
POLITECNICO DI TORINO

Master’s Degree in Embedded Systems

Master’s Thesis

Automatic Generation of Self-Test
Functional Stress Software

Programs for System-Level Test
In partnership with STMicroelectronics

Supervisors:
Prof. Sonza Reorda Matteo
Prof. Bernardi Paolo
Cosupervisors:
Dr. Restifo Marco
Dr. Cantoro Riccardo

Candidate:
Rovere Enrico

ID: S252783

October 2019



Abstract

The present work discusses a framework for improving System Level testability of
an Automotive SoC exploiting the Evolutionary Optimizer microGP to maximize
core switching activity. The present framework does not require any knowledge
about the Device Under Test but the Instruction Set it supports and its HDL
netlist. The hardware peripherals discussed in the present thesis can vary the DUT
operating voltage, going below and over specification, in order to exacerbate latent
delay faults. The test programs are meant to be executed in the Burn-In phase of
the post-manufacturing testing, on a dedicated board capable of varying the supply
voltage. Functional testing is proposed to be merged with traditional ATPG-based
and BIST tests in a System-Level-Test framework, which was shown to further
increase the effectiveness of post-manufacturing tests. The evolutionary algorithm
optimizer, provided with a set of instructions and operands, evolves generations
of candidate Assembly programs targeting a specific submodule of the System-on-
Chip. Each program is then simulated and ranked to progressively increase the
switching activity of the target module. Moreover, the evaluating algorithm ex-
ploits a graph-based representation of instructions to penalize individuals with a
high percentage of Write-After-Write hazards, which prevent the detection of er-
rors occurred during the execution of the test program. At the end of the program
execution the register state is verified against the golden output, producing the
test result. The most promising test programs were then tested on physically faulty
chips, at varying levels of supply voltage. Experimental results were obtained in
collaboration with STMicroelectronics, which provided all the hardware employed
in the present research and assisted for the whole duration of the present thesis.
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Introduction
When it comes to electronic products, the consumer often assumes that manufac-

turers have perfected their products’ yields, and the ever increasing affordability of
such products appears to confirm this intuition. In reality, this assumption couldn’t
be farther from the truth: with the exponential increase in transistor count dictated
by Moore’s law, greater and greater complexity comes in both theoretical design
evaluation and especially in post-manufacturing testing.

This thesis describes a novel technique in testing and stressing processor cores,
discussing the advantages and shortcomings in approaching the issue from a func-
tional standpoint.

Functional testing of complex digital systems is the process of verifying the
correctness of all the known function of a given Device Under Test. Rather than
emphasizing on a given physical or structural fault model, this approach employs
only the Instruction Set Architecture of the device, along with its gate-level netlist.
This test approach may be executed in self-test mode, in addition to the tradi-
tional post-manufacturing testing. This versatility is desirable in mission-critical
application such as the one under examination in the present work.

Rather than having a test engineer carefully devise a test program aimed at
stressing the device, with the risk of overlooking one or more submodules, an evo-
lutionary algorithm is tasked with generating the programs in question. This ap-
proach moves the issue a step back: the solutions provided by the algorithm would
only be as good as the tests evaluating them. To account for this issue, a specific
evaluation algorithm was created, simultaneously maximizing both the switching
activity and the test instruction observability.

The present thesis is structured as follows: Chapter 1 provides the reader with
essential notions on the physical processes for IC manufacturing. Moreover, it also
describes the structure of an evolutionary algorithm such as the one employed for
test program generation. Chapter 1 also describes the state of the art when it
comes to functional testing and self-test procedures. Chapter 2 outlines the pro-
posed approach and the Device-Under-Test, along with the results of the evolu-
tionary program generation. Chapter 3 describes the hardware employed and the
software produced to put in place the testing procedures theorized, with greater
emphasis on the hardware. Lastly, Chapter 4 concludes with suggestions for further
exploration on the research topic, and comments on improvements that could have
been included in the research.
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Chapter 1

Background

The following chapter aims to describe the fundamental notions concerning the
topics spanned by the present thesis. Initially the general steps in Integrated Cir-
cuits design and production are outlined, discussing the relevant electronic notions.
Then, physical phenomena are characterized and identified as fault models, intro-
ducing testing steps put in place to detect and discard malfunctioning devices. An
overview of the concepts of Functional Testing and Software-Based Self-Test is also
provided, along with an introduction to Evolutionary Algorithms.

1.1 Electronics

1.1.1 Integrated Circuit design
1. Specification · The designer determines the expected behaviour of the device.

2. Design · An Hardware Description is produced, in a suitable HDL language
such as VHDL or Verilog.

3. Simulation · The resulting entity is then simulated and verified to be consis-
tent with the implementation requirements.

4. Synthesis · Using a software tool such as Synopsys’ Design Compiler and a
library of logic gates, the Hardware Description is synthesised into a ”netlist”.

5. Verification · The netlist, which is meant to fully reflect the designer’s HDL
description, is verified to still respect the design constraints.

6. Place and Route · A software tool such as Cadence’s SoC Encounter per-
forms the so-called ”Place and Route” process, which maps the synthesised
logic gates with physical features and routes the circuit interconnects.

9



Background

7. Manufacturing · Once the physical design is proven to be compliant, the
”floorplan” - the physical counterpart of the netlist - is supplied to a semicon-
ductor manufacturing company, which produces the IC silicon and packages
it.

1.1.2 Photolithography
Photolithography is the most widely used process for producing Integrated Cir-

cuits; it employs UV light to sequentially transfer a geometric pattern from a series
of optical masks onto a ”wafer”, a slice of monocrystalline silicon ingot. This collec-
tion of quartz masks represents a series of horizontal cross sections of the device’s
floorplan, the role of which is outlined in Section 1.1.1.

As depicted in Figure 1.1, first the photoresist, an insoluble substance that be-
comes soluble when exposed to UV light, is deposed in a thin film on the wafer
surface. Light is then shone on the film through the mask and washed to remove
the unwanted regions, leaving a portion of the mask in place so that etching of dop-
ing can be performed. A special solvent can finally remove the photoresist pattern,
and the cycle is repeated with the following mask until the entire microstructure is
complete.

Figure 1.1: A step of the photol. process Figure 1.2: Detail of a silicon wafer

Manufacturing processes are classified by a metric named feature size, meaning
the unit length of that process. A typical automotive manufacturing node would be
45 nm, while a more cutting-edge process could scale as down as 7 nm, employing
advanced tools such as Extreme Ultra Violet (EUV) light sources and multiple
masks to produce a single layer. [23]
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1.1 – Electronics

1.1.3 Packaging
At this point the Integrated Circuit is complete and can be preliminarily tested,

by means of a process outlined in Section ??. However, since silicon devices are
very susceptible to mechanical stress and chemical contamination, not to mention
overheating, they are enclosed in a epoxy or ceramic case, denominated package. A
package provides pins or leads interfacing the die with the operating environment,
in addition to supplying power to the device.

Moreover, in System-on-Chips more than one device is installed in a single pack-
age, requiring further die-to-die routing, which is accomplished by means of bond
wires.

Bond wires

Bond wires are extremely thin strands of metal or alloy connecting a device to
package pins or to another die in SoCs. Figures 1.3 and 1.4 show the ultrasonic or
spot welding employed to provide a solid connection between wire and die, but this
process is extremely critical and susceptible to shearing and die delamination [9].

Figure 1.3: A packaged die exposing its
bond wires [9]

Figure 1.4: Detail of a wire sheared off its
pad [9]

Bond wire interconnects may not fail as dramatically as depicted in Figure 1.4,
but rather more subtly, in a change in the interconnect parameters. Specifically, the
DC characteristics could be affected, increasing the IR drop through the line, or
the frequency response may vary, possibly leading signal losses or to critical timing
violations in the system.
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Dynamic Power

Power dissipation in CMOS circuits has two components: static, due to leakage
current, which in turn is dependent on the technology node and increases the smaller
it goes; and dynamic, due to switching activity. The static power is relatively low
and is often neglected in power estimation. In Figure 1.5 the green line shows
the path of the static (leakage) power, flowing irrespectively of the logic value of
the gate. The blue line is instead the dynamic power, flowing when the output is
toggled.

