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Introduction

In the last years the deep submicron integration has carried out a reduction of the

gate delay. At the same time the memory delay reduction has been significantly less

resulting in the so called memory bottleneck. The Figure 1 shows the increasing of

memory and processor performance from 1980 to 2010. Although the data are pretty

old the trend is clear. In these 30 years in front of a strong processor performance

increase, the memory performance have not kept pace. It is clear that technology

scaling is no longer enough to increase system performance. A new design paradigm

is then necessary.

Figure 1: Memory-Processor performance gap. The figure shows the difference
in performance increase between memory and processor over 30 years.

In the last years research has tried to reduce the impact of the memory on

computation in different ways. The strategies are manly two. The first one is to

try to reduce the physical distance between memory and computation using new

technologies such as 3D stacking. This leads to a reduction of the delay and power

consumption of the memory bus.

The second approach is to take the in-memory computing way. This is achieved
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by migrating from a standard von Neumann architecture, in which the memory only

stores data and the logic elements perform the computation, to a new paradigm,

that is the in-memory computing, in which the memory also performs computa-

tion. In this way the data are moved from and to memory a less number of times.

The memory bottleneck has been circumvented avoiding a large number of memory

access.

A lot of papers in the last years present a variety of implementation marked

by several degrees of in-memory computing. The typical approach has been to

analyze an application typically implemented with an ASIC approach and to search

a way to reduce the impact of the memory. This produced infinite non-homogeneous

structures that are even widely different from one another. In this scenario, in-

memory computing includes a large number of different techniques.

The purpose of this thesis work is to determine a fixed high-level structure for

Logic-in-Memory based architectures. This structure has to be as generic as pos-

sible, with some common boxes, let’s call it containers, in which different types of

in-memory computing can be allocated. However, the structure leaves an infinite

number of unanswered questions. What should a specific box contain? Where is

it better to bind a given operation? Should this implementation be fine also for a

larger amount of data involved in computation? The answer to these questions is

hard to find simply designing by hand. On the other hand a detailed working RTL

implementation could be too demanding in a preliminary design. A solution has

been found in a tool, which has been called DExIMA.

DExIMA stands for Design Explorer for In-Memory Architectures. As the

name suggests it is a performance estimator mainly for in-memory architectures.

The purpose of this tool is precisely to answer to the previous design questions. In

other words, DExIMA helps the designer to populate the design space.

In the first chapter an overview of what research has developed in the field of

in-memory computing is given. In order to start to developed a general structure, a

classification of these work is fundamental.

In the second chapter it is proposed a generic structure for Logic-in-Memory ar-

chitectures. This should be the starting point for any in-memory computing design.

Then the shortest, but not the least important one, is the third. In this chapter

the reasons that led to develop DExIMA are extensively explained.
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The fourth one is entirely dedicated to bus. The bus is undoubtedly important

in the system performance estimations. In this chapter a specific explanation of how

to estimate bus performance is given.

The next three chapter are focused on the tool itself. The first one is an overview

of the tool, the second one shows how to interact and describe the hardware while

the last one is focused on the simulator core and the hardware models.

The eighth chapter presents an example of usage. Three version of Binary Neural

Network are implemented and compared with DExIMA.

In the last chapter, some considerations on the tool and on the results are pre-

sented showing its strengths and weakness. Finally some consideration on further

improvements are brought to the reader.
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Chapter 1

State of the art

The problem of memory bandwidth and power consumption is becoming more and

more relevant in digital design and then in computation. As transistors are getting

smaller and smaller the speed of the logic gates increases. In data intensive algorithm

the limitation to the computing capability is the memory performance. For this

reason new design solutions have been explored in the last years with the aim to

overcome the so called memory bottleneck.

While in von Neumann architecture memory and processing elements are strictly

separated, these new design paradigms have been explored various degrees of inte-

gration between memory and processing elements.

According to [1] four categories can be identified:

• Computing-near-Memory (CnM);

• Computing-in-Memory (CiM);

• Computing-with-Memory (CwM);

• Logic-in-Memory (LiM).

This classification is based on the role the memory plays in the computation.

Computing-near-Memory Since in the first approach, Computing-near-Memory,

memory and processing elements are still well separated, it is the most similar to

the von Neumann one. In fact, the processing elements are simply put closer to

the memory. This can be achieved by stacking memory layers and processing ele-

ments in a 3D structure and connecting them exploiting through-silicon vias (TSVs)

technology [2].

The memory bottleneck problem is addressed reducing the length of the bus and

thus reducing the power consumption and the delay resulting from the bus usage.

5



1 – State of the art

Moreover, stacking memory layers on top each other leads to a reduction of the

memory access cost. This solution is strictly technological since there is no change

at the system level.

Some works have exploited this solution. An important work coming from this

class of architectures is Hybrid Memory Cube [3]. In this work it is proposed a

3D stacked DRAM in which the lower layer contains the logic which performs data

routing, refresh, DRAM sequencing and so on. This lead to an increment of memory

bandwidth, lower power consumption and reduced area.

An other significant work proposes a structure of stacked processor-memory [4].

It is a multiprocessor system in which each core is a structure with memory and

logic stacked one on top of the other. A 2D mesh network allows communication

between cores.

Computing-in-Memory Architectures belonging to the category of Computing-

in-Memory approach exploit the memory structure to perform computation. Either

non-volatile, such as MRAM (Magnetoresistive Random-Access Memory) or RRAM

(Resistive Random-Access Memory), or volatile memory, such as SRAM or DRAM,

are employed.

In this approach the memory is not modify to allow computation, but the analog

elements such as the sense amplifier or the match lines for a CAM are exploited to

perform row-wise or column-wise operations.

The memory is left as is. From a technology perspective this is a big advantage

since the production of a special memory is not necessary. On the other hand the

computation is limited to a small group of operations.

A work belonging to this category is an architecture called PIMA [5]. PIMA

allows row-wise and column-wise computation just exploiting the functionality of

the sense amplifier. Obviously the memory controller is totally modified to perform

these operations. CiM can be applied in some memory-intensive computation, such

as neural network. An example is PRIME [6] which is a solution to accelerate NN

applications in ReRAM based main memory.

Computing-with-Memory The third approach, Computing-with-Memory, ex-

ploits the non-volatile memory technologies. However, the computation is performed

6



1.1 – A further step: CLiMA (Configurable Logic-in-Memory Architecture)

using the memory as look-up table (LUT). In the memory, computation is stored as

precomputed results. As the previous approach the memory array is left as is, the

structure is exploited to perform this simple logic operations.

For example, an architecture called RADAR, uses a ReCAM (ReRAM-based

CAM) to compute DNA alignment [7]. In this case CAM, implemented in resistive

RAM technology, are employed to compute results. Authors of [8] present a design

for the same purpose. In [9], instead, it is proposed an associative processor. It is

a processor, with its own instruction set, in which the results are precomputed. A

CAM allows the retrieve of outputs.

Logic-in-Memory Logic-in-Memory approach is the most advanced integration

between memory and logic. Differently from all other approaches, Logic-in-Memory

allows to perform computation without moving data from one block of the memory

to an other one. Data are moved to the peripheral circuits only when they are read.

This result is achieved by integrating small logic elements in every single memory

cell, strongly modifying the memory array.

In [10] it proposes a memory cell integrated with CMOS logic gates. The cell

is realized in MTJ technology [11]. The memory cell in [10] is employed in [12] for

search operations. An other architecture, proposed in [13], interleaves rows with

logic and memory and rows with only memory elements to store results.

Some works try to integrate both LiM and other approaches. The system pro-

posed in [14] present LiM elements but also a CnM approach. The architecture

presents two layer, a memory layer and a logic layer. The memory is not a standard

memory but it integrates some logic, exploiting Logic-in-Memory approach.

1.1 A further step: CLiMA (Configurable Logic-

in-Memory Architecture)

The concepts behind CLiMA (Configurable Logic-in-Memory Architecture) [1] are

essentially the approaches briefly outlined in the previous section. The purpose is

the definition of a flexible architecture that can be adapted to any given application.

7



1 – State of the art
8 – CLiMA: Configurable Logic-in-Memory Architecture

Memory

Logic

CLiM Array

…
…
…
…

…

… … … ……

CLiM
Cell

CiM
Extra-row logic

CiM
Extra-column logic

Logic Memory LiM

LiM + CiMCnM

Figure 8.1: CLiMA as an heterogeneous system where di�erent approaches (CnM,
LiM, CiM, CwM) are integrated together in order to guarantee maximum flexibility.

CLiM arrays represent, instead, the LiM unit. Internally, a CLiM array has several
configurable cells that integrate logic and storage (CLiM cells). CLiM cells can
be interconnected in di�erent ways, depending on the data exchange required by
the target algorithm. Moreover, for some applications there might be the need for
further data processing outside the rows or the columns of the array, which is the
aim of the extra-row/column logic. This logic can be considered as the CiM unit
of CLiMA. Even if not represented in figure 8.1, CLiMA could even have a CwM
unit (i.e. a CAM memory) for LUT-like computation.
It is clear that the flexibility of CLiMA is twofold:

1. provide support for di�erent applications and for di�erent types of operations
(logic and arithmetic);

2. provide di�erent degrees of in-memory computation.

Figure 8.2 shows a high-level block diagram of CLiM array. The green and red
boxes indicate a row and a column of the array, respectively. Data manipulation
can happen locally, inside each LiM cell, or between cells. Moreover, data can be
manipulated externally to rows and columns by the extra-row/column logic. Figure
8.3 depicts, more clearly, the di�erent possible types of data manipulation that can
take place inside the array. As before, green and red boxes indicate rows and
columns, respectively. Five possible in-memory types of operations can be defined:

• Local: data is manipulated locally, inside the cell;

• Intra-row: an operation takes place between two or more cells inside the same
row (black dashed arrow in figure 8.3);
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Figure 1.1: CLiMA in-memory computing appraches. The figure shows the
coexistence of the four approaches in CLiMA. [1]

As suggested by the name, the architecture is designed to be configurable ac-

cording to the type of computation to be performed. Even if the approach mainly

exploited in CLiMA is the LiM one (again, as suggested by the name), CnM, CiM

and CwM approaches are sometimes exploited.

