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Abstract

Neuromorphic computing has often lent on analysis of biological systems to improve its perfor-

mances. One of the key properties of the Nervous System is Plasticity, i.e. the capacity of its

components (Neuron and Synapses) to modify themselves, functionally and structurally, in response

to experience and injury. In the brain, plasticity is mainly attributed to Synapses, which control

the flow of ions between Neurons through neurotransmitters with a certain, variable in time, weight.

Neurons also play a role in plasticity mechanisms, since their excitability can be varied as well as

the leakages of internalized ions to keep a healthy firing regime, minimizing energy consumption and

maximizing information transfer. These plasticity mechanisms applied to Neural Networks not only

increase the plausibility to biology but also contribute to improving the performances of the system

in several tasks. This is particularly true for Liquid State Machines, a computing paradigm based

on Spiking-Neural-Networks, in the framework of Reservoir Computing. Different forms of plastic-

ity are present in the Brain, and in turn also in Brain-inspired Neural Networks: the most popular

one is Spiking-Time-Dependent-Plasticity (STDP), a form of synaptic Hebbian plasticity; Synaptic-

Normalization (SN) is also a common homeostatic feature; Intrinsic-Plasticity (IP) is instead a less

investigated property for Neuromorphic systems, probably due to the difficulty of implementing it

in hardware devices. The co-action of such mechanisms has been shown to boost the performance

in the framework of Reservoir Computing for Artificial-Neural-Networks (SORN, Lazar 2009), while

it remains to be investigated for more biologically plausible Spiking-Neural-Networks (Liquid State

Machines).

From the hardware standpoint, conventional CMOS based Neuromorphic hardware struggles to im-

plement such plasticity mechanisms, particularly Intrinsic Plasticity: to update the parameters of the

network, external memory is required to be operated, transferring the information of such modified

biases back and forth from the registers to the computational units. This, of course, leads to the well

known Von Neumann bottleneck problem, for which the transfer of the information across the device

limits the device speed itself. The rise of Memristor opens the doors for new architectures that are

able to store memory within the Neuron’s scheme, creating advanced circuits embedding both the

Neuron’s circuit and its biases. This scheme enables the parameters of the Neuron to be modified

locally, learning is enabled in situ. Exploiting the programmability of memristors, the resistances of

the Neuron can be set to a target value and automatically updated every cycle without the need of

storing their state in external memories and allowing for a real Non-Von Neumann architecture to be

conceived. The work aims to show that technologically plausible In-Memory Mixed Signals architec-

tures allow for the development of algorithms, implementing plasticity mechanisms, able to improve

the performance of Liquid-State-Machines in temporal tasks.
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Chapter 1

Reservoir Computing

Reservoir Computing is a term introduced in 2007 [42] to indicate a computing paradigm belonging to

Recurrent Neural Networks, which was developed sometime before. As a matter of fact, in the early

2000s, Jaeger [43] [44] and Maas [47] almost contemporarily defined two Network architectures, very

similar one to the other, based on a recurrent pull of nodes and a linear readout from that bunch.

Later on, Steil [6] performed theoretical studies on the properties of Reservoir Computing architec-

tures and found out about their impressive computational power, in spite of the simplicity of their

operation. He also founded a learning procedure which would be classified belonging to the Reservoir

Computing paradigm.

Given the promises of high computational power and low cost of training, RC developed to embrace

complex architectures, such as Deep Reservoir Networks [12], to be customized for peculiar applica-

tions. State of the art RC Networks are employed for different temporal tasks, exploiting its intrinsic

short-term-memory: prediction in time-varying signals, motor control in robotics, sound and speech

recognition, biomedical signal processing (ECG, EMG) and many others.

1.1 Neural Networks

To give the description of Reservoir Computing a context, the concept of Neural Network [8] is

introduced. Formally, it deals with a bunch of nodes, eventually called Neurons in analogy to the

brain, linked with each other by connections or synapses, to recall the brain physiology. The nodes of a

Network posses an activation function: they receive signals as inputs and produce an output according

to a certain rule. The input signals are modulated by the so-called weight of the connection. As a

consequence, an input being fed to a Neural Network spreads through it according to the behavior of

the nodes and the strength and topology of the connections. The latter are adapted in order to make

the Network able to perform a task: the process of alteration of the internal variables of a Network

for a certain aim is said Learning.

Network Architectures

The pattern of connectivity between the nodes defines the structure of a Network and it is crucial in

determining its computational properties. There are basically two ways to connect nodes in a Net-

work: Feed Forward and Recurrent. Based on this two concepts, many types of different architectures

can be defined.

5



CHAPTER 1. RESERVOIR COMPUTING 6

Figure 1.1: Possible types of Network topologies for NC. While the main categories

are Feed-Forward, Recurrent and Fully Connected, some combination of those can be

exploited for obtaining hybrid networks.

Among the Feed Forward Networks, the simplest is the case of the Perceptron: a Network having

a single output node and several nodes as input. Due to its simplicity, the Perceptron is only able

to perform a binary classification of its inputs. As a matter of fact, the output of the Perceptron is

given by the single output neuron, implementing it peculiar activation function. For example, if the

activation function is a Heaviside function with a certain threshold, it is clear why the Perceptron is

used for binary classification of some input data. Since the inputs are directly connected to the output

node, it is said that this Network has 1 only layer.

Adding more layers and thus complexity to the architecture, the field of Deep Learning was founded.

The simplest example of such Networks is the Multi-Layer Perceptron: with respect to the simple

Perceptron, it adds hidden layer(s) of nodes between Input and Output. The MLP takes advantages

of supervised training techniques and is able to learn non-linearly separable inputs for classification.

Advancement in Deep Learning lead to the definition of increasingly more complex Networks. Among

the many, the most important one is certainly the Convolutional Neural Network: composed of a large

number of hidden layer performing convolutional operations, it excels in the field of computer vision

and natural language processing.

Artificial vs Spiking

Most of the Neural Networks are implemented with Artificial Neurons, also called Digital Neurons:

the units receive input signal as fixed-precision digits and compute their output through a non-linear

activation function; the output is transmitted to the linked unit at the following time step, since the

Network evolution in time is discretized. Some of the most common activation functions are: Sigmoid,

Hyperbolic tangent, ReLu. These simple non-linear transformations are essential in order to both allow

the Network a rich enough non-linear representation and processing of the input and also simplify the

training procedure. As a matter of fact, the main supervised learning algorithm, Back-Propagation,

is based on the calculation of the derivative of the error of the output with respect to the activation of

the nodes in the Network [7]. Utilizing more complex activation functions and/or architectures may

lead to problems in the Back Propagation procedure, such as the vanishing gradient problem. Given

the low degree of non-linearity of most common activation functions, Deep Learning architectures had

to evolve to highly complex structures in order to enhance computational power of the Network while

allowing efficient training.

Another approach is the one of Spiking Neural Networks: inspired on biology, the nodes and con-

nections operate in continuous time and behave in a similar fashion with respect to real Neurons and

Synapses. As a consequence, nodes integrate inputs with leakages up to the point in which they emit

spikes, which propagate through the Network via the Synapses. About the behavior of Neurons and

Synapses, the next chapters will provide more details.

Compared to their Artificial counterparts, the nodes in SNNs encode much less information in their
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output, which is conventionally represented by a delta function δ(t−ts), ts time of the spike. However,

since they operate in continuous time, the high information content is believed to be in the timing of

the spikes of all the neurons.

The major drawback in SNNs is the Training procedure: because of the peculiar input/output relation,

Back-Propagation is not viable: the delta function at the output of the neurons is non-differentiable.

An equivalent SNN-friendly BP algorithm has been developed, called SpikeProp, still in experimental

phase. More commonly, SNNs are trained with Unsupervised techniques or exploit peculiar architec-

tures to perform classification tasks, such as in the case of Winner-Take-All Networks.

The advantage over ANNs is that SNNs are in general more fault and noise tolerant, because of

the way the input are processed by the nodes. However, the complexity of the behavior of Neurons

comes with the difficulty in their control, especially for complex Networks, ruled by a large set of

hyper-parameters: inspiration from biology often helps in controlling the behavior and improving the

performance of SNNs.

Learning in Neural Networks

The learning procedure in NNs is crucial in determining its capabilities and performance. There a

mainly 3 policies for Training (the process of the learning of the weights) in NNs:

• Supervised Training: learning is guided by an external agent

• Unsupervised Training: no external agent guides the training procedure

• Reinforcement Training: the output of the Network produces a reward function, which

determines the correctness of the Network and guides the training of the variables of the Network

itself

Sometimes a fourth policy is defined, being a combination of Supervised and Unsupervised trainings

thus called Semi-Supervised.

Supervised techniques mainly deal with minimization of the error of the Network: the output is com-

pared to the ideal result of the task and the weights are modified in order to minimize the error of

the comparison. Among such techniques, Back-Propagation (BP) is by far the most common. To

give a glimpse on BP, the error is minimized by means of its derivative with respect to the weights of

the Network. After all, BP deals with finding the weight configuration which minimizes the error. In

general, the Error function is computed with the squared difference with respect to the target value

for regression problems, with categorical cross-entropy for classification problems. BP makes use of

the chain-rule in order to simplify the problem of the minimization of the error: the gradient of the

Cost function is thus manipulated as such.

∂E

∂wij
=
∂E

∂oj

∂oj
∂inj

inj
∂wij

(1.1)

Here, E is the Error or Cost function, oj is the activation of the jth node, in is its net input, wij the

weight from node i to node j. This derivative is performed in order to decrease the error of the Network

with respect to the single weight wij . If one generalizes this concept to all the weights in the Network,

one would compute the gradient of the Error function: this procedure is called Gradient Descend.

Once the effect of the change of a weight has on the Cost function is computed, one has to modify

that same weight in order to reduce the Error. This very procedure is called the Back-Propagation of

the Error and it is computed, after some algebraic steps, in this way:

∆wij = −η ∂E
∂wij

(1.2)
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Figure 1.2: Architecture of Reservoir Computing. The 3 main elements are: Input, Reservoir and Output.

Recurrent connections are present in the Reservoir only. The state of the Reservoir is linearly projected on to

the Output layer.

η being the Learning Rate of the BP algorithm, controlling the how fast the gradient is reduced at

each step. In general, high Learning Rates lead to faster and less accurate learning.

Unsupervised techniques often lean on powerful Clustering algorithms in order to perform classifi-

cation from the behavior of the Network, or employ adaptation rules based on the dynamics of the

Network itself. Needless to say, such techniques are in general less accurate that supervised training

rules.

In Reinforcement Learning, instead, the focus is on the Reward function: the Network is seen as

an agent whose actions produce an output which is evaluated by a Reward Function; the Network

modifies its parameters in order to maximize the reward. If the Reward function is properly generated

for the task, the agent then greatly and efficiently improves the performance.

1.2 Reservoir Computing architecture

Reservoir Computing’s architecture lies in the set of Recurrent Neural Networks, but its set-up is

one of the simplest both by construction and by Training procedure. A RC Network is composed

of 3 elements: an Input layer, a Reservoir and an Output layer. Recurrent connections are present

in the Reservoir only; the Output layer is generally connected to the Reservoir in a all-to-all fashion

(every node in the Reservoir is connected to all the nodes in the Output). Among all the weights

from the connections present in the Network, only the ones related to the output layer are trained in

a Supervised manner. In some cases, the connections in the Reservoir are trained with unsupervised

policies, but in general there are no restrictions in the connectivity of the Reservoir. As a matter of

fact, these weights are often generated in a random way.

1.3 Training in RC

One may wonder why only the output connections are trained in Reservoir Computing. The answer

is simple: in Recurrent Networks, performing Back-Propagation is very challenging and often suf-

fers from convergence problem. It is hard to lower the Error through its gradient with respect to

the weights when the Network is highly recurrent. The solution employed in RC is to not train the

connections being involved in Recurrent microcircuits, but only the ones related to the Output. The

result is that the output weights simply perform a linear projection of the state of activation of the
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Reservoir on the Output layer. The role of the non-linear processing of the input is left exclusively

to the Reservoir, which executes that thanks to the recurrent connections. Instead, the Output, also

called Readout, simply has to linearly extract informations from the high dimensional representation

of the input given by the Reservoir.

Different options are available for training the Output connections, both in Batch-mode and in On-

line-mode: the first one performs the training after a batch of a dataset has been presented, the second

updates the weights as soon as a new input is presented.

Among the most common and simple Batch-mode procedures for training a linear Readout are: Linear

Regression, Logistic Regression and Ridge Regression. Instead, the main on-line training algorithm is

the p-delta rule [10].

For what concerns the Reservoir, its weights are not modified while the training of the Output is

performed, but a Pre-Training procedure may be carried out. This is done in order to adapt the

dynamical representation of the Reservoir to the specific kind of input chosen for the task and in turn

improve the performance of the RC machine.

1.4 Different RC implementations

While a RC, by definition, imposes constraints on the architecture of the Network, it can be realized

in different manners, starting from the implementation of the nodes. Based on either ANNs or SNNs

respectively, the two main versions of RC are the Echo-State-Machine and the Liquid-State-Machine.

Both share the same architecture and the training procedure, but differ in the motivation behind

their foundation: while ESN was developed mainly to overcome the difficulty of training in Recurrent

Networks, LSM draws inspiration from biology.

As a consequence, Echo State Machines are implemented with Digital neurons and their temporal

evolution is determined by discrete time-steps. Instead, Liquid State Machines evolve in continuous

time and their units are implemented by biologically inspired Neuron model (mainly Integrate and

Fire; see later for the description of the main Neuron models).

Echo State Networks

Echo State Machine, as reported in [43], was founded in response to the difficulty in training of Re-

current Networks. As a matter of fact, conventional gradient-descent-based approaches suffer from 4

main problems:

• Convergence is not guaranteed, due to the bifurcation phenomenon

• A single parameter update may be computationally expensive

• It is hard to train on task requiring long term memory

• In general, training algorithms require high level of expertise

ESN tackles this points with an easy architecture which is trained with simple Regression algorithms,

yet is able to achieve high performance in conventional temporal tasks. The condition assuring high

performance is the Echo State property, from which the name of the architecture: it states that the

effect of a previous state x(n) and a previous input u(n) on a future state x(n+k) should vanish grad-

ually as time passes (i.e., k →∞), and not persist or even get amplified. Two other main properties

of the ESN are the Separation and Approximation properties. The first one is related to the Reservoir

capability of differentiating its internal state with respect to different inputs; the second one deals
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with ability of the linear readout to extract information from the Reservoir, which is generally a noisy

high dimensional representation of the input. These properties are to be evaluated when building up a

RC Network: even though ESM are thought to function with no a priori constraints on the weights in

the Reservoir, some measures in the formation of the Reservoir are crucial in order to assure that the

Network expresses the two above mentioned properties and, in turn, is able to reach high performance

for temporal tasks. For ESM, consideration on the internal dynamics of the Reservoir lead to the

definition of certain rules which enhance the performance. One above all, the scaling of the Spectral

Radius [42]: if the Matrix of the weights has a spectral radius lower and close to one, the Reservoir

will be exhibit rich dynamics without being chaotic.

From a formal point of view, an ESN can be described by these equations:

y(n) = fout [Wout (u(n), x(n))] (1.3)

where u(n) is the Input, x(n) the Reservoir state, fout the function implemented by the linear readout,

Wout the output weights matrix. The state of the Reservoir evolves according to:

x(n+ 1) = Win · u(n) + WR · x(n) (1.4)

in which Win is the Input weights matrix, WR the recurrent connections matrix.

Liquid State Machines

Defined by Maass in 2002 [47], LSM is a Spiking Neural Network based architecture which draws

inspiration on biology.

LSM also has its own dedicated terminology, based on an analogy conceived by Maass: the Reservoir

is called Liquid, which is perturbed by its input as the surface of the water in a lake is oscillating

under the action of a stone thrown in it. The Readout is asked to get informations from the transitory

perturbed states of Liquid, rather than on its equilibrium forms. As a consequence, the Liquid has to

be designed in order to evolve in time and not easily fall into attractor states.

The details on the dynamics and a characterization of the LSM will be provided in one of the following

chapters.

Back-Propagation-Decorrelation

Finally, the BPDC [6] [42] class of Reservoir Computing based on ANNs. The paradigm was born

following an analysis of the dynamical changes happening to the weights in a Recurrent Network being

trained with the Atiya–Parlos Recurrent Learning (APRL) rules. APRL is a gradient-descend based

supervised training paradigm optimized for Recurrent Networks, estimating the gradient of the error

with respect to the Neuron’s activation instead of on the weights. Analyzing how the weights were

modified by this advanced algorithm, it was shown that the hidden weights were much less updated

then the connections directly linked to the output. APRL effectively decouples the Readout from

the Reservoir, as said in the RC terminology. The consequence was that an even simpler learning

algorithm was developed, with different policies for Reservoir and Readout weights, called the Back-

Propagation-Decorrelation.

BPSC is shown to perform well with fast changing input signals, being almost unaffected by the pa-

rameters of the initialized Reservoir. However, the training paradigm easily forgets the data presented

to it, when trained on new samples. This is due to the fact that the algorithm quickly adapts the

Reservoir to the presented structure of the data.



Chapter 2

The structure of the Brain

Neuroscience is a concrete inspiration for mastering Liquid State Machine. As a consequence, it is

helpful to get to know how the brain works in details. However, the functioning of the Brain at a high

level is still to be investigated and represents one of the largest goals of Neuroscience. This is why, for

example, one of the largest projects about studies on the Brain, such as the ”Human Brain Project”

[13], emphasizes the importance of the implementations of simplified models of neural systems for the

understanding of the human Brian it-self. In that view, Neuromorphic Computing, the discipline of the

implementation of Brain inspired computational model, plays a central role, offering the state-of-the-

art hardware solutions employing modern electronics. The hope is that increasingly more biologically

plausible and advanced models could give useful information about the functioning of Neural systems,

resulting in advanced Artificial Intelligence applications and discoveries in Neuroscience.

Back to the biological nature of the Brain, the unit of such a system is the Neuron.

Figure 2.1: Figure of the drawing of a Neuron by Ramon Cajal

The Neuron is a complex cell basically constituted by: Axons, Dendrites and Soma. The last one

is the ”Computing Powering Unit” of the brain, being the location in which the non-linear processing

of the information is performed. The Dendrites serve as the Input signal for the Soma, bringing the

information from other neurons; the Axons, instead, carry the Output of Soma toward other neu-

rons. As it can be perceived from the Figure above, which is even quite simplified in that concern,

each neuron posses a high number of connections, thus forming a dense and intricate network with

others neurons. It is observed that some neurons can influence - or be influenced by - up to 104

11
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other neurons. Most of those lay close to the original neurons, even though connections can also be

established between neurons belonging to different areas in the Brain, being several centimeters away

from each other. As a consequence, the Brian, which is formed by circa 85 Billion neurons [21], is

indeed a complex system: analyzing its behavior and understanding its functioning is as ambitious as

it is difficult.

The Neuron is formed, as much am most of the human cells, by a membrane, which is permeable to

certain molecules. In particular, the neurons’ membrane is able to regulate the flux, in both directions,

of some ions (Calcium, Potassium and others) thanks to the action of Ion Channels, which transport

Ions in and out the membrane under a certain stimulus. Moreover, these Ions can also be exchanged

with other neurons, when the information, under the form of an electrical signal, is spread through

the network. These ions, with their electrical charge, vary the membrane potential: this is defined by

the difference of potential between the internal and the external part of the neuron. The membrane,

which is formed by a double lipidic chain, is almost a perfect insulator and is crossed by many Ion

Channels, which control its permeability with respect to Ions. The difference of potential across the

membrane is given by the difference in concentration of the ions, according to the Nerst equation:

∆u(x) =
kT

q
ln

(
n1
n2

)
(2.1)

in which n1, n2 are the concentrations inside and outside the membrane, respectively; k is the Boltz-

mann constant, T the temperature and q the elementary charge. This formula is derived from thermo-

dynamical considerations on the energy of an Ion inside the membrane, with a certain concentration

in Ions n1, and thus a consequent energy EIon(x) = qu(x).

The basics of the functioning of the neuron is that when a spike, i.e. an impulse at a certain voltage

from an other neuron, comes, then some ions are either introduced or expelled through the membrane

of the neuron; as the concentration of the Ions inside the membrane changes, also the membrane

potential does. When the membrane potential overcomes a certain threshold, the neuron emits a

spike, also called Action Potential. This spike then serves as input for other neurons and eventually

generates other spikes. The information in the Brain is constituted by the Spikes that the neurons

emit in certain time tf : since most spikes are similar to each other in their dynamics, i.e. the evolution

of the membrane potential in time, it is commonly believed that the information is relegated to the

timing and frequency of the spikes, rather than to its form.

Moreover, the Brain is also constituted by other types of biological systems: the most important ones

are Synapses, which serve as a interface between a Dendrite and an Axon from different neurons.

Synapses are complex biological processes bridging the gap between the Output component of a cer-

tain Presynaptic Neuron (the axon) and the Input component of a Postsynaptic one (the Dendrite).

They are recognized to be a key component in the functioning of the Brain in that they regulate the

magnitude of the input to the Postsynaptic neuron and are though to be of great importance in the

learning processes of the Brain. As a matter of fact, synapses are plastic processes, in the fact that

their biological features are adapted during the functioning of the Brain, getting stronger or weaker

in conveying the signal from neuron to neuron.

2.0.1 The functioning of the Neuron

Considering a pair of neurons connected by a Synapse, when one of them fires and the spike reaches

the second, the first one is said Presynaptic neuron, while the second is the Postsynaptic one. In a

Synapse, a presynaptic spike causes the release of Neurotransmitters in synaptic cleft, a gap region

which separates the membrane of the two neurons and composes the synapse. Those neurotransmit-

ters are received by some specific receptors which, once stimulated, cause the opening of some Ion

Pumps, modifying the membrane potential. As a matter of fact, Synapses can either be Excitatory
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or Inhibitory, depending on the effect they have on the neurons’ membrane potential, in turn due to

the opening of different Ion Channels.

The Membrane potential has an equilibrium value, defined by the Nerst potential, referred to all the

Ions present in the Neuron. The most important Ions which are described in most models of the

neuron are Calcium (Ca+) and Potassium (K+), but also Sodium (Na2+) and Chloride (Cl−) play

an key role. The membrane of the neuron is able to control the flow of ions in and out from the

soma, depending on the relative concentration of ions and on the external stimuli the neuron receives.

Moreover, when the neuron is in steady state, the membrane is able to retain a certain concentration,

specific for each species of Ion, inside the neuron: for Calcium, the equilibrium concentration inside

the membrane (about 60mM/l) is generally lower than the one present outside (about 440mM/l);

instead, the opposite happens for Potassium, for which the equilibrium concentration inside the mem-

brane is high (about 400mM/l), while it is lower outside (20mM/l). Of course, the equilibrium is

not static, in the sense that some Ionic currents are still present, but the positive current equals in

magnitude the negative currents, for each species of Ion. This values give rise to two Nerst potentials

which represent the balance point for the membrane potential: ENa = 52mV , EK = −77mV . This

means that when the membrane potential is different with respect to those values, a flux of Ions will

be established in order to restore equilibrium. Since the values of the ion-current changes sign around

these Nerst potentials, they are also called Reverse Potentials. To give an example, the ion flux will

be positive (from outside toward inside the neuron) when the membrane potential is lower than the

Nerst equilibrium value. Moreover, it is experimentally found that the Resting Potential, i.e. the

membrane potential of the neuron when no stimulus is applied, is of urest = −65mV . This means

that at rest, since EK < urest < ENa Potassium ions flow outside the membrane, while Sodium ions

flow inside the neurons.

As Ions permeate the membrane due to external stimuli, the membrane potential changes and even-

tually results in a spike to be generated: formally, the spike, also called Action Potential, is caused by

the membrane potential overcoming with positive derivative a certain threshold. The idea that the

membrane potential grows until a threshold is reached, with a spiking event following the passing of

that threshold, is originated in the paper from Lapique, in 1907 [16].The mathematical treatment of

this process is the following:

ui(t) = η(t− t̂i) +
∑
j

∑
f

εij(t− t(f)j ) + urest (2.2)

where tj is the firing time of the j-th neuron, while t
(f)
j is the last firing time of the same neuron; urest

is the resting potential. Instead, εij is the potential in response to a spike coming from a presynaptic

neuron, affecting the neuron under analysis: ui(t) − urest = εij . Finally, η(t − t̂i) is the form of the

membrane potential when a spike happens.

This simplified and general model is said Spike Response Model [14] and it is the starting point for

the development on any complex and accurate model of the neuron.

Once a spike has occurred in a real neuron, some Ions are released outside from the membrane and

make the membrane potential decrease after a peak in a process which lasts for a certain period, called

refractory period. In this time, the neuron is almost not responsive to other input spikes at all, and

sees its membrane potential fall below the resting value. It is to note that in most cases the membrane

potential is referred to the resting value, thus in the refractory period it has slightly negative values.

An Action Potential lasts for about 2ms and it reaches a voltage of about 100mV . Its form is mostly

the same for different neurons and in different moments, thus it is believed to bring no useful infor-

mation in the Brain. The spike travels along the Dendrites and reaches the other neurons, through

synapses, which are linked to the one who originated it. In turn, they will either excite or inhibit - ac-

cording to the nature of the synapses - the membrane potential of other neurons and eventually cause

other spikes to happen, spreading the information through the network. The information of the spikes
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is thus to be attributed to the patters it produces in the Brain microcircuits and in their precise timing.

Figure 2.2: Simplistic sketch of a Synapse, from [15]

2.0.2 The functioning of the Synapse

As it can be seen in Fig 2.2, Synapses are composed by two processes, formally two extensions of

the Dendrite and Axon which the synapse bridges. One is called Dendritic spine and originates from

Dendrites, the other it the Axon’s terminal. The latter contains mitochondria and other synaptic

vesicles: those systems are stimulated when an Action Potential comes from the Presynaptic neuron,

provoking a cascade of effects which results in Neurotransmitters being released from the synaptic

vesicles in the synaptic cleft, being the gap between the Axonix and Dendritic processes. The surface

of the Dendritic Spine is functionalized with some specific receptor for the neurotransmitters and,

once stimulated, activate an electric signal which induce an Ion flow in the membrane of the Postsy-

naptic neuron. According to the charge of those Ions, the effect of the Ionic current can either be to

depotentiate or to hyperpolarize the membrane potential. Respectively, one speaks of Excitatory and

Inhibitory synapse.

To complete this simple description of the Synapse, the most important Ions involved in triggering

the release of Neurotransmitters is Calcium (Ca2+), which, together with the action of mitochondria,

is believed to support the release of the synaptic vesicles into the cleft. Moreover, the most common

type of Neurotransmitter are: glutamate, Acetylcholine, Dopamine, Norepinephrine, Serotonin and

GABA. Each of them has been seen regulating physiological and behavioral properties of the brain.

Details about their impact on the neuron’s dynamics are still to be investigated, so they are normally

not treated in detail for neuromorphic computing applications.

Other Brain constituents

Other important constituents of the Brain are the Glia cells, which are supportive cells for neurons.

Their functionality is not completely understood and it is often neglected in simpler Neuronal models.

