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Abstract

Kaizoji et al. (2015) formulated an artificial market model which is able to repro-
duce financial bubbles with faster-than-exponential growth while fulfilling “stylized
facts” of the financial market. Given the importance of bubbles and crashes in the
financial market, research in the direction of understanding the mechanisms under-
lying such phenomena is more and more important. The present thesis contributes
to this field of research by proposing an extension of the original market model to
the multi-asset framework.

After a brief introduction of the original market model formulation, we aim at the
comprehension of the reasons of the build-up of bubbles in the price trend and how
they are related to the interplay between fundamentalists and noise traders. The
former are rational and risk-averse traders whereas the latter are traders based on
social imitation and trend following. In particular, we deepen the insight into the
category of noise traders and the Ising-like structure of their class ( Harras et al.
(2012), Sornette (2014)). It is, indeed, the presence of an underlying phase transi-
tion from a disordered regime where the idiosyncratic opinion is determinant to the
ordered phase where a manifested collective behavior of noise agents takes over that
triggers the bubbles. Starting from a good comprehension of the original model, we
move towards the enlargement of the original model to the case of multiple assets.
In particular, our interest focuses on the case of two risky assets and one risk-free
asset. We derive the new equations for the wealth dynamics, for the fundamentalists
strategy and a complete new setup for the noise traders class. This latter is orga-
nized to be adherent to the original Ising-like scheme. For this reason, the class is
divided into two sub-classes of traders. Each of them can trade only one type of
risky asset and the risk-free asset. Each noise trader invests all his fortune in only
one endowment. Thus, allowing the transitions between the two sub-classes, we can
ensure the diversification of the noise traders portfolio at the aggregate level.

In the typical time series, bubbles are still present and the extended model is also
able to reproduce some “stylized facts” of the financial market as far as regards the
distributions of the returns. The theoretical insights into the model have been con-
ducted in two different directions: the comprehension of the theoretical foundations
at the origin of the bubbles and on the correlations between the two assets. In par-
ticular, we study the relationship between the correlation imposed a priori between
the assets and the realised correlations found in the time series.



Contents

Acknowledgements ii

1 Introduction 1

2 The Market Model 4
2.1 Dividend process and wealth dynamics . . . . . . . . . . . . . . . . . 5
2.2 Fundamentalist trader . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Noise Trader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Market clearing conditions and

price dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Time series description and theoretical analysis 12
3.1 Choice of parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Time series description . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Market Model with two risky assets 23
4.1 The multi-asset framework . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Fundamentalist trader . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Noise traders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 Market clearing conditions and

price dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Time series description and theoretical analysis 41
5.1 Choice of parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Time series description . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 Origin of bubbles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4 Correlations between the assets returns . . . . . . . . . . . . . . . . . 62

5.4.1 Dependence of the correlations on parameter ρ . . . . . . . . . 62
5.4.2 Dependence of the correlations on the parameter f . . . . . . 64

5.5 The Stylized Facts of the financial market . . . . . . . . . . . . . . . 68

i



6 Conclusion 73

A 78
A.1 Derivation of the prices equations . . . . . . . . . . . . . . . . . . . . 78

B 82
B.1 Stability analysis of the line of fixed points . . . . . . . . . . . . . . . 82
B.2 Comparison between log-prices and moving window Pearson correlation 85

ii



List of Figures

3.1 Plot of the typical time series of the original market model with con-
stant herding propensity . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Plot of the typical time series of the original market model with
Ornstein-Uhlenbeck herding propensity . . . . . . . . . . . . . . . . . 19

4.1 Noise traders class scheme . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1 Plot of the typical time series for the constant herding propensity in
the 2 assets model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Plot of the typical time series for the Ornstein-Uhlenbeck herding
propensity in the 2 assets model . . . . . . . . . . . . . . . . . . . . . 49

5.3 Plot with the comparison between the prices series . . . . . . . . . . 50
5.4 Plot with the moving window Pearson coefficient of prices time series 51
5.5 Plot of the range of stable values of z for different values of the herding

propensity κ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.6 Plot of mean value of the opinion indices for different values of κ . . . 57
5.7 Zoom of time series with Orstein-Uhlenbeck herding propensity . . . 59
5.8 Zoom of the log-prices and the opinion indices with the fitting curves 61
5.9 Plot of the Pearson coeffient as a function of ρ . . . . . . . . . . . . . 63
5.10 Plot of the Pearson coefficient as a function of f . . . . . . . . . . . . 65
5.11 Plot of the cross correlation coefficient between the assets returns . . 66
5.12 Comparison between the opinion indices time series for different val-

ues of f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.13 Cumulative distribution function for absolute returns . . . . . . . . . 70
5.14 Plot of the autocorrelation functions for signed and absolute returns . 72

B.1 4 plots with the comparison between the log-prices and the moving
window Pearson correlation . . . . . . . . . . . . . . . . . . . . . . . 85

iii



List of Tables

3.1 Table of parameter of the original market model . . . . . . . . . . . . 14

5.1 Set of parameters for the model with two risky assets . . . . . . . . . 42
5.2 Table of fitting parameters . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3 Table of tail indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

iv



Chapter 1

Introduction

The present thesis aims to survey and extend an agent-based model of fundamen-
talists and noise traders proposed by Kaizoji et al. (2015), that is able to repro-
duce faster-than-exponential bubble growth. Indeed, as explained in Sornette (2014),
Agent-based models (ABMs) furnish useful computational tools that can be used to
explain the universal features of the Financial Market as the emergent phenomenon
coming from the interactions of heterogeneous traders.
Indeed, a large body of the literature (Johansen et al. (2000), Sornette (2014), Lux
and Marchesi (1999), Lux (1998), Chiarella et al. (2009)) agrees on the evidence
that the well-known “stylised facts” of the financial market and other statistical
properties of the time series cannot be explained by the classical economic assump-
tions, such as the “Efficient Market Hypothesis”. According to Fama (1970), the
latter assumes that the prices reflect the distribution of incoming news. On the con-
trary, in Lux (2009) it is argued that the financial market can be understood as a
complex system of heterogeneous interacting traders. In other words, it is not the
distribution of the news that really affects the market development, but the complex
interactions among the traders, their heterogeneous expectations on the future that
are decisive on the formation of the typical structure of the time series. According to
Sornette (2014), this insight is able to capture more deeply how micro-interactions
among traders can give origin to a more complex and sophisticated picture at the
macro level. Moreover, Sornette (2014) suggests that Physics can offer useful com-
putational tools to deal with complicated systems: agent-based models (ABMs) are
the instruments for excellence in this field because they do not rely on intrinsic equi-
librium assumptions. As pointed out by the author, the implementation of traders
choices lead naturally to out-of-equilibrium states. This feature is remarkable and
very useful, because it is a necessary condition to forecast extreme events, such as
bubbles.

The literature on ABMs is very large and a complete review on it is beyond this
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1 – Introduction

thesis, but we refer to Dieci and He (2018) and Hommes and LeBaron (2018) for an
overvew on the argument. However, it is interesting to point out how many classical
physical models have been used to understand financial time series. A great exam-
ple is offered by the Ising Model. As explained in Sornette (2014), it was originally
formulated to understand the transition from paramagnetism to ferromagnetism in
statistical mechanics. Nevertheless, it quickly became the simplest representation of
interacting agents that have to choose among a finite number of states. Indeed, the
analogy between the magnetisation and the opinion polarization was already argued
in the late ’70s and it has been applied to many models to update the trader’s
opinion. In Sornette (2014), the author observes that “the Ising model is indeed
one of the simplest models describing the competition between the ordering force of
imitation or contagion and the disordering impact of private information or idiosyn-
cratic noise...” (p. 8). Beyond the intuitive anology between the formation of the
trader’s opinion and the alignment of the spins, in Sornette (2014) a mathematical
justification of the application of the Ising Model to social sciences is given. It is
shown that from the models of discrete choice, in which a trader is asked to choose
among a finite number of options it is possible to derive the optimal equation for
the trader’s choice. Surprisingly, it is exactly the same equation used to update the
position of the spins (up or down) according to the Glauber dynamics. This fact does
not provide only a justification to the use of a physical model in another discipline,
but it gives also the oppurtunity to implement it in new models. The application
of the Ising Model has been pursued by many authors (Sornette and Zhou (2006),
Bornholdt (2001), Kaizoji (2000), Harras et al. (2012) etc) exploiting the idea of the
spreading of social imitation among the traders. Furthermore, the intrinsic existence
of a phase transition from a disordered regime to an ordered regime is the engine at
the origin of many unstable states that lead to bubbles and crashes.

The model of Kaizoji et al. (2015) inherits the analogy with the Ising model. It
is a model of fundamentalist and noise investors that can trade only two type of
assets (risky and risk-free). Fundamentalists are rational and they trade the risky
assets according to the optimal strategy given their risk aversion, that consists in
the maximisation of their constant relative risk aversion expected utility function.
On the contrary, noise traders are influenced by the majority opinion and the ten-
dency to follow price momentum. The analogy of the noise traders’ scheme with the
Ising Model is cleared in Harras et al. (2012). According to the authors, the traders
have to choose between two kind of assets and they are influenced by social imita-
tion, which is the equivalent of the coupling interactions among the spins, and the
trend-following nature that behaves as a time-varying magnetic field. As impressive
result, the model of Kaizoji et al. (2015) is able to reproduce faster-than-exponential
bubble growth. As shown in Kaizoji et al. (2015) and Sornette (2014), the formation
of the bubbles are due to two key ingredients: the social imitation that enhances the
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1 – Introduction

self-organized cooperativity and the presence of inner self-reinforcing loops created
by momentum trading.

Beyond the objective to explain in details the original market model, this work
aims to enlarge it to a more complex paradigm. In particular, our interest is focused
in the introduction of a second risky asset against the risk-free asset and study how
the traders deal with a richer problem in the asset allocation. In the following, we
present the outline of the thesis.

Chapter 2 is dedicated to the formulation of the original market model. We pose the
right focus on the underlying Ising-like structure of the noise traders class in order
to explain the consequences of this assumption on the time series. In Chapter 3 we
examine the typical time series resulting from the original model and we will give
the formal explication at the origin of the bubbles and crashes. Chapter 4 intro-
duces the formulation of the enlarged setup. We provide the derivation of the new
equations for the allocation of wealth and the price dynamics. Moreover, we have
updated the fundamentalists strategy to the new allocation problem and design a
new set-up for the noise traders class. In Chapter 5 we show the typical time series
originated from the model. We propose an explanation to the origin of the bubbles
through a mean-value approach. In the second part, we deepen our insight into the
model furnishing a detailed analysis on the correlations of the assets returns. The
final part of the chapter is devoted to understanding if our model is able to grasp the
typical behavior of real time series, whose fundamental characteristics are known as
“stylized facts”. Chapter 6 concludes the Thesis.
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Chapter 2

The Market Model

This chapter aims to present the artificial market model, as formulated by Kaizoji
et al. (2015) and further studied and modificated by Khort (2016), Ollikainen (2016)
and Westphal and Sornette (2019). It consists of one risky asset and one risk-free
asset at the disposal of two types of traders. The risk-free asset guarantees a fixed
rate of return, whereas the risky asset pays a dividend and its return depends on
past price changes.

In Kaizoji et al. (2015) the types of traders considered are fundamentalists and
noise traders. The description of the fundamentalist class takes inspiration from the
work of Chiarella et al. (2009): fundamentalists allocate a fraction of their wealth
in the risky asset and the remaining in the risk-free asset according to a resulting
optimal investment rule. The best strategy consists in the maximization of the ex-
pected utility function on future wealth according to their own level of risk. Since
fundamentalists behave accordingly to a fixed rule and, thus, in the same manner,
they can be represented by a single representative agent.
The description of the noise traders follows, instaed, the work of Lux and Marchesi
(1999): noise traders rely on past price trends and are subjected to social imitation.
Similarly to the work of Lux and Marchesi (1999), noise traders are distinguished
among bearish and bullish investors on the basis of their attitude towards the future
market development. According to Kaizoji et al. (2015) each noise trader invests all
his fortune in only one endowment (the risky asset or the risk-free asset) according
to the price trend and the influence of his acquaintances.

In Kaizoji et al. (2015) the market mechanism considered is similar to that of a
Walrasian scenario (Walras (1926)), where, in case of not external supply, the net
sell and buy of noise traders and fundamentalists are perfectly compensated at each
period.

4



2 – The Market Model

2.1 Dividend process and wealth dynamics
The original model of Kaizoji et al. (2015) is provided by a risky and risk-free asset.
The risk-free asset pays a fixed interest rate rf , or better, as specified in Kaizoji et al.
(2015) it is in perfectly elastic supply. Hence, the wealth gained by the trader from
the risk-free asset is given by the constant growth rate Rf := 1+rf . At odds with the
risk-free asset, the risky asset pays a dividend dt to the shareholders that provides
a element of stochasticity in the model. According to the modifications introduced
first by Khort (2016), and further studied in Ollikainen (2016), Conti (2018) and
Westphal and Sornette (2019), the dividend dt is defined by a multiplicative growth
process with a stochastic growth factor rdt .

dt = (1 + rdt )dt−1, (2.1)
rdt := rd + σrut, (2.2)

where ut is a RV drawn by the normal distribution N (0,1). In contrast with the
original formulation, the dividend process does not depend on the price. Contrarily,
the dividend effects the trading decisions of the fundamentalist agent. Therefore,
taking into account the payment of the dividend, the total return of the risky asset
over the time period (t − 1, t) is composed of two parts: the dividend yield dt/Pt−1
and the price return rate rt, defined as

rt := Pt
Pt−1

− 1 = Rt − 1. (2.3)

Since the total return rate depends on the price movements, the risky asset can be
more remunerative with respect to the risk-free asset and thus be more appealing
to the traders.

Following Kaizoji et al. (2015), at each time step t − 1, each agent constructs his
portfolio as a mix of risky-assets and risk-free assets, that they hold in the period
(t−1, t). In other words, each agent buys zt−1 risky assets and zf,t−1 risk-free assets.
In Kaizoji et al. (2015), the wealth dynamics is reformulated in terms of the portions
of wealth invested in the risky asset, i.e. the risky fraction xt:

xt := ztPt
Wt

. (2.4)

According to the definition of the risky fraction, at time t − 1 each trader invests
xt−1 in the risky asset and (1 − xt−1) in the risk-free asset. On the basis of this
description, the total wealth dynamics reads:

Wt = Wt−1xt−1

C
dt
Pt−1

+ rt + 1
D

+Wt−1(1 − xt−1)Rf , (2.5)
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2 – The Market Model

or better
Wt = Wt−1

C
Rf + xt−1

A
rt − rf + dt

Pt−1

BD
. (2.6)

In Kaizoji et al. (2015) the quantity in the parenthesis is defined as excess return
rexcess:

rexcess,t := rt − rf + dt
Pt−1

. (2.7)

Indeed, this quantity reflects the difference between the risky asset gain against the
constant risk-free rate. The chance of gaining over the difference makes clearly the
risky asset more desirable by the traders.

2.2 Fundamentalist trader
The first group of traders is composed of fundamentalists. The setup of these in-
vestors follows very closely the related work of Chiarella et al. (2009) and Brock
and Hommes(1999). As described in Kaizoji et al. (2015), fundamentalists are es-
sentially myopic risk-averse investors. They are rational traders and at each time
implement the best strategy according to their own level of risk. Basically, accord-
ing to Chiarella et al. (2009), fundamentalists consider the constant relative risk
aversion utility function (CRRA) U(t) to evaluate their propensity to the risk. The
CRRA utility function is characterized by a constant risk aversion γ defined as

γ(W ) = −WU ÍÍ(W )
U Í(W ) , (2.8)

from which follows the CRRA definition:

U(W ) =
I
log(W ) γ = 1

W 1−γ

1−γ γ /= 1 (2.9)

According to the previous definition of the wealth in terms of the risky fraction (eq.
2.5), the best strategy for fundamentalists consists in maximizing the expected value
of the utility function of the future wealth in terms of the risky fraction:

xft = max
xt

Et[U(W f
t+1)]. (2.10)

As explained in Chiarella et al. (2009), the maximization problem is not trivial
and the dynamics of the prices is affected by the dynamics of the wealth with the
result that wealth and prices co-evolve. Eq. 2.10 is equal for all fundamentalist
traders. That is the reason why it is valid the hypothesis of considering one single
representative fundamentalist trader that simply invests the totality of the wealth

6



2 – The Market Model

of the group W f
t . The maximization problem has been solved in Chiarella and He

(2001). The proof is omitted here, but the solution is considered as given,

xft = 1
γ

Et[rexcess,t+1]
V art[rexcess,t+1] . (2.11)

The expected value of the excess return is computed over all available information
up to time t and using the equation for the dividend process, eq. 2.11 becomes

Et[rexcess,t+1] = Et[rt+1] − rf + dt(1 + rd)
Pt

. (2.12)

In order to compute the optimal value xft it is necessary for the fundamentalist trader
to update his belief on the expected value of the future return and on the variance of
rexcess at time t+1, knowing only the information up to time t. As adopted in Khort
(2016), Ollikainen (2016) and Westphal and Sornette (2019), the fundamentalist
expects a constant return rate Et[rt+1] := Ert and for the sake of simplicity assumes
the variance on the return to be constant in time V art[rt+1] = σ2. As argued in
Westphal and Sornette (2019), the value of Ert should equal the expected return in
the long run and the optimal risky fraction xft is approximated at the first order
considering dt << Pt. According to these assumptions, eq. 2.11 becomes:

xft Ä
Ert − rf + dt(1+rd)

Pt

γσ2 . (2.13)

As pointed out in Ollikainen (2016), it is evident the net separation between the
long term behavior represented by Ert−rf

γσ2 and the short term behavior, determined
by the dividend-price ratio that changes in time. According to the fundamentalist
philosophy, the “fundamental” value of the risky-asset is obtained by discounting
the stream of dividends and thus, the fundamentalists believe that Ravg ∼ (1 + rd)
on the long term. As explained by the author, any deviation from the fundamental
value created by the dividend-price ratio represents an opportunity of gain. In ad-
dition, from the previous formula it is clear that the strategy of the fundamentalist
traders is buying the risky asset when the dividend-price ratio is high (and thus the
fundamental value is higher than actual price) and selling when the dividend-price
ratio is low (and thus the actual price is higher than the fundamental value).