Finally, CLiMA is an expression of the four approaches to solve the memory-

wall problem. Since the applications of in-memory computing differ greatly from

one another, only this multi-approach architecture can suit all the requirements of

a complex system.

In Figure 1.1 it can be noticed that the system is heterogeneous. All the four ap-

proaches coexist and contribute to the computation. The Computing-near-Memory

approach shorten the physical distance between logic and memory leading to a faster

data transfer between logic and memory. In the meanwhile the LiM unit embeds

both LiM and CiM approaches.

Of course the designer can choose where to map each and every operation of

an algorithm. This potentially leads to a large number of different implementation

of the architecture even for the same application. Obviously, the freedom of the

designer’s fantasy is not unlimited. To be more precise a closer look to CLiMA can

show its limits.

LiM, the main approach used by CLiMA, is exploited by simply adding logic

in the single memory cell, which is called CLiM cell. It is a simple storage cell
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Figure 8.2: High-level block diagram of CLiM array.

• Intra-column: an operation takes place between two or more cells inside the
same column (black solid arrow in figure 8.3);

• Inter-row: an operation that involves two rows, as instance an operation
between a data stored in row A and one stored in row B;

• Inter-column: an operation that involves two columns, as instance an opera-
tion between a data stored in column A and one stored in column B.

Inter-row/column computations are perfectly fit for bitwise operations between two
rows or columns. Intra-row/column operations can, instead, be used to build more
complex data-flows to enable complex in-memory computations. An example is
depicted in figure 8.34. Each CLiM cell is represented as a logic-enhanced memory
cell. The logic in each cell is composed of a configurable logic block that can be
configured to perform boolean logic functions (e.g. AND/OR/XOR) and a full
adder to perform additions. By exploiting intra-row operations, each memory row
can work as a Ripple Carry Adder (RCA), highlighted by the red box in each row.
By exploiting intra-column operations (in addition to inter-row operations), more
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Figure 1.2: CLiM array high level structure. CLiM cells are arranged in rows
and columns highlighted in green and red respectively. Extra-row and extra-column
logic represent the peripheral circuits which performs operation with a CiM ap-
proach. [1]

implemented in one of the technologies mentioned above (SRAM, DRAM, MRAM,

RRAR etc.). The content of this cell can be manipulated locally, i.e. inside the cell,

by executing bit-wise operation such as OR, AND, XOR or slightly more complex

operation such as two bit additions.

The LiM cell is the base unit of CLiMA. The Figure 1.3 shows the cell organiza-

tion. The two main elements are the memory cell and the full adder. The full adder

is choosen for its flexibility. In fact, it can perform all the essential logic operations.

Table 1.1 shows the truth table also in case of a fixed Cin = 0 or Cin = 1. In these

cases the full adder can perform the basic logic operation such as AND, OR, XOR

and XNOR.
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8.1 – Overview
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Figure 8.4: Detail of connections inside and between cells in a CLiM array. Some
connections ( 4 and 5 ) are specifically designed to support in-memory RCA and
AM.

– intra-row operations.
4 Cell output to north-east cell used for:

– in-memory AM support;
– diagonal data movement (inter-row and inter-column movement).

5 Output carry to south cell used for:
– in-memory AM support.

MUX1 is used to select which data to write inside the MEM block: if the external
data coming from the bit-line (to initialize the content of the memory) or the data
computed locally (the content of the memory is updated). MUX2 is used to choose
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Figure 1.3: CLiM cell structure and interconnections. A full adder is em-
bedded in the cell. Some logic allows the configuration of the full adder and of the
interconnections. Some multiplexers allow to configure the interconnections with
the surrounding cells. [1]

This memory organization allows to perform different logic functionality, which

are also shows in Figure 1.2:

• local: the computation is performed inside the cell;

• intra-row: the computation involves two or more cells in the same row;

• intra-column: the computation involves two or more cells in the same column;

• inter-row: the computation is executed between two rows;

10



1.1 – A further step: CLiMA (Configurable Logic-in-Memory Architecture)

A B Cin Cout S

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Cin = 0

A B
Cout S
A ·B A⊕B

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Cin = 1

A B
Cout S
A+B A⊕B

0 0 0 1
0 1 1 0
1 0 1 0
1 1 1 1

Table 1.1: Full adder truth tables. In the upper part a table shows the standard
FA truth table. The other two tables show the truth table in case of fixed Cin = 0
and Cin = 1 respectively.

• inter-column: the computation is executed between two columns.

The inter-row/column are perfect for bitwise operations between rows or columns.

These operation are frequent in parallel algorithm and memory intensive application.

The inter-row/column computation fits other applications, even more complex. An

example is the ripple carry adder (RCA) which can be implemented cascading the

full adders of an entire row or column.

The interconnections, as mentioned before, are guaranteed by several multiplex-

ers. The 1.3 shows several possible connections highlighted by circled numbers:

1. write back the logic result in the same cell;

2. cell output to south cell;

3. cell output to east cell;

4. cell output to north-east cell;

11
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5. carry output to south cell.

Clearly the architecture provides a huge number of computation capabilities. In

this scenario finding a method to simulate and compare different implementation of

the same algorithm in CLiMA is a hard job.

12



Chapter 2

Generic structure for an

in-memory architecture

In this chapter it will be discussed the generic structure for an in-memory architec-

ture. The discussion starts from the system level (or high level in this chapter) and

goes deeper to lower level up to the bus analysis and the in-memory interconnects.

2.1 High-level structure

As shown in Figure 2.1(a), in von Neumann architecture there are three actors:

• datapath;

• memory;

CONTROL
UNIT

DATAPATH MEMORY

(a) Standard von Neumann architecture

CONTROL
UNIT

DATAPATH LiM Unit

(b) Logic-in-Memory architecture

Figure 2.1: Von Neumann and LiM architecture structures. In (a) it is
shown the well known structure of the von Neumann architecture, with memory
and datapath well separated and a bus (red arrow) that allows data transfer. On
the contrary, in (b) it is shown the structure of a in-memory architecture in which
the memory acts also as computing element.
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2 – Generic structure for an in-memory architecture

• control unit.

The memory is the part in which the data are stored. This section is populated by

a large number of memory type, from caches to simple SRAM, from main memories

to register files. In von Neumann architecture all these types of memories coexist

constituting the so called memory hierarchy. Even if these different layers of memory

are very different from each another, they only have storage purpose.

On the contrary the datapath only performs computation. The data stored in the

memories are read, processed and written back. This is the computing sequence of

every von Neumann architecture. As can be seen, the computation and the storage

are two well separated processes performed by two well separated entities. In von

Neumann architectures the datapath acts as computing unit and the memory acts

as storage unit.

An other fundamental element is the bus which is indicated with the red arrow.

It connects memory and datapath. The bus usage strongly affects the computa-

tion performance, especially for those algorithm which may be classified as memory

intensive.

The grey element, the control unit, is responsible for the control signal for both

memory and datapath. As can be seen it is present in both architecture and has

the same tasks.

In the Figure 2.1(b) is shows an architecture structure which, at first glance,

seems similar to the von Neumann one (Figure 2.1(a)). In fact, it presents a datapath

block (blue box in both structures), a control unit, (grey block in both structures)

and a bus (the red arrow in both structures). The difference lies in the block located

in the bottom right corner: the memory for von Neumann and the Logic-in-Memory

unit (LiM unit) in the LiM-based architecture.

As highlighted by the different color, the LiM unit has not only storage capability

but it is also a computing element as well as the datapath. It can be stated that

a portion of computation is moved from datapath to memory resulting in a magic

unit which performs both storage and computation.

The amount of computing elements in the LiM unit can varies significantly, from

simple logic gates inside some memory cell to large and complex circuits performing

inter row and inter column operations. Then an algorithm can be implemented

mapping some operations in-memory and some others out-of-memory.

14



2.2 – LiM unit

ALL
COMPUTATION

OUT-OF-MEMORY

ALL
COMPUTATION

IN-MEMORY

IN-MEMORY COMPUTING DEGREE

ARCH 1

ARCH 2
ARCH 3

ARCH 4

ARCH 5

Figure 2.2: In-memory computing scale. Different architectures performing the
same algorithm can be classified by their degree of in-memory computing.

Clearly different solution can be found in the design space and the resulting ar-

chitectures can be defined by their degree of in-memory computing. This parameter

can be defined as the amount of operations which are executed in-memory compared

to the total amount of operations.

The Figure 2.2 shows five architectures which are ordered by this factor. The

leftmost architectures are characterized by a lower degree of in-memory computing,

while the rightmost architectures are characterized by a higher degree of in-memory

computing. The two extremes of the scale are the von Neumann architecture (left

side) and an architectures in which all operations are performed in-memory (right

side).

2.2 LiM unit

The LiM unit is the central element for an in-memory architecture. The Figure 2.3

shows a general configuration of this block.

The basic element is the LiM cell, highlighted by yellow boxes, which can be

seen as a modified memory cell. These elements perform local computation with

maximum degree of in-memory computing.

The red and violet boxes instead are defined as inter-row computation. Often

the computation between two or more rows is essential to perform a large number

of operations.
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Figure 2.3: Logic-in-memory unit. The yellow boxes are LiM cells which may
or may not include logic. The red and violet boxes represent logic operations that
involved two columns and two rows respectively. The green and blue boxes represent
inter rows and inter columns operations respectively.

Finally the blue and green boxes represent computation that involves different

cells of the same row or column. These configuration allows to perform even complex

computation.

There are no limits in the selection of computing elements, although a good

design should comply with these guidelines.

2.2.1 LiM cell

As said before, the LiM cell is the base element of the LiM unit. The structure of

the cell is shown in Figure 2.4.

The yellow box is a memory cell. It can be implemented with different technology,
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MEMORY 
CELL

LOCAL 
COMPUTING 

ELEMENT

LiM CELL

LOGIC 
INPUTS

LOGIC 
OUTPUTS

WORD LINE

BIT LINE

Figure 2.4: LiM cell internal structure. In yellow the memory cell, in blue the
computing element.

from standard CMOS SRAM to the newest technology such as MTJ, Resistive RAM

and so on.

