet number (which is the number assigned to the 160-pixel wide
input of the block), a very large multiplexing entity is required to correctly move the pix-
els into their correct position. The first attempt consisted in changing the synthetization
strategy of the tool. In fact, VIVADO lets the user choose some settings to generate the
synthesized design from the HDL code. For all the previous runs, the standard option was
activated, which could have been the fastest, but also a possible optimization route. When
analyzing worst path characteristics, the it was discovered that most of the time from one
clock edge to the next was mostly due to the interconnections between instantiated com-
ponents. Being the time required to transfer a signal proportional to the fanout of the line,
this number was checked for the longest paths and it was found it would normally exceed
the value of 300. Being so high, limiting this value would have inevitably led to a cer-
tain time save, which would have helped fixing the timing issue. The new implementation
strategy with a maximum fanout limit of 50 was then included during the synthetization

23

Design and Implementation

process to verify this hypothesis. The results indeed showed a decrement of the worst slack
of several ps, passing from 140 ps to 70ps, still when tested the framework did not behave
as expected. The implementation step, which translates the synthesized design into the
final netlist, was already optimized through a retiming option, so modifying it would not
possibly lead to somewhere.

Returning to the code, when the clocked procedure was exploited, only those buffer
pixels which are interested by the specific packet number value will be processed, while all
the others remain the same. In the other process instead, all buffer flipflops are evaluated,
so that the ones referring to a packet number lower than the input one are kept the same,
those referring to the specific value are changed while the others are set to ‘0’ value. At first
glance these two methods would not seem to present many differences, but when coming to
synthetizing only one presents a worst slack compatible with the k160 speed grade. When
looking more in detail into the question, we can assume that while the two processes have
the same logic output for the system, they will basically produce two different outcomes
as netlists. The k325, which is the most complex one, will produce a single multiplexing
entity, with a large number of inputs and outputs. This intricated system will cause data
to travel for a longer time, violating the setting time and leading the framework to an
undetermined state, which explains why the execution of the acquisition procedure fails
and remains in a blank state. On the other hand, the other script will first look to the
value assumed by the packet number, and only after that it will update the correct values.
This might implicate that, rather than a large multiplexer, the system contains smaller
entities which are intended to compare the value of the packet number with respect to
single definite values. When hitting the right value for the specific box, the inputs of the
box will be the outputs that fill in the sorting buffer, while for all the other cases the values
will remain either the same or ‘0. When looking to this configuration, we see that only
smaller, independent blocks are required, which might explain why the synthetization of
these entities completely avoids having bad timing constraints.

The final solution was to update the k325 for the frame mem block with the process
used for the k160 one, which was unclocked. In this way, the final result is a framework
which can be run on both models of FPGA’s, without the requirement of changing the script
of the block (for what concerns the frame mem block at least). Though this solution
works finely for the k160 version, it still presents some incompatibilities with the k325,
which cannot be synthesized with the new blocks in the design.

As it is possible to see notice from Figure 2.3, in the first case (the slowest) the system
makes use of a large mux-like structure to sort the data into the chosen buffer input con-
figuration, while in the fast design the synthetization tool is supposed to arrange different
evaluation blocks which update some buffer positions according to the packet number.

2.2 The accelerator_ unit block

The scheme of the accelerator unit is the following (the red parts have been added or
modified by this project):

o Parameter feed (untouched): this component is just required to fill the accelerator
with data from memory for result computation, but it is also needed to read out the
results;

24

2.2 — The accelerator unit block

Packet counter

1

Packet counter
Sensor dat;

Packet counter

Sensor dat /
Sensor dat; Sorted data ﬁ g

,,/' / ' AN
¥ N ¥

Packet counter

|

Sensor dat;

— Line buffer
Line buffer

\

Figure 2.3. An explicative sketch of the single multiplexer entity on the left with the
distributed structure on the right.

Data preprocessor (modified): the component is the core of the interface, its pur-
pose is to receive the pixels values and to produce a reduced-size image that can be
successfully read by the accelerator;

FINN accelerator (untouched): this block contains the netlist which implements the
neural network structure created with the algorithm to satisfy the performance re-
quired;

Change trigger (added): the component is intended to state when a certain object
has entered the field of view, generating automatically an output which can then be
read by the system (as described in the following chapters, this has not been tested
inside the framework);

Trigger multiplexer (added): in the latest version of the project, the accelerator unit
block could create an assessment signal which could trigger the acquisition of data
from the memory. This functionality has been integrated with the possibility of
acquiring the trigger generated by the change between two images, which can then
be sent to the trigger control part to extend the framework possibilities.

25

Design and Implementation

NN parameters
Parameter feed L >

Accelerator status and

Trigger mode result FINN accelerator
parameter < |

l

I
| |
1 I
| I
| I
1 1
| I
| I
1 1
| I
| I
1 |
! Accel_unit trigger [4 !
| — NN trigger I
| = I
1 I
| I
| I
1 1
| I
| I
1 |
| I
| I
| |
1 I
| I
| I
1 1
| I
I

Change trigger

Sorted data

Data preprocessor
Change trigger Status signals

i i Sensor data ﬁ

Figure 2.4. Structure of the accelator_unit block.

Figure 2.4 depicts the structure of the accelerator unit block. The next sections will
explain more in detail the characteristics of each part, which have been modified, in order
to show its behavior and capabilities.

