
POLITECNICO DI TORINO

III Facoltà di Ingegneria dell’Informazione

Corso di Laurea in Ingegneria del Cinema e dei Mezzi di Comunicazione

Tesi di Laurea Specialistica

BlockArt
A Blockchain dapp for collaborative artistic production

Supervisor: Laura Farinetti, Politecnico di Torino

Co-rapporteur: Gianni Corino, University of Plymouth

Co-rapporteur: Valentina Gatteschi, Politecnico di Torino

Candidate: Davide Grimaldi

Ottobre 2019

To my family

ABSTRACT

This work was developed through a mobility program between Politecnico

di Torino and University of Plymouth, it proposes to develop a blockchain

platform of collaborative community production for artists. The artist will

be able to propose a draft that will be analyzed, discussed and implemented

by the community acquiring a certain value on the platform. The first part

of my thesis will have the intent to describe the main characteristics, both in

general and in the artistic field, of peer communities (organization, production,

governance and motivation). The second part will be an in-depth analysis of

the world of the blockchain and on the Ethereum platform, then the working

mechanisms of the blockchain and the Ethereum Virtual Machine (EVM) will

be discussed. With the help of some platforms related to collaboration between

artists, I focus on the main challenges these platforms have to face in the field

of intellectual property. Finally, my platform will be illustrated by analyzing

the main features and the smart contract.

INDEX

Contents

1 INTRODUCTION 1

1.1 CONTEXT . 2

2 PEER PRODUCTION AND

CROWDSOURCING 3

2.1 A GENERAL INTRODUCTION OF P2P 3

2.1.1 ORGANIZATIONAL MODELS 4

2.1.2 MOTIVATIONS . 6

2.1.3 PEER GOVERNANCE AND PEER PROPERTY . . . 7

2.1.4 WIKIPEDIA AND PEER PRODUCTION DESIGN . 9

2.2 CROWDSOURCING AND ART 16

2.2.1 DEGREES OF PARTICIPATION 17

2.3 ALPHA ARTISTS AND ADMINISTRATORS 19

3 BLOCKCHAIN 21

3.1 BLOCKCHAIN. HOW DOES IT WORK 22

3.1.1 GENERAL DEFINITION 22

3.1.2 TRANSACTION . 23

3.1.3 SECURITY CHALLENGES, HASHING AND

CRYPTOGRAPHIC 24

3.1.4 BLOCK . 29

3.1.5 HEADER AND MINING 30

3.1.6 COMPETITION . 32

3.1.7 TRANSACTION HISTORY 34

4 SMART CONTRACT AND ETHEREUM 37

4.1 SMART CONTRACT . 37

4.2 ETHEREUM . 39

4.2.1 STATE ACCOUNT . 39

4.2.2 MESSAGE AND TRANSACTION 40

4.2.3 WORD STATE AND EVM 42

4.2.4 ETHEREUM STATE TRANSACTION 44

4.2.5 BLOCK . 47

4.2.6 GHOST CRITERION 49

4.3 DEPLOY SMART CONTRACT 51

4.3.1 SOLIDITY . 51

4.4 UPGRADABLE SMART CONTRACTS 62

4.4.1 DATA SEPARATION PATTERN 63

4.4.2 PROXY PATTERN AND ZEPPELINOS 63

5 SIMILAR PLATFORMS 67

5.1 CROWDBC . 67

5.1.1 ROLES . 68

5.1.2 KEY FEATURES . 68

5.1.3 MAIN STEPS . 70

5.1.4 CONTRACTS . 70

5.2 BACKFEED . 74

5.2.1 TECHNICAL ELEMENTS 75

5.2.2 SYSTEM MODEL . 76

6 BLOCKART 78

6.1 SYSTEM MODEL . 79

6.1.1 ROLES . 79

6.1.2 THREATS . 80

6.2 BLOCKART: PEER PRODUCTION FRAMEWORK 82

6.2.1 LAYERS . 82

6.3 MAIN ALGORITHMS . 84

6.3.1 STEP BY STEP . 84

6.3.2 REPUTATION SYSTEM 86

6.3.3 DEPOSIT . 87

6.3.4 MODERATION RULES 87

6.3.5 VOTING RULES . 88

6.3.6 CONTRACTS . 89

6.4 EVALUATION RESULTS AND ANALYSIS 94

6.4.1 SYSTEM DESIGN . 94

6.4.2 RESULT EVALUATION 95

7 CONCLUSION 98

A Table of smart contract costs 106

1 INTRODUCTION

Nowadays there are many applications offering peer production services or

crowdsourcing, all these applications have a decentralized view. Thus, the

added value of these platforms is to get everyone involved in the discussion.

In particular, when we talk about art, the concept of decentralization, al-

though still little experimented, takes on an even stronger meaning. There are

not many authors who deal with this subject, because artists are reluctant to

participate in art. The few topics in the literature present generic descriptions

of existing platforms. Starting from these points, the purpose of this work is to

define a tool, BlockArt, able to present a completely decentralized application

of support for the artistic production communities. Given that participatory

art cannot be attributed to peer production or crowdsourcing, nowadays there

are no platforms that offer a service similar to BlockArt. The development

of blockchain technologies has allowed a greater development of decentralized

technologies, this has generated a competitive advantage compared to central-

ized technologies. While the most important disadvantages are related to the

lack of maturity of the blockchain technology. The purposes of this research

are:

• makes artists more aware of the themes of participatory art;

• creates a proposed platform as a hybrid platform between peer produc-

tion and crowdsourcing;

• realizes a completely decentralized application.

The most important challenge will be to be able to achieve all the goals listed

through an efficient and safe application. So the goal of the research is to

create a usable dapp. Starting from the hypothesis that a service like the

one offered by BlockArt is absent in the dapps environment. In an attempt

to demonstrate this hypothesis, the following research will begin to describe

the main characteristics of peer communities (organization, production, gover-

nance, and motivation) in the artistic fields, and then there will be an in-depth

1

analysis of the blockchain world and on the Ethereum platform . The final

part will be a description of the BlockArt framework and an analysis of the

tests performed.

1.1 CONTEXT

This project has been developed thanks to a mobility program between Po-

litecnico di Torino and University of Plymouth. The name of Politecnico di

Torino’s program was ”Mobilità per tesi su proposta del candidato”. The first

part of the research, reference research and idea prototyping, was developed

at the School of Art, Design and Architecture of the University of Plymouth,

inside i-DAT Open Research Lab. The university of Plymouth is a public

university based predominantly in Plymouth, England. One of the most im-

portant feauture for the development of this research, gives from Plymouth

university, was the possibility to access of the university library that is opened

24/7, and has a huge number of bookable books. i-DAT is an Open Research

Lab for playful experimentation with creative technology and consists of two

entangled parts: i-DAT Research and the i-DAT Collective. More specifi-

cally, the i-DAT fields are related to interdisciplinary research explores the

idea of performative, embodied and social networks, in emergent technological

practices. The i-DAT projects are provided by i-DAT Collective, a collabora-

tive group of interdisciplinary artists, technologists and researchers. So, these

projects are rooted in the main i-DAT research program that deals with mak-

ing the ”data” palpable, tangible and accessible.In this part the research was

supervised by Dr. Gianni Corino Leader for MRes Digital Art and Technology

at Plymouth University, who was able to direct and advise research in its pre-

liminary phases. So, the opportunity to develop the research idea inside the

University of Plymouth and i-DAT Collective allowed this research to form

and develop across various disciplines (social, design, blockchain)

2

2 PEER PRODUCTION AND

CROWDSOURCING

2.1 A GENERAL INTRODUCTION OF P2P

The term peer production describes a model in which people work together in

a co-authoritative manner. Peer production is an organization that develops

in three different fields:

• Decentralized

• Non-monetary motivation

• Difference between property and organization

Peer productions are ”large-scale, collaborative and primarily voluntary

models” [1]. These productions are defined as decentralized because the ob-

jectives of production are not solved individually but by groups with an orga-

nizational hierarchy but by an open collaborative group. Motivation of these

groups are heterogeneous this means that every person of the peer produc-

tion has different reasons to participate than they are: human motivation,

innovation, experimentation, knowledge, organization cost and differ-

ence between property and organization. This differentiation is the most

common reason why people choose peer production, peer production’s organi-

zation models for assigning tasks are based on combinations of participatory,

meritocratic and charismatic skills while the property is managed through a

contract that has no restrictive restrictions.

Free and open-source software (FOSS) or Wikipedia are the most common

example of peer production, production is decentralized among different people

(each person adds some features to the production becoming collaborator), the

collaborators are motivated by reasons not monetary and production is coor-

dinated / managed by collaboration contracts; in some cases the contributions

are covered by copyleft licenses.

3

Peer production in the last decade developed into two different flavours:

Common-based peer production (CBPP), like FOSS or Wikipedia; Firm-hosted

peer production, such as Yelp or TripAdvisor, which derived from CBPP but

in that the property and organization are governed by the firm-hosted. For ex-

ample, Yelp provides a service through which users provide reviews on local ac-

tivities, but contributors are obligated to accept the terms of use before. Then

yelp maintains property and usage on own database. The other forms close to

peer production are crowdsourcing (that will be the topic of the next section),

online labour markets and Open collaborative innovation. Crowdsourcing is

distinct from peer production because the assignments are pre-determinate,

in this case, motivation could be both monetary and non-monetary. Online

labour markets have a different model of decentralization, more individual than

collaborative because they are a market in which users demand a solution for

their problems and the best solution will be the only remuneration, monetary

motivation. Open collaborative innovations are practices, in production and

innovations, among firms to make technological improvements.

In terms of organization, peer production marks a new social model where

everyone can access to production with ”symmetrical access privileges (with or

without use rules) to the resource without transaction”[2]. In peer production

every people has not any limitation to access to a given a resource or project,

every collaborator could suggest any improvements and could self-assignment

to a part of the project.

2.1.1 ORGANIZATIONAL MODELS

According to the organizational models (Figure 1) , we can divide each form of

peer production into three different functions in: Resource space, Capital

requirements and Project space. Resource space represents who are con-

tributors which have the potential to contribute to production. This function

is based on knowledge of people which contributes to projects. In the upper

part of this space, we find organizational models that concern those forms

of production that are more decentralized, where it is not well known who

4

Figure 1: organization model

will contribute to production (complexity and uncertainty) as peer or com-

petitions/prizes productions. While in the lower part of this space there are

all those less decentralized forms of production where one knows better what

kind of person will contribute to the production (routine) as in crowdsourc-

ing. Project Space is the space that indicates how much the final object is

defined. Where organizational model, in project space, is more decentralized

there are more risks to the production (object is not well defined), then hi-

erarchical organizations do not incentive to invest because the risks are more

than of the monetary return. On the other hand, organizational models like

crowdsourcing are models with low risks because the objects of production are

well-defined first. The last one is the capital requirement is the function that

indicates the ownership of the production object. Peer production can emerge

if the physical capital requirements of a project are very low, i.e. the capital

is distributed among the different contributors. While in Managerial hierar-

chies the capital requirement is concentrate between few actors’ managerial

hierarchies. After that, we can distinguish two extremities in Figure 1 on the

5

one hand crowdsourcing and on the other peer production. Crowdsourcing

in terms of motivations it needs of incentives while in peer production there

are diverse motivations (these motivations will be discus following chapter).

While in crowdsourcing managerial hierarchies are the owners of the produc-

tion (appropriability) in common production the contributor is free to operate.

The last difference between peer production and crowdsourcing is: peer pro-

duction has better exploration and experimentation for the own structure, in

the crowdsourcing optimization is well-managed because is a certain structure

(the roles are defined first).

2.1.2 MOTIVATIONS

According to Ghosh (1998) and the statements by Lerner and Tirole (2002)

contributors in peer production are moved by different motivations: ”(1) the

use-value of the project to the contributing, (2) hedonic pleasure from of par-

ticipation, (3) enhanced employment prospects from reputation gains or hu-

man capital accumulated, and (4) social status gains within the community

of peers”[3] [4]. But in general, the motivations that drive individuals to

participate in peer productions are often heterogeneous therefore designing

a well-functioning system becomes more complex. According to sociologists

the relation between social-motivation and old forms of standard economic in-

centives (like salary) are not separable, then the old economic system reward

(punishment) is not compatible with the peer production system. According

to Alexy and Leitner:

”positive (negative) monetary rewards (punishments) can (1) drive the

total sum of motivations for any given individual in the opposite direction, and

(2) lead to substitution in the population of agents from individuals driven by

prosocial motivations to individuals driven by monetary motivations.”[5]

On the other hand, it is more complicated to define if integrating rewards

to peer production there are advantages to the production, because web sites,

such as Weblogs Inc., which tried to use social recognition for production

have failed. However, it has been noted that the tendency to cooperate is a

6

determining factor in the design of the best organizational structure of peer

production. According to Benkler, to design a best organizational structure for

a peer production there are six different “levels of prosocial contributions”[6]:

• Communication: a system with unstructured exchanges is better than a

system with a canned message. A peer production system is a system

based on a peer structure, i.e. open and continuous communications

• Normative framing and norm-setting: one of the most important moti-

vation is like peer production is regulated. It is important that the rules

are clear and documented, and it is important not to change these rules

to help users from developing relationships with each other. ”Moreover,

in the case of FOSS, normative framing has been described as permitting

a mixture of monetary and non-monetary rewards, as long as monetary

rewards are separated from the governance of the project” [5].

• Reciprocity, reputation, transparency: called also intrinsic incentive,

studies shown that different levels of reciprocity in peer productions

can improve levels of contribution. Moreover, the mechanism that gives

transparency to identity can be used to generate more relationship co-

operation between contributors

• Fairness: it is important that within of peer production there is not any

suspect of hierarchical structure and that there is continuous negotiation

between participants.

• Empathy and solidarity: ”Cooperative systems perform better when

they emphasize other-regarding motivational vectors” [6]. Cooperation

works better if the system gives the possibility to shared own point of

view of the project.

2.1.3 PEER GOVERNANCE AND PEER PROPERTY

Peer governance is the way in which peer production is managed. Peer gov-

ernance is not the power in the hands of a dominant figure or group within

7

peer projects but following the principles of peer production is the possibility

of decentralized power among all participants in the project. According to

Vasilis Kostakis: ”Peer governance is a new model of governance and bottom-

up mode of participative decision-making that is being experimented in peer

projects, such as Wikipedia and FLOSS” [7] [8] ”Thus peer governance is

the way that peer production, the process in which common value is pro-

duced, is managed.”[9]. In participative decision-making is essential freedom

to operate/contribute. The most advantage of peer governance is freedom to

operate/contribute because the lack of need to seek permission before the con-

tribution is the essential motivation that makes peer governance able to avoid

the loss of information and diversity that are common in hierarchical systems.

We must not think peer governance as an anarchist system, in fact, against

low-quality material and to safeguard the project’s integrity, everyone is free to

make a contribution but the community can refuse it. Wikipedia is the most

common example based on this system. In the peer projects, there are ”benev-

olent dictators” or ”Alpha Artist”, as we will see later in the crowdsourced

art, which are the reference figures of that project. According to Axel Bruns,

the benevolent dictators are: ”as ones of several heterarchical leaders of the

community, who have risen to their positions through consistent constructive

contribution and stand and fall with the quality of their further performance”

[10]. Benevolent dictator figures must be coordinator not controller in a peer

production system, he, through a process of acquisition of trust by the other

contributors, pass to the centre of the peer network acquiring a role of support

and help to peer contributors. On the other hand, there is the problem of the

authorship of the project. In the beginning, the peer production project is

guaranteed by the property default regime. This right of property is exer-

cised by the benevolent dictator. Then the property is given to license to the

community in two different ways:

• FOSS licenses

• Creative Commons

8

both of two licenses are non-profit. While the first is used especially for free

software, the second one is used in different fields. Within creative commons,

the most important division is between those that the re-use of contents for

any propose and those that seek to limit this. Sometimes peer production’s

projects are under “copyleft” license, it is a special license that which allows

the re-use of the materials only on the same terms as they themselves received

access. The problem of authorship will be dealt with in detail in the crowd-

sourcing art part because the authorship represents a fundamental part in

crowdsourcing productions.

2.1.4 WIKIPEDIA AND PEER PRODUCTION DESIGN

As mentioned earlier, the main important elements to design a better solution

to peer production platform are transparency, norms, organization, rough con-

sensus and non-determinative voting. Most of these elements are rules by the

Engineering Task Force (IETF) and World Wide Web Consortium (W3C).

These two collaborative institutions have the purpose to rules the Internet

protocols (e.g., TCP/IP) and Web formats (e.g., HTML). The persons who

participate in these institutions work in mailing lists, teleconferences and face

to face meeting. Now we will see how Wikipedia is designed. Wikipedia, the

most famous peer production project, is called like a “multilingual, web-based,

free encyclopaedia based on a model of openly editable and viewable content”.

Everyone is free to edit contributions through wiki system even without cre-

ating an account. Through a wiki account, you can access some additional

features such as ”watchlist”, which allows you to follow content by receiving

notifications when this is changed. Under the point of the transparency, the

Wiki system for each content of the site creates a register visible to all with

all the changes made, a contributor can then decide to restore the previous

content of the last change. The Watchlist and Revision pages are the most

important web page of Wikipedia because through these the contributors can

understand who has the same interests and generate discussions among them

on that topic. Then discussion page is fundamental in the production pro-

9

cess of Wikipedia’s system, these pages are used to communicate, to make

help request and to coordinate work. Most of the contributions on Wikipedia

are made by a few people, in fact, according to Yann Algan, Yochai Benkler,

Mayo Fuster Morell, Jérôme Hergueux in 2013, ”only 4 per cent of the par-

ticipant from 100,000 to 1,000,000 contributions, while the rest of the users

contributed only 10,000 entries”[11]. It is important to note that the norms

within Wikipedia were born with time through the progressive construction

of consensus among contributors. Some of these norms are a neutral point

of view (every point of view must be considered) and take good faith (in

general, users do not have malicious purposes). Wikipedia’s organization is

linked with the role of benevolent dictators that is held by “Wikipedia admin-

istrators” who have special powers to block malicious editor and protecting

vandalized pages according to community rules. Wikipedia administrators are

users who have contributed to many voices and have gained a lot of consent

from the community. But in peer production, the most difficult challenge is

a rough consensus. In Wikipedia the challenge of consensus born with the

disambiguation. According to Wikipedia definition disambiguation is:

”Disambiguation in Wikipedia is the process of resolving conflicts in article

titles that occur when a single title could be associated with more than one

article. In other words, disambiguations are paths leading to different articles

which could, in principle, have the same title”[12].