Most of Glia cells are thought to serve a supportive functionality for neuron, providing nutrients,

oxygen and acting as a scaffold for the neuron itself. Some other, in particular Astrocytes, are

believed to participate in the functioning of the neurons and regulate some fundamental molecular

mechanism having to do with Plasticity. For the rest of this work, a part for those which have to do

with Plasticity mechanisms, they will not be further analyzed.
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2.1 Models for the Brain

During the course of the 20th century, a lot of effort has been devoted in creating a model which would

explain the functioning of the neuron, especially exploiting electronics as the platform in which to

implement such models. Early examples had simple equations and circuits and were characterized by

spike’s profile - previously denoted by η(t − tfi ) - based on square pulses of even delta pulses. With

the progress in the understanding of the physiology of the Neuron and of the available methods for

reproducing the experimental results in the form of systems of differential equations and/or electronic

circuits, mode complex and accurate models were developed. It must be pointed out that the most

advanced ones still have no implementation in the form of hardware for state-of-the-art Neuromorphic

Computing, but represent an inspiration toward which the research is moving in order to provide

the Neural Networks implemented in hardware a plausible behavior with respect to the Brain. As

a matter of fact, technology sets the limit for the implementation of the latest and more advanced

Neuronal model. Moreover, the challenge of biologic plausibility extends also at the systems level,

since the complication introduced by detailed Neuron Model are enhanced when considering a Network

in its collective behavior. More details concerning the functioning of state-of-the-art Neuromorphic

hardware will be given in the following sections.

Neuron as an Electronic Circuit

As the first models of the neurons were developed as systems of differential equations, it become

convenient to try to implement them in the form of electronic circuit, trying to capture the accurate

dynamics of the neuron. Of course, this was no easy task, since both the theoretical models of the

neuron from physiology and the possibilities of technology for what concerns electronics circuits are

limited. This is why many models were developed with the aim of capturing the essence of the Neu-

ron’s functioning but keeping the level of complexity to a low level, convenient in order to transferred

the model in simulations and hardware implementations.

Even though some models are more refined and better representing all the complex mechanisms of

the neurons, most of them start with the same baselines, which are here reported. The membrane

of the neuron is a 3-4 nm thick lipidic bilayer, being an almost perfect insulator for Ions and most

charged particles. As a consequence, it is modeled as a Capacitor Cm. Following the law of capaci-

tors, the membrane potential is changing as the charge inside the neuron varies. Moreover, modeling

the possibility of the neuron of maintaining a constant voltage - different than the resting potential

urest - under an external current stimulus Ie, the membrane also has an equivalent Resistance Rm.

The consequence is that the membrane can be described by means of the parallel of a Capacitor and

a Resistance, forming a low-pass filter which modulates the input stimuli (Action Potentials) from

other neurons. Also, the multiplication of those factors gives the time constant of the membrane

τm = CmRm, setting the period of the fundamental variations of the membrane potential.

In addition to that, the membrane presents Ion Channels, which allow some Ions to travel through

the membrane and reach the soma. From an electronic point of view, the Ions Channel abruptly

diminish the equivalent resistance of the Membrane, as a variable Conductance Gm(t). This quantity

hides most of the complexity of the Neuron, since the dynamics of the Ions is regulated by the ionic

Reverse Potential, defined for each type of Ion and function of time in general. To some extent, each

Ions population behaves under the same rule, namely the Nerst equation, even though the intricate

structure of the Ionic Channels makes it necessary to treat them with coupled equations. Moreover,

each neuron posses several kind of different Ions Channels, whose density is of about a few hundreds

per square micron of membrane, for a total of several hundreds of thousand for a single neuron: some

of them are functioning for a certain type of Ion only, some other being used by more kind of Ions.

Considering all the Ions Channels and all the types of Ions, it is possible to determine a membrane
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Membrane Area (Am) [0.1− 0.01]mm2

Membrane Thickness (tm) [3− 4]nm

Specific Membrane Capacitance (Cm) 10nF/mm2

Membrane Capacitance (cm) [0.1− 1]nF

Specific Membrane Resistance (Rm) 1MΩmm2

Membrane Resistance (rm) [1− 100]MΩ

Membrane Time Constant (τm = RmCm) [10− 100]ms

Table 2.1: Main quantities in the circuital representation of the Neuron, as from [15]

current, i.e. the current flowing through the membrane due the action of Ion Channels:

im =
∑
i

gm,i(u(t)− Ei) (2.3)

where the subscript i indicates the type of Ions participating to the total current and both the con-

ductance g and the current i are expressed per unit of area. Of course, the main driving force for

Ions is the voltage difference of the membrane potential with respect to the Reversal Potential Ei,

characteristic of each type if Ion.

As a matter of fact, not all the conductances appear from experimental evidence to be time-dependent,

so that it is convenient to separate the constant and time-dependent terms. Concerning the almost

constant conductance term, that it is commonly referred to as Leakage Current ḡL(u − EL), where

”L” refers to Lumped.

Gathering all the elements described up to now in a differential equation, one gets the general and

basic rule for the functioning of a Neuron in terms of equivalent electronic circuit:

Cm
∂u

∂t
= im +

IE
A

(2.4)

where the electrode current IE is not generally normalized by the neuron’s area A and the membrane

current im is not specified in its form, but is expresses the complication of the Ion Channel system. In

principle, the membrane current term should also provide the model the ability of producing an Action

Potential event as the membrane potential reaches a certain threshold voltage θ. Moreover, this term

regulates the shape and duration of the Action Potential itself. Finally, a very complete model should

also be able to describe the refractory period following a spike: for a certain time after an action

potential occurred, the membrane potential remains below its resting value and the conductance of

the Ionic Channels is reduced, so that the effect of incoming stimuli is attenuated. After the refractory

period, the neuron returns to function as usual.

Expressing all this complex dynamics is an ambitious task to perform and often not even required

for the specific application in which the model is employed. As a matter of fact, a complete model

is more difficult to reproduce both from a computational and a technological standpoint. It is thus

often required to employee a simpler model, mostly to analyze the behavior of a network of neurons.

For such a case, the behavior of the network becomes too complex and chaotic is the model of the

neurons is very detailed.

For the following part, the focus is on the 3 main models of the Neuron from an historically point

of view, in increasing order of complexity, biologic plausibility and chronological time of development:

McCulloch-Pitts, Integrate and Fire and Hodgkin and Huxley (HH). More recent models have been
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developed, mainly starting from the HH one, but they have limited application in state-of-the-art

neuromorphic hardware.

2.1.1 McCulloch-Pitts

It represents the most simple model for the neuron, almost neglecting all the complications of the

biological Neuron and focusing on the non-linear operation of the soma with respect to its inputs.

The spikes for this model are simple Dirac’s delta of value 1, so the output of the Neuron is simply

either 1 (firing) or 0 (not firing). The spikes are modulated by the synaptic strength, also called

weight, being a real number generally comprised in the interval [-1,1], which allows to take inhibitory

synapses into account, but also commonly restricting the interval to the case [0,1].

The neuron takes a number N of inputs, deriving from other neurons weighted by synapses, and

performs a linear sum of those values: if this sum overcomes a certain threshold, then it emits a spike.

This is formally defined by:

ui(t) =

N∑
j

Ij × wij (2.5)

where ui is the potentiation (another term for membrane potential) of the ith neuron; Ij is the input

from the jth neuron; wij is the weight of the synapse between neurons i and j.

As it can be understood, this is an overly-simplified model, which is not considered in applications in

which biological plausibility is an important requirement. Nonetheless, this model was the base-line

for the development of Neural Networks, later giving rise to the field of Deep Learning. The conse-

quent modification of the model concerned the operation of the neurons, which at this stage is a simple

sum: implementing a non-linear summation of the inputs allows for a more complex dynamics of the

network leading to the ability of learning more sophisticated tasks. Anyhow, this type of evolution

of the McCulloch-Pitts neuron falls out from the bounds of biologically inspired research and leads

to development of Artificial Neural Networks, whose aim is to obtain the best performance for its

algorithms, independently of the nature of the models which constitute its Networks.

Figure 2.3: Graphs representation of an McCulloch-Pitts neuron, from [14]

2.1.2 Integrate and Fire

All the models which describe the dynamics of the membrane potential, independently on their ac-

curacy, with a differential equation based on Eq.2.4 and leave the description of the formation and

dynamics of the Action Potential to an additional part of the algorithm describing the neuron, coming

in action when the threshold voltage is passed, fall in the category of Integrate and Fire neurons. They

are also the most popular choice in Neuromorphic Computing application because of their versatility

and simplicity: the electronic circuit required to implement the neuron is relatively simple and the
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computational power required for simulating Networks composed by such model is modest.

As a matter of fact, the complex dynamics of the Neuron is often relegated to the membrane conduc-

tance, especially when describing the Action Potential formation and the Refractory Period. In this

models, the shape and duration of the spikes and of the refractory period are forced by the interven-

tion of a part of the algorithm describing the neuron: the way this is implemented is straight-forward

for the case of simulation, while in the case of hardware versions of the neuron this is performed by

additional circuits which take over the control of the membrane potential in some specific conditions.

Many examples of Integrate-and-Fire neurons have been developed, each of which differentiating for

the level of rigor with respect to biology of the sub-threshold dynamics and for the form and du-

ration of Action Potential and Refractory period: a very simple case, the Leaky-Integrate-and-Fire,

gained popularity for application in Neuromorphic Computing. This model treats the conductances

of the membrane as a single time-independent term im = ḡL(u(t) − EL). As a matter of fact, it

is observed that the membrane conductances are almost constant for small fluctuations around the

resting potential, even though the Leaky-Integrate-and-Fire takes this assumption as valid for the

whole sub-threshold range. With this approximation, the resulting electronic circuit describing the

sub-threshold dynamics is a simple parallel of a Capacitor and a Resistance.

Developing the membrane current term and multiplying the whole Eq.2.4 by the membrane resistance

Rm, the fundamental equation for the Leaky-Integrate-and-Fire becomes:

τm
∂u

∂t
= (u(t)− EL) + IERm (2.6)

where EL represents the Resting Potential which is commonly set to zero. The parameter τm = RmCm
still represents the time constant of the membrane potential, Rm is the membrane resistance and Cm
the membrane capacitance. The model is said ”Leaky” since, in absence of external stimuli IE , the

equation yields the membrane potential to decrease in an exponential fashion with time constant τm.

As the membrane potential overcomes the threshold, which is commonly around -50/-55 mV [15], an

Action Potential is activated having the shape η(t − tfi ), tfi being the firing time of the ith neuron.

After the spike event is concluded, the Neuron is inactive for a certain period Trefr, the refractory

period.

By knowing the duration of the spike, the refractory period and the time constant of the neuron, it

is possible to calculate analytically the firing rate of the neuron ν under a constant external current IE :

ν =

[
Trefr + τmln

(
RIE

RIE − θ

)]−1
(2.7)

where θ is the threshold for the membrane potential.

As a matter of fact, the input current of a Neuron is coming from other Neuron and depending on the

interaction at the Synapses between the presynaptic and postsynaptic neurons. This interaction is

not trivial and is a process which has to be described in a biologically inspired model of neuron. If for

the simple McCulloch-Pitts neuron the synapse are modeled by a simple real number wij , the weight,

modulating the signal from the presynaptic spike, Integrate-and-Fire neuron often include better de-

scription of the physiology of the Synapse: the general model for the synaptic current is reported below.

Isyn,i =
∑
j

wij
∑
f

α(t− tfj ) (2.8)

That states that the input of every neuron is due to the output of every other neuron to which that is

linked, modulated by a weight and by a function α which hides the complex biological nature of the

Synapse. This latter term is treated in the same way as the membrane conductance, since the Synapse

can be seen as a variable resistance which allows a certain amount of current to pass under certain

stimuli. An important feature of Synapse of that their conductance is a function of the membrane
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potential, which leads to the form of synaptic current term as:

α(t− tfj ) = −g(t− tfj ) [u(t)− Esyn] (2.9)

where Esyn is the Reversal Potential of the synapse. This parameter allows to distinguish excitatory

synapse - for which this value is above the resting potential Esyn > urest -form inhibitory synapse -

for which the opposite holds Esyn < urest.

It is also to be noticed that if the Synaptic Reversal Potential is about the value of the threshold

Esyn ≈ θ, the contributions from the presynaptic neuron vanish as the membrane potential is in-

creased. The risk is that this effect, called Synaptic current saturation, may not allow the neuron to

ever reach the threshold and emit a spike. For this reason, the condition Esyn > θ must be verified.

The following figure sums up the model of Integrate-and-Fire neuron in its circuit representation, in

the case of a delta spike being at the input.

Figure 2.4: Circuital representation of an Integrate-and-Fire neuron, from [14]

At last, extended versions of the Integrate-and-Fire model are to be mentioned: they all concern

the development of the non-linearities related to the conductances of the membrane potential and

synapses. The general equation for the non-linear model becomes:

τm
∂u

∂t
= F (u) +G(u)IE (2.10)

where G(u) is a voltage dependent input resistance, while −F (u)/(u − urest) is a voltage dependent

decay constant.

A case of non-linear Integrate-and-Fire neuron model is the quadratic model, whose equation is:

τm
∂u

∂t
= −ao(u− urest(u− uc)) +G(u)IE (2.11)

with ao > 0 and uc > urest. This model results, as it can be easily guessed, in a quadratic variation of

the membrane potential under the effect of an input current, opposed to the usual linear summation

of the inputs of the standard Integrate and Fire neuron.

2.1.3 Hodgkin-Huxley model

In 1952, the Nobel prize winners Hodgkin and Huxley published a work about the analysis of the

Giant Axon of a Squid [17] [18] [19] [20]. This was one of the very first studies able to capture the

dynamics of Ions in the functioning of the neuron. The developed model analyses the behavior of 3

Ion channels: Sodium (Na+), Potassium (K+) and a third Channel which is generally called Leak
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Figure 2.5: Equivalent Circuit of the Hodgkin Huxley model for the Neuron, from [14]

Channel and is thought to mainly describe the dynamics of Chloride (Cl−). Actually, the leak current

derived from it takes care of all the Ionic Channels which are not explicitly described in the model.

As a consequence, one can extend the accuracy of the representation by adding one term to the base

equation referred to a specific Ionic Channel. This equation, which fully characterizes the model,

without the need of external intervention - as instead it happens for the Integrate-and-Fire - for the

description of feature of the neuron is based on the general equation of the circuital representation of

the neuron 2.6 and it specifies the terms related to the conductances of the Ion Channels.

C
∂u

∂t
= −

∑
k

Ik(t) + I(t) (2.12)∑
i

Ik(t) = gNam
3h(u(t)− ENa) + gKn

4(u(t)− EK) + gL(u(t)− EL) (2.13)

In this model the variable conductances are represented by some values gNa and gK which set the

upper limits, being modulated by some factors ranging from 0 to 1, thus often referred to as Gating

Probabilities or Gating Variables. Instead, the conductance of the Leakage Channel is constant in time

and set as gL. The dynamics of the conductances are governed by the behavior of the parameters

m(t), h(t), n(t): the first two of which are operating on the Sodium Channel, while n(t) acts on

Potassium. All of them are characterized by a differential equation in which two functions α and β

appear, being empirically modeled to describe the squid’s giant axon dynamics.

The differential equations regulating the gating variables are reported below:

ṁ = αm(u)(1−m)− βm(u)m (2.14)

ḣ = αh(u)(1− h)− βh(u)h (2.15)

ṅ = αn(u)(1− n)− βn(u)n (2.16)

the behavior of this function is visualized by the following figures.

Figure 2.6: Plots of the dynamic behavior of the Hudgkin-Huxley gating functions. m and h are referred to

the Sodium channel, h to the Potassium channel. Figure from [14]
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As it is clear, m and n are increasing with positive membrane potential, while h is decreasing: the

result is that the conductances of the Sodium and Potassium channels are increased when the mem-

brane potential is depotentiated by an excitatory presynaptic spikes and, if those inputs are strong

enough, a positive feedback establishes. Anyhow, the time constant of m is lower than that of h,

where the first values tends to open the conductance channel while the latter closes it. The result is

that if the membrane potential is not raised strongly and quickly enough then the positive feedback

does not hold and the h gating function shuts the Sodium channel off. The behavior of the Potassium

channel is instead simpler, being governed by one only gating function, which increases its value as

the membrane potential is depotentiated.

With the values and function developed by Hodgkin and Huxley, the Action Potential is of about

100mV and lasts for about 1ms. The following figure gives some information about the kernel of the

HH-action-potential and of the refractory period of the neuron.

Figure 2.7: Plots of the Action Potential of the Hudgkin-Huxley neuron. On the left, the neuron is stimulated

by a strong but short current pulse, able to generate the action potential and observe the refractory period

under no external influence. On the right, a comparison of the behavior of the neuron under a current pulse

of 1ms of either 7µA/cm2 and 6.9µA/cm2: the first is able to generate the Action Potential, while the latter

is not. This is due to the Threshold Effect. Figure from [14]

As it can be understood from the Fig.2.7, the amplitude of the input current is a key parameter in

determining whether the neuron will produce a spike or not. The plot on the right of Fig.2.7, despite

having two different scaling for the y-axis, shows that an apparent subtle different in magnitude is able

to determine the output of the neuron. In a real situation however, a single input from a presynaptic

neuron is not able to cause the Action Potential to happen at the postsynaptic neuron. Moreover,

since the conductance is generally reduced as the membrane potential get closer to the ideal threshold

- remember that no formal condition on the threshold is imposed for the HH neuron, instead the firing

condition is encoded in its base differential equation -, more and more input spikes are required to

generate an Action Potential. It has been measured [15] that an input spike is at about 1mV and

that the Action Potential is triggered for a depotentiation of 20− 30mV (of the membrane potential

with respect to its resting value). As a result, depending on the frequency and on the magnitude of

the incoming spikes, the number of input events necessary to generate an Action Potential is between

20 and 50.
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Ion Channel Reversal Potential: Ex Maximum Conductance: gx

Na 50mV 120mS/cm2

K -77mV 36mS/cm2

L -39mV 0.3mS/cm2

Table 2.2: Values of the Reversal Potential and Maximum Conductances related to Eq.2.13

Gating Function αx(u/mV ) βx(u/mV )

n (0.1− 0.01u)/[exp(1− 0.1u)− 1] 0.125exp(−u/80)

m (2.5− 0.1u)/[exp(2.5− 0.1u)− 1] 4exp(−u/18)

h 0.07exp(−u/20) 1/[exp(3− 0.1u) + 1]

Table 2.3: Form of the functions related to Eq.2.16. The form and values of the parameters were fitted by

Hudgkin and Huxley to describe the Squid’s Giant Axon.

2.1.4 More Advanced Models

As already said, an advanced and complex model finds no applications in neuromorphic hardware,

neither in Computer simulation for complex Networks, so there is no interest in discussing them in

details. Nonetheless, advancements in technology is expected to include in neuromorphic hardware

increasingly biologically plausible models, so they represent an inspiration for the development of the

next generation of chips.

On one side, models are developed starting from the Hodgkin Huxley one, improving the fidelity of

the variable conductances to the biology of the neuron in order to account for most of the small events

happening in neuron not described by the Sodium and Potassium channels in the HH model.

One other approach is even more effective in aiming at fully describe the neuron: to expand the model

from a lumped circuit model to a distributed level. As a matter of fact, the neuron is a 3 Dimensional

systems and the length of some of its components, related to their width, is such that a description

with Cable theory can be beneficial. In particular, Dendrites and Axons are often treated with this

formalism. Such models fall in the set of Compartment (or multi-compartments) Models, whereas the

ones analyzed before are labelled as Single-Compartment Models. The following figure illustrates an

example of a model of a Dendrite: reporting the equations related to such a system goes beyond the

scope of such a section of the Thesis, but the interested reader is invited to get all the details about

it in the reference [14].
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Figure 2.8: Figure of the drawing of a Distributed Dendrite, from [14]

2.2 Plasticity Mechanisms: Learning in biological systems

State variables of Neurons and Synapses are not fixed in time but vary depending to certain rules,

which are said Plasticity mechanisms. Those are of fundamental importance at the behavioral level

in that they are associated to the learning and memorization capabilities of the Brain. As a mat-

ter of fact, Learning as a process in the Brain is attributed to every change of the Synaptic and/or

Neuronal state variables in order to map a certain Input, coming from the sensory receptors, to a

certain Output. Recalling the previous Section about Neural Networks, this is the same principle

regulating Learning in those algorithms. The difference of the learning process in Neural Networks

with respect to biological neural systems is that the learning paradigms are greatly simplified, in order

to be conveniently computed by PCs and be able to learn ”quickly”.

Modeling the Plasticity mechanisms is as challenging as it is for the dynamics of Neurons and Synapses,

so simplified models have been developed in order to result more efficient when employing them in

simulation of neural system. Most of them also had to deal with the fact that the state-of-the-art

hardware for the implementation of neuronal systems struggles in updating its internal variables effi-

ciently, thus making Plasticity algorithms limited both for what concerns speed and consumed energy

of the chip. This is because Plasticity mechanisms are not about reassigning a new values to the state

variables of the system from scratches, but updates are chosen based on the past states of the network

and on some peculiar criteria of the specific neuron/synapse on which they act. It results that the in-

formation required to compute and reassign the values of the internal variables of the neuron/synapse

must often be stored in a memory element which is accessed by and external processing unit. This

leads to the well known problem of the Von Neumann-bottleneck, for which the temporary storage

and computation of those variable away from where the processing of the data is performed makes

the system less efficient from the energetic point of view and sets the limit for the speed of the de-

vice. This argument will be treated more in detail in the section devoted to Neuromorphic Computing.

2.2.1 Hebbian Plasticity

The theoretical base for most of the model about Plasticity is the Postulate of D.Hebb, which in his

book from 1949 [22] stated that:

When an axon of cell A is near enough to excite cell B or repeatedly or persistently takes part

in firing it, some growth process or metabolic change takes place in one or both cells such that A’s

efficiency, as one of the cells firing B, is increased.
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The idea behind this postulate is that there had to be correlation between spike events of two neurons

in order to produce a change of synaptic weight or neuron’s internal variable. Hebb thought that

when the same input were repeatedly stimulating a certain area in the Brain, the connection between

neurons become stronger in order to maintain a similar firing patter in each repetition, meaning that

a function was mapped starting from the persistent input. As it has been stated, the change happens

when the presynaptic neuron participates to the firing of the postsynaptic one, but that represents

only half of the up-to-date statement which is the fundamental rule for Plasticity:

Synapses change in proportion to the correlation or covariance of the activities of the pre- and

postsynaptic neurons.

In that sense, connections between neuron are not just potentiated by Plasticity but can also be

weakened by events in which neurons spike in a particular order. Two types of Plasticities are de-

fined in turn: Long term Potentiation (LTP), occurring when the connections between neurons are

persistently strengthened; Long term Depression (LTD) when the connections are weakened. It can

be easily understood that any model trying to capture the behavior of such mechanisms must avoid

the problem of synaptic weight divergence: the weight of the synapse cannot always increase by the

same amount in the case the same input is displayed repeatedly, since that would be inconsistent

with the functioning of a real synapse. Either some constraints to the strength of the connection are

embedded in the model or they must be hard coded for the specific case. Back to the dynamics of

Plasticity mechanisms, the timing of the spikes determines whether the connections between neuron

should be potentiated or weakened. In references [15] and [14] one can find in their Bibliographies

many examples of studies in which the generalized Hebbian Postulate was found to be shaping the

strength of the synapses and the internal Neuron’s state. This Plasticity mechanism was not the only

one found in physiology studies - all the other phenomena are referred to as Non-Hebbian Plasticity

mechanisms -, but that certainly is the one for which most research was conducted and the most

accurate experimental evidences were obtained. The reason being that this paradigm appears to be

the most important in relation to the learning in the Brain. As a consequence, this was also the

most analyzed and employed Plasticity mechanism in Neural System simulation and Neuromorphic

Computing, and also the one for which the most biologically plausible mathematical models were

developed. There are many models for Hebbian Plasticity developed with different levels of accuracy

to biology and simplicity in hardware or software implementation, but there is also a common form

for the base equation regulating the phenomenon.

In this formalism, the Activity of the presynaptic neuron is νj and the one of the post-synaptic neuron

is νi.

∂wij
∂t

= F (wij , νi, νj) (2.17)

The function F expresses the correlation between the activity of the Pre- and Post-synaptic neuron

and also depends on the previous values of the synaptic weight. A requirement for such function is that

it should avoid the positive feedback which establishes when similar input are repeatedly displayed to

the Network, stimulating the firing of the same group of neurons. The consequence is that most of

the synapses get clamped to their upper bound and are not able to carry information and contribute

to the learning process. The solution for such a problem is to employe coefficient which modulate the

weight update strength as a function of the upper and lower limits.

Moreover, this general form does not specify the temporal relation of the spikes which generates the

change in synaptic weight. In order to do so, the F function is commonly expanded around νi, νj = 0

and some of the terms are discarded as an approximation.
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∂wij
∂t

= c0(wij) + cpost1 (wij)νi + cpre1 (wij)νj + cpost2 (wij)ν
2
i + cpre2 (wij)ν

2
j + ccorr2 (wij)νiνj (2.18)

where the coefficient ccorr2 expresses the correlation between the Pre- and Post-synaptic Neuron. The

simplest formulation of Hebbian Plasticity only implies this term and thus is:

∂wij
∂t

= ccorr2 (wij)νiνj (2.19)

This simple equation states that the weight of the synapse varies only when the Pre- and Post-synaptic

neuron are active mostly at the same time. In that sense, a positive coefficient ccorr2 makes the weight

stronger and represents the case of Hebbian Plasticity. Instead, if the same coefficient is negative, the

equations describes a Anti-Hebbian mechanism in that the weight is weakened even if the two neuron

are active simultaneously. Moreover, if a first order term is included in the equation, then it is the

case of a Non-Hebbian Plasticity mechanism, while more complex Hebbian case can be developed by

including the remaining second order terms.

As already said, a problem of such a model is Synaptic Saturation: when a large portion of the Net-

work is stimulated, most of the synapses are reinforced, leading to a positive feedback mechanism

which clamps most of the synapses to the upper bound. The same may happen but with respect to

the lower bound, normally fixed at 0: in this case one speaks of vanishing of the synaptic weights. A

possible form for the coefficients in order to solve this issue is the following: ccorr2 (wij) = γ2(1− wij)
for the upper bound; c0(wij) = .γ0wij for the lower bound. Including the zero order term in Eq. 2.19

one get a more explicit form for an Hebbian Plasticity mechanism:

∂wij
∂t

= γ2(1− wij)νiνj + γ0wij (2.20)

For a mention, Plasticity models based on the terms of the expansion in Eq.2.18 of the first order

are not strictly Hebbian model. As a matter of fact, in this cases the synaptic weight is modified

even if only either the Pre-synaptic or Post-synaptic is active. The same happens for the quadratic

terms, for which the dynamic is even more complex. Typically, this mechanisms are not employed

alone but constitute additional terms in a more complete equation describing a peculiar quasi-Hebbian

plasticity. Since they are often omitted in simple implementation in simulations and neuromorphic

hardware, they are not further analyzed.

2.2.2 Spiking Time Dependent Plasticity

It represents the most common form of Plasticity in simulations and implementations of neuromorphic

hardware, since it can be developed as a simplified version of Hebbian Plasticity conserving a certain

level of fidelity with respect to the biologic behavior in the Brain. The key feature of such models is

that the weight change depends on a variable s = tfj − t
f
i being the delay of the Post-synaptic neuron’s

firing event. Note that if s < 0 means that the Post-synaptic neuron has fired before the Pre-synaptic

one.

