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Summary

The project proposed is finalized to develop a novel network for point cloud de-
noising based on graphs.

A point cloud is an object representation composed by a collection of 3-D
space coordinates. This data is usually acquired by radar, laser, electro-optical
systems or by reconstruction of 2-D images: all these methods lead to point clouds
typically affected by noise. The aim of the project is to design a network able to
efficiently re-produce cleaned 3-D point cloud from a noisy observation.

Denoising task is a typical problem addressed in Image Processing and the
current state-of-the-art are Convolutional Neural Networks (CNN), that leads to
promising results for noise removal in images; the idea developed in this project
is to exploit a deep neural network structure composed by convolutional layers,
introducing appropriate adjustment for the point cloud denoising task.

The novelty of the project is the introduction of a graph-convolutional layer,
that exploits the Edge-Conditioned-Convolution [1](ECC) to implements a graph-
convolution operation over point cloud.
A graph is computed for each point cloud, where each single point is a node and
the weighted connections between them are the edges. The ECC is performed in
a dedicated deep neural network, where the feature vector associated to one node
at layer l + 1 is computed as a weighted local aggregation of the feature vector
at layer l of the node itself and the nodes in the neighborhood.

Traditional methods to denoise a point cloud are geometrical algorithms, that
can be based on graph representation. Some popular projects involve the com-
putation of surfaces of the point cloud from the noisy observation and then the
projection of the noisy points, instead others represent the point cloud on graph
and exploit graph-regularization method. All these approaches leads to a classical
optimization problem.
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Recently, due to the increasing interest in the point cloud denoising, new ap-
proaches are explored, in particular several neural network project able to out-
perform the traditional methods have been published.
None of the networks exploits a graph representation of the data, neither a con-
volutional structure, proposing instead a quite simple architecture, based on fully
connected layer and max-pooling.
The network proposed in this thesis, called GraphPointNet, would be the first
neural network based on convolution able to process point cloud.

In this thesis after an introduction section where the basic concepts of neural
network and graph theory are presented, the current state-of-arts are summa-
rized. Then the development of the project from the creation of the dataset to
the presentation of the architecture is described and analyzed in details.
Finally, the performance evaluations of the network proposed are reported. Quan-
titative and qualitative test are performed in order to evaluate the results ob-
tained. In particular, the point-to-point distance is taken into account to eval-
uate the goodness of the results obtained and to make comparisons with other
methods. It is shown that the method proposed is able to outperform or at least
match the current state-of-arts.
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Chapter 1

Introduction

In the introduction chapter the background concepts of the project are presented,
starting from a brief description of the input data, the point cloud, and following
with a overview of neural network and graph theory.

1.1 Point Cloud
3D point cloud are collections of data points that represent cities, environments,
artificial systems or objects of all dimensions. The data is expressed by geo-
metrical coordinates (x, y, z) of sampled points from the surface of the analyzed
shape.

Point cloud are becoming increasingly popular because of the ability to pro-
vide a detailed representation of the real world and the wide applications in many
different areas, such as architecture, medical imaging, virtual reality, and aero-
nautics applications.

Recently, there is a growing interest regarding the acquisition and processing
of point clouds: new techniques to increase the quality of the data and the possible
applications are investigated. Different approaches to the point cloud acquisition
are presented in literature as electro-optical systems, laser scanning or radar
system, reconstruction starting from 2-D images.
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1 – Introduction
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Figure 1.1: Example of Point Cloud

1.2 Neural Network
In this section the basic concepts of neural network are presented, in order to
provide a general background.

The basic element of a neural network is a perceptron. The general idea is to
emulate the biological neurons: several signals arrive at the nerve cells, where are
processed and the cells eventually produces a response.
A perceptron is a mathematical algorithm, that takes as inputs vectors of num-
bers, weighs them element by element, sums them together and apply at the
results a nonlinear function to obtain output. The output is a binary classifier,
that would make a decision, True or False, according to the weighted input. An
example of perceptron is reported in Fig.1.2.

w1

w2

w3

x1

x2

x3

w1x1

w2x2

w3x3

bias

Activation
function

y

Figure 1.2: Perceptron

In Fig. 1.2. can be seen that the weighted input are summed together with a
bias, that is a scalar quantity inserted to move the decision threshold far from
the origin.
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1.2 – Neural Network

The perceptron was originally designed for binary classification task, as image
recognition. At first, the nonlinear function, also called activation function, was
a simple function with only two possible output, 0 or 1, i.e. True or False.

Afterwards, the neural network are exploited in more complex tasks, to find
functions able to map inputs of the dataset to the correct outputs. The operation
involved became gradually more complicated and the activation function and the
structures consequently.

If several perceptrons are connected together, a neural network is created,
see Fig.1.3. as example. The network can be more or less deep according to
the number of hidden layer inserted and the layer can be fully connected, if each
output of intermediate layers is a input of the following layer, or not. How many
layers and how connect them are a designer decisions, made taking into account
the specific task of the net.

x1

x2

x3

o1

o2

Input layer Hidden layer Output layer

w1

w12

w13

w20

Figure 1.3: Neural Network Example with one hidden layer

In the development of a neural network after the general structure of the net
is designed, the weights and the bias involved are initialized and the network has
learn the correct values to obtain acceptable results. The initialization process
is a complicated topic that would be outside the brief introduction addressed in
this section and it can be simplified as a random initialization.
The training phase is the learning process where the parameters are changed in
order to obtain the desired percentage of right predictions: due to the complex-
ity of the classification a certain failure percentage has always to be taken into
account.

To evaluate the network performance a loss function is exploited, able to
describe the discrepancy between the output of the net and the desired one, a

3



1 – Introduction

popular function is the mean squared error (MSE) loss, that compute the squared
difference between the predicted data and the true one:

MSE = 1
N

NØ
i

(ytrue − ypredicted)2 (1.1)

where N is the total number of points.

It is easy to understand that the goal of the training phase is to minimize
the loss function: to fulfill this task an optimization method applied to the loss
function is applied and causes the variation of the network parameters. A popular
optimization algorithm is the gradient descendent, that is able to determine how
change the parameters computing the partial derivatives of the loss function with
respect to each trainable variables.
Considering the variable w1 of the net reported in figure 1.3 the variable update
would be:

w1,updated = w1 − η
∂L

∂w1
(1.2)

where η is the learning rate, a parameter that controls how much the variables
can change at each updates: a minor the learning rate causes a fine-tuning of the
parameters.

During the training phase, a training dataset is exploited. The dataset is
composed by a collection of data with the correspondingly true information that
has to be predicted. For instance if the net addresses a image classification task,
the dataset is a collection of image and the corresponding category associated
at each image, called label is the information that has to be predicted. Instead
regarding a denoising problem, the dataset would be the noisy image that has
to be reconstructed and the original clean version is the data estimated by the
network. An algorithm where is available the ground truth, the true information
that has to be predicted, is called supervised learning.

The neural networks are generally characterized by three phases: the training,
the validation and the testing. The validation phase consists in momentarily
stopping the training and testing the net as far trained with data belonging to
the same original dataset of the training dataset, but that are not included in
the latter one, therefore the net has never seen during the learning phase the
validation data. This operation is performed in order to check if the network is
over-adapting the parameters over the training dataset, i.e. the noticed decreasing
of the loss is due to a over fitting over the known data and over new inputs the
same performance are not met. Only during the training phase the parameters
are updated, the validation is a off-running check of the performance. Finally the
testing is performed when the network is trained and usually completely different
data are involved.
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1.3 – Signal Processing application of Neural Network: Convolutional Neural Network

1.3 Signal Processing application of Neural Net-
work: Convolutional Neural Network

A Convolutional Neural Network (CNN) is a class of deep neural networks that
has become extremely popular for image processing tasks such as image recogni-
tion, classification and denoising. In this section a description of the architecture
and the operation involved is provided.

A CNN is a deep neural network that exploits the convolution operation in-
stead of simple matrix multiplication between input and weights.
It takes images as input, each one represented by a tensor with dimensions (height
x width x channels), where channels is the depth of the data: it is equal to 1 for
gray-scale or to 3 for RGB images. The output of the network depends on the
intended use.
The internal structure is characterized by several hidden layers, consisting in con-
volutional layers, followed by activation function and other additional layers such
pooling or fully connected layers.

The main block of the net is the convolutional layer that convolves the input
matrix with convolutional filters. A convolutional filter is a matrix of dimension
(heightfilter x widthfilter x channels), where the parameter channels has to be
equal to the image’s depth. All the elements of the filters consists in the weights
of the network that has to be learned.
The network is able to detect and isolate information and features of the data
that can be used to fulfill the addressed task. The network convoles the input
data with specific filters in order to capture the important characteristics.
A convolutional layer is realized studying and emulating the response of a neuron
in the visual cortex to a stimulus. Each neuron is able to processes data only for
its receptive field and if several fields are considered it is possible to cover the
whole visual area.

To perform a convolution operation a selected filter slides over the input ma-
trix, isolating windows of data, and merges the data selected with the filter values.
A fixed number of shifts is performed to move the window over the matrix and
the number of shift is set during the design and it is called slides. In Fig.1.4. is
reported an example to clarify the operations of a generic CNN.
After the convolutions operations, the modified data are passed as input of the
following layer.
During the training phase, the network changes and learns the filter’s elements
in order to extract meaningful information for the established task.
The power of the architecture is due to the reduction in the number of parameters
involved and reuse of weights with respect to other fully connected layers.
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(b) Computation of the element (1,1)
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(c) Computation of the element (1,2)

5 4 ?