2.3 Noise Trader
In Kaizoji et al. (2015), noise traders’ behavior is characterized by the tendency to
imitate other individuals and to rely on chart trading (Lux and Marchesi (1999)).
They do not diversify their portfolios allocating a portion of their wealth in the risky
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2 – The Market Model

asset and following a precise maximization rule, but they invest all their wealth in
the risky asset or in the risk-free asset at each period. As remarked in Kaizoji et al.
(2015), the lack-of-diversification behavior has been documented in Kelly (1995)
and it is not far from the reality. Therefore, their contribution can be considered
only at the aggregate level: noise traders behave as a unique group trading a to-
tal wealth W n

t , that is equally distributed among the traders. Thus, the portion of
wealth invested in the risky asset xnt is accounted as the fraction of noise traders in-
vesting in it. Therefore, the reason why the noise traders can be considered a unique
agent is subtly different from fundamentalists: each noise trader acts differently, but
only the impact of the whole class really matters in the allocation of the total wealth.

Essentially, noise traders are subjected to social imitation and trend-following at-
titude. Each investor is pushed by the majority opinion and from the past price
changes. The former is the easiest form of human conditioning, the latter is the con-
viction that is possible to extract information from the past price trend to predict
the future development of the market. The general setup of the noise trader class is
organized as follows.

The group is divided into two subgroups denoted as N+
t if they holds the risky

asset and N−
t otherwise. Needless to say, the sum of the two gives the total number

of noise traders Nn = N+
t +N−

t . Given the lack of diversification, the noise traders
can be seen as a unique group where the fraction of invested wealth in the risky
asset is given by

xnt := N+
t

Nn

. (2.14)

Following the suggestion given in Lux and Marchesi (1999), in Kaizoji et al. (2015)
it is introduced the opinion index st:

st := N+
t −N−

t

Nn

∈ [−1,1], (2.15)

which measures the attitude of the class towards the risky asset. According to Kaizoji
et al. (2015), a positive value indicates a bullish attitude, while a negative value a
bearish one.

According to Kaizoji et al. (2015), the total number of noise traders is fixed, but
the opinion of each noise traders changes continuously in time: during the period
(t − 1, t) each noise trader may decide to invest in the risky asset if he holds the
risk-free asset or decide to maintain his previous investment strategy. The switching
between the two sub-group is regulated by the following set of probabilities: p−

t rep-
resents the probability that a noise trader out of N−

t decides to buy the risky asset,

8



2 – The Market Model

whereas p+
t represents the probability that a trader of N+

t decides to sell the risky
asset. Each binary decision is represented by a Bernoulli RV ξ(p). Each noise trader
in N−

t at time t, can either stay within the group (ξ = 0) with probability 1 − p−
t or

can buy the risky asset (ξ = 1) with probability p−
t . Similarly, any trader of N+

t can
decide to sell the risky asset with probability p+

t (ξ = 1). According to these rules,
the number of traders in each subgroup at time t is given by

N−
t =

N+
t−1Ø
j=1

ξj(p+
t−1) +

N−
t−1Ø
j=1

[1 − ξj(p−
t−1)], (2.16a)

N+
t =

N−
t−1Ø
j=1

ξj(p−
t−1) +

N+
t−1Ø
j=1

[1 − ξj(p+
t−1)]. (2.16b)

Obviously, the switching probabilities depend on the two factors that can influence
the noise traders. The effect of the opinion of the majority of the traders is accounted
mathematically by the opinion index st, whereas, the “chartist” attitude of the noise
traders is caught by an indicator of the price trend, called price momentum Ht.
According to Kaizoji et al. (2015), the latter is define as the exponential moving
average of the past price changes:

Ht = θHt−1 + (1 − θ)rt−1 = θHt−1 + (1 − θ)
A
Pt
Pt−1

− 1
B
. (2.17)

Here, θ ∈ [0,1[ is an exogenous parameter controlling the time window over which
the noise traders compute the exponential moving average of past returns: τmemory ∼
1/(1 − θ).
For the sake of simplicity, the relationship between the probabilities and performance
factor of the risky asset (st +Ht) is taken to be linear:

p±
t = 1

2

A
p± ∓ p±

p+
κt(st +Ht)

B
. (2.18)

The formulation of eq. 2.18 is taken from Khort (2016) and slightely differs from the
original equations in Kaizoji et al. (2015). Eq. 2.18 introduces the new parameter
κt. It is called herding propensity and its sign and magnitude reflects the strength
of social herding and momentum trading. Kaizoji et al. (2015) explains that in the
case when κt > 0, the probability p−

t increases and so increases the possibility that a
new trader buys the risky asset, wheres the probability p+

t to buy the risk-free asset
decreases. In the absence of social herding or momentum influence, the probabilities
assume the values of the exogenous parameters p± that represent a measure of the
time window over which the same decision is maintained (∼ 2/p± time steps).

9



2 – The Market Model

Having all the quantities defined, one can eventually write down the equation for
the noise risky fraction at the next time step from eq. 2.14

xnt = 1
Nn

N+
t−1Ø
j=1

[1 − ξj(p+
t−1)] + 1

Nn

N−
t−1Ø
j=1

ξj(p−
t−1). (2.19)

2.4 Market clearing conditions and
price dynamics

This section completes the model with the derivation of price equation, which is
obtained by the definition of the market clearing condition. In the following we will
mark any quantity as “f” if it refers to fundamentalists and with “n” if it refers to
noise traders.

Fundamentalists are represented by a unique trader with total wealth W f
t . Instead,

noise investors must be considered at their aggregate level trading a total wealth
W n
t . Thus, it is possible to calculate the aggregate excess demand for each group

i = {f, n}, considering the number of risky assets zt−1 bought by each category:

∆Di
t−1→t = zitPt − zit−1Pt. (2.20)

The same equation can be expressed in terms of the risky fraction through eq. 2.4
as

∆Di
t−1→t = W i

tx
i
t −W i

t−1x
i
t

Pt
Pt−1

. (2.21)

Eq. 2.21 is re-written, expliciting the dependence of the wealth dynamics on the
price (eq. 2.5):

∆Di
t−1→t = W i

t−1

I
xit

C
1 + rf + xit−1

A
rt − rf + dt

Pt−1

BD
− xit−1

Pt
Pt−1

J
. (2.22)

In the original model, the market clearing conditions are set according the Walresian
auctioneer scenario (Walras (1926)): at each period, in absence of external supply,
the excess demand of fundamentalists and noise traders are perfectly compensated.
In other words, the equilibrium condition is given by

∆Df
t−1→t + ∆Dn

t−1→t = 0. (2.23)

However, before inserting in eq. 2.23 the excess demands in eq. 2.21, it is necessary
to further manipulate eq. 2.21 for fundamentalists because the fundamentalist risky
fraction (eq. 2.11) depends on the price Pt, which makes the resolution of eq. 2.23

10



2 – The Market Model

not trivial.
Inserting eq. 2.11 for fundamentalist risky fractions into eq. 2.22, in Khort (2016) it
is shown that is possible to obtain a quadratic expression in the price Pt:

atP
2
t + btPt + ct = 0, (2.24)

where the parameters are given by:

at = 1
Pt−1

C
W n
t−1x

n
t−1(xnt − 1) +W f

t−1x
f
t−1

A
Ert − rf
γσ2 − 1

BD
, (2.25a)

bt = W f
t−1
γσ2

I
xft−1

dt(1 + rd)
Pt−1

+ (Ert − rf )
C
xft−1

A
dt
Pt−1

−Rf

B
+Rf

DJ
(2.25b)

+W n
t−1x

n
t

C
xnt−1

A
dt
Pt−1

− 1 − rf

B
+Rf

D
,

ct = W f
t−1

dt(1 + rd)
γσ2

C
xft−1

A
dt
Pt−1

−Rf

B
+Rf

D
. (2.25c)

From simple inspection, one can see that xnt − 1 < 0 and xfmin − 1 < 0 ∀t, so that
the coefficient at < 0 ∀t. On the other hand, bt and ct are always positive because

xit−1

CA
dt
Pt−1

−Rf

B
+Rf

D
> 0.

Given that at < 0, bt > 0, ct > 0, the unique physical solution for the quadratic
price equation is:

Pt =
−bt −

ñ
b2
t − 4atct

2at
. (2.26)

11



Chapter 3

Time series description and
theoretical analysis

In the previous chapter we have introduced the description of the model based on
the work of Kaizoji et al. (2015) with the modifications further studied in Khort
(2016), Ollikainen (2016), Conti (2018) and Westphal and Sornette (2019). It con-
sists of two types of traders, fundamentalist and noise investors trading a risky asset
or a risk-free asset.
Fundamentalists are myopic rational traders, that maximize their expected utility
function on future wealth according to their own level of risk. Their strategy is ra-
tional, but depends on their initial assumption on the long-term rate of return and
the typical volatility of the risky asset.
On the contrary, noise traders are influenced by social imitation and the heuristic
belief that the past price changes can be a useful indicator of the performance of
the asset. The choice of each noise trader has probabilistic nature, introducing an
inherit element of stochasticity in the model.
As mentioned in Kaizoji et al. (2015), the model does not allow the switching be-
tween the fundamentalist and noise trader strategy. At odds with other models, for
instance in Lux and Marchesi (1999), the strategy switching is permitted and the
emergence of bubbles is explained as the growth in the number of “chartist” traders.
On the contrary, in Kaizoji et al. (2015) the emergence of bubbles are explained by
the random fluctuations of the herding propensity κt.

In the original article, the authors speculate that the varying herding propensity
can be interpreted as a changing in the economic or geopolitical environment by
which noise traders are subjected. Specifically, Kaizoji et al. (2015) proposes the
herding propensity to follow a discretized Ornstein-Uhlenbeck process of the type:

κt = κt−1 + ηκ(µκ − κt−1) + σκvt, (3.1)

12



3 – Time series description and theoretical analysis

where ηκ > 0 represents the mean reversion rate, µκ is the mean and σκ > 0 is the
standard deviation of the Wiener process identified by vt ∼ N(0,1). The previous
parameters can be computed using the assumption that on the long run κt has a
Gaussian stationary distribution

κt ∼ N

A
µκ,

σκ√
2ηκ

B
. (3.2)

In Kaizoji et al. (2015) are shown the details for the derivation of ηκ and σκ, the
final results are:

ηκ = 1
∆T log

 0.2p−
p+

p−
p+

− µκ

 , σκ = 0.2p−
√

2ηκ. (3.3)

The aim of the chapter is to show the typical time series obtained by the market
model of Kaizoji et al. (2015) and discuss the emergence of faster-than-exponential
growth in price time series, benchmark of bubbles. The understanding of the emer-
gence of bubbles is accounted trough the theoretical explanations given in Kaizoji
et al. (2015) and the relationship between the noise traders class and the Ising model
(Harras et al. (2012)).

3.1 Choice of parameters
This section is focused on the description of the parameters of the model and on the
simulations details. We have used the code originally written by Khort (2016), Ol-
likainen (2016) and Westphal and Sornette (2019) and which has been furnished by
the co-advisor, Rebecca Westphal. Moreover, we adopt the same set of parameters
used in Westphal and Sornette (2019).

In all simulations, a unique set of the parameters is used and their values are listed
in table 3.1. The reasons behind the parameters choice is found in Khort (2016) and
in Ollikainen (2016). As already mentioned, fundamentalists have to make assump-
tions on the constant expected value of future returns and volatility. On the basis
of empirical observations, the expected standard deviation of the risky asset returns
is σ = 0.02, while the expected return of the risky asset is set to Ert = 0.00016. The
fundamentalists’ attitude towards the risk is determined by the relative constant
aversion γ. Nevertheless, in Westphal and Sornette (2019), γ is not chosen a priori
but imposed endogenously by the equation

γ =
Ert + d0

P0
(1 + rd) − rf

xf0σ
2

. (3.4)
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Parameters

Assets rd = 0.00016 rf = 0.00004 d0 = 0.00016
σd = 0.000016 P0 = 1 σ2 = 0.0004

Fundamentalists xf0 = 0.3 Ert = 0.00016 W f
0 = 109

Noise Traders xn0 = 0.3 p+ = 0.199375 p− = 0.200625
θ = 0.95 H0 = 0.00016 Wn

0 = 109

Herding propensity µκ = 0.98 · p+ ηκ = 0.11 σκ = 0.001

Table 3.1: Table of parameters used for the simulations of the agent based model for-
mulated in Kaizoji et al. (2015). The meaning of the parameters have been explained
in Chapter 2. We use the code constructed by Khort (2016), Ollikainen (2016) and
Westphal and Sornette (2019).

Thus, the fundamentalists tendency to the risk is accounted in a indirect way, as a
function of the initial investment into the risky asset xf0 = 0.3. As far as concerns the
assets, the dividend process is characterized by a growth rate of rd = 0.04

250 = 0.00016,
which corresponds to an annual interest rate of the 4%, whereas the standard de-
viation is one order magnitude smaller. Hence, the initial value of the dividend
process is set to the same value d0 = 0.00016. The risk-free asset is characterized,
instead, by a smaller interest rate rf = 0.00004. Eventually, the parameters relative
to the noise traders class are chosen as follows. The time window τmemory used by
noise traders to compute the price momentum is linked to the parameter θ, since
τmemory = 1/(1 − θ). In our simulations, θ is chosen to guarantee a memory length
of τmemory ∼ 100 time steps. The parameters used for the switching probabilities p±
are not equal, but p+ < p−. As remarked by Khort (2016), this choice ensures that
in absence of trading momentum and herding behavior, the probability to sell the
risk-free asset is higher than the probability of the contrary action. This choice is
arbitrary but ensure the presence of more positive bubbles than negative ones.

Eventually, it is necessary to give an idea of the typical time scale τ of the sim-
ulations according to the real volatility of the financial market, which is around the
1%. In order to find the typical length of the simulation, we use the same method
adopted in Ollikainen (2016). In loose words, the approach consists in deriving the
time length of the simulation imposing the equality between the realised standard
deviation of the returns and the empirical one. First, Ollikainen (2016) considers
the return time series as a realization of a Wiener process. Therefore, between to
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points α and β the following equation is valid:

σTα = σTβ

ó
Tα
Tβ
. (3.5)

According to this equation, one can deduce the length of the time simulation TN
imposing σsim = σreal and thus the time scale τ = 1/TN :

τ =
3
σsim
0.01

42
. (3.6)

3.2 Time series description
In this section, we present the qualitative description of the time series obtained for
constant herding propensity κ = µκ and the Ornstein-Uhlenbeck herding propensity
κt, respectively in figure 3.1 and 3.2. The analysis follows the same formulation used
in Kaizoji et al. (2015) and in Ollikainen (2016).

Figure 3.1 shows the typical time series obtained for the constant κ. The eight
frames presents from above the time series of the price Pt in a semilog plot, the
price return rt, the price momentum Ht, the dividend-price ratio dt/Pt, the noise
traders switching probabilities, the risky fractions, the wealth ratio νt = W n

t /W
f
t

and the constant herding behavior µκ = κ = 0.98. Along the x-axis, it is specified
the time scale τ of the simulation, obtained by eq. 3.6.

The price track in the semi-log plot shows a linear increment, which corresponds
to the average rate of interest Ravg ∼ Rd obtained by the dividend payments. The
price fluctuates around the linear line, but without particular deviations from it. In
the second frame, the price return shows fluctuations of the entity of ∼ 2%, which
by sight alone seems to be in agreement with realistic returns time series. In the
third frame it is represented the price momentum Ht and the constant initial value
H0 = 0.00016. From the comparison with the price, it is easy to check that the
momentum development follow a similar track and when the price shows a peak,
the momentum increases. This is, obviously, due to the fact that the momentum is
computed as the exponential moving average of the past returns. The fourth frame
shows the dividend-price ratio dt/Pt. Obviously its development is the mirror image
of the price track, but it is useful to compare it with the fundamentalist fraction xft
shown in the sixth frame. Indeed, as noticed by Ollikainen (2016), the optimal strat-
egy for fundamentalists rely on eq. 2.11 that implies a linear relationship between
xft and dt/Pt. From the figure it is not easy to catch the relationship, because xft is
maintained almost constant for the whole simulation. The fifth frame, instead, shows
the noise trader switching probabilities p−

t and p+
t . The immediate characteristics
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to notice is the mirroring effect between p+
t , the probability to sell the risky asset

and p−
t , the probability to buy it. Naturally from their definition (eq. 2.18), when

p+
t increases, p−

t decreases in order to maintain fixed their sum, equal to p++p−

2 . The
behavior of the noise probabilities effects directly the number of traders investing
in the risky asset and then, the risky fraction. Actually, the development of p−

t mir-
rors the track of xft very closely as we can expect from the fact that the number
of traders in N+

t is determined linearly by p−
t by eq. 2.14. Finally, the last frames

show the wealth ratio νt and the herding propensity, which in this case is simply
constant. In the simulations, noise and fundamentalist traders begin with the same
amount of wealth (ν0 = 1), but the track shows clearly huge deviations from the
initial value. The peaks correspond to the moments when noise traders wealth is
much higher than the fundamentalist one. The lucky periods for noise traders co-
incide with when noise traders polarization, i.e. when the majority of them holds
the risky fraction. As a matter of fact, the noise traders class is considered at the
aggregate level and they gains more when they invest in the risky asset.