The reinforcement/weakening is generally composed by two contributions: a non-Hebbian term both

in positive and negative form depending on the Pre- and Post-synaptic activity alone; an Hebbian

term, also in both positive and negative form depending on the correlation between the activity of the

two neurons. This means that a change of weight occurs in any case of firing event of either of the two

considered neurons, not just requiring a correlation between the two firing events. The mathematica
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formulation of such statements is:

∂wij
∂t

= a0 + Sj(t)

[
apre1 +

∫ inf

0

apre,post2 (s)S(s− t)ds

]
+

+Si(t)

[
apost1 +

∫ inf

0

apost,pre2 (s)S(s− t)ds

] (2.21)

the parameters apre1 , apost1 compose the non-Hebbian term, while apre,post2 (s), apost,pre2 (s) are the ker-

nel referred to the Hebbian one. Moreover, the functions S are time-dependent counters for the firing

events of the Pre- and Post-synaptic spikes: Sk(t) =
∑
f δ(t− t

f
k), for k = i, j.

According to the already mentioned requirement to avoid synaptic vanishing and saturation, the form

of the coefficients a1 and of the Kernels a2 is often a function of the current synaptic weight and of

the weight constraints. In this way, it is assured that the weight values remains within their bonds.

In simplified explicit model derived from Eq.2.21 the non-Hebbian terms are commonly dropped and

the kernels apre,post2 (s), apost,pre2 (s) are respectively positive and negative and act for s < 0ands > 0.

A typical choice for the form of the STDP function is the so-called Exponential Learning Window,

in which the updates on the synaptic weights follows a piece-wise exponential function changing sign

around s = 0:

∆wij(s) =

{
A+exp[s/τ+] if s < 0

A−exp[−s/τ−] if s > 0
(2.22)

This represents the most simplified and common form of Plasticity in simulation and Hardware im-

plementation of Neural Systems, and is the main rule allowing for Unsupervised learning, usually

followed by Principal Component Analysis for the readout of the Network. As a matter of fact, STDP

is the main learning rule allowing a learning process in Unsupervised training, thus the parameters

which regulates it must be carefully tuned so to maximize the accuracy of the system.

In the following, the parameters may be expressed with a different formalism, but the general rule

is that A+ > 0, A− < 0. As always, those variables can be expressed in a way to avoid synaptic

vanishing and saturation: A+ = (1− wij)a+, A− = wija−.

2.2.3 Synaptic Normalization

Hebbian rules, despite being the main contribution to synaptic change in order to allow learning to

happen, are not the only Plasticity mechanism present in the Brain and, to some extent, one could

state that without the other accessory feature of Plasticity learning would not be as efficient, if not

even possible. As a mater of fact, STDP, the most common expression of Hebbian learning paradigm,

leads to major issues in the dynamics of the Network. Even with the safe policy for the coefficient to

avoid synaptic saturation and vanishing, the possibility of storing information in the network may be

limited in particular cases by STDP it-self. For example, consider a neuron with many more inputs

than average: as the information is spread through the Network, this neuron is more likely to produce

frequent spiking. By doing so and thanks to STDP, its input synapses are more likely to get stronger,

generating a positive feedback which leads to a situation in which most of the input synapse of such a

neuron are close to the upper bound level. As this neuron also has outputs, that situation may spread

through the Network, causing most of the synapse to be close to upper bound level. In than situation,

the Network looses ability to store more information in the synaptic weights, decreasing the learning

potential.

Actually, it has been shown that, during the dynamics of the Brain, most of the synapses are close to

the bound levels, either up or down state, in an almost binary configuration. Still, the distribution of
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Figure 2.9: Functioning of the STDP Plasticity mechanism, with dots representing experimental data and

the solid lines being the interpolated function for the STDP model. One understand why the Exponential

Learning Window version of STDP is so popular in applications. Figure from [14]

these two quasi-states is far from being unimodal, which would inhibit learning capabilities.

The missing piece is a further Plasticity mechanism which regulates the weight distribution of different

synapses, not allowing an entire group to be clamped at either of the two bounds. This mechanism is

Synaptic Normalization.

It is not still clear how this mechanism acts at a cellular level, but models are developed from the

evidence of the synaptic weights distribution at the long run. As a consequence, two approaches are

possible: to act globally in the network: if the weights are all non negative, one imposes a constraint

on the sum of the weights; valid also in case some of the weights being negative, the constraint can

be applied to the sum of the square values of the weights. An example of both cases is given.

Subtractive Normalization

Give a network of Nu synapses, n being a Nu dimensional vector in which each entry is equal to 1,

the equation governing this Plasticity mechanism is:

τw
∂w

∂t
= νiνj −

νi(n · νj)n
Nu

(2.23)

The constraint imposed by such rule is that the synaptic the vector n · w is kept constant in time.

This is easily verified by the next equation:

τw
∂n ·w
∂t

= νi(n · νj)
(

1− n · n
Nu

)
= 0 (2.24)

where the last equality follows from n ·n = Nu. The main characteristics of Subtractive normalization

is that the relative variation of weight applied to those of lower values is greater than the ones with

higher values. As a consequence, some constrain have to be imposed in oder to avoid some weights to

vanish or to become negative. Moreover, the process is non-local, since the it takes to know the values

of all the weight related to a certain Post-synaptic neuron in order to perform the normalization.

The usual result of this policy, when combined with STDP, is that, due to high competitiveness of
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the process, most of the weights are negligible and a few of them is close to the upper bound.

Multiplicative Normalization

It represents an example of normalization with respect to the square of the weights
∑
i w

2
i . In this

case, the base equation, also called Oja rule, reads:

τw
∂w2

∂t
= νiνj − αν2i w (2.25)

where α is positive. Unlike Subtractive Normalization, this rule is local and it is called multiplicative

because of the way the weight term w appears in the right part of the equation.

A similar analysis as the one done for the previous case of normalization yields to verifying the sta-

bility of such a rule:

τw
∂|w2|
∂t

= 2ν2i νj (1− αw) (2.26)

from which it is clear that the vector of weights |w|2 relaxes on the long run to the value 1/α, which

also prevents the weight from growing or decreasing without bounds. Moreover, the competitiveness

of the process is preserved.

2.2.4 Intrinsic Plasticity

Plasticity is not a property of synapses only, but Neuron, and in particular Dendrites, have been shown

to adapt their internal state, shape and structure in order to either maximize information transfer

of a population of neurons or to minimize energy consumption. It is trivial to understand that in

response to a slowly varying and almost constant input to a Network of neuron, the response of the

Network which maximizes the information of the input is a well spread out distribution from a firing

rate of zero to the maximum firing rate of the Neuron. Restating that with concept of statistics,

maximum information is transferred/stored when the Probability Density Function of the firing rate

of the neurons is an Uniform Distribution from zero to the neuron’s upper bound. It is reminded that

a neuron’s firing rate is bounded between zero and the inverse of the sum of the Action Potential’s

time and the Refractory time. In a simpler form, if the Action Potential and the refractory period

last long, the neuron is then unable to fire many times in a given interval of time.

On the other hand, Energy is also an important quantity to care of when dealing with neuronal

systems, which are among the most efficient computation devices. In that view, the best energy man-

agement is obtained by the Network when the distribution of the firing rates of the neurons is more

concentrated toward low firing rates. Again, in Statistical terms, this corresponds to an exponential

distribution. This PDF is observed in neural recordings across multiple organisms such as that from

the macaque inferior temporal cortex [24].

These results are not to be attributed solely to synaptic plasticity but are thought to be the con-

sequence of neuronal adaptation to external stimuli and synaptic changes. However, the level of

comprehension about such mechanisms at a biological level is lower with respect to the case of the

synapse, so that a unified formal mathematica treatment of the phenomena has not been developed.

Instead, the general approach is to retrieve the results of experimental data such as [24] with algo-

rithms based on the architecture of the Neuron employed in the specific case. As a matter of fact,

depending on the employed neuron model it is possible to developed algorithms which make the pa-

rameters of such models adapt according to a determined aim or result. The consequence is that in

the literature one finds examples of Intrinsic Plasticity which differ from each other in the way they

act on the neuron, but are able to achieve similar results, often aiming to either maximize information
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storage or minimizing energy consumption.

The only constraint that are imposed to such algorithms to be plausible with respect to biology is

that the changes of neuronal parameters must be based on the state of the neuron under analysis only,

as it is observed to happen in biology. From this property of such algorithms the name of Intrinsic

Plasticity

A last mention about Plasticity mechanisms is that they are believed to function together in order to

allow the Brain to achieve its impressive performance. A single Plasticity mechanism is not enough to

allow the Brain to acquire its learning capabilities, nor to function with such high energetic efficiency.

Instead, when all the Plasticity mechanisms are acting in the same time, they are able to conveniently

combine in order to maximize the perfomances of the Network. In the development of the Thesis, it

will be shown that not only this fact is found experiment on biological systems, but it is also supported

by simulations of Spiking Neural Networks.



Chapter 3

Neuromorphic Computing

In this chapter, a particular emphasis will be given to the theoretical aspects and hardware imple-

mentations that are developed and found in the Laboratory in which I had the opportunity to carry

out my Thesis, the Institute of NeuroInformatics, ETH and UZH. Other institutes and groups employ

other approaches and solutions, but those will only be cited for completeness at most.

Before diving into the world of Neuromorphic Computing (NC), it is useful to analyze its history

and motivation for developing such a subject. NC is born from the conjunction of the need for more

efficient hardware for Machine Learning applications and the desire to implement in hardware the

founding from Neuroscience for a better understanding of the functioning of the Brain.

The therm Neuromorphic Computing was coined in 1990 by Carver Mead, which originally intended it

for indicating all forms of Very Large Scale Integration (VLSI) electronics inspired by the functioning

of the Brain. During history, NC has assumed new characteristics and aims, being influenced and

inspired by other subjects. As already said, the main groundwork for the development of NC has been

Neuroscience, Machine Learning and Electronics (for what concerns the hardware implementation).

The first one gave NC the inspiration for the models of Network and components employed in NC

machines; the second one offered solutions for practical implementation of learning algorithms able

to reach remarkable results; the third one provided the means for the implementation of algorithms

with efficient hardware solutions, competitive with conventional electronics and also paved the way

for new possibilities in the field of computation.

Moreover, the difficulty in following the path of Moore’s law and in turn the slower and more expensive

progress in conventional computing systems turn out to be an additional motivation for conceiving

new computing paradigms. One of the main obstacles in conventional computers is related to the

management of the computed data. In a standard Computing Power Unit (CPU), the processing of

the information is performed in a different position respect to where the data - either processed or

to be processed - are stored. As a consequence, when a large amount of data is to be computed by

the CPU, that has to travel back and forth in the Chip to be processed and saved. This movement

of data comes with two main costs: Energy has to be spent in order to send data across the chip,

where it is required; time is wasted when the data have to be processed and are not yet available to

the Arithmetic Logic Unit (ALU), which performs the logic operations, resulting in limitation of the

frequency of operation of the chip. This constraints in the computation are known as ”Von-Neumann

Bottleneck” and are common to all well-established computing machines, such as personal computers,

smartphones, servers, and so on. However, incrementally increasing the rate at which the operations

are performed in CPUs, allowed to increase the performance of Integrated Chip (IC) despite their

architectural limitations. This process, allowed by the scaling of the transistors, seems to approach its

conclusion and other computing paradigms are explored to overcome, for example, the Von-Neumann

bottleneck.

30
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Non-Von-Neumann architectures are made possible by the utilization of novel memory concepts. In

order to overcome the VN bottleneck, memories have to be embedded with the computational units:

advancements in technology allow to conceive new electronic circuits in which memories are co-located

with more conventional electronic devices, such as transistors.

Figure 3.1: a) Schematics of conventional Von Neumann architecture, where data is repetitively sent back

and forth from the CPU to the storing memory; b) On the center, a possible example of Non-Von-Neumann

architecture: the processing of the data occurs in the same location in which the data are stored in the chip. In

this case, by means of the function f(A) which directly acts on the memory unit. c) More common schematics

of the computing in NC employing memristive devices: resistances are controlled by a Control Unit and their

value can be read and processed on chip

Exploiting parallel computing opens up to multiple advantages with respect to conventional Von

Neumann architectures: anyhow, since the speed of computation of the established machines has

reached astonishing performance even in commercial devices, it would be reckless to think that Non-

Von-Neumann computer could outperform conventional machine in any task. As a matter of fact, Von

Neumann computers have become, thanks to the developments in Material Science, Chip Design and

Computer Science, very fast in computation in series, where data are processed one next to the other,

synchronously. This is particularly convenient when the data to be processed is of small dimension,

so that during operation only a small portion of memory has to be written and sent back to the CPU.

In that case, series computation is expected to achieve maximum speed.

Anyhow, in other cases the data to be processed may be of larger dimension and the algorithm may

require that most of the information of the data has to be updated at every cycle. For this occasions,

series computation is not efficient since a huge amount of data should be stored in memories and read

by the CPU to be processed every time-step. Locating the memory available to the computing unit

in the same place as the processing units solves this problem.

Examples of such cases are most of the Neural Network algorithms, in which the information of a

Network - connections, weights, activation of neurons and more - are to be updated every cycle. Of

course, implementing a physical model of the Network in a chip seems to be the most straightforward

solution, but that presents many challenges in the design process of the Integrated Circuit.

Neuromorphic Computing, as one of its aims, proposes a novel computing paradigm based on paral-

lelism. Moreover, NC comes with additional advantages that derive from either its biological inspira-

tion or the customization for Neural Network algorithms: Energy Consumption, Real-Time operation,

Small Footprint in hardware implementation.

At last, a mention is required for AI Accelerators. In the field of Machine Learning and especially

for Artificial Neural Networks, algorithms evolve their variables in parallel at every time step. This

workflow is not matched by common processing units, which can only compute in series. For this

reason, CPUs need to store, write and access a large quantity of data with the limit of the already

mentioned Von-Neumann bottleneck, making the computation of the algorithm intrinsically slow. The

fact that the update of the variables is generally simple makes the GPU a valid alternative in terms

of computational power, exploiting the multi-core architecture and highly hierarchical memory struc-

ture. GPUs require however high power for achieving the required performances, thus industries have
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developed new dedicated chips for running ANNs algorithms. This Chips, called AI Accelerators,

despite being based on parallel Non-Von-Neumann architectures, are not in general belonging to the

class of Neuromorphic Computing Chips. Most Deep Learning algorithms are based on Digital Neu-

rons, thus requiring low bit precision for the computation. Such algorithms can be implemented in

digital hardware, exploiting conventional Chip Design rules and production paradigms. Such highly

customized chips achieve high performances and result to be very energetically efficient. Anyhow,

that is not the NC approach, which exploits the notions of Neuroscience to implement biologically

plausible neural systems.

Miniaturization

NC is mainly developed with Analog electronic circuits - or Mixed Signal electronics -, contrary to

most ICs, so that its design and hardware realizations are challenging. Nonetheless, exploiting mem-

ristive crossbar arrays promises to allow to implement large memories in conventional form factors.

More conventional implementation of equivalent memories require larger chip dimensions, as for the

case of Graphical Processing Units (GPUs).

Energy Consumption

Energy Consumption is probably the main advantage which makes NC approach interesting in many

applications which require an analysis of large sets of Data in real time: due to its biologically inspired

nature, NC may in future produce powerful machine able to operate at ultra low energy. As a matter

of fact, it is estimated that the Brain only consumes some 20W in average, while being able to process

data from all its sensory stimuli and performing complex tasks. Being the Networks in NC simplified

version of real neural systems, the energy consumption of the electronic circuits with which they are

implemented can be optimized.

Real Time operation

In conventional computers, simulating Neural Network is inefficient due to the already mentioned Von

Neumann Bottleneck. That is why in simulations one often rely on GPUs, which have a so-called

”Near-Memory” architecture reducing the problem of storing and processing large amount of data.

Nonetheless, parallel computing is not achieved in GPUs, which require huge amount of power to

provide acceptable performance. As a consequence, even though GPUs may provide good enough

performance for Real Time application in simplified Neural Networks, they exceed in Energy Con-

sumption and Chip Integration, subsequently being unsuited for In-Sensor operations. NC offers the

possibility of achieving the same processing power of GPUs but at a much lower Energetic cost and in

Integrated Circuits form-factor. That paves the way for integration of Sensory and Processing units

in the same chip, with relevant application in Edge Computing, in the framework of the Internet of

Things.

3.1 A NC machine: how it is made

Even though NC machines are very different one with respect to the other, most of them are based

on the paradigm of Spiking Neural Networks (SNNs): this represents a subset of Neural Networks

with enhanced biological plausibility in that the operations of the neuron occur in continuous time;
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In order to perform such a complex time-continuos - and thus asynchronous - dynamics, NC mainly

employs analog or mixed-signal electronics: in particular, it is common practice to utilize conventional

VlSI devices, such as CMOSs in sub-threshold design.

For completeness, not all NC are based on asynchronous operations: an example of such an exception

is Loihi [40], the first Neuromorphic Chip by Intel, exploiting a fully digital architecture and syn-

chronous operations which emulate the dynamics of SNNs.

3.1.1 Neuron and Synapse models

Computation in neural systems can become heavy considering the fact that each neuron implies the

calculation of coupled differential equations whose results influence other neuron’s state. The result is

a complex non-linear system that evolves in parallel: a prohibitive task for simulation in conventional

computers, from which the need for dedicated hardware is evident. Moreover, from the point of view

of Machine Learning it emerges the complexity in controlling such a system in order to obtain the

required results: while units and links in Artificial Neural Networks - such as the ones used in Deep

Learning - are regulated by few parameters and low precision digital values, Neuron Models are ana-

log and governed by a high number of parameters. As a consequence, it is challenging to implement

effective algorithms for learning. A compromise has to be found between biological plausibility, the

computational cost of simulations and control over the learning algorithm by means of the variables

of the units.

Of course, there is no uniform choice among the Neuromorphic Community, which is driven by differ-

ent motivations. Scientists with a strong background and interest in Neuroscience are prone to retain

high biological plausibility, despite losing computational efficiency and potential in learning tasks:

Networks developed with such a philosophy are mainly used to study the functioning of the Brain

in simulations from a dynamical and physiological standpoint, ignoring the learning capabilities and

potential. The models of choice are mainly Hodgkin-Huxley or even Multicompartments-based ones

and the Networks are composed of a low number of units.

Engineers with a background in Machine Learning or Electronics are more prone to a simplified repre-

sentation of the Brain, which allows a higher degree of control and reasonable computational efficiency.

The choice of the neuron model in these cases often relies on the Integrate-and-Fire, in its multiple

realizations. Network architecture is in this case usually more complex and inspired by the concepts

of Machine Learning: despite the complications of a continuous-time operation and the non-trivial

neuron’s dynamics, results in terms of learning capabilities are improving with time and already at

remarkable level for simple datasets (TIDIGITs, MNIST).

The approach used in this work is closer to the second one, with Integrate and Fire neurons and

complex, recurrent architecture.

Neurons: Leaky Integrate and Fire

It constitute the simpler neuron model in the family of Integrate-and-Fire, being governed by one

simple differential equation in the state variable of the Membrane Potential. Current from external

stimuli is integrated up to the point in which the Membrane potential reaches a threshold and the

neuron fires a spike.

∂v(t)

∂t
=

(v0 − v)

τ
(3.1)

In simulations, one also has to specify the values of the Spike, the Refractory period, the Reset po-

tential and the Reference potential v0.
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Figure 3.2: Representation of the complexity and quality of different Neuron models with respect to their

computational complexity/efficiency, from [25]

Izhikevich

This model represents probably the optimum compromise between biological plausibility and computa-

tional complexity in simulations. As a matter of fact, it is able to reproduce advanced behaviors, such

as spiking, bursting and adaptation, so that it is not so far from the completeness of Hudgkin-Huxley

model in term of reproduced dynamics. However, HH model is much more complex to reproduce

both in electronic hardware and to be simulated by computers, making the Izhikevic model a valid

alternative for applications. The model comprises two equations, the main of which is of the second

order, and 4 variables a, b, c, d heavily affecting the behavior:

∂v(t)

∂t
= 0.4v(t)2 + 5v(t) + 140− u+ I (3.2)

∂u(t)

∂t
= a(bv − u) (3.3)

ifv > 30mV

{
v ← c

u← u+ d
(3.4)

The 4 variables have different purpose, which can be summarized in this way:

• a: time-constant of the variable u(t). Typical value: 0.02

• b: sensitivity of the variable u(t) to sub-threshold fluctuations. Typical value: 0.02

• c: reset value for the potential v(t). Typical value: -65mV

• d: reset value for the variable u(t). Typical value: 2

Moving the discussion over Synapses, there is less variation on the models employed for the con-

nections. The complex dynamics occurring in synaptic cleft during the release of neurotransmitter in

mostly neglected and the models are characterized by ideally analog values - often stored in memories

in 32 bit format - which modulate the magnitude of the spikes traveling from the pre-synaptic toward

the post-synaptic neuron, resulting in post-synaptic currents. This value, called weight, is ideally not

changing sign over time and not bounded in absolute value, nonetheless, in order to avoid synaptic

saturation, their mechanisms of plasticity may include upper or lower bounds. The weight is not

else than the conductance of the synapse which, ones received the pre-synaptic spike, converts it to

a post-synaptic current to feed the post-synaptic neuron. If one were to emulate the mechanism in
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detail, the complex dynamics formed by the synaptic vesicles release, Neurotransmitters diffusion in

the cleft and acceptance in the post-synaptic membrane should be accounted. Instead, since this

process is not know completely and mainly since it is of high complexity, the dynamics of synapse is

often highly simplified for applications in NC. Before describing some of the main models employed

in simulation, two are the concepts for describing synapse: CUBA and COBA. The first one is a more

simplified version, based on current and weights, resembling the linking methods of Machine Learning

Neural Networks. CUBA, instead, is a more complex class of synapses which implies the model of the

conductances as a function of time: despite the high potential biological plausibility, this often leads

to too complex dynamics for implementation both in simulation and in hardware realization.

For what concerns the more complex COBA models, they are applicable in the cases in which both

Excitatory and Inhibitory synapses are present in this way:

Isyn = gsynexc (t)(Vm − Erevexc) + gsyninh (t)(Vm − Erevinh) (3.5)

where Erevexc,inh are the excitatory and inhibitory reversing potentials. This equation is then to be

inserted in the System comprehending the differential equation regulating the membrane potential of

the Neuron. Of course, the complexity of the model lies in the conductances gsynexc (t) and gsyninh (t).

Instead, CUBA models are simpler and more effective in simulating the synapses: as an action poten-

tial reaches the synapse, this is integrated and generates a current which is modulated by the weights

of the synapse, the main variable parameter of the model.

Isyn = I0wi,jΘ(t− ts)K(t) (3.6)

where I0 is the standard produced current of the synapse to be modulated by the weight wi,j when an

action potential comes at the synapse at ts. Moreover, K(t) is a temporal kernel which modulated the

behavior in time of the synaptic current. Example of those kernel will be shown in the following. As

a matter of fact, due to its simplicity, the CUBA is often chosen in NC system both for what concerns

the simulations and the hardware implementations.

Synapses: Exponential Kernel

When an action potential reaches the synapse, the synaptic vesicles release their neurotransmitter

in the synaptic cleft and those molecules reach the post-synaptic membrane by diffusion. The expo-

nential kernel that the synapse implements aims at modeling the behavior of the neurotransmitter

which reach the post-synaptic membrane in time. Of course, being that a simple decaying exponential

function, the biological plausibility is still not as coherent as in Multi-compartment models, but those

require a much higher computational effort for simulation and hardware implementation.

∂Isyn(t)

∂t
= −Isyn(t)

τsyn
(3.7)

Despite not being the best available model in terms of fidelity to real synapses, the implementation of

the exponential kernel offers a minimum degree of biological plausibility and light computation cost.

Moreover, it is also flexible as the time constant of the synapse can be adjusted and constitutes a

single parameters of the Network, enriching the possibilities of dynamic behaviors at the cost of just

one additional tuning parameter.

From the physiology stand-point, this type of Synapse is suited to simulate the AMPA neurotrans-

mitter dynamics, which has a steep increase of concentration in the synaptic cleft during an action

potential event and then a slow decrease.
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Synapses: Alpha kernel

The main defect of the Exponential Kernel is the non differential point which happens as the synapse is

activated by an incoming action potential. This Dirac’s Delta is convenient in terms of computational

costs but is non-plausible in biology. For that reason, a simple solution to this problem is to modify

the behavior of the reaction of the Synaptic Current to the action potential, reshaping it to be a

smoother function. The solution is found applying an Alpha function, reported in this equation for

the Synaptic current:

Isyn,i(t) = I0
t− t0
τlin

e
− t−t0τexp (3.8)

This equation refers to the case of a single action potential occurring at t = t0: the function is

composed by two kernels, which act in an opposed way in the first moment after the input action

potential is reached by the synapse. As a matter of fact, for t ∼ t0 the behavior is dominated by

the linear increase in time which modulates the delta of current, while for t >> t0 the exponential is

predominant. As a consequence, still the model involves a Dirac’s delta as the action potential arrives

at the synapse, but that is modulated so to become a smooth function, which results in an increased

biological fidelity.

Moreover, this kernel adds one parameter with respect to the Exponential case, since the linear part

is controlled by a time constant τlin. Even if that may seem an advantage in term of flexibility of the

model, it makes it more complicated to be controlled in structured network, so that one often takes

τlin = τexp in order to make the tuning procedure easier.

Synapses: Difference of two exponentials

From the desire of a better description of the dynamics of the GABA and NDMA neurotransmitters,

a model of a double exponential function was proposed, such as the following one:

Isyn,i(t) = I0

(
e
− t−t0
τdecay − e−

t−t0
τrise

)
(3.9)

As it is clear, the model is composed by two exponentials: one for the Rise of the current and one for

the Decay. Also in this case, the Rise exponential aims at smoothening the delta of current occurring

at the action potential input. This slow increase of post synaptic current describes the slow diffusion

of the Neurotransmitters of the type GABA and NMDA in the synaptic cleft. As per the Alpha

function case, this model is characterized by two independent time constant, so that it is difficult

to implement in Spiking Neural Network due to the additional tuning parameter. For this reason,

it rarely makes it way in complex architecture for Spiking Neural Network aimed at performing a

task with high accuracy, even though it is important for the cases in which high fidelity to biology is

required.

3.1.2 Learning algorithms

Short Term Depression and Potentiation

The class of Short Term Plasticity mechanisms deals with changes of synaptic features occurring at

the order of millisecond to second in time. Considering the time constants of neurons, this can be

considered immediate events and thus are not thought to participate in the formation of memory, but

are key features for the correct behavior of neural systems. In order to understand them, one has to

rely on the physiology of a Synapse to some extent: what happens when an action potential occurs is

that the incoming increase in calcium density [Ca2+] triggers the release of synaptic vesicles, retaining
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Neurotransmitter, which then are received by the post-synaptic membrane and cause a flow of Ions

toward the post-synaptic neuron.

The crucial phenomenon in terms of Short Term Plasticity is the release of the synaptic vesicles: their

number is limited as it is also the concentration of Neurotransmitter in the synapse. Once an action

potential occurs, most of the vesicles are attracted toward the membrane in order to release their

neurotransmitter charge. Nonetheless, of course, only some of them happen to make it through the

membrane, depending on the synaptic weight. Still, if the next action potential occurs within a small

time window, in which the equilibrium condition is still restoring in the synapse, the vesicles are more

easily reversing their charge of Neurotransmitter in the synaptic cleft, thus enhancing the weight of

the synapse. This determines a Short Term Potentiation of the synapse, since if the second action

potential takes a longer time to occur, then equilibrium is restored in the synapse and the weight of

the Neurotransmitter transfer is not modified.

At the same time, if more and more action potentials happen in a small period, the synapse may get

short in Neurotransmitter concentration and available vesicles: in this case, the lasts action potentials

will generate a lower Neurotransmitter transfer toward the postsynaptic membrane, thus exhibiting

lower weight. For such cases, the Plasticity is said Short Term Depression.

