
POLITECNICO DI TORINO
DEPARTMENT OF CONTROL AND COMPUTER

ENGINEERING (DAUIN)

Master degree course in Electronic Engineering

Master Degree Thesis

In-Field Functional Test of CAN
Bus Controller

Supervisors:
prof. Matteo Sonza Reorda
prof. Riccardo Cantoro

Candidate
Sandro Sartoni
ID Number: 252308

Academic Year 2018-2019

Summary

The presented thesis work is centered on the topic functional test of a CAN Bus
peripheral.

The reason behind this work is due to the fact that such peripherals, that are
usually employed in the automotive sector, are often part of safety-critical systems,
thus making the constant test of their hardware vital, even during the operational
phase. Functional test was, hence, adopted since it’s the only solution that allows
the in-field test during Unit Under Test’s idle time intervals without any additional
hardware that would otherwise be necessary if a Design for Testability approach was
adopted.
The test is based on a test program that resides in the UUT’s memory and is
launched whenever necessary. The CAN Controller’s output values, when running
the test, should be compacted and stored in order to compare them against the
golden ones, i.e., values from the functioning circuit, in order to check the correct
functioning at any time.

In order to develop the test a CAN Peripheral module was needed and, since all
of the simulations and tests were conducted via software, no physical hardware was
employed; on the contrary, an open RTL implementation of the SJA1000 CAN Bus
peripheral, developed in the early 2000s by Philips, now NXP, was adopted.

Controlling the peripheral behavior by means of simulations was a necessary in-
troductory step in order to understand whether there were problems or expedients
to adopt when working with such controller.
The main problem in this phase consisted in an abnormal propagation of undefined
signals throughout the whole peripheral in the post-synthesis version. This was due
to the absence of a reset value - as required by the specifications - for some registers
that were involved in the internal logic, leading to the propagation of such undesired
values.

Once this problem was fixed, the next step consisted in the integration of the

ii

CAN Controller in a SoC, in particular an OpenRisc one, as most modern systems
are based on SoCs that already implement a CAN peripheral. This was achieved by
connecting the two interfaces and configuring the CAN Controller’s starting address
on the CPU’s memory map.

Concurrently, the necessary drivers were developed. The drivers have been cre-
ated by following the description found in the datasheet of the SJA1000 peripheral
and checking the open source drivers provided by NXP for their SJA1000 Controller.
At the same time, it was necessary to consider the actual functionalities offered by
the adopted controller, as they do not exactly overlap with the datasheet’s ones.

The drivers’ test has been conducted both with the pre-synthesis version of the
CAN Controller - necessary to test their correctness from a logical point of view -
and with the post-synthesis version, in order to do some fine-tuning.

Once the drivers were working, it was time to develop the actual test program,
from here on SelfTest Library, or STL.
The test program is based on a testbench configuration that consists of two nodes
connected through a CAN bus. The difference between the real case and the pro-
posed testbench is, from an electrical point of view, the absence of a CAN transceiver
that converts the TX and RX lines into the CANH and CANL the standard requires; how-
ever, this was solved by appropriately connecting the two modules.
The program is comprised of many submodules that can be arranged into as many
test programs as necessary that can fit in multiple idle state time intervals. Even-
tually, if the the idle state interval is long enough, the test can be launched as a
whole.
The test requires the presence of at least two nodes, as to test both the receiving
and the transmitting logic.

While simulating the program running on the SoC, the internal and interface
signal activity of the peripheral was recorded and then used to perform a fault sim-
ulation based on the stuck-at class of faults. In order to check how well the test
program was performing, other programs were developed, especially tests that could
emulate more realistic scenarios.

The final result shows a test coverage of 90.24% of all of the stuck-at faults.

iii

Acknowledgements

I would like to thank my two supervisors Matteo Sonza Reorda and Riccardo Can-
toro for the constant support and help throughout the whole thesis work.

I would also like to thank my parents, without them nothing of what I’ve achieved
so far could have been possible.

iv

Contents

Summary ii

Acknowledgements iv

1 Introduction 1
1.1 CAN Bus Standard . 1
1.2 Testing Generalities . 4

1.2.1 Design for Testability . 6
1.2.2 Functional Test . 8

2 Adopted CAN Controller 11
2.1 SJA1000 CAN Implementation . 11
2.2 Verilog Hardware Description . 13
2.3 Standalone Controller Simulation . 17
2.4 Standalone Controller Fault Simulation 20

2.4.1 Fault Simulation Generalities 20
2.4.2 Standalone Fault Simulation Issues 21

3 Peripheral Integration and Drivers Development 23
3.1 SoC Integration . 23

3.1.1 Interfaces mismatch . 24
3.1.2 Address Mapping . 25

3.2 C Drivers . 26
3.2.1 Header File: can_addr.h . 27
3.2.2 Source File: can_addr.c . 33

4 SelfTest Library 45
4.1 Case Study . 45
4.2 Test Program . 46

4.2.1 Bit Rate test . 46
4.2.2 Normal Mode test . 48

v

4.2.3 Self-Test Mode test . 51
4.2.4 Listen Only Mode test . 52
4.2.5 FIFO test . 53
4.2.6 Errors test . 55
4.2.7 Arbitration test . 57
4.2.8 Acceptance Filter test . 59

5 Experimental Results 61

6 Conclusions 67

Bibliography 69

vi

List of Tables

2.1 Output Control Register . 14
5.1 Test programs details . 61
5.2 Faults Report of the CAN Controller 62
5.3 Faults Report of the STL subprograms 63
5.4 Faults Report of the comparison test programs 64

vii

List of Figures

1.1 CAN typical waveform . 2
1.2 Example of CAN Network with terminating resistors 3
1.3 Base Format Data Frame . 4
1.4 Stuck-at fault example . 5
1.5 An IC including JTAG hardware . 6
1.6 Scan Chain implementation . 7
2.1 Block Diagram of the SJA1000 CAN Controller 12
2.2 BasiCAN Registers Address Allocation 14
2.3 PeliCAN Registers Address Allocation [part 1] 15
2.4 PeliCAN Registers Address Allocation [part 2] 16
2.5 Pre-Synthesis Standalone Controller Waveforms 17
2.6 Post-Synthesis Standalone Controller Waveforms 17
2.7 Some registers which value is not affected at reset time 18
3.1 CAN Interface Wiring . 25
4.1 Block diagram of the test-bench. 46

viii

Listings

2.1 Portion of the TCL script used in simulation 19
2.2 TCL script used in the fault simulation process 20
3.1 Snippet from the xsv_fpga_defines.v file 25
3.2 General registers mapping in can_addr.h file 27
3.3 BasiCAN registers mapping in can_addr.h file 28
3.4 PeliCAN registers mapping in can_addr.h file 29
3.5 Data structures in can_addr.h file . 31
3.6 Function prototypes in can_addr.h file 33
3.7 canPeriphInit function . 34
3.8 irqEnable function . 35
3.9 transmitMsg function . 36
3.10 receiveMsg function . 38
3.11 selfTxRx function . 41
4.1 Bit Rate Test subprogram . 47
4.2 Normal Mode Test subprogram . 48
4.3 Self-Test subprogram . 51
4.4 Listen Only Mode Test subprogram 52
4.5 FIFO Test subprogram . 53
4.6 Error Test subprogram . 55
4.7 Arbitration Test subprogram . 57
4.8 Acceptance Filter Test subprogram 59

ix

Chapter 1

Introduction

1.1 CAN Bus Standard
The Controller Area Network, or CAN, Bus is a communication bus standard first
introduced in 1986 by Bosch that is intended to work even in noisy environments
such as automotive applications. It’s used for serial communication applications
among Microcontroller Units.
In order to achieve such features, the peripheral has to be robust; this quality is
achieved by means of:

• Differential Signals: the CAN Bus consists of a pair of lines, named CANH and
CANL; the transmitted data is handled in a way such that any receiving node
can restore the original information by evaluating the subtraction between the
signal on the CANH line and the one on the CANL line.
From an electrical point of view, at least generally speaking as the actual
implementation depends on the particular version of the standard adopted,
when both signals are idle, i.e., a logical 1’b0 - also known as dominant bit -
is being transmitted, they have a ' 2.5V level with a 5V power supply, when
transmitting a logical 1’b1 - also known as recessive bit - the CANH line is on
a ' 3.5V level, while the CANL one is on a ' 1.5V level.

• Bit Stuffing: the encoding adopted for this protocol is the Non Return to
Zero, or NRZ, and the clock is not transmitted on a separate line along the
data bits - as for the SPI protocol; the receiver simply synchronizes on 1 → 0
transitions. If the message presents sections in which the receiver cannot
resynchronize frequently enough with the transmitter, the two will drift apart
and the receiver will sample the incoming bits when it’s not supposed to. To
avoid such problem, bit stuffing is adopted as it prevents loss of synchronization
between transmitter and receiver.

1

1 – Introduction

In general, it is performed by means of inserting an opposite polarity bit
when finding a sequence of 5 consecutive bits of the same polarity, e.g. if
the transmitted message requires a sequence of five zeros, the next bit will
necessarily be a 1 no matter which was the next "scheduled" bit, and viceversa.
All of the stuffing bits will be then removed by the receiver(s) node.

Figure 1.1. CAN typical waveform

The CAN Bus protocol consists of a multi-master bus, each node having the
capability of sending messages to any other node as soon as the bus is idle.
There is no need for a Bus Arbiter as there’s no possibility of harmful collisions of
data, neither from a logical or electric point of view.

From a logical point of view, the standard has been developed in a way such
that, in case of collision, the dominant bit always wins over the recessive one. In
this way, if two or more nodes are transmitting at the same time and one of them
transmits a recessive bit while others are transmitting a dominant one, the bus will
always present a dominant bit. The recessive bit’s node is then capable of finding
the discrepancy and therefore stop its transmission, re-scheduling it once the current
one is over. This is also know as Arbitration Lost State. A node that has to send a
message will send it as soon as the required command is received, if an arbitration
loss occurs it will suspend it and retry later.

From an electrical point of view, every node adopts an open drain technology
which means that the transmitting logic can only drive the CANL line to a low volt-
age state value and the CANH line to a high voltage state value (dominant bit), the
other state (recessive bit) is obtained by means of a couple of terminating resistors,
each one of 120Ω, that ensures a voltage equal to VDD

2 on both lines if no dominant
bit is sent or no transmission is occurring. In this way, even if there are two nodes
transmitting, there can be no short circuit and the whole network is therefore safe.

The typical interconnections configuration can be seen in figure 1.2. For the
sake of simplicity only three nodes have been represented even though there could
be many more.

2

1.1 – CAN Bus Standard

Vss

Driving
Logic

Node 0

Node n-1

Node i

CANH

CANL

120Ω 120Ω

Figure 1.2. Example of CAN Network with terminating resistors

The CAN standard supports four different frames (i.e., types of message), that
are:

1. Data Frame: a message to transfer data from a sending node to one or more
receiving nodes.

2. Remote Frame: a node requests data from a source node. A remote frame is
followed by a data frame containing the requested data.

3. Error Frame: any bus participant may signal an error condition at any time
during a transmission.

4. Overload Frame: a node can request a delay between two data or remote
frames.

As for Data Frame, messages are divided into different fields like the ID (the
identifier of the recipient of the message), DLC or Data Length Code (the number
of bytes to be sent), DB or Data Bytes (the actual message), and CRC for error
detection. The recipient notifies the transmitter of the correct reception by means
of an Acknowledge bit.
Every node is equipped with an Acceptance Filter that is in charge of deciding
whether the receive message is intended for that node, based on the ID, RTR and
DB sent with the message. Generally speaking, each node has a range of admitted
IDs and whatever message which ID does not belong to such range will be correctly
received (if the settings are correct) setting, eventually, the Acknowledge bit; the

3

1 – Introduction

message, however, will not be stored anywhere so that it cannot actually be retreived
by the Controller.

Data Frames come in two formats with respect to the ID size: 11 bits for the
Base format, and 29 bits for the Extended format.

DATA

CAN

HI

CAN

LO

Arbitration Field Control Data CRC Field End of Frame
Complete CAN Frame

0000000101000000001000000010100001100000001011111111111

11 4 8 15

S
ta

rt
 o

f
F

ra
m

e

ID
1
0

ID
9

ID
8

ID
7

ID
6

ID
5

ID
4

ID
3

ID
2

ID
1

ID
0

R
e
q
u
.
R

e
m

o
te

ID
 E

x
t.
 B

it

R
e
s
e
rv

e
d

D
L
3

D
L
2

D
L
1

D
L
0

D
B

7

D
B

6

D
B

5

D
B

4

D
B

3

D
B

2

D
B

1

D
B

0

C
R

C
1
0

C
R

C
9

C
R

C
8

C
R

C
7

C
R

C
6

C
R

C
5

C
R

C
4

C
R

C
3

C
R

C
2

C
R

C
1

C
R

C
0

C
R

C
1
4

C
R

C
1
3

C
R

C
1
2

C
R

C
1
1

C
R

C
 D

e
lim

it
e
r

A
c
k
n
o
w

.
S

lo
t
B

it

A
c
k
n
o
w

.
D

e
lim

it
e
r

E
O

F
6

E
O

F
5

E
O

F
4

E
O

F
3

E
O

F
2

E
O

F
1

E
O

F
0

IF
S

2

IF
S

1

IF
S

0

Figure 1.3. Base Format Data Frame

A CAN Bus peripheral always includes a controller which elaborates commands
sent from another module (e.g., a microprocessor) and sets everything to correctly
send and receive messages. It handles all of the error conditions as well, providing
the outer world a register-based interface in which there are command, status and
data registers. Details on the registers interface can be found in section 2.2.

Even though every CAN Controller manufacturer ensures the same function-
alities, as required by the standard, the actual implementation of such peripheral
depends on the producer. A brief list of some of the main implementations is:
SJA1000 by NXP, bxCAN by STMicroelectronics, TI TMS230, and Infineon Multi-
Can.
In chapter 2 the SJA1000 model will be described, since this is the CAN implemen-
tation adopted in this work.

1.2 Testing Generalities
The aim of this thesis work consists, as will be thoroughly described later on, in
testing the adopted CAN peripheral by functional means.

To test an integrated circuit consists in applying a suitable set of input stimuli
to excite and make observable physical defects at - at least - one of the IC’s output
ports. This is a crucial step for every device in general and, in particular, for all of
the applications in which safety and reliability are of paramount importance.
These defects may stem from many different causes and taking each and every one
of them into account would be infeasible due to the huge number, this is why the

4

1.2 – Testing Generalities

general approach consists in creating fault classes that model physical defects.

One of the most adopted classes is the stuck-at fault one. As the name suggests,
this faults’ class models physical defects by assuming that a certain line in the netlist
is either stuck to a logic 1’b0 or a 1’b1; the former case is called stuck-at zero fault
while the latter is the stuck-at one fault. This obviously can be applied to any wire
in the netlist.

