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POLITECNICO DI TORINO

Abstract
Faculty of Electronics, Telecommunications and Physics Engineering

Department of Electronics and Telecommunications

ICT for Smart Societies

Modelling, simulation and design of Electric Car Sharing systems with eC2S

by Alessandro CIOCIOLA

Transportation systems accounts for about a quarter of global energy-related
CO2 emissions, and the whole sector is considered as practically hard to decarbonise
due to technological and socio-economic factors. Within the context of cities, shared
electric mobility has the potential to play a decisive role for reducing emissions and
make urban transportation more efficient. However, designing, planning and op-
erating shared electric mobility systems present a number of challenges, often not
present in traditional systems, which need proper identification, measurement, and
analysis in order to be addressed. Among those challenges, one of the most critical
is represented by charging management and infrastructure. The goal of this Mas-
ter thesis is to investigate and compare different charging scenarios for Electric Free
Floating Car Sharing (EFFCS) systems, with the aid of real world data coming from
CS services. Data collection have been performed during 2017 thanks to the imple-
mentation of the software UMAP [25], which allowed to create a database of real
rentals done by users in 25 cities spread across the EU and North America. These
data are used as input to create a configurable demand model for EFFCS systems,
composed by a parametric estimation of bookings’ inter-arrival times based on Pois-
son processes, and a non-parametric estimation of OD (Origin-Destination) matrices
based on Kernel Density Estimate. The demand model is used as the main input
of eC2S [1], a data-driven, discrete-event simulation software for EFFCS systems
in Smart Cities implementing specific fleet management and charging infrastructure
deployment strategies, whose setting and tuning is critical for the correct implemen-
tation, deployment and functioning of EFFCS systems. Three main charging infras-
tructure scenarios have been considered: fully centralised, fully distributed, hybrid.
First, we considered a case study about the city of Turin, and then we extended the
analysis on other four cities: Milan, Berlin, New York City and Vancouver. Results
show that the presence of a centralised hub in a highly dynamic hotspot, namely
where many trips start or end, is beneficial from the mobility viewpoint, as more
user requests tend to be satisfied. On the other side, the management of charging
processes is expensive because each car needs to be driven to the hub in order to be
charged, no matter its position. With a decentralised infrastructure, the increase in
management complexity is traded with a much lower operational cost, as stations
are widespread around the city. Furthermore, a distributed infrastructure allows for
users contribution in charging processes, which can be primarily important for a
further reduction of operational cost without hardly impacting users comfort.
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Chapter 1

Introduction

1.1 The energy transition

Climate change and the energy sector During the last decades, climate change is-
sues have been intensively studied by scientific communities worldwide. More than
97% of related published works agrees that, since 1950s, Earth’s climate is warming
at an anomalously sharp rate, and that this is extremely likely due to human activi-
ties [47] [48] [57] [66]. Energy production is largely regarded as the major source of
greenhouse gas (GHG) emissions [40] [41] [22] [24], and acting on it is thence a prior-
ity for the scope of a truly sustainable global development. Although many efforts
are conducted by institutions and organisations worldwide, reshaping the energy
system is a challenge with high degrees of complexity from every point of view:
key conceptual pillars as affordability, reliability and sustainability are interlinked
through highly dynamic tradeoffs requiring a deep and comprehensive approach
in terms of policy, design, planning and deployment. For example, wind turbines
and solar photovoltaic (PV) constitute a major source of affordable, low-emissions
electricity into the picture, but create additional requirements for the reliable oper-
ation of power systems. Another example can be found in the movement towards
a more interconnected global liquefied natural gas (LNG) market, which intensifies
competition among suppliers, while changing the way countries need to think about
managing potential shortfalls in supply [23]. Furthermore, the projected energy de-
mand for next decades presents a trend of growth, mostly due to the demographic
and economic booms of countries like India and China [58]. Although this rise might
further complicate the scenario and will be likely accompanied by changes and shift-
ing in global energy trade flow, the trend might be mitigated by advances in technol-
ogy, energy efficiency and careful policies having real sustainability concerns. Also,
new ways of sourcing energy are also visible at local level thanks to digitalisation
and increasingly cost-effective renewable energy technologies (RES), which allow
distributed and community-based energy provision models to be increasingly cen-
tral to the prospects for meeting many of the world’s sustainable development goals
[24].

Electricity and Smart Grids Among the global final consumption forms of energy,
electricity is going to play a special role, as its share in global final consumption is
approaching 20%, and is set to rise even further [23]: electricity is increasingly im-
portant in economies that are relying more on lighter industrial sectors, such as dig-
ital technologies and services, and cost reductions due to technology improvements
are leading to rapid growth in RES. This puts the power sector in the vanguard of
emissions reduction efforts but requiring the entire system to operate differently in
order to ensure reliable supply and meet the increasing demand. Traditional power
systems are characterised by:
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• Carbon-intensive processes.

• Bulk generation and transmission.

• Centralised control.

• Unidirectional flows.

These systems are increasingly being considered outdated as they unfit to deal
with growing demand, have slow response time in case of faults and network con-
gestion, are not flexible enough for dynamic and local demand-supply matching,
and present barriers to easily integrate RES.

On the contrary, desirable properties for next-future power systems are:

• Decarbonisation.

• Decentralisation and Distributed Energy Resources (DER) integration.

• Bidirectional flow of power and information.

• Security enhancement.

• Losses and faults reduction.

This transition brings a lot of added complexity and challenges at every level
of the electricity life cycle (production, transmission, trading, distribution, storage
and consumption), but has also concrete potential of creating significant ecological
and economical value for the users and the whole society, providing more sustain-
able, usable, convenient, and efficient services without losing the benefits of existing
infrastructures.

1.2 The role of transportation

Transport sector in the energy transition Transportation systems form a very com-
plex network accounting for about a quarter of global energy-related CO2 emis-
sions but, in contrast to the electricity sector, transportation has not made significant
progress in order to decrease these numbers [37]. A big percentage of mileage deriv-
ing from transport all over the world is also used inefficiently, resulting in needless
energy consumption and emissions. Much of the transportation sector is considered
as practically hard to decarbonise because of technological factors, such the high
energy density of fuels required for many types of vehicles, which constrains low-
carbon alternatives, and socio-demographic factors deriving from the highly direct
impact of transport policies on end-users, resulting in higher controversies and more
difficulties in deploying significant changes. Passenger and freight transportation
are each responsible for about half of transport GHG emissions taking into account
every transport mode (road, rail, water, air) but, at present, more than two-thirds of
transportation emissions are from road travel [64].

Strategies to reduce GHG emissions from transportation may be grouped in 4
categories [64]:

• Reduce transport activity

– Improve transportation data

– Modelling demand
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– Shared mobility
– Freight routing and consolidation
– Replace or reduce demand

• Increase vehicle efficiency

– Improve design and vehicles engineering
– Autonomous vehicles

• Shift to greener fuels

– Alternative fuels
– Electric vehicles

• Shift to lower-carbon modes

– Improve understanding of users’ modal choice
– Improve low-carbon options

For the scope of this thesis, we focus on the strategies highlighted in bold.

Transportation data Many areas of transportation lack data, and decision-makers
often plan infrastructure and policy based on uncertain information. In recent years,
new types of technologies and data collection methods based on ICTs have become
available, allowing for the development of more robust mathematical models, of-
ten based on statistical and machine learning techniques, and consequently more
informed decision tools.

Mobility demand Modelling mobility demand, shaping trips characteristics and
improving traditional transport models can significantly impact the planning phase
of new infrastructure and systems, discourage sprawl and help to define more ap-
propriate transportation links. It would be very useful for transport planners to
access advanced information tools able to help in understanding whether a mobil-
ity system has to potential to take customers away from low-carbon transit modes,
while keeping satisfied the mobility demand and increasing the efficiency in the us-
age of vehicles.

Electric Vehicles A particular role in this framework, which involve both the en-
ergy sector and the transport sector, is represented by Electric Vehicles (EVs). EVs
might play an important role in the grid of the future, providing more flexibility to
the power system and contributing to integrate renewable sources of energy. This
last aspect is crucial, because even if replacing internal combustion engines would
immediately bring cleaner air, especially in cities, the overall CO2 emissions would
not be significantly reduced without a greener energy mix in the grid [49]. A sig-
nificant part of the challenges underpinning a wide EVs adoption is related with
their charging networks (EVCNs), whose related infrastructures and market are still
in active development, and with the range anxiety of users, which tent to not per-
ceive it as accessible as traditional solutions. A lake of technologies and protocols
for communication and payments is used nowadays in EVCNs, and interoperability
is one of the major issues, together with security and user privacy. Furthermore, the
fact the EVs are not yet widely spread forces research to work mostly on future pro-
jections and simulations, which in turn need reliable data to be built correctly and
accurately.
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Car sharing Modern mobility patterns of people and freights are characterized by
a strong dominance of road transports. This phenomenon encases in itself many is-
sues related to its negative environmental impacts, and to its social and economic
cost. One of the most recent solution designed to face these problems in urban con-
texts is represented by car sharing systems. Their model of car rental proposes peo-
ple to rent cars for short periods of time, often by the hour, park them and pay
following provider-specific rules. The main operational features of car sharing can
be summarized as follows:

• Short-term rentals: Car sharing charges by the hour, and usually by the mile
as well, making short trips cost effective.

• Self-accessing: Car sharing allows members to reserve a car online or by tele-
phone, open the doors with their own electronic key, and return the car without
ever dealing with anyone else. This allows car-sharing to provide service more
efficiently than rental car agencies, eliminating the time-consuming hassle of
the check-in process.

• Full service: Car sharing services include fuel, maintenance and insurance,
and some providers offer reserved parking in some spot. Avoiding the hassles
of vehicle ownership is one of the key attractions of car sharing, as members
”out-source” the chores that go along with ownership.

• Different vehicles for different uses: Most car sharing operators have a varied
fleet (2-seats car, 4/5-seats car, scooter, ...).

In the passenger sector, shared mobility is certainly disrupting the way people
travel and think about vehicle ownership, but it is largely unclear if its impact will
be in fact positive or not. For example, shared cars can actually cause more people to
travel by car, as opposed to using public transportation, similarly as on-demand taxi
services add mileage when traveling without a customer. On the other hand, shared
mobility can lead to higher utilization of each vehicle, which means a more efficient
use of materials, and the use of newer and more efficient vehicles, especially electric
ones, could increase with vehicle sharing concepts.

The biggest Car Sharing (CS) and Electric Car Sharing (ECS) provider in the
world, the company car2go, which is also the source of the data used in this the-
sis, has publicly set itself the goal of making the future of its system electric [34]. The
company claims that ECS has a decisive role in the development of electric mobility
for five reasons [34]:

• ECS solves the chicken-and-egg problem regarding the development of a charg-
ing infrastructure.

• CS reduces people’s reservations about using electric mobility.

• Everyday operation of car2go’s ECS proves electric mobility is suitable for high
intensity usage.

• ECS immediately improves the air quality in the cities

• ECS is the perfect testing ground and experimental field for electric mobility
of the future
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Although these statements might be considered biased due to the business goals
of the company, the justifications behind them are shared by both academics, busi-
nesses and institutions [43] [55] [27] [26]. There is therefore a fairly spread agreement
on the fact that the deployment and increased adoption of ECS services might bring
advantages for a more effective deployment of electric mobility. As remarked pre-
viously, these advantages can be defined in terms of ICT integration, data collection
and analysis, charging infrastructure deployment, immediate air-quality improve-
ments in cities and easier connection with RES.

1.3 Thesis presentation and motivation

The goal of this Master thesis is the implementation of eC2S : a data-driven, discrete-
event simulator for electric car sharing systems in Smart Cities. eC2S is able to model
car sharing demand from data coming from real car sharing systems and run para-
metric simulation campaigns, providing also analysis and visualisation tools useful
to compare different charging scenarios and fleet management strategies. Input data
have been collected during 2017 using the software UMAP, whose main purpose is
to retrieve data available on the web in order to extract insights about users mobility
habits in different cities. UMAP is focused on car sharing systems, but it can also
integrate other city-specific data sources. In particular, the database used for this
thesis consist in a trace of real origin-destination bookings done by users in 25 cities
spread across EU and North America. Those data are used to create a configurable
demand model for ECS, composed by a parametric estimation of bookings’ inter-
arrival times based on Poisson processes, and a non-parametric estimation of OD
(Origin-Destination) distribution based on Kernel Density Estimate. In chapter 4 we
performed a quantitative validation of this approach for a more precise assessment
about its pros and cons. The demand model is used as the main input of simulator,
together with static parameters such as: fleet size, booking requests’ arrival rate and
number of charging poles. Other more complex parameters are meant to simulate
different poles placement policies and different charging strategies. We ran a simu-
lation campaign over 5 cities in order to get insights about charging from the points
of view of system operators, users and city planners. From a functional point of
view, this thesis tries to answer the following points:

• Are we able to build a robust demand model from available EFFCS data in
different cities? If so, which are the pros and cons of the model?