2.2.1 Data preprocessor

The purpose of the data preprocessor is to create an NxN array of pixels, where N is a
configuration parameter for the accelerator; such array of pixel can then be evaluated by
the neural network instance. Since this value is arbitrary, some expedients have resulted
necessary to allow N to take any positive value. As for as the content of the array is
concerned, two different modes for reducing the size of the input have been developed.
The first performs a subsample of the image, the second divides the picture into tiles and
reduces each of them into a single value by calculating the averaging of pixels inside the tile.
My contribution to this section is limited to the design and implantation of the averaging
mechanism. I also added a short description of the other features present in the block to
better clarify its behavior for further discussion. The subsequent parts describe in more
details the main functionalities of the data preprocessor.
Image subsampling

The 1Mpx image (smaller if using the Region of Interest - ROI - option) must be reduced
in dimensions in order to fit the required size for the accelerator input data. A first process
just takes some pixels from a few rows. In this way the output may not be able to correctly
represent certain features present in the original image. This holds especially in the case

26

2.2 — The accelerator unit block

where such features are related only to a small portion of it, but also may have some glitches
due to the fact that the change of a single pixel may produce a noticeable effect on the
final output. Nevertheless, this procedure is still capable of providing useful data, with a
certain accuracy, and is much easier to implement on hardware, with lower computational
cost and fewer required resources. This feature was already implemented in the previous
version.

Output addressing
The data preprocessor receives at the same time data from bottom and top rows of the
captured picture. In order for the accelerator to correctly organize the image, each pixel is
assigned with an address, which represents its position inside the image, sent along with
the data values. This process will not be explained in detail, since it has only been slightly
modified with respect to its original version, to include the possibility of sending data
obtained from the averaging process, rather than only those acquired through subsampling.
This feature, as the previous one, was also already present in the previous version. The
next parts will describe the averaging system, which has been implemented along with the
subsampling, with the aim to extend the functionalities of the block.

Image averaging
The input row size and number are two variables which are defined through generic pa-
rameters inside the code, as well as the required output image size. Usually, the number
of rows and columns are not the same; furthermore, these values are not required to be
a multiple of the output size. Thus, before starting the averaging calculation, some input
preprocessing is needed in order to simplify the next steps, described below. A flow chart
description of the image averaging procedure is represented in Figure ?77.

e The input image is squared, since in the averaging process the number of pixels per
tile must be constant. In order to make the original image squared, the minimum
between the number of columns and rows is calculated (usually inside the system the
former is greater than the latter). Then the input size, which represents an entire
row of the incoming image, gets modified so that it takes a portion whose size equals
the one of the minimum obtained so far.

e The column/row number of the obtained image is a number which rarely can be
perfectly divided by the required output size. The solution is to further reduce the
dimensions of the image by cutting out the rows from the bottom and the top which
represent the remainder of the division, as well as part of the columns to keep the
square shape. For example, if the total number of columns and rows after the first step
is 1024, and the final image side must be 26 pixels, this means that each averaged tile
would contain 1024/26 = 39.38 pixels in each direction, which is not easy to handle as
a result. Thus, the solution exploited consisted in calculating the integer part of the
division (in this case 39) and then in multiplying the value by the tile size in order to
get a multiple value. Then by subtracting this to the number of rows and columns,
the remainder of the integer division is found and its value stored for further use. In
fact, this number will represent the starting line for the averaging process, cutting
off a portion of the image edges. Furthermore, this value will be exploited to further
reduce the input size excluding the most left and right pixels from the computation.
The final result is exemplified in Figure 2.6

27

Design and Implementation

Parameter calculation for image)
squaring and remainder

New picture taken
|
R Send last tile data to
ow to
Waiting for a new row L accelerator
exclude? v

Fy

lNo

Add pixel values to
accumulator
h

No
Yes

Last image Yes Number of
row reached? tilesis odd?

lNo

No Last tile row Yes i .
———|Tile average calculation
4 reached?

!

Send tiles data to
accelerator

Sum values of top and
bottom accumulators

Reset accumulators |«

Figure 2.5. Flow chart of the averaging process.

o Now that the image is correctly and easily processable, we need to consider a further
aspect of this process. The number of rows and columns so far calculated will always
be an even number, due to the characteristics of the system. Instead, the number of
averaged tiles can also be an odd number. The reason why this feature is problematic
lays on the fact that the block is receiving data from the bottom and upper rows of
the image. With an even number of divisions, the two parts are handed parallelly
without any interaction. However, in the case of an odd value for the output image
dimensions, this is no further acceptable. The code must consider also this case, which
requires to calculate the last row of tiles separately from the others. The solution
consists in splitting the last tiles into the bottom and top section of the image, and
when the tile counter inside the averaging process reaches the last row, the values
of the top and bottom portions of the tiles are summed together and divided by
the number of pixels per tile (see the example in Figure 2.7). This solution allows
us to handle easily even odd values without changing the previous part of the code

28

2.2 — The accelerator unit block

Original field

Figure 2.6. The original field, which is processed from the FPGA application, gets reduced
into a smaller square, which will be then analyzed.

(preprocessing).

Top rows

Middle line

Bottom rows

Figure 2.7. On the left side, an even tile number (N = 4) divided into top and bottom
parts, while on the right one, the middle line of tiles gets crossed by the central row. In
this case, since the tile number is odd (N = 5), top and bottom rows must be considered
together to calculate the average of this portion of the image.

29

Design and Implementation

o The actual averaging process can now be introduced: the input of the block is consti-
tuted by an entire pixel row, which changes at each clock cycle. Given the previous
steps, each row can be divided into a number of sections equal to the output size,
with no remainder. Inside each portion, the most meaningful bits (chosen through
another arbitrary parameter defined at the beginning of the code) of every pixel is
summed up in an accumulator, one for every row section, every clock cycle. At the
same time, a counter keeps track of the row number that is considered at each time,
which is useful to determine when the end of a tile is reached. The averaging process
can only start when the counter value is greater than the remainder one, since we
are due to exclude the bottom and top lines from the computation for the reasons
explained before. Every time the counter reaches a multiple of the number of rows per
tile plus the value of the remainder, the accumulator value is divided by the number
of pixels per tile and sent to the accelerator block, along with its peculiar address.
The accumulator is then reset, ready to compute the averaging of the next tile.