In picture 1.4 there’s a rather simplistic example of a stuck-at zero fault on the
G wire: whatever value is applied to said wire the only displayed value will be a
logic 1’b0. In order to notice the presence of such fault it’s necessary to excite the
fault first, that is, to force the opposite value on the line under test: in this case, it
means to make sure to have a logic 1’b1 on G.
Next, it’s necessary to make the discrepancy observable at the output: in order to
do so, F has to be on a 1’b1 level otherwise Z would be equal to 1’b0 no matter
what happens in the other circuit section. The input vector that tests G/0 comes as
a consequence of the previous observations.
It’s relevant to notice that there could be many different vectors able to test the
same fault: in this case, instead of having CD=2’b10 it could have been the opposite
value CD=2’b01, or even CD=2’b11.

A

B

C

D

Z

F

G

1'b1

1'b1

1'b1

1'b1

1'b0

1'b1/1'b0

1'b1/1'b0

Figure 1.4. Stuck-at fault example

There are several commercial tools capable of performing a fault simulation.
Fault simulating consists in, given a list containing all the faults in a DUT and a set
of input vectors to apply to the DUT, evaluating, usually in terms of a percentage,
how many faults are tested by said stimuli. Eventually, it’s even possible to run a
software tool named ATPG, or Automatic Test Pattern Generator, that is capable

5

1 – Introduction

of, given the circuit, finding a set of input vectors with an associated fault coverage.

When dealing with purely combinational circuits, ATPG tools work well in most
cases and are capable of providing high fault coverages in a relatively small amount
of time. The same result is, however, not achieved when dealing with sequential
circuits: the presence of flip flops forces the tool to follow the states through which
the netlist under test evolves, thus requiring much more time and returning worse
results.
Since most integrated circuits contain sequential logic, two main ways, alternative
to the usage of the ATPG, can be adopted.

1.2.1 Design for Testability
One way consists in using Design for Testability modules, also known as DfT. A
Design for Testability approach implies a certain number of different solutions that
require the introduction of additional hardware and/or the modification of the al-
ready present one in order to facilitate the test process.
Even though this section’s aim is not to describe in detail how DfT is implemented,
in order to demonstrate the additional hardware requirements, two DfT techniques
will be shown below.

Figure 1.5. An IC including JTAG hardware

In figure 1.5 is reported the internal structure of an integrated circuit that adopts
the JTAG standard. The module in green named Internal Logic is the original
integrated circuit; the JTAG introduces one boundary scan cell per input/output
port in order to scan in/scan out test vectors that may be used to test the inner

6

1.2 – Testing Generalities

core or the interconnections among chips. Additionally, a TAP Controller and few
additional registers - needed to drive the whole test process - are introduced.

Combinational
Logic

Primary
Inputs Primary

Outputs

Q

Si

D

So
Se

Q

Si

D

So
Se

Q

Si

D

So
Se

Scan
In

Scan
Out

Scan
Enable

Pseudo
Primary
Inputs

Pseudo
Primary
Outputs

Clk

Figure 1.6. Scan Chain implementation

Additionally, in figure 1.6 an IC implementing the scan chain technique is shown.
The circuit has been divided into the combinational and sequential sections. In the
sequential one it’s possible to see how the classical D-Type flip flops have been
replaced with flip flops suited to perform a scan operation, i.e., to scan in test
vectors to apply through the Pseudo Primary Inputs to the Combinational Logic
which effects, combined with the Primary Inputs’ ones and sampled via the Pseudo

7

1 – Introduction

Primary Outputs and Primary Outputs, will eventually be scan out through the
daisy chain formed by the connection of all of the scan in/out pins. This operation
is possible thanks to the presence of a scan enable signal.
In this case the hardware overhead is reduced with respect to the JTAG case, still
all of the flip flops have to be modified and three additional pins have to be added,
at least in the basic implementation.
To conclude, DfT solutions ease the testing process because they allow to increase the
controllability and observability of certain faults that would be otherwise difficult
to reach by classic means but this comports an area overhead, a possible timing
overhead and eventually the cost per chip may increase. Moreover test is possible
only at the end of the production phas

1.2.2 Functional Test
The functional approach, on the other hand, does not rely on modified or added
hardware as in the previous case. In fact, it can be defined as a test process con-
ducted without resorting to any kind of Design for Testability solution.
The most adopted approach in Functional Test is called SBST, which stands for
Software Based Self Test. This is the employed technique in this work.

SBST can only be performed when working with CPUs or SoCs as it is based on
a test program that has to be loaded into memory and then run whenever required.
In most applications it’s safe to assume that any MicroController Unit has some idle
time, i.e., a time interval in which such unit is not performing any task: instead of
wasting this time it may be useful to test the unit to check the correct functioning.
This is especially true in safety critical applications.
Moreover, other features offered by this metodology are the at-speed test (that could
catch much more defects than those found with other approaches that work at a
slower speed) and the in-field test as well, that is, test of a circuit in operating
conditions during its operative life-cycle.

The general flow is described as follows: the test program, once loaded in mem-
ory, is executed and test results are recorded. Results can be taken as is or, more
frequently, compacted by means of a MISR - Multiple Input Signature Register, a
type of linear feedback shift register - in order to process bigger streams of data.
These results are then compared to the golden ones, i.e., the ones that should be
obtained when the circuit works properly, leading to the knowledge of the working
state of the circuit.

This approach shifts the whole workload from hardware design to software design
as the effectiveness of the test now relies on the test program.

8

1.2 – Testing Generalities

One of the crucial parts of this work is the development of such test program, in fact,
chapter 4 is entirely dedicated on the development of the proposed SelfTest program
while in chapter 5 the relative achieved results will be shown and compared to other
- still functional - comparison tests.

9

10

Chapter 2

Adopted CAN Controller

The presented work is based on the functional test of a CAN Bus peripheral, hence
the need to find the hardware description of a CAN Controller as a starting point.
Due to this, the choice was based on finding a peripheral that could be open hardware
and could be found online.
The result of this search was an implementation of the SJA1000 peripheral.

2.1 SJA1000 CAN Implementation
The SJA1000 is a stand-alone controller for the CAN developed by Philips Semi-
conductors (now NXP Semiconductors) in the early 2000s.

It is the successor of the PCA82C200 CAN controller (BasiCAN) from Philips
Semiconductors. Additionally, a new mode of operation is implemented (PeliCAN)
which supports the CAN 2.0B protocol specification, that is the Extended Format
specified in the previous chapter, with several new features.
A block diagram of the peripheral is shown in 2.1.

Here will be provided a brief explanation of the blocks that constitute the pe-
ripheral:

1. Interface Management Logic: this block contains a set of registers that imple-
ments the peripheral interface. The registers interface layout heavily depends
on the particular configuration used - whether the peripheral works in Basi-
CAN or PeliCAN mode - and it contains the logic necessary to interpret the
received commands and drive the whole Controller as well.

2. Message Buffer : this block is in charge of providing an interface between
the external CPU and other CAN Controller modules that handle messages,
both received or to be sent: the Transmit Buffer (TXB) stores the message

11

2 – Adopted CAN Controller

Figure 2.1. Block Diagram of the SJA1000 CAN Controller

ready to be sent that has been assembled by the Bit Stream Processor (BSP),
the receive buffer (RXB) stores the received message that comes from the
Acceptance Filter. The Receive Buffer belongs to the Receive FIFO, that is a
FIFO capable of storing up to 64 bytes of messages: from this point of view,
the RXB is a window that shifts through the whole FIFO. It has to be noted
that the Message Buffer is not responsible for message manipulation, filtering
or assembly, it’s just a module in which messages are stored, waiting for further
steps.

3. Bit Stream Processor (BSP): this block is the heart of the control and process-
ing unit of the peripheral. It consists of a sequencer which controls the data
stream between the transmit buffer and the CAN-bus. It also performs the
error detection, arbitration, stuffing and error handling on the CAN bus.

4. Acceptance Filter (ACF): this block is in charge of checking whether the mes-
sage currently on the bus has to be stored by the peripheral or not.
Everytime a message is being received, at the end of the process - if there
was no error - the receiver will set the acknowledge bit; it will then be the
ACF’s responsibility to decide if the message will be stored in the RXB and,
concurrently, set the appropriate bit to notify the acquisition.

12

2.2 – Verilog Hardware Description

This is assessed by means of an acceptance filter that usually works on the ID,
Remote Transfer Request (RTR) bits and DB fields of the message via two
registers, the Acceptance Mask (AM) and the Acceptance Code (AC).

5. Bit Timing Logic (BTL): the BTL block monitors the serial CAN-bus line and
handles the bus line-related bit timing. It is synchronized to the bit stream
on the CAN-bus on a recessive-to-dominant (i.e., 1 → 0) transition at the
beginning of a message (hard synchronization) and re-synchronized on further
transitions during the reception of a message (soft synchronization). The BTL
also provides programmable time segments to compensate for the propagation
delay times and phase shifts and to define the sample point and the number
of samples to be taken within a bit time.

6. Error Management Logic (EML): the EML is responsible for the error confine-
ment of the transfer-layer modules. It receives error announcements from the
BSP and then informs the BSP and IML about error statistics.

2.2 Verilog Hardware Description
The hardware implementation of the SJA1000 CAN Controller comes from the
OpenCores website, it has been developed using the Verilog HDL and the author en-
sures that the module has been tested on actual hardware - in particular, an FPGA
- and verified with the Bosch VHDL Reference System.

This module offers almost every functionality provided by the SJA1000 Con-
troller except for a couple of little discrepancies.
The first one is related to the set of implemented registers: the registers layout can
be seen in pictures 2.2, 2.3 and 2.4 for, respectively, the BasiCAN and the PeliCAN
modes. The author of the RTL description of the controller decided not to imple-
ment two of them, the output control and test registers.
The output control register is in charge of driving the output transistors that will
physically drive the signals. It is comprised of 8 bits that are organized as presented
in table 2.1.

The two set of P/N transistors that are highlighted by means of the numbers
0 and 1 are due to the fact that the SJA1000 peripheral implements two nodes, as
it can be seen in figure 2.1, in fact, on the bus output ports, there are two sets of
Tx and Rx signals. The RTL description, on the other hand, only implements one
node - thus having only one set of Tx and Rx ports - and their configuration is fixed:
whenever the line is in idle state this is kept at 1’b1, when transmitting the classic
Non Return to Zero encoding is adopted.

13

2 – Adopted CAN Controller

Figure 2.2. BasiCAN Registers Address Allocation

OC.7 Output Control Transistor P1
OC.6 Output Control Transistor N1
OC.5 Output Control Polarity 1
OC.4 Output Control Transistor P0
OC.3 Output Control Transistor N0
OC.2 Output Control Polarity 0
OC.1 Output Control Mode 1
OC.0 Output Control Mode 0

Table 2.1. Output Control Register

The test register should be used in the production test phase only. The tech-
nical datasheet of the SJA1000 IC reports that using this register during normal
operation may result in undesired behaviour of the device. Since this phase will not
be of interest, this register is not present as well.
There is, though, a set of ports that can be exploited to test the peripheral by means
of a BIST approach: if the keyword CAN_BIST is defined at compile time, a whole
new hardware block that is already present in the hardware description, but not

14

2.2 – Verilog Hardware Description

used, will be added to the peripheral. Even though it may make the whole testing
process easier, this goes against the whole idea of not using a Design for Testability
approach and will thus be avoided.

Figure 2.3. PeliCAN Registers Address Allocation [part 1]

The second main difference between the SJA1000 reference module and the Ver-
ilog implementation is the latter module’s interface. The peripheral is equipped
with a standalone-like set of ports, as required by the real module, and it comes
with a Wishbone Bus interface as well. The possibility of choosing the interface is
related to the declaration of a keyword, CAN_WISHBONE_IF: if defined, the interface
will be the Wishbone Bus one, otherwise it will be the standalone one. This will be
of paramount importance to the integration process in the SoC, as will be explained
in the next chapter.

15

2 – Adopted CAN Controller

Figure 2.4. PeliCAN Registers Address Allocation [part 2]

As a last note, the RTL description of the peripheral comes with a Verilog test-
bench with which the module has been tested. Inside of it are defined few different
tasks that are in charge of checking the various logic modules in which the controller
is divided.
Thanks to this testbench the first simulations were conducted, in order to get used
to the way in which the peripheral works, to check whether everything was going as
expected and to understand how the various steps followed in the testbench tasks
worked - e.g. which were the necessary steps to send a message or to receive one,
etc. - with the aim to emulate them as much as possible with the C drivers.

16

2.3 – Standalone Controller Simulation

2.3 Standalone Controller Simulation
The standalone controller simulation was conducted in two different scenarios: hav-
ing the RTL description of the CAN Controller as the DUT and, later, its synthesized
version. The first case served as a confirmation of the validity of the logic behind
the tasks while the second one is a more realistic simulation. As a last note, the
whole process was automated by means of scripts, both in TCL and Bash languages.

The RTL simulation worked flawlessly, no error was reported and, in particular,
the Tx and Rx signals showed the typical waveforms of a CAN message. In figure
2.5, a small snippet of the waveforms of the interface ports when sending and trans-
mitting a message is shown.

Figure 2.5. Pre-Synthesis Standalone Controller Waveforms

On the other hand, some problems were encountered when simulating the post-
synthesis controller. More specifically, there were abnormal undefined values that
appeared at the output ports, even in ports that were previously on a well defined
hardware value.
The same snippet posted before is presented in figure 2.6, now having the post-
synthesis peripheral.

Figure 2.6. Post-Synthesis Standalone Controller Waveforms

17

2 – Adopted CAN Controller

In order to understand what was the source of the problem, a thorough investi-
gation was launched.
The adopted approach was the following: starting from an internal signal that
showed the transition from a defined value to an undefined one, if such signal kept
its original name after the synthesis process - in order to have a better understand-
ing of what drives that signal by looking at the RTL description - then the TraceX
functionality offered by the simulation software Questa Sim-64 was used in order to
understand which was the cause of such odd behavior. TraceX offers the possibility
of tracing the source of a 1/0 → X transition, where X is intended as the undefined
value.
Many signals, although not every one of them, were analyzed and the results showed
that the origin of such problems was to imply to a subset of registers that did not
have a defined value at reset time. The author of this hardware description, in
fact, followed the SJA1000 reference datasheet which required these registers not
to lose their content at reset, probably not to affect the correct functioning of the
peripheral. Some of said registers can be seen in figure 2.7.

Figure 2.7. Some registers which value is not affected at reset time

These registers, though, were used by the author to define other signals that prop-
agate throughout the peripheral and while this undefined value propagation didn’t
show in RTL simulation, when working with logic ports as in the post-synthesis
module these few registers quickly invalidated the remaining part of the circuit.
This problem was not reported on the website, the reason being that when working

18

2.3 – Standalone Controller Simulation

on actual hardware the undefined values do not exist, they are a way the simulator
warns the user that such values have not been correctly initialized and they could
actually be any allowed value. The hypothesis, then, was that any value assigned
to these registers could make the circuit work as intended again.
A few tests have been conducted by using the deposit command on the script used
to simulate the circuit in order to assign, at reset time, a user-defined value that
could be possibly overwritten when the relative hardware needed to drive such sig-
nals. Every tried value let the circuit work correctly, so in the end the decision
was to assign to any of those registers a 0 value at reset, in order to emulate what
generally happens in an FPGA.