The local computing element instead is what makes the cell a LiM cell. It can

be a simple gate such as AND, OR and so on or an arithmetic circuit such as full

adder and half adder. The Figure 2.4 shows that a fixed connection between the

memory cell and the local computing element is always present. The other ports

have no fixed connection and then they can be configurable.

Note that the configurability doesn’t mean that the connection can be config-

urable at run time, but instead, the configurability is thought as a design choice.

The designer can explore different configurations at design time. The resulting ar-

chitecture indeed is not a programmable logic system like an FPGA, but it is an

architecture specifically designed for a given application.

As mentioned before common logic computing elements are simple gates such as

NOT, AND, OR and so on or slightly more complex circuits such as full adder and

half adder. Since one of the input ports of computing element is fixed connected, to
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2 – Generic structure for an in-memory architecture

ensure locality of computation, the other inputs are left unconnected by default. It

is a designer task to choose the local computing element and the connections of its

free input-output ports. The possibility are then endless, even considering a single

application.

2.2.2 Generic inter-cell computation

Despite what it can be seen in the Figure 2.3, the local logic element can perform

different types of operations among those defined in Section 2.2. In fact, since

the local logic elements has some free connections it can be used to perform also

inter-row or inter-column logic operations.

Figure 2.5 shows an example of inter-row computation. Note that the computa-

tion is performed by the local logic elements of one of the two rows involved in the

computation. The other one doesn’t integrate logic, i.e. it is a simple memory row.

On the other hand, in Figure 2.6 it is depicted a configuration in which the FAs

and HAs of an entire row are cascaded forming a RCA. Here also the local computing

LIM 
CELL

LIM 
CELL

LIM 
CELLMEM 

CELL
MEM 
CELL

MEM 
CELL

MEM 
CELL

MEM 
CELL

MEM 
CELL

MEM 
CELL

MEM 
CELL

MEM 
CELL

Figure 2.5: An example of inter-row computation. As it can be seen in the
figure, the computation consists in a bit-wise AND between two adjacent rows. To
do this the local computing element of one row is employed.
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2.2 – LiM unit

element is used to do computation that involves two or more cells.

In some cases it would be an understatement to divide between inter-row, inter-

column, intra-row and intra-column computation since in a computation can coexist

two or more computation type. In Figure 2.6 the addition is at the same time inter-

row but also intra-row. All the cell of the row contribute to the final computation

but at the same time the data involved in the computation comes from two different

rows.

In some other cases, instead, the computing element is not inside the LiM cell.

Suppose to have to sum up the bit of an entire row, or part of a row. Probably

the smarter way is to compute the sum with a pop counter. The pop counter

in Figure 2.7 does exactly this computation and it can be classified as intra row-

computation because the data involved in the computation come all from the same

row.
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A B
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Figure 2.6: An example of intra-row/inter-row computation. As it can be
seen in the figure, the computation consists in addition between two adjacent rows.
To do this the local computing elements (FAs and HAs) of one row are cascaded to
made up a ripple carry adder.
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Figure 2.7: An example of intra-row computation. The data stored in a row
are summed up by a pop-counter and stored in an other row. Only data coming
from one single row are involved in the computation.

2.2.3 Interconnections complexity

The interconnections between logic elements are very important. They are funda-

mental to do some computations. It is also fundamental to handle them with care.

In fact, as discussed in the previous chapters, the Logic-in-Memory paradigm aims

to overcome the memory wall problem is some way.

One of the main principle is to shorten the distance between storage and com-

putation and to reduce how often the data are moved. Every time a long intercon-

nection is used to move data the advantages of in-memory computing are reduced.

It is then a good design practice to limit the number of interconnections and to

shorten their length. Computation between near data are preferred with respect to

computation involving distant data. Pay attention not to turn local interconnections

into an internal bus. This leads to lose all the benefits due to Logic-in-Memory.

The willingness to limit data movement can also influence the way in which the

data are stored in the memory the first time.

In some cases it is better to map some operations outside the memory, i.e. on

the datapath block in Figure 2.1(b).
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Chapter 3

Motivations

In this chapter it will be discussed the motivations that have led to the development

of DExIMA.

In Chapter 1 some works are analyzed and classified according to the classifica-

tion proposed in [1], while in Chapter 2 it is given a generic structure for in-memory

architectures starting from a generic organization of the LiM unit, the magic mem-

ory proposed in that chapter.

Due to a large number of possible design choices some considerations have to

be done. In Chapter 2 several computation possibilities have been analyzed such as

intra-cell, local computation and so on. It is not very clear which are the advantages

of one choices against one other. Even if it is clear that, it is difficult to quantify

these advantages.

In digital design the simulators play this role, i.e. quantifying the performance

and the difference between one design solution with respect to an other one. More-

over, it should be good to simulate the design at higher-level than the Register-

Transfer Level (RTL).

The idea is to simulate at architectural level by selecting high-level modules and

connecting them to build the model of the architecture. Then cycle-based simula-

tion is to be performed in order to extract dynamic performance (manly dynamic

energy). Note that at this moment it is not mandatory to verify the correctness of

the algorithm execution, then it is not necessary to do a functional simulation.

Some architectural level simulator found in literature are exposed in the follow-

ing.

3.1 Architectural level simulator

The field of architectural simulator is very large and cover multiple abstraction level.
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Gem5 [15] is defined as ”a modular platform for computer-system architecture

research”. It provides 4 CPU models: a simple single CPI CPU, a detailed in-order

CPU, a detailed out-of-order CPU and higher level model of CPU. The first three

use high-level ISA description. Moreover Gem5 provides also an advanced GPU

model.

The memory is simulated with an event-driven system including different level of

caches, different memory configurations (DDR3/4 GDDR5, HBM1/2/3 and so on).

In addition, Gem5 allows multi-core simulations.

Currently Gem5 supports different instruction sets such as Alpha, ARM, SPARC,

MIPS, POWER, RISC-V and x86. A particular feature is the capability to simulate

full systems which means that also the operating system can be simulated.

This simulator is very advanced but lack of some essential components to simulate

architectures. In fact, the configuration of the hardware is limited by the simulator

models. There’s no way to describe and simulate module such as Logic-in-Memory

cells or even simple logic circuit, but only well-known CPU architectures.

An other important simulator is Wattch [16]. Wattch is framework for architectural-

level power analysis and optimization. This architectural simulator provides a con-

figurable model of an out-of-order processor.

The purpose of this work is to simulate different software (assembly codes) and

to evaluate power consumption at high-level. A lower level simulation achieves a

better accuracy but the computation cost is very high.

In [16] authors use SimpleScalar which keeps track of which part of the processor

is active at a given cycle. It provides a simulation environment for a 5-stage modern

processor.

Also this simulator provides models for only a specific class of circuit, which is

the out-of-order processors. However the simulation process, which consider active

and non-active part of the circuit is interesting to estimate power consumption for

in-memory architectures.

3.2 Simulator features

As discussed in previous section neither Gem5 [15] nor Wattch [16] meet the re-

quirements of high-level simulation. Then, a new tool has to be designed.
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3.2 – Simulator features

The first step is to identify what are the features that must embed:

• configurability;

• ability to describe the execution of an algorithm;

• a sufficient number of available models;

• mantainability.

Configurability means that the model of the architecture has to be configurable.

The easier way to achieve this goal is to configure the model from the outside, for

example describing the circuit and the algorithm execution by means of some files.

The simulation has to be also based on the execution of an algorithm which

has to be describe carefully. As mentioned before it is not important to verify the

correctness of the algorithm, which is a different task with respect to the performance

evaluation. Then the description of the algorithm has to be focused on the power

and the delay resulting from the execution of a specific step of the algorithm.

The last required feature, i.e. the availability of a sufficient number of hardware

models, is fundamental. Only in this way all the possible complex circuit can be

described.

The maintainability is a crucial features: this tool has to be expandable. As far

as the set of models are large, it may be not sufficient for some architectures. The

possibility to implement a new model has to be guaranteed, organizing in a clever

way the models inside the code.

The architectural blocks shown in Figure 2.1(b) need to be reflected by the tool.

So the separation between LiM unit and datapath should remain also in the tool.

The bus is a different question. It has to be simulated carefully because in

memory-intensive applications it affects the performance significantly.
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Chapter 4

Bus Spice simulation

Today, in von Neumann architectures the Bus often represents the most power

consuming element of the system. In state-of-the-art SoCs it consumes up to the 50%

of total power consumption. Moreover, the technology scaling leads to a reduction

of gates delay, making the bus the real bottle-neck of the von Neumann architecture.

As mentioned in Chapter 1, the primary aim of the Logic-In-Memory paradigm is

to overcome this bottle-neck.

In this perspective, an accurate estimation of the bus performance (area, delay

and power consumption especially) is fundamental to populate the area-latency-

power design space with the different configuration of the architecture. In other

words, a good evaluation of bus performance allows the designer to make archi-

tectural choices based on reliable values. Unfortunately some phenomena, such as

cross-talk, cannot be neglected. Due to the complexity of the circuit SPICE simu-

lations are needed.

4.1 Electrical model

A bus is a group of parallel wires. In Figure 4.1 is shown the physical structure

of the bus. Three wires ara shown but the structure can be scaled up to N wires.

First the single wire model is considered computing the wire section resistance and

capacitance. After that, the multiple wire model is developed taking into account

the crosstalk capacitances.

4.1.1 Single wire model

The base element of the bus is the wire. A wire can be modelled with three parasitic

characteristics [17]:
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T
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L

D

Cc Cc

Cs

Figure 4.1: Physical structure of the bus. CS is the total wire-to-substrate
capacitance. CC is the crosstalk capacitance between two adjacent wires. W , L and
T are respectively the width, the length and the thickness of the wire respectively.
D is the distance between two adjacent wires.

• resistance R (Ω);

• capacitance C (F );

• inductance L (H).

According to what Ismail et al. exposed in [18] the inductance is most of time

neglected. Two figure of merit can be considered and they are mixed in an inequality:

tr

2
√
LC

< Lwire <
2

R

√
L

C
(4.1)

where tr is the rise time of the of the input signal of the CMOS bus driver, R, C

and L are the resistance, capacitance and inductance per unit length respectively.