4 ? ?

? ? 3

1 0 1 0 1

0 0 1 0 0

1 1 1 0 1

0 1 1 0 0

1 1 0 0 1

(d) Element (2,1) and (3,3)

Figure 1.4: Convolution Operation Example: In figure (b), (c) and (d) the com-
putations reported regards a convolution operation between the input matrix and
the filter in figure (a) with slide equal to 1

An activation function is inserted after each convolution layer, for the same
reasons described in the previous section. One popular non-linear function ex-
ploited is the Rectified Linear Unit (ReLu):

y

x

f(x)
f(x) = max(0, x) (1.3)

Furthermore, a pooling layer is often inserted: this type of layer is in charge of
reducing the number of parameters, taking into account only the most significant
one. For instance, a popular choice is to perform a Max Pool:only the maximum
parameter over a selected window is considered.
Following is reported an example of a CNN for a classification problem in Fig.
1.5.
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Input Image
4 filters

32x32x1

Conv

28x28x4

5x5
Pool

Max Pool

14x14x4

16 filters

Max over pairs

First layer

Conv

10x10x16

5x5
Pool

Max Pool

5x5x16

Max over pairs

400 Output
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Second layer Fully Connected layer

16 filters

5x5

Figure 1.5: CNN Example

A CNN is the state-of-arts in terms of neural network for image processing,
due to the high performance achieved, but it is mainly exploited for 2-dimensional
inputs. The novel idea presented in GraphPointNet is to introduce a convolutional
network in a structure compatible with more than 2-dimension data.
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1 – Introduction

1.4 Graph Signal Processing
In this section a brief introduction to the Graph Theory is presented to under-
stand the basic concepts and the operations exploited in the project.

A generic graph G is constituted by a collection of points, called vertices or
nodes, and the connection between them the edges, respectively denoted with
symbols V and E ⊂ V x V .
A graph can be undirected or directed: in the first case, choosing two random
vertices 1 and 2, if the vertex 1 is connected to the vertex 2 then the vertex 2 is
connected to vertex 1; otherwise the direction of the edge is univocal, specified
by an arrow, as shown in Fig.1.6.

1

2
6

4

3

5

(a) Directed Graph

1

2
6

4

3

5

(b) Undirected Graph

1

2
6

4

3

5

0.54
0.14 0.26

0.45

0.31

0.75

0.62

0.11

(c) Weighted Graph

Figure 1.6: Graph Examples

Considering a general graph G = (V , E), where V = {vi}, i ∈ {1, ...N}, is the
set of N nodes, and E = {eij}, i, j ∈ {1, ...N}, is the collection of all the edges,
the adjacency matrix can be defined: a matrix A ∈ NxN , where the element aij

is equal to 1 if and only if the edge between the node i and the node j exists,
otherwise its value is zero.
Following, the adjacency matrix of the undirected graph is shown in Fig.1.6. as
an example. It is straightforward to understand that for a undirected graph the
adjacency matrix would be symmetric.

A=



0 1 0 0 0 0
1 0 1 1 1 1
0 1 0 0 0 1
0 1 0 0 1 0
0 1 0 1 0 1
0 1 1 0 1 0


A specific quantity, called weight, can be associated to each edge of the graph,

finalized to add some information to the representation of the signal: in this
scenario the graph is defined weighted.
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1.4 – Graph Signal Processing

Considering a weighted graph, a weighted matrix W ∈ NxN , similar to the
adjacency matrix, can be defined:

Wi,j =
I

0 if eij /∈ E
wij if eij ∈ E

Where wij represent the specific weight related to the edge eij.
The degree matrix related to the weighted graph in Fig. 1.6c. is reported as
example.

W=



0 0.54 0 0 0 0
0.54 0 0.31 0.14 0.26 0.45

0 0.31 0 0 0 0.11
0 0.14 0 0 0.75 0
0 0.26 0 0.75 0 0.62
0 0.45 0.11 0 0.62 0


After the definition of the adjacency and weighted matrix, the degree matrix

can be introduced: it is a diagonal matrix, where the diagonal element dii is equal
to the total summation of all incoming and outgoing edges relative to the node i:

Dii =
NØ

j=1
wij for i = 1, ...N

The degree matrix build upon the third graph of Fig. 1.6c. is:

D=



0.54 0 0 0 0 0
0 1.70 0 0 0 0
0 0 0.42 0 0 0
0 0 0 0.89 0 0
0 0 0 0 1.63 0
0 0 0 0 0 1.18


If a directed graph is considered the direction of the edge is taken into account
accordingly associating different sign to edge in different directions.

Finally, the Laplacian matrix, that plays a key role on the graph signal pro-
cessing, is presented. This matrix is defined as follows:

L = D−W (1.4)

9



1 – Introduction

1.4.1 Graph Fourier Transform
Exploiting the representation in frequency domain of a signal in the time domain
it is possible to obtain information about the signal itself: it is then interesting
to introduce the frequency analysis for graph signals.

In order to obtain information about the frequency of a graph signal it is
necessary to exploit the Graph Laplacian matrix, previously introduced. The L
matrix is symmetric and positive and represents an approximation of the Lapla-
cian operator, therefore it is possible to formulate a Fourier-like Transform.

Given a graph signal f : V → RN , where V is the set of vertices of the graph,
it is possible to define the following formulations:

Lf =
N−1Ø
i,j=0

Wi,j(f(i)− f(j)) (1.5)

fT Lf = 1
2

N−1Ø
i,j=0

Wi,j(f(i)− f(j))2 (1.6)

The equation 1.5 correspond to a difference operation and the 1.6 is the quadratic
form the graph Laplacian matrix that gives information about the smoothness of
the signal.

The graph Laplacian matrix is real and symmetric, therefore it is possible to
define orthonormal eigenvectors and eigenvalues:

Lχi = λiχi (1.7)

where χi is a eigenvector of L and λi the corresponding eigenvalue.
The matrix Q, where each column is a eigenvector of L, is introduced and the
matrix L can be factorized as:

L = QLQT (1.8)

The eigen-decomposition 1.8 can be easily demonstrated by the eigenvector-
eigenvalue theory expanding the eigenvalue equation 1.7.

For any signals f in the time domain, the classic Fourier transform and its
inverse are defined:

f̂(ω) =
Ú 1

eiωx
2∗
f(x)dx (1.9)

f(x) = 1
2π

Ú
f̂(ω)eiωxdω (1.10)

10



1.4 – Graph Signal Processing

The complex exponents
1
eiωx

2∗
in 1.9 are the eigenfunctions of 1-D Laplacian

operator d
dx2 .

Similarly, for any graph signal f can be defined the graph Fourier Transform:

f̂(l) =
N−1Ø
n=0

χ∗l (n)f(n) = GFT (1.11)

f(n) =
N−1Ø
l=0

f̂(l)χl(n) = IGFT (1.12)

The equations of the graph Fourier transform GFT 1.11 and its inverse IGFT
functions are presented in [5].

An interesting application of the Graph Fourier Transform is the definition of
a convolution operation over graphs in the spectrum domain.
The convolution operation in time domain is defined as follow:

(f ∗ g)(x) =
Ú +∞

−∞
f(x− t)g(t)dt (1.13)

It is not possible to directly apply the classical formulation to graph signals
because in the graph domain the signal translation f(x− t) is not defined.
Therefore, a new expression for convolution over graph is delineate exploiting the
graph spectral domain. The equation 1.13 can be re-written as:

(f ∗ g)(x) = IGFT
î
GFT {f ∗ g}

ï
(1.14)

The same properties of the Fourier Transform are still valid in this case; in par-
ticular, the Graph Fourier Transform of two convolved signal is equal to the
multiplication of the Graph Fourier Transforms of the two signals.

(f ∗ g)(x) = IGFT
î
GFT {f}GFT {g}

ï
(1.15)

The graph-convolution operation can be defined in the spectral domain applying
the equations 1.12 and 1.11:

(f ∗ g)(n) =
N−1Ø
l=0

f̂(l)ĝ(l)χl(n) (1.16)
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1 – Introduction

1.4.2 Dynamic Edge-Conditioned Convolution [1]

In this section the Dynamic Edge-Conditioned Convolution [1] (ECC), a general-
ization of the convolution operation conceived by Martin Simonovsky and Nikos
Komodakis, is reported and explained.

Usually, a convolution operation is applied to data that lies on a regular grids
and it is the key operation on which the Convolution Neural Networks (CNNs)
relies, as reported in previous section.

Due to the wide applications of the classical convolution operation, it be-
comes interesting formulate a definition of a convolution operation suitable for
any signal, even if represented by irregular structures and lies on non-Euclidean
domains, but easily defined on a graph.

In the previous section a graph convolution operation formulated in the spec-
trum domain, based on the GFT, is presented. The operation is characterized by
a high computation cost and it is not suitable with data with a variable structure,
such as point cloud, due to the fact that the filters involved are computed in the
spectrum of graph laplacian.