• Can we use the demand model to build a configurable event-based simula-
tor for EFFCS systems, able to implement different kind of charging and fleet
management strategies?

• Can we fairly compare implemented charging and relocation strategies for EF-
FCS fleet management a given city?

• Can we fairly compare simulated EFFCS systems in different cities?

More specifically, the research questions we pose about EFFCS systems are the
following:

• How do a centralised charging infrastructure compare to a distributed one in
terms of service quality and operational cost, in a given city?
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• How do system parameters such as fleet size and charging thresholds impact
service quality and operational cost, in a given city?

• How do different cities respond to similar simulation settings?

The thesis is organised as follows. In chapter 2 we will introduce background in-
formation in transport modelling, mathematical tools and ICTs. In the same chapter,
we will also review existing scientific literature covering similar topics. In chapter 3
we will introduce the implemented software by describing its architecture and the
principles behind demand modelling and simulation. In chapter 4 we will illustrate
the details of the implemented demand model, together with a quantitative assess-
ment of its performances. In chapter 5 we will show the functionalities of eC2S by
presenting and analysing results of a simulation campaign conducted for the city of
Turin. In chapter 6 we will extend the analysis to other four cities, namely Milan,
Berlin, Vancouver and New York City, in order to compare results from different
spatial and socio-economic contexts. Finally, in chapter 7 we will discuss obtained
results, underline the pros and cons of the implemented software and outline possi-
ble future research directions.
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Chapter 2

Background

2.1 Transport modelling background

2.1.1 Introduction to transport modelling

This subsection is mainly based on the material provided by the comprehensive
book on the topic [38]. The huge growth of transport activity during last century
comes with a general increase of issues such as congestion, delays, accidents and en-
vironmental problems reaching a step well beyond sustainable limits [64]. In some
areas, for example, economic growth seems to have generated levels of demand ex-
ceeding the capacity of many transport facilities. Contrarily, in other areas, under-
investments in some transport modes resulted in a fragile supply system undergo-
ing many critical service fault. An effort in improving transport systems planning
and design is therefore more and more required in transport design and planning,
as those issues tent to become more and more complex and not likely disappear in
the next future. The characteristics of transport demand and supply depend on a
large number of factors whose complexity in interactions is hardly describable, and
for this reasons it is necessary to create mathematical representations of transport
systems, in order to better study their properties and implement more intelligent
management strategies. Transport modelling is a key element for improved decision
making and planning in the transport field, although other factors such as admin-
istrative practises, institutional framework and businesses role play a different yet
important role.

Transport demand is derived from activities taking place in space and time, it
is highly qualitative and differentiated, and consequently needs a wide range of re-
quirements and services in order to be matched. Explicit mathematical treatment of
time and space is unavoidable and strongly desirable for more realistic and reliable
models. The lack of coordination in one of the two dimensions may strongly affect
the supply-demand equilibrium: for example, a taxi service may be demanded un-
successfully in a part of a city while in other areas various taxis may be plying for
passengers, as well as the concentration of demographic and economic activity in
some areas may lead to the justification of a dedicated high-quality transit system.
These strong dynamicity of elements composing the transport demand makes it dif-
ficult to model and forecast it, as approaches based on average demand might be
not viable and too simplistic: peak and off-peak variations in demand are in fact a
central problem in transport modelling and planning.

Transport supply is in broad terms the set of fixed assets, named infrastructures,
and mobile units, named vehicles, whose combination makes the movement of peo-
ple and goods possible. With the notable exception of many rail systems, supplier
of infrastructures and vehicles are different actors, leading to increased complexity
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of the interactions between government authorities, construction companies, devel-
opers, transport operators, travellers, shippers, and the final users. Provision of
infrastructure and the relative economic investments are challenging to adjust to
demand, being large and lumpy projects involving big amounts of resources, long
deployment time, and eventually a good deal of disruption for users, non-users and
the environment. As already said, an additional element of distortion is provided
by the number of side-effects associated with the production of transport services:
accidents, pollution and environmental degradation in general. These effects are sel-
dom internalised; the user of the transport service rarely perceives nor pays for the
costs of cleaning the environment or looking after the injured in transport related
accidents. Internalising these costs could also help to make better decisions and to
improve the allocation of demand to alternative modes.

In general terms, the role of transport planning is to ensure the satisfaction of a
demand D for people and goods movement, with different space/time constraints
and trip purposes, given a transport system. The main element of a transport system
are therefore:

• Infrastructure

• Vehicles

• Management system

• Transport modes

• Operators

Let’s now formulate a simple, high-level mathematical description of the depen-
dencies between the element of demand-supply equilibrium in transport as in [38].
Let’s consider the following variables:

• Set of traffic volumes on a network V.

• Operating transport capacity Q.

• Management system M.

• Level of service S, namely measurable quality indicators of the transport sys-
tem.

• Set of human activities A, such as work, leisure, necessities.

• Investment programs I.

Starting from those definition we can write the following high-level relations:

S = f {Q, V, M} (2.1)

Q = f {I, M} (2.2)

D = f {S, A} (2.3)

Combining equations 2.1 and 2.3 for a fixed activity system one would find the
set of equilibrium points between supply and demand for transport. But then again,
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the activity system itself would probably change as levels of service change over
space and time. Therefore one would have for example two different sets of equi-
librium points: short-term and long-term ones. The task of transport planning is
to forecast and manage the evolution of these equilibrium points over time so that
social welfare is maximised. This is, of course, not a simple task: modelling these
equilibrium points should help to understand this evolution better and assist in the
development and implementation of management strategies M and investment pro-
grams I.

2.2 Mathematical background

2.2.1 Stochastic processes

A stochastic process can be defined as a collection of Random Variables (RV) indexed
by a mathematical set, called index set, which is often interpreted as time. Each RV
composing the process takes values from the same mathematical space known as the
state space. An increment is the amount that a stochastic process changes between
two consecutive index values. A stochastic process can clearly have many possible
outcomes, and a single outcome of a stochastic process is called a sample function
or realisation. Common examples of stochastic processes include:

• Bernoulli process: discrete sequence of independent and identically distributed
(iid) RVs, where each RV takes two possible values, one with probability p and
the other with probability 1− p.

• Wiener process: continuous stochastic process with stationary and indepen-
dent increments that are distributed as zero mean, unitary variance Gaussian
RVs.

• Poisson process: stochastic process representing intuitively the number of
events happening in a certain time frame. This events are often referred to
as points, and the number of points of the process located in the interval from
zero to some given time is a Poisson RV. A Poisson RV is defined by the follow-
ing probability density function, representing the probability of k events in a
given time interval:

P(k) = e−λ λk

k!

2.2.2 Poisson processes

For a more complete treatment of Poisson processes we refer to [2] and in particular
[63].

In probability, statistics and related fields, a Poisson process is a type of stochastic
process, widely used for its simplicity and nice mathematical properties. The Pois-
son process depends on a single parameter, which, depending on the context, may
be a constant, a locally integrable function (or a Radon measure in a more general
setting). In the first case, the constant, known as the rate or intensity, the result-
ing stochastic process is called a homogeneous or stationary Poisson process. In the
second case, the process is called an inhomogeneous or nonhomogeneous Poisson
process.
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Homogeneous Poisson process In the particular case for which the parameter is
a constant, the whole process can be interpreted as a counting process N(t), rep-
resenting the total number of occurrences or events that have happened up to and
including time t.

A counting process is a homogeneous Poisson counting process with rate λ > 0
if it has the following three properties:

• N(0) = 0

• follows the independent increments property: given a stochastic process Xt,
it is said to have independent increments if for every m ∈ N and tm|t0 <
t1 < ... < tm, the RVs (X1 − X0), (X2 − X1), ..., (Xm − Xm−1) are statistically
independent.

• the number of events in any interval of length t is a Poisson random variable
with parameter, equal to the mean, λt

The Poisson counting process can also be defined by stating that the time differ-
ences between events of the counting process are exponential RVs with mean 1/λ .
The time differences between the events or arrivals are known as interarrival times.
The previous definition has many important mathematical consequences, among
which:

• the number of arrivals in each finite interval has a Poisson distribution;

• the number of arrivals in disjoint intervals are independent random variables.

• the Poisson distribution of the number of arrivals in each interval (a + t, b + t]
only depends on the interval’s length b - a.

• the existence of one point existing in a finite interval does not affect the proba-
bility (distribution) of other points existing

• for any finite t > 0 , the random variable N(a + t, b + t] is independent of t, so
the process is also stationary.

Inhomogeneous Poisson process The inhomogeneous or nonhomogeneous Pois-
son process differs from the homogeneous counterpart for the form of its parameter.
It this case, the Poisson parameter is function λ(x) defined in the underlying space
on which the Poisson process itself is defined. Of our particular interest is the case
in which λ(x) is a piecewise constant function having a finite number of pieces.

2.2.3 Kernel Density Estimate

Kernel Density Estimate (KDE) is an unsupervised, non-parametric statistical esti-
mator for the Probability Density Function (PDF) of a Random Variable (RV). KDE
can be seen as an extension of the concept of histograms, meant to have a better
model and representation for the distribution of a data sample.
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Histogram A histogram is a function that counts the number of observations that
fall into disjoint subsets called bins. Let n be the total number of observations and k
be the total number of bins, the histogram hi meets the following property:

n =
k

∑
i=1

hi (2.4)

However, a major problem with histograms is that the choice of binning might
have a disproportionate impact on the resulting visualization. Let’s therefore define
the univariate KDE and then represent the differences between the two approaches.

Univariate KDE Let (x1, x2, . . . , xn) be a univariate independent and identically
distributed (iid) sample of N elements drawn from some distribution with an un-
known density f . Its kernel density estimator f̂ for f is:

f̂ (x) =
1
n

N

∑
i=1

K(
x− xi

h
) (2.5)

where K is a non-negative function called kernel, and h > 0 is a smoothing pa-
rameter called the bandwidth. Equation 2.5 can be also seen as a convolution of the
data sample with the kernel function K, smoothed by the bandwidth h. A range
of kernel functions are commonly used (uniform, triangular, biweight, triweight,
Epanechnikov, normal, and others), while the choice of the bandwidth depends
strictly from data. A visual representation of different kernels and bandwidths
choices is shows respectively in figures 2.1 and 2.2.

FIGURE 2.1: KDE for a univariate normal distribution using different
kernels [3]

In figure 2.3 it is shown a comparison between histograms and a KDE estimation
for a bimodal Gaussian distribution. The upper-left chart shows an histogram of
the data, while the upper-right chart shows a histogram over the same data, with
the bins shifted right. The results of the two visualizations look entirely different,
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FIGURE 2.2: KDE for a univariate normal distribution using different
bandwidths [4]

and might lead to different interpretations of the data. The lower-left chart shows
a KDE estimation with a rectangular kernel for the same data. The intuition for
understanding the differences between the two approaches is the following: while
in histograms "blocks" are stacked in a regular grid centered in a single point, in
KDE each block is centered on the point it represents, and the final result is the sum
the total height at each location. The bottom-right plot shows a KDE on the same
data but using a Gaussian kernel, meaning that each point contributes as a Gaussian
curve, instead of a counting function.

Multivariate KDE A development of research about the topic during the 1990’s,
and the increase in available computing power, have been possible to define and
implement multivariate version of KDE, like the one we use in eC2S [3]. The formu-
lation for a d-dimensional KDE can be expressed as:

f̂H(x) =
1
n

N

∑
i=1

KH(x− xi) (2.6)

Where x and xi are d-dimensional vectors, H is the bandwidth (or smoothing)
d * d matrix which is symmetric and positive definite, and K is the kernel func-
tion which is a symmetric multivariate density. Example of visualisation for a 2-
dimensional KDE for a multimodal 2-dimensional Gaussian distribution are shown
in figure 2.4 and 2.5.

2.3 ICT background

In this section we will introduce the programming and software tools which has
been useful to implement UMAP and eC2S . First, we will present the DataBase
Management Systems (DBMS) used to manage the big amount of data involved,
namely MongoDB. Then, we will present the Python programming language and
the related modules used to implement the logic of data-related operations, mathe-
matical models and simulation.
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FIGURE 2.3: KDE vs histograms [3]

2.3.1 MongoDB

MongoDB is a free and open-source, cross-platform, document-oriented NoSQL
DBMS, whose main implementation is written mostly in C++, but with an exten-
sive support for Javascript, Python and Go languages applications [6]. MongoDB
takes its name from the word humongous, making clear that it has been designed
to work with big amount of data. JSON-like documents are the fundamental unit of
Mongo’s data organization. They can come without predefined schemas, which is
an essential functionality when dealing with unstructured and heterogeneous infor-
mation. In the semantics of MongoDB, documents are organized in collections, and
a database is a container for many collections. The closeness of MongoDB, Javascript
and JSON leads to a very good support for web applications, which culminates for
example in projects like the MEAN stack [7], a free and open-source JavaScript soft-
ware stack for building dynamic web sites and web applications composed by Mon-
goDB, Express.js, AngularJS (or Angular), and Node.js. Like most DBMS, MongoDB
provides many tools for data indexing and aggregation, query optimization, chrono-
geographical data support, and it is particulary optimised for distributed and cloud-
based applications.