Figure 3.2 shows the results of the simulation with the Ornstein-Uhlenbeck κt. The
plot reproduces the same scheme and shows similarities with the previous discussion,
with the due differences. First, the price track shows evidence of huge deviations from
the fundamental value. These are clear benchmarks of bubbles, followed by crashes
that bring the price back to its fundamental. The bubbles are marked by super-
exponential growth behavior. The same result was already presented in the original
formulation of the market model in Kaizoji et al. (2015) and it is still present in
the modificated version used by Khort (2016), Ollikainen (2016) and Westphal and
Sornette (2019). As explained in Kaizoji et al. (2015), the emergence of the bubbles
is related to the herding propensity κt that changing its value make the system pass
from the sub-critical regime to the critical regime. In order to understand better the
origin of bubbles in the price track, it is necessary to compare the price develop-
ment with the other plots. First, it is evident that the bubbles regimes are followed
by high return rates and turbulent activity, alternated by tranquil periods of qui-
escence. This phenomenon is called volatility clustering and it is reflected also in
huge deviations in the price momentum Ht. Moreover, along with the bubbles, the
noise trader risky fraction xnt reaches the upper limit, which means that the pool of
noise traders is entirely investing in the risky asset. Once reached the complete po-
larization of the entire class, the situation is no more sustainable and the price falls.
For a brief period, the noise fraction maintains polarized and the price dynamics
shows a plateau at the end of the faster-than-exponential growth. In this moment,
the noise traders experience what is called the lock-in effect. As explained in Ol-
likainen (2016), along the plateau, the probability to sell the risky asset becomes
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zero, because of the non-negative value constraint and the dividend-price ratio be-
comes roughly constant. Furthermore, in the presence of bubbles, the wealth ratio νt
shows relevant deviations. which indicates periods in which the fortune of the noise
traders overcomes that of fundamentalists. However, despite the peaks of luck for the
noise traders, the general trend is downwards. Thus, at the end of the simulation, the
fundamentalist’s strategy results to be more remunerative than the noise traders one.

In conclusion, from the comparison between the two plots, it is evident that the
origin of the super-exponential growth is the presence of a time-varying herding
propensity and the formation of an unstable regime (Kaizoji et al. (2015)). The un-
derlying phenomenon will be studied deeply in the next section. Here, we propose to
notice how many features are shared by the two plots, such as the mirroring effect
between the risky fractions and the switching probabilities, the linear relationship
between the dividend-price ratio and the fundamentalist risky fraction. However,
volatility clustering, lock-in effects and bubbles are peculiarity emerging only in the
case of the Ornstein-Uhlenbeck κt.
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Figure 3.1: The figure shows in 8 panels the typical time series of the simulation
obtained with constant κ. The plot shows in order: the price track Pt in a semilog
plot, the returns rt, the momentum Ht, the dividend-price ratio dt/Pt, the noise
trader switching probabilities p±

t , the risky fractions xf,nt , the wealth ratio νt and
the constant herding propensity κt = κ = 0.98. The time scale τ of the simulation
is specified in x-axis and derived using eq. 3.6.



Figure 3.2: The figure shows in 8 panels the typical time series of the simulation
obtained with the Ornstein-Uhlenbeck κ. The plot shows in order: the price track Pt
in a semilog plot, the returns rt, the momentum Ht, the dividend-price ratio dt/Pt,
the noise trader switching probabilities p±

t , the risky fractions xf,nt , the wealth ratio
νt and the constant herding propensity κt. The time scale τ of the simulation is
specified in x-axis and derived using eq. 3.6.
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3.3 Theoretical Analysis
In this section the theoretical explanation of the numerical simulations presented in
section 3.2 is given. In particular, we focus on the role of the underlying Ising model
presented in the artificial market and the reasons at the origin of the build-up of
the bubbles. The current analysis is based on a large research conducting by Sor-
nette and collaborators on the argument (Harras and Sornette (2011), Harras et al.
(2012), Kaizoji et al. (2015), Sornette (2014)).

The market model formulated by Kaizoji et al. (2015) is characterized by hetero-
geneous traders, among which noise traders are influenced by social imitation and
trend-following attitude. This type of investors allocates their resources on the basis
of the majority opinion and of the development of the price track, signaled by the
momentum. Their decisions are of probabilistic nature but the form of the equations
of the switching probabilities p±

t (eq. 2.18) is not given by chance. Indeed, they rep-
resent the linearised version of the traditional switching probabilities used in the
Glauber dynamics of the Ising Model (Harras et al. (2012)).

In Harras et al. (2012) the equivalence between the kinetic Ising model and the
Glauber dynamics is cleared up. In the framework of the kinetic Ising model, the
update of the sign of the spin si is given by

si(t+ δ) = sign

f(t) + ξi(t) +
Ø
j

Kijsj(t)
 , (3.7)

where f(t) is interpreted as the time-varying external field, Kij represents the cou-
pling constant between the spins that takes into account the nature of the magnetic
interaction and ξi represents the noise. In contrast, the Glauber dynamics is a useful
tool to update the spins of an Ising Model, provided by a probability of switching
of the type

p = 1
eβ∆Ei + 1 , (3.8)

where ∆Ei is the variation of energy given by the update of a spin. In particular,
the update of the sign of the spin si for the Ising model is

st(t+ δ) =
+1 with p = (e−2βΛ + 1)−1

−1 with p = (e2βΛ + 1)−1
(3.9)

where Λ = q
jKijsj + f . Harras et al. (2012) has demonstrated that eq. 3.7 and

eq. 3.9 are equivalent if the noise ξi(t) follow the Logistic distribution. The authors
of the article point out that the sign of the spin si can be interpreted as the trader
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decision between buying or selling the risky asset. The choice of the trader is influ-
enced by the opinion of the neighbors, the price momentum and his opinion. Along
to the analogy in Harras et al. (2012), the mean-field coupling constant is replaced
by the herding propensity κt, whereas the magnetization is replaced by the opinion
index st. Finally, the momentum Ht replaces the role of the external field f varying
in time and the noise ξi(t) replaces the idiosyncratic opinion of the trader.

Overall, the relationship between the noise traders class and the spins of the Ising
model is now clear: the trader decision (buy or sell) follows the same dynamics. Nev-
ertheless, the analogy does not stop to the updating rules of traders decisions, but
it is reflected also in the emergence of many statistical features of the time series.
The Ising model is characterized by a critical value Kc of the coupling constant that
signals the separation between the ordered and disordered regime. As explained in
Kaizoji et al. (2015), in the disordered regime, the private information or the id-
iosyncratic opinion wins over the imitative tendency of the noise traders. On the
contrary, when the value of the herding propensity is greater than its critical value
κc, the imitative behavior is so strong to overcome the opinion of the individual and
the majority of the noise traders behaves in the same way causing the emergence of
a collective behavior.
The consequences of the underlying kinetic Ising model have been explored in many
publications, such as in Harras et al. (2012), Johansen et al. (2000), Harras and
Sornette (2011) and in Sornette (2014). The principal idea in the literature is that
the emergence of bubbles and crashes is linked to the following features presented
in the market formulation:

1. the presence of the noise traders influenced by social imitation,

2. the emergence of cooperativity created by imitation,

3. the positive feedbacks that create reinforcing internal loops.

Specifically, Kaizoji et al. (2015) explains that the feedback internal loops are not
due only to the herding behavior, but also to the trend-following attitude of the noise
traders. Indeed, the momentum Ht does not act only as a time varying external field,
but it depends itself on past price changes. In fact, higher is the momentum, higher is
the percentage of noise traders investing in the risky asset and thus higher the price
leading by the noise traders strategy. In summary, according to Kaizoji et al. (2015),
the emergence of bubbles are triggered mainly by the noise traders strategy and the
time varying herding propensity κt: following the Ornstein-Uhlenbeck dynamics, the
Ising-like control parameter can move in the critical ordered regime and trigger a
uniform response of the noise traders. The majority of the traders buys the risky
asset, creating a self-reinforcing growth of the price, well beyond its fundamental
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and thus an increasing number of traders willing to buy the risky asset. Eventually,
as explained in Ollikainen (2016), during the build-up of the bubbles, more and
more noise traders invest until the exhaustion of the pool of traders. At this point
the regime of the price is no more sustainable and the noise traders are found in the
lock-in conditions. During lock-in effects, the switching probabilities would become
negative, but this eventuality is prohibited by the non-negativity condition and the
probabilities are set to zero in this occasion and the only actors in the market are
the fundamentalists. In response to the fundamentalists strategy, the prices begin to
decrease again to reset on its fundamental value and so the fraction of noise traders
involved in the risky asset decreases again.

On a final note, it is important to remark that in Kaizoji et al. (2015), Harras
and Sornette (2011) and Sornette (2014) the emergence of the bubbles is due to
the presence of a critical point in the underlying Ising-like structure of the noise
trader class. The system passes from the critical to the sub-critical regime through
the time varying control parameter (the herding propensity in this case), along to
a phenomenon called the “sweeping of the instability” (see Sornette (1994)). The
internal positive feedback loops created by social imitation and trend-following at
the micro-level gives origin to the emergence of cooperativity among the whole noise
traders class at the macro-level and to the build-up of bubbles, or better the faster-
than exponential growth of the price.
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Chapter 4

Market Model with two risky
assets

In the previous chapters, we have analyzed in details the artificial market model
elaborated by Kaizoji et al. (2015) with the modifications introduced by Khort
(2016), from the model setup to the investigation of its typical time series and their
theoretical explanations. Especially, we have emphasized the role of the Ising-like
structure underlying the noise traders class and we have deepened our insight into
the phenomena at the origin of the bubbles.

This chapter enters in the heart of the question: the introduction of a multi-asset
framework. Indeed, the framework with only one asset and one risk-free asset is
only the first step towards the real comprehension of the financial market. In a real
situation, the traders have to face the difficult task of allocating their wealth into
multiple assets and create efficient portfolios. This creates dependence between the
assets. The original market model shares many features with a large part of the ABM
literature such as the distinction between the risky and a risk-free asset and the pres-
ence of heterogeneity among boundedly rational traders. For example, we can cite
Lux and Marchesi (1999), Brock and Hommes (1998), Chiarella and He (2001) and
Chiarella and He (2002). These models investigate how the heterogeneous beliefs
and the asset pricing dynamics can give origin to the statistical description of the
financial time series without taking in consideration the arrival of external random
news. However, the paradigm of one risky asset and one risk-free asset is far from
the reality. Reason why a large part of the literature has already taken into account
the allocation problem among multiple assets (Chiarella et al. (2007), Bohm and
Chiarella (2005)).

The present chapter aims to introduce the problem of the asset allocation in the
contest of two different risky assets and only one risk-free asset. This problem is the
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immediate generalization of the original one. Nevertheless, already with two risky
assets the allocation problem is not trivial. The major difficulty is the adaptation
and the extension of the previous strategies for fundamentalists and noise traders
to two different risky assets. Despite the difficulties, this approach let us to test
the limits of the original market models, verify if it still predicts the emergence of
bubbles and study the correlation between the build-up of bubbles in two different
assets .

Following the original framework, the present model conserves the heterogeneous
composition of boundedly rational traders. They are mainly divided into two classes:
fundamentalist and noise traders, that differ for beliefs and expectations on the fu-
ture development of the financial market. However, the formulation of the strategies
for fundamentalists and noise traders have to be revisited.
Fundamentalists behave exactly as in the original model, but they face the issue
of possible correlations between the assets (Chiarella et al. (2009), Chiarella et al.
(2007)). Indeed, the traders have to deal with the possibilities of co-movements be-
tween the two assets. However, fundamentalists have now the possibility to diversify
their portfolios between two risky assets and they can now invest a larger total frac-
tion of wealth in the risky assets.
The definition of the noise traders class is more delicate and not easily suitable to
an extension while maintaining the Ising structure. Our approach consists in the
separation of the noise traders class into two sub-classes of traders that can trade
only one type of risky asset. Enabling the switching from one subgroup to the other,
each trader can decide to trade the first risky asset, the second risky asset or the
risk-free asset.
Finally, the market clearing mechanism is the Walresian auctioneer (Walras (1926))
as in the original market model. The price dynamics will be derived by the equilib-
rium condition between noise traders and fundamentalists excess demands for both
of the risky assets independently.

4.1 The multi-asset framework
The aim of this section is to enlarge the original market model of Kaizoji et al. (2015)
to the multi-asset framework. The present discussion is based on a large body of
literature that has studied the problem of the portfolio allocation among multiple
risky assets. In particular, we can cite the work of Chiarella et al. (2009), Chiarella
et al. (2007) and Bohm and Chiarella (2005). Among the vast literature, we refer to
Chiarella et al. (2009) for the derivation of the wealth dynamics and the portfolio
optimization problem in the case of multiple assets.
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Our enlarged model is provided of two risky assets and one risk-free asset. In anal-
ogy to the original framework: the risk-free asset pays a fixed interest rate rf , which
defines a constant growth rate Rf = 1 + rf . In contrast, the risky assets pay the
dividends d1,t and d2,t. The dividends follow the description given in Khort (2016)
and Westphal and Sornette (2019), i.e. they are defined by two multiplicative growth
processes with stochastic rates rd1 and rd2:

d1,t = (1 + r1,d
t )d1,t−1

r1,d
t = rd1 + σd1ut

d2,t = (1 + r2,d
t )d2,t−1

r2,d
t = rd2 + σd2ut

(4.1)

where ut is a RV extracted from the Normal distribution N (0,1), whereas σd1,2 are
the standard deviations of the stochastic processes for the dividend rates.
Following the reasoning in Chiarella et al. (2009), the wealth dynamics of a trader
type is given by three main contributions: W r.f.a

t is the wealth invested in the risk-
free asset, whereas W r.a.1

t and W r.a..2
t are the wealth invested in the risky assets.

Respectively they are defined as follows

W r.f.a
t = W r.f.a

t−1 Rf , (4.2)

W r.a.1
t = W r.f.1

t−1

C
d1,t

P1,t−1
+ r1,t + 1

D
, (4.3)

W r.a.2
t = W r.a.2

t−1

C
d2,t

P2,t−1
+ r2,t + 1

D
, (4.4)

where r1,t and r2,t represent the price returns for the two risky assets, given by the
usual definitions

r1,t := P1,t

P1,t−1
− 1 r2,t := P2,t

P2,t−1
− 1, (4.5)

while d1,t/P1,t−1 and d2,t/P2,t−1 identify the dividend yields. The total wealth is given
by the sum of the three contributions:

Wt = Wt−1

5
Rf (1 − x1,t−1 − x2,t−1) + x1,t−1

A
d1,t

P1,t−1
+ r1,t + 1

B
+ (4.6)

+ x2,t−1

A
d2,t

P2,t−1
+ r2,t + 1

B 6
,

Wt = Wt−1

C
Rf + x1,t−1

A
d1,t

P1,t−1
+ r1,t − rf

B
+ x2,t−1

A
d2,t

P2,t−1
+ r2,t − rf

BD
. (4.7)

Here, as x1,t−1 and x2,t−1 we intend the risky fractions, i.e. the portions of wealth
invested in the risky assets. In Chiarella et al. (2009) the wealth dynamics is rewritten
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4 – Market Model with two risky assets

using the vectorial notation to simplify the equations. Thus, we adopt the vector of
prices Pt = (P1,t, P2,t)|, the vector of the dividends dt = (d1,t, d2,t)|, the vector of the
returns rt = (r1,t, r2,t)| and the vector of the risky fractions xt−1 = (x1,t−1, x2,t−1)|.
Therefore, eq. 4.7 is rewritten as:

Wt = Wt−1

C
Rf + x|

t−1

A
rt + dt

Pt−1
− rf

BD
. (4.8)

Following the analogy with the case of the single risky asset, it is possible to define
the excess returns rexcess,1,t and rexcess,2,t for the two risky assets as in the following:

rexcess,1,t := r1,t + d1,t

P1,t−1
− rf , (4.9)

rexces,2,t := r2,t + d2,t

P2,t−1
− rf . (4.10)

Using the new variables, eq. 4.7 can be recast into

Wt = Wt−1 [Rf + x1,t−1rexcess,1,t + x2,t−1rexcess,2,t] . (4.11)

The vectorial notation is not only useful, but it allows also to generalize the current
equations to the case of N assets more easily, as shown in Chiarella et al. (2009).

4.2 Fundamentalist trader
The present model is collocated in the same paradigm of the original market model
and of a large part of the ABMs based on the bounded rationality of the traders
and their heterogeneity. Therefore, the model inherits the classical division of the
pool of traders into fundamentalists and noise traders.
The objective of the paragraph is the introduction to the fundamentalists class. As
in the original model, they are rational and risk-averse traders. Their strategy con-
sists in maximizing the expected utility function on the future wealth for a given
level of risk in terms of the risky fractions. However in the case of the multiple asset
framework the maximization problem is not trivial because of the possible correla-
tion among the risky assets (Chiarella et al. (2009)).