Figure 1.5: An inverter switching

Once the processing and structural parameters have been fixed, the measure
of power dissipation is dominated by the switching activity (toggle counts) of the
circuit. Achieving a peak power draw condition involves maximization of a cir-
cuit’s switching function, that is the toggle count. The following formula shows the
mathematical relation[11] between switching activity and dynamic power:

P = Pleak + Pdyn

Pdyn = 1
2 · VDD · fclk · CL · ESW

The last factor ESW is the switching activity, which as one can see has a linear
relation to switching power.
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1.1 – Electronics

1.1.4 Process variability
The continually shrinking of die sizes and the consecutive complication in man-

ufacturing such devices brings about a more and more significant factor in SoC
failure, that is process variability. This phenomenon is the variation of the geomet-
ric attributes of transistors on the die, such as width or thickness. Since the feature
size of modern devices is of nanometric scale, this variance may lead to performance
degradation, and the device may behave differently than simulated.

The effect of such variation may manifest in what’s called a defect, the type of
which may be grouped [7] in two macroclasses:

1. Patent defect · A condition which does not meet specifications and is readily
detectable by inspection or testing.

2. Latent defect · A defect that is not detectable by inspection or functional
testing until it is transformed into a patent defect by environmental stresses
applied over time.

Figures 1.6 and 1.7 show two different types of patent defects, the former re-
ducing the ohmic value of a MOS gate and increasing its quiescent current, the
latter altering the mutual capacitance of lines A to C and possibly increasing the
crosstalk between the two.

Figure 1.6: An impurity (black arrow) in
a MOS gate (red arrows) [18]

Figure 1.7: Schematic of interconnect ca-
pacitances [22]

A slight drift in the shape of a feature is named marginality[14].
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1.2 Faults
As outlined in Section 1.1, a significant portion of devices leaving the production

line are affected by some kind of latent defect. Over time, defects manifest in the
form of faults, which may imply different logic misbehaviours. Fault models are
therefore crucial to design testing procedures for digital systems. The most notable
are:

Stuck-at · A given net is stuck to either HIGH or LOW logic values, possibly
due to a short to a power rail.

Bridging fault · Two signals are shorted together, and the resulting behaviour
depends on the nets’ driving strength.

Transition delay · The parameters of a line are altered in such a way that
signal propagation velocity is lowered, and may lead to logic timing violations.

1.2.1 Automatic Test Pattern Generation (ATPG)
ATPG is a ”brute force” approach to Integrated Systems testing. Given the

device’s netlist, a Fault Simulator injects faults into it and attempts to find a pattern
to excite the fault operating on the device’s inputs and observing the outputs.
Figure 1.8 shows a typical DUT on which test access logic such as ATEs would
operate[20]. The output of the circuit is compared to a reference ”golden circuit”,
with no faults present.

Figure 1.8: Primary and pseudoprimary I/O in a digital system

ATPGs produce what are called patterns, a set of input values to excite one or
more faults. Modern devices can have thousands of inputs, and therefore producing
and storing patterns is a very costly operation.
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1.2 – Faults

1.2.2 Dead-On-Arrival mitigation
All devices that pass post-manufacturing tests would be expected to function

correctly. In reality, a significant amount of products shipped will be Dead-On-
Arrival, that is not function correctly once in the consumer’s hands. When the
device would be retested by the manufacturer, often if would pass the tests again,
creating what’s called a No Failure Found (NFF) event.

When a part is shipped, all inputs applied to it, whether in a manufacturing
or user environment, constitute an additional set of tests. These tests detect a
subset of defects that are not identical to those found by IC level tests. The size
of the intersection of these sets of defects is an important indicator of test quality.
One can call the user test environment, which includes both system test and user
applications, a field test.

A defect in the region of the board/system test or field test not covered by the
manufacturing test causes a No Failure Found (NFF), and should not be considered
anomalous. All defects occurring within the region covered by the IC test should
have been removed. If a retest shows that a defect is in this region, the most likely
explanation is that the defect occurred after the IC test was done.

An NFF component has the following characteristics[5]:

• It has passed a certain test step in the component lifecycle.

• It has failed a subsequent test, or has been indicted as the cause of failure of
a higher level part of which it is a component.

• It passes the first test step again.

One example of an NFF is a microprocessor which passes all levels of IC test,
is indicted as causing a failure during system test and upon return to the supplier,
passes the IC test again. Another is a field replaceable unit (FRU) which passes
individual board test and is shipped to the field, and which later is diagnosed as
being faulty, but which passes board and system test at a repair depot.

The failure rate in the field is a measure for the dependability and reliability
of systems, and well-specified targets have to be kept or improved. Diagnosis is
mandatory, and in application fields like automotive or avionics the root cause
of any system failure has to be clarified. Many failures are only observable under
specific operating conditions, and they may disappear after disassembling the sys-
tem., thus requiring for part of the system to be part of the diagnosing process.
These “No Failure Found” (NFF) cases are expensive and introduce also risk for
other products[12]. Moreover, the OEM (Original Equipment Manufacturer) relies
on rather a long supply chain, and fault identification requires the collaboration of
many partners. If boards and chips offered sufficient self-diagnosis capabilities to
the OEM directly, it will help shortening the diagnosis process; this procedure may
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Figure 1.9: A typical bathtub curve Figure 1.10: Burn-in mitigation of infant
mortality [13]

be used under typical operating conditions to mitigate the NFFs before disassem-
bling the system. The collected data will benefit not just the OEM but also all the
members of the supply chain[12].

Statistics show a high failure rate in the early stages of components life, roughly
following what’s called a ”bathtub curve”, shown in Figure 1.9. As one can clearly
see, the phenomenon of ”infant mortality” is very much real, and must be accounted
for in yield estimation. Several mitigation techniques are employed in order to
mitigate it, such as Burn-in and ESS.

Burn-in

The purpose of the Burn-In (BI) process is to activate infant mortality (early life
latent defects) that naturally affect populations of electronic devices. The Burn-In
approach uses higher temperature and higher voltage than user mode to accelerate
the early life phases of a product [19]. Burn-in (BI) is a manufacturing test phase
used for any mission-critical product, such as the case study SoC discussed in
Chapter 2.

The Testing Equipment applies two types of stress. The former is is the Electrical
stress, which is produced by activating the functionalities of the devices during the
BI phase; The latter is the Thermal stress, which is introduced by means of a
climatic chamber which warms the chips up to their specification limits — this
type of stress is directly related to Arrhenius’s law about material aging. The main
idea of BI is to combine thermal and electrical stress to accelerate the activation of
extrinsic defects under the bathtub curve hypothesis.

Scan chains

Modern process technologies and design tools allow the realization of very large
and complex systems on a single die. Because of the increased system complexity,
verification techniques such as simulation, formal verification, static timing analysis,
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1.3 – An evolutionary algorithm

and emulation cannot guarantee that first silicon is designed error free. Therefore,
techniques are necessary to efficiently debug first-silicon[16]. If the input or output
behavior of the chip is not correct, one must ’zoom in on the error’ by accessing
the signals and memories inside the chip. To enable this functionality, additional
features must be added to the design. The flip-flops and embedded memories inside
the chip can be made accessible through the scan chains, depicted in Figure 1.11.