Both of the mechanisms are often neglected since they do not fit with simpler synaptic models and their

role in learning and memory in the Brain is not well identified, if not evident yet. As a consequence, it

is mostly only employed in NC machines aimed at analyzing the Brain rather than at performing well

in learning tasks. As a matter of fact though, a simple model for STP and STD exists and it focuses

on the probability of a vesicle to transmit its charge of Neurotransmitters through the synaptic cleft

prel(t). The most used model for such a treatment is the Abbott equation, which yields:

∂prel(t)

∂t
=
p0 − p(t)
τrel

(3.10)

where p0 is the equilibrium probability of release of a vesicle and τrel is the relaxation time constant

of the probability of release. By imposing a condition on prel both STP and STD can be achieved:

• prel = prel + fD(1− prel), 0 < fD < 1 for the case of Potentiation

• prel = fEprel, 0 < fE < 1 for the case of Depression

It is thus clear that, since this model is specific for the case of a single synaptic vesicle, it is not straight-

forward to integrate it in, for example, the case of I&F neuron with Exponential Kernel synapse. For

this reason, this Plasticity mechanism is often not included in simpler neural models.

This discussion may leave the reader with an open question: how do Neurotransmitters end up in a

synapse in the case in which flow is mainly mono-directional from a neuron to another? How is the

concentration of Neurotransmitters restored?

As already mentioned in the beginning of this paragraph, the Brain posses some cells which have

different supporting functions and, despite not participating in the information processing of neural

system, allow the components - both Neurons and Synapses - to maintain a correct behavior in time.

This cells are called Astrocytes, being 20% to 40% of the total of the Glia cells. One of the functions

of such cells is thought to be the exchange of Neurotransmitter and Ions with Neurons and Synapse

in order to restore equilibrium. As it may be clear, modeling such components of neural system often

goes beyond the scope of NC, even though research is ongoing in the more biologically plausible ma-

chines in order to include them in the system.
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Long Term Plasticity

It is a subset of Plasticity acting over a longer time-scale. The main mechanism in this class is

Spiking-Time-Dependent-Plasticity: this plasticity feature is considered the main one occurring in

neural systems and it is believed to give the Brain the properties of Memory and the ability of Learn-

ing. Moreover, it is also computationally quite efficient, so that it is a wide spread feature to be

implemented in the Spiking Neural Network community. For this reason, other mechanisms are often

neglected in order not to increase the complexity of the dynamics and the computational efficiency.

Other examples of Long Term Plasticity are reported in the previous section about Neural Physiology.

Focusing on STDP, the common feature of most of its implementation is that the behavior of the po-

tentiation and depression as a function of the difference in the times of the spikes of two connected

neurons is often exponential. In some very simplified models it can also be linear or just a squared

function, but since the exponential kernel is simply implemented, the focus is on that case. For what

concerns the coefficients which multiply the exponential kernel, there is more diversification, despite

the most used one is the simple constant values A+, A−.{
A+ e

− s
τ+ for s > 0

A− e
s
τ− for s < 0

(3.11)

in which s = ti − tj is the variable encoding the difference in timing of the spikes from the two neu-

rons. This model is simple to be implemented in simulation, less in hardware. However, since this

plasticity mechanism is so common and effective, most team working with Neuromorphic Comput-

ing hardware implementations have developed Integrated circuit which simulate the behavior of STDP.

3.2 Hardware

NC does not only limits to simulations and software implementation, but it rather also focuses on

physical realization of the model with VLSI circuit which allow to conveniently and efficiently run the

developed algorithms. This results in the design of dedicated hardware solutions which implement the

model in an explicit way, to some extent. One approach is to employ digital electronics to encode the

dynamics of simple models, exploiting the established production processes and design rules. In this

way it is however harder to capture the dynamics of biological neurons in details, despite the many

advantages in terms of flexibility of the Networks for connections possibility, complexity of architec-

tures and compatibility with conventional digital electronics. This approach, is, as already said, closer

to the one of AI Accelerator chips, whose aim is parallel computation of Artificial Neural Networks

algorithms. Instead, most typical NC machines retain a higher level of biological plausibility and are

implemented by Analog and Asynchronous electronics in order to allow for more advanced Neuron

and Synapse models to be implemented in the Integrated Circuit. This comes to the expense that

such electronics, being less commonly employed, is harder to design and to build in hardware. The

analysis in this section will be restricted to such Analog electronics, leaving the Digital cases for NC

machines a mention when listing the state-of-the-art NC machines in the following section.

When building a Neural System, one has to select the model of Neuron and Synapse and imple-

ment them on an architecture which allows the connections between different neurons in the Network.

For what concerns the connections between neurons and also most of the gating variables which con-

trol the dynamics of the Neurons and Synapse, those are controlled by conventional digital electronics.

This is why NC machines are often in the class of Mixed-Signal electronic system: the neural dynamics

evolves thanks to Analog electronics, while the connections, gating variables and external signals are

controlled and stored in a conventional digital manner. The interesting part of NC is thus in the
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Analog circuits implementing Neurons and Synapse, which is described in this section.

In agreement with the physiology of the Brain briefly described in the preceding section, components

in Neural Systems must posses the following functions:

• Synapse block: receives the spikes from other neurons, integrate them and convert the result

into current which feed the Membrane potential; moreover, those circuit may comprise some

mechanism for implementing Plasticity and/or Adaptation feature. It is generally composed of

Integrator and Plasticity sub-blocks.

• Soma block: integrates the input, according to a certain model, emit spikes when the Membrane

potential is overcome either in an Analog or Digital (delta-like spikes) fashion, stops its activity

for a certain Refractory Period and eventually adapts its excitability according to its activity.

In general, it is composed by 4 sub-blocks: Integration, Spike generation, Refractoriness and

Adaptation.

Some other block could be added if one were to consider Multi-compartments models, so to implement

the extension of dendrites and axons. Nonetheless, those complications of the circuit are neglected in

most NC machines. For this reason, they will be neglected in this section.

Design paradigms

For achieving the description of the dynamics of Neurons many strategies can be used: from fully

Digital to Mixed-Signal, employing different techniques in electronics. While Digital systems mainly

employ strong inversion CMOS and/or Switching Capacitors, Analog circuit make use of sub-threshold

MOS device. This comes to be particularly useful both for the power management in NC machines

and for biological plausibility: as a matter of fact, the flow of Ions in Neural Systems is mainly due

to Diffusion currents, which is the same transport operation regulating sub-threshold CMOS devices.

This, together with the well known exponential behavior of the Source-Drain current as a function of

the Gate voltage, opens up to the possibility of implementing CMOSs for non-linear behavior blocks

and achieve high biological fidelity.

3.2.1 Silicon Neuron and Synapse

In this section, circuits modeling Neurons and Synapses developed at the Institute of NeuroInformat-

ics are reviewed. Both for the case of the Neuron and Synapse, the circuits are developed around the

concept of the Double Pair Integrator, based on sub-threshold CMOSs. This DPI circuit, which also

gives the name to the whole models, is the input section taking the external currents and integrating

them on a Capacitor. Additional circuits take care of the implementation of the spikes, for the case

of the Neuron, or the generation of the output current, for the case of the Synapse.

In other institutes, different solutions have been adopted in order to model the constituents of the

circuit of the Neuron and Synapse: for a complete analysis of different circuits employed in Neuro-

morphic Computing, the reader is invited to consider reference [31].

DPI Neuron

The DPI is a generalized Integrate and Fire model of Neuron, meaning that, despite retaining the

limitations of a point-like model which does not account for multiple gated Ion Channel dynamics, it is

a more biologically plausible model than most other example of I&F neurons. As a matter of fact, the



CHAPTER 3. NEUROMORPHIC COMPUTING 40

DPI Neuron is composed of 4 blocks which implement various functions: Integrating the input current

from Synapses, Generating Spikes Event with a positive feedback, Resetting the membrane voltage

to the Reset value after a spike and Adaptation with respect to the past activity. With reference to

Fig.3.3, this blocks are respectively colored in Yellow, Red, Blue and Green.

Figure 3.3: Schematics of the Double Pair Integrator based neuron, from [31]. The Yellow block is

the DPI, the Red one is for the positive feedback producing the spikes, the Blue one is aimed at

resetting the membrane voltage to equilibrium after a spike event, the Green one accounts for the

Calcium current and Adaptation.

From a qualitative point of view, the behavior of the circuit can be described in this way, as from

[33]. The input current Iin is summed to a constant background current (set by Vik ) which can be used

to model spontaneous activity. Input currents are integrated by the DPI, increasing the membrane

voltage Vmem over the membrane capacitance Cmem. As Vmem approaches the switching voltage of the

inverting amplifier MA2−MA3, the feedback current Ia starts to flow through MA5−MA6, increasing

Vmem more sharply. This positive feedback has the effect of making the amplifier MR3 −MR4 switch

very rapidly, reducing dramatically its power dissipation. This is because when the first inverter out-

put voltage engages the second inverter, the refractory part of the DPI is acts in order to rapidly bring

the membrane voltage Vmem to ground, by means of the activation of MR6. The refractory period, in

which MR6 maintains Vmem to ground, is defined by means of the capacitor CR. Earlier, during the

spike emission period (occurring when terminal REQ exceeds the voltage threshold), a current with

amplitude set by Vahp is sourced into the adaptation section of the DPI neuron, with a gain set by the

gate bias voltage Vthrahp, and a time constant set by Vikahp. The adaptation current Ig increases with

every spike, following the same first-order dynamics of Imem. As a consequence, given the negative-

feedback property of Ig, the neuron’s response to a step input current is characterized by an initial

output firing rate proportional to the input current, which gradually decreases until an equilibrium is

reached, thus reproducing the spike-frequency adaptation behavior observed in real neurons.

Following the approach of the Translinear Principle, one can get the equation regulating the whole

circuit in its sub-threshold dynamics. The Translinear Principle is a rule valid for sub-threshold tran-

sistors, stating that:

Depending on the position of a transistor in a closed loop, it can be considered a Clock-Wise or Counter-

Clock-Wise element. In a closed loop of Translinear Elements, the multiplication of the Clock-Wise

currents equals the multiplication of the Counter-Clock-Wise currents That means that, before the
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positive feedback is activated, generating the spikes, the circuit behaves according to the following

equation. The derivation of the equation thanks to the Translinear Principle is not performed.

τ
dImem
dt

= −Imem
(

1 +
Ig
Iτ

)
+ Imem,∞ + f(Imem) (3.12)

τg
dIg
dt

= −Ig + Ig,maxr(t) (3.13)

In this equation, the non linear term f(Imem) = Ia
Iτ

(Imem + Ith) depends on both the membrane

current and the positive feedback current. Instead, the two time-constants τ , τg and the two currents

Imem,∞,Ig,max are defined accordingly:

τ =
CVt
κIτ

τg =
CVt
κIτ

Iτ = I0e
κVik
Vt Iτ = I0e

κVik
Vikaph

Imem,∞ =
Iin
Iτ
e
κVthr
Vt Ig,max =

IMG2

Iτ,g
e
κVthrap

Vt

Of course, such a rich dynamics is required for reproducing the behavior of the Neuron in an accurate

manner: this neuron has been shown to be able to reproduce successfully not only the adaptation

properties it implements but, by means of the tuning of the time-constants τ and τg, the refractory pe-

riod and the adaptation parameters, it is possible to differentiate its functioning from regular spiking

to burst activity. Such flexibility makes it a reference in Neuromorphic Computing, being appealing

both for more biologically plausible applications and for the ease of tuning for Machine Learning tasks.

Finally, a table with some interesting parameters from the DPI Neuron is reported. This values are

taken form the reference [33] in which the transistors are assumed to be in the 0.35µm node, with a

power supply voltage of 3.3V. This represents an older generation technological node, still producing

interesting results in terms of power consumption, yet with some limitations in terms of integrability

in ICs.

DPI Neuron parameters

Membrane Capacitance, Area 100 µm2

Membrane Capacitance (F) 0.5 pF

Neuron layout, Area 913 µm2

Supply Voltage 3.3 V

Power Consumption/spike (300ns pulse) 7 pJ

Power Consumption/spike (100ms , including integration phase) 267 pJ

Table 3.1: Main parameters of the DPI Neuron

Of course, more modern technological processes and advancement in the implementation of Inte-

grated circuits allows for better performance both for the case of Energy consumption and Chip Area.

For example, this is not the technological node with which the DYNAPs chip was based on and the

actual transistor size selected for that case allows to improve the number listed above, which were

produced so to prove the feasibility and success of such a Circuit even with outdated technology. In

the following, the parameters related to the DYNAPs circuit will be presented when analyzing NC

Networks.
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DPI Synapse

The Double Pair Integrator has application in Synapses also. The same chip DYNAPs employees

synaptic circuit of this kind in order to integrate the voltage spikes coming from the output of Neu-

rons. The conversion from voltage spike to output current is modulated by additional circuit which

implement the weight that the biological synapses apply to their input in order to produce the output

stimuli. This weight is not fixed in time in most cases, it rather varies with the rules of Plasticity: it

is possible to reproduce those rules by means of additional electronics circuits.

As for the DPI Neuron, the Synaptic counterpart is an example of high biologically inspired circuit,

possessing peculiar features which are not common in Integrate-and-Fire based Networks. For exam-

ple, the DPI Synapse exhibits Short Term Plasticity as well as Spiking Time Dependent Plasticity

and also, to some extent, NMDA voltage gated channel features.

The following figure represents the main building block of the DPI synapse, even though the circuit

implementing STDP is not shown for simplicity. As a matter of fact, that specific circuit is more

complicated than the rest and is composed of multiple subparts which accounts for various features in

modulation of the Plasticity mechanism. The interested reader is invited in consulting [32] for more

details about that circuit.

Figure 3.4: Schematics of the Double Pair Integrator based excitatory Synapse, from [32]. The DPI

is shown in Yellow, while the Short Term Plasticity is implemented by the Green block. The Red

and Blue block implement the NMDA and Conductance-based plasticity features.

Since most of the transistor operate in sub-threshold, it is still possible to make use of the Translin-

ear Principle in order to study this circuit. The detailed analysis will not be reported, but focusing on

the Short Term Plasticity circuit and restricting the operation to the case of the bias Vthr of transis-

tor MD1 determining the condition Ith >> Isyn, then the equation regulating the Synaptic current is:

τ
dIsyn
dt

+
I2syn
Ith
− Isyn

(
Iw
Iτ

+ 1

)
= 0 (3.14)

which can be further simplified to yield:

τ
dIsyn
dt

= Isyn

(
Iw
Iτ

+ 1

)
(3.15)
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This equation states that the response of the Synaptic current increases every time an input arrives,

meaning that, as Isyn get larger, the every synaptic current response also becomes larger as long as

the condition Ith >> Isyn is satisfied. This mechanism is peculiar of Short Term Facilitation.

Instead, Short Term Depression is implemented by the Green Block (MS1 −MS3): the input spikes

allow a current to flow in transistors MS2 −MS3, controlled by the bias Vstd. This current lowers the

potential Vw determining a lower synaptic current response as a lot of spikes come in the Synapse in

a short period. On the other hand, if no spike arrives for a long time, the voltage Vw is restored to

its original value Vw0 by transistor MS1.

3.2.2 NC Networks

In NC machines Neurons and Synapse are vaguely arranged in a biologically inspired manner: the

Brain is however composed of many sub-systems - often said lobes - in which the architectures of the

Networks are different and serve particular purposes. For example, the Visual Cortex is thought to be

composed of different layers which are aimed at detecting particular patterns, forming an hierarchy of

levels which have inspired the creation of the concept of Convolutional Neural Network. Other areas,

such as the Cerebellum, exhibit more recurrent connections, from which the similarity to Liquid State

Machines [34].

As it is clear, the requirement for general purpose NC machines is that they have to allow the con-

figuration of many different kinds of architectures, maintaining the performances of the components,

Neurons and Synapses, unaltered. That is why the connections are often realized by means of conven-

tional - and reliable - digital electronics, which offers fast, low noise connections. That is why despite

the Neurons and Synapse being implemented in fully Analog electronics such NC machines are said

to belong to the Mixed-Signal class.

In order to allow for flexibility in the connection capabilities, Synapses are commonly arranged in

matrices while neurons are placed at the end of each row of such matrices. Since the output signal

of the Neurons can be brought to input to all the columns of the matrix, and since the Neurons can

in principle gather the signal coming from all the synapses in their row, then full connectivity can

be achieved. Of course, such method allows also sparser Networks to be built. The connections are

controlled by CMOS in saturation operation, either switched On or Off. An example of a single row

of such Matrices is shown in the figure below.

Figure 3.5: Schematics of the input , from [33]. This scheme shows the input coming from other

neurons in the network being processed by synapses and fed into a single Neuron. A similar

treatment applies for all the other neurons in the network

Not shown in the image, the output of the Neuron is led on the top of the matrix, where a CMOS

transistor determines whether the signal is sent to the column of the matrix. Moreover, each synapse

has an input transistor for completing the possibility to select the individual connection between two

neurons.
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3.2.3 Problems of Analog VLSI: Mismatch, Von-Neumann bottleneck

One of the main problems in Analog Integrated Circuits, in which CMOSs are operating in sub-

threshold, is the device-to-device mismatch: each transistor in the Chip is heavily impacted by small

changes in its size, bias and temperature of operation. As a consequence, it is possible to have dif-

ferent neurons behaving differently when stimulated with the same input. Despite it is believed that

also biological neurons exhibit slightly different characteristics and variability between each other,

mismatch is a detrimental feature in Integrated Circuit: it means that the yet complex non-linear

systems created by large networks of Neurons behave in an unpredictable manner due to the non-

ideality of their components. Implementing learning algorithms in such systems is a prohibitive task

and that represents one of the main limitations of Analog devices for Neuromorphic Computing; this

problem is not present in AI accelerators implementing Machine Learning algorithms carried out in

digital reliable hardware VLSI devices, such as GPUs. This gap in reliability of the implementation of

the algorithm is to be filled in two ways: one can either try to improve the hardware through design

paradigms which reduce the effect of Mismatch or the alternative is to exploit biologically inspired

features of the Brain which are believed to potentially not only limit the effect of variability across the

Neuron population, but also bring additional benefits in the computation capabilities of the machines.

The electronic design approach is commonly not employed in that it has been demonstrated to often

lead to a larger area occupied by the optimized Neuron circuits, meaning that the area of the chip

has to be enlarged in order to contain the same number of neurons. Instead, there is a rising interest

in developing algorithms for the implementation of biological features which reduce the effect of mis-

match. For example, Adaptation in Neurons is a local form of plasticity which allows each neuron to

change its excitability to decrease their firing rate when highly stimulated, thus favoring the power

management in the whole chip. Moreover, more advanced Plasticity mechanisms are to be developed

to achieve performance in energy consumption and robustness to variability in the Networks compara-

ble to those observed in the Brain. This Thesis, for example, goes in that direction: Intrinsic Plasticity

and Synaptic Normalization are combined with a more conventional form of Synaptic Plasticity such

as STDP.

The other great limitation of conventional electronic ICs is the Von-Neumann bottleneck. In NC

machines this is caused by the parameters and biases of the Neurons and Synapses being stored in

memories which are located away from the position of the element them-self. As a consequence,

whenever those biases have to be modified, because of a local learning algorithm, for example, the

update has to involve a transfer of information from the register containing the value of the bias to

the Neuron or Synapse circuit. This results in additional consumed power.

Memristors: solution to both problems

Fortunately, the solution seems to be common to both the problems. Advancements in Non-volatile

memories allowed to develop new electronic devices which function as programmable resistors, an

thus memories. These devices are in the family of Memristors and may be realized with different

methods, material and production processed. The main classes of Memristors are Phase Change

Memories (PCM), Valence Change Memories (VCM), Electro-Chemical Memories (ECM) and Spin

Torque transfer Memories (STT-MRAM). Research is ongoing in this field of study so that new con-

cepts are generated very often. Most of these devices are easily integrated into ICs and can coexist

with the circuits of Neurons and Synapses presented before. Their most useful application is when

they are used in order to modulate the biases of the Neuron and Synapse circuits. Utilizing 1T1R

structures (one transistor operating a programmable resistance), the Memristors can locally modify

the value of the bias: ideally, it is then possible to operate on the biases at the Neuron level in a very

energetically efficient manner. The operation of Memristors can then be programmed to overcome the
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problem of mismatch or to implement local learning algorithms.

3.3 State-of-the-art NC machines

Many different implementations of NC have been developed following diverse design paradigms and

architecture at the chip level. Most of them aim at being a general-purpose platform for Spiking

Neural Network algorithms, even though constraints may arise from design rules and limitations in

the electronics. For example, in the previous section it has been underlined the problem of Mis-

match, affecting most of the Analog designed circuits: that problem imposes certain limitations in the

construction of the Network which has to tolerate deviations from ideal behavior of its components.

Instead, for Digital systems, the challenge is to simulate time-continuous processes with clock-based

electronics.

Indeed, each of the machines presents some advantages and disadvantages: describing all such systems

in detail is interesting but beyond the scope of this section. In the following, the NC machine available

at the Institute of Neuroinformatics, the DYNAPs will be described and other NC implementations

will be mentioned.

DYNAP

The DYNAP is a family of chips designed by the team headed by Giacomo Indiveri, INI (ETH and

UZH), on which the main part of the research in that group is based. Moreover, the chips are further

developed and customized for the application by Indiveri’s Startup ”aiCTX” [41]: DYNAP-CNN,

DYNAP-SE2, DYNAP-SEL and others. The idea behind such a family of Integrated Circuit is to

implement highly biologically plausible systems for the simulation of neural systems in benchmarks

and standard Deep Learning applications, in the field of Spiking Neural Network. As a matter of fact,

DYNAP chips differentiate with respect to conventional Deep Learning Accelerator by the fact that

the processing involves trains of spikes and their relative timing, instead of clock-based floating-point

computation. For this reason, this processors are to be coupled with Event-Driven sensor or conven-

tional sensor with and Encoder: in the example of a camera, the input to be presented to the DYNAP

is the change of illumination of each pixel, triggering a spike after a certain change in illumination

has occurred, rather than the clock-based evolution of its values in time; a similar approach is to be

applied to any source of data.

Figure 3.6: Image representing the basic Architecture of the DYNAP chip family: 1024

Neurons and 64k Synapses are distributed in 4 cores which are controlled by a Routing

System (R1,R2,R3). Within each core the Biases are shared, those being stored in the

Bias-Generator registers. Image from [37]
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For what concerns the nodes and connections implemented in the Chip, they have been presented

in the previous section, being of the DPI family: this Neurons and Synapses assure high fidelity to

biological counterparts and are conveniently implemented in hardware both for what concerns Area

of integration and consumed power during functioning. Nonetheless, the sub-threshold operation of

the transistors in the circuit suffers from the Mismatch problem, to be solved by the Design of the

Network for the particular application case.

DYNAPs chips are also innovative for what concerns the management of connections and routing of

the spike events: delivering the output spikes of a certain neuron to the correct output neuron, possibly

placed far away in the chip, without generating long delays and with an efficient memory management

for the connection addresses represents a critical operation in the functioning of any Asynchronous

system. For this task, and Address-Event-Representation (AER) routing system is required: any node

of the network is assigned an address which is used to send and receive the spikes between neurons.

If this system is not efficient enough, the neuron loses the ability to send outputs to other nodes

and the design of the Network gets constrained by such hardware limitations, possibly resulting in

worse-performing algorithms. The most basic AER system would assign each neuron a tag from 1 to

N (number of neurons), encoded in log2(N) bits, for a total of FNlog2(N) bits for the connectivity

memory, in the case of average Fan-out of F. Not only this is very wasteful in terms of memory, but,

being the routing memory often implemented by an external SRAM module, this method encounters

the limitation of the Von-Neumann bottleneck. DYNAP family, instead, was designed with the inten-

tion of making this routing process more efficient by dividing the Neurons into Clusters with number

of neuron C, each of which holds the same tags shared by all the clusters (neurons tagged from 1

to K). This allows to break the routing of the spikes into a two-phases process: first, the cluster is

selected, then the tag of each neuron determines whether that neuron will receive the input of not.

With this method, the total memory allocated for the routing operation is:

MEMtot = MEMsource +MEMtarget (3.16)

=
F

M
log2

(
KN

C

)
+
KM

C
log2(K) (3.17)

Optimizing this value with respect to the number of Fan-out clusters M, one gets the optimal memory

per neuron to be:

MEMi = 2
√
Flog2(C)log2(N) (3.18)

Mopt =

√
Flog2(αN)

αlog2(αC)
(3.19)

where α = K/C.

In the chip, the routing system is hierarchically divided into three parts: R1 takes care of local con-

nections within each of the 4 main cores; when events relate neurons belonging to different cores,

R2 is called into action; finally R3 regulates the highest-level communication paths. Moreover, R1 is

responsible for the storing of the Source Memory in SRAM cells, while the Target Memory is located

in CAM cells.

One of the major drawbacks of the DYNAP family is the distribution of the Biases over the 1024

Neurons. The chips have 4 cores, each with an even number of Neurons and Synapses: each Neuron

and Synapse in a core share the same biases. Because of the problem of Mismatch affecting the ICs of

the Neurons and Synapses, and since the biases cannot be tailored individually in order to overcome

this problem, the units in DYNAP chips suffer from Mismatch. Besides, it is not possible to operate

a learning algorithm that involves the local operation of such biases. For example, the Plasticity

mechanism concerning Adaptation or the Input section of the Neuron cannot be implemented.
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Further details related to the main parameters of the implementation of the DYNAP chip family are

gathered in the table 3.2 .

DPI Technological parameters

Process Technology 0.18 µm 1P6M

Supply Voltage - core [1.3 - 1.8] V

Die Size 43.79 mm2

Number of Neurons 1k

Number of Synapses 64k

Total Memory 64k CAM + 4k SRAM

Table 3.2: Parameters related to the technological implementation of the chip DYNAPSe, as from [37]

SpiNNaker

The University of Manchester [38] has realized its own Neuromorphic Computing machines employing

conventional VLSI digital electronics. The machine is actually composed of an ensemble of chips, each

of which is an ARM9 core with its dedicated memory. Despite the presence of some local memories

in the machine, there is no global memory accessible by all the processing units, thus making this

computational paradigm fall in the Near-Memory computing class. Units in the machine communicate

with high bandwidth fabric, optimized for small messages (max 72 bits). As a matter of fact, the

communication between the chips, realized with Address-Event Representation (AER) communication

protocol, is the only limitation to the size of the machines, since the developers build the systems to

make modular and capable of hosting up to 576000 ARM9 cores. Routing all such processing units and

managing to control the system in real-time is the challenge of such a project. Such complication in

the size and connectivity of the machine come to the advantage of implementing any possible Network

architecture, even at large scale. For what concerns the realization of the Neural components, they

can be selected to be either Leaky-Integrate-and-Fire (LIF) or of the Izhikevich’s model. Moreover,

they can receive up to 1000 connections as input. The system is controlled by dedicated software,

based on C++ and Python languages.

The main advantage of such a machine is its immense size compared to most NC systems, allowing

for advanced architecture to run in real-time. Instead, one can debate that its hierarchical structure

for the memory management does not allow the machine to overcome the well-known Von-Neumann

architecture paradigm, making SpiNNaker suffer for the problem of the Von-Neumann bottleneck.

TrueNorth

TrueNorth is the NC machine built by IBM aiming to overcome Von-Neuman architecture for Spiking

Neural Network. From the point of view of the electronic design paradigm, TrueNorth is realized

with digital - thus saturated - 28nm CMOS process, with a fully asynchronous, event-driven method.