In these situations, the norms indicate that using verifiable sources and

assuming good faith the community must reach an agreement, but what hap-

pens if there is no agreement or consensus? In Wikipedia general definitions

for consensus speak of “general agreement,” “without active opposition to the

proposed course of action”. The most difficult challenge for consensus is not

to reach a decision but rather to reach the best possible solution. Always

citing the Wikipedia definition of consensus: ”Achieving consensus requires

serious treatment of every group member’s considered opinion. . . . In the ideal

case, those who wish to take up some action want to hear those who oppose

it, because they count on the fact that the ensuing debate will improve the

10

consensus”, then it is important remember that Wikipedia is based on good

reasons system, not a non-determinative voting system that is often used to

start a discussion, not the end it. So, the problem is not how to reach consen-

sus but who participates in the discussion, in this context Wikipedia reveals

some shortcomings. In Wikipedia, the fact of not having a mailing list and

its openness make it difficult to define who they participate in the discussion.

This situation makes easy trolling phenomenon that transforms argumenta-

tion in endless discussions and therefore the group of discussion collapse in

frustration. To resolve this issue the IETF and W3C have deliberated some

rules:

• the discussions must be built to focus on the topic, to avoid endless

discussions

• the working group chair is essential for summarizing and recording dis-

cussion, to avoid discussions on some topics. To reject discussion a Work-

ing Group Chair can use different criteria: old (already resolved), minor

(topic minor for working group), timing (not yet opened for discussion),

or scope (topic outside of working group’s discussion).

On the other hand, there is the problem of silence. In a discussion group,

silence after a request is not a good thing. It is difficult to interpret silence,

because as Wikipedia states it could mean both assent, dissent or a lack of

interest. At the IETF and W3C, there is a process called ”last call” where the

participants before starting the practical test must give their point of view on

the discussion.

In Wikipedia, the role of benevolent dictators is taken by the facilitator.

This figure has many tasks, the most important is once the discussion is over,

they summarize the decisions taken, and if there are no objections, indicate

this as a new role for the community. In Wikipedia facilitator are known

as “clerks” because as Sheeran states it has roles clerk responsibilities like

scheduling discussion, starting question of discussion, roles and helping the

discussion (i.e., they indicate what is important and rule out obstructionists

11

or spammers), and indicating the final point of discussion (i.e., when consensus

was reached in the discussion). In some discussions, it is very difficult to get

the consensus. As happened in the discussion on the television series Buffy the

Vampire Slayer, there was a long dispute if there is disambiguation between

the title of an episode and the title of all TV series, 26 people have chosen to

support only the disambiguation if necessary and seven have chosen to oppose.

The problem was that there was no consensus.

Consensus system generated the most important problem in Wikipedia.

According to Christian Stegbauer, the Wikipedia community has turned into

a structural cultural production as a company, where there is no peer commu-

nity but a hierarchical structure. The first ideology of Wikipedia was every-

one can participate in the creation of contents, then ‘global knowledge’. But

the privileges given to the facilitator to mediate the discussions generated a

positional Wikipedia system that created a ”lack of social integration or ne-

gotiating options” [13] between facilitator and new users. Always according

to Stegbaue the control, therefore, is managed by an elitist group that makes

all the most important decisions.

Another way to make a decision in a peer community is voting. While in

a small group the best way is discussion and consensus, when there is a large

group of opinions in a community voting often is better than discussion. In

general, Wikipedians consider ”Voting Is Evil” [14] but it has been shown that

the probability of contrasts between two people increases geometrically with

the increase in group size. As seen previously consensus generated few persons

make decisions for the whole community, making it difficult to express their

opinion. So voting result more neutral than consensus, then why do Wikipedi-

ans consider voting as evil? According to Wikipedians, the vote discourages

consent because it avoids the discussion and it generates groupthink. Many

times, the vote simplifies the complex question (i.e. yes / no vote) generate

false dichotomies and confusion. Then voting in Wikipedia is used in few cases,

for example for deletion of voices, in fact, according to Wikipedia: ”Wikipedia

is not a democracy”[15].

12

COLLABORATORIUM Therefore, the design of peer production is very

complicated. According to Luca Iandoli, Mark Klein, and Giuseppe Zollo a

way to manage the complexity in peer production:

”is to move from the issue of designing a platform to the more general

problem of designing the community” [16].

In their study “Can We Exploit Collective Intelligence for Collaborative

Deliberation? The Case of the Climate Change Collaboratorium”, they devel-

oped a collaborative platform named Collaboratorium. Now we will see the

main feature of Collaboratorium and the most important difference com-

pared to Wikipedia.

Like Wikipedia’s community, in Collaboratorium there are different top-

ics with one or more goals coherent whit topic, a large group of participants,

rules and facilitators who manage the community, but in Collaboratorium

the innovate thing is deliberation. While in Wikipedia and forums and blog

users adapt to the consolidated (not interactive, static) decision-making pro-

cess, Collaboratorium deliberation is: “a set of processes through which

members explore the solution space and converge to a decision”.

Collaboratorium uses proxy approach, i.e., intermediation/delegation for the

deliberation process because according to the study without control there are

not adequately knowledgeable and high-quality arguments.

The deliberation process, that in Wikipedia is named consensus process,

is a set of two steps: convergence and exploration. Deliberation process is a

system that links the quality of the topic to the author’s reputation. Both the

user supports the author’s argumentation and does not support the author’s

argumentation, users must score the idea and to find reliable sources or propose

new argumentation to demonstrate the reasons for their choice. It is also

possible that the user can read arguments contrary to the author’s idea and

modify his opinion. This system allows ”knowledge structure and scoring

system work together to encourage a collectively-vetted, logic- and evidence-

based approach to decision-making ” [16]. Now we will analyse, according to

the peer production motivations listed above, the main differences between

13

Wikipedia and Collaboratorium:

• While in Wikipedia users are free to express their opinion, in Collabo-

ratium there is a formal structure which every collaborator must use

to express his opinion. This framework is essential to ensure the whole

community participate in the discussion by providing valid arguments.

This process makes through process use of “claims, rebuttals, pros and

cons, explicit opinions, facts and figures” [16].

• Collaboratium incentives the “mass-conversation”. To achieve this goal,

Collaboratium’s users, before to participate in the discussion, forced to

read other contributions.

• Studies shown that participation level decrease with an increase of argu-

mentation rules. Then Collaboratium will have fewer users than Wikipedia.

But in general, when there are fewer rules, the quality of discussion

is less than when there is more, i.e. limit of redundant information,

off-topic and digression.

• According to the authors Collaboratium will produce less polarization

than Wikipedia, the deliberation process is more restrictive than con-

sensus, but reduces the possibility that decisions are made by a small

decision-making group. People are more interests to participate when

they are more involved in the discussion.

Collaboratium platform has three figures: moderators (filter, reject off-

topics and mediate contents of posts), authors and readers/voters. Modera-

tor’s rules “involved classifying and sometimes editing posts, offering sugges-

tions to authors, aggregating similar arguments, and occasionally re-organizing

the overall argument map so that related topics are grouped into the same

branch” [16]. Authors initially post or modify a topic; this topic will be pend-

ing status. After that the moderator certificate the validate of the post, all

users can rate the post with an anonymous identity. Then users can deliver

a suggestion to the authors to improve argument through a discussion forum.

14

The topic contains different elements pro/con to the argumentations, sugges-

tion ideas and documents to validate the content of the post. Nobody can

re-post an argument except moderators. Moreover, mediators have a key role

in Collaboratium because do comments and suggestions to the posts, through

the management of the map, and they help users to link their knowledge with

the map of the topic. According to the study, at least a percentage between

5% and 10% must be moderators.

SLASHDOT The figure of the moderator in relation to Slashdot is analyzed

by Audun Jøsang, Slashdot[17] is a forum where users can post any type of

article. When an article has been published everyone can comment on this

article. There are two types of users: Logged In User and Anonymous User.

Mediators are chosen among Logged In Users. They will are a mediator for a

specif time frame, then later Slashdot will select another group of mediators.

When a user is selected as a mediator she/he has a given number of moderation

points to spend to evaluate the comment. A comment can be evaluated in a

range between [-1, 5], each evaluation can raise or lower the evaluation of the

comment by one point. So, each Logged In Users has a reputation linked with

his/her sum of comments ratings, the reputation is called Karma and it can be:

Terrible, Bad, Neutral, Positive, Good and Excellent. Users with high Karma

start with a rating of comments of +2, while users with low Karma start at

-1. The Karma system is used in Slashdot to give the opportunity for users

to set thresholds for filtering of the levels of comments. Moreover, Slashdot

has a second level of moderation, called meta moderation, to avoid unfair

moderations problem. Only longstanding users can become Metamoderator,

in this case, a user asks to become meta-moderator and then meta-moderator

can evaluate 10 different comment evaluation of moderators. Metamoderator

can express three different judgments: fair, unfair, or neither.

15

2.2 CROWDSOURCING AND ART

Thanks to digital innovations and interconnections between people through

the web, concepts such as creativity, authorship and individual expression

have changed in many fields. In the beginning, only companies understood

the enormous potential of crowdsourcing and took advantage of Internet com-

munities to get profits and develop their projects. Crowdsourcing and the

possibility to reach a large number of individuals, through the web, has been

the reason for the success of companies like iStockphoto and YouTube. was

coined by Jeff Howe in an article in the Wired magazine of 2006:

”crowdsourcing represents the act of a company or institution that assumes

a function once performed by employees and outsources it to an indefinite (and

generally broad) network of people in the form of an open call.” [18]

Howe’s definition is a practical definition that identifies crowdsourcing as a

platform where companies or institution delegate indefinite network of people

to realize something, with or without financial incentives. The strength of

crowdsourcing lies in the potential of those who contribute (collective). There

are many points in common with peer production, including motivation, gov-

ernance and design, but it depends on how the platform is structured. In

the art field, collective intelligence can achieve efficient results only if commu-

nities use collective intelligence to improve artistic process[19]. As in many

Roy Ascott’s works[20][21][22] where the audience participates to the artistic

process, today thanks to the Web 2.0 the possibility is extended to a global

community. Another example is the ”exquisite corpse” a technique invented

by the surrealists during their shows, the technique was a game in which sev-

eral participants had to draw something on a sheet and passed the sheet to

the next player adding a rule to the game, then crowdsourcing is a foreseeable

consequence of the past artistic trends. Compared to the past, the revolution-

ary reach of crowdsourcing is the audience does not work to take part in the

artistic production but to become a part of artistic production. The practice

of online crowdsourcing art is used to develop artwork in different fields, such

16

as visual art, music and creative writing.

According with critics: “the art object is no longer necessarily the primary

focus of the encounter with art on the web”. Participatory artistic practise in

the last few decades have changed boundaries between artist and their audi-

ence, these changes reflect new social practices late capitalistic. Then, artists

practice participatory art because: “activation (by stimulating empowerment

as well as individual and collective agency), authorship (or the cessation of

authorship to make the artistic process more democratic and egalitarian), and

community (via the restoration of lost or weakened social bonds)” [18].

On the other hand, many of these theories do not consider the medium

by which crowdsourcing art is developed. According to Literat a fundamental

aspect often overlooked is that art through crowdsourcing is done online, so

the whole artistic process carried out in the network. This leads to gener-

ating a ”lack of social gatherings and face to face communication”[18], it is,

therefore, important to know how to better manage the artistic process in the

crowdsourcing community.

2.2.1 DEGREES OF PARTICIPATION

Crowdsourcing community many time is associated with commercial crowd-

sourcing, but crowdsourcing community in the artistic process is something

different. Problems of artists who work in the related art have overvalued this

practice, with a revolutionary intent but there are different degrees of partici-

pation within crowdsourcing.[23] According to Literat there are three different

degrees of participation that are divided in turn into a subcategory.

The first one is receptive participation, this degree of participation is re-

ferred to a traditional artistic mode like painting, opera, etc. The audience

receives the finished artistic product but through active interpretation and cre-

ative consumption, the audience becomes participator of the artistic process.

In this case, there is not active participation in the artistic process.

Executory participation in the second degree of participation, in this type

of participation, there is a default artistic structure where participator can

17

operate on the artistic process only in specific terms and conditions. In this

context, participator does not have the possibility to improve or modify the

initial conditions. There are three different levels:

• Tokenistic projects are organized in micro-level and often they have non-

logical structure. According to most critics, these projects just improve

the social reputation of the artist without real social contribution, for

example during Aaron Koblin’s TED conference [24][25] explained his

project ’The Sheep Market’. The project consisted to draw a sheep on

Amazon’s Mechanical Turk every person that drawn a sheep received a

0.02$ like a contribute, just one person used drawing the interface of the

project to ask to Koblin “Why? Why are you doing this???”. Through

this project, Koblin wanted to demonstrate how people could be used to

improve the social reputation of the artist.

• Engaged is more transparent than the tokenistic projects but it has a

project structure defined a priori. In this case, the participator know

what the final goal of the project will be, but they cannot intervene to

improve the project

• In Creative participation, the project is opened to a discussion between

the participators and the parameters to participate are less strict than

other forms of Crowdsourcing participation. In this case, there is an

alpha artist who owns the work of artwork and acts as a curator of his

own project by regulating the contributions of the participants.

The last degree of participation is structural, there two types of structural

participation codesign e coauthorship. In other words, in these cases, con-

tributors participate to realize the idea of the artwork. Codesign projects are

a shared platform within which every user can freely suggest improvements

and/or changes to existing artwork or add a new one. For our research, the

coauthorship is the degree of participation most important but it is the most

complicated because there are not any cases studies. The problem is to give

18

a definition of an author in coauthorship’s cases, this will be discussed in the

next chapter. For example, in the case of “The Sheep Market” Koblin’s sheep

sold in groups of 10,000 for $20 each. After that, someone opened a discus-

sion on Mechanical Turk forum titled “They’re selling our sheep!!!” where

discussed ethical, legal, and aesthetic aspects of crowdsourced art, most of

these discussions were of the possibility to reacquired rights on sheep.

2.3 ALPHA ARTISTS AND ADMINISTRATORS

So, the artistic process is an individual expression, artists express their sensi-

bility and their owns ideas through artwork. In this context, crowdsourcing in

the art field is a new way to a new way to intend art and the artistic process.

Crowdsourcing redefines the role of the artist that becomes the initiator of the

artistic project. Howard S. Becker defines that initiator as “alpha artist”[26],

according to the types of crowdsourcing project, listed above, the role of the

alpha artist is different. Essentially, alpha artists succeed in conceiving the

artistic project, but in some cases, they can also participate in the artistic

process of helping users in their choices. This is a fundamental role in the

exegesis of the community. The role of the alpha artist can be comparable

to Wikipedia’s mediator or benevolent dictators in peer production or mod-

erator in collaboratium. From receptive to structural participation, degrees

of collaboration between artist and crowd is much different, however, for the

realization of the artwork, they depend on each other. So, there is an indissol-

uble interdependence between two roles that, as for all types of collaborative

platforms, develops through the discussion.

The figure of the artist, even if it remains central in the artistic process, is

re-discussed and it assumes characteristics close to that of a curator. Accord-

ing to Literat, a curator is who “judges, selects, and arranges the participant-

submitted contributions into a final product” [18]. On the other hand, as

indicated above, in Collaboratium project the mediator is who mediates be-

tween the content of production and users. So, the two figures have many

19

points in common, curator preserves the artistic quality of artwork while me-

diator preserves argumentation quality. The figure of the alpha artist is not

new in the art world, for example, the conductor in the act of execution acts

as a glue between the various parts of the orchestra.

On the other hand, it is important to note that, unlike the mediator,

the role of the alpha artist is different, i.e. while the mediator is a figure

that preserves the impartiality of the discussion the alpha artist has a greater

involvement in the discussion for its role as an initiator. One of the most

important challenges for collaborative art platform is that: it must guarantee

the greatest possible impartiality to the community through the role of the

alpha artist.

An example of a possible solution is described by Audun Jøsang in his work

”A Survey of Trust and Reputation Systems for Online Service Provision[17],

where Jøsang states that there are guidelines to be followed to maintain im-

partiality in judgment within a community:

1. Have a scoring system and distinguish the users just entered in the com-

munity from those of long standing.

2. Recognize users with many poor performances.

3. Recognize performance in the latest.

4. Hard to manipulate from the peers.

5. Individual assessments must not affect the total average.

20

3 BLOCKCHAIN

Software architecture the discipline that studies the structure of high-level

software divides the software systems into two different categories:

• Centralized architecture: there is a central node and every compo-

nent of the network is connected only with it, reception and sending of

messages on the network is managed by the central node. Each compo-

nent must wait the central node to be able to speak on the network.

• Distributed architecture: every nodes are connected with one an-

other without central control. All nodes are connected together at least

indirectly

The most important advantages of distributed architecture are linked to

the possibility of reducing costs and amount of computing by distributing

the system on all the nodes of the network. Another important incentive is

the possibility that the network will continue to operate even when a node

stops. On the other hand, distributed architecture has some disadvantages

related to the fact that the nodes must manage the coordination themselves,

other disadvantages including higher complexity of the program because the

program must manage the coordination, communication, utilizing and security

of the network; dependencies on networks of nodes

A particular type of distributed software system is p2p (peer-to-peer). This

system is formed by a series of nodes, where every node performs a computa-

tional operation for himself (storage, distributed, and processing of informa-

tion) and at the same time the operation is available to other nodes in the

network (for example p2p file sharing system). According to the definition of

Daniel Drescher, p2p system works “transforming users computers into nodes

that make up the entire distributed system” [27], in turn, all nodes work to

achieve and maintain system integrity.

Two of most important challenge for p2p platforms are trust and in-

tegrity. A system is integrated if it satisfies the properties of safety, con-

sistence, completeness and correctness. While a system is reliable if users

21

contribute and will contribute, i.e. on an ongoing basis, the idea of system

integrity is reinforced. So, when the trust of the system is failed there is a

lack of integrity, then integrity and trust are interdependent. To maintain

the trust and integrity of the p2p system is important to know the number

of peers (sometimes peers that connect with the network fail or produce the

wrong result) and their reliability. The reliability of peers is the challenge most

important for p2p system, dishonest and malicious peers make the system un-

reliable and then other peers “turn away and stop contribution computational

resource to the system” [27].