Figure 1.11: A diagram of the typical scan chain architecture

The standard Design-for-Testability (DfT) practice is to multiplex the scan I/O
with the functional pins, as in Figure 1.11. However, when an IC is placed in
its application environment for debug, these pins are no longer free for scanning.
Therefore, making the chip fully scannable is not enough. To make the scan chains
accessible in the application environment a scan chain wrapper is added during the
design phase. This wrapper makes the scan chains serially accessible through the
JTAG (Boundary Scan) port.

1.3 An evolutionary algorithm
An evolutionary algorithm (EA) is an algorithm inspired by the theory of evo-

lution which claims that ”animals and plants have their origin in other types, and
that the distinguishable differences are due to modifications in successive genera-
tions” [21]. It could lay the foundations in the Darwinian concept of reproduction
and the survival of the fittest.

Evolutionary computation is a field of computer science in charge of solving and
developing these algorithms. In every evolutionary algorithm, a single candidate
solution is named individual and the set of all individuals existing at a particular
time is called population. It is also important to highlight that evolution proceeds
through discrete steps called generations.

Although there are many different evolutionary algorithms, the common idea be-
hind them is the same: given a population of individuals the environmental pressure
causes natural selection (survival of the fittest) and this causes a rise in the fitness
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of the population [6]. Over time, the best individuals will survive and evolve in ar-
tificially constrained environment, while the others will be discarded. This process
is iterative and continues until a solution is found or a pre-set limit is reached.

Therefore, the final population will be entirely different from the initial random
one. It will be composed of the fittest test programs, that can then be selected
and cherry picked. An evolutionary algorithm is strongly inspired by biological
mechanisms such as reproduction, mutation, recombination and selection. From this
perspective, evolution is often seen as a process of adaptation and fitness function
as an expression of environmental requirements and not as an objective function to
be optimized. The role of a fitness evaluation in an evolutionary algorithm is to
define how good the current solution is, determining the base for selection.

An evolutionary algorithm can evolve applying some operators like recombina-
tion or mutation. The former is applied to two or more randomly selected candidates
(also called parents) and produces one or more candidates (offspring). When the
offspring is aged sufficiently, the evolutionary algorithm selects the candidates for
the next generation according to their fitness parameters. Notice that the entire
process is ruled by two important forces that put the basis of an evolutionary sys-
tem: the variation operators and the selection. The cooperation of the two leads
to improving fitness values in the following populations [17]. This process can be
represented as flow chart, shown in Figure 1.12

Figure 1.12: A general evolutionary algorithm as flow chart
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1.3 – An evolutionary algorithm

1.3.1 Micro Genetic Programming (µGP)

Micro Genetic Programming (µGP) is an evolutionary algorithm able to find an
optimal solution to hard problems. µGP was created by CAD Group at Politec-
nico di Torino in 2002. Although the initial idea was to generate assembly-language
programs for testing different microprocessors, nowadays it was also employed in
many other fields such as: creation of test programs for pre and post-silicon valida-
tion; design of Bayesian networks; creation of mathematical functions represented
as trees; integer and combinatorial optimization.

Starting from an initial set of programs, also called individuals, µGP is capable
of iteratively improve and evolve them, according to feedback metrics provided to
the evolutionary core by the fitness function. Its heuristic algorithm uses the result
of the evaluations, together with other internal information, to ex- plore the search
space and to produce the optimal solution[21]. µGP algorithm can be modelled by
the composition of three different blocks:

Evolutionary core · Computation and selection take place in this block: the
population is the current group of candidate solutions managed by evolutionary
core; at the beginning it is composed by random programs. The user can then
select the initial size of the population which is greater or equal to the final one.

Instruction pool · Used to ensure individuals are valid assembly language
programs[3]. It can be seen as a library including a highly concise description of
the assembly syntax or parametric fragments of code. Arguments are generated
by the evolutionary core.

Fitness evaluator · When an individual is ready, it is passed to an external
evaluator, also referred to as fitness function, a tool provided by the user which
simulates the program on an RTL simulator. It drives the optimization process
taking an individual as input and producing a collection of numeric values as
output. This collection is finally provided to the evolutionary core with the
necessary feedback, closing the loop of the evolution. Its role is to define how
“fit” the evaluated solution is with respect to the problem to solve.

The µGP algorithm selects the next generation, depending on their fitness values,
favouring those with higher quality, although the concept of age is also frequently
used. When µGP chooses parents for the new population, it randomly selects a
given number of individuals and picks the best ones among them via tournament
selection.
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Figure 1.13: µGP flow chart schematic

In each generation, the algorithm generates offspring by applying different op-
erators (mutation and crossover), fully self-adapting the strength of operators. At
the end of the survivor selection mechanism, the old population is discarded and
the new one is evaluated by the external evaluator, individual by individual. This
process ends when a termination condition occurs:

1. Maximum CPU time reached.

2. Limit of evaluation is reached.

3. Fitness does not improve for a given amount of time.

4. Population diversity drops under a preset threshold.

These stopping conditions are mandatory, since the heuristic and iterative nature
of evolutionary algorithms can’t guarantee the optimization will reach an absolute
maximum[17].

1.3.2 Individual representation
A major issue when devising a test program generator for microprocessors is

how to represent test programs in a way that alows for efficient manipulation,
while guaranteeing syntactical correctness [4].

Each test program, called individual, is internally represented as a Directed
Acyclic Graph (DAG, shown in Figure 1.14) and must adhere to restricted rules. A
DAG is direct, that is its edges are directional, and acyclic, that is no loops exist
within the graph. Each node corresponds to a valid assembly instruction, where the
syntax is defined in the Instruction pool and the operands are represented by the
parameters associated to the node.

µGP allows the DAG to be include sub-DAGs of different type (procedures,
traps, main program) called frames. Each node can have references to any other
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1.4 – Functional testing

Figure 1.14: A Directed Acyclic Graph

node in its subgraph or to the beginning of a different subgraph[21]. A sub-DAG is
composed by three types of nodes:

1. Prologue/Epilogue · These nodes are mandatory and must al- ways be
present. They represent required operations, such as function declarations and
initializations. The prologue is the first node of the program and has no parent
nodes, while the epilogue is the last one and has no children. They depend both
on the processor and on the operating environment and on the frame type, and
they may be empty[4].

2. Sequential Instruction · These nodes represent common arithmetical or
logical instructions. Due to conditional or unconditional branches, some of
them could be unreachable.

3. Conditional branch · Includign all the conditional branches defined for the
target assembly language and provided by the instruction pool.

In the present case study, only three nodes were employed, Prologue, Body and
Epilogue, since conditional branches exploration was not a topic of interest. How-
ever, adding some could help target the control logic as well.

1.4 Functional testing
Functional testing of microprocessors and processor cores has been extensively

studied the last decades. Functional testing does not try to obtain high coverage
of a particular physical or structural fault model. It rather aims to test for the
correctness of all known functions performed by the digital circuit. In the case of
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processors, functional testing aims to cover the different functions implemented
by the processor’s instruction set, and for this type of circuits it seems to be a
very ”natural” choiee. Therefore, functional testing of processors needs only the
instruction set architecture (ISA) information for the processor to develop test
pattern sets for the processor testing and no other lower level (like gate level)
model of the processor. Functional test sets may be applied either externally or
internally in a self-test mode[8].

This test approach may be adopted in different system test scenarios and may be
motivated by different reasons. When addressing board-level test, functional test is
typically considered as the final step, which is supposed to complement the previous
ones with specific goals (e.g., testing the interfaces), allowing to achieve the target
defect coverage. Further examples of usage of functional test at the system level
include the following[12] cases:

• During the manufacturing test of a System on Chip (SoC), functional test
may complement structural test because it may cover some defects that are not
detected by the latter, for instance because the former typically works at-speed
(while some DfT techniques do not), or because the functional test exercises
the system exactly in the same conditions of the operational environment.