One of the most critical issues encountered during this step consisted in matching
the timing of this circuit with the actual capabilities of the FPGA. During the first
implementation part, the way to find the final row of each tile was to use the mod
function, which calculates the remainder of a division in HDL. Since this function is
expensive in terms of processing time, the final slack of this portion of the component
resulted negative when implemented on FPGA. This produced weird effects on the
reduced image, which are explained in more details in Section 3.1.

In order to decrease the required time for exerting the operation, a new solution was
found, which exploited a different approach. Instead of calculating the remainder, a
small counter has been implemented to keep track of the number of rows which have
already been considered in a single tile. When the value of the counter reached the
total number of rows per tile (given by the result of the number of the rows in the
reduced field and the number of tiles), this asserts a signal to state that the end of
a tile is reached, and at the next clock cycle the counter is reset. In this way, the
most expensive operation in terms of computational time was avoided, resulting in a
better, positive slack with respect to the previous coding.

In this way, the output will always represent accurately the input image. However,
due to persisting issues with timing, the image reconstruction of the accelerator buffer still
presents some glitches, which must be fixed in future. In the design of the data preprocessor
has also been included the possibility of switching between averaging and subsampling
mode by modifying one assigned bit inside the control registers, adding flexibility to the
framework.

2.2.2 Change trigger

The camera system contains an on-chip memory which can record a maximum of about 1
second streaming at full speed. This means that once activated manually, each event which
happens after acquisition end will be lost. Also, some peculiar phenomena (very fast, but
that can happen along a long time period) would be missed or would require multiple trials

30

2.2 — The accelerator unit block

to be recorded. This is the reason why the need of a trigger which could automatically
start the memory acquisition as soon as something in the field of view changes seemed a
valuable feature to add to the design. The first phase required to define some specifications
of the block, which are the following;:

o Reliability: the block should assert the trigger only when recording a real change, not
triggered by external reasons;

» Robustness: the system would overcome those little changes which may appear during
acquisition (pixels LSB’s, light changes, wind effects);

o Integration easiness: must take advantage of the existing features of the system to be
easily inserted in the framework.

The idea underlying the component that was instantiated was structured this way (see
Figure 2.8): a small memory stores a subsampling of the image inside the block, which
is then compared with the incoming one to establish if any significant change occurred in
the field of view; two adders, one used to compress the incoming data and the other to
calculate the rate of change between the two images; a comparator, in order to assess the
changes between the images; a simple control trigger, which enables the activation of the
change assessment signal only after the first image has been acquired. The flow chart of
the algorithm is represented in Figure 2.9.

Compression technique
The input for compression adder is constituted by the sensor data coming from the sen-
sor interface. Therefore, the compression adder only takes portions of the single rows of
pixels of an image. The pixel in a portion are summed up to compress the image data
and save up space on the FPGA, however this method also increases the robustness of
the framework: doing so, the effect of small fluctuations between adjacent pixels (like the
movement of leaves on a tree, for example) is greatly mitigated. Only events that change
considerably the subject of the image will be detected, indeed the background influence in
this case is much less relevant. Moreover, it is possible to choose the number of bits to
consider during this step, since it is possible to only take the most significant bits of the
pixel values. This feature can result particularly useful as tradeoff between accuracy and
required space: adjusting the quantity of resources destined to the component, it is possible
to synthesize larger networks in the framework. The threshold, which will be discussed in
the next paragraphs, would need to be adjusted as well, decreasing its value based on the
number of bits per pixel and, consequently, the accuracy of the change detection algorithm.

After being compressed, the data are then stored in a small memory which collects the
results of the summation. In order to further decrease the required resources of the block,
it is possible to select, changing the relative parameter in the HDL code, the number of
rows to sample. The algorithm skips a number of rows equal to N-1, compressing and
storing only the following row. With this method the image can be further compressed, in
order to reduce the space required from the component. Each time a new image is acquired

31

Design and Implementation

Compression adder

=>@ Compresseddata
1) .
Sensor data 4 Picture memory

Module calculator

Change accumulator

Change threshold =>

Change evaluation

Change trigger

Figure 2.8. Block schematics of the change trigger.

(and evaluated), the compressed values substitute the ones stored in the memory, so as to
only detect relevant changes between consecutive images.

Change degree evaluation
In order to numerically evaluate when a certain part of the image has significantly changed,
the algorithm exploits a comparison mechanism between the previous picture and the newly
acquired one. As explained before, each captured image gets compressed and stored in a
small memory. The evaluation step consists in calculating the difference between the in-
coming and the last image compressed values, identified with a numerical value, finding
the module of the difference between correspondent sections of the images. The first data
in memory will be compared to the first incoming packet, the second to the following one
and so on. At each step, the algorithm sums up the modules so far obtained in an accu-
mulator, which stores during the acquisition process the cumulative change of degree, here
identifying the total sum of all the modules. Since only positive values can be computed,
being the change calculated with an absolute value, there will be no aliasing due to the

32

2.2 — The accelerator unit block

Mew picture taken

|
*

Mew incoming data

|

Row to

s
Waiting for a new row [#———————-—
E exclude?

Nulq—

Compress and store

new data

}

Compare new image

data with previous

}

Updsate change

accumulatar

|

End of the Mo
row peached?