3.1 BLOCKCHAIN. HOW DOES IT WORK

3.1.1 GENERAL DEFINITION

According with its creator Satoshi Nakamoto, blockchain is:

“a purely distributed p2p system of ledgers that utilizes a software unit

that consist of an algorithm, which negotiates the informational content of

ordered and connected blocks of data together with cryptographic and security

technologies in order to achieve and maintain its integrity” [28].

So, blockchain starts from the idea to solve the problem of reliability of

unknown peers, achieving and maintaining in a purely distributed p2p system

a high level of trust. To implement this in the blockchain has been introduced

a process (transaction) that verifies, through some witnesses, your identity

and integrity of the system, the process will be more reliable if there will be

more witnesses. In the end, the process stores transactions in a map, calling

it ledger or register. Ledger is stored in the nodes of the p2p system, it

has two most important function: preserves any historical transaction data

of blockchain and documents each transfer of ownership. If the ledger is

open to anyone is easier providing proof of ownership, like a public testimony

in a court. But in some cases, it is important to preserve the privacy of

transferring ownership, then in these cases just who have trustful identity can

write in the ledger. The most important issue related to the ledger is “double

22

spending”

3.1.2 TRANSACTION

Blockchain is suitable for different fields but, to understand how it works in-

ternally, we will deal only with ownership cases. The use of the blockchain

for ownership allows the exchange of goods such as a virtual currency. As

mentioned previously, the process behind blockchain is called transaction, this

process can be compared to bank money transfer. In the ledger, every trans-

action is recorded in a transaction data. Data in transaction data are like

a bank account statement that contains a summary of all the operations per-

formed and the total amount of the balance. Transactions data are used to

make a transaction and they provide different information:

• peer’s identity who starts the transfer of ownership;

• peer’s identity who receive the transfer of ownership;

• the goods value of transaction;

• when transaction is done;

• transaction fees (the amount of which can be chosen by the person send-

ing the transaction and it are paid to the block’s generator node or

miner);

• the proof that owner agree with transaction;

At the end of the transaction, the transaction is added to the ledger and

it becomes part of the transaction history. Keeping the transaction history

is useful to have an owner/ownership map and thus avoid double spending

problems. It is also important to note that in transaction data there is an

information “when transaction is done”, it is important because we have to

keep track of the transaction order (chain) to know “how much is total

the amount of peer”, and therefore avoiding that a peer spends more than

23

its amount. To achieve and maintain trust in a blockchain, transaction his-

tory must have different levels of integrity, it depends on the final goal of the

blockchain project. Form and content of transactions must provide incor-

rect format and also, according to Drescher, is appropriate if transactions:

”ensuring that an account does not hand off more than it currently owns, only

the owner of account can execute a transaction, preventing double-spending,

limiting the amount of items that can be transferred in a single transaction,

limiting the number of transactions per user, limiting the total amount of

items spent in a given time period, enforcing that an account keeps an item

for a minimum time period before it can be transferred further” [27]. This

way to manage data structure defines the validation rules for a transaction

that will be treated later.

3.1.3 SECURITY CHALLENGES, HASHING AND

CRYPTOGRAPHIC

The way in which a blockchain system maintains a high level of trust is rep-

resented by encrypting transaction data and protecting users account. The

process of encrypting transaction data is called cryptographic hash value

[29]. A hash function is a non-invertible function that maps an arbitrary length

string to a string of fixed length, it accepts one input data at a time. The

result of the hash function is a hexadecimal number. The most famous group

of hash functions are the cryptographic hash functions, these functions have

different properties: function is executed quickly to avoid errors; function re-

turns the same result, for the same input, at different times; every input value

has different output result; it is impossible to calculate inverse function. The

most difficult challenge to calculate hash value is which hash functions accept

just one input data at a time. To solve the challenge of different input in one

time, now will list five different patterns:

• independent hashing processes one input at a time;

• repeated hashing works like independent, but after that it processes the

24

result value of the previous process calculating a new hash value

• combined hashing aggregates every input in just one input and process

it (with a letter space the same result of repeated);

• sequential hashing divides the initial data into a series of inputs, then

processes the previous input, aggregates the result with next one and

processing it;

These patterns are used to solve some secure issue: result hash is used to

compare inputs value among each other (comparing the hash is less expensive

than the inputs); hash is processed a first time and is compared the next

time to see if there are any differences, so if the input data has not altered;

calculated hash is the same at different times for a references1,i.e. taken a

given reference if the hash of that input changes over time, it means that

the data in that reference has been altered. These are some general uses in

computer science of hash functions for security, but in the specific blockchain

the hash functions are used for: chain, Merkle tree and puzzle. Let’s see

what they are:

• a chain is used to ensure the integrity of all blocks; chain is a list that

links each block with the next through its hash reference value, i.e. taken

n values: data 1, data 2, ..., data n and n references: R1, R2, ..., Rn-1.

We connect data 1 with a block formed by data2 and r1 (reference of the

previous block), then we continue connecting all data with the reference

of the previous one. The last data, i.e. data n, has no reference and is

called “head of the chain”, data n is the data through which the chain

can be accessed. Hence, if the chain has broken somewhere, it is proof

that some data have changed after was created;

1references are data types that refer to an object elsewhere in memory and are used to

construct a wide variety of data structures, such as linked lists. Generally, a reference is a

value that enables a program to directly access the particular data item.

25

• Merkle tree is a tree structure that takes its name from its inventor

Merkle. This structure can be seen as an overturned tree. At the bottom,

we have the transactions (for example two for each branch). At the next

level, we have the references to the transactions are grouped together.

While at the top level we have a hash reference of the pair grouped

together to another branch. This procedure is repeated until a single

hash is reached;

• hash puzzle is a mechanism that has been created “to throttle systematic

abuse of un-metered internet resources such as email, and anonymous

remailers” [30]. Hash puzzle takes advantage from the fact that hash

functions are not invertible functions, so it asks the user who wants to

solve the puzzle to look for a certain hash value (restriction) between a

fixed input value (data) plus a list of a variable number (once). When

the output hash value coincides with the solution of the puzzle, the user

has solved the challenge. Solving the puzzle requires a computational

cost, since the hash function is non-invertible function, so the only way

to solve it is by trial and error.

The process to protect users account is called asymmetric cryptogra-

phy[31]. The general idea of asymmetric cryptography is to ensure the user

account identity and access of his or her property, in a distributed architec-

ture. The goal of identity protection is achieved through public-private-key

encryption, everyone can transfer ownership through public key while just who

possesses the private key is can access ownership. For example, as shown in

Figure 2 we can imagine the public-private-key encryption system as the postal

system, anyone can send a letter if he/she knows destination address (public

key) but only who has the key of that mailbox (private key) can access to the

letter. Now, we start to describe the main important steps of cryptography.

Cryptography is composed by encryption (lock the identity) and decryption

(unlock the identity), often the encrypted data is called cypher text. The first

step is to produce, through a cryptographic key, the cypher text starting from

26

data which sender wants to send, then sender sends data to the recipient and

finally, recipient encrypts the message with the key.

Figure 2: Cryptography

There are two types of Cryptography symmetric and asymmetric. Sym-

metric cryptography uses the same key for encryption and decryption. But the

main used method in cryptography system is that asymmetric, in this method

there are a pair of complementary keys for every cypher text. As shown in the

Figure 2 the first key is used to encrypt the message and to create cypher text,

while the second key is used by the receiver to decrypt the cypher text and to

read the message. Based on their roles, in the asymmetric method the keys are

called respectively public and private key. Both encrypt data and decrypt

cypher text can be private or public. While public key allows access to anyone

and it is used for trustworthiness, private key (which is owned only by the

owner) does not allow access to anyone except the owner and is used to keep

safe and private data. As previously mentioned, in the blockchain technol-

ogy there are public-private-key and private-public-key encryption these

systems are based on the asymmetric method in public to private flows and

private to public flow. In the blockchain system asymmetric cryptography is

used for:

• Identifying accounts and transfer ownership use public to private

key. Every node in the blockchain system has a public key. So, the

sender encrypts her/his transfer with the public key is used to identify

the receiver user account. A public key is a number which everyone can

use to identify accounts to which the transfer of ownership should be

27

sent.

• Authorizing transactions uses private to the public key of asymmetric

cryptography. When an owner wants to transfer her/him property a

blockchain platform must ensure this transfer, to achieve this goal a

digital signature is created. So, a digital signature is the private key

that secures the integrity of data by the receiver (for example goods

value of the transaction); by applying owner’s private key on the hash

value and insert this in transaction data. The most important property

of asymmetric private-to-public key is that digital signature (or cypher

text) can be encrypted and decrypted with one and only one pair of keys,

then this method is used as proof of identity of the owner.

These two methods work together in the transaction to verify transac-

tion data. The transaction encrypt/decrypt process it is a three-step process:

identifying accounts, authorizing transactions and transfer ownership. The

sender of the transaction identifies receiver identity with receiver public key

(Identifying), at the same time, he/she applies the digital signature to en-

crypt transaction data (Authorizing). While the receiver verifies the identity

of the sender using the public key that corresponds to the digital signature

(Authorizing), and he/she uses his private key to receive ownership (Identi-

fying). Thus, if the two processes generate is completed, the transaction is

verified while in the opposite case fraud is identified. Once the sender has

sent his/her ownership trough the transaction, the transaction will send in

broadcast on the network and it will take place only when a certain number

of nodes will have verified and confirmed it, based on the specific blockchain

network rules. The verification process is done by nodes by verifying the se-

mantic correctness of the transaction data while the confirmation process is

the addition of the transaction to the blockchain-data-structure. We will see

later how transactions become part of blockchain-data-structure.

28

3.1.4 BLOCK

Now we show the main important feature on the data blocks is used in a

blockchain platform

Starting from the metaphor used by Drescher, we can compare blockchain-

data-structure as a book structure. The first challenge in blockchain-data-

structure is how ordering the block each other? So, taking how example the

book, the page number of a book indicates the sequence of pages, sometimes

it is possible that page numbering follows an order different from the natural

decimal system, for this reason, each block contains a reference to the block

that precedes it. The next step is to store and identify a reference for the

content of the block (text). So, we store the text of the page in a different

place than the page of the book. For example, we can take that page and

transfers it “in box or on a shelf”. Text can be compared to the transaction

data in blockchain-data-structure. In the real blockchain application, there

are not transactions data in a block, they are stored in an external database

and are represented by hash numbers in the block. The last step is to create a

unique reference number to link blocks together. Through cryptographic hash

values are calculated the reference value of the blocks, which is a combination

between reference hash number of transaction and the reference hash number

of precedent block (combined hashing), it is called header.

Figure 3: Blockchain-data-structure

29

Now, we will explain how a block is composed. As shown in Figure 3 The

block structure is a Merkle tree[32] structure on three different levels:

• Block Header contains header of the block if it is the first block the

hash reference number is just the reference of transaction. The headers

linked together to form blockchain data structure

• Transaction reference contains the reference of combined hashing be-

tween two different transactions (Merkle tree).

• Transaction contains two different transactions data.

It is important to remember that the blockchain data structure consists in

a series of linked “header” but there is only one head, the last block.

3.1.5 HEADER AND MINING

The main purpose of the blockchain platform is to preserve the blockchain-

data-structure to prevent any malicious intent. This goal is achieved through

the model with which blocks are made. Block model makes the whole sys-

tem immutable2 and high computational costs, these are the requirements to

make a system able to prevent malicious intent. The block’s model can be ex-

plained through creating a block and adding it in blockchain-data-structure.

As we have previously seen the most important part in a block is header, each

header contains mandatory data. Hash transactions reference number and

hash reference of the previous block, already mentioned above, make the sys-

tem immutable, preserving the risk of changes to the structure, we will discuss

this in the next paragraph. In addition to these two elements, in the header,

there are three other elements, mixed together in one hash value (mixed hash):

the difficulty level of hash puzzle, the start time of solving the hash puzzle and

2In imperative programming, values held in program variables whose content never

changes are known as constants to differentiate them from variables that could be altered

during execution. Examples include conversion factors from meters to feet or the value of

pi to several decimal places. Read-only fields may be calculated when the program runs

(unlike constants, which are known beforehand), but never change after they are initialized.

30

the nonce of test value. But why there are these values in the header? Hash

puzzle is that function which needs computational resources to solve the puz-

zle before to add a new block a node has to solve a relative hash puzzle. So, the

hash puzzle is unique for each block and is used to increase computational costs

of blocks creation. So, the hash puzzle increasing computational costs makes

blockchain-data-structure alterations more difficult. To ensure that nobody

tries to change computational cost the difficulty level is part of the header and

then of block’s hash value (as we will see later edit blockchain-data-structure

requires a very high computational cost). Creation of a new block is called

mining and the nodes that run this process are called miners. This process

has different steps (we will follow the Merkle tree structure like in figure):

1. Miners listen for transaction broadcasted and they select validate ones

(generally miners choose transactions with a high transaction fee)

2. transactions are added to a new Merkel tree model (transaction3, trans-

action4);

3. generate the hash reference from the header of predecessor block (B1);

4. take the root of the Merkle tree and generate the hash reference of trans-

actions (R34);

5. obtain difficulty level of the hash puzzle;

6. get current time;

7. generate a preliminary block with the information obtained previously;

8. solve the hash puzzle;

9. add the solution of the hash puzzle to the preliminary block.

10. add the components to the header and generate a mixed hash

So, the hash reference of block header will be the combination of hash

reference of the value of that process; the new block will be added to the

31

chain and it will become head of the chain. To create a new block there are

some validation rules that a node must be respected if these rules are not

respected the blockchain-data-structure detects invalid request and it refuses

the block adding request.

• The first validation rule ensures that there are no changes within

block structure, and then compared to the other blocks of the blockchain-

data-structure. The changes could invalidate the whole blockchain-data-

structure, following the Mark tree structure (represent in figure 11): if

change or replace the content of transaction (transaction1 or transac-

tion2) the reference is broken (R1 or R2) and hence, also, the reference

of the Merkle tree(R12); this alteration could causes later the invalida-

tion of the whole block and of then blockchain-data-structure because

of whole the reference of the next block is linked with previous one

(moreover, even alteration of only a hash reference of one element of the

structure causes invalidation of the whole blockchain-data-structure).

• The other validation rules are linked with the last three elements and

they require: that the difficulty level is correct; timestamp is after the

timestamp of the preceding block; the block contains nonce.

According to Drescher, if someone tries to manipulate a piece of transaction

data in blockchain-data-structure even just with 20 blocks to avoid creating

inconsistencies in the structure must rewrite every block (first rule) and resolve

20 hash puzzles (second rule)[33]. Generally, to solve a hash puzzle takes 10

minutes, so it will take 210 minutes for the entire structure. The hash puzzle is

the most fundamental element to make blockchain-data-structure immutable.

3.1.6 COMPETITION

The main important purpose of a peer-to-peer platform is that every node

has the same history or transaction history. The most challenge is linked to

the internet. In distributed peer-to-peer system internet is used as a commu-

nication medium, the internet gives the opportunity of unique address, text

32

messages, connection any times. But at the same time, messages can not

arrive or arrive in a different order. So, the peer-to-peer system must guar-

antee communication between nodes in the system, to achieve this result the

distributed peer-to-peer system distinguishes three different cases:

• when the connection between peers is already existing each node checks,

sending a small message called ping, that other nodes are reachable.

Then the receiving node confirms the request by sending another mes-

sage, called pong. Nodes that do not a response to the request are

removed from the nodes list. This method is called ping-pong;

• when a new node is added to the peer-to-peer system, the system takes

care of creating a new connection. The new node sends a request to

other nodes in the network, so who receives the request activates the

ping-pong method and add the new node to the list;

• when the information needs to distribute among nodes in the network,

it is the most important communication challenge for the system. The

blockchain is a distributed system, without central control, so there is no

entity that can handle communication between different nodes. Nodes

communicate with each other through transactions contained within the

blocks. As we have seen before, these blocks are chain together, so the

question is: how are managed the communications in the blockchain

system (I.e. adding and validation transaction) without a central unit?

We will see how the blockchain system achieves this goal.

The process of sharing information between nodes of a blockchain system

concerns adding and validation transaction/block, then validation rules (dis-

cussed above). But, in the previous paragraph, we omitted what happens

when block fulfils (or not) the requirements of validation rules and the way

which nodes compete to add a block to blockchain-data-structure.

Since there is no central unit that manages the system, blockchain-algorithm

makes nodes supervisors that the validation rules are respected. But without

33

the central unit, there is a problem of coordination among nodes[34]. Ac-

cording to Drescher, the core of blockchain-algorithm is “working-rhythm”

that it allows coordination in a blockchain system in two different rhythmic

steps.

• When a node receives a transaction, immediately the node processes a

new block (first step).

• So, block follows the steps of Creation of a new block, described above,

and it sends the new block to all other nodes (second step).

After that, the recipients of new block control that it is valid or not. To

maintain the integrity of a blockchain system is necessary that the blocks are

generated through high-quality work. So, to achieve this goal, blockchain-

algorithm makes the creation of block a competitive system with rewards

or punishments. The main idea of blockchain-algorithm is to create one

block at a time and to reward the node that generated the best block, but

reward requires computational resources. To prevent loss of computational

resources there is a competition. Competition is a combination of speed

and quality. Following the working-rhythm process, nodes that participate

in a competition to generate the block have to solve the same hash puzzle

(first step). So, the node that first solves the hash puzzle (speed) sends the

block, with proof of work, to the other nodes (second step), these nodes add

the block to blockchain-data-structure and validate the new block-based on

transaction data and block header (quality). If the block is valid the creator’s

block receives the reward and a new competition is open. While the block is

invalid the node has withdrawn the reward (punishment), the block is removed

from blockchain-data-structure and the speed competition is reopened.