The operation presented in [1] is the generalization of the classical convolution
to every type of signals formulated in spatial domain.
In [1] the convolution operation is interpreted as a weighted aggregations over
a neighborhood of a graph, exploiting a spatial approach instead of a spectral
method, leading to consider various types of graphs, with no restriction on the
structure and the size.
It is considered a generic graph G = (V , E), constituted by n vertices and m
edges. In order to implement the ECC a feed-forward neural network, with lmax

number of layers, is exploited and the considered graph has to be vertex and
edge labeled, at each node and edge a label is associated according to a specific
function: X l : V −→ Rdl associate at each vertex a feature and L : E −→ Rs

associated at each edge an attribute.
A key concept in the algorithm is the definition of neighborhoods. A neigh-

borhood N(i) related to the vertex i consists in a collection of adjacent nodes
and the node itself: N(i) = {j; (j, i) ∈ E}t{i}.

As previously mentioned, the operation here presented computes the signal
X l(i), related to the i vertex, as a local weighted summation of signals X l−1(j)
belonging to its neighborhood. As a matter of fact, the ECC is performed as
a local operation, the actual computation is applied to a section of the graph
by time and therefore it is possible to manage different structures of graph, any
order of the vertices and sizes without any constraints.

12



1.4 – Graph Signal Processing

A topic worthy of discussion is the definition of the weight matrix Θl
ji in-

volved in the local weighted aggregation. It is defined a filer-generating network
F l : Rs −→ Rdlxdl−1 , that takes as input L(j, i) and gives as output the matrix
Θl

ji = F l
wl(L(j, i)) ∈ Rdlxdl−1 . It is has to be noted that the term wl of the func-

tion F l represents the weights of the network that generates the matrix Θ.

In the case under study, the edge labeling function considered consists in the
features associated the two nodes composing the edge at each layer l:

L(i, j) = H l
j −H l

i , j ∈ N(i) (1.17)

In the previous equation the vector H l
i represent the feature vector of node i of

the l − th layer.
In conclusion is here reported the equation that described the ECC:

H l+1
i = 1

|N(i)|σ
A Ø

j∈N(i)
F l

wl(L(j, i))H l
j + bl

B
(1.18)

= 1
|N(i)|σ

A Ø
j∈N(i)

F l
wl(H l

j −H l
i)H l

j + bl

B

= 1
|N(i)|σ

A Ø
j∈N(i)

Θl
jiH

l
j + bl

B

The symbol σ represent a non linear function typically used in Neural Network.
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Chapter 2

State of the Art on Point Cloud
Processing

In literature, different typologies of processing of point cloud are available: projects
addressing various tasks such as classification, segmentation and denoising have
been developed by several groups [2, 3, 4, 6, 7], confirming the increasing interest
towards point cloud and their application.
In this section, particular attention is given to point cloud denoising: the im-
portance of this task, together with the different possible approaches to address
it are discussed and the most relevant projects are presented, highlighting the
differences and common points among them.

2.1 Point Cloud Denoising
Point cloud is a 3-D signal representation, very popular due to the ability to
discrete represent surfaces and to its wide applications.

The available acquisition methods, sensors as Microsoft Kinect or algorithms
able to create the point cloud from several images, insert non-negligible noise, cor-
rupting the information collected, making necessary a denoising pre-processing
before the data application. For all this reasons, the denoising of point cloud has
become a problem addressed by several researchers with different methods.

Traditionally approaches can be dived into two main categories: local and
non-local operators based. Local methods generally regards the surface fitting to
noisy input; one of the most common used is the Moving Least Squares method,
that projects each noisy input points to a surface approximated from the noisy
observation. Other popular approaches are based on sparse representations of
geometric characteristic, such as the surface normals, estimated solving a min-
imization problem. Concerning the methods belonging to the second category,
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2 – State of the Art on Point Cloud Processing

the non-local approaches are based on self similarities to re-construct the noise-
less point cloud. A variant of the last categories are the graph-based approaches,
where graph properties are exploited, particularly efficient are the methods that
particularity involve signal smoothness and regularization, as Graph Laplacian
Regularizer, Graph variant of Total Variation etc.

Recently different techniques to solve the problem have been investigated and
the most promising is exploiting neural networks. Few works have been pre-
sented, the most relevant are PointCleanNet [3] and a network based upon local
surface estimation presented in [4], called Neural Projection Denoising (NPD).
Both this networks are based on the structure described in [2], called PointNet:
this project is actually the first neural network designed to deal with point cloud
with segmentation and classification as addressed task.

None of the neural network proposed for the denoising of point cloud imple-
ment a convolution network, it is coarsely emulated using multiple layer percep-
tron, but it is never take into account to create a convolutional network, that is
one of the strength and the novelty of GraphPointNet.

2.2 Notable Methods for Point Cloud Process-
ing

In the following a brief review of representative and notable projects concerning
the point cloud processing are analyzed.

2.2.1 PointNet [2]
PointNet is the first neural network able to efficiently deal with point cloud for
classification and segmentation task. The architecture presented, shown in Fig.
2.1. just the classification network, is quite simple, characterized by several mul-
tiple layer perceptron, MLP , and maxpooling layers.

It can be seen in Fig. 2.1. that two transformer blocks are inserted, STN1
and STN2, both of them have an internal architecture similar to the global struc-
ture of PointNet: several fully connected layer with a final maxpooling layer. The
STN1 block is the input transformer that creates a 3x3 matrix from the nx3 input
matrix in order to constrain the network rotation invariant and the second block,
STN2, is the feature transformer similar with the previous one but the output
is a 64x64 matrix. In particular one transformer consist in shared MLP , with
output dimensions (64,128,1024), a maxpooling and two fully connected layers to
regress the dimensions.
It can be noticed that the number of input points and the size of the max layer
output have a great impact on the performances of the net, hence it is reasonable
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2.2 – Notable Methods for Point Cloud Processing

utilize point cloud with a limited number of points.

PointNet is a state-of-the-art neural network designed for point cloud, char-
acterized by a simple architecture, it is able to achieve promising results for the
addressed tasks. After the publication of this project, several works that exploit
a similar architecture but addressing other processing task has been realized;
the most worthy of mention are the PCPNet [6] for the estimation of local shape
properties, such as the normals of the points, PointCleanNet [3], for the denoising
of the point cloud, that is inspired by PCPNet and Neural Projection Denoising
[4],NPD, based on local surface estimation.
In the following PointCleanNet and the NPD network are well discussed; other-
wise it is not presented an in-depth review of the project PCPNet because the
architecture would not introduce any novel aspects and the task is beyond the
topic of the thesis.

STN1

MLP

h1
h2
.
.

H1
H2
.
.

MLP  K Outputs
Noisy Point Cloud

STN2

MLP MAXPOOL

Global Features

3x3

nx3

nx3

64x64

nx64nx64 nx1024 nx1024
(64,64) (64,128,1024) (512,256,k)

Figure 2.1: PointNet: architecture for Point Cloud classification

2.2.2 PointCleanNet [3]
PointCleanNet is a deep neural network that, given a noisy point cloud, is trained
to learn surface patches from the features extracted from the corrupted input and
exploits them to identify the outliers, additional points that are outside of the
original point cloud, and denoise the remaining points affected by white noise,
projecting them onto the surface.

The data-set of the training set is a collection of patches, created by selecting
a point and considering its closer points in a radius r, and the algorithm only
perform the denoising of the center point of the patch, that depends only on a
local neighborhood, leading to treat the denoising task as a local problem.

The network implemented is divided into two stages: the first is finalized to
the outlier removal, where an outlier probability, oi, associated to each points is
predicted and if it is larger than 0.5 the points is considered an outlier. After
this procedure the identified outliers are removed from the input and then the
second stage is performed. The displacements, di, of the remaining points to the
original and unknown surface is estimated in applied to the input order to obtain
the final denoised point cloud.
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2 – State of the Art on Point Cloud Processing

The structure exploited in both of the steps can be seen in Fig. 2.2. and
Fig. 2.3. It is largely drawn from PCPNet [6], that in turn is inspired from
PointNet, but characterized by different loss functions. The goals of the network
are move the noisy points close as possible to the original surface and maintain
a regular distribution, avoiding clustering, and the loss functions are set accord-
ingly. Several alternatives are tested and the one selected, that achieves better
results, exploits the distance between each denoised points and its closer point in
the ground truth point cloud to move the point close to the surface, Ls term in
equation 2.1, with an additional regularization term Lr, to avoid clustering.

Ls(p̃i,Pp̃i
) = min

pj∈Pp̃i

||p̃i − pj||22 Lr(p̃i,Pp̃i
) = max

pj∈Pp̃i

||p̃i − pj||22 (2.1)

La = αLs + (1− α)Lr (2.2)

In Fig. 2.2. and Fig. 2.3. is shown the architecture of the network proposed
in the paper [3], where Spatial Transformer layers, QSTN and STN blocks, and
fully connected layers, FNN, are exploited. The first layer, QSTN is used to
constrain the network rotation independent, clearly at the end of network, the
estimation has to return to the original rotation to be consistent with the input
data. It has the same function of the first transformer block in PointNet, the only
difference is the output in PointCleanNet is a quaternion instead of a 3x3 matrix.
The subsequent layers are finalized to the feature extraction that is realized with
several fully connected layers and a full linear transformation, STN block. The
computed features for each points, hi, are combined together with a symmetric
operation, a maxpool or a summation, to obtain an order invariant feature vector,
Hi. At last, a regressor, composed by fully connected layers, estimates the desired
output, the displacements di or the outlier probability oi.
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FNN1

c1
c2
.
.

h1
h2
.
.