R1 R2 Rn

C1 C2 C3 Cn1 Cn+1

Figure 4.2: Bus single line simulation circuit. The model of single line bus is
composed of a series of RC circuit.
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4.1 – Electrical model

Lwire is the length of the wire. If Lwire is inside the range, the inductance cannot

be neglected. This range does not exist when the following inequality is satisfied.

tr > 4
R

L
(4.2)

Since wire length does not appear, the 4.2 is valid whatever the value of Lwire. The

following model is based on the assumption that 4.1 is valid.

In order to compute R and C three parameters can be defined:

• resistance per square R� (Ω/square);

• wire underside capacitance C� (F/m);

• wire edge capacitance Ce (F/m).

As shown in Figure 4.1 the single wire is defined by 4 physical dimensions: the

width of the wire (W ), the length of the wire (L), the thickness of the wire (T ) and

finally the distance between wire edge to substrate (D). The parameters C� and Ce

depend on the distance D.

The resistance of a wire section is given by the following equation:

R = R�
L

W
(4.3)

The capacitance is the sum of two contributions: the capacitance between the bot-

tom surface of the wire and the substrate (CS0) and the capacitance due to the wire

edges, known as fringe capacitance (CF ).

CS0 = C�WL (4.4)

CF = 2CeL (4.5)

So, the total substrate capacitance is given by the sum of these two contributions.

CS = CS0 + CF = L(C�W + 2Ce) (4.6)

The model of the entire wire is a lumped element one. A number N of wire

section are connected in series (with a final capacitor) and each one represent a wire
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section of length L/N . The Figure 4.2 shows the electrical lumped model of a single

wire. In [17], Courtay et al. fix the number of sections to 3. In this way a precision

of better than 5% is guaranteed.

4.1.2 Multiple wire model

Figure 4.3: Bus multiple wires simulation circuit. In this figure is shown the
generic form of multiple wires circuit.

The single wire model can be extended to derive the entire bus model. From

electrical point of view the bus is not simply a composition of multiple independent

wires. Since the crosstalk effects cannot be neglected, several parallel wires must be

considered.

As shown in the Figure 4.1 the crosstalk capacitance is the parasitic capacitance

between two adjacent wires. It depends on the facing area. The larger the lateral

surface of the wire the greater the crosstalk capacitance. So the crosstalk capacitance

is given by:

CC = ε0εR
TL

D
(4.7)

where ε0εR is the dielectric constant of the material between the two wires (probably

SiO2) and T , L and D are the physical dimension shown in Figure 4.1.

The effect due to crosstalk can be summarized into three categories.

28



4.1 – Electrical model
Courtay et al. High-Level Interconnect Delay and Power Estimation

When transitions occur on adjacent wires, there is a gen-
eration of an unwanted noise due to the coupling capaci-
tance. The noise due to the crosstalk is relatively localized.
In general, a system with crosstalk is modelled by neglect-
ing higher-order effects on non-adjacent wires. Thus, we
only consider the effect on three wires as represented in
Figure 1. The coupling capacitance between wires is also
distributed on the nodes of the distributed !3 RC model
defined previously, as represented in Figure 2. We explain
in more detail the crosstalk phenomenon and associated
effects below.

The effects due to crosstalk can be summarized into
three categories.
• The first one is that crosstalk induces noise; indeed the
coupling capacitance between adjacent wires introduces a
permanent link between them. When a transition occurs on
a wire (aggressor), its neighbours (victims) are affected,
because a voltage peak is generated on them.8 There are
two categories of coupling: positive and negative which
represent the situations when the amplitude of the noise
exceeds a positive or a negative voltage value on the vic-
tim respectively. The noise peaks above GND or under Vdd

are the most tedious, because they can cause errors, if their
values are greater than the buffer threshold voltage at the
end of the bus (cf. Fig. 3(a)). With technology shrinking,
noise due to crosstalk increases compared to the overall
noise, since the coupling capacitance rises as well. As a
result, the voltage peak generated by the coupling capaci-
tance becomes more and more important, compared to the
voltage swing on the bus.
• A second issue is the increase in propagation time.
When the victim and its aggressor(s) are switched simul-
taneously, a voltage peak is generated. This peak can,
according to the configuration of transitions, slightly accel-
erate (in the case of simultaneous transitions in the same
direction) or slow down (in the case of simultaneous tran-
sitions in opposite side) the propagation on the victim wire
(cf. Fig. 3(b)). A transition classification has been carried
out according to the propagation time on the victim: this
classification is presented in Table I where g represents

Fig. 2. A 3-wire !3 bus with crosstalk capacitance (in red) distributed
on the nodes of the RC wire model. The bus model includes input and
output inverted buffers. The size of the buffers is a simulation parame-
ter. Output buffers are loaded with a capacitance equivalent to the input
capacitance of a minimal size inverter.

(a)

Time

Vdd

Vth

GND

Agressor(s)
Victim

(b)

Fig. 3. Errors and timing due to crosstalk: (a) the victim remains on a
stable level when aggressors (dashed lines) switch; (b) victim and aggres-
sors switch at the same time.

the delay factor and r the ratio of the crosstalk capaci-
tance compared to the wire capacitance to substrate. Here,
↑ represents a rising transition, ↓ represents a falling one,
and - means that there is no transition on the wire. In the
best case, when wires are switching in the same direction,
the delay is that without crosstalk (i.e., for g = 1). How-
ever, data transmissions on the bus must be clocked while
taking the worst-case propagation time into account (i.e.,
g = 1+ 4r). Considering a real world case, Cc = Cs , the
propagation time can be increased fivefold or more.7

• Finally, the last issue is the increase in power con-
sumption. Indeed, the power consumption depends lin-
early on the capacitance presented by a device. Since the
wire capacitance Ceff depends on the crosstalk capacitance
value (cf. Table I), the crosstalk contributes to the increase
in the dynamic power consumption.9

The last parameters that have to be defined for bus
modelling are the resistance as well as the input and out-
put capacitances of the buffers involved in the bus. The
number of buffers depends on the bus length and on the
buffering technique used. These parameters can be easily
found using transistor dimensions and parasitic parameters

J. Low Power Electronics 4, 21–33, 2008 23

Figure 4.4: Crosstalk capacitance effect. In the first four graphs the victim is
not switching while in the last four ones the victim is switching. The voltage change
on the victim depends on the switch of the aggressor wire.

• Noise. The coupling can induce a voltage change on the wire due to a tran-

sition on the adjacent wire. In the first four graphs in Figure 4.4 is shown

the effect of a switch on the aggressor wire. This leads to a voltage increase

or decrease on the victim wire depending on the transition direction of the

aggressor wire. There are two critical situations:

– the victim is fixed at GND and a positive transition occurs on the ag-

gressor;

– the victim is fixed at VDD and a negative transition occurs on the ag-

gressor.

These two cases can lead to an error. Indeed, if the voltage increase is so large
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4 – Bus Spice simulation

that the signal becomes greater than VTH (the threshold voltage of the load

buffer of the bus), the data bit is incorrectly recognized as 1 (instead of 0).

Viceversa, if the voltage decrease is so large that the signal becomes smaller

than VTH , the data bit is incorrectly recognized as 0 (instead of 1). The first

row - first column and the second row - second column graphs in Figure 4.4

show the first and the second case.

• Timing performance degradation. When victim and aggressor switch at

the same time a voltage increase or decrease occurs on the victim. This leads

to an increase or a decrease of propagation delay on the victim. Indeed, if the

transition on the wires are in the same direction the propagation delay slightly

decreases (look at the third and fourth graphs of the first column in Figure 4.4).

On the other hand, if the transition on the wires are in the opposite direction,

the propagation delay increases (look at the third and fourth graphs of the

second column in Figure 4.4).

• Greater power consumption. Crosstalk capacitances means much capac-

itance involved in the transition. Since the power consumption is directly

proportional to the capacitance the power consumption increases as the ca-

pacitance increases. The larger the crosstalk capacitances the greater the

power consumption on the bus.

The multiple wire model is the starting point to estimate the entire bus delay

(a) Last wire aggressor (b) Second-to-last wire aggressor

Figure 4.5: Wire aggressors on last and second-to-last wire of the bus. The
victim is the blue wire, while the aggressors are represented by the red wires.
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and dynamic power. To better estimate the performance the model is extended to

5 wires, i.e. 2 aggressors per side. With regards to the last and the second-to-last

wires the model is slightly different. The last wire has only two aggressors, because

on one side there are no wires. The second-to-last wire has only three aggressors,

two on a side and one on the other side. This is make more clear in the Figure ??.

The three models will be 5-wires-model, 4-wires-model and 3-wires-model.

4.2 Spice simulations

In order to estimate the bus performance, Spice simulations have been executed.

As discussed in the previous section the circuits to simulate are essentially 3: the

5-wires, the 4-wires and the 3-wires. A C++ software runs parametric simulations.

4.2.1 Spice model

TOP LEVEL NETLIST

BRIVER SUBCIRCUIT BUS SECTION SUBCIRCUIT

Figure 4.6: Bus Spice simulation structure. The driver netlist defines the driving
circuit of the bus. The bus-section netlist defines the RC single bus section with cross
talk capacitances. The top level netlist contains the instance of the two subcircuits
and the measure command.

NGSpice, a free open-source Spice version, has been used. The general netlists

organization is shown in Figure 4.6.

There are two subcircuits, bus driver and bus section, defined in two different

netlists. The first one is simply the bus driver, implemented with two inverters.

The second one is the bus section. It contains the line resistance, the substrate total

capacitance for each wire and the crosstalk capacitances between wires. The last
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one, the top level netlist is the structural description of the circuit. A number N of

bus section are connected together. The bus drivers are connected to the input of

the first bus section. Bus drivers are also used as bus loads connecting them to the

outputs of the last bus section.

Since the bus performance depends on the the transition on the aggressor wires,

a complete simulation has to be performed. In other words every bus transition

has to be simulated. Considering a 5-wires model the number of simulation to be

performed should be 25 ·25 (number of possible initial state of the bus times number

of possible final state of the bus). Assuming that the noise due to crosstalk is not

enough to modify the data bit which is propagating through the victim wire (see

Section 4.1.2), the number of simulation can be halved. In fact the transition in

which the data on the victim wire is constant has not to be considered.