3.1.7 TRANSACTION HISTORY

As mentioned previously, the message in the blockchain system can be lost or

messages can arrive with a different order. Moreover, previously we saw that

34

every node, after the competition, keeps the block in its own blockchain-data-

structure[35]. So, we can deduce that not all nodes have the same blockchain-

data-structure and then the same transaction history, i.e. hierarchy of

transactions. To handle this problem blockchain systems use distributed

consensus (a topic addressed in the chapter on community peer), i.e. all nodes

use same agreement to select the transaction history. Even if the competition

method is the best criterion for selecting blocks to insert in the transaction

history, there may be other conflicts due to errors in the exchange of messages

between nodes. To solve this problem all nodes must agree to the same version

of the transaction history. There are two criteria:

• Longest-chain

• Heaviest-chain

The longest chain is the criterion that considers the chain where most

of the blocks aggregated between them. We consider two blocks joined

together with a certain hierarchy, branch of the tree, and two nodes. One

of these nodes has the complete transaction history, complete branch, while

the other one has only the first block, only on part of the branch. All of

two nodes won a competition and we would like to add a new block to their

branch. So, while the first node will add own block to the second block, the

second node will add his block to the first one. The longest chain rule indicates

that the blockchain-data-structure is that of the first node, as it is the longest

chain or longest branch. The rejected block will become an orphan block. Two

important elements of this criterion are: if a node has two or more same length

branch in his transaction history, he is free to decide which branch extend; the

criterion develops a blockchain-data-structure of the most shared blocks, i.e.

more nodes have a given block in the transaction history more likely the block

is part of the blockchain-data-structure.

The Heaviest chain is the criterion that uses difficulty level to choose

blocks for the transaction history. The difficulty level of transaction is de-

termined dynamically, every block has in the header a different difficulty level

35

for the hash puzzle. This criterion works like longest chain criterion but de-

termines the next block of the blockchain-data-structure based on difficulty

level, greater the difficulty level of the puzzle hash, so greater the probability

that the block will become part of the transaction history. If two blocks have

the same difficulty the block will be chosen with the longest chain criterion.

What happens to the excluded blocks? Blocks that do not become part

of history are called orphan blocks. As we have seen previously in quality

competition, the orphan block is removed from the blockchain-data-structure

and the reward withdrawn from the node. When a block is discarded it disap-

pears from the transaction history, so orphan blocks are treated as non-existent

blocks and another opportunity is given to the transaction data contained in

the block. Indeed, orphan blocks’ transaction data will become a part of new

block creation and therefore a new hash puzzle competition.

Blockchain-data-structure develops a tree-shaped where the branches that

do not fulfil the criteria are cut. Development of the tree is governed by

nodes that wins the competition and then can choose which branch to extend

(random process). This authoritative path of choice the branch added to the

immutability of the blockchain-data-structure makes any attempt to manip-

ulate the decision-making process very difficult. Indeed, these two elements

are linked since a computational effort (hash puzzle) must be made to enter

the decision-making process (to add a block), then the whole blockchain-data-

structure is the sum of the majority of decision-making processes (or sum of

the majority of computational efforts). The majority because only blocks not

discarded became part of computational power. For example, one of the possi-

ble manipulations to the structure could be the exchange of the authoritative

chain with the orphan blocks and generating a new authoritative branch, this

could undermine the integrity of the system (51 per cent attack). The 51 per

cent attack hardly manages to manipulate the structure because the decision-

making process is collective and, above all, because this process is preserved

through the hash puzzle, that it requires 51 per cent of the computational

power used until now to change blockchain-data-structure.

36

4 SMART CONTRACT AND ETHEREUM

Ethereum was born from Vitalik Buterin, according to him the blockchain

technology, in particular, bitcoin is a limited technology because blockchain

platforms have a very limited script and do not allow any modification.

Ethereum, according to the idea of Buterin, must be a blockchain platform

that gave the possibility to develop its own script “allowing unlimited freedom

in creating a feature set, but also for the cost of development time, bootstrap

effort and security. Using scripts is easy to implement and standardizing while

being easy, suffers from scalability errors” (Vitalik Buterin, 2019). These

scripts are called smart contract.

4.1 SMART CONTRACT

According to Nick Szabo, the first who theorized the concept of smart contract,

a smart contract is:

“A smart contract is a computerized transaction protocol that

executes the terms of a contract. The general objectives are to

common contractual conditions (such as payment terms, liens, con-

fidentiality, and enforcement), minimize exceptions both malicious

and accidental, and minimize the need for trusted intermediaries.

Related economic goals include lowering fraud loss, arbitrations and

enforcement costs, and other transaction costs.”[36]

In general, smart contracts are computer programs that have different fea-

tures, the main important are:

• Enforceable is that feature that allows executing the script contained

in the smart contract without any mediation smart-contract without any

mediation

• Secure and unstoppable, these programs must be written in such a

way that avoid exceptions and are quickly compiled

37

• Automatically executable, smart contracts must be managed in a

smart way, i.e. they have to be completely automatic and follow the

manual inputs. Often smart contracts follow the state machine model

• Semantically rules, making a smart contract semantically understand-

able preserves in legal situations and allows understanding to those un-

familiar with programming languages

According to Imar Bashir “smart contracts are deterministic in nature”,

i.e., like for computational efforts in blockchain systems, every node executes

a smart contract in the same way and achieves to the same result. There may

be programming languages, which in different contexts can produce different

results for the same variables, so it is advisable to produce a high-level code.

One of the first smart contracts was Ricardian contracts. According to Ian

Grigg, the main idea of Ricardian’s smart contract must be” easily readable

by people (like a contract on paper), readable by programs (parsable like a

database)”. [37]. This contract is drawn up through a document, signed by the

issuer, which contains both the legal and digital aspects (code). Issuers sign the

contract with a private key and the contract is encrypted via a hash function.

Each transaction is linked with identifier hash to preserve against malicious

intents. We can distinguish three different parts in Ricardian contract: a

semantic part that indicates the legal contents and some parts of machine

code; then the contract is linked with the hash value, it is used to have unique

and secure contract identifier; in the last part there is a genesis transaction

that uses hash value to for the first time and after it is used by each transaction

to execute the contract. The main difference between the Ricardian contract

and smart contract are related to semantic issues. While smart contracts are

mainly related to the execution of the programming code and do not have an

agreed document, Ricardian contract is more focused on the semantic question

of the agreement (prose, parameters and code).

38

4.2 ETHEREUM

Ethereum achieves the goal of creating a completely customizable blockchain

platform through smart contracts, then new conceptual applications called

DAO (Decentralized Application Oriented). To do that, the Ethereum sys-

tem manages the interaction between different components: p2p network,

Ethereum client (that works on the nodes) and web3.js library (used to link

with user interface). Ethereum has a cryptocurrency to reward the miners,

this currency is called ether. According to the definition of Ethereum in the

yellow paper written by Gavin Wood:

“is a project which attempts to build the generalised technology; technol-

ogy on which all transaction-based state machine3 concepts may be built”[33].

4.2.1 STATE ACCOUNT

Each node of the Ethereum system is represented in the database by the

account state. In Ethereum there are two different types of accounts Externally

Owned Account (EOA) which it is normal blockchain account that manages

own private key, it can generate transaction, and can trigger smart contract;

Contract Account (CA) has associated code, which is a smart contract, it can

be executed by the contract account through a transaction or message, and

each mining node executed its code. In turn, CAs can trigger other contracts.

Each account has different parameters:

• Nonce is a number which in EOA is the counter of the transaction, while

in CA it represents the number of times when the contract was activated

(how many times the accounts created the contract)

• Balance represents the amount of cryptocurrency (ether) of account,

EOA can send/receive ether while in CA accounts it represents the

3A blockchain can be viewed as a state transition machine whereby a state is modified

from its initial form to the next and eventually to final form as a result of transaction

execution and validation process by nodes. So, the initial state represents the state before

the transaction execution and the final state is what the morphed state looks like.

39

amount of gas payed

• Storageroot an encoding 256-bit number that represents the root of a

node in the Merkle Patricia tree4

• Codehash in CA accounts it represent hash of smart contract code while

in EOA accounts it represents an empty field.

4.2.2 MESSAGE AND TRANSACTION

In Ethereum there are two types of fundamental unit: message and transac-

tion. All of two types of data have a number of common fields, these fields

are:

• GasLimit is a fee, it indicates the maximum amount of Ethereum cur-

rency (called gas5 submultiple of the Ether, 1 gas = 0.00001 Ether)

that you are willing to pay to execute the transaction, or the maximum

amount of gas that smart contract execution triggered by the message

can incur. Moreover, GasLimit can be seen as the maximum number of

steps which sender want to execute in the transaction

• To is the address of the receiver

• Value is the amount of Ethereum currency that in message or transaction

are transferred, while in a contract transaction it is maintained

• Init or Data, init, used just in the transaction, is a byte array of unlimited

length that is used to store the smart contract, while data, instead of

init, is used to store the input data in message or transaction.

4A PATRICIA trie is a special variant of Merkle tree, in which rather than store the

hash key, the nodes store only the position of the first bit which differentiates two sub-trees.
5as we shall see later, to execute a contract the node that validates the transaction

(and its smart contract) makes some computational efforts. The gas is a unit of measure

necessary to avoid that there are infinite loops in the code due to errors or malicious peer.

40

In Ethereum network EOAs play a fundamental rule, they can forward

transactions and messages. The substantial difference between messages and

transactions is:

• Transaction can be of three different types: fund transfer between EOA,

smart contract creation and change the status of an existing contract.

The first type of transaction is a normal transfer of funds between EOA

and does not provide for the execution of any smart contract. While,

in the other two types EOA acts, through a transaction, creating or

altering the status of a smart contract and then of CA. In smart contract

creation, EOA sends a contract creation transaction that is deployed by

miners node with EVM (a virtual machine to deploy contract), then if

the transaction is validated a CA is created in the Ethereum network.

The last type of transaction is used when an EOA or CA wants to

execute a specific function of another CA. CA can activate this type of

transaction only indirectly by sending a message to the recipient CA.

The transaction has some additional fields compared to those mentioned

above: signature through public-to-private key encrypt the transaction,

Nonce a unique number in the entire system that is incremented each

time a user sends a transaction, and GasPrice the amount of gas that you

willing to pay to execute for each computational step of the transaction.

Moreover, a contract creation transaction has a byte array of arbitrary

length and EVM initialization code

• Message can be sent by contract to other contracts or uses to transfer

information from one OEA to another. Messages are similar to the

contract the main difference is that can be produced by contract and it

does not involve the use of gas. Messages are the serial object of data

and value. The message is transmitted only between the two accounts

involved in the communication, it does not broadcast in the network and

it does not become a part of blockchain-data-structure. In addition to

the fields mentioned above the message has the field of who sends the

41

message because unlike the transactions the communication is univocal

between two nodes of the network. When a node wants to account

a message uses the call function. For example, given a SimpleStorage

contract (contract with a function that stores a number) when an OEA

(sender) wants to change the state of SimpleStorage contract needed to

know what is the state of store variable in the contract. OEA could ask

the variable state through a transaction, but it would involve the use of

a quantity of gas. So, OEA uses the call function, then a message, to ask

the state of store variable to the SimpleContract. After not having found

any exceptions, OEA acts changing the value of the variable sending

a transaction. Finally, the transaction executes the SimpleContract’s

function.

4.2.3 WORD STATE AND EVM

Word statein Ethereum is a map that indicates the ”state” in which the sys-

tem is situated. “The world state (state), is a mapping between addresses

(160-bit identifiers) and account state” [33]. As we mentioned previously

Ethereum is a state machine that mapping its state with a recursive algo-

rithm RLP (recursive length prefix). RPL encodes data of account state, from

string or list of items, into binary data that can be stored in Patricia tree,

state database. So, following the whole Patricia tree data concerning a user

can be stored or transmitted. his structure, although simplified compared to

the Merkle tree, has the same immutability benefits.

To process the states, Ethereum has an Ethereum virtual machine (EVM),

it is used as a stack-based machine to bring the system in another state. EVM

is a virtual machine that allows the execution of complex codes (smart con-

tracts). EVM runs on the nodes physical infrastructure that storage and

processing smart contracts. Each node of the network has its own EVM

and performs, in particular, the same set of instructions as the other nodes.

To preserve the integrity nodes’ physical infrastructure EVM does not have

access to external resources, like a file system. The smart contracts are devel-

42

oped in high-level code, with solidity languages. Solidity is an object-oriented

programming language to write a smart contract based on JavaScript. EVM

works with bytecode. Smart contract before being executed, it is compiled

by EVM compiler, named solc, and it produces the bytecode (with maxi-

mum stack size is 1024 elements) which can then be interpreted by the EVM.

Moreover, EVM manages the exception to avoid not enough gas or invalid

instruction. EVM executes the bytecode one byte at a time, once the single

byte is processed it updates its counter called program counter (PC), the

process is performed with an infinite cycle. The internal virtual structure of

the machine is composed: storage, memory and stack. The stack is a con-

tainer in which (temporary) byte of bytecode are executed, the bytes can be

entered (PUSH) or picked up (POP). Memory has a byte of arrays where code

is saved before to be executed, the memory is volatile once the program has

been executed the data are deleted. In the ”storage” the bytecodes are saved

permanently, in form of key-value. The main function of the EVM consists of

three steps:

1. through the CODECOPY function the program code is copied from

storage to memory

2. EVM reads the program from memory, then EVM runs the code byte

by byte in the stack

3. The EVM counter (PC) is updated with the current step of the code

Each state of the transaction is updated after every execution of the code.

In order to execute the code EVM needs of some key parameters: address

of the code owner, address of transaction sender, gas price, address of the

code initializer, transaction value, code as bytes array, block header, number

of executing transactions. Ethereum EVM can be seen as Turing state ma-

chine6. EVM in the iterates its function on every element contained in the

stack(infinite loop), the iterator function follows the following steps:

6The machine operates on an infinite memory tape divided into discrete ”cells”. The

machine positions its ”head” over a cell and ”reads” or ”scans” the symbol there. Then,

43

1. It takes the instruction of code from byte array in the memory

2. It adds/removes (PUSH/POP) a message to the stack

3. It reduces the gas amount

4. It increments the program counter (PC) and it goes to the next instruc-

tion

Figure 4: EVM iteretion function

4.2.4 ETHEREUM STATE TRANSACTION

So far, we saw the virtual machine acts by changing the transaction status to

low-level. At a high level operates the process called Ethereum State Transi-

tion Function, this function is used to validate the transaction. So, the most

important role performed by accounts is the textbfvalidation of transactions,

this process involves the use of the EVM in a transaction where there is a

contract.

as per the symbol and its present place in a ”finite table” of user-specified instructions,

the machine (i) writes a symbol (e.g., a digit or a letter from a finite alphabet) in the cell

(some models allowing symbol erasure or no writing), then (ii) either moves the tape one

cell left or right (some models allow no motion, some models move the head), then (iii) (as

determined by the observed symbol and the machine’s place in the table) either proceeds

to a subsequent instruction or halts the computation

44

GAS Before to start to describe the process of transaction validate it is im-

portant to make a record because the gas price and gas limit are used. Gas is

different from the normal fees used in the blockchain application. As previously

mentioned, fees in a general blockchain platform are paid to miners node for

its computational effort to generate a block, while the Gas is a new Ethereum

concept. The Gas is paid to the miner for each resource that transaction sender

“consume, including computation, bandwidth and storage executed”[38] with

her/his transaction. Gas was introduced to avoid accidental or hostile infinite

loops code and discouraging the use of too many computational resources in

the smart contract. The transaction gas cost is given by the gasUsed*gasPrice,

where the gasUsed is the amount of gas supposed that it will be used for the

transaction. A transaction sender can decide what will be the commission of

gas to pay for the transaction, however, miners could not include the transac-

tion in the blocks because the value of invested gas is too low. The transaction,

in addition to the possibility of being rejected by the miners, when it exceeds

the amount of calculated gas can generate an out-of-gas (more operation cost

than previously calculated) exception. So, it is advisable before to broadcast

a transaction compare the cost of the operations with the table of planned

operations[?] offered by Ethereum, and then decide which will be the amount

of gas spent.

TRANSACTION VALIDATION Once the sender’s account has com-

pleted a transition, it transmits the transaction over the network. All of the

OEA execute and VALIDATE the transaction through of the Ethereum

state transaction function, now we will see which are the main steps:

1. the first step consists in verifying the semantic correctness of the trans-

action, i.e. valid signature and nonce equal to the sender’s nonce

2. fee is calculated as gasLimit*gasPrice, then the fee is subtracted from

the sender by determining the address of the signature.

3. EVM calculates and subtracts from the paid fee the cost of gasPrice

45

after these first three steps the transaction is validated and then executed:

1. The transaction value is transfer from the sender to the receiver if the

transaction is a transfer transaction. Otherwise, in contract creation

transaction a CA is created, and the balance CA is set to the value

passed with the transaction; while if the destination is a contract, the

contract code is executed until there is gas in the transaction

Once the transaction has taken place, there are two cases:

1. Transaction maybe fails for insufficient sender balance or because the

transaction not have enough gas to complete contract code. In these

case, all states are revert except miners fees.

2. If the transaction succeeded the amount of advanced gas is sent back to

the sender and miners fee are paid.

TRANSACTION RECEIPTS At this point the state return to resulting

state. According to Imran Bashir, ”Transaction receipts are used as a

mechanism to store the state after a transaction has been executed”[39]. All

receipts are stored in a Merkle Patricia tree and the root of this tree is a

component of block header. Transaction receipts is described by 4 different

components:

• A byte array, named post-transaction state that keep the transaction

state after its execution.

• A number that registers the amount of gas used. It is stored after the

execution of transaction.

• A log of the transaction a series of information of log code

• A filter that contains logger’s address, series of log topic, log data de-

coded in the form of a hash (boom filter).

46

4.2.5 BLOCK

The blocks in Ethereum are fundamental unit, as discussed above for the

blockchain platforms. In Ethereum the blocks header contains a list of trans-

action, block header and a list of orphan blocks. It is important to keep a list

of orphan blocks because, as we will described later, given their importance

in the transaction history, even those the nodes who mine them receive a re-

ward. The block header is composed of a series of hash fields. In addition

to the components mentioned above in the block creation, i.e. hash value of:

list of transaction, previous block, puzzle difficulty, current time, address of

creator and once, in Ethereum block header has other component linked to the

structure of this platform. The other components represent by hash number

are: list of orphan blocks, gasLimit is the limit of gas set by miner that the

block can consume, gasUsed by transactions included in the block, list of all

transaction receipts associated with transactions of the block, logs boom is a

list of every recipct log of the transactions, nonce a prove of computational

effort, and mixhash a combined hash between once and nonce.