Nonetheless, neurons are simulated with a clock of 1ms and displaced in the 4096 cores present in the

machine. Each core contains 256 virtual LIF neurons - where the term ”virtual” indicates the fact that

one only neuron can simulate the activity of 256 other neurons - connected by 256·256 synapses. For

what concerns connectivity, the routing system in TrueNorth allows each virtual-neuron to connect

to up to 256 other neurons in a destination core: as a matter of fact, the options for connectivity are

more restrictive than the ones in SpiNNaker, still the routing system is quite advanced. Synapses are

built to take three values: Inhibitory, Weak Excitatory and Strong Excitatory.

The main problems related to this machine are that it occupies a large area - 4.3cm2 - and, most
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importantly, it does not integrate any learning-on-chip or Plasticity mechanism. While the problem of

the chip dimension could possibly be tackled by exploiting more advanced production processes and

novel technologies, such as Programmables Memories crossbars arrays, the lack of Plasticity/Learning

capabilities on-chip represents a choice in the phase of design. On one side, it makes the circuit required

for the model of Neuron and Synapse way simpler both for the design and operation standpoints: the

chip is simulated with CPU/GPU off-chip, in order to improve the performance and optimization of

the network, and the resulting system is transferred to the chip. On the other side, this procedure and

design choice exclude the possibility of performing on-chip learning, thus to make the chip directly

operate with sensors, without a previous training session off-chip.

NeuroGrid

It represents the NC machines designed at Stanford by Prof. Boahen [39]. As much as SpiNNaker

and TrueNorth, NeuroGrid is designed to run large Spiking Neural Network in real time with efficient

energy management. Unlike most of the NC machines, its Neurons and Synapse are implemented

by means of Analog Electronics, while the routing fabric is fully Digital, thus constituting a Mixed-

Signal machine. Moreover, NeuroGrid implements advanced Integrate-and-Fire neurons and synapses,

so that the dynamics of its Networks is relevant also for biologically inspired/aimed analysis. This

is allowed by the exploitation of sub-threshold CMOS, which has the advantage of allowing real-time

low power operation.

The main downsides of such project are the fact that the connections between neuron are constrained

by the Von-Neumann bottleneck and, commonly to most SNN-based, biologically inspired devices,

optimizing the training algorithm is a complex task to perform.

Loihi

As one of the leading companies in the Integrated Circuit technology solutions, Intel has developed its

first NC chip [40]: it is called Loihi and it was launched in 2008. The chip is based on a 14nm FinFET

process, comprehending over 2 billion transistors and 33MB of memory, all in the size of 60mmm2,

being one of the most compact implementations of NC machines. The neurons are grouped in 128

cores and in each of those they are displayed in a tree-like manner. Also, the chip contains 3 x86 pro-

cessing units devoted to routing and controlling the communication between the cores. Together with

its compact size, Loihi is advanced also for what concerns energy management, consuming only 15pJ

per synaptic operation, and the computational power, being able to perform 30 billion synaptic oper-

ations per second. The chip is a promising solution for embedded system in which NC machines are

directly interfaced to sensors given also its ability to perform On-Chip learning, mainly through STDP.
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DYNAPSe TrueNorth NeuroGrid SpiNNaker Loihi

Producer INI (ETH/UZH) IBM Stanford
University

of Manchester
Intel

Process

Technology

Mixed-Signal

180nm

Digital (ASIC)

24nm

Mixed-Signal

180nm

Digital (ARM)

130nm

Digital (ASIC)

14nm

Die Size 43.79 mm2 4.3 cm2

(chip size)
165 mm2 102 mm2 per die 60 mm2

Number of

Neurons
1024 1M

64k per core

16 cores

1k per core

1M cores
130k

Number of

Synapses
64k 265M 375M

All-to-all

connectivity
130M

Total Memory
64kB CAM +

4kB SRAM

12.75kB per core

4096 cores
- -

2Mb SRAM per core

128 cores +

16MB SRAM

Energy per hop
17pJ

@ Vdd = 1.3

2.3pJ

@ Vdd= 0.77
14pJ 1.1nJ 15pJ

Table 3.3: Summary of the main features of the mentioned NC machines. The digital ones allow for higher

scalability of Networks, but have limitations in the complexity of the units (Neurons and Synapses) and in

Energy management. Mixed-Signal based devices are excellent in real-time operation with ultra low power

consumption

The table above sums up the main characteristics of the NC machines analyzed up to now: as it

is clear, by comparison of the number of Neuron and Synapses, Digital systems allow to integrate a

larger number of components, resulting in the capability of implementing larger Neural Networks. On

the other hand, this approach is less detailed in providing accurate Neural and Synaptic dynamics:

as a matter of fact, Digital NC machines can be viewed as a development of conventional hardware

accelerators for Machine Learning toward more biologically inspired ICs, so that their degree of bio-

logical plausibility is generally low.

Instead, Mixed-Signal electronics offer the ability to operate at ultra low power, emulating complex

neural behavior: this makes them potentially more attractive to be coupled with sensors in low-power

Systems-on-chip, such as wearable devices. Nonetheless, this design paradigm comes with the costs of

a larger chip area per circuital element - Neuron and Synapse - leading to limitations in the complexity

of allowed Networks. Moreover, their related algorithms, based on Spiking Neural Networks are more

difficult to be set up and generally produce worse results than their ANN-based counterparts. Impor-

tant efforts are being done in research in the NC field for improving the capabilities of Mixed-Signal

devices, also from the point of view of algorithms, to exploit the capabilities of such interesting systems.

3.3.1 Softwares

Simulating Spiking Neural Network is a complex task since it involves the solution of several coupled

differential equations evolving in continuous time. For this reason, some platforms have been created

in order to build libraries containing pre-built models for the Neurons, Synapses and Network Archi-

tectures. Moreover, those libraries also often include routines able to calculate the complicated system

of equations for the neurons, leaving the programmer the selection of the model for the components of

the system and the architecture of the Network. This allowed to open up the world of NC to scientists

less experienced in Computer Sciences, favoring the convergence of experts from multiple disciplines

to work on Neuromorphic Computing.

One such Library is called Brian2 [35] and it is open-source: it provides the user different options in

terms of Neuron and Synapse models and the possibility to write their constitutive equations in an
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intuitive syntax, solving them automatically. Like most of the Machine Learning Libraries, Brian2 is

written in Python and compiled with either the Numpy or Cython suit for more efficient performances.

Other python packages for implementing SNNs in software are NEST, ANNarchy, NEURON and Gen-

esis.



Chapter 4

Liquid State Machine

4.1 LSM: Definition and Characterization

In a famous paper from Maass [28] the framework of an important computing paradigm was delin-

eated: Liquid State Machines (LSMs). To give that a context, LSMs belong to the field of Recurrent

Neural Network and more specifically of Reservoir Computing (RC), which is defined in this way:

An RC system is composed of 3 main components: an Input layer, a Reservoir and an Output Layer,

also called Readout. Connections in the reservoir are recurrent and the training of the weight of the

connections is performed on the Readout weights only. The units of the Reservoir are non linear.

Figure 4.1: Schematics of the architecture of Liquid State Machine: an Input is projected in

a Recurrently connected Reservoir which in turn projects it self on the Readout layer. The

latter connections are the only ones to be eventually trained in a supervised fashion

While the Echo State Machine (ESM), the other great branch of Reservoir Computing, belongs

to the framework of Artificial Neural Networks and operates in discrete time, LSMs are governed by

continuos time and are implemented by Spiking Neural Networks. For this reason, ESMs are not

further investigated and the analysis focuses on LSMs.

In order to map an input, function of time u(·), on the desired output function y(·), a LSM generates

a ”Liquid State” xM (t), representing the response of the Network to the preceding inputs in time

u(s), where s < t. The Liquid State is a continuous-time function assuming analog values, containing

the information from all the units in the Dynamical System, formed by the recurrent Neuron group.

It is reminded that the order of the connection in the Recurrent group is not known nor established

a priori, according to the principles of Reservoir Computing.

From a mathematical point of view, a Liquid State is the output of an operator LM that maps the

51
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response of the Liquid to the input u(·), and then projects it to the output y(·):

xM = (LM (u))(t) (4.1)

The operator LM is often referred to as ”Liquid Filter” or ”Liquid Circuit”. The other important

part of a LSM is the readout, which allows extrapolating the information from the high dimensional

Liquid Circuit. That is implemented by a function fM :

y(t) = fM (xM (t)) (4.2)

The readout function is built specifically for the requested task, and more than one readout modules

can operate in parallel mapping the Liquid State. It is then clear that the Liquid State is not tuned

nor influenced by external intervention, but it is a complex dynamical state which can assume time

continuos analog values and has large enough dimensionality and non-linearity so that it is able to

store and process the information from the input, conserving a portion of its past evolution.

The main two attributes to be evaluated in LSMs are: Separation properties (SP) and Approxima-

tion property (AP). SP deals with the ability of the Liquid State to produce different trajectories in

time when stimulated by different inputs. AP, instead, refers to the readout and in particular to its

capability of producing different outputs based on different states of the Liquid Circuit. Both are fun-

damental for the correct learning of the mapping function from input to output, making the mapping

function being able to generalize with respect to different inputs and accurate in the classification or

regression procedure of the readout.

Because of its generality with respect to the input type and due to the high level of customizability

of the readout function, LSM is a powerful machine for computation: in [28] it is demonstrated that

LSM can be considered as a class of machines that have universal power for computations with fading

memory on functions of time, following the fact that they possess both Fading Memory and Time

invariance properties.

4.2 Training in Liquid State Machines

Training is typically attributed to the readout layer of weights in Reservoir Computing: as a matter

of fact, the output connections act as a classifier with respect to the Liquid State, which contains

the processed information of the input. Due to the recurrent connections and the complex behav-

ior of the nodes, the Liquid is capable to perform non-linear operations and project the input in a

higher-dimensional space. Exploiting this processed representation of the input, the readout is simply

given the task of classifying the different behaviors of the Liquid. There are several ways in which the

output layer can be trained, depending on the type of application. In principle, both ”on-line” and

”Batch-mode” training can be applied: for the first case, the weights are regularly updated following

learning rules based on the Liquid State; instead, Batch mode learning refers to the computation of

the weights based on the whole history of the Liquid State after the presentation of a data-set.

Nonetheless, Reservoir Computing has evolved from its formal definition and it has been shown that

the performance of the LSMs could be improved if some policies were applied to the randomly gen-

erated recurrent connections. First, some general rule has been shown to improve the performance,

such as the control over the Spectral Radius of the weights in the Reservoir in Echo-State-Machines

[42] or the generation of the connections based on the distance between nodes [47]. Also, the effect of

unsupervised learning of recurrent connections has been investigated: mainly STDP has been stud-

ied as a plasticity mechanism able to improve the performance of the reservoir, but other plasticity

mechanisms are potentially helpful in that perspective.

Of course, however, the main effective part of the Training of LSM deals with the output weights. A
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first difficulty in performing such procedure derives from the nature of the Neurons in SNNs: while

with ANNs the evaluation of the error with supervised techniques is feasible, thanks to the simple

node’s activation functions, and leads to the Back-Propagation training policy, applying the same

procedure to SNNs is far more complex. The behavior of Neurons is way more non-linear and evolves

in continuos time. Moreover, the activation function of LIF neurons is non-differentiable, being a

delta function. As a consequence, standard Gradient Descend based approaches are not applicable or

efficient in LSMs.

As it often happens for SNNs, one has to find some expedient in order to perform learning. One has

to extract information from the spike trains produced by the neurons. Mainly, there are two policies:

• Rate Coding: it is based on the frequency of the Neurons, also said Firing Rate. Synaptic

weights are adjusted based on the rates of the neurons rather than for particular spikes patterns

or timing. It is a robust decoding of information from spike trains, especially against noise, but

it neglects small temporal features. Evidence of such mechanism was first found in the nervous

system of muscles [48] and lately in cortical areas in the Brain. Nonetheless, it is believed

that such a neural coding paradigm lacks in computational power and misses some of the key

information in spike trains. As a consequence, it is thought not to be the main mechanism

carrying information in the Brain [49].

• Time Coding: it is based on the precise timing of each spike. Noise is thought to contain a

crucial part of the information in spike trains. In that way, the time features extracted by the

activity of neurons are on the ms time-scale, rather than on 100ms as in Rate Coding. Despite

being proposed to be the main coding mechanism explaining Brain’s information transfer and

processing [50], it is highly challenging to implement algorithms based on Time-Coding for

Neural Networks due to their high sensitivity with respect to noise.

Due to the difficulty in finding suited algorithms and high noise sensitivity of Time Coding, most SNNs

are based on Rate Coding. That said, the performance of Rate Coding is heavily affected by the way

the frequency of the Neuron is calculated. As a matter of fact, spike trains are all but regularly timed

events, so the firing rate has to be approximated. There are two main definitions of firing rates for

SNNs applications: Spike Counts and Low pass filter of Spikes.

The first definition of firing rate is based on the counts of the spikes in fixed intervals. Given an

interval size, more commonly on the 100ms order of magnitude, the number of spikes is counted and

the frequency is obtained by dividing by the interval length.

FRi =

∑ti+1

ti
δ(t− tspike)
ti+1 − ti

(4.3)

The rate along time is given by the discrete succession of the spike-count values. Of course, the small

temporal features at the ms-scale are lost due to the size of the time interval. One may then think

to lower the binning size, however that generally lead to highly noisy signals with large fluctuations

of the frequency of neurons. Noise is crucially detrimental with respect to most common rate-based

learning procedures, such as Linear and Logistic Regression. In order to find a compromise between

the stability of such learning algorithms and the amount of information extracted by the decoding,

interval sizes of the order of 100ms are typically preferred. An example of such a decoding of in-

formation from a train of spikes is given in Fig.4.2. In this case, a 100ms is chosen to establish the

frequency of the spike train. As it is clear, the time-binned frequency is able to capture the overall

behavior of the Poisson distribution of spikes, but it lacks the small feature at the ms time scale. Also,

since the time-interval is fixed, the available values of frequency are given by fk = k/tinterval. As a

result, the decoding is limited both to the time-scale and in the frequency conversion: nonetheless,
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this compression of the information produces a signal which is favorable for more common learning

algorithms, such as Linear and Logistic Regression.

In the second case, the spikes are treated as delta functions, increasing by one unit the value of a Fir-

ing Rate function defined on the continuous-time. The function implements, in general, a convolution

operation of the spikes with an exponential decaying kernel.

FR(t) =

∑
δ(t− tspike)

τ
e
t−tspike

τ (4.4)

In that way, the frequency is estimated by means of the time-constant of the exponential decay: with

low values, the small temporal features of the firing rate are captured, leading however to a more noisy

function; with high time-constant, a more stable yet less accurate representation of the firing rate is

obtained.

Such method recalls the functioning of the Calcium current produced when an action potential occurs

in a Neurons. Ion Channels control the flow of the Calcium Ions based on the voltage of the Membrane

of the Neurons, thus called Voltage-Gated-Ion-Channels. The behavior of the Calcium Current is of-

ten modeled with Eq.4.4 by multiplying the right side by a proper constant. An application of such

method is also presented in Fig.4.2: here, the time-constant of the exponential kernel is presented in

three values [50, 100, 500]ms. Due to the fact that the increment of the Firing Rate is weighted by the

inverse of the time-constant and the decay is faster for small time-constants as well, when τ = 50ms

the approximation of the Frequency produces a highly noisy function, able to capture the overall

behavior at the 10ms time scale. This highly fluctuating function is however unsuited for the use in

learning algorithm, due to the high level of noise. Instead, increasing the time constant produces a

function which ignores the fast fluctuations of the frequency, but better captures the average value of

the Firing Rate and is less affected to noise. In general, since the signal corresponding to τ = 500ms

is also much slower to react to changes in the firing of the neuron, it is particularly suited when the

Firing Rate has to be evaluated representing the average activity of the Neuron in a longer time. One

of such cases, is the use of Plasticity, in which not only the instantaneous value of the Firing Rate

matters, but also the behavior of the Neurons in the previous time counts.

In general, the Spike Count method will be used for the learning of the output weights, while the

Low-pass filter of the spikes will be employed for Intrinsic Plasticity and the evaluation of the activity

of the Network.

Linear Regression

It represents one of the simplest models for interpreting the relationship between a dependent variable

and an explanatory variable. In the case of a scalar explanatory variable, it is called Simple Linear

Regression, otherwise it is said MultiLinear Regression. The relationship between the dependent

and explanatory variables is modeled with a linear function, whose parameters are the object of the

learning. Explaining LR from the standpoint of its application in this work, 3 matrices are given: R

being the Reservoir activity or rate, obtained by performing the Spike Count method on each neuron;

Wout the output matrix; Oteach the teaching Output rate matrix. The goal is to tune the output

weights Wout in order to minimize the error of the actual Output of the Network O with respect to

the teaching signal Oteach. This is performed by the following simple linear relations:

O ≈Wout ·R = Oteach (4.5)

The Linear Regression is computed in order to minimize the Mean Squared Error of the scalar product

Wout x R with respect to the teaching Output Oteach.

As it is clear, Linear Regression assumes a linear relation between Input, which in the case of LSM
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Figure 4.2: Comparison of the functioning of most common Rate and Time coding method for decoding the

information from a Spike train, shown at the top, obtained from a Neuron firing with a Poisson distribution

at 40Hz. In the Spike Count method, the spikes within an interval are summed and the frequency is obtained

by dividing by the interval length. The Low-Pass filter implements the Eq.4.4 in order to approximate the

frequency: three cases of time-constants are plotted. Time coding, instead, deals with the precise timing of

the spikes with respect to each other.

is the Liquid State, and Output, the output group. However, the dynamics of Neurons is much more

complex and inherently non-linear. As a consequence, Linear Regression is not the optimal solution

for training the weights in SNNs. Still, the performance of the LSM tuned by this method will be

shown to be acceptable. The benefit of such a non-ideal training method is that it can be compared

with on-line training methods, which are in general less accurate. Since on-chip operation is a goal

of many neuromorphic systems and on-line training is the only viable option if one does not have

control over the device during the whole phase of training, it is interesting to evaluate the effect of

non optimized weights.

Logistic Regression

Logistic Regression is a tool for evaluating the probability of a certain variable to be classified in a

binary fashion. In order to model the probability of the variable, a logistic function is utilized. The

process of applying Logistic Regression to a classification problem then reduces to quantifying the

parameters of the logistic function describing the probability function.

As much as for Linear Regression, the logistic method can be applied in the case in which a teaching

signal is known and a system needs to be approximated to it. In this case, the teaching signal has

to be a succession of binary values, virtually indicating the activation of one or more classes in the

Output. For example, if the output of a system is composed of the letters [a, b, c] and the requirement

is to classify the Input as a b, the binary output will have to be [0, 1, 0] to indicate that the second

class is selected.

The form of the problem applied to the LSM case remains unaltered: a Reservoir activation matrix R
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is defined and an Output Weights matrix Wout is learned in order to minimize the error with respect

to a teaching signal Oteach. In this case, the linear system given by Wout · R is approximating a

Logistic function:

Logit (Oteach) ≈Wout ·R (4.6)

where the Logistic function is in general defined by:

Logit(p) = ln
p

1− p
(4.7)

defined over 0 < p < 1.

4.3 Dynamics of the Liquid

While Echo State Machines have been extensively characterized by the Deep Learning community

and mathematicians have developed strategies in order to control the behavior of the Reservoir so

to maximize performance, Liquid State Machines remain a less robust computing paradigm. Spiking

Neural Networks present the difficulty of dealing with more complex equations at the node (Neuron)

and connection (Synapse) levels and thus the tuning of the Reservoir for maximizing classification re-

sults requires a greater effort. Despite the simplicity of the LIF neurons and Exponentially Decaying

synapses with respect to other more biologically inspired models, the amount of hyper-parameters to

control is large, each having an effective impact on the dynamic state of the Liquid.

In particular, it is common practice to tune Reservoirs at the Edge of Chaos, a situation in which the

dynamics of the network is neither deterministic or vanishing nor chaotic. The Edge of chaos can be

viewed as a region of the hyper-parameter space in which the Lyapunov Exponential (LE), a common

metric for dynamical systems, is close enough to 0. Unfortunately, calculating the LE is very time

consuming, especially if it is required during the phase of tuning of the parameters of the Network,

since it has to be performed by repeating long runs in simulation.

For these reasons, the Lyapunov Exponentials are not a common metrics for SNNs, for which the

tuning phase remains a critical step in the setup of an experiment.

4.3.1 Tuning of the Liquid

Despite the LSMs being general-purpose computation machines, their Liquid has to be tailored for

the specific task it is used for in order to reach acceptable performance. Two aspects have to be taken

into account when approaching the tuning of the Liquid: what kind of Input will be proposed to the

Reservoir and what kind of Output the LSM is expected to produce.

When analyzing the Input, the main information it contains, given the way learning is performed,

by means of Rate-Coding, is the Frequency. In general, the Input may be coming from sensors or

external agents and they all code some information in the form of the frequency of the spikes. The

Liquid’s time-constants have to be set in order to make the Liquid able to respond to the Input in

an effective way. A simple rule of thumb is to match the time constants of the input signal with

these of the Neurons and Synapses, even though slightly faster components may help in processing

the information without losing a substantial portion of the Input information. For the specific cases

of study in this thesis, the Input will be a group of Poisson-firing Neurons at a frequency of 100Hz:

Neuron’s and Synapse’s time-constants in the range [10− 50]ms are consequently adopted.

For what concerns the Output, the LSMs will be both asked to reproduce a specific firing pattern or

to perform classification. For the first case, it is important to tune the Output neurons in order to
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make them able to produce the required signal. Instead, for the sake of classification, no particular

constraint is imposed on the frequency of output neurons: ideally, in order to represent a certain class,

a single neuron or a single group of neurons should be firing, with whatever frequency, and all the

other neurons stay silent. However, this is difficult to achieve, so the policy for classification is that

the Output will assume the value corresponding to the highest frequency firing Neuron. For both the

cases, the same consideration on the time-constant related to the Reservoir components is valid.

In general, it is not feasible to tune each parameter of the Network due to the highly non-linear and

recurrent nature of the Reservoir: the effect of each parameter is dependent on each other, so tuning

a parameter at the time is useless. Because of that, a baseline is assumed for most of the parameters

of the Network:

% Inhibitory pII pEI τsyn;inh,out I0,syn;inh,out Rin;inh,out
20 % 0 % 10 % 15 ms 0.2 nA 350 MΩ

Table 4.1: Base-line parameters for the tuning procedure of the Liquid

The percentage of inhibitory Neurons and the absence of recurrent connections between them

have been chosen based on biological motivations and inspiration from most of LSMs implementa-

tions found in the Literature. Instead, fixing the synapses time-constant, both inhibitory and at the

output, at 15ms was chosen based on the fact that most of the signals processed by the Liquid had

to present features at the 100ms time-scale. Finally, the synaptic currents and the input resistances

for Inhibitory and Output Neurons have been chosen in order to produce firing rates on the order of

100Hz.

Instead, tuning is performed for the other parameters which have a stronger impact on the dynamical

behavior of the Reservoir. The probability of connections between Excitatory neurons, pEE , controls

the homogeneity of the activity in the Reservoir: high connectivity means that the Network has a lot

of synapses which distribute the activity in the Network evenly. Instead, a low degree of connectivity

allows the activity to form some paths in the Reservoir and form clusters of active neurons. The degree

of connectivity from Inhibitory and Excitatory neurons pIE controls how strong the inhibition is to

the Reservoir: in general, the inhibition is evenly spread in the Reservoir, but too large connectivity

may slow down Excitatory neurons too much. The parameters at the input section of the Excitatory

Neurons are also tuned: the Membrane Resistance and Capacitor play a crucial role individually and

together they form the time-constant of the Neuron. Lastly, two additional parameters of the Synapses

connecting Excitatory units are tuned: the synaptic unit current IEE and the synaptic time-constant

τEE , both of them regulating the strength of the Synapses. The figures below are obtained by varying

the mentioned hyperparameters individually, thus are not representative of the phase of tuning, but

showcase how difficult this phase is due to the high sensitivity of the Liquid with respect to any

parameter modification.
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(a) AFR and % of silent Neurons vs pEE (b) AFR and % of silent Neurons vs pIE

(c) AFR and % of silent Neurons vs Neurons’ in-

put resistance

(d) AFR and % of silent Neurons vs Neurons’ in-

put capacitance

(e) AFR and % of silent Neurons vs Excitatory

synapses current unit

(f) AFR and % of silent Neurons vs Excitatory

synapses time-constant

Figure 4.3: Effect of the tuned parameters on the Liquid. AFR is the Average Firing Rate of the Excitatory

Neurons, pSil is the percentage of Excitatory neurons which are silent during the simulation time. The values

selected during the tuning procedure are marked in yellow.

In these plots, each point corresponds to the average between 10 simulations of 5s performed by

projecting different Poisson-Input spike trains at 100Hz of average frequency each time to a group

of 10% of the Excitatory Neurons. The response of the Liquid is characterized by its Average Firing

Rate (AFR) and the percentage of Silent neurons (pSil). Immediately, a feature of the plot is clear:

both the quantities are plotted with their standard deviation of the 10 trials, but the pSil appears to

have almost no variability. This turns to be a good thing since it means that the activity of the Liquid

due to a certain Input is spread through the same group of Neurons every time, despite the noise at

the Input. In turn, this is good for identifying in the response of the Liquid what Input signal has

been presented.

Furthermore, the behavior of the AFR and pSil is similar for every parameter modification. In general,

these quantities have a sigmoidal behavior when spanning over different values of a single parameter,

but due to the high non-linearity of the Liquid, it is difficult to predict the behavior when more than

one parameter is changed at one time.
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The values selected during the tuning procedure are marked in yellow. The choice was based on a

paradigm: the active Neurons had to fire around the Input frequency (100Hz) and they had to form

a defined cluster of activity that made it easy to recognize the type of input and at the same time

present a complex enough dynamics in order to perform, later in this work, temporal tasks. This last

requirement is not easily evaluated by means of the AFR, even though the Standard Deviation of such

a quantity may give an intuition that the response of the Network was not deterministic and static.

While in this case the same 10% subset of the Liquid was linked to the Input, connecting the Input to

different subgroups of the Reservoir is in general a way to encode information to the Liquid: each of

the subgroups represent a given input signal even though the Input group is maintained the same all

the time. For example, the figure above may refer all to the Input signal 1, choosing other subgroups

one can feed the Liquid with signals [2,3,4..,10]. Since one aims at producing a signature pattern of

activity for each of the input signals, the subgroups do not share any neurons and are independent

with each other. In order to find a compromise between richness of dynamics expressed by the Liquid

and classification performance with respect to each signal, it has been decided that each signal had

to activate [40-60]% of the Reservoir Neurons.

Figure 4.4: AFR and Percentage of Silent Neurons with respect to 9 different input con-

dition. The same input group is linked to a different subgroup of the Liquid containing

10% of the total amount of Excitatory Neurons. No neuron belong to more than one

group.

4.3.2 Liquid State characterization

Once that the requirement for the AFR and Percentage of silent Neurons have been verified for one

single signal, the same procedure is in theory extended for all the other 9 input signals. It is then

clear that the tuning procedure is long difficult. Furthermore, one more degree of freedom has to be

taken into account: in Brian, the Python library used to simulated the Network, one can establish

connections between groups of Neurons based on the probability of forming the synapse between two

Neurons. Indeed, the effective presence of the Synapse is determined by the ”seed” generating the

pseudo-random variable for establishing or not the connection. When the seed is changed, different
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Figure 4.5: Raster Plot of 9 input signal being fed to the Liquid. Each signal lasts for

0.4s and there is a 0.4s silence from the Input between them. It is noticeable that each

signal produces it signature response of the Liquid.

results are obtained, forming different patterns of connections. Changing the seed has a considerable

impact on the behavior of the Liquid, so that can be considered as an additional parameter involved

in the Tuning phase. In this case, after trying some different seed, it has been found a configuration

able to satisfy the requirements for AFR and pSil for all the different input signals.