Following mainly the work of Chiarella et al. (2009) and the related work of Chiarella
et al. (2007) and Bohm and Chiarella (2005), basically, the problem of the funda-
mentalist trader is to maximize the expected utility of the wealth on next period
choosing the right portion of wealth to invest in each risky asset, namely

max
x1,t,x2,t

Et[U(Wt+1(x1,t, x2,t)]. (4.12)

26



4 – Market Model with two risky assets

In the formula, U represents the CRRA utility function, defined as in eq. 2.9 with
constant risk aversion γ (defined in eq. 2.8).
The maximization problem has been solved by Chiarella and He (2001) only in the
framework of one risky asset. Nevertheless, its extension has already been proposed
by Xu et al. (2014). In the following we derive the solution to the maximization
problem, following an analogous solution to Xu et al. (2014) with the restriction to
only two risky assets.
First, it is necessary to develop further the utility function U as a function of the
wealth. On this purpose, it is useful to think of the wealth as a continuous function
of timeW (t) and assume that it follows a continuous stochastic differential equation
of the type

dW = µ(W )dt+ σ(W )dz, (4.13)

where z(t) is a Wiener process. Consider, now, the new variable X = U(W ) and
assume G to be the inverse function of the utility U , such thatW = G(X). Using the
Ito formula, we can derive the stochastic differential equation for the new variable
X:

dX =
5
U Í(W )µ(W ) + 1

2σ(W )2U ÍÍ(W )
6
dt+ σ(W )U Í(W )dz, (4.14)

which can be re-casted into

dX = µ(X)dt+ σ(X)dz. (4.15)

The definitions of µ(X) and σ(X) can be simply obtained by comparison with eq.
4.14 and substitution with W = G(X):

µ(X) := U Í(G(X))µ(G(X)) + 1
2σ

2U ÍÍ(G(X)), (4.16)

σ(X) := σ(G(X))U Í(G(X)). (4.17)

Discretizing eq. 4.15, one obtains

X(t+ ∆t) = X(t) + µ(X(t))∆t+ σ(X(t))∆z, (4.18)

with

Et[X(t+ ∆t)] = X(t) + µ(X(t))∆t, (4.19)
Vt[X(t+ ∆t)] = σ2(X(t)). (4.20)

Increasing the time step to the unity, eq. 4.19 becomes

E[Xt+1] = Xt + µ(Xt). (4.21)
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Given the equalityXt+1 = U(Wt+1), one obtains exactly the formula for the expected
utility function of next period wealth:

Et[U(Wt+1)] = U(Wt) + µt(Wt)U Í(Wt) + 1
2σ

2
t (Wt)U ÍÍ(Wt). (4.22)

Nevertheless, the last equation is not already the solution, because it is necessary to
work out the form for σt(Wt) and µ(Wt) as functions of the two risky fractions. For
this purpose, it is necessary to rewrite the wealth dynamics in eq. 4.8 as a function
of the new variables ρ1,t+1 and ρ2,t+1, defined as the total return of each asset

ρi,t+1 = ri,t+1 + di,t+1

Pi,t
, (4.23)

for i = {1,2}. The final result is

Wt+1 −Wt = Wtrf (1 − x1,t − x2,t) +Wt(x1,tρ1,t+1 + x2,tρ2,t+1). (4.24)

Assume that the variables ρi,t+1, with i = {1,2}, can be expressed in the form of
stochastic discrete differential equations:

ρ1,t+1 = Et[ρ1,t+1] +
ñ
Vt[ρ1,t+1]ξ1,t, (4.25)

ρ2,t+1 = Et[ρ2,t+1] +
ñ
Vt[ρ2,t+1]ξ2,t, (4.26)

where ξ1,t and ξ2,t are simply RVs drawn from a Normal distribution N (0,1). Plugging
eq. 4.26 into the wealth dynamics (eq. 4.24) leads to

Wt+1 −Wt =Wt

è
rf (1 − x1,t − x2,t) + x1,tEt[ρ1,t+1] + x2,tEt[ρ2,t+1]

é
+

+Wt

1
x1,t

ñ
Vt[ρ1,t+1]ξ1,t + x2,t

ñ
Vt[ρ2,t+1]ξ2,t

2
.

The last step consists in rewriting the previous equation into a discrete stochastic
differential equation

Wt+1 −Wt = µt(W ) + σt(W )ξt. (4.27)
The definition of µt(W ) and σt(W ) can be obtained as the definition of mean value
and standard deviation of the sum of two variables. Therefore

µt = rf (1 − x1,t − x2,t) + x1,tEt[ρ1,t+1] + x2,tEt[ρ2,t+1], (4.28)

σ2
t = V

5
Wt

3
x2,t

ñ
Vt[ρ1,t+1]ξ1,t + x2,t

ñ
Vt[ρ2,t+1]ξ2,t

46
,

= W 2
t

è
x2

2,tVt[ρ1,t+1] + x2
2,tVt[ρ2,t+1] + 2Covt[ρ1,t+1, ρ2,t+1]

x1,tx2,t

ñ
Vt[ρ1,t+1]

ñ
Vt[ρ2,t+1]

é
. (4.29)
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Plugging, thus, the equations for µt(W ) and σt(W ) into eq. 4.22 leads to

Et[U(Wt+1)] = U(Wt) + U Í(Wt)Wt

1
− rfx1,t + Et[ρ1,t+1]x1,t − rfx2,t + Et[ρ2,t+1]x2,t

2
+

U ÍÍ(Wt)
2 x2

1,tW
2
t Vt[ρ1,t+1] + U ÍÍ(Wt)

2 x2
2,tW

2
t Vt[ρ2,t+1] + Covt[ρ1,t+1, ρ2,t+1]x1,tx2,tW

2
t U

ÍÍ(Wt).
(4.30)

Given the expression of Et[U(W )], the demonstration in Xu et al. (2014) proceeds
with the resolution of the optimization problem and finds the optimal risky fractions.
The usual procedure of maximization imposes the derivation of x1,t and x2,t as
solution of the following system:

∂Et[U(Wt+1)]
∂x1,t

=WtU
Í(Wt)

1
− rf + Et[ρ1,t+1]

2
+ U ÍÍ(Wt)W 2

t

1
Covt[ρ1,t+1, ρ2,t+1]x2,t+

+ Vt[ρ1,t+1]x1,t
2

= 0

∂Et[U(Wt+1)]
∂x2,t

=WtU
Í(Wt)

1
− rf + Et[ρ2,t+1]

2
+ U ÍÍ(Wt)W 2

t

1
Covt[ρ1,t+1, ρ2,t+1]x1,t+

+ Vt[ρ2,t+1]x2,t
2

= 0

The solutions xf1,t and xf2,t of the maximization problem can be rewritten pointing
out the dependence on the constant risk aversion γ (eq. 2.8):A

xf1,t
xf2,t

B
= 1
γ

A
Vt[ρ1,t+1] Covt[ρ1,t+1, ρ2,t+1]

Covt[ρ1,t+1, ρ2,t+1] Vt[ρ2,t+1]

B−1 A Et[ρ1,t+1] − rf
Et[ρ2,t+1] − rf

B
(4.31)

The expected value of the variables ρi,t+1 can be further worked out using their
definitions in eq. 4.26, the definition of the dividend processes in eq. 4.1 and the
assumption that fundamentalists expectations on future returns are constant, i.e.
Et[ri,t] := Ert,i for i = {1,2}. This assumption is already present in the original
model and it is based on the idea that fundamentalists do not learn from previous
data, but form a fixed expectation on the rate of return. Therefore, we have:

Et[ρ1,t+1] = Ert,1 + d1,t(1 + rd1)
P1,t

, (4.32a)

Et[ρ2,t+1] = Ert,2 + d2,t(1 + rd2)
P2,t

. (4.32b)

Moreover, it is worthy noticing that the optimal fractions of wealth to invest depend
on the inverse of the covariance matrix. Assuming the independence between the
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feature returns and the dividends, it can be assumed that the contribution of the
dividends is negligible and then evaluate the variance and the covariance elements of
the matrix on expectations on future returns. Usually, in literature (see for instance
Chiarella et al. (2009)) the following notation is adopted:I

Vt[rj,t+1] := σ̄j
2,

Covt[rj,t+1, rk,t+1] := ρσ̄kσ̄j,
(4.33)

for j, k = {1,2}. The parameter ρ ∈ [0,1] is understood as the correlation coefficient
between the two risky assets. Eventually, the equations for the optimal risky fractions
become

A
xf1,t
xf2,t

B
= 1
γ

A
σ̄1

2 ρσ̄1σ̄2
ρσ̄1σ̄2 σ̄2

2

B−1
 Ert,1 + d1,t(1+rd1)

P1,t
− rf

Ert,2 + d2,t(1+rd2)
P2,t

− rf

 (4.34)

Fortunately, finding the inverse of a 2 × 2 matrix is an easy task and the equations
can be reformulated into

A
xf1,t
xf2,t

B
= 1
γσ̄1

2σ̄2
2(1 − ρ2)

A
σ̄2

2 −ρσ̄1σ̄2
−ρσ̄1σ̄2 σ̄1

2

B Ert,1 + d1,t(1+rd1)
P1,t

− rf

Ert,2 + d2,t(1+rd2)
P2,t

− rf


(4.35)

xf1,t = 1
γσ̄1

2(1 − ρ2)
è
Ert,1−rf+d1,t(1 + rd1)

P1,t

é
− ρ

γσ̄1σ̄2(1 − ρ2)
è
Ert,2+d2,t(1 + rd2)

P2,t
−rf

é
,

(4.36a)

xf2,t = 1
γσ̄2

2(1 − ρ2)
è
Ert,2−rf+d2,t(1 + rd2)

P2,t

é
− ρ

γσ̄1σ̄2(1 − ρ2)
è
Ert,1+d1,t(1 + rd1)

P1,t
−rf

é
.

(4.36b)
It is evident that each risky fractions depends on both the dividend processes and
price tracks. This fact is due to the correlation factor ρ. In case of zero correlation
between the two assets, the formulas reduce to eq. 2.11 valid in the 1 risky asset/1
risk-free asset framework. Nevertheless, the relative aversion constant γ is computed
in a different way in the enlarged model, thus the fraction invested in each asset is
smaller. Essentially, for ρ = 0, each risky fraction depends uniquely on the respec-
tive price development and the strategy for the fundamentalist trader is essentially
buying low and selling high. However, when ρ /= 0, the risky fractions are influenced
by the correlation between the two assets. Indeed, eq. 4.36a and 4.36b are essentially
given by two contributions weighted by the factors 1/(1 − ρ2) and −ρ/(1 − ρ2).

The fundamentalists strategy can be analysed further, separating two different cases:
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• ρ > 0: the first factor 1/(1−ρ2) is positive and greater than 1, whilst the second
factor −ρ/(1 − ρ2) is negative. Thus, the risky fraction xf1,t is characterized
by the competition between the gain given by deviation of the price of asset
1 with respect to its fundamental value against the gain given by the second
asset. The analogous analysis is valid for xf2,t.

• ρ < 0: the first factor 1/(1 − ρ2) is greater than 1, whereas the second term
−ρ/(1−ρ2) is positive. Hence, both the two factors contribute positively to the
determination of the risky fractions but with different weights. For instance,
for x1,t, any positive deviation of the price P1,t (or P2,t) from it fundamental
value decreases the risky fractions (i.e. induce the fundamentalists to sell the
risky assets) and any negative deviation from the fundamental value increases
the risky fractions ( i.e. induce the fundamentalists to buy the risky assets).
Analogously for x2,t.

In conclusion, each fundamentalist trader at time t computes the optimal values of
the fractions of wealth to invest in the risky assets in order to obtain the highest
profit on the next period for a given level of risk. In contrast with what happens in
the one risky asset paradigm, in the case of multiple assets, the optimization prob-
lem is more complicated and the optimal risky fractions are correlated. Therefore,
the fundamentalist trader can now diversify more and gain or loose on the possible
correlations between the two assets.

As in the original model, the choice of every fundamentalist trader is the same,
thus, the entire class can be represented by a unique agent.

4.3 Noise traders
According to the tradition in the ABM literature and the original formulation by
Kaizoji et al. (2015), the noise traders represent the part of the investors that are
led by social imitation and the impulse to believe in “charts”, such as the past price
performance.
In the previous chapter, we have deepened the understanding of the similarities be-
tween the noise traders class and the Kinetic Ising model. Following Sornette (2014)
and Harras et al. (2012), we have shown how the usage of the Ising model can
be justified in the paradigm of social models. As far as concerns the noise traders
class, the Ising-like structure consists in the possibility to choose to buy or to sell
the risky asset. The opinion index st represents the analogous of the magnitization
in the Ising model and measures the majority opinion of the traders, whereas the
momentum Ht plays the role of the external field that tends to align the opinions.
In contrast to the original formulation of the Ising model, the control parameter,
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the herding propensity κ, is a time-varying. The continuous change in time of the
herding propensity allows the system to pass from the sub-critical regime to the
critical regime in which the opinion of the traders is polarized. The phenomenon of
the “sweeping of the instability” is at the origin of the build-up of the bubbles in
price time series (Sornette (1994)).

Given the link between the present construction of the noise traders class with
the Ising model, its extension to the multi-assets framework is not trivial. Reason
why, our approach tries to conserve the original set-up, but adapting it to the new
framework.
The first approach consists in dividing the pool of Nn traders into two sub-classes
that can trade only one type of risky asset. For simplicity, the two subgroups are
denoted with numbers 1 and 2 and the total number of traders in each subgroup
is N1,t and N2,t, according to the risky asset they trade. Inside each subgroup, the
agents can trade only the risky asset or the risk-free asset. The traders investing re-
spectively in the latter are denoted as N−

1,t or N−
2,t and in the former as N+

1,t and N+
2,t.

Despite the division between the two pools of traders, they have the possibility to
switch from one subgroup to the other with a certain probability that represents how
the noise traders perceive the difference in performance of the assets. The possible
switching are the following:

• switching between the subgroup of N−
1,t investors holding the risk-free asset to

the subgroup of investors N+
1,t holding the risky asset 1,

• switching between the subgroup of N−
2,t investors holding the risk-free asset to

the subgroup of N+
2,t investors holding the risky asset 2,

• switching between the subgroups N+
1,t and N+

2,t of traders holding the risky
assets.

In this scheme, we assume that the risk-free asset is exactly the same, or in other
words that it guarantees exactly the same rate of interest. In this case, there is
no real reason for allowing switching between the subgroup N+

1,t and N−
2,t or N+

2,t
and N−

1,t. The switching are mediated by the following set of probabilities: p+
11,t and

p+
22,t denote the possibility that a trader from the subgroup of investors holding the

risky asset 1 or 2 decides to buy the bond, analogously p−
11,t and p−

22,t determine the
number of traders holding the bond that decide to buy the risky asset 1 or 2. The
probabilities p+

12,t and p+
21,t regulate the switching between the subgroup of N+

1,t and
N+

2,t traders. In particular on p+
12,t depends the number of traders that decide to sell

the risky asset 1 and buy the risky asset 2 and p+
21,t regards the inverse operation.

Figure 4.1 shows the scheme of all possible transitions between the two sub-classes of
noise traders. In order to define the set of probabilities according to the parameters
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N−
1

N+
1

p−
11,tp+

11,t

N+
2

N−
2

p+
22,t p−

22,t

p+
12,t

p+
21,t

Figure 4.1: The figure shows the scheme of all possible transitions between the two
sub-classes of traders. The subgroups marked as N+

1,t and N+
2,t denote respectively the

numbers of traders holding the risky asset 1 and 2, whereas N−
1,t and N−

2,t indicate the
traders holding the risk-free asset. The arrows indicate, instead, all possible types
of switching between the subgroups.

of the model and the description of the class, it is necessary to analyse every possible
type of switching

1. Switching between the risk-free asset group and the risky asset subgroup
This type of transition involves the probabilities p±

11,t and p±
22,t and do not

involve a change in the total number of traders for the two sub-classes. In-
side each sub-class, the scheme respects perfectly the original noise traders
structure. Therefore, the probabilities depends on the social imitation among
traders and on their “chartist” nature. In the case of the two sub-classes, we
compute the risky fractions x1,t and x2,t respectively as the relative fraction of
traders investing in the risky assets 1 and 2:

x1,t =
N+

1,t

N1,t
, x2,t =

N+
2,t

N2,t
. (4.37)

Therefore, the opinion indices for the two assets are defined as in the original
model as:

s1,t =
N+

1,t −N−
1,t

N1,t
= 2x1,t − 1, (4.38)

s2,t =
N+

2,t −N−
2,t

N2,t
= 2x2,t − 1. (4.39)

They indicate which is the major opinion inside each sub-class: if the majority
of the traders is investing into the respective risky asset or if the majority is
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investing in the bond. The form of contagion of the same opinion goes along
with the trend-following tendency. As a matter of fact, noise traders do no
believe only that the opinion of their acquaintance counts, but also the past
performance of the risky asset does. That is the reason why, the investors of
each sub-class rely on the price momentum indicators H1,t, H2,t defined as the
exponential moving average for each asset on past returns:

H1,t = θH1,t−1 + (1 − θ)r1,t, (4.40)
H2,t = θH2,t−1 + (1 − θ)r2,t. (4.41)

Here, the parameter θ is assumed equal for all noise traders and determine the
time window τmemory = 1/(1 − θ) used by the investors to compute the mov-
ing average. According to the original formulation, the probabilities to switch
are assumed to be a linear combination of the opinion index and momentum
weighted by the herding propensity κt. The probabilities can be formulated
in a similar way, considering, though, the due differences. At each time t, the
traders holding the risky asset 1 (or 2) can decide to sell it and buy the bond
or the risky asset 2 (or 1). Thus, the probability to sell the risky asset must
take into account the two contributions. Therefore, for the probabilities p−

11,t
and p−

22,t, it is possible to maintain the original formulation (eq. 2.18):

p−
11,t = 1

2
è
p− + κt(s1,t +H1,t)

é
, (4.42)

p−
22,t = 1

2
è
p− + κt(s2,t +H2,t)

é
. (4.43)

In contrast, the probabilities p+
11,t and p+

22,t depend on the switching probabil-
ities between the risky assets.