The number of simulations to be performed can be generilized with respect to

the number of wire considered.

NS =
22Nwire

2
= 22Nwire−1 (4.8)

Since the simulations have to be performed for 5-, 4- and 3-wires models the total

number of simulations is pretty high.

N
(tot)
S = N

(5−wires)
S +N

(4−wires)
S +N

(4−wires)
S = 512 + 128 + 32 = 672 (4.9)

A C++ program has been developed to generate the netlists and to run the simula-

tions in a parametric fashion.

4.2.2 C++ implementation

The general structure of the program is depicted in Figure 4.7. A class called

BusSimulation provides several methods to read the configuration file, to generate

the netlists and to run the simulation.

• parse parameter file(const string file path) parses an input file con-

taining the bus and simulation parameter which are:

– number of bus lines;
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4.2 – Spice simulations

GENERATE BUS SECTION
SUBCIRCUIT

GENERATE TOP LEVEL
NETLIST

RUN NG-SPICE SIMULATION

SAVE RESULTS 
(DELAY AND POWER)

NEW INPUT
SIMULI

GENERATE DRIVER
SUBCIRCUIT

Figure 4.7: C++ software graph

– number of section in which the bus is divided;

– wire length;

– wire width;

– wire thickness;

– wire distance from substrate;

– distance between two adjacent wires;

– input signal rise time;

33
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– input signal fall time;

– input signal pulse duration;

– simulation time;

– bus supply voltage;

• compute electrical parameter() computes bus electrical parameters such

as wire resistance, total substrate capacitance and crosstalk capacitances for

a single bus section;

• generate inverter subckt(const string file path) generates the bus driver

subcircuit netlist;

• generate bus segment subckt 5 wire(const string file path) generates

the 5-wires bus segment;

• generate top netlist 5 wire(const string file path, uint8 t initial bus state,

uint8 t final bus state) generates the top level netlist containing the 5-

wires bus segments, the bus drivers and loads and the voltage sources according

to the initial and final bus states;

• generate bus segment subckt 4 wire(const string file path) generates

the 4-wires bus segment;

• generate top netlist 4 wire(const string file path, uint8 t initial bus state,

uint8 t final bus state) generates the top level netlist containing the 4-

wires bus segments, the bus drivers and loads and the voltage sources according

to the initial and final bus states;

• generate bus segment subckt 3 wire(const string file path) generates

the 3-wires bus segment;

• generate top netlist 3 wire(const string file path, uint8 t initial bus state,

uint8 t final bus state) generates the top level netlist containing the 3-

wires bus segments, the bus drivers and loads and the voltage sources according

to the initial and final bus states;

34



4.2 – Spice simulations

• run netlist(const string file path, const string out file path) runs

the spice simulation and saves the results in an the output file;

• parse bus delay(const string out file path) returns the bus propaga-

tion delay parsing it from the simulation output file;

• parse driver current(const string out file path) - it returns the inte-

gral of the current parsing it from the simulation output file.
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Chapter 5

DExIMA: a first overview

DExIMA (Design Explorer for In Memory Architectures) is a powerful tool

developed to analyze the dynamic performance of a given architecture by means of

execution-based performance computation. Moreover, the tool is designed manly

for In-Memory-Architectures (as the acronym suggests) which is the new frontier

for an increasingly number of application.

As discussed in the previous chapters this tool has to be developed with some

specific features: it must be configurable and dynamic.

Configurable means that the designer has the ability to describe its personal

architecture. Some mathematic models describe the most frequently used digital

circuits performance. In this way a given architecture can be modelled.

On the other hand, it has to be dynamic which means that the estimation of the

performance is done taking into account what the circuit has to perform to execute

a specific algorithm. To be more clear, the execution time as well as the dynamic

power of the circuit depend on the operations executed by the circuit and not only

on the circuit structure.

Moreover, suppose to have to estimate performance of a LiM-based architecture.

In this architecture probably a standard logic circuit is placed side by side by a

Logic-in-Memory block. A bus connects the logic with the memory. It stands

to reason that the presence of the Logic-in-Memory block allows a lower number of

read/write memory operations and than a lower bus usage with respect to a standard
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5 – DExIMA: a first overview

von Neumann architecture in which the memory acts only as storage element and

the computation is all performed outside the memory.

Obviously a static analysis, not based on the execution of algorithm steps, doesn’t

allow to estimate the difference between the two implementations. The main goal

of this estimator is to evaluate the difference between a standard von Neumann

implementation and a variety of LiM-based solutions. For these reasons the tool has

to perform dynamic analysis.

To ensure the first main feature, i.e. the configurability, DExIMA presents an

interface, i.e. a DExIMA frontend. In other words the core, called the Simulator

Core is surrounded by a sequence of classes aim to take some external informations

and instruct the Simulator Core to reconfigure itself according to these external

informations. These external informations are provided to DExIMA by means of

two different files. A much detailed description is provided in Chapter 6.

The second main feature, i.e. the ability to perform dynamic analysis, is ensure

by the structure of the Simulator Core, i.e. the DExIMA backend. The Simulator

Core can be defined as a cycle-based performance evaluator in which the cycle is

an execution step. Every step the simulator evaluates which elements takes part in

computation and computes the dynamic performance according to this analysis.

5.1 Structure

In Figure 5.1 is shown a high-level structure of DExIMA. The front-end is based on

three compilers: the Architecture Compiler, the Logic-in-Memory Compiler and the

ASIC Operation Compiler. The back-end is composed of the Simulator Core and

the Hardware Models. In particular the Simulator Core makes use of the Hardware

Models to perform both static and dynamic analysis on the circuit.

In the following two chapters a more detailed description of both the front-end

and the back-end is provided.
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Arch Compiler

ASIC Op
Compiler

LIM Compiler Simulator 
Core

Hardware Models

Architecture
description

(.arch)

Logic-in-
Memory

block
description 

(.lim)

Psuedo
instructions
(operations) 

definition 
(.asicop)

Pseudo code
(.asicode)

Figure 5.1: DExIMA high-level structure. Four files, highlighted in yellow,
contain hardware description and algorithm description. The interface, highlighted
in light blue, connects the simulator core with these four files. The simulator core,
in green, executes the pseudo code and extracts the performance from the hardware
models.

5.2 Mode of operation

The first step is to design an architecture by hand. After that it is necessary to write

down the description of the hardware with a particular syntax. The description

is purely structural. The declaration of the hardware models is followed by the

definition of the interconnections between them.

Same goes for the Logic-in-Memory block description. In this case both defi-

nitions of memory structure and logic structure are given. The logic inside every
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cell is selected among elementary logic circuits such as NOT, AND, NAND, OR,

NOR, XOR, XNOR, Full Adder and Half Adder. The description of inter-cell, inter-

columns and inter-rows logic is described exactly in the same way the out-of-memory

logic elements are described.

The further step is oriented to make the tool dynamic. As discussed above the

performance depends on the execution of the algorithm. To achieve this goal a new

concept is introduced: the pseudo instruction.

5.2.1 Pseudo instruction

The concept of the pseudo instruction derives from the need to describe the steps

of the algorithm. Since every processor has its own instruction set, a generic ar-

chitecture described with DExIMA must have its own pseudo instruction set. The

definition of these pseudo instructions are defined in two files: the .asicop file for

the pseudo instructions related to the out-of-memory hardware and the .lim for

the in-memory pseudo instruction. The .lim file contains also the structure of the

LiM-block.

In this way the functionalities of the circuit are defined and the algorithm can

be described by listing a sequence of these pseudo instructions. Both the ASIC

Operation Compiler and the LiM Compiler parse the .asicop and the .lim files to

populate the pseudo instruction set.

LIM OPERATIONSASIC OPERATIONS

PSEUDO INSTRUCTION SET

Figure 5.2: DExIMA pseudo instruction set. The pseudo instruction set is
composed by both the ASIC Operations and LiM Operations.
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Chapter 6

DExIMA front-end: the three

compilers

In this chapter a full description of the simulator front-end is presented.

A number of C++ classes make up the so called Simulator front-end. Since the

simulator has been designed to be configurable, the hardware configuration and the

description of the algorithm represent the input data for DExIMA. Hence the need

to develop the simulator interface.

The Figure 6.1 shows the structure of the front-end. Three compilers, for the

three input files, produce data for the Simulator Core.

Hardware Compiler

LiM Compiler

ASIC Operation Compiler

Architecture
description

(.arch)

Logic-in-
Memory

block
description 

(.lim)

Psuedo
instructions
(operations) 

definition 
(.asicop)

Hardware
configuration

for the
Simulator

Core

LiM
configuration

for the
Simulator

Core

Pseudo
Instruction 

Set

Figure 6.1: DExIMA front-end structure.
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6 – DExIMA front-end: the three compilers

6.1 Out-of-memory hardware description

The out-of-memory hardware configuration is described in the .arch file. This file is

structured in two sections: the init section and the map section.

The first one, the init section, contains the declaration of the hardware module

present in the circuit that has to be described. These modules can be selected

among the available models, which are the most frequently used digital circuits such

as the standard logic gates (AND, NAND, OR, NOR, XOR, XNOR), full-adder,

half-adder, ripple-carry-adder, flip-flop and so on.

Each and every model needs some parameter. In Table 6.1 a list of models is

represented together with their related parameters. The initialization needs also to

pass these parameters to the Simulator in order to set the models as a consequence.

Model Keyword Parameters Input ports Output ports
AND AND # of inputs IN1, IN2, ... OUT
NAND NAND # of inputs IN1, IN2, ... OUT
OR OR # of inputs IN1, IN2, ... OUT
NOR NOR # of inputs IN1, IN2, ... OUT
XOR XOR - IN1, IN2 OUT
XNOR XNOR - IN1, IN2 OUT
Full Adder FA - A, B, Cin S, Cout
Half Adder HA - A, B S, Cout
RCA RCA # of bits A, B, Cin S, Cout
Multiplier MUL # of bits A, B P
D Flip-Flop DFF - D Q
Register REGISTER # of bits D Q
Multiplexer MUX ways, # of bits IN1, IN2, ... , S OUT
Decoder DECODER # of input bits IN OUT
Up Counter UPCOUNTER # of bits EN CNT
Pop Counter POPCOUNTER # of inputs IN1, IN2, ... OUT

Table 6.1: Model and related parameters and ports. The table shows the list
of the available models and their related parameters, input and output ports.