Ye sl

Mo Last row

reached?

Y :l

Change preater Ko
than threshold?

e 51

First image?

Activate change trigger

Figure 2.9. Flow chart of the algorithm to activate the change trigger.

opposite contributions of different sections (for example, an object moving inside the field
of view).

Change threshold
After the difference in pixel values between images has been fully evaluated, the algorithm

33

Design and Implementation

checks if the value stored in the change accumulator is greater than a given threshold.
The value of the threshold is controllable by setting one of the control registers present in
the design, which is modifiable through MATLAB. This feature is particularly important,
since it is possible to adjust this value without having to re-synthesize the whole design.
In this way, the same framework can be set to work with different phenomena, faster or
slower ones, and even to capture different events according to when the trigger is set. For
the implementation of this feature, it was necessary to modify parts of the system related
to assessing the control signal, included in the memory interface, and also in the MATLAB
part.

When the first image is stored, it will be inevitably checked against the reset state of
the memory whether a change has occurred or not. Since the content of the first picture
taken is unpredictable, the accumulator may assume a value greater than the threshold.
To avoid this event happening, a new feature was inserted. The trigger can only be ac-
tivated if the related enable signal is high; during the first acquisition this is always ‘0’,
which means that is not possible to trigger the system during this time. After the picture
has been stored inside the memory, the enable signal is asserted high, which activates the
trigger functionality for the next image on.

Trigger mode selection

Another feature that has been added to the acceleration_unit, which is external but di-
rectly connected to the change trigger, is the possibility of switching between the trigger
produced by this block and the one asserted from the NN part, which was already present
in the design. Selection between these two modes is made by changing a single bit inside
the control registers of the system, to which this function has been assigned. If the accel-
erator__unit trigger mode is activated, the system would wait for the signals from the NN
or the change trigger block to start recording a stream of images at the intended time.

Further work required
This component has been integrated in the system and has been validated with a specific
simulation on ModelSim, but on camera test still needs to be tried in order to assess
its very functionality inside the framework. Moreover, it would be interesting to include
as functionality the possibility of storing the incoming image when the trigger has been
activated, in order to continuously monitor the events that may happen after the first
detection.

2.3 Servo controller

In order to connect the accelerator output to a servo motor, another block, namely, a
server controller, was inserted inside the design with this specific purpose. The servo mo-
tor must to be controlled through a PWM signal, which has to be generated from the
accelerator result. The main idea to realize the servo controller was to use two different
sub-components for this purpose with the aim to make the servo controller more flexible
and able to cope with future changes in the framework. The two sub-components that
have been implemented are the interface with the accelerator and a PWM generator.

34

2.3 — Servo controller

Servo control interface

The servo control interface (or shortly servo interface) is just used to match the output
of the accelerator with the size of the input required by the PWM generator. Being the
output of the accelerator adjustable according to the user needs, the interface should be
able to correctly compute inputs of different size.

Since the accelerator output format was not coded yet as a settable parameter, only the
1-bit output case was contemplated. However, in the future it will be possible to extend
the framework in order to work with the desired parameter settings. As far as this specific
implementation is concerned, the 1-bit output of the accelerator gets resized into a 1-byte
output for the PWM generator. In other words, the ‘1’ or ‘0’ accelerator result is translated
into an 8-bits sequence of ones or zeros, respectively, which correspond to 255 and 0 in
decimal base (from binary unsigned representation).

PWM generator
Simply called servo__ctrl, this part generates a PWM signal with characteristics that match
the servo specifications. The component has been designed not only to command the servo
to move on a few positions, but it is also theoretically possible to move its arm to any
desired angle.

Below, the servo specifications are first analyzed: the motor requires a 20 ms square
signal with a duty cycle comprised between 5% and 10% (these values correspond to the
limit positions of the arm, which will be called, respectively, position 1 and 2). These
features have been implemented by designing a counter that increases at each clock cycle.
The counter is reset after reaching a pre-computed value (called reset value), in order to
create a periodic square wave. Moreover, the output signal is switched when the counter
reaches a second value (called switching value), to obtain the correct duty cycles. The
formula which sets the reset value is the following:

T
o Isw
Terk

where Tgsw is the period of the square wave expressed in ns, and Tk is the clock period
expressed in ns. As an example, with a 100 MHz clock (10 ns), and with a waveform period
of 20 ms, R = 2 x 106, which requires at least a 21-bits counter. The formula to calculate

the switching value is instead:
20 255

where R is the reset value, while I represents the 1-byte input value expressed in decimal
base. The S value goes from R/20 when I = 0 to R/10 when I = 1, which correspond to
the PWM signals that move the arm to position 1 and 2, respectively. Note that, at reset,
S is always set to the minimum value, since in the case the servo should always move in a
predetermined position (in the specific case, 1).

Figure 2.10 shows the schematics of the final implementation.
More information on servo characteristics and specifications are available at [15].

35

Design and Implementation

FPGA
Fsync output
result servo servo PWM signal v g
Y| | interface ctrl
FINN accelerator Servo_ctrl unit
|

Coaxial cable

Servo motor <=| Optocoupler

Figure 2.10. Final implementation of the servo controller.

36

Chapter 3

Evaluation and Testing

At the end of of the implementation phase, only the accelerator pre-processor could be
effectively put inside the complete design and tested. The change trigger, even if theo-
retically completed and present inside the final accelerator unit version, still had to be
completely evaluated. The final version of the servo controller on the other hand, even if it
was not connected to the output of the accelerator, could still be tested, in order to check
whether it would correctly respond to a series of synthetic inputs. For what regards the
k160 adaptation obtained by changing the frame mem block inside the design, the final
testing showed that both hardware would correctly operate within the desired period of
time, with all the previous functionalities preserved.