2. Switching between the two risky assets groups
The noise traders holding a risky asset has the opportunity at each time t
to sell their risky asset and buy the other one. This possibility is regulated
by the set of probabilities p+

12,t and p+
21,t for switching from N+

1,t to N+
2,t and

vice-versa. According to the previous reasoning, the performance of each asset
is measured in the noise traders evaluation as the sum of two indicators: the
opinion index and the momentum. Thus, the choice of the traders must rely
on the difference between the two assets performances: s1,t +H1,t − s2,t −H2,t.
Obviously, when the quantity is positive the performance of the risky asset 1
is better than the the performance of the second, whist in case of negativity it
is the contrary. The difference on the performance is weighted naturally by the
herding propensity κt that regulates how much the social index and the past
trends can influence the traders. When the herding propensity is zero, there
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is no motivation for each noise trader to change his strategy. In summary,
according to the reasoning, we can write the equations of the transition rates
as

p̃+
12,t = 1

2κtf (s2,t +H2,t − s1,t −H1,t) , (4.44)

p̃+
21,t = 1

2κtf (−s2,t −H2,t + s1,t −H1,t) . (4.45)

The parameter f ∈ [0,1] has been added to motivate the natural tendency
that perceive each individual to maintain the previous or the current decison
in a decision making problem. The “status quo bias” has been confirmed in
behavioral Economics as a prominent phenomenon effecting traders decisions
(Samuelson and Zechauser (1988)). Here, the tendency to be stick to the previ-
ous decision is represented by the magnitude of the parameter f : the larger is
f , the smaller is the status quo bias and vice-versa. Analysing better eq. 4.45
and 4.44, one can observe than when the risky asset 1 performs better than
the second, p̃+

12,t is positive, but vice-versa p̃+
21,t would end up to be negative. In

order to avoid this problem and switch to a probabilistic definition, we impose
the non-negativity condition on p̃+

12,t and p̃+
21,t imposing that

p+
12,t =

0.5κtf (s2,t +H2,t − s1,t −H1,t) , if s2,t +H2,t − s1,t −H1,t > 0
0, otherwise

(4.46a)

p+
21,t =

0.5κtf (s1,t +H1,t − s2,t −H2,t) , if s1,t +H1,t − s2,t −H2,t > 0
0, otherwise

(4.46b)
Given that in eq. 4.46 the condition is exclusive, when p+

12,t is positive, p+
21,t

is set to zero and vice-versa. Therefore, there is always a net flux of traders
going from N+

1,t to N+
2,t or vice-versa.

3. Switching between the risky asset subgroup and the risk-free asset group
According to the previous definitions, we can construct the probabilities p+

11,t
and p+

22,t such that p+
11,t = p−

11,t+p+
21,t and similarly p+

22,t = p−
22 +p+

12,t. Using the
definition of the transition rates p̃+

12 and p̃+
21 we can easily write the transition

rates as

p̃+
11,t = 1

2
î
p+ − κt

è
s1,t +H1,t + f(s2,t +H2,t − s1,t −H1,t)

éï
, (4.47)

p̃+
22,t = 1

2
î
p+ − κt

è
s2,t +H2,t + f(s1,t +H1,t − s2,t −H2,t)

éï
. (4.48)
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Considering now to the definitions of the probabilities p+
12,t and p+

21,t imple-
mented in eq. 4.44 and 4.45, the correct way to express the previous equations
as probabilities is the following:

p+
11,t =


1
2

î
p+ − κt

è
(s1,t +H1,t)(1 − f) + f(s2,t +H2,t)

éï
, if s2,t +H2,t − s1,t −H1,t > 0

1
2

è
p+ − κt(s1,t +H1,t)

é
, otherwise

(4.49)

p+
22,t =


1
2

î
p+ − κt

è
(s2,t +H2,t)(1 − f) + f(s1,t +H1,t)

éï
, if s1,t +H1,t − s2,t −H2,t > 0

1
2

è
p+ − κt(s2,t +H2,t)

é
. otherwise

(4.50)
With the previous definition we ensure the conditions

p+
11,t = p−

11,t + p+
12,t, (4.51)

p+
22,t = p−

22,t + p+
21,t. (4.52)

Once defined the set of switching probabilities, the implementation of the transitions
is done through the number of investors for each subgroup. Nevertheless, we can
derive the dynamical evolutions of the average values of N±

1,t and N±
2,t. In order

to implement the mean-values equations through the discrete Master equation, we
denote as n±

1,t, n
±
2,t the mean values of the number of noise traders N±

1,t and N±
2,t.

Moreover, it is necessary to switch from probabilities to transitions rates. Eventually,
the equations are

n+
1,t = n+

1,t−1 + n−
1,t−1p̃

−
11,t−1 − n+

1,t−1p̃
+
11,t−1 + n+

2,t−1p̃
+
21,t−1 − n+

1,t−1p̃
+
12,t−1, (4.53a)

n−
1,t = n−

1,t−1 + n+
1,t−1p̃

+
11,t−1 − n−

1,t−1p̃
−
11,t−1, (4.53b)

n+
2,t = n+

2,t−1 + n+
2,t−1p̃

+
22,t−1 − n+

2,t−1p̃
+
22,t−1 + n−

2,t−1p̃
+
12,t−1 − n+

2,t−1p̃
+
21,t−1, (4.53c)

n−
2,t = n−

2,t−1 + n+
2,t−1p̃

+
22,t−1 − n−

2,t−1p̃
−
22,t−1, (4.53d)

Overall, the formulation of the noise traders class preserves the original formulation
and the Ising-like structure. The noise traders do not diversify their portfolios as
fundamentalists do, but each noise trader chooses at each period if investing all his
wealth in the bond or in one of the risky assets. Nonetheless, we are interested in the
aggregate impact of the noise traders accounting the portions of investors holding
the risky asset 1 and the risky asset 2 as risky fractions.

4.4 Market clearing conditions and
price dynamics

In the original market formulation, the price dynamic is determined by setting the
sum of the excess demand for fundamentalists and noise traders equal to zero. In
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short, the model assumes a Walresian auction scenario (Walras (1926)) where at
each period the supply and the demand is perfectly compensated. The same equilib-
rium condition is extended to the multi-assets formulation. Though, the equilibrium
conditions needs to hold for each asset.
In the following we are going to derive the excess demands for the two assets and
the equilibrium price equations. Besides, every quantity will be denoted with the
apex “f” for fundamentalists and “n” for the noise traders.

The excess demand for the period (t− 1, t) is defined as in eq. 2.20 for i = {f, n}:

∆Di
t−1→t = zitPt − zit−1Pt = W i

tx
i
t −W i

t−1x
i
t−1

Pt
Pt−1

. (4.54)

The unique difference with the previous framework is that in this case the number
of assets are two. In this contest, the equilibrium prices are obtained posing the ag-
gregate excess demand for each stock equal to zero. Thus, a system of two equations
of unknowns P1,t and P2,t is obtained.

For fundamentalist traders, the excess demands for the two risky assets are im-
mediate from eq. 2.20:

∆D1,f
t−1→t = W f

t x
f
1,t −W f

t−1x
f
1,t−1

P1,t

P1,t−1
, (4.55)

∆D2,f
t−1→t = W f

t x
f
2,t −W f

t−1x
f
2,t−1

P2,t

P2,t−1
. (4.56)

Plugging, now, the equations of the wealth dynamics (eq. 4.7), one obtains

∆Df,1
t−1→t =xf1,tW f

t−1

è
(P1,t + d1,t)

xf1,t−1

P1,t−1
+ (P2,t + d2,t)

xf2,t−1

P2,t−1
+ (1 − xf1,t−1 − xf2,t−1)Rf )

é
− xf1,t−1W

f
t−1

P1,t

P1,t−1
, (4.57a)

∆Df,2
t−1→t =xf2,tW f

t−1

è
(P1,t + d1,t)

xf1,t−1

P1,t−1
+ (P2,t + d2,t)

xf2,t−1

P2,t−1
+ (1 − xf1,t−1 − xf2,t−1)Rf

é
− xf2,t−1W

f
t−1

P2,t

P2,t−1
. (4.57b)

The excess demands contain an implicit dependence on the equilibrium prices P1,t
and P2,t. Therefore, the next step consists in making explicit the dependence, in-
serting into the previous equations the definitions of the values of the optimal risky
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fractions xf1,t and xf2,t (eq. 4.34). On this purpose, we rewrite the optimal fractions
in this way, explicating the dependence on the equilibrium prices:

xf1,t = A1,t

P1,t
− B1,t

P2,t
+ C1.t,

xf2,t = A2,t

P1,t
− B2,t

P2,t
+ C2,t.

The parameters Ai,t, Bi,t and Ci,t are obtained by direct comparison with eq. 4.34:

A1,t = d1,t(1 + rd1)
γσ̄2

1(1 − ρ2) , (4.58a)

B1,t = d2,tρ(1 + rd2)
γσ̄1σ̄2(1 − ρ2) , (4.58b)

C1,t = σ̄2
2(Ert,1 − rf ) − ρσ̄1σ̄2(Ert,2 − rf )

γσ̄2
1σ̄

2
2(1 − ρ2) , (4.58c)

A2,t = d2,t(1 + rd2)
γσ̄2

2(1 − ρ2) , (4.58d)

B2,t = d1,tρ(1 + rd1)
γσ̄1σ̄2(1 − ρ2) , (4.58e)

C2,t = σ̄2
1(Ert,2 − rf ) − ρσ̄1σ̄2(Ert,1 − rf )

γσ̄2
1σ̄

2
2(1 − ρ2) . (4.58f)

The derivation of the excess demands for noise traders is more involved. Indeed,
the noise traders are separated into two distinct sub-classes which admit transitions
between them. Therefore, the excess demands have to be adapted to the scheme and
take into account the exchange of traders from one group to the other.
A good solution is to divide the total wealth W n

t between the two sub-classes, in
the manner that the sub-class with N1,t agents trade a total amount of wealth
W1,t and the sub-class with N2,t traders has the total quantity W n

2,t. Naturally,
W n

1,t +W n
2,t = W n

t gives the total amount of wealth of the noise traders class. How-
ever, the possibility to exchange traders mean also the possibility to decrease or
increase the wealth of each subgroup. As a consequence, the procedure to consider
the exchange of wealth at time t − 1 is to take into account the quantity of wealth
traded ∆W

∆W = N2→1W2

N2,t−1
− N1→2W1

N1,t−1
, (4.59)
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where N1→2 is the number of traders that sell the risky asset 1 and buys the asset 2
and N2→1 is the analogous quantity. Then, the amounts of wealth for each subgroup
become:

W ∗
1,t−1 = W1,t−1 + ∆W, (4.60)

W ∗
2,t−1 = W2,t−1 − ∆W. (4.61)

The two amounts of wealth are updated after the noise traders decisions and before
the computation of the excess demands for noise traders. Consequently, it is sufficient
to consider the updated wealth in the equations

∆D1,n
t−1→t = W n

1,tx
n
1,t −W n

1,t−1x
n
1,t−1

P1,t

P1,t−1
, (4.62)

∆D2,n
t−1→t = W n

2,tx
n
2,t −W n

t−1x
n
2,t−1

P2,t

P2,t−1
. (4.63)

The evolution of the two amounts of wealth of the two subgroups differs from eq.4.7,
because now the noise traders sub-classes can be considered separately. Therefore,
we can express W n

1,t and W t
2,t simply as

W n
1,t = W n

1,t−1

è
xn1,t−1

1 P1,t

P1,t−1
+ d1,t

P1,t−1
− rf − 1

2
+Rf

é
, (4.64)

W n
2,t = W n

2,t−1

è
xn2,t−1

1 P2,t

P2,t−1
+ d1,t

P2,t−1
− rf − 1

2
+Rf

é
. (4.65)

Inserting eq. 4.65 into the excess demands equations for noise traders (eq. 4.63) leads
to

∆Dn,1
t−1→t = W n

1,t−1x
n
1,t

è1
P1,t + d1,t

2 xn1,t
P1,t−1

+ (1 − xn1,t−1)(1 + rf )
é

− xn1,t−1W
n
1,t−1

P1,t

P1,t−1
,

(4.66)

∆Dn,2
t−1→t = W n

2,t−1x
n
2,t

è1
P2,t + d2,t

2 xn2,t
P2,t−1

+ (1 − xn2,t−1)(1 + rf )
é

− xn2,t−1W
n
2,t−1

P2,t

P2,t−1
.

(4.67)

The aggregate excess demand for the two assets is defined by the sum of the excess
demands of fundamentalists and noise traders. Eventually, the equilibrium condi-
tions are obtained posing the aggregate excess demands equal to zero:

∆Df,1
t−1→t + ∆Dn,1

t−1→t = 0, (4.68)
∆Df,2

t−1→t + ∆Dn,2
t−1→t = 0, (4.69)
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The two equations can be re-casted into two explicit equations of the equilibrium
prices P1,t and P2,t. The full computation is described in appendix A, but here we
provide only the the final results:

a1,tP
2
1,t+b1,tP

2
2,t+c1,tP

2
1,tP2,t+d1,tP1,tP

2
2,t+e1,tP1,tP2,t+f1,tP1,t+g1,tP2,t = 0, (4.70)

a2,tP
2
2,t+b2,tP

2
1,t+c2,tP

2
2,tP1,t+d2,tP2,tP

2
1,t+e2,tP1,tP2,t+f2,tP2,t+g2,tP1,t = 0. (4.71)

The price equations are non-linear and coupled. The list of parameters are listed in
appendix A in eq. A.6 and A.7. It is worthy noticing that it is possible to retrieve the
second order equation of the original model if we assume that only one of the two
risky fraction is not zero. This confirms that our derivation is correct. The solution
of the coupled system cannot be found analytically and only numerical solutions are
possible. Thus, we will leave the solutions implicit.
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Chapter 5

Time series description and
theoretical analysis

In the previous chapter, we have introduced the extension of the original market
model (Kaizoji et al. (2015), Khort (2016), Westphal and Sornette (2019)) to the
multi-asset framework. As in the original formulation, the structure of the model is
based on the bounded rationality of the traders and their heterogeneous composition
into fundamentalists and noise traders.

In this chapter we present the main results of the extended model. The first part is
devoted to a detailed description of the typical time series and to the detection of
possible faster-than-exponential growth of the prices, signature of financial bubbles.
We show that our model is able to reproduce bubbles and we try to explain their
emergence from a theoretical point of view. Our approach consists in the analysis
of the mean-values equations of relevant quantities. Similar approach is not rare in
literature and even in the original article, Kaizoji et al. (2015) have explained the
emergence of the bubbles studying the behavior of the mean-value opinion index.
Furthermore, the extended model is able to reproduce in time series the synchronous
build-up of bubbles in the two assets. This feature cannot be grasped in the simpler
framework with only one risky asset and it is in line with empirical observations.
The second point of our analysis regards the presence of correlations between the
two assets returns. We investigate the emergence of correlations among assets in
two different directions. First, we analyse how the fundamentalists expectations on
the correlation between the two assets can effect their realization. Second, we study
the effect of the noise traders class on the distribution of the returns and how they
depend on the parameter f .
Eventually, the analysis concludes checking if the simulated data manifest the typical
regularities of the financial market, the well-known “stylized facts”.
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5.1 Choice of parameters
In this section, we present the complete set of parameters used in the simulations in
tab. 5.1. The parameters are divided in two columns per type of risky asset, whereas
the general parameters are listed in the last row.

Risky asset 1 Risky asset 2

xf1,0 = 0.3 d1,0 = 0.00016 rd1 = 0.00016 xf2,0 = 0.3 d2,0 = 0.00016 rd2 = 0.00016
H1,0 = 0.00016 θ = 0.99 Ert,1 = 0.00016 H2,0 = 0.00016 θ = 0.99 Ert,2 = 0.00016
P1,0 = 1.0 σ̄2

1 = 0.0004 N1,0 = 500 P2,0 = 1.0 σ̄2
2 = 0.0004 N2,0 = 500

xn1,0 = 0.3 σd1 = 0.000016 xn2,0 = 0.3 σd2 = 0.000016

Common values

p+ = 0.199375 p− = 0.200625 Nn = 1000 rf = 0.00008 νnf0 = 1 κ = 0.98p+

Table 5.1: The table reports the values of the parameters used in the simulations.
In the event that different values are used, it will specifically highlighted.

It is worthy noticing that the most of the parameters are used also in the orig-
inal market model. In this way the comparison with the framework of 1 risky
asset/free-risk is easier. Furthermore, for the moment we have taken the decision
to design the two risky assets with the same parameters as far as concerns the
growth rates of the dividends, the expected values of future returns and the initial
values P1,0 = P2,0 = 1.0, H1,0 = H2,0 = 0.00016, d1,0 = d2,0 = 0.00016. In table 5.1,
the parameters ρ and f are not specified, since they are used as control parameters
and their values will be specified when needed.

For fundamentalists, the variances of the future returns are set equal to σ̄1 = σ̄2 =
0.002 so that they can be comparable with realistic fluctuations of the returns. Fi-
nally, the relative risk aversion constant γ is obtained as an endogenous parameter
depending on the initial risky fractions xf1,t and xf2,t. From eq. 4.34 at time t = 0,
we can derive the value of γ as

γ =

è
Ert,1 − rf + d1,0(1+rd1)

P1,0

é
xf1,0σ̄1

2 + ρσ̄1σ̄2x
f
2,0

. (5.1)

Actually, the value of γ is set in this way in order to maintain almost constant the
fraction of fundamentalists investing in the risky assets.