2.3.2 Python

The Python [8] programming language has been chosen mainly because it allows
to easily write codes integrating multiple and heterogeneous software systems, also
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FIGURE 2.4: Contour plot of a 2-dimensional KDE for three-modal,
Gaussian distributed data [5]

thanks to an impressive set of available open-source libraries covering very differ-
ent tasks and ecosystems. Furthermore, Python libraries for scientific development
and data science have been becoming increasing popular, due to their readability,
flexibility and very powerful features [9] [10]. We present now all the used modules:

• During the data collection phase, developed in [25], the most useful library has
been Requests [11], which is a powerful and human-readable HTTP library.
Using Requests together with network inspection on a web console, it has been
written the code to easily scrape Enjoy’s website and get a JSON feed, minute
by minute, about parked cars in Turin. Furthermore, Requests has been used
to retrieve information from the Car2Go Open API.

• PyMongo [12] is a Python distribution containing tools for working with Mon-
goDB, and is the recommended way to work with MongoDB from Python.

• The need for a powerful tool for data analysis has turned into the choice of
using Pandas [13], an open source library providing high-performance, easy-
to-use data structures and data analysis tools. Furthermore, Pandas can be ex-
tended to work specifically with geospatial data through the library GeoPandas
[14].
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FIGURE 2.5: Surface plot of a 2-dimensional KDE for three-modal,
Gaussian distributed data [5]

• Pandas is built on top of NumPy [15] library, which is the fundamental pack-
age for scientific computing with Python, providing among other things a
powerful and efficient N-dimensional array object.

• Pandas and Numpy take advantage of an excellent support on visualization
thanks to the strong connection with Matplotlib [16] package.

• NumPy, Matplotlib and Pandas are part of the SciPy [17] scientific stack, which
is a Python-based ecosystem of open-source software for mathematics, science,
and engineering that allow to turn Python into a mature functional program-
ming environment.

• For which concerns the simulation, we entirely relied on SimPy [18], a process-
based discrete-event simulation framework based on standard Python.

• Other useful tools to work with Python include the IDEs Spyder [19](Scien-
tific PYthon Development EnviRonment) and PyCharm [20], and the Conda
[21] package manager, an open source command-line utility to manage pack-
ages, apps and virtual environments managed and maintained by Continuum
Analytics.

2.4 Related works

2.4.1 Poisson processes and KDE in geospatial analysis

The mathematical tools we propose in this thesis in order to model mobility demand
have been already used and validated in other works for similar purposes, although
to our knowledge their combined usage is still unexplored.
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Poisson processes Authors in [54] proposed the usage of inhomogeneous Poisson
processes to forecast short-term public transport demand. The focus of this work
is given to the better suitability of inhomogeneous Poisson processes in comparison
with the homogeneous ones, due to the intrinsic non-stationary nature of mobil-
ity demand. Their results show a clear improvement of forecasting using this tool,
in particular for mobility hotspots where the overall demand is lower, and conse-
quently more sparse in time. Inhomogeneous Poisson processes are also succesfully
used in [50] in order to predict taxi demand in the area of Munich. In this work,
authors performed also a spatial analysis using a one-dimensional linear regression
having as independent variable the density of Point Of Interest (POI, namely work,
living, and leisure spots), and as dependent variable the number of pickup events.
Their results show that this approach performs significantly better than the one con-
sidering as independent variable only the density of population. Finally, they also
underline the strong impact of special events (in their case the Munich Oktoberfest)
in the composition of mobility demand.

KDE Authors in [67] underlines the advantages of KDE for the analysis and visu-
alisation of POIs density in urban studies. In particular, they compare three methods
of density analysis which have been widely used in geographical analysis domain:
Quadrat analysis, Voronoi-based analysis and KDE. While both of them require a di-
vision of the area in subregions, the former two methods have some disadvantages
in practical applications. First, the definition of zones size is very critical for the
first two methods, and might lead to significant errors. Second, those methods do
not take into account the distribution in the neighborhood of grid cell. The authors
claim that the use of KDE can improve the above situations: although KDE still re-
quires the use of a grid of square superimposed cells, a smooth estimate of a density
can be obtained for minimizing the above losses of information as long as the mesh
size is small enough. Due to the above advantages, KDE is largely used as a general
tool in spatial analysis. Authors in [39] use it for a general analysis of points moving
in the space in a given time frame, and acknowledge the usage of KDE for identify-
ing hotspots of crime, diseases and traffic accidents, as well as spatial distributions
of plants, animals and people. Authors in [33] use KDE for estimation of road den-
sity and its impact on landscape fragmentation, while authors in [30] analyse the
density of building renovation in the city of Lisbon. Of our particular interests are
the results shown in [44], in which it is shown that the choice of the kernel function
for spatial KDE in a continuous space setting has a very little impact for the results,
especially when compared with the tuning of the bandwidth.

2.4.2 EV, CS, ECS

Literature about EV and ECS charging and relocation is wide and detailed, since EVs
are increasingly being studied during recent years. We will therefore illustrate in this
review only works which have been directly useful and/or inspiring for this thesis.
Furthermore, in order to depict the general characteristics of CS-related problems,
we will rely on existing reviews, such the ones in [42] and [29].

EV charging/discharging profiles A data-driven model for charging profiles of
electric vehicles, using in particular a database containing 18,300 journeys, is pro-
vided by [46]. The model was developed using GPS data collected from 15 iMiev
EVs (14 kWh battery capacity) operating nationwide in Ireland for 9 months as part
of an EV demonstration project. The model developed in [46] combines Monte Carlo
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simulation techniques and Bayesian inference. In a preliminary phase, not shown
in this thesis, we used the results provided by this work to validate qualitatively
our dataset, comparing in particular the charging/discharging behaviour of vehi-
cles in our dataset with the one obtained in [46]. We also used in the simulation the
same formulas describing the theoretical charging/discharging behaviour of vehi-
cles, which we will report in Chapter 3.

EV charging optimisation with activity-based models data [56] proposes a cen-
tralised, agent-based mechanisms to optimise charge of EVs following a trip agenda
generated using the activity-based software in [28], referring to an area in Flandre,
Belgium. The optimisation is made to fulfill trip schedules while sustaining grid
capacity constraints and minimising electricity bills. Using data provided again by
[28], [60] proposes a Vehicle-to-Vehicle (V2V) energy trading mechanisms, having as
optimisation goal a market equilibrium with lower prices for users and lower load
at business hours for grid operator. The same authors refined their research by in-
troducing time varying electricity prices in [59]. One of the purpose of eC2S is to
provide a framework to apply these kind of optimisation techniques using a more
general setting, especially for which concerns the parametrisation of input data.

CS problems taxonomy An extensive review of car sharing scientific literature is
provided by [42], which is our main reference for data and figures in this subsection.
This work analyses 137 papers appeared from 2002 to 2017 in order to classify them
under a certain number of taxonomy axes. The taxonomy provided is meant to better
focus the area of interests of this thesis work.

The taxonomy axes proposed by [42] are shown in figure 2.6.

FIGURE 2.6: Taxonomy of service mode and research problems

Mode of service supply The first meaningful classification of car sharing sys-
tems can be done considering the mode of service supply: the most obvious choice is
a ’one-way’ policy, in which the user starts from an ’origin’ and has to leave the car
in some ’destination’. Some providers let the user pick and leave the car choosing
among some fixed placement/spots (station-based), while others let the user freely
ride and park within a specified operational area (free-floating). While on a first
sight the first approach may create advantages on the provider side concerning the
ease of monitoring and control over the whole system, the free-floating approach is
likely preferred by users, as it gives the theoretical possibility of reaching directly ev-
ery destination. For this reason, many modern car sharing providers adopt the free-
floating strategies, with the notable exception, for example, of hybrid and electric car
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sharing providers, for which the presence of stations is a technical constraint. Within
the free-floating approach, the main issue is the demand-supply imbalance created
by service flexibility, resulting in additional costs for the providers to develop relo-
cation strategies. Furthermore, the free-floating approach implies by definition that
the user has to find a parking, while station-based strategies offer the possibility of
booking in advance a place in dedicated parking spots. Research focus across the
different modes are shown in figure 2.7. The tag "Not applicable" considers the pa-
pers analyzing car-sharing services without reference to any specific mode.

FIGURE 2.7: Pie chart of service modes

Type of engine This dimension is used to classify the engine type of the cars
involved in the car-sharing service. The category "Fully thermic" is composed by
systems having vehicles powered by traditional (i.e., fossil derived) fuels such as
gasoline or diesel, while the category "Green" comprises fleets of vehicles with less-
polluting engines, as electrical, hybrid, plug-in hybrid, LNG or LPG. Figure 2.8
shows a pie chart of the distribution of papers in [42] along this taxonomy axis.

Optimisation objectives This dimension classifies the analyzed papers accord-
ing to the high-level component of the car-sharing service that is subjected to opti-
mization. Those component are:

• Business and service: study of business models and the definition of the car-
sharing service, including the identification of the user behaviors and the de-
mand estimation.

• Infrastructure: optimal design and location of car-sharing facilities, as for ex-
ample parking and charging stations.

• Fleet management: operations focused on fleet characteristics and status, such
as determining the fleet size or defining relocation strategies.

Figure 2.9 shows a bar plot of the distribution of papers in [42] across this taxonomy
axis and service modes.
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FIGURE 2.8: Bar chart of service engines and modes

FIGURE 2.9: Bar chart of service optimisation goals and modes

Time horizon This axis considers the interval of time for which the decisions
remain valid.

• Design and strategic decisions are the ones that car-sharing organisations must
keep into account in the designing of the service, including fleet type defini-
tion, user behavior, pricing policies, market place and demand identification.

• Planning and tactical decisions deal with a better definition of the specific ser-
vice, and include fleet size definition, location of facilities (parking stations,
e-charging stations, car maintenance facilities), urban areas boundaries, man-
agement of uncertainty of local demand.

• Operational and real time decisions are taken day-by-day related to the ser-
vice provided: operative car maintenance, refueling, car washing, relocation
strategies to balance the system, avoiding stations with an excess of vehicles,
or empty stations.
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Figure 2.10 shows a bar plot of the distribution of papers in [42] across time horizon
dimension and service modes.

FIGURE 2.10: Bar chart of time horizon of the study and service
modes

Mathematical methodologies This axis groups the papers according to the sci-
entific approach used by the authors.

• Simulation: simulation aims to imitate the operation of the real-world pro-
cesses in order to help the decision making for new operators. Simulations are
often based on real data referring the transport behavior of the dwellers of a
specific area.

• Combinatorial optimization: combinatorial optimization consists in modeling,
analyzing and solving a decision problem finding the optimal objective func-
tion according to a set of constraints when the data involved in the problem
under study can be considered as deterministic.

• Stochastic optimization: stochastic optimization methods are used to solve de-
cision problems where the data are affected by uncertainty. In the car-sharing
services case, uncertainty often affects the service demand or the flows of ve-
hicles between different parking stations or within the service area.

• Statistical analysis: statistical analysis methods are mainly adopted for ana-
lyzing data sets deriving from real observation (such as data sets provided by
operators) or from surveys and focus groups.

Figure 2.11 shows a bar plot of the distribution of papers in [42] across mathematical
methodology dimension and service modes.

Following this taxonomy, we set this thesis work in the dimensions of Elec-
tric Free Floating Car Sharing (EFFCS), flexible time horizons, and simulation as
main mathematical methodology. However, eC2S is designed with the goal of be-
ing highly modular, parametric and extensible in terms of input, data processing
techniques and output.
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FIGURE 2.11: Bar chart of service optimisation goals and modes

ECS optimisation problems For which concerns typical optimisation problems in
ECS, [29] provides a summary of the main contributions as of September 2016. The
analysis of this document allows to set a frame for typical operational problems in
ECS, and highlights that the study of EFFCS systems is still young and not well
explored. In the next paragraphs we will show instead more recent contributions.
[29] organises ECS-related research problems as follow:

• Strategic and tactical problems

– Location of charging stations

– Allocation of vehicles to existing stations

• Operational problems

– Relocation of vehicles

– Battery swap

– Routing problems

In this thesis, we will focus on charging relocation problems, although eC2S
might represent a framework for studying all categories of problems identified by
[29]. With the expression "charging relocation" we mean the operations needed to
ensure that vehicles spread in the city have enough energy to serve the users. In
other words, those operations are the ones strictly needed from the operational point
of view in running an ECS fleet. The term "relocation" is also used very often in lit-
erature to describe operations of spatial balancing of vehicles aimed to ensure avail-
ability of cars rather than energy, namely to minimise the probability that users do
not find a car when they ask for it. In this thesis, the latter form of relocation is
considered only marginally, and it represents one of the possible future work path.