• Before mounting a device on a board, it may be required by regulations or
economically convenient to perform a test to check whether the device is fault
free (independently on the test performed by the device manufacturer). This
test - the Incoming Inspection - is performed by the customer company and
it is often only based on a functional approach, typically because possible
Design for Testability features are not documented by the device provider,
and therefore not usable.

• During the in-field test of a board, it may happen that the DfT features of
the composing devices are not accessible - may require an ATE - or are not
documented by the device providers. Hence, the only feasible solution for the
OEM company is often based on a functional test. If the device provider does
not provide an effective test procedure, a functional test procedure has to be
developed from scratch, exploiting the features of the device

The drawback of functional testing is that it is not directly connected to the
actual structural testability of the processor, which is related to the physieal defects.
The structural testability that a functional testing achieves strongly depends on the
set of data (operands ) which are used to test the functions of a processor. In most
cases, pseudorandom operands are employed in functional testing and they lead to
test sets or test programs with excessively large test application time not capable
to reach high structural fault coverage. In the present case study, however, the test
programs’ operands are individually evolved to maximize the switching activity,
hinting at greater test performance with respect to random operands.
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Structural testing on the other side, targets a specific structural fault model.
EDA tools can be used for automatie generation of test sequences (ATPG tools)
with the possible support of structured DIT techniques like scan chains or test
points insertion. However, the pattern-based automatic testing of digital circuits
discussed in Section 1.2.1 is inadequate for several reasons. The large amount of
logic - in the order of billions of gates - combined with the fact that SoCs may embed
logic not easily testable, makes it impractical to use existing fault simulation and
test generation software to derive tests.

Physical failures in integrated circuits result in logic behavior which cannot be
modeled by existing faults[1]. Another approach to testing microprocessors is to
use pseudorandom test patterns [6]. However, the problem with this approach is
that the fault model for the instruction sequencing is not accurate in modeling the
faults in the instruction execution process; moreover, the length of pattern-based
tests is becoming larger and larger, and so is the memory required to store both
input and output patterns.

In the framework of System-Level-Test functional testing is employed to comple-
ment ATPG pattern procedures, further stressing the Device Under Test (DUT). In
various kinds of applications, especially in the present context of critical reliabiity,
the consumer must ensure the correct functional operations of the purchased chips
even not necessarily knowing their detailed implementation. Most of the test vectors
were derived based only on certain sets of modelled faults (described in Section 1.2)
and may not target test certain faults (e.g., bridging fault) in a comprehensive way.
Another possible approach is to run a pseudorandom test sequence of test vectors
for simplicity and minimum cost. For example, to test a microprocessor, test engi-
neers may generate random streams of instructions and compare the results with a
pretested ”golden” module. But, to derive reliable measures of fault coverage using
this method is a nondeterministic problem.

To address the problem of high functional complexity of LSI/VLSI devices (e.g.,
microprocessors), ”Divide and Conquer” techniques (e.g., modular decomposition)
are usually used to subdivide the devices into functional modules whose behaviors
could be individually verified using aforementioned self-test procedures. For exam-
ple, testing of a microprocessor can be subdivided into testing data processing and
control modules. But two situations may often be observed:

• Testing is focused on data processing function, faults in the control part are
usually simplified.

• Modules partitioning and tests are developed on an ad hoc basis, targeting
specific entities.

The order of test sequence is of major concern during functional testing. It is
usually derived from the functional description of the device (e.g., observability and
controllability of function outputs and inputs) and associated parameters (e.g., type
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of functional fault under test). In the present case, the order is determined by the
existing Burn-In procedure, using Functional Testing to verify and further stress
the device after the ATPG pattern application, Figure 1.15.

Figure 1.15: Proposed test flow

The proposed modification to the test plan restructures the order of the test
phases in the following[19] manner:

The ATPG phase · configuring all the scan chains of the DUT into a single
scan chain. This configuration is called “burn-in scan chain” configuration. The
tester accesses the resulting burn-in scan chain and performs a toggling activity
promotion. This phase stresses the DUT uniformly.

The Functional Test phase · the ATE loads the functional test program
into the SoC Flash memory, then the tester triggers the execution of the self-
test program and downloads the results of the functional test. The program can
correspond to a procedure for stressing the DUT, like the common Functional
Test phase of the Dynamic Burn-In, or a procedure for testing the device at
system level performed from a System Level Test point of view.

The BIST phase · the tester accesses to the instruction register of the TAP
controller via the JTAG interface, activates the protocol for launching the Log-
ic/Memory BISTs and downloads the results of the BIST for further analysis.

1.5 Software-based self-test
In software-based self-testing the test generation, test application and test re-

sponse capturing are all tasks performed by embedded software routines that are
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executed by the embedded processor itself, instead of being assigned to specially
synthesized hardware modules as in hardware-based self-testing (BIST). Processors
can, therefore, be re-used as an existing testing infrastructure for manufacturing
testing and periodic/on-line testing in the field. Software-ased self-testing is a ”nat-
ural”, non-intrusive self-testing solution where the processor itself controls the flow
of test data in its interior in such a way to detect its faults and no additional
hardware is necessary for self-testing[24].

Figure 1.16: The three phases of SBST[8]

In software-based self-testing, the embedded processor executes a dedicated soft-
ware routine or collections of routines that generate a sequence of test patterns ac-
cording to a specific rationale. Subsequently, the processor applies each of the test
patterns of the sequence to the component under test, collects the responses and
finally stores them either in an unrolled fashion (each response is stored in mem-
ory) or in a compacted form (one or more test signatures). In a multi-processor
SoC design, each of the embedded processors can test itself by software routines
and then they can then apply software-based self-testing to the remaining cores of
the SoC.

Self-test routines are stored in instruction memory (IRAM), in a process called
cache-resident testing[15] and the data they need for execution are stored in data
memory (DRAM), as depicted in Figure 1.16. Both transfers (instructions and
data) are performed using external test equipment (ATE), a microcontroller in the
context of System-Level-Test. Tests are applied to components of the processor core
(CPU core) during the execution of the self-test programs and test responses are
stored back in the data memory.

The application of software-based self-testing to a processor core manufacturing
testing consists of the following steps:
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Figure 1.17: Software-based self-testing for a microprocessor[8]

• The self-test code is downloaded to the embedded instruction memory of the
processor via the external test equipment, which has access to the internal
bus.

• The embedded code will perform the self-testing of the processor. Alternatively,
the self-test code may be ”built-in” in the sense that it is permanently stored
in the chip in a ROM or flash memory. In this case, there is no need for
a downloading process and the self-test code can be used many times for
periodic/on-line testing of the processor in the field.

• The self-test data is downloaded to the embedded data memory of the proces-
sor via the same external equipment. Self-test data may consist of:

- Parameters, variables and constants of the embedded code
- Test patterns that will be explicitly applied to internal processor modules
- The expected fault-free test responses (golden signature) to be compared

with actual test responses. Downloading of self-test data does not exist if on-
line testing is applied and the self-test program is permanently stored onboard.

• Control is transferred to self-test program candidate which starts executing.
Test patterns are applied to internal processor components via the proces-
sor instructions to detect their faults. Components’ responses are collected in
registers and/or data memory locations. Responses may be collected in an un-
rolled manner in the data memory or may be compacted using any known test

26



1.5 – Software-based self-test

response compaction algorithm, or instruction themselves. In the former case,
more data memory is required and test application time may be longer, but, on
the other hand, aliasing problems are avoided. In the latter case, data memory
requirements are smaller because only one, or just a few, self-test signatures
are collected, but aliasing problems may appear due to compaction.

• After self-test code completes execution, the test responses previously col-
lected in data memory, either as individual responses for each test pattern
or as compacted signatures are transferred to the external test equipment far
evaluation.

27



28



Chapter 2

Case Study

SoC manufacturing is subject to the entirety of yield reduction phenomena de-
scribed in Section 1.1, and one of the most challenging of those are faults in block-
/block or die/die interconnects. Both interconnection between architectural blocks,
such as the Arithmetic Logic Unit to the Register file, and those bridging a core
die to a peripheral die – so-called ”chiplet” architecture.