The second section, the map section, contains the mapping between the modules.

Obviously the available ports, for some of the models depends on the parameters

mentioned before. A 4-inputs NAND will have 4 input ports called IN1, IN2, IN3

and IN4 and an output port called OUT. A 4-bits 2-way Multiplexer will have 2 4-bits
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6.1 – Out-of-memory hardware description

inputs called IN1 and IN2, a 2-bits input called S, the selector bits, and an output

port called OUT.

6.1.1 A first .arch input file example

R1

R2

R3

ADDER
R4

COUNTER

M

Figure 6.2: A simple circuit example to implement in DExIMA. A simple
circuit made up of 4 registers, a multiplexer, a counter and an adder.

In this section a very simple circuit is described with DExIMA. The Figure 6.2

shows a simple circuit made up of 4 Registers, a Multiplexer, a 1 bit counter and

an RCA.

As discussed before, the init is the section in which the modules are declared

and the parameters are passed to the simulator. According to the Table 6.1 the

register, the RCA and the counter models takes one parameter, the number of

bits, while the multiplexer takes two parameters, the ways and the number of

bits. The init section of the .arch file for this circuit is shown in the following.
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begin init

2

REGISTER R1(8)

4 REGISTER R2(8)

REGISTER R3(8)

6 REGISTER R4(8)

MUX M(2, 8)

8 UPCOUNTER COUNTER (1)

RCA ADDER (8)

10

end init

The syntax is very simple. To declare a module the designer has to write the

model keyword followed by the instance name and the possible parameters. In the

first declared module, the register R1, REGISTER is the model keyword for the

register, R1 is the instance name and the 8 in brackets is the number of bits.

The second section, i.e. the map section, is used to interconnect the modules

defined in the init section. Suppose to have the same circuit, the one shown in

Figure 6.2. The map section related to this circuit, according to the instance names

declared in the init section, will be:

begin map

2

R1.Q -> M.IN1

4 R2.Q -> M.IN2

COUNTER.CNT -> M.S

6 M.OUT -> ADDER.A

R3.Q -> ADDER.B

8 ADDER.S -> R4.D

10 end map

The operator -> allows to connect an output port of the left module to an input

port of the right module. In order to indicate a specific port the designer has to write

down the instance name of the module followed by the dot, i.e. the port operator,

and then by the port name. The module ports are the ones shown in Table 6.1.

The mapping of the modules is very important for a correct estimation of the

performance of the circuit. Since the dynamic power as well as the delay is strongly

affected by the fanout of each logic gates, a precise circuit structure description

allows the Simulator Core to compute accurately both these metrics.

Knowing that, it is clear that a smart way to annotate these data would be

nice. The solution was to keep track of these data in a list of objects of type

44



6.1 – Out-of-memory hardware description

CompiledModule.

6.1.2 CompiledModule class

Instance nameModel

Parameters list Values list

CompiledModule

list<CompiledModule*>

Input Port list Output Port list

Figure 6.3: CompiledModule overview. The fields are used to take note of
module configuration. The parameters are sometimes needed to generate the right
number of ports.

The model to simulate, its parameters and its input/output ports are the data

contained by an object of type CompiledModule. CompiledModule connects the

front-end to the back-end of DExIMA. A brief overview of what a CompiledModule

object contains is shown in Figure 6.3. On the left side of the figure a list of these

objects is shown. According to this list the Simulator Core generates the model of

the circuits. As shown by the figure, a CompiledModule object has several fields:

• model name;

• instance name;

• parameters;

• input and output ports.
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According to the Table 6.1 the model name is the keyword. The instance name is

the one declared in the init section. The parameters are coded with strings: a list of

couple name-value are created when the module is initialized according to the passed

parameters. For the input and output ports a different approach has been adopted.

Two classes called CompiledModuleInputPort and CompiledModuleOutputPort are

defined in order to better handle the fanout computation for each output ports.

6.1.3 CompiledModuleInputPort and CompiledModuleOut-

putPort classes

CompiledModuleInputPort and CompiledModuleOutputPort classes are used inside

the CompiledModule class to keep track of the connections between the current

module and the other modules in the design.

CompiledModulePort

CompiledModuleInputPort CompiledModuleOutputPort

Figure 6.4: CompiledModuleInputPort and CompiledModuleOutputPort
inheritance. CompiledModuleInputPort and CompiledModuleOutputPort classes
inherit from CompiledModulePort class all the methods and variables. Only the
set connection() method implementations differs from each other.

The structure of both classes is similar. In fact they inherit from the same super-

class, i.e. the CompiledModulePort. Each and every port is marked by a name and

the bit width. The set connection() method for the CompiledModuleInputPort

class simply set the connection as true, while for the CompiledModuleOutputPort

class also increment the fanout. The variable fanout is present only for the out-

put ports and it is recorded as equivalent NAND input capacitance unit. A much

exhaustive explanation will be given in Chapter 7. In simple words every time an
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output port is connected to an input port the fanout of that port is incremented.

6.1.4 Compiler

The .arch file is compiled by the Hardware Compiler, or simply Compiler. The

Compiler parses the input file and generates a list of pointers to CompiledModule

objects. There is a one-to-one match between the module defined in the init section

of the source file and the elements of this list.

The output of the Compiler is precisely this list which is forward to the Simulator

Core. It is also passed to an other element of the front-end which is the ASIC

Operation Compiler described later in this Chapter.

The steps to compose this list are very simple. First of all the init section is

parsed row by row by creating the CompiledModule objects and pushing them in

a dynamic list. At this moment the model name, the instance name, but even the

parameter values are known.

Some errors can be generated by the Compiler in case of incorrect syntax. In

order to better keep track of these error, a class called CompilerError has been

developed. This class is responsible to print out a message in case of syntax or

semantic error. Common errors can be wrong number of parameters or unknown

model name. According to the parameters, each CompiledModule object can create

its own CompiledModuleInputPort and CompiledModuleOutputPort objects.

After that, the Compiler parses the map section. For each and every mapping

there are a left and a right port. The left port is always an output port while the

right port is always an input port. The port is indicated using the instance name

of the module and the port name. The Compiler reads the left port, searches the

instance name among the CompiledModule objects and calls the set connection()

method on the port. The same procedure is followed for the right port. An error is

generated when the left or the right port doesn’t exist.

6.2 Logic-in-Memory unit description

The Logic-in-Memory unit (LiM unit) is what differentiates a von Neumann archi-

tecture from an in-memory architectures. DExIMA, as suggests the acronym, is
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first and foremost a tool to estimate in-memory architectures performance. The

description of this block is therefore critical.

A special file contains the configuration of LiM array. As described in the Chap-

ter 2 this unit may be rather complicated. The cells may contain simple logic, such

as OR-gate, AND-gate and so on. The content of an entire row of memory may be

the inputs of a pop counter. A column-wise AND can be then stored on an other

column. These are only few examples of what a LiM unit can do and how it is made

up.

The file is compiled by a second compiler, called the LiM Compiler. The descrip-

tion of the LiM unit has to be quite accurate. The file is structured in 5 sections:

init, memdef, cells, map and operation.

The first one, i.e. the init section, is dedicated to defined those modules that

perform intra-row, intra-column and every non-local logic. The syntax is identical

to the init syntax for the Hardware Compiler. Also the available modules are the

same (see Table 6.1).

The memdef section is focused on the memory definition. Here the memory size

is declared together with the number of ports and the instance name.

In the third section it is defined the local structure of each cell. A cell can

embed an AND gate or a full adder or other simple digital circuits or can be even

left without computing capabilities.

The fourth one is similar to the map section of the .arch file. The interconnections

between modules and memory cells are defined here. A deep difference lays in how

the interconnections are interpreted. A more detailed description will be provided

later in this Chapter.

The operations section is very different from the other ones. While the previous

sections are oriented to the hardware description, the operations section is focused

on what the LiM unit can perform, i.e. on the pseudo instruction that can execute.

6.2.1 Memory array description

Suppose to have a simple LiM array similar to the one depicted in Figure 6.5. The

first parameters to define is the memory size and the memory ports. The memdef

section includes these informations.
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Figure 6.5: A simple example of LiM unit. The first row cells embed XNOR-
gates which performs bit wise XNOR between the first and the second rows. The
outputs have been summed up with a pop counter and then the result is stored in
the third row.

An example of memdef section is shown below.

begin memdef

2

row = 4

4 column = 4

read_port = 1

6 write_port = 1

ports_bit_width = 4

8

end memdef

Essential data are collected in this section. The memory size is expressed as

rows and columns number. The memory interface is described with four parameters:

number of read ports, number of write ports, number of read/write ports and their

bit width.

In this case the memory size is 4x4 bits. A so small size is just a matter of ease

of drawing. A bigger memory has been difficult to represent in a schematic such as

the one in Figure 6.5. A further optional parameter is the instance name of the LiM
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unit.

lim-fa

MEM
CELLRW

Cin

S

FA

B

Cout

MEM
CELLRW

S

HA

B

Cout

lim-ha

lim-and
MEM
CELLRW

IN2
OUT

MEM
CELLRW

IN2
OUT

lim-nand

lim-or
MEM
CELLRW

IN2
OUT

MEM
CELLRW

IN2
OUT

lim-nor

lim-xor
MEM
CELLRW

IN2
OUT

MEM
CELLRW

IN2
OUT

lim-xnor

lim-not
MEM
CELLRW

OUT

Table 6.2: A brief summary of local computing elements. In this table the
available intra-cells LiM are shown together with the their related keywords.

An other fundamental section is the cells section. Once defined the structure

of the memory (size and input/output connectivity) the next step is to define the

intra-cell logic. The Table 6.2 shows the possible intra-cell logic. In addition to
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the standard logic gates such as AND, OR, XOR and so on, full adder and half

adder are available LiM-cell models. In the cells section the designer can set the

cell model among these ones. As regards the example in Figure 6.5, all the cells are

simple memory cells except for the first row. The latter is made up of XNOR lim

cells. The circuit structure of this cell is shows in the second elements of the fourth

row in Table 6.2.