ECS simulation [35] proposed a framework for modelling and simulating the evo-
lution of an ECS system. Despite being fairly general and not computationally ex-
pensive, this model is fully parametric, makes strong assumptions about the proba-
bility distributions of all processes involved (not only users interarrival times) and
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does not include geographical aspects and constraints. A more complete model is
provided by [62], who developed a simulator written in the C# language able to
represent reservations and different relocation strategies. This simulator allows par-
tial floating (a vehicle can be dropped-off outside a station in a close range if the
station is already full) and is validated on a real-world case study about the city
of Nice, France. Authors in [45] simulated the operation of electric vehicles in ur-
ban car sharing networks with a focus on economical aspects. Their key findings
underline how technical vehicle range limits might be overcome without serious fi-
nancial drawbacks, provided an adequate charging infrastructure is provided. They
also support the idea that a bigger fleet with shorter range vehicles might be more
convenient than a smaller fleet with long range vehicles. This work also compare
the potential profitability of ECS services in Europe and North America, stating that
the former might be a more profitable area to serve due to higher cost of traditional
fuel. [31] addresses the problem of insufficient vehicle utilization in ECS systems by
developing a framework which increases utilization, improves charging schedules,
increases battery life and consequently mitigates range anxiety of users. Authors
in [36] developed a trace-based simulator to face the problem of charging stations
placement in the city of Turin. Their framework includes different high-level place-
ment strategies, as well as more complex heuristics optimising the placement with
regard to user discomfort. Their placement strategy called "Num_parkings", which
ended up performing best, has been implemented in eC2S .

Relocation of vehicles The PhD thesis [68] represent a deep and complete study
of relocation policies in station-based one-way CS, as it analyses a range of different
exact and heuristic algorithms to tackle the problem. Although the study does not
explicitly refer to the electric case, the presence of given parking station makes it
quite similar for certain aspects, and it is useful to depict general characteristics of
the relocation problem when the optimisation goal is minimising rejected user de-
mand. An intuitive yet important general results of this work is that approaches not
considering future user demand are not effective in reducing the number of rejected
demands. The input data used to validate the proposed algorithms are based on
survey and socio-demographical information about the area of Paris. [53] is one of
the first work proposing a relocation strategy for one-way station-based ECS. Their
approach consists of a modified stable marriage problem solver which minimises
relocation distance and time, and it is validated on real trips data taking place in Jeju
City, Republic of Korea. Similarly, [32] proposes a Mixed Integer Linear Program-
ming (MILP) approach for solving the relocation problem with a case study in the
area of Milan, introducing also the realistical presence of workers having the task of
moving vehicles. Authors in [52] consider the FFCS case for the city of Rome and
Florence, and propose an algorithm to minimise the walking distance that workers
might have to travel when they have to reach a car to relocate.
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Chapter 3

Methodologies

3.1 Software description

eC2S is a software written from scratch in Python which allows to simulate EFFCS
systems. eC2S is composed by the following folders and Python modules:

• Retrieval: contains the instructions for querying the MongoDB database and
creating files containing desired input data.

• Preprocessing: contains functions for trasforming and integrating original data
with other useful ones, in particular for geospatial processing.

• Loading: contains functions for loading data into RAM with efficient data
structures.

• DataStructures: contains classes representing real world abstractions such as
cities and cars.

• SimulationInput: contains classes implementing the logic for managing the
input of the simulation. This includes configuration, statistical models and
shared data structures.

• Simulation: contains classes implementing the simulation logic. This includes
the abstraction for user requests generation, mobility and charging.

• SimulationOutput: contains classes for results collection, aggregation and vi-
sualisation.

• SingleRun: contains functions for running a single simulation with a specified
configuration.

• ModelValidation: contains procedures to run model validation in time and
space.

• MultipleRun: contains functions for running a set of simulations following a
grid of configuration parameters. It is possible to run a set of simulations on
many cores in parallel.

• utils: contains utility functions used across many modules.

• Data: contains raw data queried from the database in form of .xlsx files, and
processed data needed for simulation input in form of pickles (binary files).

• Figures: contains charts produced in the simulation output phase organised
by simulation scenario and city.
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• Results: contains simulation results in form of pickles organised by simulation
scenario and city.

• venv: contains the Python virtual environment having only strictly necessary
libraries for eC2S .

Let’s now describe each module one by one.

3.1.1 Retrieval

The Retrieval module is meant to query the remote MongoDB database in order to
fetch data of our interest. This module is also responsible of standardising format
of input data and make them available locally and speed up the upcoming opera-
tions. A MongoDB query performed through the Pymongo library returns an object
of type cursor, which is essential an iterator of MongoDB documents, represented as
Python dictionaries. When performing intensive data operations, such as for exam-
ple KDE fitting, it is more handy to convert these collections of dictionaries into pan-
das DataFrame. For this reason, after querying, bookings are aggregated by month
and saved as .xlsx files, directly convertible into pandas DataFrame. The Retrieval
module is composed by the following scripts:

• BigDataDB_Proxy.py: main class for interaction with a MongoDB instance,
containing the functions for authenticating and querying the database.

• DB_to_df.py: utility functions for conversion into pandas DataFrame.

• get_data_from_DB.py: script used to run queries, taking as parameters the
desired city and month

Before going into the details of software description, it is appropriate to introduce
the structure of our input data. The database is composed by real rentals performed
by Car2go users during 2017 in 25 cities, and the procedure of data collection is
described in [25] . For each booking, the following features are available:

• plate: Identifier of a car.

• start_time: datetime object identifying the time instant in which our system
detects the moving of a car from the set of available cars to the set of the busy
ones.

• end_time: datetime object identifying the time instant in which our system de-
tects the moving of a car from the set of the busy cars to the set of the available
ones.

• start_latitude: latitude of the origin point estimated by car GNSS receiver cor-
responding to the last moment in which the system sees the car in the set of
available ones.

• start_longitude: longitude of the origin point estimated by car GNSS receiver
corresponding to the last moment in which the system sees the car in the set of
available ones.

• end_longitude: longitude of the destination point estimated by car GNSS re-
ceiver corresponding to the first moment in which the system sees the car ap-
pearing again in the set of available ones.
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• end_latitude: latitude of the destination point estimated by car GNSS receiver
corresponding to the first moment in which the system sees the car appearing
again in the set of available ones.

• start_soc: integer between 0 and 100 referring to the percentage of available
battery at start time.

• end_soc: integer between 0 and 100 referring to the percentage of available
fuel at end time.

• duration: difference between end and start in minutes.

• euclidean_distance: beeline distance between origin and destination point in
kilometers:

3.1.2 Preprocessing

This module in mainly responsible for the discretisation of a city surface into zones.
Zoning systems are a complex and important topic in transport modelling, and our
approach has to be considered preliminary as it has the main goal of reducing com-
putational time for spatial processing. This is achieved by organising the city in
500mX500m squared zones, each one identified by an index and therefore accessible
in a O(1) time. Every distance in the simulation in computed from a zone centroid to
another zone centroid. Another important aspect is that the choice of 500m bins has
an impact on how we model user behavior: in fact, when simulating user requests,
we allocate them only if a car with enough energy is available in the zone where the
request came from, or in its 1-hop neighboring zones. This is equivalent to say that
the maximum walking distance a user is willing to cross in order to take a car in the
simulation is 700m. The Python class responsible for city binning is contained in the
file CityGeoProcessor.py. This class uses efficient spatial query using a specific data
structure called RTree, both provided by the Python library GeoPandas within the
class GeoDataFrame. The output of the preprocessing phase is a file containing the
spatial description of the city grid.

3.1.3 Loading

The Loading module can be seen as a local version of the query engine implemented
in Retrieval, aimed to load into RAM a subset of available data and run the upcom-
ing part of the pipeline to them.

3.1.4 DataStructures

In this module, an abstraction for real world concept such as city and car is provided.
For the scope of this thesis, only the City class has been implemented, because all the
simulation have been conducted with the same model of car (Smart ForTwo electric)
and charging pole (2 KWh, 0.92 charging efficiency), and also users are supposed to
behave deterministically in the same way. Despite this, the code is already prepared
for introducing different models of cars and charging poles, as well as introducing
more detailed description of cities and user behaviors. The class City implements
the following methods:

• get_neighbors_dict Initialise a dictionary in which each key is an identifier
of a city zone and each value is a dictionary of 1-hop neighbors indices and
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distances. This data structures represent the topology of neighboring zones
and is useful to guarantee O(1) access to neighbors information.

• get_input_bookings_filtered Initialise a pandas DataFrame containing a sub-
set of the available booking for a given city. The subset is created following a
certain configurable filtering criterion. In our case, we retained only bookings
having duration between 3 and 60 minutes and euclidean distance between
origin and destination greater than 500m. This filtering criterion is though to
remove from the dataset reservations cancelled by users, and to consider for
simplicity only trips in which the user went straight to a destination. Clearly,
this criterion cannot guarantee that all of those trips are actually removed, and
a more precise trips characterisation might lead to consider different kind of
trips, such as for example round trips.

• get_requests_rates Initialise a dictionary containing average request rates mea-
sured per each couple (hour, daytype) where hour is in the range [0, 23] and
daytype can be "weekday" or "weekend".

• get_trip_kdes Initialise a dictionary containing KDE fitted per each couple
(hour, daytype) where hour is in the range [0, 23] and daytype can be "week-
day" or "weekend".

• get_valid_zones Initialise a set of zones corresponding to the operational area
of car2go in a given city. This corresponds to retain only zones which have
been origin and destination of at least one trip.

3.1.5 SimulationInput

The input to the simulator is implemented in two main classes:

• EFFCS_SimConfGrid.py: class managing a configuration grid i.e. a set of
different configurations for running simulation campaigns

• EFFCS_SimInput.py: class managing the initial conditions of the simulation
and the data structures used during it.

A single configuration is composed by the following parameters:

• requests_rate_factor: multiplicative factor for the original request rate of a
given city as measured from data. If this is set to 1, the original request rate
will be used in the simulation.

• n_cars_factor: multiplicative factor for the observed number of cars present in
the fleet of a given city. If this is set to 1, the original number of cars will be
used in the simulation.

• time_estimation: flag indicating whether to perform time and SOC consump-
tion estimation during charging relocation.

• queuing: Flag indicating whether cars are queued at stations when they need
charging or they are left available.

• alpha: Lower charging threshold. A car below this threshold after a booking
will request charging.
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• beta: Upper charging threshold. A car will be always charged up to this level.

• hub: Flag indicating the presence of a centralised charging hub.

• hub_zone_policy: String identifying a strategy for hub placement in the city.
Currently supported strategies are "num_parkings" and "manual", in which
the zone id of the hub is set manually.

• hub_n_charging_poles: Number of charging poles in the hub.

• relocation: Flag indicating whether a car is moved to the original destination
of the last booking after charging.

• distributed_cps: Flag indicating the presence of a decentralised charging in-
frastructure.

• cps_placement_policy: String identifying a strategy for charging poles place-
ment in the city. The only currently supported strategy is "num_parkings".

• n_charging_poles: Number of distributed charging poles in the city.

• user_contribution: Flag indicating the possibility for users to contribute to
charging, with a probability of contribution modelled as a Bernoulli RV with p
= willingness.

• willingness: Probability of a single user contribution.

Let’s give a deeper look to the methods and data structures implemented in EF-
FCS_SimInput.py:

• init_cars Initialise a dictionary containing SOC status for each car, and another
dictionary containing the zone in which a particular car is. The former dictio-
nary is initialised using a random uniform distribution of SOC between 25 and
100, while the latter dictionary is initialised picking uniformly random zones
among the valid ones.

• init_cars_dict Initialise a dictionary containing the list of available cars for
each zone, and another dictionary containing the list of available cars for each
neighbor of each zone. This redundancy is needed to guarantee O(1) access to
cars’ location information.

• init_hub Initialise a charging hub following the strategy and the parameters
specified in the configuration.

• init_charging_poles Initialise charging poles distributed in the city following
the strategy and the parameters specified in the configuration.

3.1.6 Simulation

The core simulation module is composed by classes managing the processes of user
requests allocation, mobility and charging. Those classes are:

• EFFCS_Sim.py: main simulation module implementing mobility requests.

• EFFCS_TraceB_Sim.py: subclass of EFFCS_Sim.py for trace based simulation.
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• EFFCS_EventG_Sim.py: subclass of EFFCS_Sim.py for event generation based
simulation.

• EFFCS_ChargingPrimitives.py: class managing the scheduling and the evo-
lution of charging processes.

• EFFCS_ChargingStrategy.py: class implementing different charging policies.

We will discuss in details the internal assumptions of the simulation in section
3.3.

3.1.7 SimulationOutput

This module is responsible of simulation statistics collection and plot. It is composed
by the following classes:

• EFFCS_SimOutput.py: class creating an aggregated simulation statistics ob-
ject.

• EFFCS_SimOutputPlotter.py: class containing the code for different plots.

The metrics contained in the output object managed by EFFCS_SimOutput.py
are:

• n_booking_reqs: Number of user requests.

• n_bookings: Number of satisfied user requests.

• n_unsatisfied: Number of unsatisfied user requests.

• n_same_zone_trips: Number of user requests resulting in a successful booking
for which a car was found in the same zone as the request itself.

• n_not_same_zone_trips: Number of user requests resulting in a successful
booking for which a car was found in a zone adjacent to the one of the request.