FNN2
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H2
.
. FNN3 oi

Pi
Symmetric op

(3,64,64) (64,64,128,k)

nxk 1xk

(k,512,256,nout)

Figure 2.2: PointCleanNet: architecture of the outlier removal step
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QSTN2 STN2

FNN4

c1
c2
.
.

h1
h2
.
.

FNN5

H1
H2
.
. FNN6

Pi\Oi

pi, noisy

pi, denoised

di

Symmetric op

(3,64,64) (64,64,128,k)

nxk 1xk

(k,512,256,nout)

Figure 2.3: PointCleanNet: architecture of the denoising step

PointCleanNet is able to outperforms currently state-of-the-arts traditional
methods, exploiting the simple architecture of PointNet re-arranged for the de-
noising task. Furthermore, it is a blind network: it is not necessary to train the
network for a specific type of noise, i.e. with specify the standard deviation of the
white noise, but the same network can denoise point cloud affected by a range of
white noise. However, the network is able to denoise just the center point of the
patch, performing a point training rather than a patch training.
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2 – State of the Art on Point Cloud Processing

2.2.3 3D Point Cloud Denoising via Deep Neural Network
Based Local Surface Estimation [4]

The Neural Projection Denoising project, NPD, is a novel project that exploits
the estimation of geometrical properties to denoise the corrupted point cloud, the
input of the net.

The algorithm predicts the reference planes for the noisy input and projects
the points to the corresponding surfaces. Therefore, the network has to learn
from local and global features the reference planes T̂i, characterized by the normal
vector âi and interception ĉi for each noisy points p̃i and then obtain the denoised
point.

p̂i = p̃i − âT
i p̃iâi + ĉiâi (2.3)

During a pre-processing phase, the true reference planes are calculated with
graph-based methods from the original point cloud and the results obtained are
used to supervise the estimation of the surfaces jointly with the noise-less point
cloud that supervise the final denoised version of the data.
Two loss function are exploited, to evaluate the goodness of the final denoised
point cloud the mean squared error, MSE, is calculated:

MSE = 1
N

NØ
i=0
||p̂i − pi||22 (2.4)

Instead, for the reference plane loss, the cosine similarity is exploited

cos similarity = 1
N

NØ
i

----1− [aT
i , ci]T [âT

i , ĉi]
||[aT

i , ci]||2||[âT
i , ĉi]||2

---- (2.5)

The total loss is the combination of equations 2.4 and 2.5.

The architecture, as already mentioned similar to PointNet, is shown in Fig.
2.4. It can be seen that the transformer block, typical of the PointNet architecture,
are not reported: it is only necessary aMLP to extrapolate the local features and a
maxpooling operation for the global information. The two features such predicted
are concatenated and they are the input of a series of MLP that estimates the
reference planes. Finally, the noisy points are project on the estimated reference
planes, obtaining the denoised results.
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Figure 2.4: Neural Projection Denoising: Architecture of the whole network

As in the previous denoising network, the strength of the project in the sim-
plicity of the architecture: it directly estimates surfaces and project the points,
creating a resulting point cloud better than other state-of-arts methods.
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Chapter 3

Proposed approach for Point
Cloud Denoising

In this section different aspects of the design of the network, before the actual de-
velopment of the architecture, are described, as the general structure, the creation
of the data-sets and the handling of data.

3.1 General Structure
The first step of the project’s design is to delineate a general structure of the
network.

As previously discussed, the method proposes a convolutional network, char-
acterized by graph-convolution layers built exploiting the Edge-Conditioned Con-
volution [1] to address the denoising task.

Recently, it has been demonstrated that a Convolution Neural Network for
image processing task achieves better results if trained to predict the residual
between the noisy input and the ground truth instead of directly estimate the
denoised result [8]. The same principle is exploited in this project: the network
learns to progressively remove the clean point cloud from the noisy observation.
A in-depth discussion of the structure is reported in section 4.2.3.

The body of architecture is composed by several blocks, called Residual Block,
drawn by the building block presented in [9], able to detect and remove the cor-
relations of the input of the block itself: in this way, starting from the noisy
observation, the true point cloud is gradually removed, ideally obtaining at the
end of the net only white noise.
The estimation of the noise is subtracted to the noisy input in order to finally
obtain the denoised point cloud.
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3 – Proposed approach for Point Cloud Denoising

All the graph-convolution operations are performed in the feature space; there-
fore a Pre-Processing Block is necessary to move from the spatial domain, in which
the noisy point cloud is represented, to the feature space, extrapolating mean-
ingful information. In Fig. 3.1. it is possible to observe the general architecture
described: only two residual blocks are reported as an example, the number of
elements inserted in the final net will be discussed in section 4.2.3, where a wider
explanation of each block is reported.

Preprocessing 
Block

Residual
Block

Residual
Block

Xn Xrnr

Figure 3.1: Block Diagram of the General Structure proposed

3.2 Dataset creation
An importan aspect worthy of discussion is the creation of the data set: for the
training and validation set the ModelNet40 [10] database is exploited; instead
for the testing phase point clouds from the Shapenet [11] repository are used as
inputs.
Both the previous cited archives store 3-D representations of objects belonging
to different common categories: airplanes, beds, chairs, baths etc.

ModelNet40 is provided by the University of Princeton and it is constituted
by a collection of 3D CAD models for objects divided into 40 different categories,
all cleaned by the authors. The data are stored in OFF format file and each
point cloud is represented by meshes: in each file the vertices and the faces are
reported, the first by the spatial coordinates and the second are expressed as the
indices of the vertices that compose them, since they are geometrical portions of
the surface. On the other hand, Shapenet, released by the University of Stand-
ford, is a large-scale dataset of 3-D data, including 55 common object categories
with more than 50.000 models in .obj format file, where the data are reported in
the same way as the other cited dataset.

All the data that constitutes the training, validation and testing set has to
be pre-processed in order to apply the denoising method to a generic point cloud
in the same initial conditions. The first step is to perform a mesh-sampling on
the faces reported in the original files, in order to obtain a collection of points,
identified by their spatial coordinates: for the training/validation data 20.000
points per point cloud are sampled, instead for the testing 30.720. In particular,
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to maintain a uniform distribution and avoiding zones of different amount of data,
the point are sampled following a normal distribution.
After the sampling, all the point cloud are normalized: the point cloud is scaled
in order to be contained in a sphere with unitary diameter. The diameter of
the point cloud is commonly defined as the measure of the maximum distance
between two points contained in the point cloud. This operation is necessary
because different point cloud can have an arbitrary diameter that would not affect
the representation itself of the data, but it has to be taken into account when
an addictive white noise is applied: noise with same value of standard deviation
would have different effects if applied to point cloud with different scale and
diameter. A further explanation about the application of the noise is reported in
section 3.3.

The last step of the pre-processing consist in the patch division of the data
and it is slightly different for the training, validation set and the testing set.
As explained, the network realized performs operation upon points and their
neighborhood, therefore the patch has to be created accordingly. From all the
files containing the sampled and normalized point clouds few points and their
1024 closer points are selected in order to create a single patch, the central points
are chosen sufficiently spaced to obtain diverse patches; the final dataset for the
training phase is composed by 117.000 different patches and the validation set by
100, a little selection from the original dataset addressed for the training.

3.3 White Noise Application
The point clouds derived from the dataset described in section 3.2 are artificially
corrupted in order to simulate a noisy data observation. In particular the noise
considered in this project is a additive white noise, that affects a point cloud
changing the position of each points, modifying the value of the three spatial
coordinates.

A easy way to emulate this behaviour is create a matrix of the same dimension
of the clear input filled with random, uniformly distributed variables between zero
and one, multiply this matrix by the value of standard deviation chosen and add
the result obtained at the clear input: the outcome would be a noisy version of
the clean input.

Xn = X + N (3.1)
N = U(0,1) ∗ σ = N (0, σ2) (3.2)

where N is the additive white noise with standard deviation σ and X is the orig-
inal clean input.

It is clear that to directly apply the chosen value of standard deviation and
have consistent noisy point cloud, all the original input has to be normalized with
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3 – Proposed approach for Point Cloud Denoising

the diameter equal to one, otherwise applying same standard deviation would
have different effects to point cloud with different diameter.

The network presented is able to learn how to reconstruct a data affected by a
specific noise, therefore the training and the testing has to be performed exploit-
ing data characterized by same standard deviation in order to obtain consistent
results.
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Figure 3.2: Examples of corrupted data
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Chapter 4

Graph Neural Network for Point
Cloud Denoising

In this section the network proposed is in-depth analyzed and the details of the
principal blocks are described.

4.1 Architecture design

4.1.1 Overview
An overview of the architecture presented, called GraphPointNet, is shown in
4.1. It can be seen that the network is divided into three big blocks: the pre-
processing block, two residual blocks and the last part of reconstruction of the
denoised point cloud.

The pre-processing block is designed in order to express the noisy observation
in the feature space. This different representation is exploited to extrapolate in-
formation from the input that will be used in the denoising. During the training,
the network progressively learns an efficient description suitable for denoising,
able to detect the meaningful information for the required task.