The next sections will be dedicated to explain in more detail which parts have reached
the required completeness and which still needs further work to develop the expected
outcomes.

3.1 Averaging feature

The block which was first added to the complete framework was the final version of the
pre-processor entity, to which the averaging part was added. In order to correctly work, the
MATLAB code was modified so as to read the buffer inside the accelerator, which stores
the image after the reduction process from the interface. In this way, both functionalities of
the block have been tested: the subsampling option and the averaging mode. To this end,
the control bit that was chosen to select the type of compression was introduced inside
the configuration file of the MATLAB project; in this way, it could be set it using the
proper assignment function. The images taken from this analysis, which was intended to
demonstrate the differences between the acquisition methods and possible advantages of
both, will be shown in the next paragraphs.

Figure 3.1 shows the acquisition of a single image done from the camera system: this
is the only modality in which the reduction mechanism could be tested, since in order to
read out the accelerator internal buffer, single pixels get extracted, resulting in a large
required time to acquire the stored picture. The main subject chosen for the photo is a
painted glass, with shard-like shapes on it. This pattern will result particularly interesting,
since the representation given by the two reduction modes will show a greater, much more

37

Evaluation and Testing

100 F

200 -

300 -

400 ¢

a00 -

600

700

a0o

900

1000

200 400 800 a00 1000

Figure 3.1. The original 1Mpx image obtained from the camera.

noticeable difference. In the same image, the piece of furniture below the glass shows some
oblique stripes, which represent another feature that can be highlighted using the different
acquisition methods.

Figure 3.2. Subsampled 32x32 image.

From the results obtained in Figure 3.2, we can clearly notice that the glass has been
sampled taking only some of the pixels; as a result, its appearance is characterized by a
sequence of dark and bright tiles. This will help distinguish its particular pattern, which is
characterized by a sequence of black shapes, but it also causes the glass shape to become
blurred. In absence of a white board on the background, it would be even more difficult to
distinguish where the shape ends, which could complicate the detection of specific features
from the accelerator that receives those data. Furthermore, when looking at the piece

38

3.1 — Averaging feature

of furniture, it is still possible to distinguish the stripes that characterize its surface, but
their orientation is much more difficult to predict, since some shading effects present on
the image modify some of the pixels that become much darker and more influent than
before. A recognition system would produce a more uncertain output when shown this
image, since some stripes display irregularities.

100

Figure 3.3. Averaged 32x32 image.

Switching the selection bit, it is now possible to analyze instead the averaging func-
tionality, which is represented in Figure 3.3. The first thing that can be appreciated is the
fact that two lines from the center of the picture have been moved to the top and bot-
tom rows. The reason for this effect is that some mismatch between the calculation and
the transfer mechanism produces the incorrect arrangement of the pixels inside the buffer.
Many images have been taken from the same subject, resulting in a different disposition of
the incorrect rows each time. This means that the final implementation of the feature is
characterized by an incorrect timing, with aleatory of pixels’s position inside the image.

Even when using the maximum permitted clock period, the images still show an incor-
rect pattern. Investigating the issue, it appeared that, inside the accelerator pre-processor
block, during the transfer of data from two consecutive registers, the slack measured was
negative and this would not let the tiles be set in the correct position during the trans-
fer time. When this was discovered, a new approach which could exemplify the average
calculation was developed, in order to speed up the process, as described in the Design
and Implementation Chapter (Chapter 2). Nevertheless, this method reduced strongly the
slack, making it positive, but due to the lack of time to dedicate to this part, the new modi-
fied feature remained untested, though from basic simulations it seems to work as intended.
Future work would need to assess the correctness of the algorithm developed, showing on
camera the equivalency of the two behaviors, with the exclusion of image defects which
characterized previous work.

Nevertheless, reconstructing the image, as displaced in Figure 3.4, it is still possible
to distinguish the main object (the glass), which is now characterized by a more uniform
tone: the dark and bright pixels have completely disappeared, resulting in a much worse

39

Evaluation and Testing

200

50

Figure 3.4. Reconstructed 32x32 averaged image.

detection of the surface alternating coloration pattern. On the other hand, now the glass
shape can be better assessed, since it will appear more clearly in front of the whitish
background. The accelerator would much more easily recognize the rectangular shape,
with respect to the previous result. Moreover, the stripes of the piece of furniture below
are now all well detectable, since their pattern is more regular, with an absence of darker
shades. This effect is caused by the fact that during averaging all the pixels in each tile are
counted up to extract the final value, resulting in a much more regular overall outlook. The
consequence is that, especially when examined with a regular background, right shapes (as
rectangles, squares, stripes, ...) will resemble much more their original aspect with the
averaging mode.

The conclusions expressed so far might result useful for future exploitation of the two
functions: depending on the purpose, the accelerator might find more convenient to work
with one of the modes with respect to the other. For example, if the user request consists
in finding out if something relevant is moving inside the field of view, they may opt for
the subsampling option, since it is still more reliable when detecting large objects that are
easily distinguishable from the background. Instead, if the object is small, it would be
preferable to use the averaging mode, since it would continuously display a trajectory, yet
a feeble one, of the object instead of a discontinued, unreliable one. The important result
is that, according to its requests, the user can freely adjust the camera settings to move
from a simpler to a more accurate representation of the image to feed to the accelerator,
increasing the flexibility and the potentialities of the analysis.