• n_no_close_cars: Number of user requests for which no cars were found, nei-
ther in the requests zone nor in its neighboring zones.

• n_deaths: Number of user requests for which no cars with enough energy
in the battery were found, neither in the requests zone nor in its neighboring
zones.

• percentage_booking_reqs: Percentage of user requests.

• percentage_bookings: Percentage of satisfied user requests.

• percentage_unsatisfied: Percentage of unsatisfied user requests.

• percentage_same_zone_trips: Percentage of user requests for which a car was
found in the same zone as the request itself.

• percentage_not_same_zone_trips: Percentage of user requests for which a car
was found in a zone adjacent to the one of the request.

• percentage_no_close_cars: Percentage of user requests for which no cars were
found, neither in the requests zone nor in its neighboring zones.
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• percentage_deaths: Percentage of user requests for which no cars with enough
energy in the battery were found, neither in the requests zone nor in its neigh-
boring zones.

• percentage_same_zone_trips_satisfied: Percentage of satisfied requests for which
a car was found in the same zone as the request itself.

• percentage_not_same_zone_trips_satisfied: Percentage of satisfied requests
for which a car was found in a zone adjacent to the one of the request.

• percentage_no_close_cars: Percentage of unsatisfied requests for which no
cars were found, neither in the requests zone nor in its neighboring zones.

• percentage_deaths: Percentage of unsatisfied requests for which no cars with
enough energy in the battery were found, neither in the requests zone nor in
its neighboring zones.

• n_charges Total number of charging events.

• n_charging_requests_system Total number of bookings resulting in a charg-
ing request for the system operator.

• n_charges_system Total number of charging events managed by system oper-
ator.

• n_charges_deaths Total number of charging requests for which it is not possi-
ble to bring the car to the closest charging station, due to the insufficient level
of battery of the car.

• percentage_charge_deaths_system Percentage of charging requests to the sys-
tem resulting in a charge death.

• soc_avg Average SOC of the fleet.

• soc_med Median SOC of the fleet.

• charging_time_avg Average charging time for all charging events.

• charging_time_med Median charging time for all charging events.

• n_charges_by_car_avg Average number of charge for a vehicle.

• n_charges_by_car_system_avg Average number of charge for a vehicle con-
sidering only system-managed charging events.

• n_charges_by_car_users_avg Average number of charge for a vehicle consid-
ering only user-managed charging events.

• tot_energy Total charging energy requested by the fleet during simulation time.

• percentage_charges_system Percentage of charging events managed by the
system.

• percentage_charges_users Percentage of charging events managed by the users.

• percentage_energy_system Percentage of charging energy requested to the
grid during system charging events.
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• percentage_energy_users Percentage of charging energy requested to the grid
during users’ charging events.

• percentage_duration_system Percentage of charging duration of system charg-
ing events.

• percentage_duration_users Percentage of charging duration of users charging
events.

• cum_relo_out_t Total time spent for outward charging relocation, i.e. to bring
car to charge.

• cum_relo_ret_t Total time spent for return charging relocation, i.e. to bring car
from charging station to a relocation zone.

• cum_relo_t Total time spent for relocation.

• cum_relo_kwh Total energy consumed for relocation.

3.2 Demand modelling

The general question we try to answer is “When and where booking requests might
occur in a given city and in a certain timeframe?”. In order to model this mobility
demand, we use as input real bookings performed by users collected through the
software UMAP. Therefore, we are practically estimating the whole demand (which
may be satisfied or unsatisfied) using only the satisfied demand: for this reason, it is
impossible using only these input data to detect or estimate when and where users’
demand was really unsatisfied. As a consequence of the introductory hypothesis,
we are in this way comparing the number of booking requests in the simulation
with the number of real bookings in the trace. Therefore, we can assess the statistical
properties of the model, but we cannot use the concept of “booking” in the same way
between the real trace and the simulated one. Other data source might be needed to
better model more components of mobility demand.

3.2.1 Time estimation

Our assumption for time estimation is that inter-arrival times between two conse-
quent bookings follow an exponential distribution, namely that the arrival stochas-
tic process is a Poisson process. We further suppose that the average rate of arrivals
is not constant with time, but varies with the type of day and the hour. We suppose
that the type of day can be only “work day” or “weekend”, namely that there are
no differences on average between a Monday and a Wednesday or a Saturday and
a Sunday. Therefore, we will obtain 48 (2*24) different rates and a de-facto inhomo-
geneous Poisson process. During simulation, the arrival of the next booking request
is generated as a random sample of an exponential distribution having as rate the
one corresponding to the hour and day type associated with the current simulation
time. The procedure for rate estimation uses a frequentist approach: for each cou-
ple (daytype, hour) in the input trace, the average number of bookings for a certain
couple (daytype, hour) is computed as number of bookings divided by the number
of instances for that couple (daytype, hour). The rate is than obtained as the inverse
of the computed average. This procedure is implemented in the following method
of the class City:
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def get_requests_rates (self):

self.request_rates = {}

for daytype, daytype_bookings_gdf \
in self.input_bookings.groupby("daytype"):

self.request_rates[daytype] = {}
for hour, hour_df\
in daytype_bookings_gdf.groupby("hour"):

self.request_rates[daytype][hour] = \
hour_df.city.count()\
/ (len(hour_df.day.unique()))\
/ 3600

self.sim_general_conf["avg_request_rate"] = \
pd.DataFrame(self.request_rates.values()).mean().mean()

return self.request_rates

3.2.2 Spatial estimation

Spatial estimation is performed by fitting the probability density function of OD
couples using Kernel Density Estimate. As for time estimation, we suppose that
the probability density function is not constant with time, but varies with the type
of day and the hour. Therefore, we will obtain also in this case 48 (2*24) different
distributions. Following the conclusions of [51] we used KDE in conjunction with
hot spots analysis, namely we fit KDE on a discretised space composed by 500m x
500m zones. In this way, the input OD couples are identified by sequential integer
IDs and not by points coordinates, and the spatial resolution is given by zones size,
and not by KDE bandwidth, given that it is set lower or equal than 1. A bandwidth
equal to 1 would in fact mean that the resolution of the spatial KDE is set as the
resolution of city binning, namely again the 500m x 500m zones. A smaller band-
width does not bring significant advantages for estimation, as a finer-grained KDE
would anyway be mapped on spatial bins. A bigger bandwidth would instead lose
the granularity of city binning, and lead to a reduced precision in detecting spatial
patterns, as shown in [67]. Binning the search space of a spatial KDE brings also
significant advantages in terms of computational performances, although more pre-
cise and efficient yet complex techniques have been developed, such as in [61] and
[65]. The Python code used for KDE computation is shown below. Note that default
kernel for scikit-learn implementation of KDE is Gaussian [3].

def get_trip_kdes (self):

self.trip_kdes = {}
self.kde_columns = [

"origin_id",
"destination_id",

]

for daytype, daytype_bookings_gdf\
in self.input_bookings.groupby("daytype"):



32 Chapter 3. Methodologies

self.trip_kdes[daytype] = {}
for hour, hour_df\
in daytype_bookings_gdf.groupby("hour"):

self.trip_kdes[daytype][hour] = \
KernelDensity(

bandwidth=1
).fit(\
hour_df[self.kde_columns].dropna())

return self.trip_kdes

3.3 Simulation assumptions

The simulation relies on a set of assumptions implemented in its input and in its
internal logic. These assumptions are not static, and can be changed by properly
setting some parameters, or by explicitly implementing rules in the simulator. In
this section, we list the assumptions made for the specific results shown in this thesis
work. We identified three categories for the assumptions:

• Zoning assumptions

– a.0 City area is divided into 500mX500m zones
– a.1 Trip distance is computed as euclidean distance from the origin cen-

troid to the destination centroid and multiplied by a correction factor rep-
resenting the average driving distance.

• Cars and poles assumptions

– a.2 Poles are supposed to have the same characteristics, namely 2kW
nominal power and 92% charging efficiency.

– a.3 Cars are supposed to have the same characteristics, namely 16.7kWh
capacity and 15.9 kWh / 100 km energy efficiency

• Charging process assumptions

– a.4 Charge and discharge are assumed to evolve linearly and without
losses.

– a.5 A user takes the most charged car among the ones with enough battery
in the same zone or in a 1-hop neighboring zone.

– a.6 At the end of each rental, a car is released only if there is no need
of charging. Otherwise, the car will remain unavailable until the desired
charging process is performed. A car is considered to be in need of charg-
ing when its SOC reaches a value of 25 or below, and it is not released
until its SOC reaches the value of β set in the particular simulation.

– a.7 At the end of each charging process, a car is considered to have been
unplugged and parked in the same zone, or relocated and parked some-
where else.

– a.8 Charging relocation times are computed using 15 km/h as average
speed, therefore including parking and traffic times.

– a.9 In case of a distributed infrastructure, cars are always relocated to the
closest charging point.
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Chapter 4

Model validation

4.1 Introduction

In this chapter we will validate the assumptions made for model estimation, namely
the Poisson process hypothesis for inter-arrival times of bookings and the usage of
KDE for spatial estimation, for the city of Turin. In order to perform this valida-
tion, we will run a simulation using the input trace and a simulation using the im-
plemented model, and then we will compare the temporal aspects and the spatial
aspects. Model validation results for other cities is shown in appendix A.

Before starting, let’s make an important remark. In order to model mobility de-
mand, we use as input real bookings performed by users collected through the soft-
ware UMAP. Therefore, we are practically estimating the whole demand (which may
be satisfied or unsatisfied) using only the satisfied demand: for this reason, it is im-
possible using only these input data to detect or estimate when and where users’
demand was really unsatisfied. As a consequence of this introductory hypothesis,
we are in this way comparing the number of booking requests in the simulation with
the number of real bookings in the trace. In such setting, we can assess the statistical
properties of the model, but we do not use in fact the concept of “booking” in the
same way between the real trace and the simulated one. Other data source might
be therefore needed to better model more components of mobility demand. For our
scopes this is not critical, as we are not actually interested in reproducing the trace
as similarly as possible, but rather in detecting temporal and spatial patterns in mo-
bility demand. For which concerns the former, we expect it to be quite dependent
on typical human activities patterns, while the latter clearly presents in the trace a
strong correlation with actual availability of cars in a precise zone and time frame.
This means that in the case of spatial modelling, we are interested in uncorrelat-
ing trace samples from simulated ones, yet maintaining spatial patterns reasonably
compatible with the city under study, in order that locations of user requests and
locations of cars does not evolve synchronously.

4.2 Time analysis

Before quantifying the errors, it is useful to visualise the distribution of trips along
the hour of the day, as shown in figure 4.1. On the x-axis is represented the hour of
the day, while on the y-axis is represented the fraction of trips. We can easily observe
that the profile of simulated bookings is very similar to the one of real bookings.

In 4.2 we can observe the quantile-quantile (Q-Q) plot of inter-arrival times. A Q-
Q plot is a graphical method for comparing two probability distributions by plotting
their quantiles against each other. The closer points are to the bisector line, the more
similar are the two probability distributions. From the plot, we can observe that
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FIGURE 4.1: Percentage of bookings by hour for the city of Turin,
simulation vs trace

The simulated hourly bookings profile for the city of Turin is very close to the one deduced from input data. It is
also possible to notice that there is not a constant underestimation or overestimation.

points are tightly close to the bisector line, meaning that the Poisson process may
well represent the occurrences of bookings in time.

For which concerns the error in the time distribution of events, we define the
following relationship:

eN
t,% = | ˆNt,% − Ni,t,%| (4.1)

Where:

• t: selected time frame.

• Ni,t,%: Percentage of trips in input data at a given time frame.

• ˆNi,t,%: Percentage of trips in simulated data at a given time frame.

Figure 4.3 shows the error resulting from equation 4.1 for each couple (hour, day-
type). From the figure, it is possible to notice that errors are constantly lower than
1% and that there is not a very large variation between weekends and weekdays.

4.3 Spatial analysis

We define the following spatial error metric:

eo
i,t,% = | ˆNo

i,t,% − No
i,t,%| (4.2)

ed
i,t,% = | ˆNd

i,t,% − Nd
i,t,%| (4.3)

eod
i,t,% = eo

i,t,% + ed
i,t,% (4.4)
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FIGURE 4.2: Q-Q plot of inter-arrival times for the city of Turin

Scattered points are very close to the bisector line, meaning that an inhomogeneous Poisson process is a good fit
for input data.

FIGURE 4.3: eN
t,% for the city of Turin

The relative hourly error is always under 1%, both in case of working days and weekend days.
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Where:

• i: zone id.

• t: selected time frame.

• No
i,t,%: Percentage of trips in input data at a given time frame for which the

zone i is the origin zone.

• ˆNo
i,t,%: Percentage of trips in simulated data at a given time frame for which the

zone i is the origin zone.

• Nd
i,t,%: Percentage of trips in input data at a given time frame for which the

zone i is the origin zone.

• ˆNd
i,t,%: Percentage of trips in simulated data at a given time frame for which the

zone i is the destination zone.