Eventually, let us give some clarifications about the implementation of the noise
traders class. As one can notice in tab. 5.1, the parameter p− is slightly bigger than
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p+. This choice is arbitrary, but inherited from the previous model setup. It ensures
the fact that in absence of social factors, the noise traders invest in the risky assets
more often than in the risk-free one and thus the positive bubbles happen more
frequently than negative bubbles, as observed in real data. The initial number of
traders Nn = 1000 is distributed equally at the beginning of the simulations, such
as N1,0 = N2,0 = 500. Once the simulation is started, the number of the traders is
updated using the transition probabilities presented in section 4.3. The difference to
the original market formulation is that the dynamics cannot be formulated using the
Bernouilli RVs simulating the random decisions (buy or sell) of each noise trader.
Actually, the traders that hold the risky asset 1 (or 2) can decide to sell it and buy
the bond or the risky asset 2 (or 1) or they can even decide to do nothing. For this
reason it is necessary to implement a new type of RV drawn by a probability distri-
bution that take account of the three possibilities. For the traders in the subgroup
holding the risky asset 1, the number can be updated using the following probability
distribution

P (p+
12,t, p

+
11,t) =


risky asset 2 with probability p+

12,t

risk-free asset with probability p+
11,t

risky asset 1 with probability 1 − p+
11,t − p+

12,t

(5.2)

Whereas, the number of traders belonging to N+
2,t, or better holding the the risky

asset 2, can be updated using the following distribution

P (p+
21,t, p

+
22,t) =


risky asset 1 with probability p+

21,t

risk-free asset with probability p+
22,t

risky asset 2 with probability 1 − p+
22,t − p+

21,t

(5.3)

In contrast, for risky assets, we adopt the Bernoulli RVs as in the original model. We
conclude with a brief annotation on the herding propensity κt. For noise traders, the
herding propensity measures how much social factors as the opinion index and the
charts-following tendency influence the decisions of the traders. First, we take into
account only one herding propensity κt, making no difference between the two sub-
classes. Second, as in the original paper, we consider the case of constant κt = κ and
the case in which it follows the Ornstein-Uhlenbeck process. This latter is defined
as in Chapter 3 from eq. 3.1 to eq. 3.3.
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5.2 Time series description
This section is devoted to the description of the typical time series of the market
model with two risky assets. Figure 5.1 shows the results of a simulation with con-
stant herding propensity κ, whereas figure 5.2 shows the results of a simulation for
the Ornstein-Uhlenbeck κt. Both the plots are organized as follows: the first column
contains the time series corresponding to the first risky asset, whilst the second col-
umn contains the realizations of the second risky asset. The first line contains the
time series of the prices P1,t and P2,t, the second line shows the time series of the
returns r1,t and r2,t respectively for the price track of the first asset and second asset.
The third line shows the comparison between the momentum series H1,t and H2,t
and the fourth line the comparison between the dividend-price ratios d1,t/P1,t and
d2,t/P2,t. In the fifth line each frame represents the switching probabilities for the
noise traders class: on the left it is represented the developments of p+

11,t and p−
11,t,

on the right the probabilities p+
22,t and p−

22,t. The sixth line shows the development in
time of the risky fractions for both fundamentalists and noise traders. The four last
panels show the common variables. In the seventh line there is the representation of
the number of traders selling the risky asset 1 and buying the risky asset 2 (N1→2)
and vice-versa (N2→1). In the eight frame, we have represented zt, the fraction of
noise traders in the first sub-class:

zt := N1

N
, zt ∈ [0,1]. (5.4)

The last two frames show the wealth ratio νt and the herding propensity κt process.
In order to make the comparison between the two prices track more clearly, we have
plotted the prices time series in figure 5.3 relative to the previous simulations.

Let us start with the description of the time series in figure 5.1 for constant κ.
From comparison between the prices series (fig. 5.3)(a), one can immediately no-
tice that the prices show significant deviations from the linear growth (naturally
expected in the semilog plot) and that the two time series are very similar and they
show peaks approximately at the same time or with a certain lag. Indeed, we can
expect that the price have on average the same linear trend because they have the
same dividend growths. However the presence of similar peaks and apparently cor-
relations between the two prices series is to be searched in the equilibrium prices
equations and in the interplay between the fundamentalists and noise traders, as
we will explain later. In order to enter in the heart of the question, it is useful to
observe the price returns. The price returns of both the two assets show evidence of
volatility clustering. In other words, the returns series interval periods of turbulence
to periods of tranquility. According to Lux (2009), this is an immediate evidence of
the fact that the distribution of returns is not Gaussian, but a more leptokurtic dis-
tribution, since huge deviations happen more often than the Gaussian distribution
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predicts. These phenomena are reproduced also in real returns time series. Some of
these empirical observations seem to be so ubiquitous in the financial market that
they have been called “stylized facts”. Here, we simply say that the returns alter-
nates between periods of huge deviations to periods of calm, but the the argument
will be re-discussed later.
Immediately related to the signed returns is the price momentum. It is calculated
as the moving average over the past price returns. Thus, the momentum is higher in
the presence of huge fluctuations in the returns time series and lower during tranquil
periods (as we can see in fig. 5.1). The exponential average is calculated over a time
window of τmemory ∼ 100 time steps, large enough to catch the typical trends of
the returns. Furthermore, the momentum influences the choices of the noise traders
through the transition probabilities. On the other hand, the noise traders strategies
can effect the price trends and thus the momentum. This dependence can create
self-reinforcing loops that sustain the build-up of high deviations of the returns.
The fourth line shows instead the development of the dividend-price ratios d1,t/P1,t
and d2,t/P2,t. The important aspect of this quantity is that the fundamentalist risky
fractions xf1,t and xf2,t are a linear combination of the two. Even though the funda-
mentalist risky fractions stay almost constant, we can observe that the deviations
follow the peaks and the drawbacks of the respective dividend-price ratios process.
In case of positive correlation factor ρ, the effect of the opposite risky asset is to
lower the magnitude of the risky asset. Eventually, in the third line we can ap-
preciate the development of the noise trader probabilities. On the left, the frame
represents the transition probabilities p−

11,t and p+
11,t, i.e. the probabilities to sell the

free-risk asset and buy the risky asset 1 and vice-versa. The two probabilities seems
to be one the mirroring image of the other. However, this is not exactly true, given
that only the sum p+

11,t + p+
12,t equals the probability p−

11,t. The analogous analysis
can be conducted for the frame on the right with the switching probabilities p−

22,t
and p+

22,t, i.e. the probabilities to sell the bond and buy the risky asset 2. The noise
risky fractions xn1,t and xn2,t depend directly on the switching probabilities through
the fractions of noise traders investing in the risky assets: N+

1,t/N1,t and N+
2,t/N2,t.

On the other hand, the number of traders N+
1,t and N+

2,t depend on the probability
that some investors decide to buy the risky assets, which happens with probability
p+

11,t and p+
22,t.

With a comparison with the fundamentalist risky fractions, it is immediate that the
noise fractions are more fluctuating and and they even reach in certain occasion the
upper bound, i.e. the complete polarization of the sub-class.
The noise traders’ risky fractions are relative quantities that can take into account
the distribution of the population only inside each sub-class. Consequently, it is use-
ful to consider how much larger is a sub-class with respect to the other, in order
to understand better the flux of traders between the two sub-classes. The flux of
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traders is represented in terms of investors that at each time decide to sell a risky
asset and buy another one according to the switching probabilities p+

12,t and p+
21,t.

Quantitatively, the change is represented by the fraction of traders in the first sub-
class N1. When the flux of noise traders N1→2 grows, the percentage of people in the
first sub-class decreases and so zt. On the contrary, when there are periods where
there is an intense flux of traders N2→1, the fraction zt arises. The latter plots are
very useful to understand which risky asset is more attractive and how the role of
the leading asset changes in time and how it depends on the control parameter f .
The last consideration regards the wealth ratio νt = W n

t /W
f
t . The last frame shows

that in the long run the wealth of the noise trader class overcome the total wealth
of the fundamentalist class. Even though the fundamentalists have the opportunity
to diversify their portfolios and thus exploits the gains of two assets, noise traders
are more likely to hold the risky assets, namely they have in average higher risky
fractions than fundamentalists.

Figure 5.2 shows the typical time series obtained by the ABM with Ornstein-
Uhlenbeck κt. The frames are organized as in the previous simulation. At first glance,
in fig. 5.3(b) one can notice the emergence of bubbles in the price trends, marked
by a super-exponential growth. Even if in different measure, they are present in
both the prices time series. In particular, we can see evidence of the build-up of
two bubbles at t ∼ 3500 − 4000 time steps. The most important feature to notice is
that the build-up of bubbles is synchronous. The synchronization is shown in figure
5.4 by the comparison with the moving window Pearson correlation. The moving
window Pearson coefficient is obtained for two different time windows w = 25 and
w = 50 time steps, whereas the horizontal line shows the Pearson correlation coef-
ficient computed over the whole simulation (T = 5000 time steps). The plot offers
an illustrative example of the synchronization between the prices: during the bub-
ble regimes the Pearson coefficient is almost 1, or better there exists perfect linear
correlation between the time series. In contrast, during normal regimes the mov-
ing window is nearer the value of the Pearson coefficient calculated over the entire
time series. In order to underline that it is a common feature for different simulated
time series, in Appendix B, figure B.1 shows the same results for different bubbles
regimes. Furthermore, it is worthy noticing that the synchronous build-up of bubbles
constitutes a new result that in the simpler 1 risky asset/1 risk-free asset cannot be
predicted.
The presence of the bubbles is illustrated also in the returns series with more volatile
periods. As a consequence of increasing prices, the momentum series show large
peaks in correspondence of bubbles. This means also that the momentum becomes
more competitive against the opinion index in determining the decisions of the
traders. Furthermore, after careful analysis, one can recognize a correspondence
between the peaks of polarization of the risky fractions and the price tracks. Strictly
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speaking, the growth of the noise traders and the prices are reciprocally sustained:
when the noise risky fractions grow, there is more cohesion among noise traders and
the emergence of a collective behavior influences the prices and thus the momentum
trends. Higher is the momentum, higher the probability that people will invest in the
risky fractions. The self-reinforcing loop lasts until the exhaustion of the pool of the
noise traders in the two sub-classes. At this point, the prices experience a drawback
that reduce the noise risky fraction, but encourage the risk-avoid traders to come
forward and invest when they deem the prices is lower than its fundamental value.
In the original market model, during financial bubbles, noise traders experience the
so-called lock-in effects and cannot buy the bond because the relative probability is
zero (see Ollikainen (2016)). In the multi-asset framework the probability to switch
to the bond goes equally to zero, but the possibility to buy the other risky fraction
is still available. This is the motivation why the flux of traders does not cease during
bubbles.
As far as regards the fundamentalist risky fractions, they depend on the dividend-
price ratios, that are now more fluctuating because of the high deviations of the
price trends. Thus, also the fundamentalist risky fractions are more fluctuating and
show better the dependence on the dividend-price ratios.
Eventually, we can notice from the wealth ratio νt that during the bubbles noise
traders have enormous peaks of fortune (their wealth become almost 5 times greater
than the wealth of the fundamentalists), nonetheless they are transient. As in the
case of constant κt the long term behavior is upwards, i.e. noise traders gain more.
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Figure 5.1:
The figure shows the typical time series obtained with constant herding propensity
κ and ρ = 0.3 and f = 0.05. The frames are divided into two columns according to
asset 1 and asset 2. The final four frames represent common time series.



Figure 5.2:
The figure shows the typical time series obtained with Ornstein-Uhlenbeck herding
propensity κt and ρ = 0.3 and f = 0.05. The frames are divided into two columns
according to asset 1 and asset 2. The final four frames represent common time series.
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Figure 5.3:
(a) The figure shows the comparison between the prices time series P1,t and P2,t in
case of constant κ for the previous simulation for ρ = 0.3 and f = 0.05.
(b) The figure shows the comparison between the prices time series P1,t and P2,t in
case of Ornstein-Uhlenbeck κ for the previous simulation for ρ = 0.3 and f = 0.05.
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Figure 5.4: The figure shows the comparison between the log-prices (lower panel)
and the moving window Pearson correlation coefficient (upper panel), obtained for
two windows of length w = 25 time steps and w = 50 time steps. The horizontal
line shows the Pearson correlation coefficient calculated for the whole time series. It
is immediate that the correlation between the two series is nearly 1 during bubbles
regime, but it detaches during stable regimes.
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5.3 Origin of bubbles

This section aims to understand the process at the origin of faster-than-exponential
growth bubbles from a theoretical point of view. The description of the model
through all equations is quite complicated and it is characterized by stochastic ele-
ments (in the dividends processes, in the updating the number of noise traders and
in the Ornstein-Uhlenbeck κt). However, we can limit our observations on the dy-
namical equations of the mean values of zt and the opinion indices s1,t and s2,t. It is
possible to decouple the equations of the noise traders class from the others consider-
ing the fixed point of the momentum for both the assets equal to H∗ = H = 0.00016.
Certainly, this simplifies the picture but the behavior of the mean-value quantities
can be useful for the comprehension of the whole dynamics and the emergence of
bubbles. The derivation of the mean-value equations follows a similar approach used
by Lux and Marchesi (2000) and Lux (1998) .

The dynamical equations of the mean values of z, s1,t and s2,t can be derived from
the mean-value equations of the number of noise traders in each subgroup in eq.
4.53. For the sake of simplicity, it is better to consider the variables in the continu-
ous time limit. Thus, in the following we denote as n±

1 and n±
2 the average values of

N±
1 and N±

2 and with p±
11, p±

22, p+
12, p+

21 the set of transitions rates. Eventually, the
dynamical equations can be rewritten in the following way:

dn+
1

dt
= n−

1 p
−
11 − n+

1 p
+
11 + n+

2 p
+
21 − n+

1 p
+
12, (5.5)

dn−
1

dt
= n+

1 p
+
11 − n−

1 p
−
11, (5.6)

dn+
2

dt
= n−

2 p
−
22 − n+

2 p
+
22 − n+

2 p
+
21 + n+

1 p
+
12, (5.7)

dn−
2

dt
= n+

2 p
+
22 − n−

2 p
−
22. (5.8)

Analogously, we can think the mean values of z, s1 and s2 as continuous functions.
Moreover, in the following we will intend as z, s1 and s2 the mean values of the
respective variables. It follows that their definitions are:

z = n1

Nn

, s1 = 2n
+
1
n1

− 1, s2 = 2n
+
2
n2

− 1. (5.9)

The derivation of the mean-value equations for z, s1 and s2 is obtained recasting the
previous set of equations using only the interested variables. Thus, from eq. 5.9, we
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can rewrite the mean values of the number of traders as:

n1 = zNn, n2 = (1 − z)Nn, (5.10)

n+
1 = 1 + s1

2 zNn, n+
2 = 1 + s2

2 (1 − z)Nn, (5.11)

n−
1 = 1 − s1

2 zNn, n−
2 = 1 − s2

2 (1 − z)Nn. (5.12)

1. Mean-value equation of z
Given the definition of z, we can write:

dz

dt
= Nn

dn1

dt
= Nn

3
dn+

1
dt

+ dn−
1

dt

4
= Nn

1
n+

2 p
+
21 − n+

1 p
+
12

2
. (5.13)

Plugging the equations for the transition probabilities in eq. 5.13 leads to

dz

dt
=
(1 + s2)(1 − z)κf4 (s2 − s1) if s2 − s1 < 0

−(1 + s1)z κf4 (s2 − s1) if s2 − s1 > 0
(5.14)

2. Mean-value equation of s1
The dynamics of s1 can be derived from its definition:

ds1

dt
= 2
zN

dn+
1

dt
− 2n+

1
z2Nn

dz

dt
.

By substitution of eq. 5.12 and eq. 5.6, one can obtains

ds1

dt
= 2
zN

è
n−

1 p
−
11 − n+

1 p
+
11n

+
2 p

+
21 − n+

1 p
+
12

é
−
31 + s1

z

4
dz

dt
,

= [(1 − s1)p−
11 − (1 + s1)p+

11 + 1 − z

z
(1 + s2)p+

21 − (1 + s1)p+
12] − dz

dt

31 + s1

z

4
.

Substituting the equations of the transition probabilities and separating the
cases, we have

ds1

dt
=



1
2 [(p− − p+) − s1(p− + p+)] + κ(s1 +H) +

1
1−z
z

2
κf
2 (1 + s2)(s1 − s2)

−1+s1
z

dz
dt

if s2 − s1 < 0,

1
2 [(p− − p+) − s1(p− + p+)] + κ(s1 +H) − 1+s1

z
dz
dt

if s2 − s1 > 0.
(5.15)
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3. Mean-value equation of s2
The procedure for deriving the equation of s2 is similar:

ds2

dt
= 2

(1 − z)Nn
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2

dt
+ 2n+

2
(1 − z)2Nn

dz

dt
,

= 2
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Plugging, now, the transition probabilities, one obtains

ds2

dt
=



1
2 [(p− − p+) − s2(p− + p+)] + κ(s2 +H) + 1+s2

1−z
dz
dt

if s2 − s1 < 0,

1
2 [(p− − p+) − s2(p− + p+)] + κ(s2 +H) + κf

2 (1 + s1)(s2 − s1)( z
1−z )

+1+s2
1−z

dz
dt

if s2 − s1 > 0.
(5.16)

The mean-value equations of z, s1 and s2 are non-linear and the analysis of the
stability for the continuum of the steady states is done in appendix B. The line of
fixed points is

s∗
1 = s∗

2 = s = p+ − p− − 2κH
2κ− (p+ + p−) for arbitrary z∗. (5.17)

Thus, the stationary states are characterized by the same value s for the opinion
indices and they depend on the herding propensity κ. The equilibrium line (s∗

1 =
s, s∗

2 = s, z∗) is stable if z∗ is comprehended in the interval [zb, za] for κ < κc, with
za and zb defined as

za =
κf
4 (1 + s)2 + p++p−

2 − κ
κf
2 (1 + s) + p++p−

2 − κ
, (5.18)

zb =
κf
4 (1 + s)(1 − s)

κf
2 (1 + s) + p++p−

2 − κ
. (5.19)

In contrast, for κ > kc, the continuum of fixed points is unstable for ∀z∗ ∈ [0,1]. The
critical value of the herding propensity is κc = p++p−

2 = 0.2. From eq. 5.19, one can
notice that the critical values za and zb depend on the herding propensity κ and the
parameter f . Figure 5.5 reproduces the range [zb, za] of values for which the line of
fixed points is stable as a function of the herding propensity κ for different values
of f . It is evident that for larger values of f , the range is narrower.
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Figure 5.5: The figure shows the lines za (in the upper part) and zb (in the lower
part) for different values of κ and f . The range of z-values between the two curves
are stable. The interval of stable values becomes narrower, higher the parameter f .