MINING So, also the block creation (or mining) process in Ethereum re-

spect the rules described in the introductory part of the blockchain structure.

But there are some few differences due to the intrinsic characteristics of the

Ethereum platform. These factors are orphan blocks and state of the transac-

tion, in general, we can describe the mining process as a series of steps taken

by the miners:

• listen to the broadcast transaction on the network and they chose which

transaction will have to include according to the “gas criterion”, i.e. to

pick up a transaction with the high level of gas, to receive more reward

and to avoid ”out of gas” exception;

• perform the steps listed above in the ”Creating a new block” from step

2 up to 10, using the fields of the Ethereum block add a list of orphan

block linked of their block.

47

VALIDATION With the creation of the block, the first working-rhythm

step is concluded. Now, then we pass to the validation of the block which is

the second working-rhythm step. Also here, the structure is similar to the one

described above, although with some differences. Once the block is broadcast

in the network all the nodes receive it and perform checks on the validity of

the information contained in the block, i.e. the second working-rhythm step,

through the following steps:

• Check if all branches with the orphan block are satisfied, then the orphan

blocks is valid

• Check if hash reference of previous block (parent) is correct

• Check if the timestamp of the block is between 0 excluded and 15 minutes

of the parent block timestamp

• Check if the information of the block are correct, i.e. transaction root,

gas limit, the difficulty of the puzzle, proof of work (nonce is correct),

and hash number

• Check if the amount of gas spend by the transaction in the transactions

list is less than the gasLimit of the block

• Check if the state of the last element of the root of Merkle tree is equal

to the state of the block header

Competition in Ethereum is based on proof of work (or how to solve the

puzzle) method called Ethash and it has the same characteristics set forth in

the section competition in the chapter of the introduction of the blockchain

technology. it was done on an algorithm that makes it difficult to use powerful

tools to mining called DAG (Directed Acyclic Graph). DAG requires the node

choosing subsets of a fixed its resource, dependent on the nonce and block

header. DAG is a 2 GB memory, roughly 3000 blocks, which is updated every

5.2 days and must be preloaded by miners.

48

In the introduction chapter of blockchain technology we described the

choice of difficulty levelfor hash puzzle as a random process, while Ethereum

uses an algorithm to achieve this goal. Let the interval, T, an interval between

the creation of two blocks, Ethereum algorithm decreases the difficulty of the

puzzle hash of next block in a proportional way with the increase of time T. If

the time T is less 10 seconds, the difficulty goes up in a proportional way. If

the time T is between 10 to 19 seconds, the difficulty remains the same. If the

time T is more 19 seconds, the difficulty level decrease in a proportional way.

Moreover, the algorithm exponentially increases the difficulty every 10,000

created.

The reward when a block became part of transaction history is now 5 ether.

In addition, miners receive the amount of gas consumed by the transaction

within the block.

4.2.6 GHOST CRITERION

We saw that in the block a list of orphan blocks is saved and the need, in the

block validation process, to verify that the orphan blocks linked to the relative

block are valid. According to the role played in Ethereum, you now describe

how orphan blocks become part of the process of reaching consensus. Accord-

ing to Zohar and Sompolinsky, in their paper Secure High-Rate Transac-

tion Processing in Bitcoin, have shown that long or heaviest chain criterions

are vulnerable to the 51 per cent attack and therefore to the double-spending

problem. As demonstrated by Zohar and Sompolinsky, when there is a great

deal of block creation, probably when an attack is in progress, it is certain that

if the growth rate of the main network chain is less than the speed at which

attackers create the blocks, the main chain will be determined by the malicious

nodes. For example, following the longest-chain criterion, given a blockchain

system, which quickly generates blocks, and given the longest branch, the ma-

licious node could insert a chain block, previously generated, longer than the

main one and therefore alter the transaction history. The protocol proposed

by Zohar and Sompolinsky is called GHOST (Greedy Heaviest Observed

49

Subtree). Ethereum to achieve the question of distributed consensus uses

GHOST criterion. GHOST criterion considers orphan blocks as an important

resource. GHOST “algorithm follows a path from the root of the tree (the

genesis block) and chooses at each fork the block leading to the heaviest sub-

tree” [40]. Heaviest subtree means that given two blocks that are part of two

different branches with the same length (or branches with the same difficulty)

the block that has multiple chains with subblocks will be selected. This

criterion prevents malicious nodes from entering its pre-processed blocks chain.

Moreover, with this criterion, there is a higher level of security than other

criteria because the network’s capacity for growth of the main chain is limited

(delayed block propagation). A network with high confirmation rate wors-

ens security levels because there are more orphan blocks. The vulnerability is

connected whit propagation rate of blocks in the network. As demonstrated in

the Ethereum white-paper, the blocks need some time to propagate between

nodes, then if a node has a lower computing power level than another node

it is more likely to produce orphan blocks “and will not contribute to net-

work security”[38]. Delayed block propagation has the effect of expanding the

time to confirm a block in the transaction history and therefore to agree with

the same history for all nodes in the network. Another problem with long or

heavier criteria, always due to the difference in computational power between

nodes, is ability of the node with greater power to carry out more mining,

so this could transform the blockchain into a centralized network. To solve

this issue GHOST provides to reward the orphan blocks, in Ethereum these

blocks are called Ommers or Uncles. Rewarding the uncle even if they do not

become part of the transaction history is a way to encourage the block mining

by small nodes, i.e. those nodes that do not have much computational power

to spend in the network.

For block validation and reward, Ethereum develops a reduced version of

ghost criteria. Initially, uncles must be validated. All uncles are considered

valid up to the seventh level with respect to the block to be validated. So, to

be valid an uncle must have the following properties:

50

• belong to the root transaction history through a link with the block, this

link may extend up to 7 sub-levels compared to the valid block

• the only requirement of an uncle is to have a valid header

• an uncle must be unique, uncle must be different both from others con-

nected to the block and from the uncles of the previous blocks.

Ethereum establishes an extra of 1/32 corresponds to each uncle to the

generator of the block. While for each uncle generated Ethereum corresponds

7/8, of the current value of a block, to the generator of the uncle.

4.3 DEPLOY SMART CONTRACT

In order to achieve the development of the contract there are several tools that

through writing, testing, verification and implementation make the develop-

ment of a smart contract accessible to all. These tools offer the opportunity to

develop code for the smart contract, using high-level programming languages,

understandable for EVM. So, the main feature of these tools is to translate the

high-level language into bytecodes. In this section, we will analyze the most

used programming language for the development of a smart contract, Solidity.

I will also try to understand what are the steps to follow to develop a contract

and what are the main security issues.

4.3.1 SOLIDITY

According to the definition, Solidity is ”an object-oriented, high-level language

for implementing smart contracts. Smart contracts are programs which govern

the behaviour of accounts within the Ethereum state.” [41] Solidity takes the

main features from other languages such as JavaScript, C and Python. A

smart contract written in solidity is executable by any user on ethereum, it is

compiled in bytecode through the EVM present on every node of the network.

As previously specified, each contract on the Ethereum network is represented

by an account (contract account) and it has a unique address through which

51

it can be invoked. Solidity is also defined as a statically-typed programming

language, ”which means that the type of each variable (state and local) needs

to be specified”[41], then in solidity “undefined” or “null” values generates an

exception.

When writing the code, you must declare: the compiler version must be

declared outside the contract code and any libraries that you want to import,

while all of the other elements must be written within the contract:

Listing 1: layout of source code

1 //compiler version

2 pragma soliddity ‘0.4.22

3 // import, for example other contracts

4 import ‘‘module-name’’

5 //contract name

6 contract exampleContract{

7 //some logic

8 }

So, solidity is a set of data types (that define the account state) and

function types (that define transaction state). Data types are of two types:

value (the value is actual value) and reference(the value is a reference to an-

other value). Value types represent Boolean variables, integers, addresses, and

emuns. Moreover, it may be in the form of array or literals (fixed value).

VALUE TYPES Integers can be signed (be both negative and positive) and

unsigned (don’t allow negative numbers). Like in C every integer is followed

by the allocated space, from 8 to 256 bits, to better optimize memory, for

example: uint256 x (represent an unsigned integer that allocates 256 bit

of memory); uint y (represent unsigned integer that allocates 256 bit of

memory); uint8 z (represent signed integer that allocates 8 bit of memory).

The size allocated space varies by steps of 8 bits, i.e. 8, 16, 24 etc. With

”constant” after uint no need to add memory to allocate because no storage

52

slot will be reserved.

Address data-type holds a 160-bit. This value represents the address to reach

a network account (EOA). The address has different queries to interact with

its:

Listing 2: address example

1 pragma solidity ^0.4.22;

2 contract send{

3 //indicates the owner of the contract

4 address owner = this;

5 //indicates the ether balance of the owner

6 uint256 balance = owner.balance

7 // address of the receiver

8 address receiver = 0x1254ff07j456gbf6th5f2d0t9h550vf6j5676yj;

9 if(balance>=20)

10 //this query transfer 20 Eth from owner to receiver, if the

balance of the sender is greater or equal than 20 Eth

11 receiver.transfer(20);

12 }

Transfer query can be used to interact with other contracts (the address re-

ceiver can be an address of CA). There are other queries which must be used

with caution because they act at a low level, they are: send, call, callcode

and delegatecode. Send is a low-level function of transfer, but when a transfer

is called and the sender does not have sufficient funds or the code throws an

exception the value is refunded; while in send, if there is an error, the value

is sent and after the function returns false without any refund. The other

three functions are functions to interface with contracts without Application

BInary interface (ABI). As specified in the solidity documentation ”All three

functions call, delegatecall and callcode are very low-level functions and should

only be used as a last resort as they break the type-safety of Solidity. The

use of these functions will be removed in the future.”[41]. Other value types

53

are string, byte and enums. The string is a specific set of elements contains in

double or single quotes, for example, String s = "Hello, World!" ; byte is

fixed-size arrays and they are declared using the keyword byteX, the X being

any number from 1 to 32; for example byte32 s = "Hello" . So string and

byte are similar but as demonstrated by Cryptopusco in his article, ”bytes and

strings in Solidity”[42], it is preferable to use byte to preserve the quantity of

gas used, even if they do not support escape characters, such as \n, \xNN and

\uNNNN; while enums are types that it defines by user, most of the time they

are used to keep track of the status of the contract code.

REFERENCE TYPE Let’s see which are the reference types. Arrays

in solidity are a set of elements of the same size and type. Arrays can be

static uint[3] arrays or dynamic uint[] arrays. The array has two queries

length and push. To take the length of the array you need to use the query

length arrays.lenght . The dynamic arrays saved in storage can be resized

changed the length parameter, while arrays cannot be resized for if they are

saved in the memory or if they have already been created. While push query,

arrays.push() , is used to add elements to the dynamic array. In addition

to the aforementioned arrays of uint, there are two other types of arrays:

strings and bytes. The first one was mentioned at in the value types, but in

the reference type, it has a dynamic dimension and has no query to interact

with, the same for bytes are dynamic bite without query to interact with it.

Push query can is used only with arrays and bytes, not with string. Solidity

provides a reference type to group different data types into one logical types,

this type is called Struct. Structs can contain any type including arrays and

maps. The most important feature of Structs is that they can have multiple

properties.

Listing 3: struct example

1 //for example users can have different proprieties:

2 struct User {

3 //coin of user

54

4 uint coin;

5 //address of user

6 address add;

7 }

CONTROL STRUCTURE In solidity, there are different control struc-

tures which are: Functions, Events, Inheritance, Abstract Contracts and Li-

braries.

Based on how they behave mutually, in solidity we can distinguish the func-

tions in two large groups: internal or external. The internal function is acces-

sible within the contract itself and it is called recursively (via jump), while the

externals one are out of the contract and can be accessed by other contracts

via message call. Moreover, functions can be private or public, the first is

visible only within the contract while the other one can be called internally

or via message (functions are public by default). Functions allow two types of

parameters: input or output (return functions).

Listing 4: functions example

1 //Anyone can an call this function

2 function example() {

3 //some logic

4 }

5 //Can call only by the other functions in the contract

6 function example1() private {

7 //some logic

8 }

9 //To return a value from a function

10 function example3() returns(uint) {

11 return 3;

12 }

13 //it has the same characteristic of public functions, but it can

call only by functions outside of this contract.

55

14 function example4() external {

15 //some logic

16 }

17 //it has the same characteristic of private functions, but the

contracts that inherit this contract can call its.

18 function example5() internal {

19 //some logic

20 }

The internal call functions are very efficient as they do not delete the values

present in the memory (see data location 4.3.1), while calls to external func-

tions must be handled with extreme caution because the contract called could

be harmful to the entire system and generate an exception if the contract

called does not exist. Note the same variable cannot be declared twice within

a function. All functions are fundamental elements to interact with a contract,

we saw they have a different function. So, based on their function we distin-

guish View, Modifier, Pure, Fallback and Overloading functions. View, or

constant, functions cannot change the contract state7, it is a practical imple-

mentation of call concept discussed above in general introduction of Ethereum

message; Modifier functions are that functions that are executed only when

the condition is satisfied, for example:

7According to Solidity documentation are considered modifying the state if: Writing

to state variables, Emitting events, Creating other contracts, Using self-destruct, Sending

Ether via calls, Calling any function not marked view or pure, Using low-level calls, Using

inline assembly that contains certain opcodes.[41]

56

Listing 5: Modifier example

1 pragma solidity ^0.4.22;

2 contract main {

3 //A mapping to store a user’s coin:

4 mapping (address => uint) public coin;

5 // Modifier that requires this user to be richer than a certain

amount

6 modifier graterThan(uint _amount, address _userId) {

7 require(coin[_userId] >= _amount);

8 _;

9 }

10 // Must be greater than 16 to spent coin, we can call the

‘graterThan

11 function spentCoin(address _userId) public graterThan(16,

_userId) {

12 // Some function logic

13 }

14 }

Pure functions are equals to view function but they promise to do not read 8

or modify contract state; Fallback functions not have argument and name,

they are called when the other functions do not match with the identifier,

often this function contain payable marked it is those a marked that contain a

mechanism to ”collect/receive funds in ethers”[43], then the ethers are stored

by the contract; Overloading functions are that functions which they have

the same name but different arguments.

Events are structures that activate the storage of some states of the EVM

logs; they are important because they allow you to manage the contract from

external interfaces, such as a javascript dapp (decentralized application) that

8According to Solidity documentation are considered read the state if: Reading from

state variables, Accessing this.balance or ¡address¿.balance, Accessing any of the members

of the block, tx, msg (with the exception of msg.sig and msg.data), Calling any function

not marked pure, Using inline assembly that contains certain opcodes.[41]

57

can call events through a callback. When an event is called, the result of the

call to the EVM is saved in the transaction log. The log cannot be accessed

by the contract, but events in the contract must be used to notify changes in

the EVM log.

Solidity supports the Inhertiance9 between contract. Solidity contracts ac-

cept more inheritance, i.e. inheritance from one or more contracts, this does

not involve the presence of more contracts in the blockchain. In fact, the

different contracts father will be copied in the created contract and in the

blockchain-data structure will appear only the final contract. To indicate a

hierarchy we use the construct is :

Listing 6: Inhertiance example

1 pragma solidity ^0.4.22;

2 //this is the contract father

3 contract father {

4 function example1() returns (string) {

5 return "This is first contract";

6 }

7 //"is" means if you compile and deploy son it will have access to

both example1() and example2()

8 contract son is father {

9 function example2() returns (string, string) {

10 return ("This is second contract and ", example1());

11 }

12 }

As indicated in the documentation solidity uses “c3 linearization”, a new

version of Method Resolution Order (MRO). The linearization indicates the

order in which the hierarchy of classes (or contracts) must be managed. So,

9“Each class has a superclass from which it inherits operations and internal structure”...

“Class inheritance also provides a way to organize and classify classes, since classes with

the same superclass are usually closely related”, “ leaving the original code intact”.(1991,

Ralph E. Johnson)

58

linearization10 is a process that follows three rules in the composition of the

hierarchical graph of classes:

• the hierarchy graph determines the structure of class positioning in the

code;

• the daughter classes must inherit all the father classes, the scheme must

be applied first locally than in general;

• monotonicity, the class hierarchy cannot be reversed once established.

Abstract Contracts are contracts which implement abstract function used to

perform the Template method, a pattern for OOP. They are similar to abstract

classes used in java language. These types of contract cannot be compiled and

they must have one or more abstract functions (functions without implemen-

tations). See here an example:

Listing 7: Abstract Contracts example

1 pragma solidity ^0.4.22;

2 //abstract contract

3 contract Member {

4 //abstract function, without any implementation

5 function name() public returns (bytes32);

6 }

7 //Inhertiance

8 contract employer is Member {

9 //call to abstract function

10 function name() public returns (bytes32) { return "Mike"; }

11 }

A Library looks like a contract but they are stored at a specific address. The

most important feature of libraries is that are executed in the context of the

10take the head of the first list, i.e L[B1][0]; if this head is not in the tail of any of the

other lists, then add it to the linearization of C and remove it from the lists in the merge,

otherwise look at the head of the next list and take it, if it is a good head. Then repeat the

operation until all the class are removed or it is impossible to find good heads.

59

contract that calls them and then a library can only access to the state vari-

ables of the contract that call it. This feature of the libraries makes them as

reusable for contract storage, e.g. a different way to implement data structure.

The libraries work like contracts but they do not appear in the function hierar-

chy, internal functions of the library are seen by the calling contract. There is

a special method to call libraries the command DELEGATECALL 11. As internal

functions variables are passed like memory types and they are not stored.

DATA LOCATION As mentioned above, in EVM there are two differ-

ent places where to save information memory and storage, while in the stack

the pieces of information are executed by EVM. In high-level programming

languages for smart contracts, as solidity, these places are represented:

• in storage is saved every state variables. This persistent memory is very

expensive both computationally and gas. Struct, array or mapping are

saved here by default;

• in memory are saved temporary values and it is cheaper than storage to

use. Its internal value ”is deleted between function calls (external)”[42]

• stack has very low or zero costs but is very limited, for example, it

contains local variables(except variables saved in the memory).

By default reference and value types are saved in the storage, it is advisable

to save these values in the memory, through the command memory , if they are

used only inside the function.