Subsequently the feature extraction, the input is processed by several residual
blocks. It has to be recalled that the network exploits the residual learning: the
network is trained to learn the white noise instead of directly the cleaned point
cloud. Each block is designed in order to detect the residual between the input of
the block and desired output, i.e. the discrepancy between the noisy observation
and the white noise. The correlations detected in the input are removed at the
end of each block; the idea is to gradually eliminate the true point cloud and
obtain only white noise.
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4 – Graph Neural Network for Point Cloud Denoising

Finally, the noisy estimation is expressed in space coordinates and subtracted
to the noisy point cloud, obtaining the denoised version.

4.1.2 Design choice
The network proposed in Fig. 4.1. is generally composed by several graph-
convolution layers, followed by batch normalization and Leaky Relu non linear
function as most relevant blocks.

The non linear function proposed is a variant of the Relu function described in
section 1.4.2: it is equal to the Relu function for positive values but for negative
ones it returns small negative rate instead of being equal to zero. The Leaky
Relu function is used to overcomes the "dying Relu" problem: in a network with
inserted Relu function, if a neuron receives a negative input it would return always
zero as output, as shown in equation 1.3, in the case in which many neuron’s input
become negative for any reason, random initialization or wrong learning rate,the
neurons considered are never working.

y

x

y

x

y=x

y=ax

y=x

y=0

ReLu Leaky ReLu

Figure 4.2: Relu vs. LeakyRelu

A noisy point cloud can be represented as:

Pn = P + n (4.1)

where all the three matrix have the same dimension nx3, n number of points in
the point cloud.

The network learns to predict the white noise n, that represent the discrep-
ancy between the noisy observation and the clean point cloud. This structural
choice is based on work of Zhang et al. [8], where it has been shown that a residual
network is very efficient for image denoising tasks. Zhang et al. propose an archi-
tecture for image denoising characterized by a single residual unit: a sequence of
convolutional layers, batch normalization and Relu functions. It can be noticed
that the same structure can be exploited to train either the residual mapping or
directly the denoised image. The advantages of the residual learning are exposed
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4 – Graph Neural Network for Point Cloud Denoising

in [9], where the performance degradation with increasing depth problem is ana-
lyzed. On the contrary to what might be expected, adding layers to an optimized
network leads an increment of the training error. Even if a deeper version of
an architecture is created with identity mapping as added layers, solvers are not
able to find a solution as good as the one associated to the original structure.
To overcome this degradation a deep residual network is proposed, that instead
of predict the desired mapping H(x), estimated the residual R(x) = H(x) − x,
where x is the input of the net. Therefore to recover the original function H(y)
a inverse operation is applied: H(x) = R(x) + x. An example of building block
is reported in Fig.4.3.

Generic Layer

Generic Layer

x

R(x)

x

H(x)

Figure 4.3: ResNet: Building Block of Residual Learning

The reformulation of the problem is developed because the network is not able
to well approximate an identity function, assertion based on the fact that the
degradation problem is registered even in the case in which identical mapping
are inserted. Based on this idea, if the desired function is closer to the identity,
exploiting a residual learning can bring advantages. The network learns the dis-
crepancies between the reference and the identity rather than a new function. It
can be seen from Fig. 4.3., that the residual formulation H(x) = R(x) + x is
realized just inserting a short connection, a simple operation, without increasing
the complexity or adding parameter, that turns an original design into its residual
version.

In the denoising network proposed several residual connections are inserted;
it is shown in Fig.4.1. that besides the connection between the noisy input and
the estimates noise in order to recover the denoised point cloud, two internal
residual block are designed. Each residual block estimates the noise progressively
removing the original point cloud, identifying the discrepancy between noise and
the input of each block. A in-depth analysis of a residual block is reported later
in the chapter, as well for the a Pre-Processing block shown in figure 4.1.

The novel contribution of the method proposed is the Graph-Convolution
layer, that allows the design of a CNN-like structure also for input data that
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4.1 – Architecture design

relies on a non regular structure. This type of layer introduces a powerful method
for manipulation, extrapolation and representation of complex data, that can be
used for several task. This operation implements the equation 1.18, here reported

H l+1
i = 1

|N(i)|σ
A Ø

j∈N(i)
F l

wl(H l
j −H l

i)H l
j + bl

B

= 1
|N(i)|σ

A Ø
j∈N(i)

Θl
jiH

l
j + bl

B

The function F returns a weight matrix Θ, where each elements (i, j)is set based
on the difference between the feature vector of the point i and the feature vec-
tor of a non-local neighboring element j. Computing the weight matrix in such
way it is possible to assert that the ECC is a general formulation of the clas-
sical convolution operation. The function F in the paper [1], is designed as a
two layers fully connected neural network, but negatively affects the training
with over-parameterization. In order to overcome this problem, a partially struc-
tured matrix is exploited for the last layer of the network that implements the F
function: multiple row-subsampled circulant matrices are stacked, technique that
decrements the number of parameters. Partial circulant matrices with three row
for each one has been chosen for the design, constraining the network to have a
feature number multiple of three.

The network proposed is finalized to denoising the point cloud and to optimize
the parameter of network the Mean Squared Error is exploited as loss function:

MSE = 1
N

öõõô NØ
i

3
Pdenoised − Pclean
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(4.2)

The loss function is computed when the estimated noise is expressed in space
coordinates and subtracted to the noisy point cloud.
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4 – Graph Neural Network for Point Cloud Denoising

4.2 Block Diagram

4.2.1 Residual Block
The simulations are performed instantiating only two residual blocks, due to the
high-time consuming operations involved, since each block is composed by several
graph-convolution, and utilize a deeper model, in the first stages of the develop-
ment, would only have slowed down the process.

Each block is composed by three layers of graph-convolution that share the
graph, that is computed upon the input of the block itself. Finally, each graph-
convolution is followed by a batch-normalization layer and the activation function,
in Fig. 4.4. the global structure is shown, with all layers instantiated.

The input data are normally distributed, an important characteristic that
helps the network in the training phase, but as deeper is the network this prop-
erty is easily lost. The batch normalization block is in charge of preserve the
normalization of the data through the net. The activation function exploited in
the whole project is the Leacky-ReLu function, as reported in the figure 4.4.
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Figure 4.4: Architecture of Residual Block

4.2.2 Pre-Processing Block
The pre-processing block is the block in charge of the feature extraction from
the noisy observation: in this specific section, the network should extract the
important information of the data that will be used for the denoising task.

The network based on graph convolution do not take as input the data de-
scribed in the spatial domain but in the features domain, where, intuitively, more
features are involved more information the network is able to detect. On the
other hand, enlarge the number of feature causes a non negligible increment in
the data stored and reached a specific performance, the network is not able to
detect more information even after further expansions. Moreover, it has to be
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4.2 – Block Diagram

recalled that the computation of the graph convolution, the main operation of the
network, requires a large amount of memory. Therefore, it is necessary to find a
trade-off between the number of features and the occupancy of the memory. In
early simulations the number of features chosen is 66, successively enlarged to 120.

It is important to discuss the implementation of the feature extraction: for
this purpose, a 1-D convolution is exploited. This operation can be seen as
a multiplication for a matrix with dimensions set properly for the number of
feature desired, followed by ad addition for a bias. It has be seen empirically
that gradually enlarging the features number in a deep structure achieves better
results than exploit just one layer net. In Fig. 4.5. it is possible to observe the
implementation to obtain 66 features. The batch normalization layers are inserted
in order to obtain data consistent with the residual block: as shown in Fig. 4.1.
the output of the pre-processing and the first residual block are combined.
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Figure 4.5: Architecture of Pre-Processing Block

4.2.3 Graph Convolution layer
The Graph Convolution layer is the core of the network: it takes as input a fea-
ture vector Hl and compute a new feature vector H l+1

i associated to each point
i, obtained from the weighted local aggregation of the feature vectors H l

j, for
j ∈ N l

i , where N l
i is the neighborhood of the point i at layer l. The adjective local

used in the description of the operation actually means local in the feature space.
The peculiarity of the graph convolution operation is to consider close into the
feature space not only the points that are spatially nearby, but also points that
share similarities.

In order to detect the points j belonging to the neighborhood of each point i,
it is necessary to build the edge-labeled graph of the point cloud, where the edges
between each pairs of nodes are estimated as the difference between the feature
vectors associated to them. After the distances computation, the neighborhood
of each node is defined: for each node i a fixed number of closer points is selected.
Different numbers of neighbors are tested: early simulations are characterized by
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4 – Graph Neural Network for Point Cloud Denoising

eight closer points considered and then the value is increased, reflecting an incre-
ment of the network global performance.

In Fig. 4.6. the implementation of the operation described above is reported.
First of all, it is possible to observe a block called Graph, outside the main element
Gconv: in this block the distances between all the points in terms of Square
Euclidean Distance are computed, allowing to build the graph, necessary for
the graph convolution operation. Inside the fundamental element it is reported
a block called Non-local/local aggregation where the operation of ECC [1], the
weighted aggregation, is implemented for each point j in the neighborhood of
the center point i. Moreover, an additional block of 1-dimension convolution
is exploited to take into account the self loop,i.e. the center point i of each
neighborhood. In order to obtain the new feature vectors the mean of the two
components over described is considered.

Graph

Conv 1D

Non local/local
 aggregation

M
ea

nHl Hl+1

GCONV

Figure 4.6: Architecture of Graph Convolution Layer: H l is the input of the layer
l and H l+1 is the output of the graph convolution layer that will be the input of
the l + 1 layer
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Chapter 5

Validation and results

5.1 Testing
Once the network is trained, the testing is performed, in order to evaluate the
performances, the goodness of the denoising results and make comparisons with
other methods.