The associated keywords are used in the cells section as can be seen in the

following example code.

begin cells

2

(0, 0 to 3).lim -xnor

4

end cells

The reference to the cells position is expressed into the round brackets. The

first one is the row index while the second one is the column index and a comma

separates them. The index can be expressed as a single value or as a range. In the

example above the row index is a single value while the column index is a range.

This piece of code represents exactly what is shown in Figure 6.5. The first 0 stands

for the first row of the memory. The range 0 to 3 represents the columns from 0 to

3.

6.2.2 Inter-cells logic description and in-memory intercon-

nects

Intra-columns, intra-rows and other degrees of Logic-in-memory fall in this category.

In order to describe this design solution a different approach has been adopted, an

approach very similar to one used to describe out-of-memory hardware.

The first section of a .lim file is the init section. The structure is the same as

the init section of an .arch file. Again suppose to have the LiM unit represented in

Figure 6.5. A 4-bits pop counter perform a row-wise bit counting. The following

code represents the init section in this case.

begin init

2

POPCOUNTER bit_counter (4)

4

end init
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As well as in the .arch file, a map section is present also here. In this case the in-

memory interconnects are described. The syntax is similar to previous map section

with some differences. This is due to the fact that the whole of the available ports

include also the input and output ports of the inter-cell logic elements as well as

the direct connection to the memory cell itself to read/write the content. The code

below is the map section referred to the LiM unit in Figure 6.5.

begin map

2

(1, 0 to 3).RW -> (1, 0 to 3).IN2

4

(0, 0).OUT -> bit_counter.IN1

6 (0, 1).OUT -> bit_counter.IN2

(0, 2).OUT -> bit_counter.IN3

8 (0, 3).OUT -> bit_counter.IN4

10 bit_counter.OUT -> (2, 0 to 2).RW

12 end map

Selecting a specific cell or a group of cells has the same syntax of the cells section.

The contribution of the interconnect on the power and delay performance of the LiM

unit is annotated in some objects of type CompiledInterconnect. A much exhaustive

description is provided later.

6.2.3 CompiledLimCell and CompiledLimUnit class

According to the Figure 6.1 an object of type CompiledLimUnit is one of the outputs

provided by the LimCompiler. The Figure 6.6 shows its structure. The instance

name, the memory size and so on are recorded here.

The first focus is on the LiM array. It is a 2D array of pointers to objects of

type CompiledLimCell which will be discussed later. For now it’s enough to know

that an object of this type contains the local logic element of the cell together with

its output interconnects. The array has a number of rows equal to the number of

memory rows, as well as the number of columns is equal to the number of memory

columns. An element points to a non-null object only when some logic is present in

the cell.

Again consider the example in Figure 6.5: the first row of the array will be not-

null pointers while the others three rows will be actually null. Each of the elements

52



6.2 – Logic-in-Memory unit description

Instance name Memory size 
and ports

LiM array Inter-cells logic

CompiledLimCell

CompiledModule

CompiledLimUnit

Figure 6.6: Structure of CompiledLimUnit class. The class contains informa-
tions about the memory itself but also includes in-memory logic description. The
LiM array keeps the inter-cell logic description while a list of CompiledModule ob-
jects contains inter-cells logic elements.

of the first row will have also an interconnects defined.

The second element to focus on is list of CompiledModule objects. This is no

different from the list described in Section 6.1.2. Every time an inter-cells module

is defined in the init section a CompiledModule object is created and pushed into

this list. An interconnects on the output port is defined here too.

Going more in detail a description of the CompiledLimCell class explains how

intra-cell logic description is bring to the Simulator Core. A variable called cell type

can assume a value among the available LiM cell described in Table 6.2. According

to this value a CompileModule object is created. A further information is contained

here that is the output interconnects.

6.2.4 CompiledInterconnect class

CompiledInterconnect objects describes the interconnects inside the LiM unit. Ev-

ery time intra-cell logic element output is connected to any input ports an object of
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this type is created. The length of the interconnects is expressed by x-y coordinates

of starting point and end point. The x coordinate represents the column number.

On the contrary, y coordinate indexes the row.

Being unaware of memory physical dimensions, it is impossible to estimate a

physical length of the interconnect. That’s why the length in annotated as starting

cell position and end cell position in the LiM array. Later the Simulator Core will

compute the effective length of the interconnect according to the height of the rows

and the width of the columns.

6.2.5 Logic-in-Memory pseudo instructions definition

The last section of a .lim file is the operations section. While in the previous section

the description has involved the hardware structure, this section describes what the

hardware can do, defining the so called LiM pseudo instructions.

As discussed in Chapter 5, the operations, or psuedo instructions, form the so

called pseudo instruction set. This set is composed of the Logic-in-Memory pseudo

instructions and the ASIC pesudo instructions which will be discussed later in this

Chapter.

An example of code is reported below.

operation convolute: (0, 0 to 3).lim , bit_counter; [(0, 0 to 3).lim , bit_counter]

The keyword operation precedes the operation name, in this case convolute.

The body of the instruction, i.e. the code after the colon, is divided in two parts.

The first one defines which are the parts of the circuit involved in computation. It

can be said that these modules are active when this pseudo instruction is executed.

This will be useful later in dynamic power computation.

The second part indicates the various paths involved in the computation. In the

case of the LiM unit depicted in Figure 6.5 the path referred to the operation just

described is only one. The signal flows from the first row and second row to the third

going through a XNOR gate and a pop-counter. Knowing that the LiM Compiler

interprets the sequence (0, 0 to 3).lim as a parallel computation of four XNOR,

the execution time of this pseudo instruction is the sum of the XNOR gate delay

and the pop-counter delay.

An example of multiple path instruction will be presented later.
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6.3 – Out-of-memory pseudo instruction definition

6.2.6 LimCompiler

The LimCompiler provides two outputs: the hardware configuration of the LiM unit

by means of a CompiledLimUnit object and a list of pointers to LimOperation. This

data are collected parsing the .lim file.

The first step is to parse the init section. At this moment the list of Compiled-

Module present in CompiledLimUnit object is populated by the inter-cells logic

elements. The procedure is identical to one followed by the Hardware Compiler.

The following section defines the memory dimension and the memory ports. The

LiM Compiler iterates on the parameters in this section and pushes them into the

CompiledLimUnit object. At the end of this section the LiM unit is simple memory

array with a defined size and a certain number of ports according to the parameters

parsed from the .lim file. Some errors can be generate by an incorrect source file.

The most common are related to a wrong parameter name or missing parameter. For

instance, the number of rows and columns is mandatory in the memory definition.

Without these essential values the model cannot be run. Moreover, if any port is

defined, whether it is a read, write or even read/write port, the bit width has to be

defined too.

The cells section is parsed row by row. For every row an intra-cell logic definition

is added to the CompiledLimCell array.

The mapping operation is very similar to the one performed by the Hardware

Compiler. The main difference is in the cell mapping. In this case the LimCompiler

tries to connect the output of the intra-cell logic, or even the memory cell itself, to

one of the other input ports. An error is raised whenever an unknown port is used.

All this section contributes to the composition of the CompiledLimUnit object.

The LimOperation list generation is entirely operations section’s responsibility. Ev-

ery time the LimCompiler finds a pseudo instruction it reads the active cells and the

active modules and pushes them in a new LimOperation object together with the

delay paths. Once the compiler finishes to parse the operation, the LimOperation

object is pushed into the output list of pseudo instructions.
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R1

R2

R3

ADDER
R4

COUNTER

M

Figure 6.7: A simple circuit example with its delay path. The circuit is the
same shown in Figure 6.2. The three possible paths are highlighted in green, red
and blue

.

6.3 Out-of-memory pseudo instruction definition

Similar to the LiM Operations, the out-of-memory pseudo instructions contribute

to the pseudo instruction set. They are also called ASIC Operations in opposition

to the processor instructions. The syntax is similar to the one used for the definition

of a LiM Operation. Consider the circuit shown in Figure 6.7 and suppose to define

a pseudo instruction that perform the addition.

operation add: { COUNTER , M, ADDER , R4; [M, ADDER , R4] [ADDER] [COUNTER , M, ADDER ,

R4] }

Obviously each and every operation is marked with a name, which is add for

the operation above. The content of the curly brackets is the operation body which

can be divided in two section. The fist one lists the part of the circuit involved in

the computation. The second section instead shows the possible path present in the

part of the circuit involved in the computation.
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6.3 – Out-of-memory pseudo instruction definition

6.3.1 Active modules

The modules involved in the computation can be defined as active modules. This

modules are active in the sense that its dynamic power is added to the total power

of the circuit. If a given module is not involved in computation its dynamic power

is not considered. A more detailed explanation will be provided in Chapter 7.

The ASIC Code Compiler checks if all the modules are part of the circuit. If a

module is not in the circuit an error is generated.

6.3.2 Critical path computation

As mentioned before, an operation is defined by some active modules but also by

a certain number of paths. The purpose of this paths declaration is to compute

the execution time, or critical path delay, of the operation. In the case under

consideration there are three paths. These paths can be seen in Figure 6.7.

In the operation body these three paths are listed. Clearly the critical path is

the red one, but in a lot of situations it is not so clear which is the critical path

among all the paths.

The computation of the execution time is a Simulator Core task which knows

the value of the delay for each and every module.
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Chapter 7

DExIMA backend: hardware

models and cycle-based simulator

The core of the estimator is the cycle-based simulator, or Simulator Core. The

structure is shown in Figure 7.1. The Simulator executes a sequence of operations

among those in the pseudo instruction set.

The pseudo instructions are collected in a list of parallel operations. This means

that every location of the vector is a list of parallel instructions. The intermediate

data generated by the three compilers described in Chapter 6 feed the Simulator

Core (on the left side in Figure 7.1).

The first step is to generate the model of the circuit. The list of CompiledModule

objects is read element by element and the models of each and every element is

created. These models are designed starting from a framework called TAMTAMS.

A description is given later in this Chapter.

Then the LiM model is created. The CompiledLimUnit object contains the

guidelines to create the model. The structure of the model, called LimUnit, is

similar to the CompiledLimUnit object. Like the latter it presents an instance

name, a matrix with local computing elements, a list of inter-cell logic elements and

so on. The memory performances are estimated by CACTI, which is an open source

tool.