Listing 8: library example

1 pragma solidity ^0.4.22;

11a special variant of a message call, named delegatecall which is identical to a message

call apart from the fact that the code at the target address is executed in the context of the

calling contract and msg.sender and msg.value do not change their values. This means that

a contract can dynamically load code from a different address at runtime. Storage, current

address and balance still refer to the calling contract, only the code is taken from the called

address.[41]

60

2 library Sender{

3 struct senderSt{

4 bytes[] sender;

5 ...

6 }

7 function add(address sender){

8 sender.push(sender);

9 }

10 }

11 contract send{

12

13 uint amount = 0;

14 enum Status(Initialized, Executed, Collected);

15 Status private st;

16 st=Status.Initialized;

17

18 }

19 contract addAmount{

20 using Sender for Sender.sender;

21 function payme() payable{

22 using Sender for Sender.senderSt;

23 //can be used to attach library functions (from the library

Sender) to any type (Sender.senderSt in this case)

24 Sender.add(msg.sender)

25 amount += msg.value;

26 }

27 contract distribution{

28

29 }

61

4.4 UPGRADABLE SMART CONTRACTS

According to the general definition, by Jack Tanner, upgradeable contracts

are: ”Creating a smart contract that can be completely replaced with new

logic is possible just by using more smart contract infrastructure. There are

two main streams of strategies: proxies and the separation of logic and data

into different contracts.”[44].

Once smart contracts are distributed in a blockchain platform they are im-

mutable. These patterns consist of the division of contracts into two different

levels of data and logic. So, the most important advantages of these patterns

are that they make contract upgradeable i.e. they give the opportunity to fix

bugs or introduce new features in contracts without needed to develop a new

one. As mentioned by Elena Nadolinski in her article ”Proxy Patterns”, Par-

ity Wallet Hack, where 150,000 ETH was stolen, could have been avoided ”if

only there were been a way to update the source code after the smart contract

has been deployed”[45] The upgradable approaches, to write code for smart

contracts, present high risks, as they may be vulnerable to malicious peers.

The vulnerabilities that a peer could exploit are linked to the following factors:

• the amount of gas spent to executed different contracts may be high

due to the amount of operation called by the different contracts. It is

appropriate to limit the number of operations to be performed

• variables are compiled in the contract, then variables depend only by

the contract where they are compiled. So, when contracts called on each

other that could can a ripple effect (inconsistency).

The main difference between separation and proxies pattern is that in the

proxies record data contract (the proxy) uses delegatecall to call the logic

contract. Above all, when the call between two contracts is made with dele-

gatecall, there must be no inconsistency between the two contracts.

62

4.4.1 DATA SEPARATION PATTERN

In this type of pattern, users can interact with the logical part. In this type

of patter is important to know which are the difference between the function

used to store data (data contract) and the function to manage data (logical

contract). In data, contracts are present getters and setters, only the owner of

the contract can call setters. it is possible to modify persistent variables with a

supplementary data contract but every data contract added has an additional

cost, in term of gas. So, in this pattern is most important to understand a

priori what the state variables will be. This pattern has several approaches to

upgrade new logical contract:

• transfer ownership of the data to a new logical contract, and disable the

previous one.

• add the new version of the logical contract to the old one, like a chain.

When the user wants to interact with the logical contract, with the old

or a new one, he will be redirected to the latest version of the contract

and only the last version of the logical contract will be executed. This

approach maintains every contract and therefore adds more complexity

each time a new logical contract is added.

• add an additional entry point for users called proxy contract, then user

calls proxy contract which in turn calls logical contract.

The risks associated with this type of pattern are mainly due to the complex

data, then to develop with this pattern is needed to know the complex data

structures of solidity.

4.4.2 PROXY PATTERN AND ZEPPELINOS

The proxy pattern works like data separation pattern but the main difference

is that ”proxy contract calls the logic contract with delegatecall ” [46]. The

proxy contract, the contract through which users can interact with the system,

holds data and contains the address of the logical contract, so this pattern

63

works in reverse order with respect to the previous. In this pattern the proxy

contract redirects users to the latest logical contract deployed, then when a

logical contract is upgraded, it is also updated the reference to the new contract

address. The proxy pattern has three different approaches:

• Inherited Storage

• Eternal Storage

• Unstructured Storage

The three different approaches are used to handle the allocation of different

contracts. The main problem is related to due that the proxy contract and

the storage contract could overwrite each other, using a slot already used.

INHERITED In this approach the proxy and logic contract shared the

same storage structure for the state variables, UpgradeabilityStorage, or Reg-

istry. In this way, both contracts accept the same proxy state variables, even

when a logical contract is updated. As shown in Fig 5 Upgradeable contains

the history of logic contracts, then to upgrade the logic contract need to store

the new logic contract in the registry and update the address of the logic in

the UpgradeabilityStorage. UpgradeabilityProxy contains the reference to the

proxy contract and the address of the logic contract. The step to record a new

Figure 5: Inherited-storage-approach [45]

logic contract are:

1. Develop the first version of the logic contract that it must be an Up-

gradeable contract

64

2. Develop a registry and add the address of the logical contract to it

3. Call the function in the registry to instance an UpgradeabilityProxy and

to generate a new proxy contract

To update the logic all the steps must be followed with a new logic contract

that it keeps the storage structure of both the proxy and the previous logical

contract.

ETERNAL In this approach the storage holds all of the state variables of

the logic contract, these variables are shared with the proxy contract. The

future version of the logic contract will not have new state variables. So, the

proxy contract, in a new version, could insert new variables without overwrit-

ing the logical variables. In this approach, only the proxy owner can upgrade

the address to a new logic contract in the proxy. As shown in Fig6, we will

see the step to record a logic contract are:

1. Develop the first version of EternalStorageProxy and logic contract

2. Update the address calling an instance of EternalStorageProxy (Up-

gradeabilityStorage)

3. Need to call upgradeToAndCall function in EternalStorageProxy to redo

the setup of some function of logic contract. This happens because any

state initialized in the logic constructor is not recognized by the proxy,

due to the delegatecall.

To update the logic needs to deploy a new version of logica contract and

update EternalStorageProxy.

UNSTRUCTURED approach is similar to Inherited approach but the

logic contract does not inherit the state variables of the update. As shown

in fig 7, this approach used unstructured storage slot to save the data that

requires an update. The most important improvement of this approach is that

the state variables cannot be accidentally overwritten in a future upgrade. In

65

Figure 6: Eternal-storage-approach [45]

this approach the proxy structure is completely separate from the logical con-

tract, so the second does not know the inheritance of the storage variables.

Only the address of proxy owner can upgrade the proxy contract to a new

logic contract, and the only address that can transfer ownership. The main

steps to upgrade a logic contract are:

1. Develop OwnedUpgradeabilityProxy and logic contract

2. Call an instance of OwnedUpgradeabilityProxy to update the address of

the first version of the logic contract

3. As mentioned in the fourth step of Eternal approach also here there is a

function, upgradeToAndCall, of EternalStorageProxy to redo the setup

of some function of the logic contract.

66

Figure 7: Unstructured-storage-approach [45]

5 SIMILAR PLATFORMS

Now we analyze two different similar platforms with the platform proposed in

the dissertation

• CrowdBc

• BackFeed

5.1 CROWDBC

CrowdBC is a blockchain-based decentralization framework for

crowdsourcing[47]. In this context, an applicant sends a task and a

crowd of workers solves the problem. The main feature of this framework

is the privacy of workers and transaction fees on every action. In CrowdBC

there are four roles:

• Requester

• Workers

• Miners

• CrowdBc Client

67

5.1.1 ROLES

Requesters are the users who post a task that requires a solution. When

a task is posted requester must pay in advance a deposit, a deposit is the

sum of reward (the sum paid to the workers) and a penalty. The crowd is

formed by workers, they have the skills and compete to solve the requester’s

task and achieve the reward, linked with the solution of the task. Workers are

characterised by a series of tuples formed by reputation value and category (i.e.

number of times which solved this category and number of high evaluation),

we will see that it will be needed to choose a type of worker before a requester

post a task. Also, the workers pay in advance a deposit to participate in a

task that is equal to the penalty paid by requester. CrowdBC Client is like

the EVM on Ethereum, then this client runs locally on every account and it is

used to reach the agreement between workers and requester. Miners provide

the block through mining process the blocks and they receive in return the

reward and transaction fees. Both requester and workers can be miners. To

keep track of the users’ activities carried out in the platform there are three

different keys private key, public key and address.

5.1.2 KEY FEATURES

The most important challenge for the designers of CrowdBC was to create

a decentralized framework starting from a centralized system, i.e. crowd-

sourcing. To achieve this result CrowdBC is developed on three fundamental

characteristics:

• Underlying Blockchain

• State Machine Construction.

• Three Layers Architecture

Underlying in CrowdBC is an arbitrary ”program”, i.e. smart contract.

The ”program” encapsulates the logic of a task respecting the values decided

by the requester and it contains every information about the task (workers,

68

requester, deposit, etc.). Every machine of the framework has a compiler

to compile the ”program”. As Ethereum, CrowdBc has a state machine

to keep track of the state of the task, the states are Pending, Unclaimed,

Claimed, Evaluating, Canceled, Completed. Every time a state is updated, a

transaction is generated and then the state is stored in the transaction. The

state is finally updated on the blockchain when the transaction is included in

a block. The three layers of CrowdBC are:

• Application Layer has three modules: user manage that it manages

the user information; program compiler convert the “program” into

the executable language of the blockchain layer; then, both request and

workers can post a task through the task manager, the last module.

The types of task are: posting, receiving, solution submission and reward

assignment. When a task is submitted by a requester, it has associated

with a ”program”.

• Blockchain Layer that deals with providing a consensus protocol for the

”program” and running the state machine. After the program is com-

piled it is included in a transaction, so it is checked by the miners and

added to the blockchain. So the state machine takes an input of the ap-

plication layer and then it triggers task state changes in the blockchain.

only the metadata (owner, timestamp, pointer, data hash value, etc.)

are saved on this layer. The hash value is saved on the blockchain layer

to make blockchain-data-structure immutable and to prevent an attack

to malicious nodes.

• Storage Layer is used to saved data of the task and the solution. Every

data are signed with her/his private key by the owner. When a worker

posts a solution he/she encrypt their data with requester public key, this

means that only requester can decrypt the solution (avoiding malicious

intent by other nodes). This layer is used to decrease the amount of data

size stored on the blockchain layer, and then on every node. Each block

in the blockchain layer has a query string that it is pointed on a data to

69

the storage layer.

5.1.3 MAIN STEPS

CrowdBC Client works following six steps:

1. requester or worker registers on CrowdBC, CrowdBC Client generates a

”program” with user information and a public key pair;

2. CrowdBC Client update the ”program”, like a transaction the ”program”

is sent in broadcast and it is validated by the miners;

3. requester post a task and he/she pays the deposit to the blockchain.

Furthermore, the requester sets the minimum qualification that a worker

must have in order to participate in the task;

4. register workers receive the task from CrowdBC client after they choose

to participate they must pay the deposit with coins and reputation value;

5. before the deadline, set by the requester, a worker can submit his solu-

tion. Solution address is encrypted with the public key by the worker

and stored in the blockchain, while solution description is stored in the

storage layer. Then the requester can decrypt the worker’s solution with

his/her private key.

6. In this step, the transaction is published in the blockchain and reward

is paid to the worker. Rewards will be high as much as the evaluation

of the solution.

5.1.4 CONTRACTS

As shown in fig8, CrowdBC is a sequence of programs, or smart contracts,

that contain algorithms. CrowdBC has three types of smart contracts: User

Register Contract (URC), User Summary Contract (USC), Requester Worker

Relationship Contract (RWRC). Every time that a contract is updated or

created a transaction is sent, and then a fee is paid to the miners.

70

Figure 8: The process of crowdsourcing in CrowdBC and smart contract up-

dating [47]

URC is a contract that stores the initial information about a user and as-

signing an address and a pair of keys, public and private one. This contract

does not store personal information of the user but in general

USC in order to have a greater chance of participating in a task, CrowdBC

store personal static information and evaluation. The statics information are

the profile, reputation, task general description and activity. Profile stores

more personal information than URC, for example, skills, profession, etc. So,

if a user registers with a true identity in URC, he can authenticate himself with

his public key and keep his profile updated. Reputation is initialized when

the profile is created and it is updated every time that a task is completed.

Low level of reputation limits the opportunity to be chosen by requesters.

Task general description is a general static on the tasks that have been

71

completed and their evaluation. USC stores information about pending and

bidding a number of activities. Activity is updated every time a task is

completed. The task statuses corresponding to the USC can be Pending or

Unclaimed.

RWRC is the main contract of CrowdBC because it manages the relation-

ship between requester and workers. RWRC contains the main algorithms of

the CrowdBC logic, which are: task posting, task receiving, solution evalua-

tion, and reward assignment. As mentioned above in 5.1.3 in the third step, the

requester post a task (T) with some information, which are: task description;

public key of requester; solutionEvaluate(·) algorithm 12; tuple of reputation

and category for workers (chosen by requester); deposit; task deadline; task

confirmation time. So, workers receive the task through checkWorkerQualifica-

tion(·)13 if they respect minimum reputation and reliability value. The address

of these workers is stored in Wpool where the pool represents the number of

required workers. Each worker can validate the request using the public key of

the requester in the task, the requester encrypts the task with its private key.

The deposit is used to avoid malicious peer, the deposit is managed by timed-

locked deposit protocol for Crowdsourcing (RR Refund or reward). Requester

deposit is list of elements: session-id, task id, task deadline, task confirmation

time, public key requester, tuple of reputation and category for workers, pool,

requester deposit and solutionEvaluate(·); while Workers deposit is a list of

session-id, task id, task deadline, task confirmation time, public key requester,

public key worker, coins deposit worker, reputation deposit worker and re-

12”The reward assignment and reliability value updating rely on the output of solu-

tionEvaluate(·), a trustful truth discovery algorithm. For simplicity, the output will be “H”

(high level of effort) or “L” (low level of effort)” (low level of effort)”.(2018, CrowdBC)
13validation function to ”check if worker’s reputation and reliability value satisfy the

minimum limited.”[47]

72

deem(·)14. Malicious requesters15or workers16 will not have refund the deposit

and the others participant it will be compensated with malicious’s deposit.

The timed-locked deposit protocol follows the following steps: Re-

quester Deposit is created and if it validates the task is sent to the workers,

the requester can access to the deposit only after the task deadline; Worker

Deposit is subtracted when a worker (with a reputation higher than mini-

mum reputation) is selected for the task, the deposit is equal to the deposit

of requester; Claim, worker follows the fifth step described in 5.1.3 and then

she/he requires to redeem the reward through claims(·): session-id, trans-

action , public key worker , public key requester ,deposit coins requester,

deposit reputation worker, Sign of private key requester ,Sign of private key

worker. Reward can be required both workers and requester; they must con-

trol that the deposits are not deleted and that they get enough confirmations

in blockchain for security. So, one of them sends in broadcast the transaction

that redeems the deposit and if solutionEvaluate(·)= H then sending coins

deposit of requester plus reputation workers, while if solutionEvaluate(·)=L

Reputation Management The whole CrowdBC system is based on

reputation as workers are chosen based on their past reputation. Reputation

in CrowdBC is represented by an integer, β, that it is the amount of evaluation

for completed tasks, its range is from 0 to βmax. While h represents the average

reputation of the whole workers. When a task is submitted and confirmed by

miners the solutionEvaluate() applies the reputation β to the worker. Based

on miners evaluation Crowdbc distinguishes two types of efforts:

• L=low effort;

14redeem(·)= verify(·)(public key requester) and (verify(·)(public key worker) or solu-

tionEvaluation(·))
15Malicious requesters make low ratings for each task response, in this way they do not

lose the deposit and stole useful solutions
16Malicious workers are involved in free-riding attack, i.e. ”create a forked chain if they

receive low-level evaluation, not submit solutions on time and posting a task by themselves”

73

• H=High effort;

So, based on the work “Reputation-based incentive protocols in crowdsourcing

applications” by Yu Zhang there are four types through which valuation can

be expressed:

• if the effort is L and β ≥ h, the reputation become equals to zero (β=0);

• if the effort is L and β ≥ h+ 1, the reputation decrease β − 1

• if the effort is H and β ≥ h, the reputation increase β + 1 or it remains

βmax if it is the max value

• if β < h+ 1, the reputation increase β + 1

The workers who have a reputation under h can achieve only to a few simple

tasks. This situation will continue until the worker’s reputation is reached h.

5.2 BACKFEED

BackFeed is a platform of sharing economy[48] that linked the fields peer-

production with the sharing economy, in the blockchain technology. The main

purpose of Backfeed is to collect a different Dapp platforms in only one big

community. The most important feature of BackFedd are:

• production of value;

• record of value;

• actualisation of value.

The result that Backfeed wants to the bringing of the society models from the

industrial models to the information society. To achieve this result backfeed

using the blockchain technology. Blockchain platform, offer to backfeed, the

opportunity to give a common space to share, evaluate and achieve contribu-

tions purpose of single Dapp online community in ’sharing economy’ system.

So, online communities, to avoid failure, often transform their governance in

74

hierarchical structure and using a more market oriented system, Backfeed born

to help these communities in a sharing economy system. A whole decentralized

approach helps not only the community but every contributor of the system.

5.2.1 TECHNICAL ELEMENTS

The main technical elements used by Backfeed are:

• A token

• A reputation score

• A protocol to for distribution of reputation and token

So, Backfeed implement a token protocol, i.e. when a contribute to a project

is considered positively by the whole community the decentralized collabora-

tion system releases a token (the token is not released to the project but to

the contributor). This token can be used as form of currency to exchange

value on the market. The tokens can be used to boost other projects on the

Backfeed platform. To evaluate when a contributor is positive Backfeed uses

a reputation system, each contribution to a specific project can be evaluate

with a different system of evaluation, then backfeed uses a evaluation set based

on the considered Dapp can be used (from 1 to 5 or 0/1 system). The most

important feauture of Backfeed is the value function, i.e. the protocol that

set the distribution of token based on reputation system. The value function

is a linear function that as the value of the distribution increases, the value of

the tokens released increases. For example, gives a evaluation set E

η = 1, 2, 3,

the value function v is

v = η −→ R

where where v(1)= 0; v(2)= 20; v(3)= 50 tokens. Moreover, the amount

of tokens issued to the contributor depends on the median value of all the

assessments weighted in the community where the contribute was released,

75

i.e. the tokens will be released only when 50% of the overall reputation of the

considered community will have voted

5.2.2 SYSTEM MODEL

The token distribution is used to incentivize contributions, but the Backfeed

protocol is, above all, a public reputation system that manages the rules on

which the reputation is made and distributed within a given community. The

reputation can be gained by a user and it does not transfer to other users. In

Backfeed there are two different types of user:

• Contributors: Anyone can make a contribution that can be evaluated

both positively and negatively within the community where it is released.