The dataset of the training phase is composed by non-overlapped patches
extrapolated from a point cloud: a point, that will be the center of the patch, is
selected and its 1024 nearest points are collected, creating a patch.

During the test phase the convolutional structure of the training data has to
be replicated properly, but whole point cloud has to be denoised, without points
overlapping.
For each point cloud in the testset the nearest 32 neighbors are individuated and
saved in a matrix, called nearest-neighbors matrix, that the network takes as in-
put jointly all the points of the point cloud. To perform properly the convolution
operation over the whole point cloud a specific code for the testing net is edited.
All the non-convolutional operations are reported with no difference from the
description in the training code and are directly computed over the whole point
cloud. Instead the convolutional operations are executed just over one point by
time considering its nearest neighbors, extracted from the nearest-neighbors ma-
trix : the convolution operation takes as input one point and its neighborhood and
returns as output just the modified point. This operation is executed in parallel
and the whole point cloud after a graph convolution layer is collected and carried
on in the network.

Once the denoised point cloud is obtained, the Cloud-to-Cloud distance, also
called C2C, is exploited to evaluate the goodness of the method. This metric is
adopted in several projects concerning the point cloud denoising, such as [3] and
[7], but occasionally called in different ways despite the same computation. It
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5 – Validation and results

consists in measuring the mean distance between the points of the denoised point
cloud and the ground truth, i.e. the original clean point cloud. More in detail,
it is computed calculating the mean of the square root of the squared Euclidean
distances between each point of the ground truth and its closest denoised point,
then measuring the opposite distances, between each denoised point and its closer
point in the ground truth point cloud and evaluate the average as well; the final
C2C distance is the mean between the two distance estimations.

C2C = 1
2

5 1
Ngt

Ø
gti∈Gt

ò
min

dnj∈Dn

||gti − dnj||22 + 1
Ndn

Ø
dni∈Dn

ò
min

gtj∈Gt

||dni − gtj||22
6

(5.1)
where Gt is the collection of the points of the ground truth, Dn of the points
of the denoised point cloud, Ngt and Ndn the total number of points in the sets
respectively.

The testing-set is composed by ten different point cloud for ten categories
of the data-set Shapenet [11]; the data are pre-processed as discussed in section
3.2. In the tables below are reported the results of several simulations, exploiting
different feature numbers and applying distinct level of noise in terms of standard
deviation.

For each simulation one table for category is reported, where the results for
each of the ten models selected are presented; the Shapenet [11] dataset contains
a large amount of point cloud for each category, therefore the number of each
point cloud is shown in the left column for clearness.

The simulations differ for number of features and standard deviation, the test
presented are performed with the following characteristics:

• Network with 66 number of features and 0.02 of standard deviation
• Network with 120 number of features and 0.02 of standard deviation
• Network with 66 number of features and 0.01 of standard deviation

The authors of the project based on graph Laplacian regularization [7], called
GLR kindly provided the MATLAB code that is tested over the same testing set
of GraphPointNet, in order to have comparable results.
The project PointCleanNet is available on github, and a pre-trained model for a
blind denoising is available on the portal. The network is tested and the results
are reported for comparisons.

Following the C2C distances computed from the denoised version of Graph-
PointNet, GLR and PointCleanNet are reported.
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5.1 – Testing

5.1.1 Simulations with Noisy Point Cloud with standard
deviation equal to 0.02

The first test performed considers GraphPointNet trained for 900.000 iterates,
with feature number equal to 66. The testset is the same for all three methods
and it is affected by white noise with standard deviation 0.02.

Airplane
Model Noisy GLR PointCleanNet GraphPointNet

model_000492 0.009181 0.007496 0.005488 0.004984
model_003733 0.009728 0.008604 0.007418 0.003890
model_006263 0.009083 0.007373 0.006298 0.005559
model_022125 0.009274 0.007216 0.007489 0.007102
model_022283 0.009245 0.007257 0.005614 0.005459
model_023833 0.009129 0.007313 0.005672 0.005188
model_026886 0.009108 0.007240 0.005680 0.005946
model_031422 0.009492 0.007565 0.006623 0.006224
model_034021 0.009658 0.007728 0.006093 0.005029
model_044620 0.008440 0.006912 0.006156 0.005521

Table 5.1: Airplane testset corrupted by white noise with σ = 0.02

Bench
Model Noisy GLR PointCleanNet GraphPointNet

model_005965 0.009481 0.007239 0.007655 0.007404
model_016245 0.001003 0.008126 0.006851 0.004236
model_022257 0.009937 0.008197 0.006523 0.005727
model_033008 0.007714 0.006276 0.005726 0.005402
model_033970 0.009340 0.007057 0.005943 0.004966
model_035602 0.009721 0.008139 0.006334 0.006332
model_040561 0.008675 0.006786 0.006535 0.005313
model_040935 0.009151 0.007274 0.006271 0.004408
model_048967 0.009819 0.007458 0.00671 0.005335
model_050060 0.00952 0.006739 0.006249 0.005086

Table 5.2: Bench testset corrupted by white noise with σ = 0.02
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Car
Model Noisy GLR PointCleanNet GraphPointNet

model_001096 0.009414 0.007283 0.009541 0.007176
model_0002211 0.009288 0.007016 0.007817 0.005669
model_002988 0.010157 0.007051 0.007793 0.005976
model_004618 0.009796 0.007378 0.007732 0.006265
model_009175 0.010911 0.008789 0.01092 0.008767
model_020513 0.009728 0.007317 0.008953 0.007138
model_021318 0.009947 0.007129 0.008292 0.006390
model_039792 0.010131 0.006880 0.008023 0.006149
model_043510 0.010083 0.007716 0.009729 0.007565
model_044420 0.010051 0.007271 0.008735 0.006635

Table 5.3: Car testset corrupted by white noise with σ = 0.02

Chair
Model Noisy GLR PointCleanNet GraphPointNet

model_002602 0.010282 0.007583 0.006740 0.006211
model_005508 0.010152 0.007256 0.007842 0.006793
model_008114 0.010432 0.007821 0.008380 0.007036
model_014993 0.010784 0.007965 0.006952 0.006467
model_017670 0.010684 0.007894 0.008055 0.006793
model_022491 0.010424 0.007902 0.007554 0.007648
model_039695 0.011569 0.008108 0.009014 0.006487
model_042555 0.010087 0.007619 0.008246 0.007648
model_044466 0.010623 0.008095 0.006204 0.004595
model_049987 0.009745 0.007236 0.008232 0.007227

Table 5.4: Chair testset corrupted by white noise with σ = 0.02
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Lamp
Model Noisy GLR PointCleanNet GraphPointNet

model_001682 0.009445 0.007927 0.005579 0.006005
model_001821 0.010817 0.008352 0.008466 0.005646
model_006388 0.009392 0.008274 0.006045 0.005988
model_014733 0.009733 0.008468 0.007239 0.005218
model_015980 0.008610 0.007243 0.005429 0.005160
model_027566 0.008063 0.006922 0.005277 0.006450
model_027833 0.009990 0.008928 0.007990 0.003452
model_030995 0.009267 0.008065 0.006349 0.005404
model_046317 0.011031 0.007982 0.004864 0.004792
model_048527 0.010961 0.007739 0.006688 0.005411

Table 5.5: Lamp testset corrupted by white noise with σ = 0.02

Pillow
Model Noisy GLR PointCleanNet GraphPointNet

model_001024 0.011881 0.007448 0.007472 0.005202
model_003839 0.011492 0.007652 0.007206 0.005278
model_012495 0.010478 0.007599 0.006926 0.005012
model_015547 0.011244 0.007752 0.00709 0.005095
model_018375 0.011871 0.007406 0.007382 0.004979
model_019730 0.011936 0.007311 0.007624 0.005120
model_020595 0.010800 0.007841 0.008739 0.006460
model_027534 0.010878 0.007924 0.007523 0.006310
model_028384 0.011332 0.007549 0.006639 0.005243
model_035045 0.01131 0.007891 0.006135 0.005370

Table 5.6: Pillow testset corrupted by white noise with σ = 0.02
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Rifle
Model Noisy GLR PointCleanNet GraphPointNet

model_002980 0.006804 0.005897 0.004607 0.003962
model_006695 0.010485 0.007897 0.006605 0.005813
model_013613 0.008701 0.007431 0.005565 0.006480
model_015732 0.009340 0.007797 0.005465 0.006985
model_025491 0.008957 0.005897 0.005365 0.005742
model_034448 0.007649 0.007897 0.005445 0.006036
model_036775 0.009966 0.007431 0.005815 0.006460
model_039833 0.008168 0.007797 0.005353 0.005697
model_042254 0.008131 0.007596 0.005789 0.004493
model_044289 0.009169 0.006415 0.005621 0.006872

Table 5.7: Rifle testset corrupted by white noise with σ = 0.02

Sofa
Model Noisy GLR PointCleanNet GraphPointNet

model_003801 0.010484 0.008274 0.009275 0.006563
model_004439 0.009515 0.007312 0.006411 0.005604
model_006149 0.009437 0.007510 0.008397 0.007068
model_09749 0.010993 0.008737 0.010912 0.008312
model_010543 0.010958 0.007960 0.008881 0.007398
model_022992 0.011716 0.007662 0.008785 0.005891
model_035915 0.011521 0.008918 0.010647 0.008386
model_041298 0.008940 0.007542 0.005913 0.006830
model_042238 0.010782 0.008317 0.010042 0.007509
model_048440 0.011509 0.007814 0.010334 0.006829