The theoretical insight can be very useful to understand the time series with constant
herding propensity. At odds with the case with only one risky asset, the continuum
of stationary states is stable only for a restricted range of z values, depending on κ
and f . As long as zt moves randomly in the stable range, no instabilities can arise.
However, because of the random fluctuations, the values of z can exit from the sta-
ble regime and causes the deviations of the opinion indices that tend to diverge
exponentially from the unstable fixed point s. As a consequence, the growth in the
opinion indices determines deviations in the price trends, thus, higher fluctuations
and volatility clustering in the returns. Since for higher values of f , the range of
stability is tighter, the possibiWhestphallity of instability is higher.
In the previous theoretical explanation, the momentum is thought as constant. In
reality, the momentum changes in time and its fluctuations are determined by the
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past returns. Its behavior enhances the emergence of possible instabilities creating
a self-reinforcing loop. The phenomenon is not far from what is denoted in Kaizoji
et al. (2015) as a “self-fulfilling prophecy”(p. 291). More noise traders believe in
the upward trend of the price, more people will invest in the risky assets, effecting
positively the upward trends of the prices.

Eventually, in order to understand better the relationship between the theoretical
explanation with the simulated data, we propose to study the transition between
the different regimes examining the behavior of the empirical average values of the
opinion indices for different values of κ and f . Following the same strategy in Harras
et al. (2012), we study the opinion indices mean values computed over the simulated
time series and their normalized standard deviations scaled by the amplitude of the
momentum, namely

s̄1 =< s1,t >t, σ̄1 =

ñ
< (s1,t − s̄1)2 >ñ
< (H1,t − H̄)2 >

, (5.20)

s̄2 =< s2,t >t, σ̄2 =

ñ
< (s2,t − s̄2)2 >ñ
< (H2,t − H̄)2 >

. (5.21)

Figure 5.6 illustrates the curves of s̄1,2 and σ̄1,2 as a function of the herding propen-
sity κ for different values of f . The average values and the standard deviations are
performed over 300 simulations of total length T = 5000 time steps. The plots of the
average values confirm the theoretical analysis. Indeed, for κ < κc, the plots of s̄1
and s̄2 follow the trend predicted by the fixed point s. Nevertheless, for f > 0.1 the
curves detaches from the theoretical predictions. We can argue that this behavior is
due to the fact that for higher values of f , it is more probable that z enters in the
unstable regime making more difficult the convergence to the stationary states. For
κ > κc, the continuum of fixed points become unstable and the dynamics detaches
completely from the s curve. This is the reason why in average the opinion indices
reach the lower bound.
Eventually, we can notice that the standard deviations are enhanced at the critical
value κc, but for higher value of f the peak shifts towards higher values of κ. This
phenomenon can be explained by the theory presented in Harras et al. (2012). In
the article, Harras and collaborators investigate the increasing of the fluctuations in
a kinetic Ising system for an aperiodic external field. At odds with the stochastic
resonance in case of a periodic external forcing, the fluctuations do not emerge as a
consequence of an enhancement of the signal. Indeed, the opinion indices are con-
strained in the range [−1,1], thus the high peak in the standard deviation cannot be
explained as a divergence of the opinion indices. On the contrary, the amplification
of the fluctuations can be compared with the divergence of the susceptibility that
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Figure 5.6: The first frame shows the mean values of s1,t and its scaled standard
deviation as functions of the herding propensity κ. The second frames shows the
analogous quantities for the second asset. In order to evidence the dependence on
the parameter f , we have obtained the curves also for different values of f . The
average and the standard deviations have been performed over 300 simulations.

happens during a phase transition. This phenomenon has been called in Harras et al.
(2012) “noise-induced volatility”.

To conclude, we can summerize our findings in the following lines. Simplifying the
equations of the dynamics for the noise traders class, we have found the continuum
of stable points (s∗

1 = s, s∗
2 = s, z∗) and calculated the interval of z∗ values that

ensure the stability of the fixed points for κ < κc. In contrast, for κ > κc, the steady
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states are always unstable and the mean values s1 and s2 diverges from the sta-
ble points. The theoretical results have been compared to the average values of the
opinion indices obtained by simulated data. Figure 5.6 shows clearly the presence
of two regimes separated by the critical value κc. For κ < κc, the average opinion
index curve follows the theoretical prediction (eq. 5.17), whereas for κ > κc, the
fixed points loose the stability and the opinion indices diverge exponentially. There-
fore, we can conclude that the model presents a deep-rooted instability due to the
herding behavior.
At this point, we can deduce that the time series with the Ornstein-Uhlenbeck
herding propensity are characterized by the rapid passage of the system trough the
stable and unstable regime. As a consequence of the stochastic process, the herding
propensity κt can enter in the unstable regime, making the opinion indices diverge
exponentially from the equilibrium value. The transient growing behavior of the
opinion indices results in the faster-than-exponential growth of the prices as we can
see in a zoom of the simulation with Ornstein-Uhlenbeck κ in correspondence of
the bubbles at time t Ä 3600 time steps and t Ä 3800 (fig. 5.7). Furthermore, the
model is further complicated by the presence of time varying momentum Ht that
influences the decisions of the noise traders. In analogy to the explanation given by
Kaizoji et al. (2015) for the original model, the momentum induces an additional
sources of fluctuations in the dynamics and can enhance the formation of inherent
instabilities, creating self-reinforcing loops that sustain the growth of longer bubbles
even when κt reverts to the stable regime.
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Figure 5.7: The plot shows a zoom of fig. 5.2 in correspondence of the bubbles in
t Ä 3600 and t Ä 3800. The panels show the emergence of bubbles in the log-price
trend. The plots confirm that the emergence of the transient faster-than-exponential
behavior is triggered by the values of the herding propensity κ > κc that causes the
collective behavior of the noise traders and effecting the price. The growth of the
price is sustained by the price momentum even in the occasion of the reversal of the
herding propensity.
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Eventually, we aim to confirm quantitatively the typical faster-than-exponential
bubbles growth behavior in the simulations. As example, we concentrate on the bub-
ble of previous simulation at time t Ä 3600 (fig. 5.7). Following the same approach
used in Kaizoji et al. (2015) in the case of a single risky asset, we argue that when
κ > κc, the opinion indices increase exponentially in time

st = s0 + ceαt, (5.22)

and from visual inspection we argue that also log-prices grow exponentially:

log(Pt) = log(P0) + deβt. (5.23)

Here, s0, α, c, log(P0), β, d represent the coefficients to be fitted. Figure 5.8 shows the
fitted curves on the opinion indices and log-prices obtained by the models in eq.5.22
and 5.23, while the coefficients obtained by non linear regression are reported in tab.
5.2. From fig. 5.8 the faster-than-exponential behavior of the prices is confirmed.
Moreover, the values of α found in tab.5.2 are in agreement with the range of values
or at least the order of magnitude of the eigenvalues λ2,3 that characterize the
behavior of the mean-values s1(t) and s2(t) and determine the exponential growth
in the unstable regime. The derivation of the eigenvalues is reported in Appendix B
(eq. B.11).

Asset 1

Opinion Index s0 = 0.31 ± 0.02 α = 0.073 ± 0.001 c = 0.14 ± 0.01
Log-price log(P0) = 1.61 ± 0.001 β = 0.199 ± 0.0001 d = 0.027 ± 0.0002

Asset 2

Opinion Index s0 = 0.671 ± 0.001 α = 0.102 ± 0.0005 c = 0.062 ± 0.001
Log-price log(P0) = 1.497 ± 0.0004 β = 0.155 ± 0.0003 d = 0.041 ± 0.0001

Table 5.2: The table reports the values of the fitting of the models in eq. 5.23 and
eq. 5.22 for both assets. The first line shows the parameters relative to the opinion
index and the second line the parameters relative to the log-price.
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Figure 5.8: The figure shows a zoom of fig. 5.7 on the log-prices and the opinion
indices. The figure shows also the fitting curves obtained by regression on the models
in eq. 5.23 and 5.22. The dashed lines show the interval where κ > κc and the opinion
indices and the log-prices grow exponentially.
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5.4 Correlations between the assets returns
In order to gain some insight into the dynamic behavior of the model, it is useful to
analyse the co-movements of the returns of the two assets. The question is persued
in two different directions:

• analysis of the relationship between the fundamentalists expectations on the
correlations between the assets and the actual realized correlations,

• the impact of the noise traders on the formation of the correlation between
the assets returns.

5.4.1 Dependence of the correlations on parameter ρ
We aim at the comprehension of the relationship between the expected correlation
between the returns, represented by the exogenous parameter ρ and the realised
correlations. As a matter of fact, the analysis of the relationship between the corre-
lation imposed “a priori” and its realization a posteriori is significant to understand
the role of fundamentalists in the enlarged model.

In figure 5.9 we have plotted the Person correlation coefficient calculated on the
assets returns against different values of the correlation parameter ρ. The plot is
obtained maintaining f = 0, in order to silent the effect of noise traders in this stage
of the analysis. In the plot we have shown in dashed line the bisector of the frame in
order to emphasize the difference between the imposed correlation and the realised
correlation. First, we can notice that the trend of the plot is crescent and that in
absence of a priori correlation between the two asset, i.e. for ρ = 0, the realised
correlation is not zero (ρrealised Ä 0.2). Imposing ρ = 0 in eq. 4.36a and 4.36b, one
obtains that the fundamentalist risky fractions are now uncorrelated and depend
uniquely on the respective dividend-price process:

xf1,t = 1
γσ̄1

2

è
Ert,1 − rf + d1,t(1 + rd1)

P1,t

é
, (5.24)

xf2,t = 1
γσ̄2

2

è
Ert,2 − rf + d2,t(1 + rd2)

P2,t

é
. (5.25)

However, the equations of the prices are not uncoupled. Indeed, inserting the value
of ρ = 0 into the set of the parameters of the price equations (in app.A), one gets

b1,tP2,t + c1,tP
2
1,t + d1,tP1,tP2,t + e1,tP1,t + g1,t = 0, (5.26)

b2,tP1,t + c2,tP
2
2,t + d2,tP2,tP1,t + e2,tP2,t + g2,t = 0. (5.27)
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Figure 5.9: Plot of the Pearson coefficient of the asset returns as a function of the
exogenous correlation coefficient ρ, computed over 300 simulations with different
random seeds for T > 100 time steps. The simulation is obtained for f = 0, con-
stant herding propensity κ and total length T = 5000 time steps. The dashed line
represents the bisector line.

The two equations are still coupled and non-linear, which can explain the deviation
of the realised correlation from the zero.
When ρ > 0, the fundamentalist risky fractions are coupled and both the dividend-
price ratios give a contribution for the fundamentalist strategy (eq. 4.36a and eq.
4.36b). It is evident that the contribution of each asset enters in the equation with
different weights: 1/(1 − ρ2) and −ρ/(1 − ρ2). For instance, we focus on xf1,t (eq.
4.36a), but the analogous argument applies to xf2,t.
When ρ > 0, the two terms become 1/(1−ρ2) > 1 and −ρ/(1−ρ2) < 0. This means
that for x1,t the dividend price ratio d1,t/P1,t contributes positively, whereas the
second one d2,t/P2,t negatively. The consequence is that each risky fraction follows
independent trends. The lag between the fundamentalist risky fractions x1,t and x2,t
reflects also in the lag between the dividend-price ratios. This creates alternating
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periods in which asset 1 is more volatile than asset 2 or vice-versa. This phenomenon
increases the realised correlation in the assets returns.
On the other hand, when ρ < 0, the factor −ρ/(1 − ρ2) becomes positive, whereas
the first factor remains greater than one. Thus, both the dividend-price ratios give
a positive contribution to the risky fractions. Consequently, the two risky fractions
depend much more on both the dividend-price processes that now follow similar
paths. The absence of the lag in the price trends is reflected also in a reduction of
the correlation between the two assets. Nonetheless, even if the exogenous correlation
coefficient is negative, the realised correlation is positive but almost zero.
The point ρ∗ where the realised correlation and the correlation coefficient ρ meet
has a relevant meaning. In general, there is a discrepancy between fundamentalists
assumption on the covariance matrix and the realizations, except for this value.
Thus, fixing ρ = ρ∗ would satisfy the problem of self-consistency and would give a
natural justification to the correlations between the two assets.

5.4.2 Dependence of the correlations on the parameter f
The behavior of the correlation between the two assets returns does not depend
uniquely on the correlation factor ρ, but also on the parameter f . The latter regu-
lates the number of traders switching between the two noise traders sub-classes and
its value is exogenously imposed at the beginning of the simulation. Since f regulates
the flux of the traders and thus the opinion indices s1,t and s2,t, the analysis will
describe the impact of noise traders on the correlations between the asset returns.

Figure 5.10 shows the dependence of the Pearson coefficient against different values
of f . The first property to notice is the presence of a minimum in f Ä 0.2 − 0.3. It
is the benchmark of two different behaviors for ρ < 0.2 and ρ > 0.2.
In order to gain some insight into the problem we have plotted the cross correlation
function between the opinion indices s1,t and s2,t for different values of f . Figure
5.11 shows the cross-correlation coefficient obtained from the average over 100 sim-
ulations for different values of f . We remind that the cross-correlation coefficient of
two time series xt and yt is computed as

rxy(τ) = σxy(τ)ñ
σx(0)σy(0)

, (5.28)

σxy(τ) = 1
N − 1

NØ
t=1

(xt+τ − µx)(yt − µy). (5.29)

Where, we intend as µx, µy the mean values of xt and yt. From the plot, we can
immediately notice that the same discrepancy of behavior for f < 0.2 and f > 0.2
is still present, confirming the conjecture that the peculiar behavior of the returns
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Figure 5.10: Plot of the Pearson coefficient of the asset returns as a function of the
exogenous parameter f , computed over 300 simulations with different random seeds
for T > 100 time steps. The simulation is obtained for ρ = 0, constant herding
propensity κ and total length T = 5000 time steps. The errorbars are calculated as
the standard deviation over 300 simulations.

correlations is an effect of the opinion index dynamics. In order to visualize the
behavior of the opinion indices for the two different regimes, figure 5.12 shows two
examples of opinion indices tracks for f = 0.05 and f = 0.3. The decreasing trend
of the Pearson coefficient for f < 0.2 can be explained by the lack of correlation
between the opinion index dynamics. The cross-correlation coefficient is nearly zero
on average. Thus, the prices are the results of the balance between the fundamen-
talists and noise traders strategies. However, when f increases, the cross correlation
between s1,t and s2,t is no more negligible. For f > 0.2 the cross-correlation reaches
high values, indicating a larger correlation between the opinion indices. As we can
see in figure 5.12 (lower panel) the opinion indices are not only correlated, but also
near to the upper limit, which means that for most of the time the noise traders
invest in the risky assets. The price dynamics is then led by the noise traders.
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Figure 5.11: Plot of the cross-correlation coefficient of the opinion indices s1 and
s2 for different time lags τ . The cross-correlation is computed as average over 100
simulations for each time lag.

On the contrary, for f < 0.2 the opinion indices are more oscillatory, but they
are out of phases, causing the fact that from time to time one asset is more attract-
ing than the other and more traders invest in it (fig. 5.12, upper panel). It follows
that the assets alternate periods of tranquility to periods of high deviations as they
are out of phase. For f Ä 0.2, the signature of this behavior is more pronounced
with the result that the two opposite trends compensate each other and thus the
correlation reaches the minimum.
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Figure 5.12: The figure shows in two different panels the comparison between the
opinion indices s1,t, s2,t for f = 0.05 and f = 0.3 (with constant κ and ρ = 0.3). The
time series are obtained using ρ = 0.3 and the set of parameters listed in 5.1. The
upper panel shows that for f < 0.1, there exists a lag between the opinion indices
that determines correlations in the assets returns. On the contrary, the lower panel
shows that for f > 0.1 the lag does not exist anymore and the opinion indices follows
similar trends, increasing the correlations between the two assets.
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5.5 The Stylized Facts of the financial market
The presence of ubiquitous statistical properties in financial data is well known.
There exists a vast literature that tries to understand the emergence of these prop-
erties. A common thinking in a large part of the literature (Sornette (2014), Lux
(1998)) is that, as in a complex system, from the micro-interactions among a large
number of traders can emerge universal statistical properties, independent of the
microscopic details of the interactions. Agent based models have furnished the nat-
ural framework for the implementation of the interactions among the investors and
the analysis of the link between the micro-interactions and emergence of a collective
behavior.