When the median reaches a positive value, new reputation is issued and

distributed to the corresponding contributor

• Evaluators: Anyone can makes evaluations of others’ contributions

within a community. Every evaluation has a cost in term of reputation.

DYNAMIC REPUTATION SYSTEM Backfeed implements a dynamic

reputation system, it consists of two complementary element. The first one is

related to reputation paid when a evaluation is made, greater is the number

of evaluation issued, lower will be the cost of reputation paid for the next

evaluation issued. The second one is related to the moment in which the

evaluation is issued,

76

Figure 9: Illustration of the reputation flow for a simple scenario in which 10

users evaluate the same contribution consecutively by the same vote. [48]

for example takes ten evaluations with the same value of a contribution

the initial contributor gained a percentage of each contribution that has the

same value

77

6 BLOCKART

The platform Blockart is a peer production platform for the artist. In Blockart,

there are three main rules: initiator, authors/voter/moderator and readers.

The initiator posts a draft of own project and a pool of ”select” authors help

him/her to complete the project. Once the author has posted his solution,

it will be voted by the voters and upon reaching a certain threshold of votes

the author will become the owner of a part of the final project, mediators

have the rule to manage the content of authors. The figure of the Blockart

initiators is similar to the alpha artists, then initiator and alpha-artists are

stackable. Up to this point, Blockart can be compared to a crowdsourcing

platform because, like in CrowdBc, there is a requester who posts a task

and there are workers who submit their solution to the task. So, while in

crowdsourcing platforms the workers are executor in peer production workers

(or authors) are the creator because they participate in the creative process

not only as executor. As mentioned above, there is a form of crowdsourcing

very close to the peer production, in fact in the crowdsourcing with structural

participation workers are co-designer and co-authors, they become authors.

These types of platforms leave more freedom for decision-making to authors

and allow to better explore the resolution possibilities of the task but the most

common problem of structural degree of participation in crowdsourcing is the

management of authorship of the project. Blockart starts from this open issue

and it looks for a way to solve the problem of authorship in these platforms. To

solve this problem, we let to see which are the motivations that lead authors

to participate:

• Crowdsourcing provides rewards with extrinsic motivation (i.e. mone-

tary) when a task is completed.

• Whereas, as mentioned above, peer production platforms is based on

intrinsic motivation, such as reciprocity, reputation and transparency.

Not forgetting that Blockart presents itself as a peer production platform,

Blockart borrows the concept of prizes (extrinsic motivation) to distribute

78

ownership of the final project, but at the same time to keep track of the

reputation (intrinsic motivation) of the authors

6.1 SYSTEM MODEL

We will see how the main concept which characterizing Blockart system model

6.1.1 ROLES

In Blockart there are three different roles:

• Alpha Artist(AA) post a draft with a description of the main concept.

So, the following step is the production. Therefore, before the start

of the production, AA check which is the minimum reputation level to

participate, the types of categories needed, a list of pre-assigned moder-

ator and if the production is public or private. AA can suggest modifies

during the production.

• Author/Moderator/Voter(AMV) is the fondamental figure in Blockart

scheme. Every user who joins the production becomes AMV. AMV deals

with proposing, voting and moderation the contents of a production.

Thus, AMV roles are:

– Author, AMV becomes author, in a peer production, when post a

content in form of discussion or comment a content. So, authors

have the fondamental role of post own idea to grow the project

– Moderator, AMV becomes moderator only if the user reputation is

above a certain threshold or if it is pre-assigned by AA. For each

production there is a pool of moderator users. So, moderators have

the rule of filter, reject off-topics and mediate contents of authors.

– Voter, AMV becomes voter when he/she votes a content of discus-

sion. Every AMV user has a set of limit number of vote for each

production. So, voter have the rule of vote the contents of authors

and then who will are the owner of the final project.

79

• The reader can read the production discussion if the production is public

and it can participate in the production, while if the production is private

can ask to participate in AA and then becomes an AVM. In both cases

reader must have the minimum reputation level to participate in the

production

• Miner in Blockart it has the role to mine blocks and adding valid trans-

actions to the block.

Each user is characterized by a series of parameters: key pair (public and

private), category, number of participation in productions, reputation, name

of projects that he/she participated (with their respective percentages).

6.1.2 THREATS

All the Blockart figures could benefit from performing acts that threaten the

ecosystem of the whole platform. Therefore, now we will define what are the

potential threats deriving from harmful behaviour in Blockart:

MALICIOUS ALPHA ARTIST The malicious AA publishes a draft

with a list of pre-assigned moderators, this can be dangerous because the

moderators could be motivated by a malicious intent according to AA intent.

MALICIOUS AUTHORS They could try to get a part of the final project

without making an efficient effort, moreover they could create a fork, from

the main idea, if him/her idea does not insert in the final project. Another

important malicious intent could post off-topics content by an author. As for

reputation, they may deny that their idea is of low quality, otherwise could

improve their reputation by posting a task and solving it by themselves.

MALICIOUS VOTER According to Audun Jøsang listed a number of

items that could influence voters and then the motivation to became malicious:

• Low incentives to include a vote, a voter does not vote for comment for

several reasons. A system that does not encourage the vote can trigger

80

free-riding, that is to leave the task assigned to others to steal ideas.

(deposit and incentives)

• Exchange vote, a voter could use the vote as a bargaining chip to receive

a reward (anonymous vote)

• Unfair vote, it is difficult to judge a vote, especially when they are on

a subjective basis (Endogenous Discounting and Exogenous Discounting

of Unfair Ratings)

• Identities exchange, if a user at once a great loss of credibility, or reputa-

tion, could decide to create a new account with another identity. (agents

used the resulting reputation score when negotiating future transac-

tions).

• Change of value over time, the reputation with the time could change is

important to maintain

MALICIOUS MODERATOR As with voters, moderators could also use

the same motivations for malicious intent:

• Low incentives to include a moderation, a moderator must be encour-

aged in his moderation because avoiding moderation the system can be

vulnerable to free-riding attack

• Exchange moderation, a moderator could use his/her moderation receive

favours in exchange

• Unfair moderation, as for voting also moderation is difficult to judge,

especially if it is a subjective opinion. Moreover, the role of moderator

has a leading role in the management of the contents of other authors,

therefore the malicious subjective choices influence the community more

than the choice done with an unfair vote.

MALICIOUS READER can steal the production idea without to partic-

ipate in peer production

81

6.2 BLOCKART: PEER PRODUCTION FRAME-

WORK

Now, based on the analysis done so far we will formalize a peer production

framework, in the specific case for artists, decentralized called Blockart.

6.2.1 LAYERS

According to Blockstack [49], Blockart framework is developed on three dif-

ferent layers:

• application layer: user and production manager, and decode the smart

contract for blockchain layer

• blockchain layer: providing a consensus protocol, running the state ma-

chine and storing the blockchain data value (for example state variables)

• storage layer: store the contents of the production and sign them with

the owner’s private key

Our analysis will focus on the fundamental aspects of the application layer

in Blockart. For the moment, Blockart relies on the possibility offered by

Ethereum, i.e. to develop the application layer through a contract account.

Thus, the blockchain level and the execution of the state machine (which

links the application layer to the blockchain one) is entrusted to Ethereum

and to the EVM. Therefore, the Blockchain layer and Storage layer could be

implemented in the future.

BLOCKCHAIN LAYER The blockchain layer is the reason by which

the different blockchain platforms are distinguished, two important features

of blockchain layer are: the implementation of a consensus protocol and the

management of the different states in which the system is located. Future

Blockart improvements will involve the blockchain layer: firstly, As mentioned

above, Ethereum uses GHOST as consensus protocol, then one of the most

important future challenges for Blockart will be that to able to implement an

82

own consensus protocol; secondly, every time a transaction is passed from the

application level, the transaction is verified, added to the block and then the

system status is updated. In Blockart, the change of the status is of the core

of the production, i.e. the contents posting by authors. Therefore, as shown in

figure 10 the status will be: pending, moderated, cancelled, voting, assigned,

revoked.

Figure 10: State machine model for a content

STORAGE LAYER Blockart will use IPFS (InterPlanetary File System).

This framework gives the opportunity to store content-addressable data, ex-

ploiting a peer-to-peer method of storing and sharing hypermedia in a dis-

tributed file system. So, for some data in the blockchain layer will be a hash

reference pointing to the date content in the storage layer.

83

6.3 MAIN ALGORITHMS

We will now proceed to a step-by-step analysis of the main algorithms of the

Blockart processes on the application layer. The storage layer will be used to

store the content of the production to avoid to overload the blockchain layer

with (since the blockchain layer must be store on all the nodes of the platform)

6.3.1 STEP BY STEP

So, a summarizing of the main steps in Bloackart is:

1. Users register on Blockart, they are added on as nodes on the platform

and all of their fields are set to default values

2. AAs call a contract to open a production and, then, they set the initial

requirements

3. Reader can decide, if she/he has a sufficient reputation, to participate

to the production. If the production is private participation is subject

to the approval of the alpha artist

4. Reader became Author and Voter when he/she pays the ”deposit”, more-

over a reader can became Moderator if meets the requirements.

5. An author post a content, then the ”pool” of moderators confirm the

quality of the content

6. In the follow step the peers who participate to the production vote the

author’s content, at this point the other authors can decide to start a

new content starting from this they are evaluating

7. When a number of votes is reached, the deposit is refunded. While based

on the quality of the votes it can increase/decrease the reputation of the

authors and the assignment of a part of the property to the final project.

84

Figure 11: main algorithms working

85

6.3.2 REPUTATION SYSTEM

The main purposes of the reputation system are to avoid malicious intent by

voters and to maintain high-quality contents post by authors. Each user has

two different parameters that are related to the reliability of the user on the

platform:

• Trust Ratings

• Reputation

whereas trust in a node is achieved through by blockchain technology, Blockart

develops an algorithm to track reputation over time. So, the system that we

will be describing how to build and update and represent the reputation, here

we will propose a Bayesian approach 17. Assuming that the malicious intent

of a node is unknown, θ, given a series of observations (contents quality post

by author) we will be able to predict the probability that a user may act in a

malevolent manner, i.e. the probability that he/she could become a malicious

voter. The initial distribution of the probability of θ is called ”prior”, then this

value is updated each time another user makes an evaluation, whit a bad or

good evaluation. So, the distribution is a binomial function called Beta(α, β)18.

In the beginning, Beta, ”prior”, is chosen arbitrarily for all users and is equals

to (1,1). When a new reputation is issued, the previous one is updated. So

starting from the previous currency, Beta (α, β), there are two different cases:

Beta(α0, β0) =

Beta(u ∗ α + 1, u ∗ β) if Negative evaluation

Beta(u ∗ α, u ∗ β + 1) if Positive evaluation

where u = 1 − 1
m

, m represents the number which indicates the number of

evaluations that have a stationary behaviour, i.e. the number of evaluations

beyond which the reputations remain the same even after endless evaluations.

17It is used to calculate the probability of a random variable given an observation:

P (Ai|B) = P (A|Bi)P (Bi)Pn
i=1 P (A|Bi)P (Bi)

18The Beta function is the conjugate prior for binomial likelihood and thus the posterior

density is also Beta

86

Moreover, after a period of inactivity, δt, the user’s reputation became Beta(u∗

α, u ∗ β). The expected value of Beta is easy to calculate:

E|Beta(α, β)| = α

α + β

So, in Blockart a user can be classified as:

• trustworthy if E|Beta(α, β)| ≤ t

• not trustworthy if E|Beta(α, β)| > t

where t is the minimum threshold for participating in a production, and in

Blockart is equal to 0,75. Therefore, if a user exceeds the threshold, he will

have to wait for a period of time equal to δt to participate in the production.

Moreover, the number of stationary behaviour, m, is equal to 10. If a user

remains trustworthy for more than ten productions he receives a positive vote,

this is done to encourage long-time users.

6.3.3 DEPOSIT

To join the production every AMV must pay a deposit, it corresponds a part of

his/her reputation. The deposit consists of attribution of negative evaluation

(6.3.2). So, is calculated the reputation E|Beta(alpha, beta)| and if this value

is above the threshold t, AVM will not participate in the production. The

deposit will be refunded with a positive reputation vote to the AMV when

she/he reaches a minimum number of votes after entering a content.

6.3.4 MODERATION RULES

At the beginning, AA post a draft and he/she invites a group of the initial

moderator, maximum 4 (note all of the moderators must be only the authors

which participate to the production and with a reputation above the thresh-

old). For each moderator chosen by the AA, a random moderator must be

chosen among the authors. Moreover, all of the authors which to the produc-

tion are moderators. If there are not at least two moderators the production

87

does not start. A moderator can moderate only the contents of other authors.

The roles of the moderator are different, a moderator may:

• suggest editing of author’s content

• suggest deleting an off-topic or low-quality content

• re-organizing the overall argument map of contents

• offering suggestions

Except the last two points, the points are applied only when 50% plus one

(except the content’s author receiving the suggestion) of the moderators have

approved that suggestion, to avoid unfair moderation. All of the moderation is

private. To incentive moderation, any moderation that reaches 80% approval

among all moderators receive a reward in the form of reputation, this reward

is calculated based on the numbers of the participant to the production. To

avoid that mediators can agree on which contents to mediate, in turn, each

mediator has a specific time frame to judge the contents posted by authors.

6.3.5 VOTING RULES

Each voter has a maximum number of vote. A vote can be negative or posi-

tive. Each vote is anonymous. Every time that a voter performs a vote must

release a comment with the motivation of the vote (also this anonymous). So,

other users can report the comment, for example as inappropriate, and then

moderators can delete the vote and assign a negative evaluation (6.3.2) to the

reputation of the voter. Instead, a mediator can assign a positive evaluation

(6.3.2) to a worthy comment and suggest to the voter how that comment could

become a content of the production.

DISTRIBUTION OF REPUTATION For the reputation system, are

considered only the votes of mediators. For every positive evaluation of the

content, by a mediator, the author receives a positive evaluation (6.3.2), while

for every negative vote, by a mediator, the author receives a negative evalua-

tion (6.3.2).

88

DISTRIBUTION OF THE FINAL PROJECT Taken an author of its

percentage compared to the final project will be:
100

nP
i=1

V +−
nP

i=1
V −

nP
i=1

n+
if

nP
i=1

V + >=
nP

i=1

V −

0 other case

where n is the total number of votes that authors received for the post of

every content in the production, n+ is the total number of positive vote that

authors received for the every content post in the production, V + is number

of positive evaluation received to the author and V − is number of negative

evaluation received to the author.

6.3.6 CONTRACTS

To better understand the flow that a user follows in Blockart, in this sec-

tion, starting from fig.11 we will analyze how the contracts implement the

main algorithm. Blockart implements four different contracts UserManager,

DiscussionManager, ParticipantManager and CommentManager

USER MANAGER is the contract that deals with manage user infor-

mation. The main functions are to register a new user and to restore the

reputation and username of registered users As shown in the image fig.12

user is composed of three fields: username, address and reputationValue. The

first function, registerUser, is used to register a new user to Bloackart and it

requires the string username and address, of the registering user, in the form of

bytes32. When the user is initialized the function registerUser set reputation

to 0. getName and getReputation serve to retrieve information respectively

about username and reputation of the caller user

89

Figure 12: user manager

DISCUSSION MANAGER is the contract that deals with manage dis-

cussion information. After that, a user is registered can start to post a new

discussion through this contract. As shown in fig.13 discussion is composed

by title, address of initiator if the conversation is private or public and the

minimum reputation level for the user that will participate to the production

to become the mediator of the discussion. When a user wants to open a new

discussion he/she must call the class registerDiscussion, this class requires two

different bytes32 one the title of discussion and one the initiator of the dis-

cussion (note for this beta version repLevel is set to 0 and isPrivate is set to

false). The other two functions are getters, the first one getNumDiscussion

return the total number of discussion stored in BlockArt and the other, get-

Discussion , that return title and initiator of the discussion given the number

of the corresponding key of the map of discussions

90

Figure 13: discussion manager

COMMENT MANAGER is the contract that deals with manage com-

ment information, this contract is called after that the user has initialized a

discussion. Comment is characterized by six different fields: author of the

comment, title of the comment, number of positive evaluation received by the

comment, number of negative evaluation received by the contract and the title

of the discussion associated to this comment. The first function is register-

Comment that requires three different bytes32 (comment author, comment

title and discussion title) and a string with the content of the discussion, this

function can be called only when a discussion has been initialized and a user

is interacting with the discussion front-end component. The function get-

Comment gives an identifier number of the key of the map of all comments,

it returns: comment author, comment title, string with content, number of

positive evaluation received by the comment, number of negative evaluation

received by the contract and the title of the discussion. While the other two

functions are related to managing the number of the received vote of the com-

ment. They are called, by front-end component, when a user a already post a

comment and another user, voter, vote that comment, then when a user regis-

ters a vote he/she calls registerVote which requires comment author, comment

title, discussion title, voter and a boolean to verify is the comment is positive

or not. While getVote gives comment author, comment title and discussion

91

Figure 14: comment manager

title returns two number one with positive and the other one with negative

evaluation.

PARTICIPANT MANAGER is the contract that deals with manage par-

ticipant information. This contract is complementary to comment contract but

while commentManager contract deals with managing the information of the

comments of the discussion ParticipantManager contract deals with manag-

ing the participants of the discussion, the fields of this class are: participant

address, discussion title, number of remaining vote, boolean indicates if the

participant is mediator or not, number of positive votes received, number of

negative votes received and the owned percentage respect with the discus-

sion. When a user comes in a discussion of BlockArt the interaction active

the registerParticpant function, that function allows to register a user like a

participant, then this function requires the title of discussions and the ad-

dress of the user that ask to become a participant (in the final project this

requirement is denied if the reputation is not enough to participate to the dis-

cussion). reigisterParticipant function set the value of remainder vote to five

92

Figure 15: participant manager

93

and the other fields to zero. The other two important functions of this class

are givesVote, getParticpantPergentage and getReputation. givesVote func-

tion runs when a user gives a vote to the comment, then when a user gives a

vote to comment on two different contracts are called this one and Comment-

Manager contract. givesVote assigns the vote to the comment’s owner and it

requires the address of the author of the content, a boolean to understand if

the vote is positive or negative, the address of the voter and the title of the

discussion. While getParticpantPercantage contains the algorithm describe

above in 6.3.5 paragraph and require the id key of the map with participant

require address of user participant and discussion title, and return the number

with percentage compared to the discussion. getReputaion contains the algo-

rithm describe above in 6.3.5, it requires the address and returns the number

of the reputation of the user.