Following, a portion of the script adopted in order to assign the 0 values to the
aforementioned registers. It’s important to notice that not every register that didn’t
have an assigned value at reset was forcibly reset by the script, only those that were
crucial in the correct functioning of the peripheral were considered.

set PATH / can_testbench / i_can_top / i_can_registers

Bus Timing 0
force -deposit sim:$PATH/ sync_jump_width 2’h0 0
force -deposit sim:$PATH/ baud_r_presc 6’h00 0

Bus Timing 1
force -deposit sim:$PATH/ triple_sampling 1’h0 0
force -deposit sim:$PATH/ time_segment2 3’h0 0
force -deposit sim:$PATH/ time_segment1 4’h0 0

ACR 0 to 3
force -deposit sim:$PATH/ acceptance_code_0 8’h00 0
force -deposit sim:$PATH/ acceptance_code_1 8’h00 0
force -deposit sim:$PATH/ acceptance_code_2 8’h00 0
force -deposit sim:$PATH/ acceptance_code_3 8’h00 0

AMR 0 to 3
force -deposit sim:$PATH/ acceptance_mask_0 8’h00 0
force -deposit sim:$PATH/ acceptance_mask_1 8’h00 0
force -deposit sim:$PATH/ acceptance_mask_2 8’h00 0
force -deposit sim:$PATH/ acceptance_mask_3 8’h00 0

Listing 2.1. Portion of the TCL script used in simulation

Once the simulations worked in every possible scenario, it was time to briefly
work on the fault simulation analysis.

19

2 – Adopted CAN Controller

2.4 Standalone Controller Fault Simulation

2.4.1 Fault Simulation Generalities
The fault simulation is a process launched by means of a specific tool that, given a
file containing patterns of DUT signals toggling during simulation time, is capable
of evaluating the percentage of covered faults belonging to a certain fault class.
In this work, the adopted tool to perform the whole fault simulation was Tetramax
and the targeted class of faults was the stuck-at faults, that is, faults that occur
whenever a certain line is stuck at a logic 1 or logic 0 value.

The typical flow of a fault simulation process is the following: after reading
the technology library file used when synthetizing the IC and the synthetized IC
itself, it then, after some analysis, takes as input the dumpports file containing
the patterns obtained at simulation time and it then performs a second simulation.
This simulation is conducted using the pattern source and it reports any differences
between the simulated and expected values.
Finally, it will load all of the faults belonging to a specified class, in this case stuck-at
faults, and it will go through the patterns to see how many of the loaded faults are
excited and made observable at, at least, one of the output ports of the DUT. In the
end, it’s possible to export the final reports to txt files, eventually even the total list
of all the faults that will be divided into few categories like detected, not-detected
or undetectable faults.
Generally speaking, patterns are obtained when simulating the DUT by running the
command vcd dumpports, specifying the name of the file in which said patterns will
be saved. An example of script used to automate such process is presented below.
Environment setup
set_environment_viewer -instance_names
set_messages -log $PATH/ fault_reports /tmax.log -replace

Build and DRC
read_netlist $PATH/gate/ NangateOpenCellLibrary .v -library
read_netlist $PATH/gate/ can_top_ST .v -master_module
run_build_model can_top
add_clocks 0 clk_i
set_drc -initialize_dff_dlat 0
run_drc

Load and Check Patterns
set_patterns -external $PATH/sim/ gate_run / dumpports_gate_0 . can_top .

vcd -sensitive -strobe_rising clk_i -strobe_offset { 62500 ps}
run_simulation -sequential

Fault List

20

2.4 – Standalone Controller Fault Simulation

add_faults -all
add_faults / i_can_registers
add_faults / i_can_btl
add_faults / i_can_bsp / i_can_acf
read_faults fault_reports / report_faults_list .txt -

force_retain_code -add

set_simulation -num_processes 7

Fault Simulation
run_fault_sim -sequential

Reports
set_faults -fault_coverage
report_faults -level {5 100} > $PATH/ fault_reports /

report_faults_hierarchy .txt
report_faults -level {100 1} -verbose > $PATH/ fault_reports /

report_faults_verbose .txt
write_faults $PATH/ fault_reports / report_faults_list .txt -all -

replace
report_summaries > $PATH/ fault_reports / report_summaries .txt

End of Script
quit

Listing 2.2. TCL script used in the fault simulation process

2.4.2 Standalone Fault Simulation Issues
The fault simulation process has been intensively used later on in the work, when the
final C language test program was completed. In fact, at this point of the work, the
covered faults analysis was still not relevant, mainly because it had to be performed
by means of software programs based on drivers, both of them still missing in this
early stage. Anyway, even though it was not necessary, the decision to launch
some fault simulations was still made due to the force -deposit command that
was used when simulating. The reason of this can be found in the description of the
internal simulation Tetramax executes before performing the actual fault simulation:
if there’re mismatches between the presented patterns and the internal simulation
the whole process aborts.
Since 0 values were forced on some registers, it was necessary to replicate the same
behavior in Tetramax, thus motivating the need to launch some simulations just to
check whether there were no mismatches, ultimately leading to a successful fault
simulation.

21

2 – Adopted CAN Controller

In order to avoid such problem, a command - present on the script above - was
added, that is set_drc -initialize_dff_dlat 0, which assigns a 0 to every flip-
flop’s output present in the DUT at the very beginning of the simulation, allowing
it to change later on. In this way, no mismatch was present and the process could
finish without problems. The obtained test coverage related to the Verilog testbench
showed that about 51% of the total stuck-at faults was tested. The achieved test
coverage was not of interest in this stage, as the tests served only to check the
correctness of the automation script, so no further attempt to improve the tasks
defined in the testbench were made.

22

Chapter 3

Peripheral Integration and Drivers
Development

The typical application in which CAN Controller peripherals are employed involve
the presence of a microprocessor that elaborates the information received and drives
the peripheral accordingly, along with other actuators that could be present in the
system. In more modern scenarios, instead of having many ICs in a PCB, the mi-
croprocessor and its most important peripherals are connected together in a System
on Chip.

In this chapter, two main topics will be described: the integration process of the
CAN Controller in an already existing SoC and its driver development.

3.1 SoC Integration

Following the approach adopted with the CAN Bus peripheral, the System On Chip
that has been used in this thesis work is the OpenRisc1200 an open hardware device
that can be found online at the OpenRisc website1.
This particular SoC was chosen not only because it’s open source but also because
it uses a Wishbone Bus to connect the CPU with other peripheral controllers. This
allowed the direct connection of the CAN peripheral to the SoC, without the need
of bridges between different bus interfaces. Even though the two modules share the
same interface, there were still some small problems that had to be fixed.

1https://openrisc.io/implementations.html

23

3 – Peripheral Integration and Drivers Development

3.1.1 Interfaces mismatch
The first one is related to the interface’s signals: the typical bus interface adopted in
the SoC is comprised of 10 signals, along with the wb_clk_i and wb_rst_i signals
that are the wishbone clock and reset signals:

• wb_cyc_o: 1-bit bus cycle signal

• wb_stb_o: 1-bit strobe (kind of chip select) signal

• wb_cab_o: 1-bit constant address burst signal (used for FIFOs)

• wb_adr_o: 32-bits address signal

• wb_sel_o: 4-bits select input array signal

• wb_we_o: 1-bit write enable signal

• wb_dat_o: 32-bits data output signal

• wb_dat_i: 32-bits data input signal

• wb_ack_i: 1-bit acknowledge signal

• wb_err_i: 1-bit error signal

where the i in the signals’ name represents all of those signals that go from the
peripheral to the Bus arbiter, while the o stands for its viceversa.
The Wishbone interface implemented on the CAN Controller interface, on the other
hand, implements only a subset of those signals, in particular: wb_clk, wb_rst,
wb_dat_i, wb_dat_o, wb_cyc_i, wb_stb_i, wb_we_i, wb_adr_i, wb_ack_o; more-
over, the three 32-bits signals wb_adr_o, wb_dat_o, wb_dat_o are on 8-bits in the
CAN Wishbone interface.

This obviously lead to some adjustments while connecting the two modules:
while the data_in and data_out signals were easy to adapt - the 8 least significant
bits of the data_out signal were provided to the relative input port of the CAN
Controller and the data_out signal from the CAN Controller was extended with 24
most significant bits - the address was a little less "immediate" than the other two.
The reason for this is due to the fact that the SoC bus arbiter implies that every
register is 4-bytes wide, thus being able to generate only addresses multiple of 4, i.e.
0x00, 0x04, 0x08, 0x0C and so on. The CAN Controller instead has 1-byte registers,
thus having even in between values as valid addresses, like 0x01, 0x02 or 0x03. To
solve this problem a 2 position right shift - i.e., a division by four - was performed,

24

3.1 – SoC Integration

in order to map correctly the addresses.

The final interconnection is shown in figure 3.1.

Figure 3.1. CAN Interface Wiring

3.1.2 Address Mapping
Once the wiring between the two modules was completed, it was time to set some
parameters in order to correctly address the CAN peripheral. Among the files that
compose the SoC, there’s a file named xsv_fpga_defines.v in which some constant
values are defined. In particular, there’re two group of parameters that are of inter-
est, one related to interrupts and the other one related to the memory map of the
CPU.

In the following list it’s possible to see said parameters.
//
// Interrupts
//
`define APP_INT_CAN 0
`define APP_INT_RES1 1
// `define APP_INT_UART 2
`define APP_INT_RES2 3
`define APP_INT_ETH 4
// `define APP_INT_PS2 5
// `define APP_INT_HDLC1 6
// `define APP_INT_HDLC2 7
`define APP_INT_RES3 19:8

25

3 – Peripheral Integration and Drivers Development

//
// Address map
//
`define APP_ADDR_DEC_W 8
`define APP_ADDR_SRAM `APP_ADDR_DEC_W 'h00
`define APP_ADDR_FLASH `APP_ADDR_DEC_W 'h04
`define APP_ADDR_DECP_W 4
`define APP_ADDR_PERIP `APP_ADDR_DEC_W 'h9
`define APP_ADDR_VGA `APP_ADDR_DEC_W 'h97
`define APP_ADDR_ETH `APP_ADDR_DEC_W 'h92
`define APP_ADDR_AUDIO `APP_ADDR_DEC_W 'h9D
// `define APP_ADDR_UART `APP_ADDR_DEC_W 'h90
`define APP_ADDR_PS2 `APP_ADDR_DEC_W 'h94
// `define APP_ADDR_HDLC `APP_ADDR_DEC_W 'h9E
`define APP_ADDR_CAN `APP_ADDR_DEC_W 'h9F

Listing 3.1. Snippet from the xsv_fpga_defines.v file

The line `define APP_INT_CAN 0 is needed when building the vector containing
all of the interrupt lines from the peripherals connected to the CPU: in particular,
the CPU can support 20 interrupt requests and the CAN Controller’s one is the first
bit of said vector.
The other added line is `define APP_ADDR_CAN `APP_ADDR_DEC_W’h9F which can
be interpreted as: the starting address of the CAN Peripheral is 0x9F000000. This
parameter will be important when writing the C drivers for the peripheral.

3.2 C Drivers

The adopted C drivers have been developed by referring to the open source drivers
provided by NXP for their SJA1000 Controller2. This was necessary in order to un-
derstand which are the required functionalities and reproduce them on the adopted
CAN Controller, since the online drivers could not be directly applied to the periph-
eral.

The drivers consist of two files, named can_addr.h and can_addr.c, the former
having only declaration statements while the latter implements functions defined in
the .h file.

2https://www.nxp.com/products/interfaces/can-transceivers/stand-alone-can-
controller:SJA1000T?tab=Design_Tools_Tab

26

3.2 – C Drivers

3.2.1 Header File: can_addr.h
The header file contains the definitions of the internal addresses for the registers
provided by the peripheral, the whole set of #define statements can be seen in
figures 2.2 and 2.3 plus 2.4; moreover, it contains data structures useful to group
together data belonging to the same field and functions’ declarations.

To organize internal addresses in a clear way, they have been further divided into
three blocks: general registers, which address does not change whether in BasiCAN
or PeliCAN mode, showed in listing 3.2, BasiCAN registers, registers that can be
addressed only when in BasiCAN Mode, showed in figure 3.3 and PeliCAN registers,
addressable only in PeliCAN Mode, showed in figure 3.4.
typedef unsigned char uint8_t ;
typedef unsigned short uint16_t ;
typedef unsigned int uint32_t ;

#define CAN_OK 0
#define CAN_RX_TIMEOUT 1
#define CAN_TX_TIMEOUT 2
#define CAN_ID_NOT_ACCEPTED 3

#define CAN_BASE_ADDR ((uint32_t)(0x9F000000))

// CAN Addressing space common to both BasiCAN and PeliCAN modes
// Mode, Command, Status, Interrupt registers
#define CAN_GNRAL_MODE_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (

0x00000000 << 2)))
#define CAN_GNRAL_CMD_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (

0x00000001 << 2)))
#define CAN_GNRAL_STATUS_REG ((volatile uint32_t *)(CAN_BASE_ADDR +

(0x00000002 << 2)))
#define CAN_GNRAL_IRQ_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (

0x00000003 << 2)))

// Bus Timing0, Bus Timing1 registers
#define CAN_GNRAL_TIM0_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (

0x00000006 << 2)))
#define CAN_GNRAL_TIM1_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (

0x00000007 << 2)))

// Clock Divider register
#define CAN_GNRAL_CLKDIV_REG ((volatile uint32_t *)(CAN_BASE_ADDR +

(0x0000001F << 2)))
Listing 3.2. General registers mapping in can_addr.h file

27

3 – Peripheral Integration and Drivers Development

// CAN Addressing space in BasiCAN Mode
// Acceptance Code, Acceptance Mask, Bus Timing0 , Bus Timing1

registers
#define CAN_BASIC_ACR0_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (

0x00000004 << 2)))
#define CAN_BASIC_ACM0_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (

0x00000005 << 2)))

// TX registers (ID, RTR, DLC, DATA[0:7])
#define CAN_BASIC_TXB0_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (

0x0000000A << 2)))
#define CAN_BASIC_TXB1_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (

0x0000000B << 2)))
#define CAN_BASIC_TXB2_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (

0x0000000C << 2)))
#define CAN_BASIC_TXB3_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (

0x0000000D << 2)))
#define CAN_BASIC_TXB4_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (

0x0000000E << 2)))
#define CAN_BASIC_TXB5_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (

0x0000000F << 2)))
#define CAN_BASIC_TXB6_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (

0x00000010 << 2)))
#define CAN_BASIC_TXB7_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (

0x00000011 << 2)))
#define CAN_BASIC_TXB8_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (

0x00000012 << 2)))
#define CAN_BASIC_TXB9_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (

0x00000013 << 2)))

// RX registers (ID, RTR, DLC, DATA[0:7])
#define CAN_BASIC_RXB0_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (

0x00000014 << 2)))
#define CAN_BASIC_RXB1_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (

0x00000015 << 2)))
#define CAN_BASIC_RXB2_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (

0x00000016 << 2)))
#define CAN_BASIC_RXB3_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (

0x00000017 << 2)))
#define CAN_BASIC_RXB4_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (

0x00000018 << 2)))
#define CAN_BASIC_RXB5_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (

0x00000019 << 2)))
#define CAN_BASIC_RXB6_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (

0x0000001A << 2)))
#define CAN_BASIC_RXB7_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (

0x0000001B << 2)))
#define CAN_BASIC_RXB8_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (

0x0000001C << 2)))

28

3.2 – C Drivers

#define CAN_BASIC_RXB9_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (
0x0000001D << 2)))

Listing 3.3. BasiCAN registers mapping in can_addr.h file

// CAN Addessign space in PeliCAN Mode
// Interrupt Enable register
#define CAN_EXTND_IRQEN_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (

0x00000004 << 2)))

// Bus Timing0, Bus Timing1, Arbitration Lost Capture, Error Code
Capture, RX and TX error counter registers

#define CAN_EXTND_ALC_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (
0x0000000B << 2)))

#define CAN_EXTND_ECC_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (
0x0000000C << 2)))

#define CAN_EXTND_EWLR_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (
0x0000000D << 2)))

#define CAN_EXTND_RXEC_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (
0x0000000E << 2)))

#define CAN_EXTND_TXEC_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (
0x0000000F << 2)))

// Extended Frame TX/RX registers
#define CAN_EXTND_TRX_FRINF_REG ((volatile uint32_t *)(CAN_BASE_ADDR

+ (0x00000010 << 2)))
#define CAN_EXTND_TRXID1_REG ((volatile uint32_t *)(CAN_BASE_ADDR +

(0x00000011 << 2)))
#define CAN_EXTND_TRXIDE2_REG ((volatile uint32_t *)(CAN_BASE_ADDR +

(0x00000012 << 2)))
#define CAN_EXTND_TRXIDE3_REG ((volatile uint32_t *)(CAN_BASE_ADDR +

(0x00000013 << 2)))
#define CAN_EXTND_TRXIDE4_REG ((volatile uint32_t *)(CAN_BASE_ADDR +

(0x00000014 << 2)))
#define CAN_EXTND_TRXBE1_REG ((volatile uint32_t *)(CAN_BASE_ADDR +

(0x00000015 << 2)))
#define CAN_EXTND_TRXBE2_REG ((volatile uint32_t *)(CAN_BASE_ADDR +

(0x00000016 << 2)))
#define CAN_EXTND_TRXBE3_REG ((volatile uint32_t *)(CAN_BASE_ADDR +

(0x00000017 << 2)))
#define CAN_EXTND_TRXBE4_REG ((volatile uint32_t *)(CAN_BASE_ADDR +

(0x00000018 << 2)))
#define CAN_EXTND_TRXBE5_REG ((volatile uint32_t *)(CAN_BASE_ADDR +

(0x00000019 << 2)))
#define CAN_EXTND_TRXBE6_REG ((volatile uint32_t *)(CAN_BASE_ADDR +

(0x0000001A << 2)))
#define CAN_EXTND_TRXBE7_REG ((volatile uint32_t *)(CAN_BASE_ADDR +

(0x0000001B << 2)))

29

3 – Peripheral Integration and Drivers Development

#define CAN_EXTND_TRXBE8_REG ((volatile uint32_t *)(CAN_BASE_ADDR +
(0x0000001C << 2)))

// Standard Frame TX/RX registers
#define CAN_EXTND_TRXIDS2_REG ((volatile uint32_t *)(CAN_BASE_ADDR +

(0x00000012 << 2)))
#define CAN_EXTND_TRXBS1_REG ((volatile uint32_t *)(CAN_BASE_ADDR +

(0x00000013 << 2)))
#define CAN_EXTND_TRXBS2_REG ((volatile uint32_t *)(CAN_BASE_ADDR +

(0x00000014 << 2)))
#define CAN_EXTND_TRXBS3_REG ((volatile uint32_t *)(CAN_BASE_ADDR +

(0x00000015 << 2)))
#define CAN_EXTND_TRXBS4_REG ((volatile uint32_t *)(CAN_BASE_ADDR +

(0x00000016 << 2)))
#define CAN_EXTND_TRXBS5_REG ((volatile uint32_t *)(CAN_BASE_ADDR +

(0x00000017 << 2)))
#define CAN_EXTND_TRXBS6_REG ((volatile uint32_t *)(CAN_BASE_ADDR +

(0x00000018 << 2)))
#define CAN_EXTND_TRXBS7_REG ((volatile uint32_t *)(CAN_BASE_ADDR +

(0x00000019 << 2)))
#define CAN_EXTND_TRXBS8_REG ((volatile uint32_t *)(CAN_BASE_ADDR +

(0x0000001A << 2)))

// Acceptance Code and Mask [0:3] registers
#define CAN_EXTND_ACR0_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (

0x00000010 << 2)))
#define CAN_EXTND_ACR1_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (

0x00000011 << 2)))
#define CAN_EXTND_ACR2_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (

0x00000012 << 2)))
#define CAN_EXTND_ACR3_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (

0x00000013 << 2)))
#define CAN_EXTND_ACM0_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (

0x00000014 << 2)))
#define CAN_EXTND_ACM1_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (

0x00000015 << 2)))
#define CAN_EXTND_ACM2_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (

0x00000016 << 2)))
#define CAN_EXTND_ACM3_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (

0x00000017 << 2)))

// Other registers
#define CAN_EXTND_RXMSGCNT_REG ((volatile uint32_t *)(CAN_BASE_ADDR

+ (0x0000001D << 2)))
#define CAN_EXTND_RXBSA_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (

0x0000001E << 2)))
#define CAN_EXTND_FIFOADDR_REG ((volatile uint32_t *)(CAN_BASE_ADDR

+ (0x00000020 << 2)))

30

3.2 – C Drivers

#define CAN_EXTND_TXADDR_REG ((volatile uint32_t *)(CAN_BASE_ADDR +
(0x00000060 << 2)))

#define CAN_EXTND_RAMF1_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (
0x0000006D << 2)))

#define CAN_EXTND_RAMF2_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (
0x0000006E << 2)))

#define CAN_EXTND_RAMF3_REG ((volatile uint32_t *)(CAN_BASE_ADDR + (
0x0000006F << 2)))

Listing 3.4. PeliCAN registers mapping in can_addr.h file

In listing 3.5 it’s possible to see the struct data used to work with the peripheral.
There are in total four of them, and they are described as follows:

• CANPeripHandler: it contains all of the variables necessary to initialize the
peripheral among which there are: CAN_Mode, which configures the periph-
eral either in BasiCAN or PeliCAN Mode, B_TIM0/1, to initialize the timing
section of the controller, ACR[4] and ACM[4] which are used to configure the
acceptance filter.

• CANIRQHandler: struct data used to initialize the irq_enable register, i.e.
a register that enables interrupt requests whenever their relative conditions
occur.

• TXMSGHandler: it is used to configure the message to be transmitted, the
fields contained in this struct data reflect the portions of the CAN message
adjustable by the user, among which there are the ID, DLC and TXBuf[8].

• RXMSGHandler: this struct data is organized exactly as the previous one, with
the only difference that this is used to handle received messages rather than
transmitted ones.

// Handler used to initialize the peripheral
typedef struct {

uint8_t CAN_Mode ; // Selects between BasiCAN (1'b0) and PeliCAN (
1'b1) mode

uint8_t LOM; // Listen Only Mode => 1'b0: the CAN controller
would give no acknowledge to the CAN -bus, even if a message is

received successfully ; 1'b1: normal functioning
uint8_t STM; // Self Test Mode => 1'b0: the CAN controller

will perform a successful transmission, even if there is no
acknowledge received ; 1'b1: an acknowledge is necessary

uint8_t AFM; // Acceptance Filter Mode => 1'b0: two filters
each with the length of 16 bit are active ; 1'b1: one filter
with the length of 32 bit is active

31

3 – Peripheral Integration and Drivers Development

uint8_t CLKOff ; // If this bit is set, Clkout is not enabled
uint8_t CD; // Divider for the clokout signal (111 -> clkout =

clkin, from 000 to 101 divide clkin by multiples of 2 (ie
2,4,6,8,10,12,14))

uint8_t ACR[4]; // Acceptance Code
uint8_t ACM[4]; // Acceptance Mask
uint8_t B_TIM0 ; // Bus Timing0 reg: |SJW1 |SJW0 |BRP5 |BRP4

|BRP3 |BRP2 |BRP1 |BRP0 |
uint8_t B_TIM1 ; // Bus Timing1 reg: |SAM | TSEG2_2 | TSEG2_1 |

TSEG2_0 | TSEG1_3 | TSEG1_2 | TSEG1_1 | TSEG1_0 |
uint8_t EWL; // Error Warning Limit, value @ reset 0x60 (

beyond this value an error is raised)
uint8_t RBSA; // Rx Buffer Start Address

} CANPeripHandler ;

// IRQ Enable handler struct data
typedef struct {

uint8_t RIE; // Receive Interrupt Enable
uint8_t TIE; // Transmit Interrupt Enable
uint8_t EIE; // Error Warning Interrupt Enable
uint8_t OIE; // Data Overrun Interrupt Enable
uint8_t WUIE; // Wake -Up Interrupt Enable
uint8_t EPIE; // Error Passive Interrupt Enable
uint8_t ALIE; // Arbitration Lost Interrupt Enable
uint8_t BEIE; // Bus Error Interrupt Enable

} CANIRQHandler ;

// TX Message Handler struct data
typedef struct {

uint32_t ID; // Identifier of the message
uint8_t DLC; // Data Length Code: no of bytes to be sent (1-8)
uint8_t RTR; // Remote Transfer Request
uint8_t FF; // Frame Format (valid only in Extended CAN Mode):

0 -> STD Frame, 1 -> EXT Frame
uint8_t TXBuf[8]; // 8 bytes TX buffer

} TXMsgHandler ;

// RX Message Handler struct data
typedef struct {

uint32_t ID; // Identifier of the message
uint8_t DLC; // Data Length Code: no of bytes to be received (

1-8)
uint8_t RTR; // Remote Transfer Request

32

3.2 – C Drivers

uint8_t FF; // Frame Format (valid only in Extended CAN Mode):
0 -> STD Frame, 1 -> EXT Frame

uint8_t RXBuf[8]; // 8 bytes RX buffer

} RXMsgHandler ;
Listing 3.5. Data structures in can_addr.h file

In listing 3.6 it’s possible to see function prototypes. Their implementation and
functionality will be covered in the following subsection.
All of the data structures and functions have been developed in a way such that they
provide an Hardware Abstraction Layer so that the user doesn’t have to concern with
the internal registers settings.
/* ****************************

**** Function Prototypes ****
**************************** */

int canPeriphInit (CANPeripHandler * can_handl);
int irqEnable (CANIRQHandler * irq_handl);
int transmitMsg (TXMsgHandler * tx_handl, uint32_t timeout);
int receiveMsg (RXMsgHandler * rx_handl, uint32_t timeout);
int selfTxRx (TXMsgHandler * tx_handl, RXMsgHandler * rx_handl);

Listing 3.6. Function prototypes in can_addr.h file

3.2.2 Source File: can_addr.c
This source file contains the definition of the aforementioned functions. As showed
in listing 3.6, there are five functions in total that are described as follows.

canPeriphInit

This function is used to initialize the CAN peripheral. The very first step consists
in entering the reset mode by writing a 1’b1 in bit 0 of the Mode Register: this is
necessary because some registers can only be accessed when in Reset Mode. Once
entered in such mode, few registers are initialized.
The first one is the clock_divider register, in order to set the CANMode, BasiCAN
or PeliCAN, and the clockout outer port configuration, that is whether or not the
clockout signal is active, controlled by the CLKOff field, and what’s the frequency
of said signal in terms of working frequency of the peripheral divided by powers of
2, controlled by the ClockDivider or CD field.
Then, depending on the working mode, the Acceptance Code and Filter registers
are initialized; if in PeliCAN Mode The SelfTest Mode, Listen Only Mode and

33

3 – Peripheral Integration and Drivers Development

Acceptance Filter Mode bits are initialized as well.
Lastly, the Bus Timing registers are written and the controller can exit the Reset
Mode.

// Initialize CAN Controller according to user specifications
int canPeriphInit (CANPeripHandler * can_handl) {

// Enter Reset Mode
*(CAN_GNRAL_MODE_REG) = 0x01;

// Set CLKDIV register
uint8_t tmp_clkdiv = ((* can_handl).CD & 0x07);
tmp_clkdiv += (((* can_handl). CLKOff & 0x01) << 3);
tmp_clkdiv += (((* can_handl). CAN_Mode & 0x01) << 7);

*(CAN_GNRAL_CLKDIV_REG) = tmp_clkdiv ;

// Set Acceptance Code and Mask registers
if (!((* can_handl). CAN_Mode & 0x01)) {

(CAN_BASIC_ACM0_REG) = (can_handl).ACM[0];
(CAN_BASIC_ACR0_REG) = (can_handl).ACR[0];

}
else {

*(CAN_GNRAL_MODE_REG) &= ~(7 << 1); // Reset Self Test Mode,
Listen Only Mode and Acceptance Filter Mode bits

(CAN_GNRAL_MODE_REG) |= (((can_handl).AFM & 0x01) << 3) |
(((* can_handl).STM & 0x01) << 2) | (((* can_handl).LOM & 0x01
) << 1);

(CAN_EXTND_ACM0_REG) = (can_handl).ACM[0];
(CAN_EXTND_ACM1_REG) = (can_handl).ACM[1];
(CAN_EXTND_ACM2_REG) = (can_handl).ACM[2];
(CAN_EXTND_ACM3_REG) = (can_handl).ACM[3];
(CAN_EXTND_ACR0_REG) = (can_handl).ACR[0];
(CAN_EXTND_ACR1_REG) = (can_handl).ACR[1];
(CAN_EXTND_ACR2_REG) = (can_handl).ACR[2];
(CAN_EXTND_ACR3_REG) = (can_handl).ACR[3];
(CAN_EXTND_EWLR_REG) = (can_handl).EWL;
(CAN_EXTND_RXBSA_REG) = (can_handl).RBSA;

}

// Set Bus Timing 0/1 registers
(CAN_GNRAL_TIM0_REG) = (can_handl). B_TIM0 ;
(CAN_GNRAL_TIM1_REG) = (can_handl). B_TIM1 ;

// Exit Reset Mode
*(CAN_GNRAL_MODE_REG) &= ~(0x01);

return CAN_OK ;

34

3.2 – C Drivers

}
Listing 3.7. canPeriphInit function

irqEnable

This function is used to initialize the register that enables interrupt requests. De-
pending on the mode there are a certain number of interrupts allowed and for every
interrupt there’s its relative enabler, as it can be seen in the CANIRQHandler struct
data from listing 3.5.
When in BasiCAN Mode, interrupt enable bits reside in the Mode Register: since
this has already been initialized, it’s copied in a temporary variable, the relative
interrupt enables are added and then the register is re-written.
In PeliCAN Mode on the other hand the IRQ Enable register is on its own so the
writing process is quite straightforward.
// Enable all of the interrupts requested by the user
int irqEnable (CANIRQHandler * irq_handl) {