2.1 The ”Bernina” SoC
The System-on-Chip under examination is manufactured by STMicroelectronics,

it is nicknamed ”Bernina”; it is actually a SPC58NN84x microprocessor, of the
SPC5 family of Automotive Microcontrollers, based on the PowerPC architecture,
designed for high reliability applications. The key specifications include:

Core count Six e200z4256 cores, three user-controllable and two checker cores

Operating Frequency 200 MHz frequency ceiling via dual PLL

Instruction set Variable Length Encoding support, 16-bit versions of some
instructions to reduce code footprint

Caches 128 KB on-chip general-purpose SRAM | 384 KB data RAM per core

Temperature −40 ◦C to 165 ◦C operating range

Longevity 15 years guaranteed

The process for high-volume SoC manufacturing[15] is shown in Figure 2.1:
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Figure 2.1: Typical high-volume manufacturing test flow

2.2 System Level Test framework
System Level Test attempts to emulate the operating environment of the Device-

Under-Test, for a variety of purposes described in Section 1.4. In order to more
effectively reduce the added costs deriving from the inclusion of this procedure in
the test plan, the System-Level-Test board proposed is a modified version of the
Burn-In board, shown in Figure 2.2.

Figure 2.2: An industry standard Burn-In board [19]

System Level Test often complements the other steps of a test flow, which in-
clude Wafer Sort, Burn-In and Final Test, using functional test [19]. The functional
test complements the structural test because it covers some defects that structural
test does not detect. For example, the functional test works at the system opera-
tional speed while some Design for Testability techniques do not. Moreover, System
Level Test exercises the system exactly in the same conditions of the operational
phase[12]. System Level Test is sometimes used as an effective method to lower the
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defectivity, often measured in terms of Defective Parts Per Million (DPPM). System
Level Test increases the quality of the shipped products, which is crucial in safety-
critical applications. System Level Test addresses both defects and marginalities
[2]. In our view, a possible defect (physical) is always present, and test conditions
may only change the manifestation of such. Conversely, a marginality may not be
present in a subset of possible test conditions, and may impact the functionality on
specific PVT (Process, Voltage, and Temperature) condition(s), only. A marginality
might also be active only after a specific functional sequence (including software)
is applied. Detection of marginalities have always been delegated to bench-top val-
idation, under the assumption that a reduced number of corner cases are enough
to view all marginalities symptoms.

Figure 2.3: A ”macroboard” with detail of a DUT daughterboard [19]

2.2.1 Supply voltage manipulation
STMicroelectronics proposes augmenting the Burn-In board, with the aim of

phasing out expensive ATEs, typically operating on one device at once, with a
System-Level-Test approach. In the early phases, with relatively high defectivity
and consequent long time for the screening of early-life fails, the adoption of a
flow with both Burn-In and System Level Test is economically affordable. In the
proposed approach, Burn In and System Level Test duration are combined, so that
the test procedure is shorter, thus more economically convenient[12].

The SLTBI approach also removes the extra time required for the load/unload
operations. For this purpose, each device is placed in a SLT board, shown in Figure
2.3. This approach allows for parallel testing of multiple samples, and fine tuning
the supply voltage of each device. Moreover, the device’s Test Access Points can be
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exploited by the onboard microcontroller to apply test patterns, provided they fit
on the memory of the System Level Test board.

In this case study, once the best candidate programs generated by the evolution-
ary algorithm are selected, they are meant to be tested at varying supply voltage.
For this purpose, the core voltage rail (Vnom = 1.25 ± 0.1 V) is fed by the onboard
regulator. The test plan can follow one of two paradigms:

Overvoltage · The DUT undergoes a ”derating-like” process, running with a
supply exceeding the manufacturer specification, in order to maximize the heat
produced by the device and excite latent defects.

Undervoltage · The voltage rail is set to below specification, with the aim
of causing what’s known as voltage droop, shown in Figure 2.4. The blue line
shows the absolute minimum rating, red the hypothesised level where delay faults
would manifest.

One might object that the voltage supply could be reduced to the supposed
critical level in the first place and more reliably produce the test conditions, instead
of relying on dynamic droop phenomena. However, the SoC in question includes an
automatic reset mechanism when the input voltage falls below 1.1 V, and would not
allow for program execution. Moreover, dynamic phenomena are the most critical
when in comes to at-speed testing, hence the choice performed when it comes to
undervoltage.

Figure 2.4: A simulation of voltage droop[10].
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2.3 Instruction pool

As mentioned in Section 1.3.1, the evolutionary algorithm evolves an Assembly
test program, generating both instruction and operands for the core to execute. The
aim of the selecte test program is to maximize the Toggle Activity, which Section
1.1.3 shows is directly proportional to dynamic power consumption. A sudden rush
in dynamic power, that is a spike in current consumption, is expected to create a
voltage droop at the target module.

In order to focus the evolution on the switching of a given module, the Instruc-
tion Set Architecture of the SoC in question was reduced to a set of instruction
relevant to the module in question. The procedure was performed on two pair of
logic entities, each with the instructions listed in Table 2.5.

1. Integer Adder + Register File

2. Logic Unit + Register File

Adder
Type Mnemonic

Short, 1 operand se_neg

Short, 2 operands se_add
se_add
se_subf
se_subi

Logic
Type Mnemonic

Short, 1 operand se_not
se_extsb
se_extsh
se_extzb
se_extzh

Short, 2 operands se_and
se_and.
se_or

se_andc
se_andi
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Adder
Type Mnemonic

2 operands addme
addmeo.
addze

addzeo.
neg

nego.
subfme

subfmeo.
subfzeo.

3 operands add
add.
addc

addco.
adde

addeo.
subf

subfo.
subfco.
subfe
subfe.
subfeo
subfeo.
e_add16i
e_addi
e_addi.
e_addic
e_addic.
e_subfic.

Logic
Type Mnemonic

2 operands e_andi
e_andi.
e_ori
e_ori.
e_xori
e_xori.
e_and2i.
e_and2is.

e_or2i
e_or2is
cntlzw
cntlzw.

3 operands andc
andc.
and
and.
eqv
eqv.
nand
nand.
nor
nor.
or
or.
orc
orc.
xor
xor.

Figure 2.5: Instructions pools used for candidate evolutions.
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2.4 Graph-based program classificator
Simply put, when a pair of Assembly instruction encounter this kind of data

hazard, the latter overwrites the content of its destination register, which had also
been used as destination by the former. Effectively, this event masks the first, and
therefore prevents detection of a possibly occurred fault (masking). In order to
prevent this occurrence but still mantain a reasonable program body size, Read-
After-Write operation must be performed on any instruction whose destination
register is overwritten. The state of the data registers at the end of execution is
then compared to what’s known as golden output, produced by simulation. If the
two differ, a fault was excited and it produced an error.

To accomplish this task, an algorithm was put in place, classifying programs
whose instructions were completely masked in a graph-like structure.

As mentioned in Section 2.3, each individual is ranked using a fitness function.
This function evaluates the switching activity in the target module produced by
the candidate program and the flow of the instructions.

A fault can occur at any point during the program execution, and therefore the
output of each instruction should be observable at the end of the execution, creating
a completely different test signature at the end. Specifically, let us take as example
Figure 2.6

1 50 _percent : :
2 ADD R6 , R5 , R3
3 ADDI R6 , R4 , 13
4 SUBI R7 , R9 , 12
5 SUB R7 , R2 , R3

1 75 _percent : :
2 ADD R4 , R5 , R3
3 ADDI R6 , R4 , 13
4 SUBI R4 , R9 , 12
5 SUB R7 , R2 , R3

1 100 _percent : :
2 ADD R6 , R5 , R3
3 ADDI R8 , R6 , 13
4 SUBI R7 , R9 , 12
5 SUB R5 , R2 , R3

Figure 2.6: Program body observability examples

Listing 2.6 shows three pieces of code, each respectively ranked as 50%, 75 %
and 100% observable by the proposed algorithm. Specifically, the leftmost piece of
code shares the destination register between two instructions, without previously
taking as input the previous result.