As for the case of the Tuning plots, each case is simulated 10 times under different input conditions

and the results averaged. Clearly, each signal produces a different percentage of silent neurons, indi-

cating that probably a defined cluster of activation has formed for each case. The average activity

of the Liquid ranges from 20Hz to 60Hz which, considering the number of silent neurons, means that

the active neurons are close enough to the target 100Hz.

Still, this figure does not indicate whether each of the input signals presents its characteristic signature,

i.e. its own defined cluster of active neurons in the Liquid, so to maximize classification performance.

In order to analyze that, first the Raster Plot of each of the signals is presented and then a Principal

Component Analysis is performed on that simulation in order to capture a quantitative metrics of the

dynamic behavior of the Liquid.

In this raster plot, each signal is presented for 0.4s and there is a pause of 0.4s between each signal.

This silence is needed to evaluate the eventual persistence of the dynamics generated by a signal.
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Figure 4.6: Explained Variance of the first 6 Principal Components, for a 200

Neurons Network, during a 20s simulation

For the sake of classification, persistence activity related to a signal is detrimental as it may lead

to interference when a new signal is presented. On the other hand, in order to perform temporal

processing of the input, each signal has to present a complex enough dynamic behavior of the Liquid.

Such dynamics cannot be evaluated with such short times each signal is presented, even though it

is still visible that within the interval of each signal some neurons are activated and deactivated at

different times. The important qualitative information from this plot is that each signal produces its

own pattern of active neurons: despite some of the active neurons are shared between the cluster of

activation related to different input signals, each signal presents its own distinctive signature on the

Liquid.

It is rare to find an analysis of the dynamical properties of a Liquid in the literature, so it has been

proposed to exploit a Principal Component Analysis (PCA) to extract further information from raster

plots, such as the one in Fig.4.5. In this case, with the metric of the variability explained by the firsts

few Principal Components, one evaluates the richness of the dynamics, while the separation property

is evaluated by projecting the Liquid State for each of the input signals in the first 2 or 3 Principal

Components. When performing the PCA, each neuron is treated as a dimension and its Calcium

Current is the value along time of such dimensions.

In Fig. 4.6, because one has 9 input signals, it makes sense that the explained variance of the Network

is spread through the first few components almost evenly. As a matter of fact, 98% of the variance

expressed in the simulation is explained in the first 12 components. Ideally, if each of the clusters

were totally uncorrelated with each other, the variance would be explained by at most 9 components;

however, some of the Neuron belongs to the active cluster related to more than one input signal, so

that the explained variance is not even in the first 9 components. Moreover, because of the dynamic

behavior of the Liquid, some neurons are activated only after a certain time when a signal is presented,

so that the internal representation of a signal is evolving in time. The consequence is that some of

the variance of the Network is explained by additional components that encode the information about

the Liquid’s dynamics.

Lastly, the Liquid State is projected in the first 2 and 3 Principal Components in order to qualita-

tively evaluate the Separation Property of the Reservoir. Ideally, when the same sequence of signals

is repeated over time, the Liquid State related to each signal is projected in the same portion of the

PC space. Since the input is noisy, because of the nature of a Poisson distributed train of spikes,

one cannot expect that every signal is exactly projected in the same spot but clusters will form, each

one representing different input conditions. The tighter and more packed the cluster, the better the

classification of the input signal. The farther the different clusters, the easier to distinguish between
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different input signals for the classification. If one or more cluster over-impose on each other it will

be not possible for the readout to classify them correctly.

(a) Input signal’s Liquid representation in the

firsts 3 Principal Components

(b) Input signal’s Liquid representation in the

firsts 2 Principal Components

Figure 4.7: Projection of the Liquid State when different input signal are presented to the Reservoir. Most of

the signals are well separated, meaning that their corresponding Liquid State is projected in a certain region

of the first Principal Components, avoiding the overlap of such regions

In Fig. 4.7 it is clear that each input signal produces a cloud of points that are of the same color,

representing each of the input signals. The dimensions of the cluster are smaller than the distance

between them so that the readout can in principle perform classification based on the Liquid State.

One could complain about the red and green clusters being positioned in the same position in the 2D

PC plot, but the 3D figure reveals that the two clouds are not actually the same position. Yet, the

projection over two only components does not allow to verify that.

Some of the clouds are more compact, such as the blue, grey, black and pink ones, indicating that

those signals are better encoded by the Liquid. Other signals, such as the red, violet and light blue

ones, are instead more spread in the PC space. This fact can have two explanations: either the input

signal is more sensitive with respect to the variability of the Input spike pattern or the dynamics

related to these inputs is more chaotic and less deterministic.

Limitations

One of the main aspects which limit the performance of such a machine is the Readout, especially

due to the way it is trained. As a matter of fact, training methods based on the precise timing of the

spikes have been developed [51] [52] but are expensive from a computational point of view and not

feasible for Recurrent Networks.

The alternative is, as already mentioned, to perform rate-coding based training: one treats the fre-

quency of the neurons instead of its single spikes, and aims at producing a target activity on the

output layer. The weights are computed by approximating the Reservoir frequency matrix to the

desired output. By doing so, two errors are introduced:

• Most of the algorithms (Linear or Logistic Regression) to map the frequency of the Reservoir to

the Output assume a linear relation between them. Anyhow, LIF neurons present a non-linear

behavior due to the leakages
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• The definition of frequency is ambiguous for asynchronous trains of spikes. The most common

solution is to count the spikes in time-intervals. However, the length of the interval influences

the behavior of the Frequency in time

Given these two problems, it is clear that the SNNs are not capable to offer the same level of perfor-

mance as ANNs, for which training presents fewer non-idealities.

4.4 Delayed Auto-Encoder

One of the crucial properties of Recurrent Network is their inherent memory, granted by the recurrent

connections and supported by the time features of the processing of the information by the nodes

(Neurons and Synapses) of Spiking Neural Networks. As for the case of the richness of the dynamics,

there are numerous metrics and benchmarks for the evaluation of the Short Term Memory in Artificial

Neural Network based architecture. Above the many, the Memory Capacity and the NARMA test

[44] [46].

Those tests, however, are of no trivial transfer in the framework of the time-continuos Spiking Neu-

ral Network so that it is proposed to apply the Liquid State Machine for a temporal task requiring

memory, in order to quantify its Short Term Memory. This task is the Delayed Auto Encoder (DAE):

the Liquid is fed with a certain input which is reconstructed at the Output with a certain delay,

through the output weights. The weights are computed with simple Linear Regression and the error

is computed by the Mean Squared difference of each Output neuron with its corresponding Input

counterpart. As a consequence, the number of output neurons is the same as the input neurons. The

error is called Normalized Mean Squared Error (NMSE) and the Accuracy is in turn 1−NMSE. The

figure below represents the scheme of the DAE task.

Figure 4.8: Schematics of the DAE task, performed with rate-coding

The task is performed with two different sets of input: the poisson group is either maintained at



CHAPTER 4. LIQUID STATE MACHINE 64

a steady frequency of 100Hz or, at a certain moment (10s) the frequency is stepped up to 125Hz for

1s. The NMSE is evaluated in an interval of time of 8s, while the spikes are time-binned in intervals

of 100ms. Examples of the Input and reproduced Output with Delay of [0, 0.4, 1]s are plotted below.

In all the cases below, the same input is presented, in order to better compare the quality of the

reconstruction with different delays.

(a) Input/Output comparison, steady input (b) Input/Output comparison, 3s step input

Figure 4.9: Reconstruction without Delay. The upper plots represents the time-binned evolution of the spike

count, i.e. the frequency. The lower plots instead are obtained by displaying the Input values on the x-axis

and the Output on the y-axis, in order to evaluate the correlation

When no delay is applied, the Liquid simply has to provide the output the same features in time

it receives from the input. As a consequence, the task is relatively simple and, as it is shown in

Fig.4.9, the accuracy of the reconstruction is high. Without introducing the step of frequency in the

input, the Output is even able to follow the fast fluctuations of the frequency of the input. Also in

the case of the input presenting the step of frequency, the output is able to reproduce most of the

frequency fluctuation, even though the step increases the difficulty of the task and thus slightly lowers

the accuracy of the output.

All these considerations are confirmed by the Correlation Plots, in which the Input is plotted on the

x-axis and the Output in the y-axis: ideally, if the output would be able to perfectly follow the input,

the dots would be aligned in a straight line. The closer to the ideal line, the more accurate the output.

(a) Input/Output comparison, steady input (b) Input/Output comparison, 3s step input

Figure 4.10: Reconstruction for a Delay of 400ms. The steady frequency case exhibits good level of reproduc-

tion of the input frequency, without the same precision it had without the delay. When a step of frequency is

introduced, the level of accuracy drops, since the task is harder.
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The figures above are obtained by shifting the Output of the Delay which they are given, in order

to judge the quality of the reconstruction. With a 400ms delay, the accuracy is in general worse, as

expected: the Liquid is asked to provide the output information it received some time before. The

ability to retrieve this information is related to the recurrent architecture of the connections, which

form the short term memory. By storing information about the past inputs in the complex recurrent

dynamics of the Network, the Liquid is in principle able to provide some information about the past

to the Output. Of course, the quality of the reconstruction is lower with respect to the previous case,

since the readout has to linearly select the information of the past inputs in the Liquid, ignoring the

ones of the present.

Moreover, the complexity of the task is much enhanced by the step of the frequency of the input, for

which the reconstruction is of pretty poor quality.

(a) Input/Output comparison, steady input (b) Input/Output comparison, 3s step input

Figure 4.11: Reconstruction for a Delay of 1000ms. In the case of steady input frequency, still some of the

features are reproduced: the Liquid has a rich enough dynamics so that it can reproduce, to some extent, the

oscillations of the input frequency. With the step of frequency, the Output only learned the average frequency

of the input and forgot the step of frequency.

Increasing the Delay to 1s, one expects to see a further decrease in accuracy. This is true for the

case of the Step of frequency: the output is seen to mainly learn the average frequency, losing the

ability to reproduce the fast frequency oscillations. This behavior is expected to saturate the accuracy

for higher delays. As a matter of fact, the output weights can learn the average frequency anyway,

also producing random oscillations due to the dynamics in the Liquid.

Instead, for the case of steady average input frequency, the accuracy has already saturated: no major

difference in behavior is seen with respect to the case of 400ms delay. The Output is mainly repro-

ducing a signal at the same average frequency with some oscillation, which in some cases remind the

ones of the input. Some correlation with the Input is still present, but the level of accuracy of the

case of no Delay is not even nearly reached.

Results of the DAE

The NMSE and Accuracy are evaluated for different Delays in order to estimate the memory of the

Reservoir. In order to test the Accuracy, the DAE is performed 10 times, each of which varying the

onset time of the step of frequency, if present, and the structure of the input. This means that the

Poisson input group, still firing at the same average frequency, produces different frequency oscilla-

tions every time. The average NMSE and Accuracy are plotted.
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(a) Accuracy of the DAE for the steady input (b) Accuracy of the DAE for the 3s step input

Figure 4.12: Results of the Delayed-AutoEncoder for the cases of No-Step and 3-second-Step input frequency.

Accuracy is stable regardless of the Delay for the case of Steady input frequency, while it decreases for the

case of the 3-second-Step

In the case of the Steady Input, the reconstruction is of great quality, as also confirmed by Fig.

4.12. For small Delays, the Output is able to capture also the small fluctuations of the input frequency

in time, due to the stochasticity of the Poisson Input neurons. This is confirmed by the Correlation

plot, in which the points are distributed along the straight line representing the maximum correlation

between Input and Output. When instead the Delay is over 200ms, the reconstruction is of worse

quality: the Output is mainly able to learn the mean input frequency and produces some fluctuations

which are correlated, only to some extent, to those of the Input. This is why the behavior of the

Accuracy is almost independent on the Delay, when that exceeds certain threshold values.

If the Input presents a step of Frequency, the Output is presented a more complex task, since simply

learning an average output frequency will generate a larger error. As a matter of fact, the error is

in general larger than in the case of steady input for every Delay. It is relevant to observe that the

reconstruction is of good quality when the Delay is small, while the accuracy decreases as the Delay

overcomes 200ms. This is attributed to the Fading Memory of the Reservoir, for which the information

of the Input is retrieved in the Reservoir only for small Delays. When the Delay is greater than 0.7s,

a similar situation as the case of the steady input occurs. The Output learns the average frequency

and produces random oscillations, but totally forgets the step of frequency. Still, the accuracy will

stabilize around 0.85, but this does not mean that the Liquid is able to remind pas input, rather than

the output weights has successfully learned the mean value of frequency of the Input.

At last, a common behavior for both the cases of steady input and with the frequency feature: the

accuracy is best when the Delay is of 100ms. The interpretation of this fact is that the activity of

the Input takes time to spread in the Liquid, since the input spikes are processed by Neuronss and

Synapses which have time constants at the 10ms time scale. This means that even a single spike event

takes some time in order to have an effect on the Liquid. Due to the level of connectivity (5%) and

the size of the Reservoir (200 Neurons), each input spike is processed in average by a mean number of

Neuron and the time it takes to produce an effect on the Liquid is certainly on the 10ms scale. It is

then of no surprise that when a Delay of 100ms is present, the reconstruction is of best quality: the

Liquid contains just the information it received from the input a short time before, which has spread

through the Network.



Chapter 5

Intrinsic Plasticity

This chapter of the Thesis is devoted to the implementation of Intrinsic Plasticity (IP) in a Spiking

Recurrent Neural Network, with the aim of controlling the dynamics of the whole system by acting

on the Input resistances of the Neurons, implemented by Memristors. As a matter of fact, in Spiking

Neural Networks (SNNs) with a high enough degree of plausibility with respect to biological Neural

Systems, Neurons receive current pulses - resulting from Action Potentials - which are integrated by

an RC group. The equivalent membrane resistance Rmem then has a crucial role in modulating the

integration of the incoming spikes. This work proposes to act on this resistance in order to not only

control the activity of the single Neuron, but also of the whole Network. Since the Membrane resistance

Rmem is a property of the Neuron, an adaptive rule concerning that variable falls in the category of

Intrinsic Plasticity. This does not mean that the real Neuron only performs Intrinsic Plasticity by

varying their input resistance, but this simple concept comes with convenient implications:

• featuring a complementary circuit for the operation of the input resistance, as shown in [53], IP

can be implemented for on-chip operations

• it will be shown that the switching of Memristive states is very energy efficient, thus allowing

IP to operate consuming very low power

• despite the stochasticity of the Memristors, changing the input resistances of Neurons is shown

to have an effective role in the dynamic behavior of the whole Network

Considering the beneficial effects observed in most experiments on Mammalians visual cortex [54],

Intrinsic Plasticity promises to increase the energetic efficiency of Spiking Neural Network based sys-

tem, while maximizing the volume of processed information.

All these factors make the implementation of IP a promising feature for Neuromorphic Computing

able to increase the degree of fidelity to biology and possibly enhancing the performance of the Net-

work and the efficiency of the chip, without incrementing its size.

67
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5.1 Intrinsic Plasticity in Neuromorphic Computing

In biology, Intrinsic Plasticity is a complex phenomenon involving the adaptation of many Neural

quantities over time for balancing the activity of the single neuron and the whole Micro-Circuit in

which the neuron operates. Practically, Intrinsic Plasticity refers to all the persistent changes in the

neuron’s intrinsic electrical properties during its functioning. IP is a less investigated mechanism

than Synaptic Plasticity so that its actual functioning and purposes are not retained consolidated

knowledge. Still, IP is believed to act following the action of Neurotransmitters and Synaptic activity,

via the weakening or strengthening of the Ion Channels responsible for the integration of the Action

Potentials coming from Synapses. When the action of such Channels is facilitated, then the Neuron

is more easily excited and thus more likely to increase its firing rate. The opposite happens for the

cases in which the Channel is weakened.

In this way, IP can counteract the polarizing action of STDP, which tends to form clusters of active

neurons, in spite of most of them being shut off. Moreover, IP can decrease the global average activity

when a certain part of the Brain is stimulated for long times, thus saving energy consumption and

avoiding excessive activity, eventually damaging neurons and synapses. In this view, IP is an Home-

ostatic phenomenon. Moreover, IP is thought to play an important role in supporting the formation

of Memory in the Brain, which is conventionally attributed almost solely to the Synaptic Plasticity.

All these beneficial effects are appealing for Neuromorphic Computing, which aims to become an

effective computing paradigm while remaining faithful to biology and being very energy efficient. IP

promises to be a feature of great benefit for such purposes and it is increasingly become popular in

the NC community [57] [58] [59], especially for Liquid State Machines application. As a matter of

fact, Reservoirs Networks are the ones with the most complex dynamics and students in this field

often struggle to regulate such systems, thus potentially relying on IP to improve the control over the

Network. On top of that, it is also interesting to combine IP with other conventional Plasticity mech-

anisms, such as Homeostatic Synaptic Plasticity and Spike-Timing-Dependent-Plasticity: despite the

fact that the effect of each of the mechanism is well known, it is to investigate their synergic effect.

Studies on the framework of ANNs, such as [59] and [56], demonstrated that the combined effect

of simple versions of different Plasticity Mechanisms can have beneficial effects that go beyond the

sum of the effect of single phenomena. Such analysis is lacking in the world of Spiking Neural Networks.

5.2 Methods: Circuits and Network

The Neuron

Implementing Intrinsic Plasticity in Neuromorphic Hardware is a challenge under many points of

view: Neurons have to be equipped with some variable parameters which adapt its values according

to some Plasticity rule and, in order to overcome the Von-Neumann bottleneck, the additional cir-

cuitry for such a task must allow for on-line operation without relying on external memories. The

most straightforward and common approach in NC and general In-Memory computing is the use of

Memristors, functioning as programmable resistances. Such devices, for which research is ongoing in

order to improve their properties and integrability in conventional electronics, can be programmed

by Voltage pulses, thus commanded by mostly digital dedicated circuits. The usual implementations

comprehend 1T1R (1 Transistor controlling 1 programmable Resistance/Memristance), with the input

of the Transistor being set by the dedicated circuit, actually implementing the Plasticity mechanism.

The following figure shows the Neuron employed for future analysis: it is a simplified version of the

one commented in Fig. 3.3, where the input and refractory sections are modified so to host the Mem-

ristors and the Adaptation module is neglected. Not shown in this figure also the circuit dedicated

to the evaluation of the Calcium Current 4.4, which is often an important parameter for the on-line
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evaluation of the Firing rate. Later on, the circuits which control the behavior of the Memristors M1,

M2 and M3 will be discussed.

Figure 5.1: Circuital Representation of the Neuron employed for the following analysis. The circuit is based on

a DPI integrator (M3,M4,C1) with a modified Input section (blue), comprising Memristors in place of R1, R2

and R3. The violet group is responsible for the refractory time, while the green operational amplifier produces

the output spikes. All the additional features related to biological plausibility are omitted for clarity. From

[53]

This circuit is essentially similar - and simpler - to the DPI for its functioning: the incoming current

pulses from the synapses cross the input DPI pair operating in sub-threshold and are integrated by

the system formed by M3, M4, R1, R2 and C1. SPICE simulations conducted in [53] show that the

increase in the ratio between R2 and R1 results in an enhanced input gain. Moreover, increasing R2

results also in a slower response of the Membrane Potential with respect to the input pulses.

As the Membrane Potential increases under the effect of external stimuli, it eventually crosses the

Threshold of the Neuron, thus making the output of the voltage comparator switch and inducing the

formation of the output Spikes by means of the green block.

Also, as the output of the comparator is ON - close to the supply voltage - transistor M5 becomes

active, thus charging Capacitor C2 with a time-constant of τrefr = 1/R3C2. As the voltage on C2

overcomes the second threshold value Vth2, it activates the other voltage comparator which switches

the transistor M5 on. At this point, the integrating Capacitor C1 is grounded and quickly discharges,

remaining in this state as long as the transistor M5 in on. As the R3C2 system gets discharged, M5

switches off and the integrating function of the capacitor C1 is restored. As a consequence, the effect

of R3 is trivial: as it increases, the time constant of the R3//C2 system increases, resulting in a

prolonged refractory period.

Memristors

Technology allows to conceive and realize many types of Memristive devices, each of which with its

characteristics and features. To be compatible with the above-analyzed Neuron model, Memristors

are required to be integrated into circuits, from a technological point of view, retaining the properties

of programmability and control over their Resistive States. In reference to [60] and [61], a team in

CEA Leti shows OxRAM devices integrated with a 130nm CMOS process: a TiN bottom electrode is

deposited over the Cu Metal 4 layer, which has previously been planarized with Chemical Mechanical

Polishing (CMP); a 10nm thick HfO2 layer is deposited and topped by another 10nm thick Ti layer;

finally, the top electrode is composed of TiN stacked on top of the Memristor. A SEM image of the

device is shown in Figure 5.3.

The same team in CEA Leti, Grenoble, characterized an array of 1T1R OxRAM cells of the type

described before for future use as variable resistance for replacement of conventional memories, such

as SRAM and NAND Flash, for various applications including Neuromorphic Computing. The team
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(a) VIn vs R2 (b) Vmem vs VIn

(c) VIn raise vs R2/R1 (d) τrefr vs R3

Figure 5.2: In Figure a), the Membrane Potential VIn response, both in gain and time constant, increases as

R2 increases, with a fixed input impulse. b) shows the response of the Membrane Potential to a DC input

current with different R2/R1 ratios. c) plots the VIn instantaneous increment under the same input current

stimulus, for different ratios of R2/R1. At last, d) is the behavior of the Refractory time-constant as a function

of R3. From [53]

found out about the persistent problems related to Forming of the Low-Resistive-State (LRS) and the

inherent stochasticity of the SET/RESET operation: as a matter of fact, if the Forming is carried out

with too low compliance currents ICC , the probability of reaching the LRS are low, while too high

ICC produces an almost irreversible LRS which disables the functioning of the Memory cell; on the

other hand, OxRAM cells are shown to suffer from both Device-to-Device (D2D) and Cycle-to-Cycle

(C2C) variability, which often results as a limiting factor for applications. For more details about the

performance of the memory cells, please refer to [60], [61].

Figure 5.3: TEM images of the integration of the 1T1R cell in which the OxRAM Memristor is involved. The

Actual OxRAM cell is signed by the red box and is stacked on top of the metal layer 4. From [61]



CHAPTER 5. INTRINSIC PLASTICITY 71

Concerning the employment of such cells as variable resistances in the Neuron model in Figure 5.2,

a consideration on the Resistance values has to be done: since the time-constants of the real-world

input signals, that are ideally used for analysis by System-on-Chips, are between 1µs and 100ms,

and assuming integrated Capacitances to be of the order of pF in the technological realization of the

circuit, Resistances should be in the range [100kΩ, 1GΩ] in order to match the time constants of the

input signals to those of the Neurons. Such values are obtainable only at the High-Resistive-State

(HRS) of the OxRAM cells. For this reason, the same team in CEA Leti characterized extensively the

SET and RESET operations for the use of such a memory cell in the Neuron circuit. A 4kbit array

- 4096 devices - is studied, applying SET and RESET condition multiple times to analyze both the

D2D and C2C variabilities.

(a) CDF of SET operation
(b) PDF of SET operation

(c) HRS vs VReset (d) PDF of HRS

Figure 5.4: Results of the characterization of the 1T1R OxRAM based cells to be used as R1, R2, R3 in

the Neuron Model. a) and b) report the detail of the sub-threshold SET operation, which is a probabilistic

process depending on VSet. Images C) and d), instead, give the details about the RESET operation bringing

the device in the High-Resistive-State. In particular, the OxRAM cell is shown to take values in the interval

[1M − 1G]Ω with a Lognormal distribution with estimated Standard Deviation in the range [0.4-0.5]. From

[55]

Operation of the OxRAM cells

As anticipated, Memristors are controlled by the two operations SET and RESET: in the first one, a

current is provided to form a low-conductance Ti filament in the device resulting in a low equivalent

resistance; instead, the opposite voltage is applied for the RESET operation after which the device

shows low conductance. The two states characterizing the device are of course not digital, meaning

that the device assumes real values of resistances in a given interval: nonetheless, in order to distin-

guish between LRS and HRS, a threshold is defined. During a SET operation, a device is said to be

successfully be brought to LRS if its resistance is below 20kΩ. Since in the application of interest the

SET operation is carried out in sub-threshold (with a voltage lower than the one assuring correct SET
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operation), every time a voltage pulse is applied to the Memristor there is no certainty that the LRS

would be reached: depending on the magnitude, duration and shape of the voltage pulse, the device

has a certain probability of being SET correctly. Figure 5.4 a) shows the cumulative distribution of

the SET operation: naturally, for higher voltages the LRS condition is reached more easily. On the

same note, Figure b) plots the measured PDF for the same SET operation.

Once the device has been successfully SET in the LRS, it can be brought back to the HRS with a

RESET operation: anyhow, the final resistance of the device is not known a priori but can be seen

as randomly selected from a certain Probability Distribution Function (PDF) depending on the ap-

plied magnitude of the VReset. Images c) and d) from Fig. 5.4 report the measured results for the

RESET operation, for which it has been calculated that the resulting HRS resistance is distributed

with a lognormal function with a standard deviation of [0.4, 0.5]. This very feature, together with

the stochasticity of the SET operation, usually described as ”Cycle-to-Cycle” variability (C2C) and

”Device-to-Device” variability (D2D) respectively are considered a major defect of the Memristive

technology, preventing its application in conventional digital logic circuits.

Defects in memristors not only concern the operation of the single device, but also the behavior of

different devices produced with the same technological process, also in the same process step. Figure

5.5 analyses the SET operation of the 4kbit array, monitoring the amount of successfully controlled

devices over 100 operations. This procedure is carried out with three values of VSet and shows two

trends: the magnitude of the voltage has a high influence on the mean number of SET devices; each

device behaves differently with respect to its neighbors. This means that despite all the devices being

controlled by the same physical process - the formation of the high conductance Ti filament - the

complexity of the procedure makes the results stochastic and possibly highly dependent on small de-

tails occurring in the production procedure and the Forming operation. One major concern is then

to evaluate whether the D2D variability is an inherent property of the Devices or whether it could

be dependent on external factors. In order to do so, the results of the SET operation of each device

are tested with the SP800-22 benchmark for random number generators: this test looks for spatial

correlation in randomly generated numbers in its 15 runs. From the analysis of the data from the 100

cycles of the 4096 devices, it is safe state that there is no spatial correlation between the devices, thus

one cannot predict the behavior of the device based on its position in the matrix.

Figure 5.5: Heat-map of the SET probability of the analyzed OxRAM, for three cases of VSet producing a

different mean probability of SET operation: red color indicates devices over the mean probably, while blue

pixels represent devices below the average. Difference in colors and brightness highlights high Device-to-Device

variability, meaning that despite the global trend each device behaves differently. From [55]
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Additional Circuits

The operation of SET and RESET of the Memristors are controlled by a transistor which has to be

in turn activated by additional circuits, actually implementing the algorithm of Intrinsic Plasticity.

Despite this algorithm will be presented later, for now it is sufficient to consider that IP will change

the resistances of the Neuron when, analyzing its activity, it will be measured firing far enough from

a target frequency. As a consequence, the additional circuits have to implement two basic functions:

• to measure the activity of the Neuron and compare it to a target frequency

• to apply a voltage on the control transistor of the 1T1R cell according to the result of the

measure

Because of that division, it is useful to analyze the IP circuit in two parts, reported in the following

two figures. The combined action of both the circuits and their relatively simple layout confirms

the integrability of Intrinsic Plasticity in usual Neuromorphic Computing platforms for on-line and

on-chip operation.