Equation 4.2 represent the error in the estimate of the percentage of trips for
which a zone i is origin. Equation 4.3 represent the error in the estimate of the per-
centage of trips for which a zone i is destination. Equation 4.4 represents the sum
of the two components. In figure 4.4 it is shown ˆNd

i,t,% at four different moments of
the day (night, morning, afternoon, evening). We can observe that the error never
exceeds 3% for a single zone, and that it is more concentrated on central zones, pre-
senting in general more trips.

As we were previously stating in the introductory subsection, we are not prop-
erly interested in reproducing the same spatial patterns of the trace: on the contrary,
we are interested in partially uncorrelating simulated spatial patterns and original
ones, yet maintaining spatial patterns reasonably compatible with the city under
study and related human activities. The reason behind it, as we were introducing,
is that we only have data about successful bookings, and we are not consequently
able to model unsatisfied demand. Therefore, a model resembling closely input data
may be too optimistic, as it would be based only on successful bookings.
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FIGURE 4.4: eod
i,t,% for the city of Turin during night, morning, after-

noon and evening

The maximum relative error for a single zone never exceeds 3%, and it is mostly around 1%.



38 Chapter 4. Model validation

In order to test how uncorrelated the simulated trace can be, we now run two
simulations, one using the real trace and one using a trace coming from our demand
model, in order to compare the percentage of satisfied demand. The simulations are
tuned on an ideal (without cost estimation) scenario characterised by the following
configuration:

• requests_rate_factor: 1

• n_cars_factor: 1

• time_estimation: False

• queuing: True

• alpha: 25

• beta: 100

• hub: True

• hub_n_charging_poles: 60

• relocation: False

• distributed_cps: False

• user_contribution: False

Figure 4.5 shows aggregated statistics of satisfied/unsatified requests for the
simulation using the original trace, while in 4.6 are shown the same statistics for
the simulation using the implemented demand model. We can notice how the per-
centage of satisfied demand drops significantly in the second case, as the input users
requests lose their correlation with the position of cars.
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FIGURE 4.5: Events types percentages, original trace

0 20 40 60 80 100

satisfied %

unsatisfied %

events %

Percentage of events, single simulation
same zone
neighbor zone
no close car
not enough energy
unsatisfied
satified

FIGURE 4.6: Events types percentages, simulated trace

The percentage of unsatisfied booking request using the input trace is between 15% and 20%, while in the case of
simulated trace is above 40%, meaning that the demand model successfully uncorrelates cars and user requests

locations.
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Chapter 5

First case study: city of Turin

In this section, we will present simulation results for the city of Turin. First, we
present a validation of the proposed mobility demand model. Then, we will present
a simulation campaign for three different scenarios with multiple or specific config-
urations. The analysed scenarios are:

• Fully centralised charging infrastructure, without user contribution

• Fully decentralised charging infrastructure, with or without user contribution

• Hybrid charging infrastructure, with or without user contribution

The system parameters under study are:

• Number of cars in the fleet

• Charging capacity

• Upper charging threshold (β): a charging process is terminated when car’s
SOC reaches the value of β.

• Users’ willingness to contribute (only with user contribution): probability that
a user will contribute to charging processes when requested by system opera-
tor.

The quality of a configurations is measured using the following metrics:

• percentage of unsatisfied requests: gives an indication of the quality of the
service in terms of cars availability for users’ requests. An unsatisfied request
is defined as a user request for which the user did not find an available car
close to the origin of the request, or did not find a car with enough energy to
perform the desired trip.

• Charging relocation cost: gives an indication of the cost of charging process in
terms of time needed to drive cars to charge. When a car needs to be charged,
the system has to physically move it to the closest charging point. Charging
relocation cost measures the time needed to perform this move.
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5.1 Single charging hub scenario

5.1.1 Parameters analysis

In this subsection, we will analyse results coming from a set of simulations for the
city of Turin in which we imagine that the charging process is performed through a
single, large charging hub. The location of the hub is set through the "num_parkings"
strategy [36], namely the hub is located in the zone where the largest number of cars
is usually parked. The parameters grid for this set of simulations is the following:

• requests_rate_factor: 1

• n_cars_factor: from 0.5 to 1.5, spaced by 0.2

• time_estimation: True

• queuing: True

• alpha: 25

• beta: from 60 to 100, spaced by 10

• hub: True

• hub_zone_policy: "num_parkings"

• n_poles_n_cars_factor: from 0.05 to 0.2, spaced by 0.005

• relocation: False

• distributed_cps: False

In figure 5.1 is shown the percentage of unsatisfied requests as a function of the
number of cars per charging poles. The total number of cars is fixed to the 90% of
the original fleet size and the different curves represent different values of β. In the
left region of the chart, we can notice that β has little to no impact, probably due to
the insufficient charging capacity of the system. The curves present a knee around
the value of 15 cars per charging point (n_poles_n_cars_factor = 0.07) and stabilises
progressively. We can observe that when there is enough charging capacity a lower
value of β corresponds to a lower percentage of unsatisfied requests. This can be
intuitively explained by the fact that cars stay in charge for less time on a average,
which means they will also stay more time available in the city.

Figure 5.2 shows the relocation cost of charging operations in terms of hours
needed for moving cars to charge. As before, the number of cars is fixed to the 90%
of the original fleet size and the purpose is to study the impact of β. From the chart,
it is clear that lower values of β correspond to higher relocation cost, because cars
have to be charged more often. Furthermore, the relationship looks pretty linear:
doubling the average charging time (i.e. doubling β) also the relocation cost doubles.

Let’s now analyse the impact of fleet size. Figure 5.3 shows the percentage of
unsatisfied requests as a function of the number of poles per car, with β set to 60
and different curves for different fleet size. As expectable, increasing the number
of cars has a strong positive impact on unsatisfied demand. An interesting effect
that this chart shows is also that increasing the number of cars the number of poles
per car needed to reach the best operational region decreases. This means that, once
that β and fleet size have been set, an increase in the absolute charging capacity is
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FIGURE 5.1: Percentage of unsatisfied events, n_cars_factor fixed, β
variable

Reducing the value of β has the effect of making more cars available on average, therefore reducing the percentage
of unsatisfied demand.
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FIGURE 5.2: Relocation cost, n_cars_factor fixed, β variable

Reducing the value of upper charging threshold β has the effect of bringing cars to charge more often, therefore
increasing charging relocation cost.
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FIGURE 5.3: Percentage of unsatisfied events, β fixed, n_cars_factor
variable

Increasing fleet size lets users find a car more likely, reducing the percentage of unsatisfied requests.
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FIGURE 5.4: Percentage of unsatisfied events, β fixed, n_cars_factor
variable, absolute number of charging poles

The absolute number of charging poles needed for running the system at its best increases along with fleet size.
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not beneficial for the system. This effect is better visible by plotting the same chart
against the absolute number of charging points, as in figure 5.4.

Figure 5.5 shows the relocation cost by plotting different curves for different fleet
size. Increasing the number of cars increases also the relocation cost, likely because
users will be able to perform more trips. Despite this, the effect of fleet size on the
relocation cost seems to have less impact than the choice of β: doubling the number
of cars, in fact, provokes an increase in the relocation cost which is less than the
double.
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FIGURE 5.5: Relocation cost, β fixed, n_cars_factor variable

The relocation cost of bringing cars to charge grows along with fleet size, but tents to grow less sharply when the
fleet is bigger.

We can therefore deduce that, in this scenario, a positive correlation between the
quality of service and the charging relocation cost exists: the best service from the
users’ point of view (i.e. minimum percentage of unsatisfied requests) is reached
when the costs for the system are the highest, and viceversa.

The best configuration in terms of satisfied demand is composed by the following
parameters:

• β = 60

• n_cars_factor = 1.5

Figure 5.6 shows the percentage of satisfied and unsatisfied demand for this op-
timal configuration as a function of n_cars_n_poles_factor. We can observe that sat-
isfied demand reaches almost 80% of requests, with about 60% being "comfortable"
trips (the car is found in the same zone where the request was made) and 20% "less
comfortable" trips (the car is found within a neighbor zone). We can also notice
that the most of unsatisfied demand, globally reaching slightly more than 20%, is
given by users not finding a close car, while cases for which users found car without
enough energy happen more rarely.

The best configuration in terms of relocation cost is composed by the following
parameters:
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FIGURE 5.6: Events profile, minimum unsatisfied demand configura-
tion

Once a good configuration of fleet size and charging threshold has been found, excess charging capacity has little
impact on system performance.

• β = 100

• n_cars_factor = 0.5

Figure 5.7 shows the percentage of satisfied and unsatisfied demand for the min-
imum cost configuration as a function of n_cars_n_poles_factor. Satisfied demand
is in this case only constituted by the 40% of requests, with about 30% being "com-
fortable" trips and 10% "less comfortable" trips. Once again, the most of unsatisfied
demand is given by users not finding a close car, while cases for which users found
car without enough energy happen in less than 10% of requests.

5.1.2 In-depth analysis

In this subsection, we will present the results of a single simulation run for the case
of a fully centralised infrastructure in the city of Turin. The particular configuration
chosen is the following:

• requests_rate_factor: 1

• n_cars_factor: 1

• time_estimation: True

• queuing: True

• alpha: 25

• beta: 80

• hub: True
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FIGURE 5.7: Events profile, minimum charging relocation cost con-
figuration

Minimising charging relocation cost without taking into account other factors lead to a very inefficient system for
users.

• hub_zone_policy: "num_parkings"

• n_poles_n_cars_factor: 0.1

• relocation: False

• distributed_cps: False

Figure 5.8 shows the location of the hub selected through the "num_parkings"
strategy. We can consider this being a best case, ideal scenario, because in many
practical situation will be impossible to build a big charging station in the very center
of a city. However, eC2S allows to manually set the location of the hub in order to
study other specific situations.

In figure 5.9 is represented an horizontal barplot with the percentages of success-
ful and unsuccessful user requests. We can see that slightly more than 60% of user
requests have been satisfied, while almost 40% corresponds to unsuccessful requests.
Almost 70% of unsatisfied requests happened because no close car was found, while
the remaining failed because close cars did not have enough energy to serve the re-
quest. We can also see that in almost 25% of successful requests, users had to walk
to a neighbor zone in order to reach a car able to serve their trips.

In figure 5.10 is represented the hourly profile of charging events that the system
has to manage. In particular, the chart refers to when a charging event starts. These
events can be seen as notifications of the fact that a car reached a SOC under the level
set by α. The peaks of charging requests happens at 5pm to 6pm, with the system
having to manage an average of 8 charging events, with peaks of 14 and 16. During
the morning and afternoon the average stays quite steady around 6 charging events.
After 6pm, the number of charging events to manage start to decrease, and reaches
a lower peak of 0 to 1 charging events during night at about 2am. We can see that
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FIGURE 5.9: Events types percentages

it happens quite often that the number of charging events to manage in an hour is
greater than 10 and, in a few cases, around 15 or more.
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FIGURE 5.10: Hourly boxplot of number charging events managed
by the system

In figure 5.11 is represented the number of cars charging at a given hour. We can
observe that the average of each hour is below the maximum capacity of the system,
but the upper quartiles are saturated almost all day long, exception made for the
interval 1am-9am.

In figure 5.12 is represented the evolution in time of cars’ status during simula-
tion. We can notice that on a average there are about 350 cars constantly available,
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FIGURE 5.11: Hourly boxplot for number of cars charging

which can be a sign of inefficiency in fleet management. We can therefore think that
it could be possible to maintain similar level of service even with a lower number of
cars in the fleet. We can also notice the the system accumulates progressively "dead"
cars, namely cars which are too far from system’s charging infrastructure to be re-
located. It would be probably necessary to implement "rescue" strategies for those
cars.
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FIGURE 5.12: Fleet status in time

Figure 5.13 shows the charging relocation cost in terms of time needed for mov-
ing the cars to charging stations, as we are not considering post-charging relocation.
We can see that the average between 6am and 6pm is around one hour, namely in
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each hour the system need about one hour driving to bring cars to charge. It is also
visible, however, that in many cases the upper quartiles are between 1 hour and
2 hours, and that there are also fewer cases in which the relocation cost has been
more than two hours. In figure 5.14 and 5.15 are shown respectively the overall time
and space distributions of charging requests. We can notice that charging relocation
activity is more concentrated during daily hours and in the center. However, the
airport of Caselle is the zone with the biggest number of charging requests (about
3% of the total), due to its geographical position.
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FIGURE 5.13: Hourly boxplot for relocation cost expressed in hours
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FIGURE 5.14: Histogram of charging events start timestamps
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FIGURE 5.15: Clorophlet map of charging requests locations

Figure 5.16 shows the absolute hourly distribution for unsatisfied requests. We
can see that the peak of unsatisfied requests is reached between 3pm and 5pm, when
the average number of unsatisfied requests is about 70, with peaks around or more
than 80. In relative terms, as it shown in figure 5.17, this corresponds to about 25%
of the whole unsatisfied demand. Figure 5.18 shows instead the spatial distribution
of unsatisfied demand, which is visibly concentrated in the center of the city.
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FIGURE 5.16: Hourly boxplot for unsatisfied requests
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FIGURE 5.17: Histogram of unsatisfied requests timestamps
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5.2 Distributed infrastructure scenario

5.2.1 Parameters analysis

In this subsection, we will analyse results coming from a set of simulations for
the city of Turin in the case that the charging process is performed through a dis-
tributed charging infrastructure. Charging point placement is decided through the
"num_parkings" strategy [36], namely there will be more charging capacity in the
zones where an higher number of cars is usually parked. The general assumption
for charging relocation in this case is that the system brings a car to charge in the
closest charging spot, and the car enters a queue if the charging spot is full. The
parameters grid for this set of simulations is the following:

• requests_rate_factor: 1

• n_cars_factor: from 0.5 to 1.5, spaced by 0.2

• time_estimation: True

• queuing: True

• alpha: 25

• beta: from 60 to 100, spaced by 10

• hub: False

• n_poles_n_cars_factor: from 0.05 to 0.2, spaced by 0.005

• relocation: False

• distributed_cps: True

• cps_placement_policy: "num_parkings"

• willingness: from 0 to 0.99, spaced by 0.33

First, we want to investigate how a distributed infrastructure might impact sys-
tem operations in comparison with a centralised hub. In order to do this, let’s
first plot event percentages profile with the best parameters of the centralised case,
namely the minimum unsatisfied demand configuration, in figure 5.19, and the min-
imum relocation cost configuration, in figure 5.20. Surprisingly, performances in
terms of satisfied demand are consistently worse (respectively 30% and 20%) than in
the centralised case with the same parameters. This effect may be due, for example,
to an imbalance in queues at charging stations, but needs further investigation to be
properly characterised.