Table 5.8: Sofa testset corrupted by white noise with σ = 0.02
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Speaker
Model Noisy GLR PointCleanNet GraphPointNet

model_001031 0.011605 0.008948 0.012321 0.009635
model_007663 0.011398 0.007568 0.010699 0.006660
model_008001 0.011705 0.008430 0.011304 0.007673
model_013073 0.012051 0.007312 0.009543 0.005797
model_021870 0.011140 0.007515 0.007913 0.005909
model_036904 0.012007 0.007351 0.009715 0.005696
model_043338 0.011774 0.007391 0.011380 0.006690
model_048797 0.012235 0.007995 0.010275 0.006907
model_049049 0.011598 0.008055 0.011599 0.007589
model_050580 0.011491 0.008178 0.01089 0.007547

Table 5.9: Speaker testset corrupted by white noise with σ = 0.02

Table
Model Noisy GLR PointCleanNet GraphPointNet

model_000287 0.010379 0.007332 0.010276 0.007662
model_000585 0.010493 0.007786 0.010412 0.008122
model_001276 0.011480 0.007817 0.009086 0.007441
model_006528 0.009003 0.007076 0.008329 0.006787
model_011565 0.009279 0.007027 0.006684 0.006265
model_017383 0.010297 0.007482 0.009406 0.006962
model_021726 0.008840 0.006893 0.006376 0.005856
model_028591 0.010119 0.007731 0.009910 0.007430
model_047791 0.009644 0.006701 0.006874 0.006391
model_048607 0.009726 0.006790 0.006120 0.005732

Table 5.10: Table testset corrupted by white noise with σ = 0.02
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Category GLR PointCleanNet GraphPointNet
Airplane 0.007470 0.006253 0.005491
Bench 0.007329 0.006481 0.005422
Car 0.007383 0.008754 0.006774
Chair 0.007748 0.007722 0.006691
Lamp 0.007990 0.006393 0.005353
Pillow 0.0076373 0.007274 0.005407
Rifle 0.007268 0.005563 0.005855
Sofa 0.008005 0.008960 0.007039

Speaker 0.007874 0.010561 0.007011
Table 0.007264 0.008348 0.006865

Table 5.11: Category Mean for simulation for white noise with σ = 0.02

In the table 5.11 the mean over all the models of each category is shown, in
order to easily understand which method achieves on average the better results.
It can be seen that GraphPointNet do not achieves the best results only for the
Rifle category. Regarding this category, the graph-network proposes a denoised
version of the point cloud slightly worse than the one denoised by PointCleanNet
network; however it is able to outperforms the GLR method’s results.

Category 66 Features 120 Features
Airplane 0.005491 0.005434
Bench 0.005422 0.005346
Car 0.006774 0.006783
Chair 0.006691 0.006548
Lamp 0.005353 0.005105
Pillow 0.005407 0.005210
Rifle 0.005855 0.005535
Sofa 0.007039 0.006945

Speaker 0.007011 0.006951
Table 0.006865 0.006904

Table 5.12: Comparison between GraphPointNet with 66 and 120 learning fea-
tures

A possible improvement of the network is to increase the number of features,
in order to achieve better performance.
It is interesting to analyze the behaviour of the network in this new scenario: a
network with the same architecture presented in the previous chapters but with a
feature number incremented from 66 to 120, is trained and tested. A comparison
between the different nets is at the same level of standard deviation considered
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for the noisy input is analyzed and reported in 5.12.
Expanding the number of feature, the network is able to extract more informa-
tion from the input data, therefore there should be registered an increasing of
the performance. It can be seen from table 5.12 that an improvement on aver-
age is reveled. Only in two categories can be noticed a slightly degradation of
the performance; even with this degeneration, in the two categories affected the
GraphPointNet still achieves the best performance.
A more relevant observation regards the Rifle category. As shown in table 5.11,
the Rifle category is the only one in which GraphPointNet do not achieves the
best performance, but increasing the number of feature, it would provide the best
denoised point cloud in terms of c2c metric, beating the PointCleanNet network.

Furthermore, a qualitative comparison between the denoising methods de-
scribed is presented. In Fig. 5.1. the original point cloud and the noisy version,
corrupted by white noise with standard deviation equal to 0.02, are reported and
in Fig. 5.2. the different denoised version of the airplane are shown.
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Figure 5.1: Airplane model: Original and Corrupted Point Cloud
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It can be visible from the denoised point cloud produced by PointCleanNet
that this method is not able to efficiently project all the points upon the point
cloud surfaces, leaving a lot of points as outlier. Instead, the GLR algorithm
is not able to recover the detail of the global shape of the point cloud: the de-
noised version remains wider than the original one. GraphPointNet, the method
proposed, is able to sufficiently reconstruct the shape of the original point cloud,
with fewer outliers points. Some details of the original point cloud are visible in
point cloud in Fig. 5.2c., as the front of the plane.
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(a) PointCleanNet (b) GLR

(c) GraphPointNet

Figure 5.2: Airplane model: Denoised Point Cloud results of the methods ana-
lyzed
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5.1.2 Simulations with Noisy Point Cloud with standard
deviation equal to 0.01

Here is reported the test with point cloud affected by white noise with stan-
dard deviation equal to 0.01 The second test performed considers GraphPointNet
trained for 900.000 iterates, with feature number equal to 66, as in the previous
simulation reported, but the testset is affected by white noise with standard de-
viation 0.01.

Airplane
Model Noisy GLR PointCleanNet GraphPointNet

model_000492 0.005592 0.003385 0.003570 0.003551
model_003733 0.005168 0.003358 0.003583 0.002564
model_006263 0.005766 0.003799 0.004015 0.003766
model_022125 0.006631 0.005343 0.00637 0.005135
model_022283 0.005830 0.003933 0.004498 0.003939
model_023833 0.005484 0.003630 0.004018 0.003753
model_026886 0.005739 0.003823 0.004157 0.003919
model_031422 0.005982 0.004391 0.004737 0.004159
model_034021 0.005610 0.003559 0.003759 0.003351
model_044620 0.005267 0.003695 0.004382 0.003741

Table 5.13: Airplane testset corrupted by white noise with σ = 0.01

Bench
Model Noisy GLR PointCleanNet GraphPointNet

model_005965 0.006597 0.005010 0.005068 0.004885
model_016245 0.005822 0.003370 0.003526 0.003211
model_022257 0.005916 0.003678 0.003515 0.003655
model_033008 0.005205 0.004201 0.005584 0.004603
model_033970 0.005690 0.004097 0.004575 0.004400
model_035602 0.005917 0.003836 0.003534 0.003843
model_040561 0.005459 0.004337 0.005323 0.004590
model_040935 0.005304 0.003571 0.004062 0.003966
model_048967 0.005827 0.003839 0.004188 0.004111
model_050060 0.005640 0.004285 0.005066 0.004667

Table 5.14: Bench testset corrupted by white noise with σ = 0.01
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Car
Model Noisy GLR PointCleanNet GraphPointNet

model_001096 0.006849 0.005803 0.006687 0.005422
model_002211 0.006033 0.004649 0.005252 0.004267
model_002988 0.006588 0.004525 0.005561 0.004463
model_004618 0.006326 0.004410 0.004892 0.004242
model_009175 0.008037 0.006970 0.007712 0.006584
model_020513 0.006876 0.005732 0.006717 0.005514
model_021318 0.006650 0.004784 0.005832 0.004714
model_039792 0.006751 0.004644 0.005633 0.004700
model_043510 0.007111 0.005801 0.006716 0.005401
model_044420 0.006797 0.004945 0.005889 0.004848

Table 5.15: Car testset corrupted by white noise with σ = 0.01

Chair
Model Noisy GLR PointCleanNet GraphPointNet

model_002602 0.006392 0.004401 0.004486 0.004603
model_005508 0.006533 0.004911 0.005461 0.005052
model_008114 0.006850 0.004863 0.005721 0.004933
model_014993 0.006687 0.004199 0.004419 0.004202
model_017670 0.006868 0.004644 0.005517 0.004632
model_022491 0.006910 0.004802 0.004734 0.004551
model_039695 0.007308 0.004469 0.005394 0.004262
model_042555 0.006843 0.005258 0.005260 0.005012
model_044466 0.006031 0.003441 0.003344 0.003685
model_049987 0.006793 0.005652 0.007685 0.005720

Table 5.16: Chair testset corrupted by white noise with σ = 0.01
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Lamp
Model Noisy GLR PointCleanNet GraphPointNet

model_001682 0.005727 0.003700 0.003238 0.003636
model_001821 0.005960 0.004039 0.005225 0.004223
model_006388 0.005358 0.003285 0.002797 0.003546
model_014733 0.005327 0.003332 0.003508 0.002831
model_015980 0.005123 0.003386 0.003202 0.003564
model_027566 0.005232 0.003845 0.004318 0.003973
model_027833 0.004921 0.003228 0.003354 0.002072
model_030995 0.005378 0.003411 0.003246 0.003468
model_046317 0.006705 0.003320 0.00338 0.003377
model_048527 0.006874 0.003907 0.004095 0.003716