// Check CAN Mode
volatile uint8_t can_mode = (*(CAN_GNRAL_CLKDIV_REG) & (1 << 7))

>> 7;

if (! can_mode) { // If we 're in BasiCAN mode
uint8_t tmp_irqen = (((* irq_handl).RIE & 0x01) << 1); // Write

in a temporary variable all interrupt enables
tmp_irqen += (((* irq_handl).TIE & 0x01) << 2);
tmp_irqen += (((* irq_handl).EIE & 0x01) << 3);
tmp_irqen += (((* irq_handl).OIE & 0x01) << 4);

volatile uint8_t mode_reg = *(CAN_GNRAL_MODE_REG); // Copy mode
register (we will overwrite interrupts and keep everything

else)
mode_reg &= ~(0x0F << 1);
mode_reg += tmp_irqen ;

*(CAN_GNRAL_MODE_REG) = mode_reg ;
}
else { // If we're in PeliCAN Mode, enable

uint8_t tmp_irqen = (((* irq_handl).RIE & 0x01) << 0);
tmp_irqen += (((* irq_handl).TIE & 0x01) << 1);
tmp_irqen += (((* irq_handl).EIE & 0x01) << 2);
tmp_irqen += (((* irq_handl).OIE & 0x01) << 3);
tmp_irqen += (((* irq_handl).WUIE & 0x01) << 4);
tmp_irqen += (((* irq_handl).EPIE & 0x01) << 5);
tmp_irqen += (((* irq_handl).ALIE & 0x01) << 6);
tmp_irqen += (((* irq_handl).BEIE & 0x01) << 7);

35

3 – Peripheral Integration and Drivers Development

*(CAN_EXTND_IRQEN_REG) = tmp_irqen ;
}

return CAN_OK ;
}

Listing 3.8. irqEnable function

transmitMsg

This function is used to send a message which fields have been written by using a
TXMsgHandler struct data. Along with the tx_handler input variable, a timeout
is required as this function works in polling mode. The transmitting structure in-
tialization highly depends on the mode.
If working in BasiCAN Mode, the ID’s 8 MSBs are written in CAN_BASIC_TXB0_REG,
the lower 3 LSBs of the ID, the DLC and RTR are written in CAN_BASIC_TXB1_REG
and, lastly, the Data Bytes are written in remaining registers CAN_BASIC_TXBx_REG,
x ∈ [2,9].
If working in PeliCAN Mode the process is a little bit more complex as the Frame
Format has to be taken into account when handling registers, even though the final
goal is the same.
Lastly, the actual transmission can begin: once the Start Of Transmission has oc-
curred, the CPU checks periodically the Transmission Complete Status bit: if
this does not occur before the timeout then the peripheral aborts the transmission
and exits with an error condition, otherwise it can exit with a successful return
condition.
// Function to send a message in polling mode
int transmitMsg (TXMsgHandler * tx_handl, uint32_t timeout) {

volatile uint8_t can_mode = (*(CAN_GNRAL_CLKDIV_REG) & (1 << 7))
>> 7;

if (! can_mode) {
// Decouple the ID into two registers : TXB0 holds ID[10:3]
(CAN_BASIC_TXB0_REG) = ((tx_handl).ID & 0x000007F8) >> 3;

// TXB1 holds ID[2:0], RTR, DLC[3:0]
uint32_t tmp_txb1 = (* tx_handl).DLC;
tmp_txb1 += ((* tx_handl).RTR & 0x01) << 4;
tmp_txb1 += ((* tx_handl).ID & 0x00000007) << 5;
*(CAN_BASIC_TXB1_REG) = tmp_txb1 ;

// Now write the data buffer
(CAN_BASIC_TXB2_REG) = (tx_handl).TXBuf[0];

36

3.2 – C Drivers

(CAN_BASIC_TXB3_REG) = (tx_handl).TXBuf[1];
(CAN_BASIC_TXB4_REG) = (tx_handl).TXBuf[2];
(CAN_BASIC_TXB5_REG) = (tx_handl).TXBuf[3];
(CAN_BASIC_TXB6_REG) = (tx_handl).TXBuf[4];
(CAN_BASIC_TXB7_REG) = (tx_handl).TXBuf[5];
(CAN_BASIC_TXB8_REG) = (tx_handl).TXBuf[6];
(CAN_BASIC_TXB9_REG) = (tx_handl).TXBuf[7];

}
else {

// TX Frame Information Regsiter holds the DLC in its 4 LSBs
and the RTR and FF in the 6th/7th bits

uint8_t tx_frame_info = (* tx_handl).DLC;
tx_frame_info += ((* tx_handl).RTR & 0x01) << 6;
tx_frame_info += ((* tx_handl).FF & 0x01) << 7;

*(CAN_EXTND_TRX_FRINF_REG) = tx_frame_info ;

// Now write Identifier registers depending whether we 've a
Standard Frame Format (SFF) or Extended Frame Format (EFF)

(CAN_EXTND_TRXID1_REG) = ((tx_handl).ID & 0x1FE00000) >> 21;

if ((* tx_handl).FF & 0x01) { // If we 've EFF
(CAN_EXTND_TRXIDE2_REG) = ((tx_handl).ID & 0x001FE000) >>

13;
(CAN_EXTND_TRXIDE3_REG) = ((tx_handl).ID & 0x00001FE0) >> 5

;

uint8_t trxide4 = 0x00;
trxide4 |= ((* tx_handl).RTR & 0x01) << 2;
trxide4 |= ((* tx_handl).ID & 0x1F) << 3;
*(CAN_EXTND_TRXIDE4_REG) = trxide4 ;

(CAN_EXTND_TRXBE1_REG) = (tx_handl).TXBuf[0];
(CAN_EXTND_TRXBE2_REG) = (tx_handl).TXBuf[1];
(CAN_EXTND_TRXBE3_REG) = (tx_handl).TXBuf[2];
(CAN_EXTND_TRXBE4_REG) = (tx_handl).TXBuf[3];
(CAN_EXTND_TRXBE5_REG) = (tx_handl).TXBuf[4];
(CAN_EXTND_TRXBE6_REG) = (tx_handl).TXBuf[5];
(CAN_EXTND_TRXBE7_REG) = (tx_handl).TXBuf[6];
(CAN_EXTND_TRXBE8_REG) = (tx_handl).TXBuf[7];

}
else { // If we've SFF

uint8_t trxids2 = 0x00;
trxids2 |= ((* tx_handl).RTR & 0x01) << 4;
trxids2 |= ((* tx_handl).ID & 0x001C0000) >> 13;
*(CAN_EXTND_TRXIDS2_REG) = trxids2 ;

(CAN_EXTND_TRXBS1_REG) = (tx_handl).TXBuf[0];
(CAN_EXTND_TRXBS2_REG) = (tx_handl).TXBuf[1];

37

3 – Peripheral Integration and Drivers Development

(CAN_EXTND_TRXBS3_REG) = (tx_handl).TXBuf[2];
(CAN_EXTND_TRXBS4_REG) = (tx_handl).TXBuf[3];
(CAN_EXTND_TRXBS5_REG) = (tx_handl).TXBuf[4];
(CAN_EXTND_TRXBS6_REG) = (tx_handl).TXBuf[5];
(CAN_EXTND_TRXBS7_REG) = (tx_handl).TXBuf[6];
(CAN_EXTND_TRXBS8_REG) = (tx_handl).TXBuf[7];

}
}

uint32_t cnt = 0;
volatile uint32_t * status_ptr = CAN_GNRAL_STATUS_REG ;

// Send msg
*(CAN_GNRAL_CMD_REG) = 0x01;

// Wait for SOT (Start of Transmission)
while (!((* status_ptr & 0x20) >> 5));

// Once the peripheral has started the transmission, wait for it
to finish /the timeout

// while ((((* status_ptr) & 0x20) >> 5 || ((* status_ptr) & 0x40) >>
6) && (cnt < timeout)) ++ cnt;

while (!(((* status_ptr) & 0x08) >> 3) && (cnt < timeout)) ++ cnt;

// If there 's a timeout, abort transmission and exit
if(cnt >= timeout) {

*(CAN_GNRAL_CMD_REG) = 0x02;
return CAN_TX_TIMEOUT ;

}

// Otherwise, everything 's ok
return CAN_OK ;

}
Listing 3.9. transmitMsg function

receiveMsg

This function is used to receive a message. The adopted steps are the same that can
be found in the transmitMsg function, but reversed.
At first, the receiving is performed by looking at a specific bit that signals the End
of Reception: if this occurs before the timeout the received message is decomposed
into its fields depending on the working mode, otherwise the program exits with an
error condition.
// Function to receive a message in polling mode

38

3.2 – C Drivers

int receiveMsg (RXMsgHandler * rx_handl, uint32_t timeout) {

/* Check the status register and the counter, exit the loop if
there 's currently a message

* being received or if the counter has received its max value (
timeout reached)

*/
uint32_t cnt = 0;
volatile uint32_t * status_ptr = CAN_GNRAL_STATUS_REG ;
while (!((* status_ptr) & 0x01) && (cnt < timeout)) ++ cnt; //

Check whether we've received a message or not

// If we have a timeout, exit with error ...
if (cnt == timeout)

return CAN_ID_NOT_ACCEPTED ;
// ... otherwise, save into the struct data the ID and the buffer

and release it
else {

volatile uint8_t can_mode = (*(CAN_GNRAL_CLKDIV_REG) & (1 << 7)
) >> 7;

if (! can_mode) { // If we 're in BasiCAN Mode
(* rx_handl).DLC = *(CAN_BASIC_RXB1_REG) & 0x0F; //

Extract the DLC field
(* rx_handl).RTR = (*(CAN_BASIC_RXB1_REG) & 0x10) >> 4;

// Extract the RTR field

uint32_t tmp_id = (*(CAN_BASIC_RXB1_REG) & 0xE0) >> 5;
// Extract the ID field

tmp_id += *(CAN_BASIC_RXB0_REG) << 3;
(* rx_handl).ID = tmp_id ;

(* rx_handl).RXBuf[0] = *(CAN_BASIC_RXB2_REG); // RX
Buffer 1

(* rx_handl).RXBuf[1] = *(CAN_BASIC_RXB3_REG); // RX
Buffer 2

(* rx_handl).RXBuf[2] = *(CAN_BASIC_RXB4_REG); // RX
Buffer 3

(* rx_handl).RXBuf[3] = *(CAN_BASIC_RXB5_REG); // RX
Buffer 4

(* rx_handl).RXBuf[4] = *(CAN_BASIC_RXB6_REG); // RX
Buffer 5

(* rx_handl).RXBuf[5] = *(CAN_BASIC_RXB7_REG); // RX
Buffer 6

(* rx_handl).RXBuf[6] = *(CAN_BASIC_RXB8_REG); // RX
Buffer 7

(* rx_handl).RXBuf[7] = *(CAN_BASIC_RXB9_REG); // RX
Buffer 8

39

3 – Peripheral Integration and Drivers Development

}
else { // Else, if in PeliCAN Mode

(* rx_handl).FF = (*(CAN_EXTND_TRX_FRINF_REG) & (1 << 7)) >> 7
; // Extract FF, RTR and DLC

(* rx_handl).RTR = (*(CAN_EXTND_TRX_FRINF_REG) & (1 << 6)) >>
6;

(* rx_handl).DLC = *(CAN_EXTND_TRX_FRINF_REG) & 0x0F;
uint32_t tmp_id = (*(CAN_EXTND_TRXID1_REG)) << 21; //

Begin to extract ID

if ((* rx_handl).FF) { // If EFF
tmp_id |= (*(CAN_EXTND_TRXIDE2_REG)) << 13; // Complete

ID extraction
tmp_id |= (*(CAN_EXTND_TRXIDE3_REG)) << 5;
tmp_id |= (*(CAN_EXTND_TRXIDE4_REG) & 0xF8) >> 3;
(* rx_handl).ID = tmp_id ;

(* rx_handl).RXBuf[0] = *(CAN_EXTND_TRXBE1_REG); //
Write received data in rx_handl

(* rx_handl).RXBuf[1] = *(CAN_EXTND_TRXBE2_REG);
(* rx_handl).RXBuf[2] = *(CAN_EXTND_TRXBE3_REG);
(* rx_handl).RXBuf[3] = *(CAN_EXTND_TRXBE4_REG);
(* rx_handl).RXBuf[4] = *(CAN_EXTND_TRXBE5_REG);
(* rx_handl).RXBuf[5] = *(CAN_EXTND_TRXBE6_REG);
(* rx_handl).RXBuf[6] = *(CAN_EXTND_TRXBE7_REG);
(* rx_handl).RXBuf[7] = *(CAN_EXTND_TRXBE8_REG);

}
else { // If SFF

tmp_id |= (*(CAN_EXTND_TRXIDS2_REG) & 0xE0) << 13; //
Complete ID extraction

(* rx_handl).ID = tmp_id ;

(* rx_handl).RXBuf[0] = *(CAN_EXTND_TRXBS1_REG); //
Write received data in rx_handl

(* rx_handl).RXBuf[1] = *(CAN_EXTND_TRXBS2_REG);
(* rx_handl).RXBuf[2] = *(CAN_EXTND_TRXBS3_REG);
(* rx_handl).RXBuf[3] = *(CAN_EXTND_TRXBS4_REG);
(* rx_handl).RXBuf[4] = *(CAN_EXTND_TRXBS5_REG);
(* rx_handl).RXBuf[5] = *(CAN_EXTND_TRXBS6_REG);
(* rx_handl).RXBuf[6] = *(CAN_EXTND_TRXBS7_REG);
(* rx_handl).RXBuf[7] = *(CAN_EXTND_TRXBS8_REG);

}

}

*(CAN_GNRAL_CMD_REG) = 0x04; // Tell the CAN controller
that the msg has been read

return CAN_OK ;

40

3.2 – C Drivers

}

}
Listing 3.10. receiveMsg function

selfTxRx

This function can be used only when the peripheral is in SelfTest mode, that is a
mode in which the peripheral can communicate with itself without the need of a
second node to give the latter the acknowledge.
It basically consists of a mix of the transmit and receive functions: at first the
transmitted message is initialized, then sent and received, lastly the received message
is decomposed into its fields.
// Transmit and receive a message concurrently in Self Test Mode
int selfTxRx (TXMsgHandler * tx_handl, RXMsgHandler * rx_handl) {

// TX Frame Information Regsiter holds the DLC in its 4 LSBs and
the RTR and FF in the 6th/7th bits

uint8_t tx_frame_info = (* tx_handl).DLC;
tx_frame_info += ((* tx_handl).RTR & 0x01) << 6;
tx_frame_info += ((* tx_handl).FF & 0x01) << 7;

*(CAN_EXTND_TRX_FRINF_REG) = tx_frame_info ;

// Now write Identifier registers depending whether we 've a
Standard Frame Format (SFF) or Extended Frame Format (

EFF)
(CAN_EXTND_TRXID1_REG) = ((tx_handl).ID & 0x1FE00000) >>

21;

if ((* tx_handl).FF & 0x01) { // If we 've EFF
(CAN_EXTND_TRXIDE2_REG) = ((tx_handl).ID & 0x001FE000)