(a) Circuit A: Intrinsic Plasticity

(b) Circuit B: Intrinsic Plasticity

Figure 5.6: Representation of the additional circuits Implementing IP algorithm on-line in the chip. From [53]

Circuit A is the one aimed at the comparison of the activity of the Neuron with respect to a

target frequency: the activity of the Neuron (iVout) is interpreted as the Calcium Current 4.4 in this



CHAPTER 5. INTRINSIC PLASTICITY 74

realization, thus a train of spikes integrated by a DPI circuit; the bias Vtarget instead implements the

target frequency. When iVout > Vtarget then V1 decreases and V2 increases; moreover, the comparator

will output DN (Down signal); the opposite happens for iVout < Vtarget. The comparator determines

whether the Neuron is firing above or below the target frequency, while V 1, V 2 encode the magnitude

of the difference of activity.

This information is passed to Circuit B which actually performs the SET and RESET operation,

according to the mentioned variables and some additional gates Vr1, Vr2, prog. The aim of this circuit

is to charge a capacitor C1 and eventually emit a voltage pulse from the operational amplifier in order

to perform the SET operation. After that, a RESET voltage brings the OxRAM back to the HRS.

It is to be noted that the bias Vr1, Vr2 are able to control the condition of integration of the voltage

on the Capacitor C1, implementing the rate of change of the voltage over C1 per unit of the difference

of activity with respect to the target frequency. This results in a particular characteristics of the SET

voltage with respect to the activity of the neuron, as shown in Figure 5.7:

Figure 5.7: Characteristics of the SET voltage controlled by Vr1, Vr2 through current Ir1, Ir2 in M13/14

obtained by Circuit B. From [53]

Considering the effect of the SET voltage on the OxRAM cells, the SET operation can be modeled

with the following sigmoid function:

y =
1

(1 + exp[(x− d)× s])
for x > tol (5.1)

where x is the absolut value of the difference of the firing rate with respect to the target, s the slope

of the sigmoid, d the midpoint of the sigmoid, tol the interval around the target frequency in which

the circuit does not apply any SET voltage.

5.3 IP Algorithm

In this very simple implementation of Intrinsic Plasticity, one aims at verifying the impact of the

change of the input Resistances to the behavior of a whole Network. This follows the work done

in [53] in which the single memristor has been equipped with IP and simulated: as expected, the

change of input resistance produces a change of the firing rate and, following a certain learning rule,

the author could achieve the peculiar exponential distribution of the firing rate found in experimental

results from biological studies. However, controlling a single neuron is a relatively easy task to perform,

while controlling the dynamics of a Network is more challenging: the non-linearity of the components

- Neurons and Synapses - and the complex architecture of the Network make the dynamics of the
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system difficult to control by acting on a single parameter on-line.

The Network is formed as follows:

• 35 Excitatory Neurons, as from Fig.5.1, with recurrent connections and connections to the

Inhibitory ball

• 15 Inhibitory Neurons of the simple LIF model, with recurrent connections and connections to

the Excitatory ball

• 15 Input Neuron, firing with a Poisson distribution, with connections to the Excitatory ball

Neuron Class

Excitatory (E) 35

Inhibitory (I) 15

Input (In) 15

Connections

E to E (recurrent) 15%

E to I 75%

I to I (recurrent) 50%

I to E 75%

In to E 75%

Table 5.1: Main parameters of the Network employed to test Intrinsic Plasticity

The aim of this implementation of Intrinsic Plasticity mechanism is to modify the Average Firing

Rate (ARF) of the Network, specifically of the Excitatory neurons, to oscillate around a mean value

- the target Frequency. It does that by controlling the firing rate of each Neuron and modifying its

resistances R1 and R2 on-line, following simple learning rules. In the case the firing rate is close enough

to the target frequency, a tolerance is defined in order to bypass the action of IP. As a consequence,

IP can reach convergence when it succeeded in adapting the input resistances of the Neurons to the

input of the Network. In terms of ’pseudo-code’, the algorithm can be written in this way:

while IP on do

if Fneuron,i > (FTarget + tol) ∧ PSET > (sigmoid(µ, σ)) then

R1,2;i = lognormal(R1,2 · (1− LR), SD) ;

else if Fneuron,i < (FTarget–tol) ∧ PSET > (sigmoid(µ, σ)) then

R1,2;i = lognormal(R1,2 · (1 + LR), SD);

else
No resistance changes

end

end
Algorithm 1: Implementation of Intrinsic Plasticity. PSET is a random number uniformly dis-

tributed in the interval [0-1]. The algorithm changes the Resistances only if the Frequency of the

Neurons is too far from the target value.

where PSET is a random number uniformly distributed in the interval [0-1], Fneuron is the ap-

proximated output frequency of each neuron, tol is the tolerance of the algorithm around the target

frequency FTarget and LRs are the Learning Rates of the resampling of the Resistances.

Since the Network evolves in virtually continuous time, defining a continuous-time evolution of the

Frequency is not trivial: the problem was already introduced in section 4.2. The solution to that

problem, in order to estimate the frequency of the neuron in continuous-time, is to consider the so-

called Calcium Current, defined in Eq.4.4. That variable can be obtained in hardware by integrating

the output spikes of the neuron on a leaky RC circuit, so that the spike train is then filtered by a
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decreasing exponential kernel - given by the leakage of the capacitor. The exponential kernel allows

the frequency function to be smoother and more suited for a continuous-time analysis than the train

of spikes.

Given this evaluation of the frequency, it is possible to compare the output of the single Neuron to a

target frequency value which is used for all the Neurons. Computing the difference of the output to

the target, one can determine whether to reinforce or weaken the input section of the DPI Neuron:

in the first case, the neuron integrates the incoming current with higher resistances, thus enhancing

the voltage step provided by any pre-synaptic event. As a consequence, the threshold is reached with

less number of input spikes and the neuron is likely to increase its output frequency. The opposite

happens when the resistances are decreased in the input section.

As observed in the previous section describing the Neuron in Fig.5.1, R1 and R2 have slightly different

roles in the integration of input current and leaking of Membrane voltage, so that, despite sharing the

same learning rule, they are characterized by different learning rates.

5.3.1 Tuning the IP parameters

The algorithm of IP is simple, but the dynamics of Recurrent Network implemented by spiking Neu-

rons is not. As a consequence, one has to accurately select the parameters governing IP so to maintain

a healthy and homogeneous activity in the Network. IP is governed by a few parameters, so it is in-

teresting to investigate the action of all of them to gain control over the algorithm.

The operation of the comparison between the firing rate of the neuron and the decision about whether

to resample the resistances is performed on the basis of a clock, with a time interval dtIP . This

parameter is an important one when determining the performance of the IP algorithm: too fast re-

sampling of the resistance will suffer from the fluctuation in time of the input neuron-group (firing

with Poisson distribution), which has an impact on the firing rate of each neuron; on the other hand,

too slow IP results in slower convergence time.

The tolerance of the algorithm is a fundamental parameter that allows IP to reach convergence. In

the hardware implementation, the tolerance is determined by Circuit B (Fig.5.6 b)). The role of the

tolerance is to fix the resistance to the Neurons whose firing rate is already in the allowed frequency

window [FTargte − tol, FTargte + tol]. Because the input group is feeding the Excitatory neurons with

a Poisson distributed train of spikes with mean frequency, it is tolerated that the Excitatory Neurons

can vary their output frequency in time within this window in order to allow for convergence.

Circuit B also implements the slope of the probability of the SET operation respect to the distance

to the target frequency, by means of the modulation of the SET voltage. For all the simulations in

this work, the slope of the sigmoid SET probability function - called the d parameter - will be fixed

to 0.5.

The Standard Deviation concerning the RESET operation determines the degree of control over

the Resistances. It has to be reminded that the RESET operation is equal to sampling from a log-

normal distribution with a Standard Deviation of [0.4, 0.5]. Considering the complex dynamics of

the Recurrent Network architecture, this parameter is crucial for governing the whole Network. This

parameter is related to the technological realization of the OxRAM cells, so that for the next tests

of the IP algorithm, unless specified, the value of SD is fixed to the worst case: 0.5. Lower values

result in higher control of the IP algorithm over the Resistances of the neurons and in turn better

performance.

At every time-step of IP, the Resistances are resampled from a lognormal distribution whose mean is

shifted in order to move the Resistance closer to its ideal value. To do that, Learning Rates are

defined: there are different LRs depending on which Resistance they are acting and whether they have

to increase or decrease its value.
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Tuning Parameters

Learning Rate R1, up (LR1up)
percentage of increase for the mean in the RESET operation,

with respect to the previous case, for R1

Learning Rate R1, down (LR1dw)
percentage of decrease for the mean in the RESET operation,

with respect to the previous case, for R1

Learning Rate R2, up (LR2up)
percentage of increase for the mean in the RESET operation,

with respect to the previous case, for R2

Learning Rate R2, down (LR2dw)
percentage of decrease for the mean in the RESET operation,

with respect to the previous case, for R2

Tolerance (tol)
difference of the neuron’s firing rate within which

the update of the resistance is not performed

SET voltage magnitude (d)
slope of the curve of the SET voltage with

respect to the difference in firing rate

Table 5.2: Definition of the parameters involved in the process of tuning the IP mechanism

5.3.2 Metrics for the evaluation of IP

In order to quantitatively analyze the results of the Intrinsic Plasticity algorithm, some metrics are

defined. The base for the evaluation of the performance of the algorithm is the definition of the fre-

quency, which has to be defined over the continuous-time: for that purpose Eq.4.4 is the best choice,

providing a smooth function which captures the behavior of the neuron on a time-scale of 500ms,

its time-constant. The metrics of IP reference to this equation when implying the frequency of the

Neurons.

Taking the average of the frequencies calculated as in 4.4 for the Excitatory Neurons, one obtains

the Average Firing Rate. At the same time, also the Standard Deviation of the Firing Rate of the

Network is evaluated with the same frequencies. Instead, in reference to the Target frequency, the

Average Distance to the Target Frequency is computed. Lastly, the Number of OxRAM switches is

defined by the number of Neurons being subject to interventions of IP at every IP cycle.

The main metric is, however, the Convergence Time: namely, the amount of time the Network takes

to reach convergence. To define that, one has to recall the aims of IP. IP has to control the Average

Firing Rate as well the Firing Rate of all the Neurons, in turn, it has to lower the Standard Deviation

of the Firing Rate. Moreover, it has to lower the number of switches of resistances of the Neurons, in

order to be energetically efficient. As a consequence, Convergence is reached when the Average Firing

Rate is comprised in a certain interval for all the time after the Convergence Time, the Standard

Deviation is lower respect to the case of IP not applied and the Average Number of Switches after

convergence is lower than a certain threshold.

From this definition, the basic metrics are summed up, with their notations:

• Convergence Time: T [s]

• Average Firing Rate: AFR [Hz]

• Standard Deviation of the Firing Rate: B [Hz]

• Average Distance to Target Frequency: A [Hz]

• Average number of OxRAM switches after convergence: C

Especially important for assessing the performance of IP are the constraints imposed to the defi-

nition of Convergence. Table 5.3 shows the values chosen for the metrics of IP:
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Metrics for the evaluation of the IP algorithm

Convergence time, T

Time after which the AFR is bounded within 30%

of the Target Frequency and C is below 3

T ∈ t|∀t > T , abs(AFR− Ftarget) < 0.3× FTarget, C < 3

Average Firing Rate, AFR
Average of the spiking frequency,

based on the Calcium Current approximation, as in 4.4

Standard Deviation, B
Standard Deviation of the spiking frequency,

based on the Calcium Current approximation, as in 4.4

Average Distance, A
Mean distance of the spiking frequency to the target value

based on the Calcium Current approximation as in 4.4

Average number switches, C Average number of OxRAM switches after the convergence time T

Table 5.3: Definition of the main quantities introduced to evaluate the efficacy of Intrinsic Plasticity
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5.4 Results

Before turning IP on and trying to modulate the resistances of the Neurons in order to control the

dynamics, the behavior of the Network has to be investigated for the case of IP not being applied. In

that situation, the Network is simply composed of 36 quasi-LIF Neurons with exponentially decaying

Synapses connecting excitatory neurons with a probability of 15%. An inhibitory population of 15

simple LIF neurons is connected to the Excitatory units with the same type of decaying Synapses. The

input is present by 15 Neurons firing with Poisson distribution with fixed mean frequency and high

degree of connectivity to the whole Excitatory group. The result of such an architecture is that the

dynamics of the Network is controlled by the input, which forces the Excitatory units to fire at high

frequency and the Inhibitory group preventing uncontrolled spiking of the excitatory group. In such a

condition, one expects that the Network would reach a steady state in which the control of the input,

being a Poisson train of spikes at a certain mean frequency, will determine the average frequency of

firing of the Neurons. This steady-state value may be diminished by a stronger action of the inhibitory

group, however, since there is no adaptation and learning for the connections, the Network is unlikely

to escape from its equilibrium configuration once it is firing around a mean frequency.

This is what is observed in Fig.5.8 b), in which the Average Firing Rate is plotted as a function of time

together with the Standard Deviation. Despite the Average Firing Rate (AFR) is following a chaotic

oscillatory behavior, one can say that the Network stabilizes around a certain mean frequency, in that

case of about 200Hz. The reasons for such behavior are to be attributed to the recurrent connections,

which may give rise to oscillators, and of the input that, considering the frequency it produces in

time, is a white noise around a certain mean frequency. Moreover, the information of the Standard

Deviation confirms that the neurons distribute in the frequency spectrum around a certain mean. The

larger the standard deviation, the higher the impact of the internal properties of the Network and the

noisy nature of the input in forming the oscillation of activity.

To be considered one aim of Intrinsic Plasticity is to adapt the neurons to fire around a certain mean

frequency, thus a successful implementation should not only target a certain frequency, but also reduce

the Standard Deviation of the firing rate of the whole network, meaning that the neurons all fire closer

to the target rate. On top of that, IP should be able to accomplish that in short times and performing

a few switches of resistances to adapt the frequency of the neurons. That is why a final benchmark for

IP will be to test the consumed energy of the Network when IP acts so to lower the natural balance

activity compared to a Network that does not apply IP. If the energy consumed by the IP-containing

Network will be shown to be lower than the one consumed by the standard case, IP can legitimately

be proclaimed as a convenient feature.

Standard synapses

The first results to be presented are the ones related to the Network in which the synapses connecting

Excitatory neurons are of the simple Exponential type.

In Fig.5.8 a), the best example of IP has been shown so to clarify what this algorithm is capable to

achieve: the target rate is achieved in a very short time of convergence of the algorithm, said T = 5.5s,

starting from the condition of equilibrium of the Network. This fast decay is obtained by employing

large learning rates for decreasing the Resistances when the frequency of the Network is above the

target, LRdown = 0.1, meaning that the sampling of the Resistances is from a lognormal distribution

centered 10% above the previous value. In this way, as confirmed by Fig.5.9 b), the resistances are

quickly decreased of more than 300MΩ for the case of R1. After the quick decrease, most of the

Neurons approach the target rate and thus eventually require to increase back the resistances so to

avoid to continue the diminishing of the spiking rate. This resetting of the resistances is controlled
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(a) Average Firing rate and Standard deviation (b) Average Firing rate and Standard deviation

Figure 5.8: Comparison of AFR and its Standard Deviation of the Network in which IP is active, a), and

absent, b). In both cases, STDP is turned off. IP quickly brings the AFR close to the target value

by the other parameter LRup = 0.2, which is typically a quite high value: the reason for that is

the shape of the lognormal distribution, for which low values of resistances could be selected in the

RESET operation even though the mean of the distribution is set at very high values.

The quality of the algorithm is certified by Fig.5.9 c) which reports that the number of OxRAM

cells switches carried out when the spiking frequency has settled around the target rate is very low. On

average, less than 2 RESET operations per cycle - which occurs every dtIP = 500ms - are required

so to correct the oscillations of the frequency of the Neurons. This means that the algorithm has

succeeded in learning the values of resistances which make the Network fire on average at a certain

target frequency. Since the convergence time is very short, 6 seconds, i.e. only 12 cycles of operation

of IP, the algorithm can also be considered very effective. However, one can argue that biological

Intrinsic Plasticity is a much slower process, with time-constant of minutes: this period of action can

in principle be reached retuning all the parameters of the algorithm so to make the resistances of the

Neurons vary their values less prominently each cycle. In this view, the main parameters to consider

are the Learning Rates and the probability of SET operation.

STDP synapses

In this case, instead, the Network is an updated version of the one simulated for the last presented

results, with the synapses between excitatory neurons still of the exponential type, but with the weights

being ruled by Spiking-Time-Dependent-Plasticity. Under a certain point of view, the previous case

of Standard synapses is totally identical to the STDP-exp - as one may call them - less for the weights

which are all fixed to 1. As for the Input, this is presented in the same way as the previous case.

Despite the fact that the Network is very similar, one should not expect that the impact of the STDP-

exp synapses may be negligible for the dynamics of the network: STDP is known to have a tendency in

forming clusters of active and inactive Neurons. Anyhow, since IP has been shown to be so effective,

one expects that a fine-tuning of the parameters of the IP algorithm may achieve success as well.

The similarity between Fig.5.8 and Fig.5.10 is a symptom that IP is almost as well performing

with STPD-exp synapses than with Standard Exponentially decaying ones. This is a good feature,
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(a) Average Number of Switches after convergence (b) Behavior of R1 and R2 in time

Figure 5.9: Results of the application of IP on the resistances of the Neurons. STDP is switched off for both

cases. In a), the number of switches rapidly converges to less that 2. In b), IP is acting to decrease both R1

and R2 and then keep adjusting them to maintain the Network around the correct firing regime

as a Plasticity algorithm should ideally be effective in different contexts, for example with different

types of synapses.

Moreover, the STDP case allows for the evidence of an additional benefit of IP, which was not as

clear for the case of Standard Synapses: the diminution of the Standard Deviation of Activity, the

parameter B. This is a rough indicator of how much the output frequency of the Neurons is spread

with respect to its mean: when it is high, Neurons are behaving differently, some of them being highly

active, some other spiking rarely. IP can be said to have a high degree of control on the Network just

if it is able to reduce the gap of the Average Firing Rate (AFR) with respect to the target but also if

that is true for most of the Neuron in the Network, thus if B has been lowered. Evidence is that, as

expected, the Standard Deviation of the Neurons is way higher when STDP is shaping the weights of

synapses, respect to the case of Standard Synapses. However, the clustering effect of STDP seems to

be counteracted by IP which probably increases the resistances of the Neurons whose input weights

have been lowered by STDP. Of course, STDP remains a stronger agent in determining the dynamics

of the Network and the B value reached with STDP active - 56Hz - is higher than the one obtained

before - 38Hz - without STDP. Nonetheless, the relative variation, considering the case of IP with

respect to the one without IP is more prominent for the STDP-exp synapses.

For what concerns the convergence time T, that is of the same order of magnitude of the previous

case: one could probably generalize that these values are close to the best achievable with these cir-

cumstances (distribution for the RESET operation, Network operation). Anyhow, as it is the case in

these complex non-linear systems, an even finer tuning of the parameters could potentially improve

the performance of the IP algorithm.
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(a) Average Firing rate and Standard deviation (b) Average Firing rate and Standard deviation

Figure 5.10: Comparison of AFR and its Standard Deviation of the Network in which IP is active, a), and

absent, b). In both cases, STDP is turned on. IP quickly brings the AFR close to the target value, despite

the presence of STDP

(a) Average Number of Switches after convergence (b) Behavior of R1 and R2 in time

Figure 5.11: Results of the application of IP on the resistances of the Neurons. STDP is switched on for

both cases. In a), the number of switches rapidly converges to less that 3. The presence of STDP makes the

Network a little less stable and IP requires more Resistances switches to correctly operate

The average number of switches after convergence is increased for this case: the Neurons probably

require more Resistance switches for compensating the polarizing action of STDP for the weights of

the Synapses. However, this number is still to be considered very low and acceptable for defining the

convergence of the algorithm. Moreover, the plot of the evolution of the resistance of the Neurons in

time is very similar to the one shown in Fig.5.9, so to confirm the correct behavior of the algorithm.
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Analysis of the parameters of Intrinsic Plasticity

Now that it has been demonstrated that the algorithm can achieve great performance and the prefixed

goals with a fine-tuning of the parameters, it is interesting to move away from optimal conditions and

stress the algorithm out of its comfort zone. That means to sweep one parameter at a time in a certain

range and see the effect on the results. In particular, it is interesting to analyze the parameters related

to some characteristics of the device under analysis, the OxRAM cells. Since analyzing the behavior

in time of every network would be very time consuming, the analysis will rely on the main figures

of merit defined up to now: AFR, B, T, C. The results are collected together in Figure 5.12. Every

point in the following plots will represent one of the metrics averaged from the data of three simu-

lations run for 60s. In each simulation the only variable is the input, which is a Poisson distributed

train of spikes. For what concerns the Network, that is one already presented with Standard synapses.

(a) AFR, SD vs RESET distribution’s Standard

Deviation

(b) # switches, TC vs RESET distribution’s Stan-

dard Deviation

(c) AFR, SD vs D2D’s Standard Deviation (d) # switches, TC vs D2D’s Standard Deviation

(e) AFR, SD vs Tolerance (f) # switches, TC vs Tolerance

Figure 5.12: Effect of some of the parameters related to the IP algorithm and the OxRAM cells technology.

The yellow shadows indicate the experimental parameters of the OxRAM cells.
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First of all, the Standard Deviation of the distribution of the Resistance values, which is certainly

the most important factor in the algorithm. Ideally, one would like to be able to control the OxRAM

cells with high precision in order to select the resistance value at will, with low errors. This would

imply the Standard Deviation of the probability distribution of the RESET operation to be small,

ideally zero. However, limitations related to the technological process do not allow for such precision

in resetting the resistance values, so that the probability distribution of the RESET operation is

characterized by a standard deviation value of [0.4, 0.5] from experimental data. Advancements in

technological processes may reduce this factor and it is interesting to measure what would be the

advantage of such progress. For the limit of time, since tuning the parameters of the IP algorithm is a

very time-consuming task, the algorithm is tested with the parameters optimized for SD = [0.4, 0.5],

now in a wider interval [0, 1]. One expects that the best results come from the values of SD for which

the algorithm has been properly tuned, but with some signs of improvements for lower SD values.

Moreover, for too high values of SD, the algorithm does not have control over the resistances, so that,

at some point, it is expected not to converge. As a matter of fact, for SD > 0.8 the distance from the

target becomes clearly important and convergence time also larger. Instead, for lower SD < 0.3 the

convergence time is also large and the distance to the target higher than for the case of SD = [0.4, 0.5]

but there is an aspect to underline: the Standard Deviation of the firing rate of the Neurons - B

- is considerably the lowest. This means that the algorithm, in that case, has been able to tune

the frequency of the Network to a uniform rate but, since the parameters were not optimized, that

resulting frequency was not perfectly coincident with the target one. This is verified by the plot of

the AFR which exceeds the target value by about 7.5Hz.

Remaining on the analysis of the model of the device, OxRAM cells also suffer from Device-to-

Device variability. This has been stated in Fig. 5.5 and affects the SET operation of the cells in an

uncorrelated manner with respect to the position of the cell in the matrix: as a consequence, the SET

of the OxRAM can be viewed as a probabilistic event, governed by a sigmoidal distribution as in Fig.

5.4. The midpoint of such a sigmoid function can be controlled based on the setting voltage VSet.

However, due to the D2D variability, the effect of the VSet is not uniform across different devices,

which ideally would be reset only as a function of the frequency difference with respect to the target.

Such variability can be simulated by applying a gaussian noise to the midpoint of the sigmoid. The

larger the Standard Deviation of such Gaussian Noise, the stronger the effect of D2D variability. In

Fig.5.1 c) and d), the results of simulations in which this standard deviation is varied in the interval

[0,10]*Hz are summed up. Surprisingly, despite a high variability of the sigmoid’s midpoint, the effect

of the D2D is marginal: that means that this problem related to the fabrication of the devices is not

a major concern for the application in the IP algorithm. However, despite the previsions were much

more negative, D2D is seen increasing the convergence time by more than 70%. Since the AFR at

convergence is very close to target also at high D2D variability, this effect is not considered critical

for the correct functioning of the algorithm.

Lastly, correlated to the previous analysis but with a different aim, the analysis of the tolerance: this

parameter does not have to do with the device itself but with the magnitude of the VSet in relation to

the distance of the frequency of the neuron to the target rate. In turn, this allows selecting a range of

frequencies around the target rate for which the algorithm does not intervene. This interval is called

”tolerance”. The analysis of this parameter evidences that a too low value of tolerance results in an

over-correction of the values of the resistances, not allowing the Network to ever converge. A tolerance

of 70Hz seems to be the best compromise for performance. Further increasing the value of tolerance,

the algorithm is not able to correct the values of resistance in a strong enough manner. For both the

extreme cases the effect is that the convergence time is increased up to the point of non-convergence.
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Power Consumption

Lowering the average firing rate of the Network comes with the trivial advantage that the energy

consumed is reduced as the total number of spikes in a given time is also reduced. As a consequence,

it appears that IP, when used for lowering the activity of the neuron and thus acting as a homeostatic

mechanism, automatically reduces the power consumption of the whole Network. However, one should

not forget that the SET/RESET cycle imposes a penalty in energy which has to be considered when

computing the total power of the system. It has thus to be calculated whether the sum of the power

due to the spiking and the one due to the OxRAM cells still is an advantage respect to the case in

which IP is not active. By doing so, one counts the spike events and multiplies by a fixed amount of

energy, estimated by experiment. In this case, this value has been chosen to be the Energy per spike

measured for the DPI neuron in the DYNAPSe chip [37], from which the neuron model employed

for the simulation takes inspiration. Instead, it has been measured that on average the OxRAM

cell consumes a much lower amount of energy [55] under standard programming operations (SET:

Vset = 2V ,Vgate = 1.3V and RESET: Vreset = 3V , Vgate = 3V ). Since the difference of energy per

event is of one order of magnitude in favor of the SET/RESET cycle and since those events happen

two order of magnitude less likely in time, it is clear that the power consumed to manipulate the

OxRAM cells is much lower than that coming from the spikes.

Espike = 800pJ (5.2)

ESET/RESET = 50pJ (5.3)

Figure 5.13, showing the comparison between the energy consumed in average by a single Neuron with

IP and without IP, clarifies the discussion about the advantage in power consumption.

Figure 5.13: Plot of the average consumed Energy in time for a single neuron with IP, green curve, and without

IP, in red. The green plot, despite an initial transient with higher slope, always lies below the red one, stating

a clear lower consumed power during the run.

After all, since the energy related to the OxRAM cells is so low, IP turns out to be a clear advan-

tage for the energy management of the system: after an initial transient phase, in which the spiking

frequency of the Network is still high and the energy of the SET/RESET cycles contributes consis-

tently to the consumed power, the low number of switches and the reduced spiking after reaching

convergence makes the green curve - associated to IP - always remains well below the red one - related
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to the case of no IP. As a consequence, IP can be retained to be a good candidate feature for Recur-

rent Spiking Neural Networks in order to reduce the power consumption and possibly enhancing the

properties of the system.