3.2 Implementation results

At the end of the six-month internship, two different versions of the project have been
produced: one with the accelerator unit inserted in the camera system and the k160 FPGA,
the other with the latest version of the k325 adapted to the k160. Due to the lack of time

40

3.2 — Implementation results

for merging the two projects together, both of them lack of some of the features described
so far, but they can both be synthesized and loaded on the camera system.

In more detail, the first version of the project, hereinafter referred to as Accelera-
tor_ Unit, comprehends the accelerator unit block inside, with all the features depicted in
the previous sections of this document, but it still runs with an old 160k version, with-
out the latest improvements coming from the 325k. It is important to mention that this
version does not contain the accelerator FINN core. The other one, hereinafter referred
to as v2_ fasteye, was created to solve the incompatibilities between the latest version of
the k325 board and the k160 board. Due to the fact that some features were developed
alongside the first design and implementation steps, at a certain point it was not possible
to work on one version only, so both of them have been carried on to the end.

Figure 3.5 shows the results obtained from the utilization report of the Accelerator_ Unit
and of the v2_ fasteye project, so as to check and compare the values obtained. Essentially,
the v2_ fasteye project requires overall less resources to be synthesized with respect to the
other one. By performing such a comparison, we can assess the effect of the modified
accelerator unit on the design, estimating the resources required with respect to the project
without this component. The implementation of the modified data pre-processor and the
change trigger increases both the usage of LUTs (Look Up Tables) for logic computations
and flipflops, especially for what regards the averaging calculations. Moreover, the BRAM
(Block Random Access Memory) usage increases as well, probably due to the fact that the
compressed image obtained from the change trigger is potentially stored in this part of the
FPGA. Also, the number of used BUFGs (global buffers) increases, basically due to the
higher complexity of the design.

Resources utilization rate

w
o

7979

51 49
45
40 38 38 38
31
25 25

4 4 4

[1 | H = —
LT FF BRAM DSP 10 PLL

LUTRAM BUFG MMCM

Percentage (%)
= N w ey (€] 2] ~l 0o
o o (=] o o o o o

o

B Accelerator_Unit project B v2_fasteye project

Figure 3.5. Utilization rate of the resources inside the k160 FPGA derived from the
implementation of the Accelerator_ Unit and v2_ fasteye projects.

41

Evaluation and Testing

As mentioned before, both projects were synthesized and loaded on the FPGA, despite
being incomplete in some parts (as the accelerator FINN core). Due to the large size of the
existing accelerator introduced inside the design, this part was not synthesizable on the
k160 model. The results from the utilization report generated by the VIVADO software
showed that the total required flipflops largely exceeded the available quantity inside the
chip. This is the reason why the accelerator has been substituted with a simpler embedded
block, which simulated the value of the outputs of the component.

It is worthwhile to remark that, as an alternative solution, one could have substituted
the pre-existent accelerator structure with a simpler one, since, thanks to the FINN char-
acteristics [1], the framework is highly scalable and adjustable to the requests of the user
and the space available. Nevertheless, since the planned timeline was not followed as sup-
posed to and since the presence of the NN core was not mandatory, such an alternative
solution was not adopted. This method of substituting the NN part with the embedded
block should be fixed in future work, to properly examine the utilization rate of the camera
system when a real computational structure is inserted.

Table 3.1 summarizes the final timing and power consumption characteristics of the two
projects.

Table 3.1. Power consumption and worst slack of the Accellerator_Unit and
v2_fasteye projects.

| Project version Power consumption (W) | Worst slack (ns) |
Accelerator__unit 3.062 0.068
v2_ fasteye 3.062 0.323

As mentioned before, both the projects were run using a 160 MHz clock for the sensor
part, which helped to obtain a positive result for the slack. Adding the new features to the
accelerator unit, the required power needed to run the application on board increases as
expected. Still, this value does not represent the final power required by the system, since
the accelerator part, which requires the larger computational power, is missing from this
evaluation.

After some optimization process, a positive value for the worst slack statistics has been
reached for both projects. Table 3.1 shows how the substitution of the frame mem block
inside the v2_ fasteye project strongly improves this parameter, suggesting that even higher
frequencies could be exploited in order to work with a higher frame rate. Nevertheless,
for what regards the accelerator unit, the time required for the new functionalities is very
small (barely below the maximum allowed time for the signal to be correctly sampled),
which means that the system should still be further optimized in order to reach even
better performances in the future.

3.3 Servo controller functionalities

As mentioned in Chapter 2, the servo controller was tested to verify its actual behavior
when attached to the servo motor, since the component was specifically designed to match
the peripheral device specifications. A first validation step consisted in verifying the actual

42

3.3 — Servo controller functionalities

output of FPGA fsync pin, which should have output the correct 3.3 V high square wave.
In order to check this, the output of the servo controller was assigned to pin P26 on
the FPGA, which was then connected to the desired output. This procedure required to
analyze the datasheets of the system schematics, in order to properly connect the FPGA
and the board output pin, resulting in an easy soldering of part of the board. P26 pin was
connected to the output of the servo controller by modifying the pin assignment constraint
file inside the project. fsync board output was mainly chosen for two reasons:

o It was easily accessible from outside the camera through a coaxial cable connection,
which was used to connect the output to the oscilloscope and the evaluation board;

o Pin P26 was inside a 1.3 V-bank within the FPGA, so its voltage level had to be
raised. In the electronic design, before fsync a voltage level shifter buffer was present,
which would have increased the output value to the required value of 3.3 V.