Let’s now analyse the effect on users’ willingness to contribute on charging pro-
cess. We assume to adopt the "free floating" strategy [36], in which a user plug a car
at destination zone only if there is an available charging spot in the same zone. Fur-
thermore, a car plugged by users remains in charge until it reaches a SOC equal to β.
These assumptions can be changed in the simulator to see how different strategies
may impact performance metrics.

The best configuration in terms of satisfied demand is composed by the following
parameters:

• β = 70
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FIGURE 5.19: Events profile, no users, best centralised configuration
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FIGURE 5.20: Events profile, no users, best centralised configuration
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• n_cars_factor = 1.5

The best configuration in terms of relocation cost is composed by the following
parameters:

• β = 100

• n_cars_factor = 1.3

Figure 5.21 shows the impact of users’ willingness on the percentage on un-
satisfied demand. Generally, as expectable, a greater willingness corresponds to a
lower percentage of unsatisfied requests, but this difference decreases when the total
charging capacity increases. This effect is stronger for higher values of β, as shown
in figure 5.22, corresponding to the minimum relocation cost configuration.
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FIGURE 5.21: Percentage of unsatisfied events, best case configura-
tion, varying willingness

Figures 5.23 and 5.24 show the impact of users’ willingness on the total reloca-
tion cost, respectively for the minimum unsatisfied demand configuration and the
minimum relocation cost configuration. From both figures it is clear that user contri-
bution might consistently contribute to a reduction in overall relocation costs, with
a global minimum of only 45 hours of relocation in a month, in case of full users
contribution.

Despite the big improvements in terms of relocation costs, the percentage of sat-
isfied requests does not reach the best levels obtained in the centralised scenario, as
shown in figure 5.25. This result can however be biased due to the fact that the hub is
placed in an optimal zone, namely where most of the trips’ origins and destinations
are. Results might be different with another hub placement policy.
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FIGURE 5.22: Percentage of unsatisfied events, best case configura-
tion, varying willingness
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FIGURE 5.23: Percentage of unsatisfied events, best case configura-
tion, varying willingness
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tion, varying willingness
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FIGURE 5.25: Events profile, best satisfied demand configuration



5.2. Distributed infrastructure scenario 59

5.2.2 In-depth analysis

In this subsection, we will present the results of a single simulation run for the case
of a decentralised charging infrastructure in the city of Turin. The particular config-
uration chosen is the following:

• requests_rate_factor: 1

• n_cars_factor: 1.3

• time_estimation: True

• queuing: True

• alpha: 25

• beta: 100

• hub: False

• n_poles_n_cars_factor: 0.1

• distributed_cps: True

• user_contribution: True

• willingness: 0.66

Figure 5.26 shows the locations of zones having at least one charging poles, se-
lected through the "num_parkings" strategy.

In figure 5.27 is represented an horizontal barplot with the percentages of suc-
cessful and unsuccessful user requests. We can see that the profile is quite similar to
the one of the centralised case shown in figure 5.9, exception made for the percent-
age of unsatisfied requests caused by cars with no enough SOC. In the distributed
case, the percentage of this events is around 2%, while in the centralised charging
scenario was more than 15%.

In figure 5.28 is represented the hourly profile of charging event happening across
the distributed charging infrastructure. Contrarily to the case of centralised charg-
ing shown in 5.10, where the peaks of charging requests happens at 5pm to 6pm,
the highest number of charging events triggers can be observed around 6am. This
is very likely due to the presence of user charging, as during morning users are
more often moving to the center, where most of charging poles are, and therefore
it is possible to apply the "free floating" charging strategy. It is also possible to ob-
serve a general increase in the number of charging events in comparison with the
centralised case, where there are only charging events managed by the system.

In figure 5.29 is represented the number of cars charging at a given hour for
charging events managed by the system. The profile is much smoother than the one
of the centralised case shown in figure 5.11, and does not present evident peaks.
This effect can be probably more advantageous for logistic operations. In figure 5.30
is shown the chart for user-managed charging events, and it confirms the intuition
made for figure 5.28, namely that the peak in morning charging events is mostly due
to users mobility patterns and the "free floating" charging strategy.

In figure 5.31 is represented the evolution in time of cars’ status during simu-
lation. The profile has two main differences with respect to the centralised charg-
ing case. First, the greater number of user-managed charging events than system-
managed ones, already observed in figures 5.29 and 5.30. Second, the weaker trend
of "dead" cars accumulation, and therefore lower "rescue" costs.
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FIGURE 5.28: Hourly boxplot of number charging events
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FIGURE 5.29: Hourly boxplot for number of cars charging in events
managed by the system
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FIGURE 5.30: Hourly boxplot for number of cars charging in events
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Figure 5.32 shows the charging relocation cost in terms of time needed for mov-
ing the cars to charging stations. We can observe a dramatic reduction of relocation
time in comparison with the centralised case shown in figure 5.13, both in terms of
average and peaks. It is also notable that, during the timeframe going from 1am to
4am, the time needed for relocation is very close to zero, exception made for some
outliers.
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FIGURE 5.32: Hourly boxplot for relocation cost expressed in hours
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5.3 Charging hub and distributed infrastructure scenario

5.3.1 Parameters analysis

In this subsection, we will analyse results coming from a set of simulations for the
city of Turin in which the charging infrastructure is composed by a centralised hub,
managed by a system operator, and a distributed infrastructure where only users can
plug cars. The parameters grid chosen for this set of simulations is the following:

• requests_rate_factor: 1

• n_cars_factor: from 0.5 to 1.5, spaced by 0.2

• time_estimation: True

• queuing: True

• alpha: 25

• beta: from 60 to 100, spaced by 10

• hub: True

• hub_zone_policy: "num_parkings"

• n_poles_n_cars_factor: from 0.05 to 0.2, spaced by 0.005

• relocation: False

• distributed_cps: True

• cps_placement_policy: "num_parkings"

• willingness: from 0.33 to 0.99, spaced by 0.33

In order to analyse the quality of this scenario, we will once again consider the
best configuration in terms of satisfied demand and the best configuration in terms
of relocation cost. The best configuration in terms of satisfied demand is composed
by the following parameters:

• β = 60

• n_cars_factor = 1.5

• willingness = 0.33

The best configuration in terms of relocation cost is composed by the following
parameters:

• β = 100

• n_cars_factor = 1.3

• willingness = 0.99
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Figure 5.33 shows the impact of users’ willingness on the percentage on unsat-
isfied demand. For lower charging capacities, a greater willingness corresponds to
a lower percentage of unsatisfied requests, but interestingly this effect is reversed
for higher charging capacities: a greater user contribution corresponds to a lower
percentage of satisfied demand. This is probably due to the fact that cars plugged
by users remain unavailable until they reach the threshold β, and therefore when
charging capacity increases more cars stay unavailable. Also, this trend tends to
strengthen with higher values of charging capacity and also with higher values of β,
as observable in figure 5.34, corresponding to the minimum relocation cost configu-
ration.
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FIGURE 5.33: Percentage of unsatisfied events, best case, varying
willingness

Figures 5.35 and 5.36 show the impact of users’ willingness on the total reloca-
tion cost, respectively for the minimum unsatisfied demand configuration and the
minimum relocation cost configuration. As for the case of fully decentralised infras-
tructure, it is clear that users contribution might play a decisive role in relocation
cost reduction. Figure 5.37 shows instead the events percentage profile in the best
satisfied demand case, which is very similar to the fully centralised case, a part from
a more evident transient in case of low charging capacity.

For this scenario, we do not show the in-depth analysis as results are very similar
to what observed previously.
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FIGURE 5.34: Percentage of unsatisfied events, min cost, varying will-
ingness
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FIGURE 5.35: Relocation cost, min unsatisfied, varying willingness
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Chapter 6

Second case study: Cities
comparison

The goal of this chapter is to put in evidence analogies and differences of EFFCS
systems deployment in different cities, considering the same charging scenarios pre-
sented in the previous chapter, namely:

• Fully centralised charging infrastructure, without user contribution

• Fully decentralised charging infrastructure, with or without user contribution

• Hybrid charging infrastructure, with user contribution

In particular, we will present simulation results for the following cities:

• Brooklyn, NYC, USA

• Milano, Italy

• Berlin, Germany

• Vancouver, Canada

6.1 Centralised infrastructure scenario

In this section, we will analyse results coming from a set of simulations per each
city, in which we imagine that the charging process is performed through a single
charging hub. Simulation hypotheses and parameters configuration are the same
presented for the city of Turin.

Figure 6.1 shows the effect of β on the percentage of unsatisfied demand in the
best case for each city, namely using the configuration which lead to the maximum
satisfied demand. In the case of Brooklyn 6.1a, Milano 6.1b and Vancouver 6.1c,
higher values of β lead to higher percentage of unsatisfied demand, accordingly to
what happened to Turin. In the particular case of Brooklyn, there is no initial tran-
sient involving charging capacity, meaning that 20 cars per charging pole is already
a good ratio for the size of the hub. Instead, Berlin presents an inversion of the trend
for β: lower values correspond to a lower satisfied demand. This effect might be
related with the size of the operational area for Berlin, which is the biggest among
cities under study.

Figure 6.2 shows the effect of β on the cost of charging relocation. In this case,
results are compliant with the one of Turin, with each city presenting a higher relo-
cation cost for lower values of β. We can also notice that the cost tends to stabilise
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FIGURE 6.1: Percentage of unsatisfied demand, varying β, cities com-
parison

In the case of Brooklyn, Milano and Vancouver, higher values of β lead to higher percentage of unsatisfied demand, accordingly to what happened to
Turin. In the particular case of Brooklyn, there is no initial transient involving charging capacity, meaning that 20 cars per charging pole is already a

good ratio for the size of the hub. Instead, Berlin presents an inversion of the trend for β: lower values correspond to a lower satisfied demand.
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FIGURE 6.2: Charging relocation cost, varying β, cities comparison
Effect of β on the cost of charging relocation. Lower values of β correspond to higher relocation cost. Different cities have different trends about the

initial transient and cost variation with β.
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from a certain value of charging capacity on, with different trends depending on the
specific city.

Figure 6.3 and figure 6.4 show the effect of fleet size on, respectively, the percent-
age of unsatisfied requests and charging relocation cost. Results are intuitive and
analogous to the ones obtained for Turin, a part from intrinsic differences due to
city-specific features.

6.2 Distributed infrastructure scenario

In this section, we will analyse results of a fully distributed charging scenario, with
the same hypotheses and parameters configuration set for the city of Turin.

First, let’s explore the effect of users’ willingness to cooperate with charging op-
erations. Figure 6.5 shows the percentage of unsatisfied requests with different val-
ues of willingness in the four cities under study. The positive influence of users con-
tribution is evident in every city, and it increases when the global charging capacity
is higher. We can also notice that there is a small difference between the performance
obtained with willingness equal to 0.66 and 0.99, meaning that it is not strictly neces-
sary that all users contribute in order to achieve improvements in the quality of the
service. Berlin is the only city for which the difference between unsatisfied demand
in case of willingness equal to 0.66 or to 0.99 remains visible also for high values of
charging capacity.

Figure 6.6 shows charging relocation cost in the four cities under study for dif-
ferent values of willingness. Besides lowering charging relocation cost in general,
higher values of willingness produce an inverse relationship between relocation cost
and charging capacity: in fact, when willingness is sufficient, higher values of charg-
ing capacity are associated with lower values of relocation cost. In all the four cities,
a willingness of 0.99 guarantees a descending trend of relocation cost with charg-
ing capacity, while in the case of willingness equal to 0.66 only Berlin constitutes an
exception to this behavior.