The center 75% program body instead performs what’s known as Read-after-
Write, that is instruction 1 produces a result in R4, then instruction 2 uses R4 as
input operand. Effectively, this operation hashes instruction 1 with instruction 2,
and stores the hash in R6. R4 can now be safely overwritten, and R6 can then be
fed to another instruction and so on.

Lastly, the program with 100% coverage shows another approach using a dif-
ferent register for each instruction. As one can clearly see, this method is severely
hampered by the limited amount of Register File entries available, and would not
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be practical in a test case scenario.
Generalizing, the problem is easily modelled by a Directed Acyclic Graph (DAG),

the structure of which was outlined in Section 1.3.2. The problem of estimating the
data dependency metric to feed back to µGP can then be solved by means of a
graph colouring algorithm.

Figure 2.7: A sample of instruction graph representation

The dependency evaluation algorithm follows a rather simple approach, that is:

1. The Assembly program’s body is cropped, and its contents wrote to a tempo-
rary location.

2. The program body is parsed, and each instruction is translated to a node,
with its Read-After-Write and Write-After-Read dependencies determining its
edges.

3. A Begin and End node are appended to the head and tail of the graph, and
connected appropriately.

4. The program starts navigating the graph from the End node, identifying WAW
hazards.

5. The program performs a second pass, identifying RAW hazards. At this point,
some instruction’s state may still be undefined.
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6. A last pass resolves the undecided node, depending on whether they are con-
nected to a masked or observable node.

7. The coloured nodes are counted, and the dependency percentage can now be
produced.

For a 200-instruction program body, the evaluation takes approximately 5 sec-
onds, which is definitely negligible with respect to the average candidate simulation
time of about 7 minutes.

2.4.1 Switching activity
In the framework of maximizing the power draw, or better yet maximizing the

toggle count of each and every signal inside the target module, the simulator NCsim
was again employed to simulate the execution of every program. The structure of
each test program is the following:

1 prologue : :
2
3 // ENABLE ICACHE
4
5 // CONFIGURE PLLs
6
7 loop : :
8
9 // PROGRAM BODY

10 // looping 100 times
11
12 epi logue : :

The simulator records the activity of the whole core from labels loop to end,
and a generates a Toggle Count Format file (*.tcf) showing the toggle history of
each net in the scope.

2.4.2 Fitness evaluation
The applicability of evolution-based test program selection entirely relies on

the validity of the fitness function employed. This section will evaluate the steps
performed in creating such function and the reason behind this choice.

The evolution is aimed at maximizing the toggle activity of an arbitrary entity
in a core, in a framework of limiting the power reaching the module and therefore
possibly exciting a dormant delay fault. The nature of such a fault is high volatility,
therefore it is essential that one stores and is able to observe the result of each test
operation. For this purpose, a dependency evaluation algorithm had to be employed,
described in detail in Section 2.4.

The toggles belonging to the target module are accumulated and normalized
with respect to the execution time, in order to discourage the creation of long
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program bodies. Finally, a collection of fitness parameters was determined, and its
final structure is the following:

<dependency> < Toggles
Execution time < 1

Variance>

Both mean value and variance were computed after parsing the simulation re-
sults, using Python 3 library numpy.

2.5 Evolution results
2.5.1 Integer Adder

The first optimization process ran was aimed at the Integer Adder Module, since
it was the smaller of the two. The statistics regarding this evolution are:

Adder Individuals Generations Evolution time
2641 97 17d 6h

The results were obtained parsing the fitness files of all the individuals of the
generation, then plotted using MATLAB. The primary fitness graph is depicted in
Figure 2.8:
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Figure 2.8: Primary fitness statistics for the Integer Adder run
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The assumptions made in Section 1.3.1 are confirmed by the graph, the instruc-
tion interdependency increases steadily over time, the tendency of which is shown
by the magenta line. The population diversity is also increased, manifesting in a
”widening” of the primary fitness values over time. When it comes to the secondary
and tertiary fitnesses, their graphs are depicted in Figure 2.9.
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Figure 2.9: Secondary and tertiary fitness statistics for the Integer Adder run
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The secondary fitness exhibits a behaviour similar to the primary, progressively
increasing over time, which matches the assumptions made in the preliminary steps.
When it comes to the inverse of the variance, which was expected to grow as well,
it did not. The reason for this deviation from the expectations is unclear: the
behaviour of this parameter is identical in the Logic Unit evolution, therefore it
could be theorized that an increase of toggles’ mean value and a simultaneous
decrease in variance is impossible.

Once the statistics of the evolutionary run were imported in MATLAB, they
were used to select the best individuals for each fitness statistic, shown in Figure
2.10.

Figure 2.10: Best Integer Adder individuals with respect to each fitness metric

As one can see, the difference between the statistics of each individual is relatively
small, due to the comparatively short evolution duration.
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2.5.2 Logic Unit
The Logic Unit is the larger of the two units under examination, and for this

reason its evolution was allowed to continue for a much longer duration, even though
it did not reach any of the stopping conditions discussed in Section 1.3.1. The
statistics relative to this evolutionary run are the following:

Logic Unit Individuals Generations Evolution time
23929 1523 83d 22h

The primary fitness graph of this evolutionary run is depicted in Figure 2.11.
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Figure 2.11: Primary fitness statistic for the Logic Unit run
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As was the case for the Integer Adder evolution, the primary fitness organi-
cally grows maintaining population diversity. To better visualize the primary fit-
ness behaviour, the statistics were filtered to only show the best individual for each
generation, in Figure 2.12.
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Figure 2.12: Best individuals w/ respect to the Logic Unit primary fitness

The evolutionary run was determined to be complete, since the primary fitness
exceeded 85%. The remaining masked instructions could be easily modified to be
observable without excessively compromising the switching activity produced by
the program. When it comes to secondary and tertiary fitnesses, their graphs are
depicted in Figure 2.13.
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Figure 2.13: Best candidates w/ respect to Logic Unit secondary and tertiary fitness

The ratio between the mean toggles value and the program body duration again
oscillates but largely grows over time, whereas the inverse of the variance does not
improve over time. The reason behind this failure in converging to the expected
behaviour is not known at the present time, but it is possible that improvements
in both mean value and variance can not be simultaneously achieved.
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The best three individuals were again selected and their fitnesses plotted in the
bar graph in Figure 2.14.

Figure 2.14: Best Logic Unit individuals with respect to each fitness metric

The results relative to the Logic Unit look more promising than those of the
Integer Adder, specifically when it comes to the average toggles value, while on
the other hand their variance is significantly greater. It’s possible the evolutionary
run would have optimized the secondary fitnesses with more time available, or with
increased processing power dedicated to simulation.

Regardless, once the most capable individuals were obtained, their performance
was evaluated on physical chips.
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Physical testing

The present chapter discusses the steps performed in verifying the correct func-
tioning of the test programs on the real System-on-Chip device. Moreover, this
chapter will describe the hardware and software employed to accomplish this task.