After this preliminary phase, the PWM signal generated by the component could be
finally checked, looking in particular at whether the desired frequency (50 Hz) was obtained
and the duty cycle was correctly assessed. Since the accelerator result was not available at
the time, having the servo controller been developed during a preliminary phase, simulated
inputs have been provided to the component in order to verify its behavior. An embedded
block was inserted for this reason in the design, whose output could be easily modified
changing a single line of code. Connecting the block to the servo controller and the fsync
output to the oscilloscope, it was indeed found that, when asserting ‘0" and ‘1’ inputs, the
square wave showed the intended period; moreover, the duty cycles were 5% and 10% as
intended. This first validation process was useful to verify the correctness of the algorithm
described through HDL, and that the correct pin assignment had been made between the
board and the FPGA.

After this first step, the actual evaluation board, comprised of the servo motor, was
developed, as shown in Figure 3.6. The final setup was defined, accounting also for the
fact that the actual voltage level of the PWM signal had to be raised again according
to servo specifications (between 4.8 V and 6 V). The PWM signal generated from the
camera does not directly control the servo motor, but the fsynch pin is connected to an
optocoupler, which would then work as an intermediate inverter stage. The optocoupler
also isolates electrically the board and the servo, in order to protect the former from
possible tension fluctuation. After connecting two resistances to the optocoupler ports
and a voltage supply (set to 6V), the setup was completed. The resistance values (see
Figure 3.6) have been chosen in order to limit the value of the current flowing inside the
light emitting device (about 5 mA) and the transistor. At last, it is worth mentioning
that, since the new component would negate the PWM signal, the obtained duty cycle
was not 5-10% anymore, but 90-95%. To fix this, the servo controller code was simply
adjusted to produce a negated square wave with respect to the original one, which would
have responded correctly to the new specifications of the setup.

The behavior of the servo motor was as expected: when a ‘0’ result from accelerator
was simulated, the servo arm moved correctly to position 1, while the ‘1’ result would let
the arm move to position 2.

43

Evaluation and Testing

PWM signal

3.3V —— —_———
ov——de L1 L :

optocoupler

IS

Servo motor
)

Figure 3.6. Final implementation of the setup that controls the servo motor (picture of
the servo motor taken from [15]).

44

Chapter 4

Conclusions and Future Work

The main aim of the internship was to create a framework that could analyze the images
obtained with the camera through the implemented neural network. The image would
have been processed to be fed to the accelerator using one of the two modes, subsampling
or averaging, the latter implemented during the internship. Also, a new trigger mode was
meant to be inserted, which would start the acquisition of images as soon as a significant
change in the field of view occurred. These functionalities were intended to be included
in a single block, a reliable generic interface between the application part of the camera
and the accelerator on FPGA. Additionally, the work aimed at identifying the issue that
caused the mismatch between the k160 and k325 projects, in order to solve them.

The first task was divided in two subtasks: the creation of a change trigger functionality
inside the design and the addition of an averaging feature to the data preprocessor block
for the accelerator. For both subtasks, an initial design was performed in order to define
appropriate algorithms for their realization. After validating the behavior of the HDL
codes implementing the algorithms through a specific testbench, the new version of the
data preprocessor was inserted within the camera system to check its functionalities. Also,
the change trigger component was inserted along, creating a unified accelerator interface
component.

A servo controller embedded block has been designed for a possible future demonstra-
tion. The accelerator output was simulated during testing since this was not included at
the time. It was designed a simple setup to connect the camera system to the servo motor
with the aim to fulfill the motor specification. The interaction between the camera and
the motor was tested, synthesizing the framework for right and left positions. The correct
behavior of the developed functionality was assessed.

The second task related to the k160 and k325 projects was solved by changing the
frame_mem block inside the camera system by merging the coding from the k160 and k325
projects. Before finding the cause of the mismatch, other options have been investigated
regarding the memory interface part and other components of the system. In order to assess
where the system was actually failing, the VIVADO reports have shown to be particularly
useful. Such reports pointed out that the timing of certain portions of the design were not
compatible with the k160 FPGA characteristics.

The new system can now sample images for the accelerator NN with a new method, more
complex if compared with the previous one, which can provide more useful information for

45

Conclusions and Future Work

data elaboration. The mismatching between the two versions has been solved, since now it
is possible to run the project framework on both available boards, even if the characteristics
and performances of the two are different (see paragraph 2.1.1), also at some extent the new
functionalities are compatible. The change trigger block, designed but not yet inserted in
the system, works as supposed to and with the flexibility required from the specifications.
Still, it has not been completely tested, so the achievement related to this part has been
fulfilled only partially. Once those final modifications will be provided, the camera is
already configured to be used in a real environment through the output functionality
implemented by means of the servo controller block, which is now part of the framework.
With respect to the previous project status, the camera can now control an external device
for practical testing in the real world.

In order to complete the work, some parts still need to be properly tested and/or
inserted within the framework. In particular,

o the averaging system must be perfected to eliminate row glitches, which are still
present and are mainly due to the aforementioned timing issue. A possible solution
could be to use the k325 FPGA, but fixing the timing issues is still important to adapt
the averaging process to the limited k160 model. The optimization of the averaging
algorithm could meet the required performance, but it still needs to be tested and,
possibly, further refined;

« according to pre-testing (verification through simple test vectors, not adapted to
the real case of the camera), the change trigger block behaves as intended, but it
still needs to be integrated inside the latest version of the framework. Also, further
testing on the camera system requires to be performed, after properly routing the
change trigger output toward the trigger control block to verify its correct assessment.
Furthermore, testing the final framework with different thresholds might provide more
information on the appropriate value to which the threshold parameter should be set
under different conditions;

« the servo controller has been tested with the use of a small breadboard, and it appears
to efficiently control the servo motor using the PWM signal. Future work could focus
on extending the capabilities of the servo interface component in order to make it
able to process accelerator outputs of different length.