>> 13;
(CAN_EXTND_TRXIDE3_REG) = ((tx_handl).ID &

0x00001FE0) >> 5;

uint8_t trxide4 = 0x00;
trxide4 |= ((* tx_handl).RTR & 0x01) << 2;
trxide4 |= ((* tx_handl).ID & 0x1F) << 3;
*(CAN_EXTND_TRXIDE4_REG) = trxide4 ;

(CAN_EXTND_TRXBE1_REG) = (tx_handl).TXBuf[0];
(CAN_EXTND_TRXBE2_REG) = (tx_handl).TXBuf[1];
(CAN_EXTND_TRXBE3_REG) = (tx_handl).TXBuf[2];
(CAN_EXTND_TRXBE4_REG) = (tx_handl).TXBuf[3];
(CAN_EXTND_TRXBE5_REG) = (tx_handl).TXBuf[4];

41

3 – Peripheral Integration and Drivers Development

(CAN_EXTND_TRXBE6_REG) = (tx_handl).TXBuf[5];
(CAN_EXTND_TRXBE7_REG) = (tx_handl).TXBuf[6];
(CAN_EXTND_TRXBE8_REG) = (tx_handl).TXBuf[7];

}
else { // If we've SFF

uint8_t trxids2 = 0x00;
trxids2 |= ((* tx_handl).RTR & 0x01) << 4;
trxids2 |= ((* tx_handl).ID & 0x001C0000) >> 13;
*(CAN_EXTND_TRXIDS2_REG) = trxids2 ;

(CAN_EXTND_TRXBS1_REG) = (tx_handl).TXBuf[0];
(CAN_EXTND_TRXBS2_REG) = (tx_handl).TXBuf[1];
(CAN_EXTND_TRXBS3_REG) = (tx_handl).TXBuf[2];
(CAN_EXTND_TRXBS4_REG) = (tx_handl).TXBuf[3];
(CAN_EXTND_TRXBS5_REG) = (tx_handl).TXBuf[4];
(CAN_EXTND_TRXBS6_REG) = (tx_handl).TXBuf[5];
(CAN_EXTND_TRXBS7_REG) = (tx_handl).TXBuf[6];
(CAN_EXTND_TRXBS8_REG) = (tx_handl).TXBuf[7];

}

// Self TxRX request
*(CAN_GNRAL_CMD_REG) = 0x10;

volatile uint32_t * status_ptr = CAN_GNRAL_STATUS_REG ;

// Wait for SOT (Start of Transmission)
while (!((* status_ptr & 0x20) >> 5));

// Once the peripheral has started the transmission, wait
for it to finish

while ((!(((* status_ptr) & 0x08) >> 3) || ((* status_ptr) &
0x40) >> 6));

// The transmission has now ended, chech if the peripheral has
received its own message

if ((* status_ptr) & 0x01) {

// Now, save everything in rx_handl
(* rx_handl).FF = (*(CAN_EXTND_TRX_FRINF_REG) & (1 << 7)) >> 7;

// Extract FF, RTR and DLC
(* rx_handl).RTR = (*(CAN_EXTND_TRX_FRINF_REG) & (1 << 6)) >> 6;
(* rx_handl).DLC = *(CAN_EXTND_TRX_FRINF_REG) & 0x0F;
uint32_t tmp_id = (*(CAN_EXTND_TRXID1_REG)) << 21;

// Begin to extract ID

if ((* rx_handl).FF) {
// If EFF

42

3.2 – C Drivers

tmp_id |= (*(CAN_EXTND_TRXIDE2_REG)) << 13;
// Complete ID extraction

tmp_id |= (*(CAN_EXTND_TRXIDE3_REG)) << 5;
tmp_id |= (*(CAN_EXTND_TRXIDE4_REG) & 0xF8) >> 3;
(* rx_handl).ID = tmp_id ;

(* rx_handl).RXBuf[0] = *(CAN_EXTND_TRXBE1_REG);
// Write received data in rx_handl

(* rx_handl).RXBuf[1] = *(CAN_EXTND_TRXBE2_REG);
(* rx_handl).RXBuf[2] = *(CAN_EXTND_TRXBE3_REG);
(* rx_handl).RXBuf[3] = *(CAN_EXTND_TRXBE4_REG);
(* rx_handl).RXBuf[4] = *(CAN_EXTND_TRXBE5_REG);
(* rx_handl).RXBuf[5] = *(CAN_EXTND_TRXBE6_REG);
(* rx_handl).RXBuf[6] = *(CAN_EXTND_TRXBE7_REG);
(* rx_handl).RXBuf[7] = *(CAN_EXTND_TRXBE8_REG);

}
else {

// If SFF
tmp_id |= (*(CAN_EXTND_TRXIDS2_REG) & 0xE0) << 13;

// Complete ID extraction
(* rx_handl).ID = tmp_id ;

(* rx_handl).RXBuf[0] = *(CAN_EXTND_TRXBS1_REG);
// Write received data in rx_handl

(* rx_handl).RXBuf[1] = *(CAN_EXTND_TRXBS2_REG);
(* rx_handl).RXBuf[2] = *(CAN_EXTND_TRXBS3_REG);
(* rx_handl).RXBuf[3] = *(CAN_EXTND_TRXBS4_REG);
(* rx_handl).RXBuf[4] = *(CAN_EXTND_TRXBS5_REG);
(* rx_handl).RXBuf[5] = *(CAN_EXTND_TRXBS6_REG);
(* rx_handl).RXBuf[6] = *(CAN_EXTND_TRXBS7_REG);
(* rx_handl).RXBuf[7] = *(CAN_EXTND_TRXBS8_REG);

}

}

return CAN_OK ;

}
Listing 3.11. selfTxRx function

43

44

Chapter 4

SelfTest Library

This chapter is centered on the development of the SelfTest Library, that is the test
program that will be used to functionally test the CAN Controller peripheral. In
particular, all the subprograms in which such program is divided will be explained
both in terms of their implementation and the targeted submodules of the CAN
peripheral.

4.1 Case Study
The SelfTest Library highly depends on the adopted testbench configuration. In
fact, if every functionality described in the aforementioned drivers was to be used,
functions like receiveMsg or transmitMsg imply the presence of more than one
node on the bus.
The CAN Controller offers the possibility of sending and receiving messages without
any other node, this operating mode is the Selftest Mode, but this wouldn’t let the
test of the controller logic related to normal transmission and reception of messages.
Since a typical application in which CAN communication is required involves many
nodes, the same assumption was made for this work.
In the final test-bench used in the experiments, two instances of the OR1200 based
SoC are connected through a CAN bus. The reason of having only two nodes is
due to the fact that this is the minimum number that allows to test every operating
mode without introducing any unnecessary complexity.
The whole system was simulated in RT level, with the exception of the CAN con-
troller of the target SoC (one of the two SoCs is assumed to be the active node,
while the other SoC is the passive node), which is simulated at the gate level. Since
the test-bench implements an end-to-end communication between two devices, the
two SoCs own distinct IDs.
A simple scheduling approach is implemented, which iterates on all the available

45

4 – SelfTest Library

test programs. A graphical view of the test environment is depicted in 4.1.

Node 0

CAN
Controller 0

Node 1

CAN
Controller 1

TX0 TX1

RX0 RX1

Figure 4.1. Block diagram of the test-bench.

It’s important to notice that this schematic is just a logic representation of how
the two nodes have been connected in the testbench from a CAN bus point of view:
in reality each node’s Tx and Rx signals should be connected to a CAN transceiver
that converts the two lines into CANH and CANL as explained in 1; figure 1.2 shows
the concept in a simplified way.

4.2 Test Program
The following test program is installed both in the active and passive nodes. Each
program thus comes in two fashions, even though the executed steps are - almost
always - symmetric: the two nodes alternatively receive and send messages in the
same exact configuration, depending on whether a node is active or passive it will
transmit first or receive first.

The main test program is divided into subprograms that are specialized in a
specific sub-module or functional feature of the CAN controller. They can be exe-
cuted together as a whole, grouped in submodules or by themselves one after the
other: the idea is that, when the CAN communication is idle, the test can occur
and depending on the duration of the idle time one could decide on the test length
and hence decide which modules to test together.
Below a description of the subprograms that compose the STL.

4.2.1 Bit Rate test
In this test program, the active node sends a message using multiple bit rates without
varying the other configuration parameters. In this experiment, the CAN controllers
were configured to work in BasiCAN mode; other parameters like the ID and the
data length (DLC) fields were fixed. The Data Bytes, on the other hand, changed

46

4.2 – Test Program

at every transmitted message. For each iteration cycle, the active node transmits
a message and expects an acknowledgment from the passive node which will then
transmit a message to the active one. At the end of such cycle, the transmission bit
rate is modified coherently.

Once tested the ability of the node to work at various bit rates, in order to
speed-up the test, the nodes are configured to the fastest possible bit rate for all the
remaining phases of the test.

// Loop over different bitrates
int bitrate_it ;
for(bitrate_it = 0; bitrate_it < 8; bitrate_it ++) {

// Initialize the peripheral
can_handl . CAN_Mode = 0x00;
can_handl . CLKOff = 0x01;
can_handl .CD = 0x00;

int count;
for(count = 0; count < 4; count ++) {

can_handl .ACR[count] = 0x00;
can_handl .ACM[count] = 0xFF;

}
can_handl . B_TIM0 = bustim0 [bitrate_it];
can_handl . B_TIM1 = bustim1 [bitrate_it];
canPeriphInit (& can_handl);

// Enable all interrupts
irq_handl .RIE = 0x00;
irq_handl .TIE = 0x00;
irq_handl .EIE = 0x00;
irq_handl .OIE = 0x00;
irq_handl .WUIE = 0x00;
irq_handl .EPIE = 0x00;
irq_handl .ALIE = 0x00;
irq_handl .BEIE = 0x00;
irqEnable (& irq_handl);

tx_handl .ID = ID_bitrate [bitrate_it];
tx_handl .DLC = 0x08;
tx_handl .RTR = 0x00;
tx_handl .FF = 0x00;

for(i = 0; i < 8; i++) {
tx_handl .TXBuf[i] = lfsr[i];
lfsr[i] = (lfsr[i] << 1) | (((lfsr[i] & (1 << 6)) >> 6) ^ ((

lfsr[i] & (1 << 4)) >> 4) ^ ((lfsr[i] & (1 << 2)) >> 2) ^
((lfsr[i] & (1 << 1)) >> 1));

}

47

4 – SelfTest Library

// Check if there 's a message to receive
BRP = bustim0 [bitrate_it] & 0x3F;
TSEG1 = bustim1 [bitrate_it] & 0x0F;
TSEG2 = (bustim1 [bitrate_it] & 0x70) >> 4;
timeout = 2*(BRP+1)*(TSEG1+TSEG2+3)*130;

if(receiveMsg (& rx_handl,timeout) != CAN_OK) __asm__ ("l.addi
r20,r0,0x20 ");

if(transmitMsg (& tx_handl,timeout) != CAN_OK) __asm__ ("l.addi
r21,r0,0x21 ");

BusTiming0Read = *(CAN_GNRAL_TIM0_REG);
BusTiming1Read = *(CAN_GNRAL_TIM1_REG);

// Wait some time to let the two peripherals to be ready
for the next loop

for(wait = 0; wait <800; wait ++);

}
Listing 4.1. Bit Rate Test subprogram

4.2.2 Normal Mode test
This test program is intended to test the basic transmission/reception of messages
while changing the configuration parameters. Clearly, active and passive nodes
change parameters coherently during the test.

The other parameters are changed, such as the CAN operating mode (i.e., Ba-
siCAN and PeliCAN), the Frame Format when in PeliCAN mode, the DLC and ID
and the enabled interrupts. Every node sends and receives one message for every
available configuration, that is one message sent and received per cycle. In our ex-
periments, data payload for messages have been filled with pseudo-random values.
Additionally, we included some deterministic patterns (e.g., 0101..., 1010..., 0011...,
1100...).

After each transmission, the results are retrieved by reading the appropriate
registers (i.e., data and status registers), eventually these can be compared with the
expected ones (or compacted in a test signature).
Finally, configuration registers are read back after each change in the configuration
to detect faults in the configuration flip-flops.

uint8_t can_mode = 0x00;
uint8_t ff = 0x00;

48

4.2 – Test Program

// Wait some time to let the two peripherals to be ready
for the next loop

for(wait = 0; wait <100; wait ++);

// Loop over CAN msgs
int tx_it;
for(tx_it = 0; tx_it < 8; tx_it ++) {

// Initialize the peripheral
can_handl . CAN_Mode = can_mode ;
can_handl . CLKOff = 0x00;
can_handl .CD = CD[tx_it];
can_handl .ACR[0] = ACR0[tx_it];
can_handl .ACR[1] = ACR1[tx_it];
can_handl .ACR[2] = ACR2[tx_it];
can_handl .ACR[3] = ACR3[tx_it];
can_handl .ACM[0] = ACM0[tx_it];
can_handl .ACM[1] = ACM1[tx_it];
can_handl .ACM[2] = ACM2[tx_it];
can_handl .ACM[3] = ACM3[tx_it];
can_handl . B_TIM0 = bustim0 [0];
can_handl . B_TIM1 = bustim1 [0];
canPeriphInit (& can_handl);

// Enable interrupts
irq_handl .RIE = IRQ_EN [tx_it] & (1 << 0);
irq_handl .TIE = (IRQ_EN [tx_it] & (1 << 1)) >> 1;
irq_handl .EIE = (IRQ_EN [tx_it] & (1 << 2)) >> 2;
irq_handl .OIE = (IRQ_EN [tx_it] & (1 << 3)) >> 3;
irq_handl .WUIE = (IRQ_EN [tx_it] & (1 << 4)) >> 4;
irq_handl .EPIE = (IRQ_EN [tx_it] & (1 << 5)) >> 5;
irq_handl .ALIE = (IRQ_EN [tx_it] & (1 << 6)) >> 6;
irq_handl .BEIE = (IRQ_EN [tx_it] & (1 << 7)) >> 7;
irqEnable (& irq_handl);

// TXMsgHandler tx_handl ;
tx_handl .ID = ID[tx_it];
tx_handl .DLC = DLC[tx_it];
tx_handl .RTR = 0x00;
tx_handl .FF = ff;

// Generate pseudo - randomic messages to be sent
for(i = 0; i < 8; i++) {

tx_handl .TXBuf[i] = lfsr[i];
lfsr[i] = (lfsr[i] << 1) | (((lfsr[i] & (1 << 6)) >> 6) ^ ((

lfsr[i] & (1 << 4)) >> 4) ^ ((lfsr[i] & (1 << 2)) >> 2) ^
((lfsr[i] & (1 << 1)) >> 1));

}

49

4 – SelfTest Library

// Check if there 's a message to receive
BRP = bustim0 [0] & 0x3F;
TSEG1 = bustim1 [0] & 0x0F;
TSEG2 = (bustim1 [0] & 0x70) >> 4;

t_packet = can_mode ? (60 + DLC[tx_it]*8) : (40 + DLC[tx_it]*8)
;

timeout = (2*(BRP+1)*(TSEG1+TSEG2+3)* t_packet) >> 4
;