3.1 Hardware
In order to program and manage the Device-Under-Test, a host platform was

required. The choice fell on STMicroelectronics’ STeaLTh shown in Figure 3.2,
which features an integrated digitally controlled regulator to alter the DUT’s core
voltage rail. The general schematic of the test environment is shown in Figure 3.1

Figure 3.1: A general schematic of the physical testing setup
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This board communicates both with the host terminal via a COM port and to
the DUT via UART. The DUT is placed in a socket on another board, depicted in
Figure 3.3, which integrates the voltage regulators for the 5 V, 3.3 V and 1.25 V rails,
the latter of which is also referred to as V DD. Each voltage rail can be manually
disabled when needed, and this operation was performed when performing voltage
manipulation tests, discussed in Section 3.3. The voltage regulator on the STeaLTh
board is fed by a bench PSU by means of banana plugs. Moreover, an oscilloscope
is set to monitor the voltage being produced by the STeaLTh board and fed to
Bernina, in order to monitor its true value, behaviour and ripple.

Figure 3.2: The STeaLTh board

Figure 3.3: The Bernina board
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3.2 Software
The software running on both Bernina and STeaLTh boards is based on FreeR-

TOS. The reason for this choice instead of a from-scratch implementation is the
availability of software libraries on this platform. Specifically, the UART commu-
nication between the DUT and the STeaLTh board , and from the STeaLTh board
to the host PC would have been very involved if implemented from scratch.

The evolved test programs were written in Assembly, and the firmware in C lan-
guage. This required that the stack frame created and destroyed by those programs
was EABI compliant, that is not overwrite the stack created by routines calling
it. Moreover, the test output must be returned to the C firmware for validation,
therefore it was mandatory that it was placed in a specific register (R3) for the
value to be correctly parsed.

The DUT is programmed by means of a JTAG interface directly from the host
PC, and the software is designed to idle until it receives a specific message from
the STeaLTh board . The test procedure is the following:

1. The DUT and STeaLTh board are programmed with their respective firmwares.

2. The STeaLTh board boots and enables its voltage regulator.

3. STeaLTh waits for a command from the host PC, specifying which test routine
to run.

4. A valid command is received by the STeaLTh board : it optionally adjusts VDD

and forwards it to the DUT.

5. The DUT executes the specified test, whose length is approximately 10 min-
utes.

6. The DUT sends the test result back to the STeaLTh board .

7. Depending on the test routine being ran, the following steps may be performed:
- VDD is adjusted.
- The DUT repeats the test more than once, each time reporting the result

to the host.
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Physical testing

In order to more effectively test the generated programs, several test routines
were devised, picking from the following:

ADDER · The program with the greatest primary fitness produced by the Integer
Adder run.

LOGIC · The program with the greatest primary fitness produced by the Logic
Unit run.

MEMTEST · A March 7 algorithm testing the Data Memory of a given core.

The test routines employed are depicted in Table 3.1.

Test routine Core 0 Core 1 Core 2
TEST1 LOGIC LOGIC LOGIC
TEST2 ADDER ADDER ADDER
TEST3 MEMTEST LOGIC MEMTEST
TEST4 MEMTEST ADDER MEMTEST

Table 3.1: The test routines employed in the present case study.

3.3 Experimental results
Employing the procedures described in Section 3.2, the tests were carried out on

a number of devices. STMicroelectronics provided three bins of System-on-Chips
to perform experiments on. The test procedures executed by ST reported the bins
as:

• BIN A - Faulty

• BIN B - Faulty

• BIN C - Good

The manufacturer provided no additional information about the faulty chips
other than that they would fail at different supply voltages. Supposedly, this type
of defect would render the samples more prone to failing using the procedures for
supply voltage manipulation described in Section 3.1.

The test procedures of Table 3.1 were performed a variety of times and at dif-
ferent supply voltage levels. The results are reported in Table 3.2.
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3.3 – Experimental results

Bin Device Test routine Supply voltage Test time (mins.) Result
BIN A 6 TEST1 1.092 V 10 Pass
BIN A 6 TEST1 1.097 V 25 Pass
BIN A 6 TEST1 1.391 V 10 Pass
BIN A 6 TEST1 1.395 V 25 Pass
BIN A 6 TEST2 1.091 V 10 Pass
BIN A 6 TEST2 1.092 V 25 Pass
BIN A 6 TEST2 1.393 V 10 Pass
BIN A 6 TEST2 1.394 V 25 Pass
BIN A 6 TEST3 1.091 V 10 Pass
BIN A 6 TEST3 1.092 V 25 Pass
BIN A 6 TEST3 1.393 V 10 Pass
BIN A 6 TEST3 1.394 V 25 Pass
BIN A 6 TEST4 1.096 V 10 Pass
BIN A 6 TEST4 1.092 V 25 Pass
BIN A 6 TEST4 1.393 V 10 Pass
BIN A 6 TEST4 1.393 V 25 Pass
BIN B 3 TEST1 1.092 V 10 Pass
BIN B 3 TEST1 1.094 V 25 Pass
BIN B 3 TEST1 1.392 V 10 Pass
BIN B 3 TEST1 1.397 V 25 Pass
BIN B 3 TEST2 1.097 V 10 Pass
BIN B 3 TEST2 1.096 V 25 Pass
BIN B 3 TEST2 1.396 V 10 Pass
BIN B 3 TEST2 1.391 V 25 Pass
BIN B 3 TEST3 1.091 V 10 Pass
BIN B 3 TEST3 1.092 V 25 Pass
BIN B 3 TEST3 1.393 V 10 Pass
BIN B 3 TEST3 1.397 V 25 Pass
BIN B 3 TEST4 1.092 V 10 Pass
BIN B 3 TEST4 1.094 V 25 Pass
BIN B 3 TEST4 1.391 V 10 Pass
BIN B 3 TEST4 1.393 V 25 Pass

Table 3.2: Results of the candidate programs physical tests

As per Table 3.2, the devised test routines were performed both over and below
the specified supply voltage. Despite extensive testing for both short and long du-
rations to raise the chip temperature as much as possible, no failures were detected.

Moreover, the voltage regulator embedded on the STeaLTh board was verified to
be extremely accurate and did not exhibit any kind of nonideality such as overshoot
or voltage droop.
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Chapter 4

Conclusions

The present thesis outlines a novel approach allowing for not only automatic test
program generation, but also a hardware flow to test those programs at different
supply voltages. The generation is based on an evolutionary algorithm to produce
the set of assembly programs With the advent of even more higher performing de-
vices, traditional functional approaches are not sufficient to guarantee the correct
functioning of the devices. This methodology exploits µGP, an evolutionary algo-
rithm to optimize and devise automatically programs written in Assembly language.
The need to use an automatic test program generator rises from the necessity to
cope with the increasing hardware component’s complexity. Actually, the advances
in microelectronics technologies allowed semiconductor manufacturers to deliver
chips with ever-shrinking form fac- tors and ever-increasing switching frequencies
[3]. This requires even more sophisticated verification mechanisms to best exploit
the device’s features and detect latent defects, since one can’t rely on handwritten
test programs anumore.

The use of an automatic method was demonstrated to dramatically help de-
signers and engineers: Instead of checking massive random simulations looking for
deviations from the golden device, validation experts can let the automatic test case
generator work for the as long as it takes, and even examine and improve on the
test programs it produces. Results such as those of the Integer Adder evolutionary
run show that some intervention is required to best exploit the programs produced
by µGP. Of course these steps demand expert and skilled engineers whose work is
to carefully monitor simulations and understand which parts of the target modules
are switching the least and why.

4.1 Future work
The test programs produced by the evolutionary algorithm were not capable of

detecting any of the latent faults known to be present in the devices under test.
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Conclusions

This results does not invalidate the premise of making use of µGP to produce
test programs. The proposed approach should be targeted at larger modules in the
System-on-Chip under test, such as the Floating Point Unit or the Control Unit.
Such large entities would surely draw a greater amount of current, and therefore
exacerbate greatly the phenomenon of voltage droop.

Moreover, if one had the computing capabilities, could let the evolutionary al-
gorithm determine which module or collection of modules to target.

52



Bibliography

[1] Brahme and Abraham. “Functional Testing of Microprocessors”. In: IEEE
Transactions on Computers C-33.6 (1984), pp. 475–485. doi: 10.1109/tc.
1984.1676471.