Let’s now investigate the influence of the system parameter β. Figure 6.7 shows
levels of unsatisfied demand with different values of β for the cities under study. De-
spite higher values of β, contrarily to the centralised charging scenario, corresponds
in general to lower unsatisfied demand, this difference tends to mitigate while in-
creasing charging capacity. At the same time, charging relocation cost is in generally
heavily affected by β, as higher values of the parameter cause appreciably lower
values of charging relocation cost, as shown in figure 6.8.

Finally, let’s analyse the impact of fleet size. Figure 6.9 shows the variation of
unsatisfied demand as a function of charging capacity and fleet size. Similarly to
what observed for Turin, and to what intuition might suggest, fleet size has a very
strong repercussion on cars availability, and therefore on satisfied mobility demand.
In some cases, namely Milano and Vancouver, when the fleet is big enough, increas-
ing charging capacity over a certain threshold is not beneficial for satisfied demand.
For which concerns the charging relocation cost, shown in figure 6.10, charging ca-
pacity has instead a considerable significance: a higher number of charging stations
makes charging relocation cost for different fleet size converge to similar values. In
case of a distributed infrastructure, it might be therefore possible to reduce variable
costs due to relocation at the price of increasing fixed costs associated with vehicles
and charging infrastructure, at the benefit of the overall quality of service.



6.2. Distributed infrastructure scenario 73

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
n_poles_n_cars_factor

30

40

50

60

pe
rc

en
ta

ge
_u

ns
at

isf
ie

d

percentage_unsatisfied, varying n_cars_factor, {'beta': 60, 'willingness': 0.99}
n_cars_factor=0.5
n_cars_factor=0.7
n_cars_factor=0.9
n_cars_factor=1.1
n_cars_factor=1.3
n_cars_factor=1.5

(A) Brooklyn

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
n_poles_n_cars_factor

20

30

40

50

60

70

80

pe
rc

en
ta

ge
_u

ns
at

isf
ie

d

percentage_unsatisfied, varying n_cars_factor, {'beta': 60, 'willingness': 0.99}
n_cars_factor=0.5
n_cars_factor=0.7
n_cars_factor=0.9
n_cars_factor=1.1
n_cars_factor=1.3
n_cars_factor=1.5

(B) Milano

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
n_poles_n_cars_factor

20

30

40

50

60

70

80

pe
rc

en
ta

ge
_u

ns
at

isf
ie

d

percentage_unsatisfied, varying n_cars_factor, {'beta': 60, 'willingness': 0.99}
n_cars_factor=0.5
n_cars_factor=0.7
n_cars_factor=0.9
n_cars_factor=1.1
n_cars_factor=1.3
n_cars_factor=1.5

(C) Vancouver

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
n_poles_n_cars_factor

50

60

70

80

90

pe
rc

en
ta

ge
_u

ns
at

isf
ie

d

percentage_unsatisfied, varying n_cars_factor, {'beta': 100, 'willingness': 0.99}

n_cars_factor=0.5
n_cars_factor=0.7
n_cars_factor=0.9
n_cars_factor=1.1
n_cars_factor=1.3
n_cars_factor=1.5

(D) Berlin

FIGURE 6.3: Percentage of unsatisfied demand, varying
n_cars_factor, cities comparison

Effect of β on the cost of charging relocation cost. Lower values of β correspond to higher relocation cost. Different cities have different trends about the
initial transient and cost variation with β.
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FIGURE 6.4: Charging relocation cost, varying n_cars_factor, cities
comparison

Effect of β on the cost of charging relocation cost. Lower values of β correspond to higher relocation cost. Different cities have different trends about the
initial transient and cost variation with β.
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FIGURE 6.5: Percentage of unsatisfied demand, varying willingness,
cities comparison

Effect of users willingness on unsatisfied demand. Higher values of willingness correspond in general to lower values of unsatisfied demand. However,
with enough charging capacity, with willingness of 0.66 the service achieves almost the same performance as with a willingness of 0.99. In Berlin,

instead, the difference between those values of willingness is still quite visible.
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FIGURE 6.6: Charging relocation cost, varying n_cars_factor, cities
comparison

Effect of users willingness on the cost of charging relocation. Higher values of willingness correspond to lower relocation cost. Different cities have
different trends about the initial transient, but in general high willingness causes charging relocation cost to decrease with charging capacity
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FIGURE 6.7: Percentage of unsatisfied demand, varying β, cities com-
parison

Effect of β on unsatisfied demand. Higher values of β correspond in general to lower values of unsatisfied demand, but the difference becomes more
blurry while increasing charging capacity.



78 Chapter 6. Second case study: Cities comparison

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
n_poles_n_cars_factor

200

300

400

500

600

700

cu
m

_r
el

o_
t

cum_relo_t, varying beta, {'n_cars_factor': 1.5, 'willingness': 0.66}

beta=60
beta=70
beta=80
beta=90
beta=100

(A) Brooklyn

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
n_poles_n_cars_factor

200

400

600

800

1000

1200

cu
m

_r
el

o_
t

cum_relo_t, varying beta, {'n_cars_factor': 1.5, 'willingness': 0.99}
beta=60
beta=70
beta=80
beta=90
beta=100

(B) Milano

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
n_poles_n_cars_factor

100

200

300

400

500

600

700

800

900

cu
m

_r
el

o_
t

cum_relo_t, varying beta, {'n_cars_factor': 1.5, 'willingness': 0.99}
beta=60
beta=70
beta=80
beta=90
beta=100

(C) Vancouver

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
n_poles_n_cars_factor

500

600

700

800

900

1000

1100

cu
m

_r
el

o_
t

cum_relo_t, varying beta, {'n_cars_factor': 1.5, 'willingness': 0.99}
beta=60
beta=70
beta=80
beta=90
beta=100

(D) Berlin

FIGURE 6.8: Charging relocation cost, varying β, cities comparison
Effect of β on the cost of charging relocation.
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FIGURE 6.9: Percentage of unsatisfied demand, varying
n_cars_factor, cities comparison

Effect of fleet size on unsatisfied demand.
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FIGURE 6.10: Charging relocation cost, varying n_cars_factor, cities
comparison

Effect of fleet size on the cost of charging relocation cost.
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6.3 Charging hub and distributed infrastructure scenario

In this section, we present results for a scenario in which the charging process is
performed through a hybrid infrastructure: the system operator manages recharges
through a centralised hub, but users are allowed cooperate, given their willingness,
using the available distributed infrastructure.

As in the previous section, let’s first analyse the effect of users willingness for
charging contribution. Figure 6.11 shows different curves of unsatisfied demand
for different values of user willingness as a function of charging capacity. Interest-
ingly, in the case of Brooklyn, Milano and Vancouver, users willingness has little
to no impact on satisfied demand when charging capacity is sufficiently high, and
higher values of willingness may even lead to a counterproductive effect, probably
due to the higher number of cars charging, and therefore unavailable, at a given
time. However, when total charging capacity is not very high, higher values of will-
ingness correspond to a systematically higher level of satisfied demand. In Berlin,
differently than the other cities, higher values of willingness appear being always
beneficial for quality of service, and the trend does not revert while varying charging
capacity. For which concerns charging relocation cost, shown in figure 6.12, higher
values of willingness are associated in general with lower relocation costs, but with
different trends depending on the city. In fact, for cities with bigger operational are,
namely Milano, Vancouver and Berlin, users willingness does not impact relocation
cost until a certain threshold of charging capacity is reached. In the case of Brook-
lyn, instead, higher willingness is alway beneficial for satisfied mobility demand.
The impact of system parameter β and fleet size, shown in figures 6.13, 6.14, 6.15 and
6.16, follows a trend which is very similar to the centralised case, exception made for
a general reduction of the relocation cost due users contribution. However, such re-
duction is not comparable with the one obtained in the fully decentralised scenario,
despite the global performance on satisfied demand are generally better.
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FIGURE 6.11: Percentage of unsatisfied demand, varying willingness,
cities comparison

Effect of users willingness on unsatisfied demand.
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FIGURE 6.12: Charging relocation cost, varying willingness cities
comparison

Effect of users willingness on the cost of charging relocation.
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FIGURE 6.13: Percentage of unsatisfied demand, varying β, cities
comparison

Effect of β on unsatisfied demand.
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FIGURE 6.14: Charging relocation cost, varying β, cities comparison
Effect of β on the cost of charging relocation.
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FIGURE 6.15: Percentage of unsatisfied demand, varying
n_cars_factor, cities comparison

Effect of n_cars_factor on unsatisfied demand.
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FIGURE 6.16: Charging relocation cost, varying n_cars_factor, cities
comparison

Effect of n_cars_factor on the cost of charging relocation.
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Chapter 7

Conclusions

The goal of this thesis is comparing different charging scenarios and fleet manage-
ment strategies for EFFCS systems, with the aid of real world data coming from
CS services and collected using exclusively ICT-based platforms. For this scope,
we implemented eC2S : a software for modelling, simulating and designing EFFCS
systems with a focus on charging infrastructure and management. The main contri-
butions of this thesis can therefore be summarised as:

• Development of data-driven, city-specific mobility demand models for CS sys-
tems.

• Development of an event-based simulator for EFFCS systems.

• Analysis and visualisation of simulation output.

Our demand model is composed by a parametric estimation of inter-arrival times
between mobility requests, based on Poisson processes, and a non-parametric esti-
mation of OD matrices based on Kernel Density Estimate. For which concerns time
estimation, we used a non-homogeneous Poisson process with a time-dependent
arrival rate, in order to model the different profile of users requests over different
hours of the day. Such model performs very good in terms of request profile estima-
tion, with errors lower than 0.5% in each hourly slot for every city considered. The
spatial estimation has peculiar characteristics in this work, because it has to preserve
spatial patterns of different zones, while uncorrelating mobility demand from cars
locations at a given time. This issue is triggered by the fact that input data describe
only successful bookings, while we do not have any concrete information about user
requests the system was not able to satisfy. Our model for OD matrices estimation,
based on KDE, is able to estimate spatial patterns with an error lower than 3% for
each single zone of cities under study, while uncorrelating users requests and cars
locations through the usage of a Gaussian kernel.

The core simulation module, implemented in this thesis using the SimPy library,
runs under the assumptions presented in chapter 3, but eC2S is designed to be flex-
ible and modular, allowing to modify existing rules and to add easily other con-
straints.

We run a simulation campaign over 5 different cities in order to evaluate per-
formance of three different charging infrastructure scenarios: fully centralised, fully
distributed, hybrid. Results show that the presence of a centralised hub in a highly
dynamic hotspot, namely where many trips start or end, is beneficial from the mo-
bility viewpoint, as more user requests tend to be satisfied. On the other side, the
management of charging processes is expensive because each car needs to be driven
to the hub in order to be charged, no matter its position. With a decentralised in-
frastructure, the increase in management complexity is traded with a much lower
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operational cost, as stations are widespread around the city. Furthermore, a dis-
tributed infrastructure allows for users contribution in charging processes, which
can be primarily important for a further reduction of operational cost without hardly
impacting users comfort.

Although these considerations apply in a fairly similar way across different cities,
it is also possible to observe specific patterns and behaviors, probably due to struc-
tures and activities proper of each city.

Possible future works to extend the outcomes of this thesis include:

• Study the scalability of simulated systems with respect to the intensity of users
requests.

• Implement demand-aware post-charging relocation strategies.

• Implement a rigorous cost analysis complete with energy market information.

• Consider renewable energy production close to charging stations.

• Consider different approaches for charging processes, such as battery swap.

• Consider mixed fleets with different type of vehicles, and mixed charging in-
frastructure with different types of poles.

• Improve and extend the comparison between cities.
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Appendix A

Model validation for different
cities

A.1 Milano

FIGURE A.1: Percentage of bookings by hour for the city of Milano
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FIGURE A.2: Q-Q plot of inter-arrival times for the city of Milano

FIGURE A.3: eod
i,t,% for the city of Milano during night, morning, after-

noon and evening
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A.2 Berlin

FIGURE A.4: Percentage of bookings by hour for the city of Berlin

FIGURE A.5: Q-Q plot of inter-arrival times for the city of Berlin
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FIGURE A.6: eod
i,t,% for the city of Berlin during night, morning, after-

noon and evening
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A.3 New York City (Brooklin)

FIGURE A.7: Percentage of bookings by hour for NYC

FIGURE A.8: Q-Q plot of inter-arrival times for NYC



96 Appendix A. Model validation for different cities

FIGURE A.9: eod
i,t,% for NYC during night, morning, afternoon and

evening
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A.4 Vancouver

FIGURE A.10: Percentage of bookings by hour for the city of Vancou-
ver

FIGURE A.11: Q-Q plot of inter-arrival times for the city of Vancouver
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FIGURE A.12: eod
i,t,% for the city of Vancouver during night, morning,

afternoon and evening
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