Our model is perfectly in line with this spirit. Reason why it is important to check
if the model is able to reproduce some empirical statistical laws. In this section,
we concentrate on a brief review of the most common “stylized facts” that can be
reproduce by ABMs, adapted from Lux (2009):

1. Fat tails of asset returns.
The shape of the distribution of the returns deviates from the shape of the
Gaussian distribution. As a matter of fact, the empirical distribution of returns
has fatter tails than the Gaussian distribution. From a probabilistic point of
view, it means that rare events happens more often than what a Gaussian
distribution could predict. From a statistical point of view, the difference can
be grasped in the fourth moment of the distribution. The excess of kurtosis k
is a measure of the fourth moment of a distribution:

k = 1
T

TØ
t=1

1rt − r̄

σ

24
− 3. (5.30)

The Gaussian distribution is characterized by null kurtosis k = 0 and any
distribution with k > 0, or excess forth moment is called ’leptokurtic’. The
shape of a leptokurtic distribution has more mass in the centre and in the
tails.

2. Volatility clustering and long memory in the autocorrelation function of abso-
lute returns.
The returns are not identical distributed RVs. A benchmark of this fact is the
volatility clustering, or the phenomenon for which there exists periods of high
peaks alternated by periods of tranquility. The burst-like phenomenon causes
immediate nonhomogeneity in the distribution of higher moments. This effect
is visible in the autocorrelation function of different powers of the asset returns
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|rt|γ. At difference of signed returns, the powers of the absolute returns man-
ifest long-memory properties. Indeed, for them, the autocorrelation function
does not decays exponentially fast, but with an hyperbolic decay.

As pointed out by Lux (2009), even though such observations are ubiquitous in
financial data, a straightaway explication is still missing. However, the literature in-
vestigating the emergence of these properties through adequate models is vast. After
the initial studies of Mandelbrot (1963) on the fat tails of returns distributions, sub-
sequently the first agent based models able to reproduce volatility clustering and
long-memory in the autocorrelations appeared (Kirman (1993), Lux and Marchesi
(2000), Lux and Marchesi (1999)). With the same spirit, in its original formulation,
the model of Kaizoji et al. (2015) was able to reproduce the stylised facts of the
financial data, but also a new interesting phenomenon: financial bubbles. Following
the same spirit, our extension of the original market model is still able to reproduce
bubbles, but it is necessary to check if it is able to recreate also the stylized facts.

First, we aim to demonstrate that the distributions of the returns of the two as-
sets are fat tailed. This property can be highlighted by the cumulative distribution
of the absolute returns. Indeed, as shown in Lux (2009), by extreme values theory,
it can be proved that the decline of the tails can be approximated by a Pareto
distribution

p(x) ∼ x−1−α. (5.31)
The tail parameter α in empirical observations is usually comprehended in the in-
terval [2,4]. Figure 5.13 shows the cumulative distributions of the absolute returns
for asset 1 and asset 2, defined as F (x) = Prob(X ≥ x) in log-log scale. Hence, the
linear trend individuated in the plot is directly related to the power law distribution
of the tails. Therefore, we have fitted the linear trend of the cumulative distribu-
tion in order to check if the tail parameter α is found in the empirical interval or
not. As we can observe from fig. 5.13, the tail parameters fitted on the cumulative
distributions are perfectly in agreement with the interval found in data. In order
to be more quantitive, we have persued a statistical approach. Following the work
of Lux and Marchesi (2000), the analysis is based on the estimation of the value
of the tail index of the abolute returns time series using the Hill estimator (Hill
(1975)). The Hill-estimates is obtained ordering the sample of data in descending
order x1 ≥ x2 ≥ ... ≥ xk ≥ ... ≥ x1, with k the number of data in the ’tail’ of the
distribution. The tail index is, thus, computed as

α = 1
1
k

qk
i=1

è
ln(xi) − ln(xk+1)

é . (5.32)

We have estimated the tail indices for asset 1 and asset 2 on 100 different simula-
tions of length T = 5000 time steps. The Hill-estimates have been computed over
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Figure 5.13: The figure shows the cumulative distribution function of the absolute
returns for asset 1 and asset 2 for the simulation with the parameters used in tab.5.1,
ρ = 0.3 and f = 0.05 and Ornstein-Uhlenbeck κt. The dashed lines represent the
linear fit correspondent to the fat tails of the distribution, characterized by power
law decay p(x) ∼ x−1−α. The boxes report the values of the tail parameters α.

the 15% of the observations. In addition, we have added the computation of the
mean of excess kurtosis k over 100 simulations. The results presented in table 5.3

mean value min value max value excess kurtosis

Asset 1 2.69 1.75 3.53 7.52 ± 7.68

Asset 2 2.83 1.95 3.43 7.32 ± 11.93

Table 5.3: The table reproduces the values of the tail indices for asset 1 and asset 2
calculated on 100 simulations with different random seed of length T = 5000 time
steps. In table we report the mean value of the tail indices and the range of estimates
(min value, max value) using the 15% of the absolute returns. In the last column, the
table reports the mean-value of excess kurtosis for the distributions of the returns,
computed over 100 simulations with its standard deviation. All the simulations use
f = 0.05, ρ = 0.3 and Ornstein-Uhlenbeck κt.

are close to the empirical findings, according to which the range of the tail index
is [2,4]. Moreover, the mean value of the excess kurtosis is positive, confirming the
fact that the distribution of absolute returns is leptokurtic.
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Eventually, we are interested in the long-memory properties in the distributions
of powers of the absolute returns. Figure 5.14 shows the autocorrelation functions
for signed and absolute returns for both assets, obtained as an average over 300
simulations with different random seeds and total length T = 6000 time steps, but
considering only the values t > 1000 time steps.
For both assets, the signed returns decays to the zero exponentially fast. On the con-
trary, the absolute returns have a slower-than-exponential decay. The slower decay
is said to be hyperbolic if it is a power law decay, namely

ρ(k) ∼ Dk−α, (5.33)

for some D and α > 0. The hyperbolic decay is evidence of the long range depen-
dence in volatility. Therefore, signed returns are almost uncorrelated, preventing
traders from any possibility to arbitrage, whereas long-range dependence is found
in the absolute returns.

Overall, our model is able to reproduce the typical stylised facts of the financial
data as far as regards the long-memory in volatility and the presence of fat tails in
the returns distributions.

71



5 – Time series description and theoretical analysis

Figure 5.14: The figure shows the typical autocorrelation functions of signed and
absolute returns for asset 1 and asset 2. The autocorrelation functions have been
computed as an average over 300 simulations with different seed and Ornstein-
Uhlenbeck κt and T = 5000 time steps. In order to compute a better estimation we
have used the values for t > 1000 time steps. For the simulation, we have used the
parameters in tab. 5.1, ρ = 0.3, f = 0.05.

72



Chapter 6

Conclusion

The goal of the present Thesis is to introduce the original market model formulated
by Kaizoji et al. (2015) and extend it to the multi-assets framework. In the original
version, the model was an equilibrium ABM of fundamentalists and noise traders
that can invest in a risky asset or a risk-free asset. The major result obtained by
the underlying model is the reproduction of faster-than-exponential price growth,
typical of financial bubbles.

Chapter 2 and Chapter 3 have been dedicated to the description of the original
model and the explanations of the major characteristics of the time series and a
detailed theoretical analysis of the formation of the super-exponential growth of the
price. In Chapter 3, we have introduced the extension of the original model to the
multi-assets framework. Particular emphasis was given to the formulation of funda-
mentalists and noise traders strategies.
Fundamentalists invest the portion of the wealth into the risky assets that maxi-
mize the expected utility function on future wealth. Nevertheless, in the presence of
more risky assets, fundamentalists have to form expectations on the future returns
correlations, choosing a priori a correlation coefficient for the assets. Though, their
choice may not be consistent with the realised correlations and their expectation on
future relations can effect the market development.
As far as regards the noise traders class, it has been divided into two subgroups of
traders holding only one type of risky asset. Any noise trader invests all his fortune
into one type of asset at the time, but the switching between the two sub-classes
allows to diversify the aggregate portfolio of the whole class. In Chapter 5 the main
findings of the modified model have been presented. The most relevant result of
the typical time series with Ornstein-Uhlenbeck herding propensity is the correlated
build-up of bubbles in the prices trends. In order to deepen our theoretical insight
into the model, we have adopted a mean-field approach and derived the mean-values
equations regulating the opinion indices of the noise traders class. According to our
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findings, there exists two different regimes according to the value of the herding
propensity. When κ > κc, the system is unstable and the the opinion indices di-
verges from their stable equilibria. On the contrary, for κ < κc, the stability of the
opinion indices depends on the composition of the noise traders sub-classes. The
excess of traders investing on one risky assets or the other can cause inner instabil-
ities. the presence of a inherent instabilities created by herding behavior has been
confirmed also by the simulated data. Therefore, bubbles are triggered by the time-
varying herding propensity. When the herding propensity overcome the threshold,
the system enters in an unstable regime: the noise traders are influenced by the in-
creasing number of traders holding the risky assets. The emergence of the collective
agreement among noise traders influences the price dynamics and thus the price
momentum tracks, which in turn conditions the number of risky assets holders. The
reinforcing feedback loop is at the origin of the fact that the faster-than-exponential
growth is sustained even when the herding propensity reverts to the stable range.
The second part of the analysis regards a deeper research on the correlations be-
tween the two assets and how they depend on fundamentalists expectations and on
the exogenous parameter f controlling the switching of noise traders between the
sub-classes. The most important aspect is the discrepancy between the formation
of expectations by fundamentalists and the real correlations in time series. Funda-
mentalists are not always correct on the future development of the market and their
beliefs can influence the price tracks. However, there exists a value of the correlation
that matches with the realised correlation. The presence of the intersection opens
to the possibilities of new strategies aiming to actually understand the real value of
the correlations through a learning method based on previous data. In the present
model, fundamentalists have constant expectations but they could actually update
their beliefs in time learning from previous data. In this way, they could match the
expected correlations with the realised correlations.
Eventually, we have showed that the model is able to retrieve many stylized facts of
the financial market, such as fat tails in the returns distribution and the long-range
memory in the auto-correlation function of the volatility.

In conclusion, we have achieved the goal to extend the original model and derived
a modified version that takes account of two types of risky assets. The model is
able to reproduce financial bubbles in the case of Orstein-Uhlenbeck propensity and
the realised correlations between the assets have been explained in the light of fun-
damentalist expectations and noise traders behavior. Possible future research on
the present work regards the possibility to change the setup of the noise traders
class in presence of multiple choices and, as mentioned, the possibility to soften the
fundamentalists expectations on future returns and the correlation coefficient.
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Appendix A

A.1 Derivation of the prices equations

In this section, we compute the derivation of the price dynamics proceeding from
the excess demand equilibrium conditions for each stock (eq. 4.69):
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(A.2)

Considering the definition of the fundamentalist risky fractions xf1,t and xf2,t in eq.
4.4:
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where the parameters Ai,t+1, Bi,t+1, Ci,t+1 can be simply found to be

A1,t = d1,t(1 + rd1)
γσ̄2

1(1 − ρ2) , (A.3a)

B1,t = d2,tρ(1 + rd2)
γσ̄1σ̄2(1 − ρ2) , (A.3b)

C1,t = (σ̄2
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1σ̄

2
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2
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Consider the equilibrium condition for asset 1 (eq. A.1). After some algebra, one
can collect all the terms depending on the prices and rewrite eq. A.1 as:
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Which can be read in a simpler way as:
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Similarly, we can derived the equation for the second asset:
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The coefficients of the equations are found by direct comparison and they are listed
in the following:
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D
+ A2,tW

f
t−1

xf2,t−1

P2,t−1
−B2,tW

f
t−1

xf1,t−1

P1,t−1

+ C2,tW
f
t−1

d1,tx
f
1,t−1

P1,t−1
+ d2,t

xf2,t−1

P2,t−1
+ (1 − xf1,t−1 − xf2,t−1)Rf

 , (A.7e)

f2,t = −B2,tW
f
t−1

(1 − xf1,t−1 − xf2,t−1)(1 + rf ) + d1,t
xf1,t−1

P1,t−1
+ d2,t

xf2,t−1

P2,t−1

 , (A.7f)

g2,t = A2,tW
f
t−1

(1 − xf1,t−1 − xf2,t−1)(1 + rf ) + d1,t
xf1,t−1

P1,t−1
+ d2,t

xf2,t−1

P2,t−1

 (A.7g)
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Appendix B

B.1 Stability analysis of the line of fixed points
In this section, we want to analyze the conditions of the stability for the line of fixed
points for the mean-value equations of z, s1 and s2, defined in section 5.3. The line
of fixed points is (s∗

1 = s, s∗
2, z

∗), where s is defined in eq. 5.17.
In order to study the stability of the continuum of fixed points we consider the
entries of the Jacobian matrix J evaluated at the equilibrium:

a11 = dż

dz
= 0, (B.1)

a12 = dż

ds1
=

κf
4 z

∗(1 + s) if s2 − s1 > 0
κf
4 (1 − z∗)(1 + s) if s2 − s1 < 0

(B.2)

a13 = dż

ds2
=
−κf

4 z
∗(1 + s) if s2 − s1 > 0

−κf
4 (1 − z∗)(1 + s) if s2 − s1 < 0

(B.3)

a21 = dṡ1

dz
= 0, (B.4)

a22 = dṡ1

ds1
=


−
1
p−+p+

2

2
+ κ− (1+s)2

4 κf if s2 − s1 > 0
−p−+p+

2 + κ+
3

1−z∗

z∗

4
κf
4 (1 + s)(1 − s) if s2 − s1 < 0

(B.5)

a23 = dṡ1

ds2
=

κf
4 (1 + s)2 if s2 − s1 > 0

1−z∗

z∗
κf
4 (1 + s)(s− 1) if s2 − s1 < 0

(B.6)

a31 = dṡ2

dz
= 0, (B.7)
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a32 = dṡ2

ds1
=

κf
4

z∗

1−z∗ (1 + s)(s− 1) if s2 − s1 > 0
κf
4 (1 + s)2 if s2 − s1 < 0

(B.8)

a33 = dṡ2

ds2
=
−

1
p−+p+

2

2
+ κ+

1
z∗

1−z∗

2
κf
4 (1 + s)(1 − s), if s2 − s1 > 0

−p−+p+

2 + κ− κf
4 (1 + s)2 if s2 − s1 < 0

(B.9)

The discontinuity in the derivatives is due to the condition of non-negativity imposed
to the transition probabilities p+

12 and p+
21. Considering separately the cases s2−s1 > 0

and s2 − s1 < 0, one can find the equations for the eigenvalues λi of the non-linear
differential equations, finding the roots of J − λI = 0:

(−λ)[(a22 − λ)(a33 − λ) − a23a32] = 0. (B.10)

Thus an eigenvalue is simply λ1 = 0, whereas the other two roots can be expressed as
a function of the determinant and the trace of the sub-matrix J Í obtained eliminating
the first row and the first column from J . Namely, we have

λ2,3 = τ

2 ± 1
2

√
τ 2 − 4∆, (B.11)

where τ and ∆ are defined as

τ = a22 + a33, (B.12)
∆ = a22a33 − a23a32. (B.13)

In order to ensure the stability of the fixed points, it is necessary that λ2,3 < 0. This
conditions is reflected on the following conditions on the trace and the determinant:

(1) τ < 0 and (2) ∆ > 0. (B.14)

The insertion of the values of Jacobian entries in the first condition leads to

(1)


−(p− + p+) + 2κ− κf

4 (1 + s)2 +
3

z∗

1−z∗

4
κf
4 (1 + s)(1 − s) < 0 if s2 − s1 > 0,

−(p− + p+) + 2κ− κf
4 (1 + s)2 +

3
1−z∗

z∗

4
κf
4 (1 + s)(1 − s) < 0 if s2 − s1 < 0.

(B.15)

The condition on the determinant determines the following if κ < p++p−

2 = κc:

(2)


−p−+p+

2 + κ− κf
4 (1 + s)2 +

3
z∗

1−z∗

4
κf
4 (1 + s)(1 − s) < 0 if s2 − s1 > 0,

−p−+p+

2 + κ− κf
4 (1 + s)2 +

3
1−z∗

z∗

4
κf
4 (1 + s)(1 − s) < 0 if s2 − s1 < 0.

(B.16)
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If κ > κ we have the opposite inequality. The four conditions can be satisfied
simultaneously only in the case κ < κc. In this case, the line of fixed points is stable
only if z∗ ∈ [zb, za], where za and zb are obtained by eq. B.16 as the range of values
satisfying the conditions (2):

za(κ) =
κf
4 (1 + s)2 + p++p−

2 − κ
κf
2 (1 + s) + p++p−

2 − κ
, (B.17)

zb(κ) =
κf
4 (1 + s)(1 − s)

κf
2 (1 + s) + p++p−

2 − κ
. (B.18)

The critical lines for z∗ are discussed in sec. 5.3.
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B.2 Comparison between log-prices and moving
window Pearson correlation

Figure B.1 shows four plots obtained from different simulations with different seeds.
Each plot shows the comparison between the log-prices log(P1,t), log(P2,t) and the
moving window Pearson correlation. As explained in sec. 5.2 during the bubbles
regime the moving window Pearson coefficient reaches the maximum, indicating
the synchronization betweeen the two assets, wheres during the stable regime the
correlation is very fluctuation. With this illustrative example, we aim to pass the
idea that the synchronization phenomenon is not limited to the example presented
in sec. 5.2, but it is present in the simulated time series for different seeds.

Figure B.1: The figure shows four different plots showing the comparison between
the bubbles regime and the moving window Pearson coefficient, obtained for 4 dif-
ferent simulations with different seeds. The moving window Pearson correlation is
computed over a time window of w = 25 time steps. The plots show two differ-
ent scales: on the right the scale for the moving correlation and on the left for the
log-prices.
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