// Receive a message
if(receiveMsg (& rx_handl, timeout) != CAN_OK) __asm__ ("l.addi

r20,r20,0x01 ");

// Transmit a message
if(transmitMsg (& tx_handl, timeout) != CAN_OK) __asm__ ("l.addi

r21,r21,0x01 ");

// Read out some registers to enhance fault coverage on them
if(can_mode) {

IRQ_EN_read [tx_it] = *(CAN_EXTND_IRQEN_REG);
TxData10 = *(CAN_EXTND_TRXBE6_REG);
TxData11 = *(CAN_EXTND_TRXBE7_REG);
TxData12 = *(CAN_EXTND_TRXBE8_REG);

*(CAN_GNRAL_MODE_REG) |= 0x01;
ACR_read [0][tx_it] = *(CAN_EXTND_ACR0_REG);
ACR_read [1][tx_it] = *(CAN_EXTND_ACR1_REG);
ACR_read [2][tx_it] = *(CAN_EXTND_ACR2_REG);
ACR_read [3][tx_it] = *(CAN_EXTND_ACR3_REG);

ACM_read [0][tx_it] = *(CAN_EXTND_ACM0_REG);
ACM_read [1][tx_it] = *(CAN_EXTND_ACM1_REG);
ACM_read [2][tx_it] = *(CAN_EXTND_ACM2_REG);
ACM_read [3][tx_it] = *(CAN_EXTND_ACM3_REG);

*(CAN_GNRAL_MODE_REG) &= ~(0x01);

ff ^= 0x01;
}
can_mode ^= 0x01;

ModeReg = *(CAN_GNRAL_MODE_REG);
BusTiming0Read = *(CAN_GNRAL_TIM0_REG);
BusTiming1Read = *(CAN_GNRAL_TIM1_REG);
ClockDivRead = *(CAN_GNRAL_CLKDIV_REG);

}

Listing 4.2. Normal Mode Test subprogram

50

4.2 – Test Program

4.2.3 Self-Test Mode test
In the Self-Test Mode configuration, the CAN controller sends messages without
the need of an acknowledge by other nodes and uses a loop-back to check their
correctness autonomously.
The test consists of a transmission and concurrent reception of a single message, all
of this in PeliCAN Mode.

/* **
********** Second Step: Self Test Mode **********
*** */

// Self Test Mode
can_handl . CAN_Mode = 0x01;
can_handl . CLKOff = 0x00;

can_handl .STM = 0x01;
can_handl .AFM = 0x01;
can_handl .LOM = 0x00;

can_handl .CD = 0x00;
can_handl .ACR[0] = 0x00;
can_handl .ACR[1] = 0x00;
can_handl .ACR[2] = 0x00;
can_handl .ACR[3] = 0x00;
can_handl .ACM[0] = 0xFF;
can_handl .ACM[1] = 0xFF;
can_handl .ACM[2] = 0xFF;
can_handl .ACM[3] = 0xFF;
can_handl . B_TIM0 = bustim0 [0];

can_handl . B_TIM1 = bustim1 [0];
can_handl .EWL = 0x55;

canPeriphInit (& can_handl);

tx_handl .ID = (uint32_t) 0x1582FBACD ;
tx_handl .DLC = 0x08;
tx_handl .RTR = 0x00;
tx_handl .FF = 0x01;

for(i = 0; i < 8; i++) {
tx_handl .TXBuf[i] = lfsr[i];

lfsr[i] = (lfsr[i] << 1) | (((lfsr[i] & (1 << 6))
>> 6) ^ ((lfsr[i] & (1 << 4)) >> 4) ^ ((lfsr[i]
& (1 << 2)) >> 2) ^ ((lfsr[i] & (1 << 1)) >> 1))
;

}

// Self transmission and reception
selfTxRx (& tx_handl, & rx_handl);

Listing 4.3. Self-Test subprogram

51

4 – SelfTest Library

4.2.4 Listen Only Mode test
In the Listen Only Mode configuration, the CAN controller is only capable of re-
ceiving and, more specifically, it does not generate the acknowledge bit even if the
message has been correctly received.
The test aims at checking the ability of the node to receive and process a message
and consists in the reception and check of a single message sent by the passive node.

/* **
********* Third Step: Listen Only Mode **********
*** */

// Listen Only Mode
can_handl . CAN_Mode = 0x01;
can_handl . CLKOff = 0x00;
can_handl .LOM = 0x01;

can_handl .STM = 0x00;
can_handl .AFM = 0x01;
can_handl .CD = 0x00;
can_handl .ACR[0] = 0x00;
can_handl .ACR[1] = 0x00;
can_handl .ACR[2] = 0x00;
can_handl .ACR[3] = 0x00;
can_handl .ACM[0] = 0xFF;
can_handl .ACM[1] = 0xFF;
can_handl .ACM[2] = 0xFF;
can_handl .ACM[3] = 0xFF;
can_handl . B_TIM0 = bustim0 [0];
can_handl . B_TIM1 = bustim1 [0];
can_handl .EWL = 0x3F;

canPeriphInit (& can_handl);

tx_handl .ID = (uint32_t) 0x1582FBACD ;
tx_handl .DLC = 0x08;
tx_handl .RTR = 0x00;
tx_handl .FF = 0x01;

for(i = 0; i < 8; i++) {
tx_handl .TXBuf[i] = lfsr[i];
lfsr[i] = (lfsr[i] << 1) | (((lfsr[i] & (1 << 6))

>> 6) ^ ((lfsr[i] & (1 << 4)) >> 4) ^ ((lfsr[i]
& (1 << 2)) >> 2) ^ ((lfsr[i] & (1 << 1)) >> 1))
;

}

// Check if there 's a message to receive
BRP = bustim0 [0] & 0x3F;

52

4.2 – Test Program

TSEG1 = bustim1 [0] & 0x0F;
TSEG2 = (bustim1 [0] & 0x70) >> 4;
t_packet = 104;
timeout = (2*(BRP+1)*(TSEG1+TSEG2+3)* t_packet) >> 4;

if(receiveMsg (& rx_handl,timeout) != CAN_OK) __asm__ ("l.addi
r20,r0,0x20 ");

Listing 4.4. Listen Only Mode Test subprogram

4.2.5 FIFO test
The basic principle of the test program for the FIFO consists of filling and then
emptying it and working on the overrun generation bit. The overrun occurs when
the FIFO is already full and the CAN controller tries to write another message,
without success.
In order to implement such principle, the passive node has to send enough messages
to fill the FIFO (64 messages in our case study). A further message sent by the
passive node should produce an overrun, which can be detected by the active node
by reading a proper status register (or by means of an interrupt).

In a second phase, while the second node is sending messages, the first one keeps
reading them, in order to test the remaining logic of the FIFO. In our case study, the
FIFO is implemented as a circular buffer, thus we sent a first packet of 64 messages
and then we repeated this with 200 messages.

/* **
********** Fourth Step: Overrun Error ***********
*** */

// Extended Mode RX
can_handl . CAN_Mode = 0x01;
can_handl . CLKOff = 0x00;
can_handl .LOM = 0x00;
can_handl .STM = 0x00;
can_handl .AFM = 0x01;
can_handl .CD = 0x00;
can_handl .ACR[0] = 0x00;
can_handl .ACR[1] = 0x00;
can_handl .ACR[2] = 0x00;
can_handl .ACR[3] = 0x00;
can_handl .ACM[0] = 0xFF;
can_handl .ACM[1] = 0xFF; naruto vs neji
can_handl .ACM[2] = 0xFF;
can_handl .ACM[3] = 0xFF;

53

4 – SelfTest Library

can_handl . B_TIM0 = bustim0 [0];
can_handl . B_TIM1 = bustim1 [0];
can_handl .EWL = 0x3F;

can_handl .RBSA = 0x00;
canPeriphInit (& can_handl);

// Wait for the FIFO to be completely filled
for(wait=0; wait <28500; wait ++);

// Free the FIFO
for(i=0; i<64; i++) receiveMsg (& rx_handl, (uint32_t)1000);

// Standard Mode RX
can_handl . CAN_Mode = 0x00;
can_handl . CLKOff = 0x00;
can_handl .LOM = 0x00;
can_handl .STM = 0x00;
can_handl .AFM = 0x00;
can_handl .CD = 0x00;
can_handl .ACR[0] = 0x00;
can_handl .ACR[1] = 0x00;
can_handl .ACR[2] = 0x00;
can_handl .ACR[3] = 0x00;
can_handl .ACM[0] = 0xFF;
can_handl .ACM[1] = 0xFF;
can_handl .ACM[2] = 0xFF;
can_handl .ACM[3] = 0xFF;
can_handl . B_TIM0 = bustim0 [0];
can_handl . B_TIM1 = bustim1 [0];
can_handl .EWL = 0x3F;
can_handl .RBSA = 0x00;
canPeriphInit (& can_handl);

// Wait for the FIFO to be completely filled
for(wait=0; wait <31000; wait ++);

// Free the FIFO
for(i=0; i<64; i++) receiveMsg (& rx_handl, (uint32_t)1000);

// Play with DLC values
for(i=0; i<200; i++) receiveMsg (& rx_handl, (uint32_t)1000);

for(wait=0; wait <500; wait ++);

Listing 4.5. FIFO Test subprogram

54

4.2 – Test Program

4.2.6 Errors test
This test program aims at testing the logic devoted to detect some error conditions.
Since in a functional test environment not assisted by ad-hoc hardware it is not
possible to precisely work on external (i.e., coming from the physical BUS) errors,
the program mainly focuses on testing the situation in which the two nodes do not
have the same bit rate.
The proposed test program configures the active and the passive nodes to differ-
ent bit rates. Then, the passive node sends a message to the active node, which
is incapable of receiving it due to the different bit rates. In our case study, after
a certain amount of trials, the active node disables itself and goes into BUS Off Mode.

Finally, the active node becomes the transmitter and the passive node the one
who is subject to the error. In this case, the acknowledgment is not sent by the
passive node.

/* **
******** Fifth Step: Different Bitrates *********
** */

// We 'll simulate here what happens when a message is sent
// and the one who transmits and the one who receives have
// different bitrates

// First sub_step : send the message
can_handl . CAN_Mode = 0x01;
can_handl . CLKOff = 0x01;
can_handl .LOM = 0x00;
can_handl .STM = 0x00;
can_handl .AFM = 0x00;
can_handl .CD = 0x00;
can_handl .ACR[0] = ACR0[1];
can_handl .ACR[1] = ACR1[1];
can_handl .ACR[2] = ACR2[1];
can_handl .ACR[3] = ACR2[1];
can_handl .ACM[0] = ACM0[1];
can_handl .ACM[1] = ACM1[1];
can_handl .ACM[2] = ACM2[1];
can_handl .ACM[3] = ACM2[1];
can_handl . B_TIM0 = bustim0 [0];
can_handl . B_TIM1 = bustim1 [0];
can_handl .EWL = 0x55;
canPeriphInit (& can_handl);

tx_handl .ID = 0x15555555 ;
tx_handl .DLC = 0x01;

55

4 – SelfTest Library

tx_handl .FF = 0x01;
tx_handl .RTR = 0x01;

EWL_read = *(CAN_EXTND_EWLR_REG);

for(wait=0; wait <500; wait ++);

if(transmitMsg (& tx_handl, (uint32_t)3000) == CAN_TX_TIMEOUT)
__asm__ ("l.addi r20,r0,0x20 ");

// We have to re - enable the peripheral, in order to do so it has
to down count for 127 cycles

// To save time, we set the timing of the peripheral at the
maximum speed

*(CAN_GNRAL_TIM0_REG) = 0x00;
*(CAN_GNRAL_TIM1_REG) = 0x00;
*(CAN_GNRAL_MODE_REG) &= ~(0x01);

// Wait for the down count to reach 0
for(wait=0; wait <1200; wait ++);

// Once the peripheral has been re - enabled, it 's time to test
rx_errors

can_handl . CAN_Mode = 0x01;
can_handl . CLKOff = 0x01;
can_handl .LOM = 0x00;
can_handl .STM = 0x00;
can_handl .AFM = 0x00;
can_handl .CD = 0x00;
can_handl .ACR[0] = ACR0[3];
can_handl .ACR[1] = ACR1[3];
can_handl .ACR[2] = ACR2[3];
can_handl .ACR[3] = ACR2[3];
can_handl .ACM[0] = ACM0[3];
can_handl .ACM[1] = ACM1[3];
can_handl .ACM[2] = ACM2[3];
can_handl .ACM[3] = ACM2[3];
can_handl . B_TIM0 = bustim0 [4];
can_handl . B_TIM1 = bustim1 [4];
can_handl .EWL = 0xAA;

canPeriphInit (& can_handl);

tx_handl .ID = 0x15555555 ;
tx_handl .DLC = 0x01;
tx_handl .FF = 0x01;
tx_handl .RTR = 0x01;

EWL_read = *(CAN_EXTND_EWLR_REG);

56

4.2 – Test Program

receiveMsg (& rx_handl, (uint32_t)3500);

for(wait=0; wait <1300; wait ++);
Listing 4.6. Error Test subprogram

4.2.7 Arbitration test
This program tests the arbitration between nodes. The proposed approach consists
of a series of messages sent by the two peripherals concurrently: this is because the
arbitration occurs whenever two or more nodes are transmitting at the same time,
loss of arbitration is verified if one node is transmitting a recessive bit, 1’b1, while
the other node is transmitting a dominant bit 1’b0.
The internal CAN Controller logic regarding the arbitration is centered on a regis-
ter, Arbitration Lost Capture or ALC, which bits reflect the position in the CAN
message in which arbitration has been lost: if ALC[4:0]==5’h00 then arbitration
has been lost in bit 1 of the identifier, if ALC[4:0]==5’h01 then arbitration has been
lost in bit 2 of the identifier, etc.
The SJA1000 peripheral contemplates loss of arbitration only in the ID and RTR
fields, using 5 bits only, ALC[4:0], the remaining 3 bits are reserved.
In order to perform such test, the idea consisted in keeping the message sent by the
passive node as fixed while varying the active node’s one to test all of the conditions
explained above.

Reproducing such deterministic behavior in a functional environment, however,
is not straightforward: the main problem consisted in synchronizing the two modules
in order to have them configured such that the messages they send start at the same
time. An attempt has been made to achieve this condition, future developments
could make use of a slower bit-rate or synchronization by means of internal timers.