Table 5.17: Lamp testset corrupted by white noise with σ = 0.01

Pillow
Model Noisy GLR PointCleanNet GraphPointNet

model_001024 0.007435 0.003885 0.004945 0.004044
model_003839 0.007106 0.003625 0.004165 0.003840
model_012495 0.006422 0.003614 0.004047 0.003620
model_015547 0.006901 0.003638 0.003973 0.003668
model_018375 0.007322 0.003631 0.004633 0.003864
model_019730 0.007409 0.003698 0.004876 0.004002
model_020595 0.007069 0.004497 0.005624 0.004401
model_027534 0.006962 0.004244 0.004825 0.004091
model_028384 0.007101 0.003761 0.004232 0.003825
model_035045 0.007011 0.003595 0.003886 0.003607

Table 5.18: Pillow testset corrupted by white noise with σ = 0.01
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Rifle
Model Noisy GLR PointCleanNet GraphPointNet

model_002980 0.003869 0.002941 0.002839 0.003148
model_006695 0.006620 0.003906 0.004082 0.004002
model_013631 0.005499 0.003719 0.003339 0.003697
model_015732 0.006059 0.003949 0.003183 0.003791
model_025491 0.005434 0.003408 0.003102 0.003482
model_034448 0.005101 0.003958 0.004034 0.004036
model_036775 0.006315 0.003744 0.003602 0.003735
model_039833 0.005024 0.003573 0.003319 0.003711
model_042254 0.004462 0.003129 0.002856 0.003396
model_044289 0.005970 0.004087 0.003637 0.003846

Table 5.19: Rifle testset corrupted by white noise with σ = 0.01

Sofa
Model Noisy GLR PointCleanNet GraphPointNet

model_003801 0.006857 0.005231 0.006073 0.004152
model_004439 0.006114 0.004144 0.004674 0.004236
model_006149 0.006517 0.005243 0.005717 0.004876
model_009749 0.007974 0.006748 0.007798 0.006228
model_010543 0.007327 0.004898 0.005506 0.004676
model_022992 0.007504 0.004224 0.005689 0.004226
model_035915 0.007929 0.005747 0.006959 0.005245
model_041298 0.005948 0.004090 0.003604 0.003993
model_042238 0.007339 0.005606 0.006768 0.005279
model_048440 0.007614 0.005020 0.006635 0.004884

Table 5.20: Sofa testset corrupted by white noise with σ = 0.01
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Speaker
Model Noisy GLR PointCleanNet GraphPointNet

model_001031 0.008568 0.007517 0.00859 0.006700
model_007663 0.007652 0.005363 0.006987 0.005124
model_008001 0.008016 0.006200 0.007498 0.005647
model_013073 0.007671 0.004356 0.006105 0.004461
model_021870 0.007087 0.004316 0.004958 0.004029
model_036904 0.007637 0.004443 0.006060 0.004517
model_043338 0.007787 0.005448 0.007594 0.005204
model_048797 0.007913 0.004629 0.006579 0.004757
model_049049 0.008012 0.006124 0.007741 0.005787
model_050580 0.007672 0.005489 0.007043 0.005247

Table 5.21: Speaker testset corrupted by white noise with σ = 0.01

Table
Model Noisy GLR PointCleanNet GraphPointNet

model_000287 0.007309 0.006072 0.007894 0.006170
model_000585 0.007697 0.006773 0.008212 0.006635
model_001276 0.007653 0.005577 0.006659 0.005398
model_006528 0.006379 0.005364 0.006648 0.005260
model_011565 0.006036 0.004703 0.006793 0.005168
model_017383 0.007138 0.005888 0.006483 0.005923
model_021726 0.005665 0.004434 0.005372 0.004864
model_028591 0.007178 0.006230 0.007551 0.006250
model_047791 0.006474 0.005259 0.006274 0.005531
model_048607 0.006123 0.004804 0.005144 0.005196

Table 5.22: Table testset corrupted by white noise with σ = 0.01
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Category GLR PointCleanNet GraphPointNet
Airplane 0.003892 0.004309 0.003788
Bench 0.004022 0.004444 0.00419
Car 0.005226 0.006089 0.005016
Chair 0.004664 0.005202 0.004666
Lamp 0.003545 0.003636 0.003441
Pillow 0.003819 0.004520 0.003897
Rifle 0.003641 0.003399 0.003685
Sofa 0.005095 0.005942 0.00478

Speaker 0.005389 0.007692 0.005148
Table 0.005510 0.006703 0.005640

Table 5.23: Category Mean for simulation for white noise with σ = 0.01

As previously, the table 5.24 shown the mean per category for an easier com-
parison between the methods analyzed.

Category GLR PointCleanNet GraphPointNet
Airplane 0.003892 0.004309 0.003788
Bench 0.004022 0.004444 0.00419
Car 0.005226 0.006089 0.005016
Chair 0.004664 0.005202 0.004666
Lamp 0.003545 0.003636 0.003441
Pillow 0.003819 0.004520 0.003897
Rifle 0.003641 0.003399 0.003685
Sofa 0.005095 0.005942 0.00478

Speaker 0.005389 0.007692 0.005148
Table 0.005510 0.006703 0.005640

Table 5.24: Category Mean for simulation for white noise with σ = 0.01

It can be visible that with a lower white noise the method GLR obtains
promising results, with performance similar to the method proposed. This opti-
mization method achieves very good result if the point cloud is corrupted with
a low noise, otherwise, as shown in the previous experiment, it is not able to
provide a good denoised point cloud able to compete with the results of the other
method considered.
It can be notice that GraphPointNet is able to produce a denoised point cloud
very close to the state-of-arts and outperforms the other neural network taken
into account for the comparison, PointCleanNet, that achieves the worst results
but for a category.

For most of the category taken into account the GLR method and Graph-
PointNet propose a denoised point cloud with close performance in terms of C2C,
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characterized by a slightly predominance of GraphPointNet.

It is visible from the simulations reported that at high level of noise Graph-
PointNet achieves the best results overcoming all the other methods. Instead,
considering a lower level of noise it still provides a good denoised version of the
point cloud, comparable to the best results provided by the state-of-arts, but the
gain margins are reduced.
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Chapter 6

Conclusions and further
developments

In this thesis an innovative neural network designed for denoising point cloud is
presented.

As discussed in previous chapters, the novelty lies on the introduction of the
graph-convolution layers, that exploit the Edge Conditioned Convolution, a gen-
eral convolution formulation.

It is verified from the simulations presented that the network is able to out-
perform the current stae-of-art. It has been shown that the most promising result
are achieved when the original point cloud is corrupted by a high level of noise,
as presented in table 5.11 and more in detail in tables for category, where the
network provides the best denoised version for most of the categories selected for
the testing-set. Considering point cloud characterized by a lower additive white
noise, the GLR method became more effective and the performance achieved by
this method and the one proposed are similar, as shown in table 5.24. It can be
notice that even in this scenario, the method proposed obtain better performance
in the majority of the category.
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6.1 Future works
As previously discussed, GraphPointNet is able to compete with the state-of-art
point cloud denoising method, even with its simple design.

As reported in chapter 4.2.3, during the training the network learns to improve
the denoised point cloud provided just having information about the closeness of
the estimated points with the ground-truth one. It is not necessary to fully recover
the exact position of each point of the point cloud, it is important to move the
noisy points equally distributed over the original surfaces of the point cloud.

Therefore, it could be useful enlarge the network and insert a block specialized
in the surface estimation for each point.

As a future improvement of GraphPointNet is proposed to modify the loss
function, introducing a term that takes into account the normal of the points at
the surface. In particular, a possible development is to estimate the normal at
the surface for each of the denoised point and compare it with the ground-true
normal, and force the network to decrease the discrepancy.
A new loss function is created, the norm of the difference between the norm
estimated and the original is appended to the original loss, MSE: this improve-
ment would produce a network able to better estimate the denoised point cloud
avoiding outliers and leading to an increase of the performances.
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Glossary

Convolutional Neural Network Class of Deep Neural Network with wide ap-
plication in Image Processing.

Deep Neural Network .
Denoising Procedure finalized to recover from an input corrupted by any type

of noise to its original version. It is a typical task of Image Processing.
Edge Conditioned Convolution Generalization of the classical convolution,

based on a graph representation fo the data, presented in [1].
GraphPointNet The network proposed in this thesis that addresses the task of

point cloud denoising exploiting a graph-convolutional architecture.
Mean Squared Error Formula that measures the discrepancy between the es-

timated value and the original one. It computes the average of the squares
of the difference between the inputs.

Neural Networks Algorithms, ispired by the human brain, able to recognize
patterns.

Point Cloud It is a 3-D object representation.
Preprocessing Building block of the network in charge of the represent the

input in the feature space. In GraphPointNet the Preprocessing block move
the noisy point cloud, expressed in the 3-D space to a representation over
66, or 120, features.

Residual Block Building block of a network characterized by residual learning.
The block is in charge of estimate the discrepancy, the residual, between
the expected value and the input. In GraphPointNet each residual block
eliminate the correlation from the input of the block, ideally producing in
output white noise.

Residual Learning Method exploited in neural network, the network is trained
to learn the residual between the expected value and the input rather than
directly the desired estimation.
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