These are the main tasks which were required to be performed during the internship that
are still missing.

In terms of future directions of the work, which could be in general pursued, several
possible evolutions of the activity could be investigated and performed:

o Further work on the change trigger might be done for optimizing the algorithm, in
order to find better coding to match the capabilities of the framework. Especially the
compression mechanism could be improved, so that it takes less space and becomes
faster.

o An accelerator, which can be synthesized on k160 FPGA model, can be inserted inside
the design, in order to properly test the final framework completed as intended.

46

Conclusions and Future Work

o With the accelerator output available and a functional set of biases and weights ap-
propriate for a specific purpose, the camera can be fully tested. The servo controller
can be connected to the accelerator output, in order to check the actual final imple-
mentation.

o A final demonstration can be performed: using the breadboard designed and the
camera system, it will be possible to show the actual operation of the new features
on a real case. In particular, it would be interesting to show the performance of (i)
the switching between subsampling and averaging modes for the accelerator input
data, and (ii) the capability of the change trigger to correctly start the acquisition of
a predetermined stream of images inside the memory.

The final framework could be useful for many, appealing applications, such as defect
checking, scientific experiments recording, or fast face detection.

47

48

Bibliography

[1] Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella, Michaela Blott, Philip
Leong, Magnus Jahre, and Kees Vissers, “FINN: A Framework for Fast, Scalable
Binarized Neural Network Inference”, 2017 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays (FPGA ’17), New York, NY, USA, pp. 65-74,
2017.

[2] Fremont Weekly Magazine, "Global High Speed Camera Market 2019 to 2025 With
Top Countries Data : Market Growth, Share, Size, Consumption and Growth Rate
by Application, Types, Key Players and Competitive Regions', fremontweekly.com

[3] Saleh Ali K. Al-Omari, Putra Sumari, Sadik A. Al-Taweel and Anas J.A. Husain,
“Digital Recognition using Neural Network”, Journal of Computer Science, vol. 5, no.
6, pp. 427434, 20009.

[4] O. M. Parkhi, A. Vedaldi, A. Zisserman, “Deep face recognition”, in British Machine
Vidion Conference (BMVC), vol. 1, p. 6, 2015.

[5] L. Nwosu, H. Wang, J. Lu, I. Unwala, X. Yang, and T. Zhang, “Deep Convolutional
Neural Network for Facial Expression Recognition Using Facial Parts”, in 2017 IEEE
15th International Conference on Dependable, Autonomic and Secure Computing, Or-
lando, FL, USA, pp. 1318--1321, 2017.

[6] J. Heikkonen, J. Lampinen, “Building industrial applications with neural networks”,
European Symposium on Intelligent Techniques, Orthodox Academy of Crete, Chania,
Greece, June 3-—4, 1999.

[7] X. Gibert, V. M. Patel, R. Chellappa, “Deep Multitask Learning for Railway Rrack
Inspection”, IFEE Transactions on Intelligent Transport Systestems, vol. 18, pp.
153-164, 2017.

[8] R. Yamashita, M. Nishio, R.K.G. Do, K. Togashi, “Convolutional Neural Networks:
An Overview and Application in Radiology”, Insights Imaging, 2018.

[9] P. Jokic, S. Emery, L. Benini, “BinaryEye: A 20 kfps Streaming Camera System on
FPGA with Real-Time On-Device Image Recognition Using Binary Neural Networks”,
2018 IEEE 15th International Symposium on Industrial Embedded Systems (SIES),
Graz, Austria, 6-8 June 2018, pp. 1—7.

[10] D. Lilwiller, "CCD vs. CMOS: Facts and Fiction," DALSA Technology with Vision,
Accessed in October 2019.

[11] M. Versluis, “High-speed imaging in fluids", Experiments in Fluids, 2013, 54.
10.1007/s00348-013-1458-x.

[12] B. Fu, M. C. Pitter, N. A. Russell, “A Reconfigurable Real-Time Compressive-
Sampling Camera for Biological Applications", PLoS One. 2011; 6(10)

49

fremontweekly.com

Bibliography

[13] "High-speed cameras enhance automation and measurement applica-
tions," https://wuw.vision-systems.com/factory/article/16736123/
highspeed-cameras—-enhance-automation-and-measurement-applications,
Accessed in October 2019.

[14] https://www.xilinx.com/support/documentation/data_sheets/ds182_Kintex_
7 _Data_Sheet.pdf, Accessed in October 2019.

[15] http://wuw.ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.
pdf, Accessed in October 2019.

50

https://www.vision-systems.com/factory/article/16736123/highspeed-cameras-enhance-automation-and-measurement-applications
https://www.vision-systems.com/factory/article/16736123/highspeed-cameras-enhance-automation-and-measurement-applications
https://www.xilinx.com/support/documentation/data_sheets/ds182_Kintex_7_Data_Sheet.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds182_Kintex_7_Data_Sheet.pdf
http://www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.pdf
http://www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.pdf

	List of Tables
	List of Figures
	Introduction
	Neural Networks
	High speed cameras
	CCD cameras
	CMOS cameras
	Comparison between camera technologies
	Fast camera electronics

	Project description
	Objectives of the thesis
	Methodology
	Organization of the thesis

	Design and Implementation
	The FastEye system
	Main differences between k160 and k325 models
	The analysis of the memory interface
	The application analysis
	The frame_mem block

	The accelerator_unit block
	Data preprocessor
	Change trigger

	Servo controller

	Evaluation and Testing
	Averaging feature
	Implementation results
	Servo controller functionalities

	Conclusions and Future Work
	Bibliography