[2] Z. Conroy et al. “A practical perspective on reducing ASIC NTFs”. In: IEEE
International Test Conference. IEEE, 2005. doi: 10 . 1109 / test . 2005 .
1583992.

[3] F. Corno, E. Sanchez, and G. Squillero. “Evolving Assembly Programs: How
Games Help Microprocessor Validation”. In: IEEE Transactions on Evolution-
ary Computation 9.6 (2005), pp. 695–706. doi: 10.1109/tevc.2005.856207.

[4] F. Corno et al. “Code Generation for Functional Validation of Pipelined Mi-
croprocessors”. In: Journal of Electronic Testing 20.3 (2004), pp. 269–278.
doi: 10.1023/b:jett.0000029460.80721.4d.

[5] S. Davidson. “Towards an Understanding of No Trouble Found Devices”. In:
23rd IEEE VLSI Test Symposium (VTS'05). IEEE Comput. Soc, 2005. doi:
10.1109/vts.2005.86.

[6] A. E. Eiben and E. Smith James. Introduction to Evolutionary Computing.
Springer, 2003.

[7] J. R. English, Li Yan, and T. L. Landers. “A modified bathtub curve with
latent failures”. In: Annual Reliability and Maintainability Symposium 1995
Proceedings. IEEE, 1995. doi: 10.1109/rams.1995.513249.

[8] Dimitris Gizopoulos, A. Paschalis, and Yervant Zorian. Embedded Processor-
Based Self-Test (Frontiers in Electronic Testing Book 28). Springer, 2013.
isbn: 978-1-4020-2801-4.

[9] George Harman. Wire Bonding in Microelectronics. McGraw-Hill Education
Ltd, Mar. 1, 2010. isbn: 0071476237. url: https://www.ebook.de/de/
product/7441970/george_harman_wire_bonding_in_microelectronics.
html.

53

https://doi.org/10.1109/tc.1984.1676471
https://doi.org/10.1109/tc.1984.1676471
https://doi.org/10.1109/test.2005.1583992
https://doi.org/10.1109/test.2005.1583992
https://doi.org/10.1109/tevc.2005.856207
https://doi.org/10.1023/b:jett.0000029460.80721.4d
https://doi.org/10.1109/vts.2005.86
https://doi.org/10.1109/rams.1995.513249
https://www.ebook.de/de/product/7441970/george_harman_wire_bonding_in_microelectronics.html
https://www.ebook.de/de/product/7441970/george_harman_wire_bonding_in_microelectronics.html
https://www.ebook.de/de/product/7441970/george_harman_wire_bonding_in_microelectronics.html


BIBLIOGRAPHY

[10] Matthew Seetharam A. Holtz, Seetharam Narasimhan, and Swarup Bhunia.
“On-die CMOS voltage droop detection and dynamiccompensation”. In: Pro-
ceedings of the 18th ACM Great Lakes symposium on VLSI - GLSVLSI '08.
ACM Press, 2008. doi: 10.1145/1366110.1366122.

[11] M.S. Hsiao, E.M. Rudnick, and J.H. Patel. “Peak power estimation of VLSI
circuits: new peak power measures”. In: IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 8.4 (2000), pp. 435–439. doi: 10.1109/92.
863624.

[12] Artur Jutman, Matteo Sonza Reorda, and Hans-Joachim Wunderlich. “High
Quality System Level Test and Diagnosis”. In: 2014 IEEE 23rd Asian Test
Symposium. IEEE, 2014. doi: 10.1109/ats.2014.62.

[13] Way Kuo. “Reliability Enhancement Through Optimal Burn-In”. In: IEEE
Transactions on Reliability R-33.2 (1984), pp. 145–156. doi: 10.1109/tr.
1984.5221760.

[14] Hermes Liu et al. “Advanced method to monitor design-process marginality
for 65nm node and beyond”. In: 2008 IEEE/SEMI Advanced Semiconductor
Manufacturing Conference. IEEE, 2008. doi: 10.1109/asmc.2008.4528996.

[15] Mihalis Psarakis et al. “Microprocessor Software-Based Self-Testing”. In: IEEE
Design & Test of Computers 27.3 (2010), pp. 4–19. doi: 10.1109/mdt.2010.5.

[16] G. J. Van Rootselaar and B. Vermeulen. “Silicon debug: scan chains alone
are not enough”. In: International Test Conference. Proceedings (IEEE Cat.
No.99CH37034). Int. Test. Conference, 1999. doi: 10 . 1109 / test . 1999 .
805821.

[17] Annachiara Ruospo, Ernesto Sanchez Sanchez Edgar, and Matteo Sonza Re-
orda. “An Evolutionary Approach for Functional Verification of RISC-V cores”.
MA thesis. Politecnico di Torino, 2018.

[18] Peter Sarson. “Analog Test Engineering”. In: Politecnico di Torino. 2018.
[19] M. Sonza Reorda and P. Bernardi. “Effective Screening of Automotive SoCs

by Combining Burn-In and System Level Test”. In: IEEE (2019).
[20] M. S. Sonza Reorda, F. Corno, and G. Squillero. “RT-level ITC'99 benchmarks

and first ATPG results”. In: IEEE Design & Test of Computers 17.3 (2000),
pp. 44–53. doi: 10.1109/54.867894.

[21] A. Tonda G. Squillero. Microgp. Oct. 8, 2019. url: http://ugp3.sourceforge.
net/..

[22] K. G. Verma, B. K. Kaushik, and R. Singh. “Effects of process variation in
VLSI interconnects – a technical review”. In: Microelectronics International
26.3 (2009), pp. 49–55. doi: 10.1108/13565360910981562.

54

https://doi.org/10.1145/1366110.1366122
https://doi.org/10.1109/92.863624
https://doi.org/10.1109/92.863624
https://doi.org/10.1109/ats.2014.62
https://doi.org/10.1109/tr.1984.5221760
https://doi.org/10.1109/tr.1984.5221760
https://doi.org/10.1109/asmc.2008.4528996
https://doi.org/10.1109/mdt.2010.5
https://doi.org/10.1109/test.1999.805821
https://doi.org/10.1109/test.1999.805821
https://doi.org/10.1109/54.867894
http://ugp3.sourceforge.net/.
http://ugp3.sourceforge.net/.
https://doi.org/10.1108/13565360910981562


BIBLIOGRAPHY

[23] R. Xie et al. “A 7nm FinFET technology featuring EUV patterning and dual
strained high mobility channels”. In: 2016 IEEE International Electron De-
vices Meeting (IEDM). IEEE, 2016. doi: 10.1109/iedm.2016.7838334.

[24] Y. Zorian, S. Dey, and M. J. Rodgers. “Test of future system-on-chips”. In:
IEEE/ACM International Conference on Computer Aided Design. ICCAD -
2000. IEEE/ACM Digest of Technical Papers (Cat. No.00CH37140). IEEE,
2000. doi: 10.1109/iccad.2000.896504.

55

https://doi.org/10.1109/iedm.2016.7838334
https://doi.org/10.1109/iccad.2000.896504

	List of Tables
	List of Figures
	Introduction
	Background
	Electronics
	Integrated Circuit design
	Photolithography
	Packaging
	Process variability

	Faults
	Automatic Test Pattern Generation (ATPG)
	Dead-On-Arrival mitigation

	An evolutionary algorithm
	Micro Genetic Programming (GP)
	Individual representation

	Functional testing
	Software-based self-test

	Case Study
	The "Bernina" SoC
	System Level Test framework
	Supply voltage manipulation

	Instruction pool
	Graph-based program classificator
	Switching activity
	Fitness evaluation

	Evolution results
	Integer Adder
	Logic Unit


	Physical testing
	Hardware
	Software
	Experimental results

	Conclusions
	Future work