Chapter 6

Self-Organized-Spiking-Network

In a well known-paper from 2009, Lazar proposed the SORN, the Self-Organized-Recurrent-Network

[56]: an Echo State Machine, composed of Heaviside activated nodes, operated in discrete time, in

which the Neurons in the Reservoir are equipped with 3 Plasticity mechanisms (STDP, IP, SN). Com-

bining the action of the 3 features, the Network was shown to improve the performance in some

temporal tasks. Moreover, it was experienced that in order to get the boost of performance, the 3 fea-

tures had to work together, since by acting alone they were of no help in improving the performance.

Since the inspiration of the 3 Plasticity mechanisms comes from Biology, it is interesting to investigate

their impact on a more biologically plausible architecture, based on SNNs, namely the Liquid State

Machines. The similarity with the original SORN involves the STDP and Normalization features,

while IP is applied with the already mentioned algorithm, instead of the SORN’s threshold manip-

ulation. Moreover, the LIF model employed for the task is characterized by Adaptation, a further

homeostatic Neural feature. All together, they are expected to boost the performance of the Network

in two temporal tasks: the Counting Task (CT) and the Occluder Task (OT). The Spiking based

Network with the 3 Plasticity mechanisms has been called Self-Organized-Spiking-Network (SOSN).

6.1 Structure of the Network

For this task, different Liquids have been generated in order to compare their performance. Networks

of the size of 200 and 400 Neurons are tuned to respond to the incoming signals with sparse activity.

Common features of all the Network configurations are the 5% of Recurrent connections between

Excitatory neurons, the 10% of connectivity between Excitatory and Inhibitory and vice versa and

the Input group which is composed of 10% the size of the Network. Some additional parameters are

customized in order to maximize performance.

The input signals are a number NS of different symbols which are projected to the Liquid in this way:

the same Poisson input group targets different ”Sensory” subgroups in the Reservoir, each of which is

independent to one other, representing an input signal. Every signal is spread through the Network

and finally reaches the output, which is formed by as many classes as needed for the task. The out-

put layer is learned by Logistic Regression since the output is required to classify one signal at the time.

87
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Figure 6.1: Scheme of the LSM for the Counting and Occluder Tasks. The input group fires with Poisson

distribution towards different sub-groups in the Reservoir, one at the time. Each of the sub-groups representing

an Input signal. The output group is composed of as many neurons as needed for the classification/prediction

Task.

The Task is performed in this way: the Training and Testing phases are common for each of the

configurations of the Network. Instead, in case one were to evaluate the effect of the 3 Plasticity mech-

anisms, a Pre-Training was performed at first. Then, the Weights and the Resistances in the Reservoir

were frozen and maintained constant in the following Training and Testing phases. The Networks in

which the Pre-Training was performed are called, as already said, SOSN (Self-Organized-Recurrent-

Spiking-Networks), while in case of no Pre-Training the Network is called Static.

6.1.1 Plausibility with respect to Technology

When dealing with Plasticity mechanisms, in particular Intrinsic Plasticity, the requirement is to con-

serve a certain level of plausibility with respect to the technological realization of circuit and devices.

This is because the Neuromorphic Computing approach is, as explained in previous sections, particu-

larly slow when running on conventional computers. Then, it is interesting to develop algorithms that

can be implemented on dedicated hardware. Intrinsic Plasticity’s algorithm, presented in Chapter

5, certainly is in theory reproducible in Integrated Circuit. In Fig.5.6, the Circuit implementing the

Neuron is presented, while Fig.5.3 depicts the realization of the OxRAM cells involved in the imple-

mentation of the algorithm.

The utilization of such a method involves a number of complications introduced in the algorithm that

emulate the behavior of a real device built with the architecture and specifications of the mentioned

circuits and devices. Concerning the circuit, this is easily implemented by a differential equation which

describes the behavior of the Neuron, being of the Leak-Integrate-and-Fire type.

∂v(t)

∂t
=

(R1//R2)× Iin − v(t)

R2 × C
(6.1)
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where v(t) is the membrane potential, R1, R2 the two OxRAM cell’s resistances, C the membrane

capacitor and Iin the input current.

The complications are instead introduced by the operation of the two OxRAM cells, which have to be

first successfully SET and then RESET in the High Resistive State. The SET operation is relatively

easy, governed by a sigmoid probability function which implements the probability of the device to

be SET, given its Firing Rate. During all the simulations, the parameters related to the sigmoid have

not beeg changed, as this phase of the algorithm has been proven not to be crucial for the correct

behavior of the algorithm.

Instead, the sensitive parameter of the algorithm is certainly the Standard Deviation of the lognormal

distribution, modeling the RESET operation. As a matter of fact, the SDlognorm quantifies the degree

of order with which the Resistances of the Neuron are reprogrammed, after a cycle of Intrinsic Plas-

ticity. It is trivial to understand that high disorder in that phase results in a less controlled dynamics

of the Network since the Neurons will operate with resistances which are far from the ideal values

computed by the algorithm. As a result, IP will be beneficial only for certain values of SDlognorm

lower than a certain threshold. This limit has been found to be of SDlim = 0.1: compared to the

experimental data from [60] [61] locating SDlognorm in the interval [0.4, 0.5], this value represents the

behavior of a much more precise and ideal device. OxRAM cells are in an experimental phase and

are not Very-High-Scale-Integrated devices in ICs in the market. This means that research is ongoing

in order to improve the technological processes required for their integration with conventional elec-

tronics. Moreover, such a value of Standard Deviation does not represent the case of an ideal device

that would have SD = 0. The conclusion is that a degree of plausibility with respect to technology

is maintained, despite the algorithm not reaching the expected results with the experimental data.

Also, the following results are obtained with SDlognorm = 0.05 which is the value which allowed to

reach the best results, so that the advantages and potential of the IP, combined with the other forms

of Plasticity, would be best highlighted.

In order to recap about the technological plausibility, this is the procedure that is carried out when

setting up the Network for the experiments.

• Random connections are formed in the Liquid

• Resistances are evaluated at first: this happens with a RESET procedure, with SDlognorm = 0.1,

according to the technology of OxRAM cells

• IP is eventually operated as described in Chapter 2, exploiting the dedicated circuits and the

mentioned SET/RESET operations. The SET phase occurs with the mentioned sigmoid func-

tion, while the RESET phase is controlled by the Standard Deviation of the lognormal distri-

bution

In order to sum up the parameters related to the technologically realization of the plasticity mecha-

nisms, the following table is presented:

Sigmoid (SET) Lognormal (RESET)

S D2D tolsigmoid SDlognormal LR

0.5 2Hz 20Hz [0.05,0.1] 0.001

Table 6.1: Parameters related to the technological realization of the IP algorithm. The SET

operation is characterized by the SET voltage, whose action is modeled with a sigmoid distribution,

characterized by its skewness and Device-to-Device (D2D) variability. The RESET phase, instead,

is governed by the Standard Deviation and the Learning Rate for the resampling of the new value

of the equivalent resistance.
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The S parameter models the slope of the sigmoid function and can be set in the interval [0,1],

thanks to the flexibility of the dedicated circuits developed by Payvand et al. [53]. The Device-to-

Device variability deals with the shift of the center of the sigmoid due to the fact that the probability

for the SET operation is not homogeneous for all the OxRAM cells. In chapter 5 it has been shown

that the IP algorithm is robust against D2D, which in this case was set at 2Hz. Concerning the RE-

SET operation, it has been already gone through the reason why the SDlognormal has been rescaled

to [0.05, 0.1], while the Learning Rates (LR) are maintained in the order of magnitude of 0.001. This

shift of resistance is obtained by properly scaling the Voltages applied during the RESET operation.

6.2 SOSN’s characterization

The experiment is carried out with two different Networks, designed with the same paradigm, but with

different number of Neurons. When building Networks of different sizes, the same type of dynamical

behavior was aimed: the network had to be deterministic, such as the ones in the SORN paper [56],

and the activity had to be modestly sparse, such that about 50% of the neurons would be active under

an input signal. The requirement on the deterministic dynamics seemed to be crucial in order to avoid

that the evolution of the internal dynamics of the Network would be uncorrelated with the presented

input. This is crucial in order to correctly perform classification of the presented inputs. A signal of

this requirement being achieved is that the Network stops its activity quickly after the input signal is

removed. Moreover, that is also evident by the fact that the Liquid responds in a similar manner to

the same inputs, consistently in time.

In particular, two Networks have been tuned: one with 200 Neurons, the other with 400. The main

parameters related to the two configurations are presented:

Network’s parameters pEE pIE pEI tauEE tauIE tauEI CE IEE Iin
200 Neurons 0.05 0.15 0.1 15ms 15ms 15ms 40pF 2.6nA 0.2nA

400 Neurons 0.05 0.15 0.12 15.5ms 15ms 15ms 40pF 2.6nA 0.075nA

Table 6.2: Parameters related to the two main Network configurations. Both share the same philosophy

in forming the Liquid, with small difference in some of the parameters in order to obtain a similar level of

dynamics expressed by the Liquid.

So, as it is clear, the two configurations are basically similar with minor differences in some of the

values in order to balance the dynamics and guarantee comparable operation.

6.3 Effect of Plasticity

Before jumping to the results of the two temporal tasks, one has to understand why and how the

Plasticity mechanisms can potentially improve the performance. Roughly speaking, it is known that

STDP tends to strengthen the activity of already firing neurons and suppresses the ones which are

less likely to fire. Synaptic Normalization is a break to the action of STDP, being a homeostatic

mechanism. Intrinsic Plasticity should potentially increase the entropy of the Network, activating

those neurons which are mostly silent and shutting off those which are too active. Combining all

together, the Network should tend to increase the amount of expressed information by its neurons

and the reaction of the Liquid should differentiate the SOSN to the Static cases.

The parameters governing the Plasticity mechanisms are as important as the hyper-parameters of the

Network. Only a correct setting of these parameters allows to improve the quality of the Liquid and
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in turn the performance of the Network in the given tasks. The process of tuning leads to these values:

STDP Normalization Intrinsic Plasticity

Apre Apost τSTDP dtSN Spectral Radius LRup LRdw dtIP Target

0.001 -0.001 10ms 50ms 1 0.001 -0.001 1s 40Hz

Table 6.3: Main parameters related to the Plasticity mechanisms in SOSN. STDP is based on a

symmetric exponential decay profile. Normalization is applied in order to prevent saturation of

synaptic weights. IP aims at maintaining the natural firing rate of the Network, improving its

dynamics.

STDP is tuned in order to slightly modify the weights every time it is involved, thanks to its

low Learning Rates. Nonetheless, it still leads to synaptic normalization so that Synaptic Normal-

ization is necessary to prevent that. SN occurs every 50ms and sets the weights in order to scale

the Spectral Radius (SR) of the Excitatory weights matrix to 1. Setting the input weights to each

Neuron normalized to 1 assures this condition. This very measure is crucial for Echo State Machines,

as demonstrated by Jaeger [42], but it is unclear whether it produces similar effects on LSMs. As a

matter of fact, despite setting the SR to 1, the impact of the input signal to one Neuron can still be

modulated by the input resistances or the synaptic unit current. Nevertheless, this measure has been

adopted in order to stay coherent with respect to SORN and allow for better reproducibility of the

results.

Lastly, IP: it is the most complex Plasticity mechanisms in the lot, governed by multiple parameters.

The most important consideration has to be done on the Standard Deviation of the resampling of

the Resistances. According to the experimental data of the OxRAM cells used in the last chapter,

that value is measured to be in the interval [0.4− 0.5]. However, using this values, it has been found

that the dynamics of the Network was scrambled too much: the low control on the values of the

Resistances inevitably lead to the loss of the classification ability of the Network, while the continuous

action of IP still allowed to maintain the target rate. However, since the performance on the tasks was

compromised when using high values of Standard Deviation, it has been chosen to gain control over

the resampling of the Resistance by lowering the Standard Deviation below 0.1. The results presented

in the following are obtained with SD = 0.05. Of course, by setting SD = 0 one could in principle

reach optimal performance, but that is of no interest: no device could potentially set its resistance

with such precision.

For what concerns the other parameters of IP, it has been chosen to make it act with low frequency:

after all, in biology, IP is shown to act on the minutes to hours time-scale. Lastly, the Learning Rates

are on the same order of magnitude of the ones of STDP. Changes of the resistance should not be

abrupt, since the input section of the neuron is crucial in determining the dynamical behavior of the

single node and, in turn, of the Network.

The following figure highlights the effect of the 3 Plasticity mechanisms on the Network.
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(a) Raster Plot, Static Network (b) Raster Plot, SORSN Network

Figure 6.2: Raster plot representing the spike patter of each neuron in time, for both the Static and the

SORSN Network. The richness of the dynamics is slightly increases for the SORSN

The two examples above show the Raster plot of the Liquid when two words [e, d, d, d, d, d, d, f ],

[a, b, b, b, b, b, b, c] are given to the network after an initial period of 2 seconds, in which the Reservoir

forgets its initial state and enters in its operative regime. Between the two words, a space without

inputs is present, so that the ’short term memory’ wouldn’t affect the dynamical state produced by a

word based on what the network had experienced before.

Often in temporal tasks, one wants to process the input taking into consideration the time information

it contains. In this case, the letters d, b are repeated many times and it is interesting to test whether

the Liquid is able to count how many repetitions of the same letter have been presented. It is reminded

that in order to classify the ’b’s and the ’d’s with different classes, the state of the Reservoir has to

evolve enough during the time the same signal is shown. This means that the spiking pattern of the

neuron in the Raster Plot has to present different configurations under the same input. It is thus clear

that the neurons which are either constantly spiking at a fixed frequency or always silent, bring no

useful information. The Static Reservoir presents some examples of those neurons. Plasticity is tuned

in order to enrich the dynamics, shutting off the constantly firing neurons and activating the silent

ones. In the figure on the right, representing the SOSN Network, especially on the word on the left,

it is clear that the dynamics regime is more chaotic, allowing for a better classification of the same

signal into different classes.

It is also clear that a too chaotic regime wouldn’t allow the Network to distinguish the different inputs:

the firing pattern has to be persistent over time for the same signal, meaning that each letter has

to present its signature activity in the Liquid, since the Readout layer is linear thus not extremely

powerful in the classification procedure. All the Plasticity mechanisms, especially IP, have to act in

order to find a delicate balance between enriching the Dynamics of the Network but not bringing it

into chaos.

Another point of view in the study of the effect of Plasticity is given by the Principal Component

Analysis. The Liquid state is projected on to the dimensions which better explain its variance along
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the time. With this technique, one can better visualize the Liquid response to the input: ideally,

tight clusters are created in the 2D and 3D Principal Component space, identifying each of the input

signals. The more packed the cluster, the easier for the readout to univocally classify the related

input signal. Moreover, different signals should be separated, meaning that their clusters should be

far apart from each other in the Principal Component space. The farther the cluster, the easier for

the readout to determine what signal has been displayed by the Liquid.

In order to get a feeling of what the PCA is extracting from the Liquid, the 2D and 3D Principal

Component projection of the Liquid response for the Static case is plotted. In this simulation, the

same word [e, d1, d2, d3, d4, d5, d6, f ] is presented to the Liquid for 10 times, with silence between

them. The whole word lasts 1.6s and each input is presented for the same amount of time.

(a) Tridimensional representation of the Liquid

State, with the time-evolution in blue

(b) Bidimensional representation of the Liquid

State

Figure 6.3: PCA the representation in the Static-Liquid of the input word (e, d1, d2, d3, d4, d5, d5, f) for the

Static Network

In the 3D PCA, the trajectory in time of the Liquid State is plotted together with the signs re-

lated to the symbols, which are assumed to be the State of the Liquid at the end of each 200ms time

interval. The trajectory is not perfectly coincident every time the word is repeated, mainly due to

the fact that the input group is firing with a Poisson distribution. This uneven input spike pattern

implements an inherent noise that tests the Liquid to perform also under non-ideal conditions. As a

matter of fact, the trajectory is consistent in almost every phase of the input, favored by the silence

imposed after every word, disabling interference between the fading activity from a past word and the

rise of the new one. This interference would make the Liquid chaotic and unpredictable, producing a

non persistent trajectory in the 3D PC space.

The important aspect of the analysis is the positioning of the cluster: the first consideration is that

most of the clusters are compact and tight, meaning that the Network is stable and consistent in time

in reacting to the slightly different inputs in the same way. The second aspect is that most of the

clusters are far away from each other: this represents the separation ability of the Liquid, thus able to

determine what signal has been shown in the input. In particular, 4 signals are clearly distinguished

in the 3D space: the clusters related to the letters [e, d1, d2, d3, f ] are well separated. It was expected

that the Liquid would be able to distinguish between the different letters, but it is also clear that it

has a rich enough dynamics in order to separate some of the different ds input signals. Nevertheless,

separating the same letter presented over time represents a complex task for the Liquid and the last

ds in the sequence are all projected in a region of the PC space. This means that the Liquid response
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is flattened after the same input is maintained for some time. The Liquid, being a complex dynamical

system, easily falls into attractor states, which favor the classification but disable temporal informa-

tion to be extracted. This is why it is important to tune the Reservoir to the Edge of Chaos, in order

to find the perfect tradeoff between classification performance and encoding of temporal information.

Similar information is expressed by the 2D PCA plot: however, in this case, 2 only components are

not enough to encode the difference from the f letter, in grey, and the last couple of ds. Nonetheless,

it is clear that the f is always well enough separated from all the other letters in the 3D plot since its

grey cluster is far behind the yellow-black-pink ensemble.

In order to improve the separation performance of the Liquid, Plasticity has to act to enrich the dy-

namics, still conserving the ability to distinguish between different input signals. The same analysis is

thus repeated for the SOSN case, in which the three Plasticity mechanisms are applied for a sequence

of 20 words, to adapt the Liquid to the input signal. Then, the same word is fed to the Reservoir

and the projection of the Liquid State in the Principal Components is analyzed in order to establish

whether the Plasticity procedure brought an improvement to the Network.

(a) Tridimensional representation of the Liquid

State, with the time-evolution in blue

(b) Bidimensional representation of the Liquid

State

Figure 6.4: PCA the representation in the Static-Liquid of the input word (e, d1, d2, d3, d4, d5, d5, f) for the

SOSN Network

At first, the trajectory of the Liquid State along time in the 3D PC space seems to have become

more complex and less linear. This indicates that the dynamic behavior of the Reservoir is less de-

terministic and a little more chaotic. It is particularly clear that in the region in which the letters

[d4, d5, d6] accumulate the behavior of the Liquid is far from deterministic: the trajectory of the Liq-

uid State does not overlap at every cycle since the Reservoir is more unpredictable and prone to a

chaotic response to the input. This criticality affects the cluster of the f letter, which is less dense

and packed with respect to the case of the Static Network. However, this chaotic behavior comes

with the advantage that the letters [d4, d5, d6] are more separated and their respective clusters are

more defined, despite being spread over a larger portion of the space. Again, since silence is imposed

between the words, the initial condition is restored after every loop of the Liquid State and the initial

sequence of the word is well separated in tight clusters. In that concern, it seems the SOSN Network

is of no advantage with respect to the Static one. After all, the main and may only great advantage

of the SOSN over the Static Reservoir is the about the behavior of the Liquid in the [d4, d5, d6] region

of space. Whereas the Static Liquid falls into an attractor state which makes it difficult to separate

the different ds between each other, the SOSN is slightly more chaotic so that the separation between
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the different letters is enhanced. This heuristic thesis is to be proven in a classification task, later

introduced. If the classification performance will be effectively increased for the SOSN Network, then

it will be clear that Plasticity had played a role in the performance of the Network.

6.4 Counting Task

The Counting Task is a typical benchmark in temporal tasks for Artificial Neural Networks. In this

case, it is implemented for SNNs, requiring some adjustments. For example, instead of being shown

for 1 time-step, the input signals are presented to the Reservoir for 200ms; the frequency of the neu-

rons is evaluated in time-bins of 100ms and, in order to determine the output, the highest frequency

output neuron is considered.

The task is to predict the incoming signal when the Network is presented an alternation of 2 ”words”

consisting of NCT + 2 symbols:

[a,b,b,...,b,c] & [e,d,d,...,d,c]

where NCT is the number of repetitions of the ’b’s or ’d’s. Moreover, the Network is not only asked

to classify the incoming letter with its corresponding symbol, but also its position in the word:

for NCT = 2, [a, b, b, c] → [a, b1, b2, c]

This means that for a given NCT the number of output classes is 2× (2 +NCT ).

The accuracy of the classification is normalized in the interval [0, 1] by counting how many correct

predictions the Network is able to perform with respect to the total of shown signals. Of course, since

the alternation of the words is random, the first signal in a word is not used for the evaluation of the

accuracy, since the Network is at chance level in guessing which letter is coming next. An example of

Input and Output is given below:

Input: [a, b, b, c; e, d, d, f ] → Output: [b1, b2, c;−, d1, d2, f ;−]

The performances are evaluated for sequences of different lengths, where of course the longer ones

were more challenging for the Network. 3 different configurations are tested: a 200 Neurons Static, a

400 Neurons Static and a 200 Neurons SORSN. The performance is evaluated by averaging 10 trials

in which the Network is shown 500 sequences.
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Figure 6.5: Accuracy of the prediction for the Counting Task, as a function of N

As expected, the Accuracy decreases as the length of the word increases, and it does in an almost

linear way. In general, the performance is far from the one obtained by the original SORN, but a

comparison is pointless since that would compare ANN with SNN. One aspect is to be highlighted:

the 200 Neurons SORSN network performs as good, or even better than the 400 Neurons Static one.

This means that the application of the 3 plasticity mechanisms has a similar effect on the performance

than doubling the number of neurons for this task. A concrete advantage in using SORSN is clear

considering that the 400 Neuron Network is much heavier to simulate in conventional computers and,

even in the hypothesis of the implementation in dedicated hardware, it consumes more power than

the 200 Neurons one.

6.5 Occluder Task

The Occluder Task is similar to the Counting Task in that the Network is trained to predict the

incoming signal in a sequence of randomly alternated words, but presents 4 words instead of 2.

[1,2,3,..., NOT ], [NOT , NOT − 1,...,1]

[1,O,O,..., NOT ], [NOT , O,O,..., 1]

where the bottom two words include the ”Occluder” (O) ,a signal that hides the ascending or descend-

ing signals, only showing the first and last symbols. The Occluder is a different signal with respect

to the other NOT ones and, because of the way the words are formed, it is the one to be presented

the most time to the Network. This may cause problems during the pre-training, since STDP may

polarize the activity of the Network based on the activation pattern formed by the Occluder.

Again, the Network is shown random alternation of words and has to predict the following signal in

the sequence. In this case, not only the first number is not possible to be guessed, but also the second

one in the word, since it could be the Occluder or the rest of the ascending/descending sequence. Here

is an example of Input and correct Output.

Input: [1,2,3,4;4,O,O,1] → Output: [-,3,4; -,-,O2,1;-]
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The task is tested for 5 sequences of 50 words, varying the length of the words.

Figure 6.6: Accuracy of the prediction for the Occluder Task, as a function of N

Also in this case, the effect of the Plasticity is that the performance is increased of a considerable

amount. Despite the Network has not been tested for as many words as the Counting Task, it is clear

that the SORSN Network overcomes the performance of its equivalent Static counterpart but also of

the 400 Static Network.



Chapter 7

Conclusion

This Thesis focuses on the simulation of Spiking Neural Networks with inspiration from biology in

order to improve the performance of the chosen machine on temporal tasks. An introduction to SNNs

and the paradigm of Reservoir Computing was presented at first, serving as the background for the

development of the following work. In particular, the advantages of Reservoir Computing respect to

Recurrent Networks training in general have been highlighted and the potential of Liquid State Ma-

chines has been explained. Supporting the motivation that led to the promotion of the Liquid State

Machine as a computing paradigm, a section is dedicated to the details of the low-level functioning

of the Brain, mainly focusing on the Neurons and Synapses and the way the information is processed

in Neural Systems. During this part, it has been also discussed how to capture the behavior of such

biologic systems into compact models, eventually employed for computation purposes. Following the

Introduction, a review of the state-of-the-art of the implementations of Spiking Neural Network. It

has been shown which are the most common models that are implemented with VLSI electronics and

what a Neuromorphic Machine is made of. The DYNAPs, the Neuromorphic chip available to the

Indiveri’s group in Zurich, has been analyzed, mentioning both its qualities and drawbacks. Later, the

computer paradigm of the Liquid State Machine has been studied in detail, particularly emphasizing

the phase of Tuning of the Liquid and the Memory Capacity of the Network, by means of the Delayed

AutoEncoder task. In this way, the limitations of such architecture have been tested and the author

could build confidence in the operation of the LSM for the following tasks. Drawing inspiration from

biology, an algorithm for a Plasticity mechanism (Intrinsic Plasticity) was developed, exploiting novel

electronic devices, such as Memristors, in order to overcome the Von-Neumann bottleneck. This al-

gorithm was tested in detail and has been verified to work properly: not only it was able to control

the behavior of the Network in the desired manner, but it also allowed to reduce its consumed power.

Lastly, Intrinsic Plasticity has been combined with STDP and Synaptic Normalization for the test

of the Self-Organized-Spiking-Network. This LSM included a phase of unsupervised pre-training in

which the Plasticity mechanisms adapted the Liquid to the presented input. This is shown to im-

prove the performance on two temporal tasks: the Counting and the Occluder tasks. The benefit of

the application of Plasticity is demonstrated to equalize the benefit of doubling the size of the Network.

Future works

In this work, it has been always paid attention to the hardware implementation of the algorithms.

Technological plausibility is a necessity when dealing with Spiking Neural Networks since conventional

computers struggle to simulate the time-continuous evolution of the Networks. So it is important to

have a consolidated knowledge on Neuromorphic Computing in order to be sure that all the concepts

in a Network may be successfully implemented in hardware. Regarding the circuital implementation

98
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of the components of the Network, both the Neuron and Synapse are technologically plausible. The

model of the Synapse is easily reproduced by the DPI Synapse present in the DYNAPs chips, which

also include additional circuits for the STDP mechanism. For what concerns the Neurons, a new,

simplified version of the DPI has been developed in order to host the three OxRAM cells. The

question is then whether the models of Memristors used for the different applications fit the behavior

of the real devices. In the cases of the tests of the IP algorithm and the Delayed Auto-Encoder task,

the model - and in particular the Standard Deviation of the lognormal distribution in the RESET

phase - is coherent with what found in the experimental characterization of the device. Instead,

for the Counting and Occluder tasks, the improvements in performance were registered only when

the Standard Deviation of the lognormal distribution was one order of magnitude lower than the

experimental data. This may be attributed to either a defect of the tuning of the IP algorithm or to

the great sensitivity of the Network with respect to any change of the parameters. Either way, both

the concept of Liquid State Machine and the development of Memristors are on the first steps of their

evolution, so that improvements are to be expected for the algorithm’s stability on one hand, and on

the technological implementation on the other hand.

Instead, concerning the benefit that biological features bring to Spiking Neural Networks and, in

particular, to Liquid State Machines, it is interesting to test the accuracy of a SOSN machine on more

complex tasks. The advantage of Spiking Networks over Artificial Networks is their inherent ability to

process time-varying signals, due to the time-constants of the Neurons and Synapses. This ability can

be exploited in complex temporal tasks, such as sound recognition. For example, one of the well-known

benchmarks for speech recognition is the TIDIGITs dataset, in which digits from 0 to 9 are recorded

by many different people and have to be classified by the machine. Another field of application of the

SOSN is the processing of biomedical signals. Among the many, the ECG (the Electro-CardioGram)

and the EMG (ElectroMyoGram). It is interesting to develop devices able to process these highly

noisy signals being integrated into small footprints and consuming ultra-low power. In this perspective

the results obtained for the application of Intrinsic Plasticity and its integration with other Plasticity

mechanisms are promising.
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