6.4 EVALUATION RESULTS AND ANALYSIS

6.4.1 SYSTEM DESIGN

The development of BlockArt is focused on designing a secure and decentral-

ized system. Thus, an application based on angular, web3.js and truffle of a

BlockArt prototype was implemented, the prototype was tested on Ethereum’s

public network. BlockArt based on 4 different smart contracts: UserManager,

DiscussionManger, CommentMnanager and ParticipantManager. Userman-

ager store the information about user reputation and authentication, Discus-

sionManager keeps track of the information on the discussion, CommentMan-

ager store the info of the comments and ParticipantManager deals with storing

the info of each user’s percentages on the given discussion. BlockArt has been

implemented on official Ethereum public test network Truffle with a program-

ming language that includes solidity, typescript, CSS and HTML with around

60,000 lines of code. BlockArt interacts with Ethereum based on web3js, a

library for javascript applications on the Ethereum network. It is been de-

ployed and migrated Blockart’s contracts with Truffle, then the combined use

94

of Ganache (a blockchain tool for Ethereum development that gives the oppor-

tunity to create a local ethereum network with ten fake accounts, each account

with 100 Ether) and Metamask (a browser plugin to interact with dapp in a

browser) it possible to interact with Blockart dapp.

6.4.2 RESULT EVALUATION

Migrations give the opportunity to develop the contract to the blockchain.

Truffle migration develops from contract to javascript, then these files can

interact with web3js. when migration is developed its returns the result, these

results can be used to analyze the efficiency of the contract in term of gas costs.

So, we will see how the result of migration, with truffle, of every contract of

BlockArt:

Listing 9: user manager evaluation

1

2 Replacing ’UserManager’

3 -----------------------

4 > transaction hash:

5 0xe61e13dcd04051d8cf71b7c48720a8843aa154fe77764fc6d5630af225a5ba25

6 > Blocks: 0 Seconds: 0

7 > contract address: 0xB8f038948ec46903caAcBAe7fB18b592C4E5065A

8 > block number: 1765

9 > gas used: 1084428

10 > gas price: 20 gwei

11 > value sent: 0 ETH

12 > total cost: 0.02168856 ETH

13 -------------------------------------

14 > Total cost: 0.02168856 ETH

15

16 Replacing ’DiscussionManager’

17 -----------------------------

18 > transaction hash:

95

19 0x5649d75265f2bd9ae49a05a3e728c2445aec252d2d9d599a5b388cbda6a25954

20 > Blocks: 0 Seconds: 0

21 > contract address: 0xfea06e25d0f0EFf52B24fdf693CcFcCC9a9E0968

22 > block number: 1767

23 > gas used: 468067

24 > gas price: 20 gwei

25 > value sent: 0 ETH

26 > total cost: 0.00936134 ETH

27 -------------------------------------

28 > Total cost: 0.00936134 ETH

29

30 Replacing ’ParticipantManager’

31 ------------------------------

32 > transaction hash:

33 0x78f1312e28ccbd5a71bc7b52a70f259b0f9ece86f8899e33007c6b9fe3a77885

34 > Blocks: 0 Seconds: 0

35 > contract address: 0x5842a55015FfA01A572aaa616c9b963853A229cC

36 > block number: 1769

37 > gas used: 2681788

38 > gas price: 20 gwei

39 > value sent: 0 ETH

40 > total cost: 0.05363576 ETH

41 -------------------------------------

42 > Total cost: 0.05363576 ETH

43

44

45 Replacing ’CommentManager’

46 --------------------------

47 > transaction hash:

48 0x076c70c600cb2c6d9d70b9dbca60ae1cfb16d8a6cd6bf46aa4f79a0deab38f12

49 > Blocks: 0 Seconds: 0

50 > contract address: 0x57f02E609896Cf431e49DB911887981cCf785964

51 > block number: 1771

96

52 > gas used: 2047169

53 > gas price: 20 gwei

54 > value sent: 0 ETH

55 > total cost: 0.04094338 ETH

56 -------------------------------------

57 > Total cost: 0.04094338 ETH

58

59

60 Summary

61 =======

62 > Total deployments: 5

63 > Final cost: 0.1308569 ETH

In Blockart, the average transaction fee to deploy a contract is 0.026 ETH.

According to AMT reward policy, about 4,42$ is paid for each contract. It’s

worth noting that, as specified on ETH market price [50], 1 ETH price is

about 170 $, the cost is not acceptable and unpractical in a real environment.

Furthermore, we can see that the cost to develop all the smart contracts is

around 0.13 ETH equal to 22.66$.

97

7 CONCLUSION

BlockArt: A Blockchain dapp for collaborative artistic production. The main

propose of this work has been to define a tool able to present a completely

decentralized application of support for artistic production communities. So,

the main propose of this work, as described above, are:

• make artists more aware of the themes of participatory art;

• create a platform proposed as a hybrid platform between peer production

and a crowdsourcing one;

• realizes a fully decentralized application.

For the first propose, from the analysis carried out, the following research

has deduced that being the artistic process an individual expression of the

sensitivity of the artists and of communication of their ideas. Participatory

art is inserted as a new way of understanding art and the artistic process. In

this context, BlockArt defines a new form of artist ”alpha artist”, no longer

the one who is the exclusive holder of the artistic process but one who has

the whole artistic project in mind and supports the contributors in the artistic

process.

The second propose of the work was to create a hybrid platform between

peer production and a crowdsourcing one. During the analyses has been two

the platforms that came closer to the application proposed by blockart

• CrowdBC;

• BackFeed.

CrowdBc is a blockchain-based decentralization framework for

crowdsourcing[47]. This platform is a pure crowdsourcing platform, while

BackFeed is a platform of sharing economy [48] that offers a commonplace for

different dapp. As shown in the table below, there are a lot a contact points

between these two platforms and BlockArt.

98

Table 1: Functionality

Functionality List

Functions Backfeed CrowdBC BlockArt

Crowdsourcing Yes Yes Yes

Peer-Production Yes No Yes

Reputation Yes Yes Yes

Property Yes Yes Yes

Sharing Ec. Yes No No

Token Protocol Yes Yes No

Evaluation Yes Yes Yes

Moderation No No Yes

So, the most important feature proposed by BlockArt is the moderation

system. In particular, the moderation system is a system that linked to the

BlockArt reputation system gives a Blockart a competitive advantage over

its competitors. The reputation system is a system that takes its cue from

collaboration platforms, as collaboratorium, which drives Blockart away from

a pure peer production platform but makes the entire platform more secure

against malicious intent.

The third propose has been achieved thanks to the development of the

application. Blockart process has been shown with a practical example, which

illustrates that the blockchain-based framework is feasible.

However, some of the limitations and difficulties encountered in the

Blockart design and development process must be attributed to the lack of

a testing process, without a testing process the major limitations are due to

understanding of:

• the ability of target users (i.e. artists) to be able to conceive a different

approach with respect to the artistic process

• the flaws in a system that is a hybrid between crowdsourcing and peer

99

production

• the real maturity of blockchain technology in term of security and effi-

ciency

• the possibility to develop platform cheaper than the one created

This study is conducted to evaluate the implementation of a blockchain plat-

form of collaborative artistic production. The whole idea is applicable and

implementable in the proposed area. Instead, in the future, the idea can be

evaluated for different areas. For example, the same idea has been proposed to

I3P (incubatore imprese innovative) of Politecnico di Torino for the startcup

competition. Starting from the idea described for BlockArt, a startup has been

devised that helps the communication between different productive sectors in

companies with multisectoral production contexts. Following the winning of

the first phase of startcup competition, the incubator helped us to develop

a business plan. Blockart revolves around the of blockchain technology. Al-

though we have seen that it is possible to implement a blockchain-based ap-

plication, there have been problems with transition costs. Therefore, further

work could be based on the possibility that a cheaper public blockchain is

needed for BlockArt. Hyperledger as a well-known blockchain fabric could be

a solution.

100

References

[1] Piotr Konieczny. Wikis and wikipedia as a teaching tool: Five years later.

First Monday, 17, 09 2012.

[2] Robert A. Cropf. Benkler, y. (2006). the wealth of networks: How social

production transforms markets and freedom. new haven and london: Yale

university press. 528 pp. $40.00 (papercloth). Social Science Computer

Review, 26(2):259–261, 2008.

[3] Rishab Ghosh. Cooking pot markets: an economic model for the trade

in free goods and services on the internet. Brazilian Electronic Journal

of Economics, 1(1), 1998.

[4] Josh Lerner and Jean Tirole. Some simple economics of open source. The

Journal of Industrial Economics, 50(2):197–234, 2002.

[5] Oliver Alexy and Martin Leitner. A fistful of dollars: Are financial re-

wards a suitable management practice for distributed models of innova-

tion? European Management Review, 8, 10 2011.

[6] Yochai Benkler. The Wealth of Networks. Yale University Press, New

Haven, Connecticut, 2006.

[7] Michel Bauwens. The political economy of peer production. Post-Autistic

Economics Review, 37, 01 2005.

[8] M. Bauwens. P2p and human evolution: Peer to peer as the premise of a

new mode of civilization. Ensaio, rascunho, 1, 01 2005.

[9] Michel Bauwens. p2p foundation.

[10] Vasilis Kostakis. Peer governance and wikipedia (interview with bauwens

bruns).

[11] Y. Algan, Y. Benkler, Mayo Morell, and J. Hergueux. Cooperation in a

peer production economy experimental evidence from wikipedia. pages

1–31, 01 2013.

101

[12] Wikipedia:disambiguation. Wikipedia: The free Encyclopedia.

[13] Geert Lovink, Nathaniel Tkacz, Joseph Reagle, Dan O’Sullivan, Lawrence

Liang, Alkim Akdag Salah, Cheng Gao, Krzystztof Suchecki, Andrea

Scharnhorst, R.Stuart Geiger, Edgar Enyedy, Peter Kaufman, Johanna

Niesyto, Hans Mathews, Scott Kildall, Nathaniel Stern, Nicholas Carr,

Alan Shapiro, Florian Cramer, and Shun-Ling Chen. Critical point of

view: A wikipedia reader. SSRN Electronic Journal, pages 342–350, 06

2012.

[14] Polls are evil. Wikipedia: The free Encyclopedia.

[15] Wikipedia:what wikipedia is not. Wikipedia: The free Encyclopedia.

[16] Luca Iandoli, Mark Klein, and Giuseppe Zollo. Can we exploit collective

intelligence for collaborative deliberation? the case of the climate change

collaboratorium. SSRN Electronic Journal, 12 2007.

[17] Audun Jøsang, Roslan Ismail, and Colin Boyd. A survey of trust and

reputation systems for online service provision. Decision Support Systems,

43:618–644, 11 2006.

[18] Ioana Literat. The work of art in the age of mediated participation:

Crowdsourced art and collective creativity. International Journal of

Communication, 6:2962–2984, 01 2012.

[19] Howard S. Becker. Art Worlds. Berkeley: University of California, 1982.

[20] Roy Ascott. Art Telematics: toward the Construction of New Aesthetics.

NTT Publishing Co., 1998.

[21] Roy Ascott. Engineered Nature: art and consciousness in the

post-biological era. Bristol: Intellect Books, 2006.

[22] Roy Ascott. The Future is Now: Art, Technology, and Consciousness.

Beijing: Gold Wall Press.2012, 2012.

102

[23] Sarah Browne. Crowd theory lite ’the crowd’ in participatory art and pop

economics. Circa, pages 33–39, 01 2008.

[24] The sheep market: Two cents’ worth. (master’s thesis). Design and Media

Arts Program, University of California, Los Angeles, 2006.

[25] Tedx talk, aaron koblin. TEDx Amazonia, Brazil, 2006.

[26] Howard S. Becker. Art as collective action. American Sociological Review,

39(6):767–776, 1974.

[27] Daniel Drescher. Blockchain Basics: A Non-Technical Introduction in 25

Steps. Apress, 2017.

[28] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.

Cryptography Mailing list at https://metzdowd.com, 03 2009.

[29] Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-function

basics: Definitions, implications, and separations for preimage resistance,

second-preimage resistance, and collision resistance. volume 3017, 02

2004.

[30] Adam Back. Hashcash - amortizable publicly auditable cost-functions.

12 2003.

[31] D. Zhang and Vivek Kanhangad. Encyclopedia on cryptography and

security. Encyclopedia on Cryptography and Security, pages 529–531, 01

2011.

[32] Yi-Cheng Chen, Yueh-Peng Chou, and Yung-Chen Chou. An image

authentication scheme using merkle tree mechanisms. Future Internet,

11:149, 07 2019.

[33] Gavin Wood. Ethereum: A secure decentralised generalised transaction

ledger. page 32, 2014.

103

[34] Elena Flor. Sdr and bitcoins: Competition or cooperation? The Federalist

Debate, 31:22–23, 07 2018.

[35] Daniel Drescher. Choosing a Transaction History. 03 2017.

[36] Nick Szabo. Formalizing and securing relationships on public networks.

First Monday, 2, 01 1997.

[37] Ian Grigg. The ricardian contract. pages 25 – 31, 08 2004.

[38] Chris Chinchilla. White paper. 6 2019.

[39] Imran Bashir. Mastering Blockchain: Deeper insights into

decentralization, cryptography, Bitcoin, and popular Blockchain

frameworks. Packt Publishing, 2017.

[40] Yonatan Sompolinsky and Aviv Zohar. Accelerating bitcoin’s transaction

processing. fast money grows on trees, not chains. Cryptology ePrint

Archive, Report 2013/881, 2013. https://eprint.iacr.org/2013/881.

[41] Ethereum documentation.

[42] Cryptopusco. bytes and strings in solidity. 1 2018.

[43] Rangesh Sripathi. 6 payable functions in solidity — smartcontract —

ethereum. 2 2018.

[44] Jack Tanner. Summary of ethereum upgradeable smart contract rd. 3

2018.

[45] Facu Spagnuolo Elena Nadolinski. Proxy patterns. 12 2018.

[46] Josselin Feist. Contract upgrade anti-patterns. 08 2018.

[47] Ming Li, Jian Weng, Anjia Yang, Wei Lu, Yue Zhang, Lin Hou, Liu Jia-

Nan, Yang Xiang, and Robert Deng. Crowdbc: A blockchain-based de-

centralized framework for crowdsourcing. IEEE Transactions on Parallel

and Distributed Systems, PP:1–1, 11 2018.

104

https://eprint.iacr.org/2013/881

[48] Jelle Gerbrandy Elad Shtilerman Matan Field, Primavera De Filippi.

Backfeed: Decentralized value distribution system for blockchain based

applications. 2017.

[49] Muneeb Ali, Jude Nelson, Ryan Shea, and Michael J Freedman. Block-

stack: A global naming and storage system secured by blockchains. In

2016 {USENIX} Annual Technical Conference ({USENIX}{ATC} 16),

pages 181–194, 2016.

[50] Ethereum market, available: https://etherscan.io//, 2019.

[51] Gavin Wood. Ethereum: A secure decentralised generalised transaction

ledger byzantium version e, 2019.

105

A Table of smart contract costs

Table of cost from solidty yellow paper [51]

GAS FUNCTION

400 BALANCE

200 SLOAD

1 JUMPDEST

20000 SSTOREsetToNonZero

5000 SSTORE

5000 SELFDESTRUCT

32000 CREATE

68 codeTransaction

200 CREATEperByte

700 CALL

9000 CALLsetToNonZero

25000 CALLcreateAccount

10 EXP

3 addWord

4 addByte

32000 Contract-creating

375 LOGeachByte

21000 LOG

8 LOGbyte

375 LOGtopic

36 SHAinputData

30 SHA

33 COPY

20 BLOCKHASH

100 QuaadratictCoefficent

106

	INTRODUCTION
	CONTEXT

	PEER PRODUCTION AND CROWDSOURCING
	A GENERAL INTRODUCTION OF P2P
	ORGANIZATIONAL MODELS
	MOTIVATIONS
	PEER GOVERNANCE AND PEER PROPERTY
	WIKIPEDIA AND PEER PRODUCTION DESIGN

	CROWDSOURCING AND ART
	DEGREES OF PARTICIPATION

	ALPHA ARTISTS AND ADMINISTRATORS

	BLOCKCHAIN
	BLOCKCHAIN. HOW DOES IT WORK
	GENERAL DEFINITION
	TRANSACTION
	SECURITY CHALLENGES, HASHING ANDCRYPTOGRAPHIC
	BLOCK
	HEADER AND MINING
	COMPETITION
	TRANSACTION HISTORY

	SMART CONTRACT AND ETHEREUM
	SMART CONTRACT
	ETHEREUM
	STATE ACCOUNT
	MESSAGE AND TRANSACTION
	WORD STATE AND EVM
	ETHEREUM STATE TRANSACTION
	BLOCK
	GHOST CRITERION

	DEPLOY SMART CONTRACT
	SOLIDITY

	UPGRADABLE SMART CONTRACTS
	DATA SEPARATION PATTERN
	PROXY PATTERN AND ZEPPELINOS

	SIMILAR PLATFORMS
	CROWDBC
	ROLES
	KEY FEATURES
	MAIN STEPS
	CONTRACTS

	BACKFEED
	TECHNICAL ELEMENTS
	SYSTEM MODEL

	BLOCKART
	SYSTEM MODEL
	ROLES
	THREATS

	BLOCKART: PEER PRODUCTION FRAMEWORK
	LAYERS

	MAIN ALGORITHMS
	STEP BY STEP
	REPUTATION SYSTEM
	DEPOSIT
	MODERATION RULES
	VOTING RULES
	CONTRACTS

	EVALUATION RESULTS AND ANALYSIS
	SYSTEM DESIGN
	RESULT EVALUATION

	CONCLUSION
	Table of smart contract costs