/* **
********* Sixth Step: Arbitration Lost **********
*** */

can_handl . CAN_Mode = 0x01;
can_handl . CLKOff = 0x01;
can_handl .LOM = 0x00;
can_handl .STM = 0x00;
can_handl .AFM = 0x00;
can_handl .CD = 0x00;
can_handl .ACR[0] = 0x00;
can_handl .ACM[0] = 0xFF;
can_handl . B_TIM0 = bustim0 [0];
can_handl . B_TIM1 = bustim1 [0];

57

4 – SelfTest Library

canPeriphInit (& can_handl);

tx_handl .DLC = 0x08;
tx_handl .FF = 0x01;
tx_handl .RTR = 0x00;

uint32_t tx_ID = 0x3FFFFFFF ;
volatile uint32_t alc_reg ;
int arb_lost ;

tx_handl .ID = tx_ID;
// Ideally, we 'd like to send a message concurrently with the

other node in order to have a loss of arbitration
// By looping and changing the point in which there 's an

arbitration loss we should be able to go through every
possible state

for(arb_lost = 0; arb_lost < 30; arb_lost ++) {

tx_ID = tx_ID >> 1;

for(i = 0; i < 8; i++) {
tx_handl .TXBuf[i] = lfsr[i];
lfsr[i] = (lfsr[i] << 1) | (((lfsr[i] & (1 << 6))

>> 6) ^ ((lfsr[i] & (1 << 4)) >> 4) ^ ((lfsr[
i] & (1 << 2)) >> 2) ^ ((lfsr[i] & (1 << 1))
>> 1));

}

// Transmit a message concurrently with the other
if(transmitMsg (& tx_handl,timeout) != CAN_OK) __asm__ ("l.addi

r21,r0,0x21 ");

// Read the arbitration lost capture register
alc_reg = *(CAN_EXTND_ALC_REG);

}

// Abort a transmission
// Send msg
*(CAN_GNRAL_CMD_REG) = 0x01;

// Wait for SOT (Start of Transmission)
while (!((*(CAN_GNRAL_STATUS_REG) & 0x20) >> 5));

// Now abort it
*(CAN_GNRAL_CMD_REG) = 0x02;

Listing 4.7. Arbitration Test subprogram

58

4.2 – Test Program

4.2.8 Acceptance Filter test
Every message received by the CAN controller is filtered by comparing its ID against
some programmable bit-masks. In order to test the comparators in the acceptance
filters, deterministic patterns can be used [1]. Alternatively, patterns can be easily
derived by launching an Automatic Test Patterns Generation tool on the combina-
tional logic. Each pattern is then transformed into a message sent by the passive
node and filtered by the active node accordingly.

/* **
****** Seventh Step: Acceptance Filter Test *****
*** */

// All of these patterns have been generated by means of a ATPG
script

// Pattern 1
can_handl . CAN_Mode = 0x1;
can_handl .AFM = 0x1;
can_handl .ACR[0] = 0xd;
can_handl .ACR[1] = 0x9b;
can_handl .ACR[2] = 0xbc;
can_handl .ACR[3] = 0x1;
can_handl .ACM[0] = 0xff;
can_handl .ACM[1] = 0xff;
can_handl .ACM[2] = 0xff;
can_handl .ACM[3] = 0xf4;
can_handl . B_TIM0 = bustim0 [0];
can_handl . B_TIM1 = bustim1 [0];
canPeriphInit (& can_handl);
BRP = bustim0 [0] & 0x3F;
TSEG1 = bustim1 [0] & 0x0F;
TSEG2 = (bustim1 [0] & 0x70) >> 4;
timeout = 2*(BRP+1)*(TSEG1+TSEG2+3)*4;
tx_handl .ID = (uint32_t)(0x948a23e);
tx_handl .DLC = 0x02;
tx_handl .TXBuf[0] = 0x7;
tx_handl .TXBuf[1] = 0xb2;
tx_handl .RTR = 0x00;
tx_handl .FF = 0x1;
#ifdef NODE1
transmitMsg (& tx_handl,timeout);
receiveMsg (& rx_handl,timeout);
#else
receiveMsg (& rx_handl,timeout);
transmitMsg (& tx_handl,timeout);
#endif

can_handl . CAN_Mode = 0x1;

59

4 – SelfTest Library

can_handl .AFM = 0x0;
can_handl .ACR[0] = 0x98;
can_handl .ACR[1] = 0x6a;
can_handl .ACR[2] = 0xae;
can_handl .ACR[3] = 0xa6;
can_handl .ACM[0] = 0xc0;
can_handl .ACM[1] = 0xfb;
can_handl .ACM[2] = 0xc4;
can_handl .ACM[3] = 0xa2;
can_handl . B_TIM0 = bustim0 [0];
can_handl . B_TIM1 = bustim1 [0];
canPeriphInit (& can_handl);
BRP = bustim0 [0] & 0x3F;
TSEG1 = bustim1 [0] & 0x0F;
TSEG2 = (bustim1 [0] & 0x70) >> 4;
timeout = 2*(BRP+1)*(TSEG1+TSEG2+3)*4;
tx_handl .ID = (uint32_t)(0xaa26f89);
tx_handl .DLC = 0x02;
tx_handl .TXBuf[0] = 0x5d;
tx_handl .TXBuf[1] = 0x1b;
tx_handl .RTR = 0x00;
tx_handl .FF = 0x0;
#ifdef NODE1
transmitMsg (& tx_handl,timeout);
receiveMsg (& rx_handl,timeout);
#else
receiveMsg (& rx_handl,timeout);
transmitMsg (& tx_handl,timeout);
#endif

Listing 4.8. Acceptance Filter Test subprogram

60

Chapter 5

Experimental Results

Details about the test program described in 4.2 are reported in 5.1. The table
reports its test application time in clock cycles (column 2), the number of messages
exchanged by the nodes (column 3), and the amount of bytes sent by the active
node (column 4) and passive node (column 5). The clock signal period adopted in
the testbench is 10ns, as a consequence the total amount of time required by the
whole test program to run is about 331ms.

Test program Duration
[clk cycles] #Messages Bits sent Bits received

Bitrate 1,577,790 8 864 864
Normal Mode 248,652 8 1,144 1,144
Self-Test Mode 16,964 1 108 108
Listen Only Mode 17,564 1 108 108
FIFO 3,157,031 328 0 28,000
Errors 410,452 1 72 72
Arbitration 815,000 30 2,160 2,160
Acceptance Filter 28,856,547 592 44,176 44,176

Table 5.1. Test programs details

Fault simulation experiments were run using a commercial fault simulator as
explained in subsection 2.4.1. Moreover, an approach similar to the one described
in [2] was applied in order to identify faults in the combinational logic that are
untestable in functional mode, due to fixed values on specific flip-flops or primary
inputs.

Details about the fault simulation experiments are reported in 5.2. The table
reports, for the main sub-modules in the CAN controller, the number of stuck-at
faults (column 2), the fault coverage (column 3), which is the ratio between the
tested faults above all faults in the circuit, and the test coverage (column 4), where

61

5 – Experimental Results

untestable faults are not taken into account. Since many smaller modules and glue
logic are not reported in the table, the number of faults of a given module is higher
than the sum of the faults in the reported sub-modules.

On the top-level module of the CAN controller, the final result showed how the
90.24% of the testable faults was covered. The testability analysis allowed to classify
as functionally untestable about 1% of faults, although this percentage significantly
varies among the modules.

Instance Name #Stuck-at
Faults

Fault
Coverage %

Test
Coverage%

i_can_registers 5,352 84.91 84.91
acceptance_code_regs 256 100.00 100.00
acceptance_mask_regs 256 100.00 100.00
bus_timing_regs 128 85.94 85.94
clock_divider_regs 118 90.68 90.68
command_reg 134 72.97 79.10
error_warning_reg 152 92.76 92.76
irq_en_reg 64 96.88 96.88
mode_regs 174 91.96 91.96
tx_data_regs 832 100.00 100.00

i_can_btl 1,472 83.24 83.31
i_can_bsp 31,236 91.43 91.44

i_can_crc_rx 380 99.47 99.47
i_can_acf 1,418 85.40 85.40
i_can_fifo 17,382 96.26 96.26

TOTAL 38,490 90.22 90.24

Table 5.2. Faults Report of the CAN Controller

One of the advantages of the developed program is that it can be decomposed in
subprograms that can be eventually re-grouped together when scheduling the test
phases. As a consequence, even all of the various submodules were fault simulated
one by one, the results can be seen in table 5.3.

To gain some insight on the validity of the proposed method and in order to see
how it compared against more realistic scenarios, other test programs were developed
and tested as well. Each developed program assumes the same testbench employed
in the test program.
The additional programs are described as follows:

62

Subprogram
Name

ACF
Test

Arbitration
Test

Errors
Test

FIFO
Test

Registers Coverage% 48.18 40.00 30.93 25.37
BTL Coverage% 51.71 52.12 69.45 51.64
BSP Coverage% 69.45 17.44 14.93 60.46
ACF Coverage% 81.95 3.95 0.42 6.77
FIFO Coverage% 80.26 0.77 0.35 81.47
Test Coverage% 66.05 22.56 19.96 55.58

Subprogram
Name

LOM
Test

Bit-rate
Test

Normal Mode
Test

ST Mode
Test

Registers Coverage% 26.47 39.16 70.98 46.29
BTL Coverage% 67.60 68.84 51.03 67.95
BSP Coverage% 60.84 42.59 38.40 28.93
ACF Coverage% 13.82 3.74 17.49 10.16
FIFO Coverage% 77.30 39.60 24.09 10.35
Test Coverage% 56.63 43.66 44.03 33.48

Table 5.3. Faults Report of the STL subprograms

• Ten Messages Program: the active node and passive node transmit, alterna-
tively, 10 messages keeping all of the parameters fixed, except for the data
bytes (the actual message).

• Ten Varying Messages Program: same as the Ten Messages Program but
after every message all of the main parameters, like bitrate, ID, DLC and
acceptance filter, are changed.

• One Hundred Messages Program: the active node and passive node transmit,
alternatively, 100 messages keeping all of the parameters fixed, except for the
data bytes (the actual message).

• One Hundred Varying Messages Program: same as the One Hundred Messages
Program but after every message all of the main parameters are changed.

• SelfTest Program: the active node transmits 100 messages in Selftest mode,
changing the main parameters after every message.

• Listen Only Mode Program: the active node receives 100 messages in Listen
Only Mode, messages are sent by the passive node. At every iteration the
bitrate changes accordingly to the passive node’s one, other parameters are
kept constant.

63

5 – Experimental Results

Program
Name

Ten
Messages

Ten Varying
Messages

Hundred
Messages

Registers Coverage% 37.96 44.75 37.32
BTL Coverage% 51.85 70.96 51.58
BSP Coverage% 47.15 42.96 61.96
ACF Coverage% 3.10 4.58 3.10
FIFO Coverage% 48.56 37.90 75.11
Test Coverage% 46.52 44.82 58.45

Program
Name

Hundred Varying
Messages

SelfTest
Program

Listen Only
Program

Registers Coverage% 45.65 41.89 26.01
BTL Coverage% 74.38 67.88 67.26
BSP Coverage% 65.27 16.72 60.84
ACF Coverage% 4.58 3.31 13.82
FIFO Coverage% 77.53 0.85 77.30
Test Coverage% 63.18 22.76 56.54

Table 5.4. Faults Report of the comparison test programs

The results achieved by every single program are shown in table 5.4.
While testing and refining the test programs, after a few trials, it was clear that,

with the exception of some faults (e.g., inside the ACF or the FIFO) that can be
covered by ad-hoc messages, a significant amount of faults were hard to test due to
the hardware configuration. Examples of such faults are those related to error and
arbitration lost conditions, which impact on the coverage of the glue logic in the BSP.

Errors such as those due to electromagnetic interference or physical problems on
the bus cannot be emulated by means of two nodes connected with an ideal wire
and thus the test of the related logic would require an external module capable of
understanding that a message is being sent and pulling down the line when it should
be on a logic 1’b1. If this approach was adopted in the system (with the related
complexity and additional hardware and design cost), the error conditions could be
tested more thoroughly.

Concerning arbitration lost, since the CAN Protocol does not provide an arbiter
and the CAN Bus is 0 dominant, arbitration is achieved by means of checking the
Rx wire while sending the message: for each bit, if the bit sent is different from the
one on the bus it means that a higher priority message is being sent at the same
time and so the node with the lowest priority aborts the transmission. The arbi-
tration lost could occur in the ID or RTR part of the message. The main problem

64

here is trying to synchronize the transmission of the two peripherals and dedicated
hardware should be implemented to precisely break messages sent by the active node.

Finally, there are limitations due to the sampling precision, which impact on the
coverage of the BTL. Even though it is possible to act on the programmable time
segments in the BTL, some values cannot be actually used in functional mode.

Due to these reasons faults that could not be tested have been removed by the
fault list. This has been done by means of taking the complete fault list and checking
all of the not tested faults that reported the keywords arbitration or err. The
assumption though is that this approach, although effective since it allowed the
removal of most faults, did not remove the total amount of non-testable faults since
some lines lost the original name during the synthesis process, losing the ability to
recognize whether that was a testable fault not reached or an untestable one.

65

66

Chapter 6

Conclusions

This work specifically targets the structural test of CAN controllers by means of test
programs installed on two devices attached to the same CAN bus. The proposed
systematic approach gives guidelines about the messages to transmit on the CAN
bus to cover the functional blocks in the controller. Experiments on a system com-
posed by two open-source SoCs connected to the same CAN bus shown that 90.24%
of the testable stuck-at faults in the CAN controller can be covered by the proposed
approach. Among the remain untested faults it’s possible that a fraction of them is
still functionally untestable, further work can be done in order to identify them in
a provable manner.

Given its flexibility and high reusability, the proposed software-based approach
is very well suited to be used for in-field test of CAN controller modules embedded
in safety-critical systems. The work also aimed at identifying hard to test faults and
future activities are planned to cover them, by exploiting more complex configura-
tions (e.g., using more than two nodes). Moreover, timing faults will be targeted
by future works, as well as faults affecting the CAN bus due to electrical problems.
Finally, the handling and the scheduling of the end-to-end test programs in produc-
tion will be studied. One further improvement could be done in terms of application
time, since this was not the main concern of the work.

67

68

Bibliography

[1] H. Grigoryan, G. Harutyunyan, S. Shoukourian, V. Vardanian, and Y. Zorian,
“Generic bist architecture for testing of content addressable memories,” in 2011
IEEE 17th International On-Line Testing Symposium, pp. 86–91, July 2011.

[2] R. Cantoro, S. Carbonara, A. Floridia, E. Sanchez, M. Sonza Reorda, and
J. Mess, “An analysis of test solutions for COTS-based systems in space ap-
plications,” in 2018 IFIP/IEEE International Conference on Very Large Scale
Integration (VLSI-SoC), pp. 59–64, Oct 2018.

69

	Summary
	Acknowledgements
	Introduction
	CAN Bus Standard
	Testing Generalities
	Design for Testability
	Functional Test

	Adopted CAN Controller
	SJA1000 CAN Implementation
	Verilog Hardware Description
	Standalone Controller Simulation
	Standalone Controller Fault Simulation
	Fault Simulation Generalities
	Standalone Fault Simulation Issues

	Peripheral Integration and Drivers Development
	SoC Integration
	Interfaces mismatch
	Address Mapping

	C Drivers
	Header File: can_addr.h
	Source File: can_addr.c

	SelfTest Library
	Case Study
	Test Program
	Bit Rate test
	Normal Mode test
	Self-Test Mode test
	Listen Only Mode test
	FIFO test
	Errors test
	Arbitration test
	Acceptance Filter test

	Experimental Results
	Conclusions
	Bibliography