The bus simulation, instead, is based on look-up tables. The data for these ones

are extracted starting from the simulation described in Chapter 4.

7.1 TAMTAMs-derived models

TAMTAMs is a simulation framework developed at the Polytechnic University of

Turin [19]. The purpose it has been designed for is to better understand what the
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.asicode file
parsing

list of serial pseudo
instructions

list of parallel pseudo
instructions

Cycle-based
SimulatorCompiledLimUnit

list<CompiledModule*>

list<ASICOperaion*>

list<LimOperaion*>

DExIMA
Results

TAMTAMS-
derived models

Figure 7.1: DExIMA backend structure. The back-end includes first of the the
Simulator Core, i.e. the cycle-based execution core.

technology scaling leads. The framework has a main features that make it a perfect

candidate to model in a simple and accurate way the hardware of a generic digital

circuit: the modularity.

Modularity means that every hardware model is designed based on lower level

models. These low level models are, in turn, based on a lower level model until

the transistor level is reached. Let’s suppose to have to model a simple 2-way

multiplexer. A multiplexer is one of the simplest digital circuit. It is made up of

two AND gates, one NOT gate and one OR gate. The high level model uses the
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7.1 – TAMTAMs-derived models

models of the gates to estimate the multiplexer performance. The AND, OR and

NOT gates are, in turn, developed on the model of the transistor which is the lower

level model of the framework.

The modularity is a powerful features. In fact, it allows to easily expand the

software. Moreover, if the model of the transistor is not accurate enough it can be

changed just substituting the relative module without impacting on other modules.

At this moment the NAND is implemented in standard CMOS technology. Noth-

ing prevents to explore new technology such as MTJ (Magnetic Tunnel Junction).

TAMTAMs was initially designed in Octave, a free version of MATLAB. In this

thesis, for convenience, the models have been implemented (as the rest of the code)

in C++ in a simple hierarchical structure. Instead of the the transistor, it was chosen

the NAND-gate model implemented in 27-nm CMOS technology as the lower level

TAMTAMs model.

The choice to start with the NAND-gate model derives from the fact that it can

be used to implement whatever gate you want. Moreover, it is not necessary to

go at a lower level, i.e. the transistor level, because the NAND model seems to be

accurate enough to perform the analysis the simulator has been designed for.

7.1.1 Models design

Given a digital circuit, the first design step is to depict it by hand. Then every

gate is substituted by its NAND-based equivalent circuit. Since the description

must be parametric, also the critical path, power consumption, energy and area

must be parametric too. The model is then an abstraction of a digital circuit and

the performance are computed starting from some parameters. To be more clear,

suppose to have a ripple carry adder. The ripple carry adder is characterized by the

number of bits and by the presence, or not, of the carry input bit that turned it

in a adder/substractor. Clearly the critical path, as well as the other performance

indicators, must be parametrically defined.

At this moment only few models are integrated in the software. Despite this,

a large number of quite complex digital circuits can be described. In the following

these models are described starting from the lowest level model: the NAND.
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NAND As discussed above, the lowest level model is the NAND model. This

model is surely the most complex in terms of number of equations. Moreover, it

is also the most critical as regards the accuracy of the entire estimation of the

performance. In fact, given the gate delay for example, the computation of the

multiplexer delay is quite simple.

The model is based on the physical characteristics of the NAND gate. Starting

from the physical parameters the capacitances are computed and then the perfor-

mance are derived from these capacitances. The model provides 5 metrics:

• area;

• delay;

• static power;

• dynamic energy;

• dynamic power.

The area computation is straightforward, it is simply given by the physical area

occupied by the 4 transistors of the NAND gate. The delay is given by the following

equation.

tnand = CTOT
VDD

Inand
(7.1)

where CTOT is the sum of the output capacitance and the load capacitance of the

NAND gate as it can be seen below.

CTOT = Cout + Cload = Cout + fanout · Cin (7.2)

It can be seen easily that the total capacitance involved in the port switch, and then

in the gate delay, depends on the fanout which is measured in terms of number of

NAND gates driven by the current gate. The current Inand is the gate current.

The static power is computed as the average of the 4 input combinations:

Istatic =
1

4
[(Ioffn +Igatep)+(2Ioffn +Igatep)+(2Ioffn +2Igaten +Igatep)+(Ioffp +4Igaten)]

(7.3)
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Istatic is then multiplied by the VDD to obtain the static power. The dynamic energy

is given by the following equation.

Edynamic = α · CTOT · V 2
DD (7.4)

The dynamic power is obtained multiplying the energy with the frequency:

Pdynamic = Edynamic · f (7.5)

Each and every model is based on the NAND gate or on derived models such as

full adder, half adders, flip flops and so on.

Logic gates The first step to model the standard logic gates is to draw its equiva-

lent NAND based circuit. The Figure 7.2 shows the equivalent circuits for the NOT,

AND, OR, NOR, XOR and XNOR gates.

After that the performance are extracted. The area is simply the total number of

NAND gates multiplied by the single NAND area. The static power is computed in

the same way, i.e. the total number of NAND gates multiplied by the static power

of the single NAND gate.

The critical path delay is computed by simply adding together the delay of the

NAND gates present in the critical path. The dynamic power and energy are similar

to the static power and the area. It is the the sum of all NAND gates dynamic power

and energy.

Table 7.1 shows the logic gates delay. The other performance are very simple to

compute.

Note that in some NAND delay a superscript indicates a x2. It stands for the

fanout of the gate. In fact, according to the Figure 7.2, some NAND gates drive two

other NAND inputs. Of course the NAND load capacitance increases and in turn

the total capacitance increases (see Equation 7.2). This results in an increased gate

delay. As a consequence of the increased fanout, the dynamic energy and power

increase too.

Other models The other models are implemented in the same way. The step are

summarised in the below:
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Figure 7.2: Equivalent NAND based circuit for all the standard logic gates.

• draw the equivalent NAND gates circuit;

• count the number of NAND gates in the the circuit dived per fanout;

• compute the static power and the area according with the total number of

gates;

• compute the dynamic power and energy considering the gates fanout;

64



7.1 – TAMTAMs-derived models

tgate

NOT t
(x1)
NAND

AND t
(x2)
NAND + t

(x1)
NAND

OR 2 · t(x1)NAND

NOR 2 · t(x1)NAND + t
(x2)
NAND

XOR t
(x2)
NAND + 2 · t(x1)NAND

XNOR 2 · t(x2)NAND + 2 · t(x1)NAND

Table 7.1: Summary of standard logic gate delays.

• compute the delay identifying the critical path and considering the gates

fanout.

These are general guidelines to develop a TAMTAMS derived model. For the para-

metric circuit, i.e. those ones in which the circuit size depends on some parameters,

it is slightly different. In fact, the first step is to identify a general equation to

compute the number of NAND gates and their fanout. A simple example can be

the multiplexer.

IN1

IN2

S OUT

Figure 7.3: NAND based 2-way multiplexer.

A simple 2-way 1-bit multiplexer is shown in Figure 7.3. The circuit is composed

of 4 x1 NAND gates. The model of this simple multiplexer is easy to implement.

If the number of ways of the multiplexer increases, the design of the model be-

comes different. In Figure 7.4 is shown a 4-way multiplexer made up by 3 2-way
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multiplexers.

The class Mux has a fixed implementation for the 2-way multiplexer while to

implement a much wider multiplexer the constructor is called again to generate

the model of the 2-way multiplexer, i.e. the real NAND implementations shown

in Figure 7.3, and it is used to generate a structure similar to the one shown in

Figure 7.4.

IN1

IN2

IN3

IN4

S0

S1

OUT

Figure 7.4: 4-way multiplexer. A 4-way multiplexer is made up of 3 2-way mul-
tiplexer.

To be more clear, suppose to want to create a 4-way (the same shown in Fig-

ure 7.4) multiplexer. The object of type Mux is constructed passing the number of

ways as parameter (4). This objects creates an other object of type Mux, but this

time it is created a 2-way mux and its performance are extracted. The performance

of the 4-way mux are expressed in terms of 2-way mux performance. The Table 7.2

summarizes and generalizes for a generic number of ways.

7.1.2 Model class organization

In Figure 7.5 it is shown the class structure of the models. For convenience only

some of them are shown, but the following considerations apply to all the models.

66



7.1 – TAMTAMs-derived models

Area (n− 1) · AMUX(2)

Delay log2(n) · tMUX(2)

Static power (n− 1) · P static
MUX(2)

Dynamic energy (n− 1) · Edynamic

MUX(2)

Dynamic power (n− 1) · P dynamic

MUX(2)

Table 7.2: Summary of n-way multiplexer performance.

SimulatorBaseClass

Mux

Nand

FullAdder

HalfAdderDFF

Figure 7.5: Model class organization. All the model classes (some of them shown
in the figure) inherit from SimulatorBaseClass.

The class SimulatorBassClass is an abstract class inherited by the model

classes. It has 5 implemented public methods:

• float SimulatorBassClass::get area();

• float SimulatorBassClass::get delay();

• float SimulatorBassClass::get static power();

• float SimulatorBassClass::get static energy();

• float SimulatorBassClass::get static power().
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This methods are already implemented by SimulatorBaseClass and are inherited

as they are by the model classes. They return the protected variables associated,

which are area, delay, static power, get static energy and static power

respectively.

The virtual method void SimulatorBassClass::compute performance() is im-

plemented by the model class. In fact, this method contains the hardware models

discussed in the previous sections, then it can be implemented only by the subclass.

For a good number of models the method float SimulatorBassClass::get delay()

is overloaded by the model class. Suppose to have a ripple-carry-adder which is made

up of half adders and full adders. As shown by the Figure 7.6, the critical path is the

one starting from the LSB of one of the inputs to the carry out passing through the

Cin-Cout path of each full adder, except the first one. This path is not the critical

one of the full adder. For these cases the get delay() method in overloaded and

receive the path as parameter.

FA FA FA HA

A B

CinCout

S

A B

CinCout

S

A B

CinCout

S

A B

Cout

S

A(3) B(3) A(2) B(2) A(1) B(1) A(0) B(0)

S(3) S(2) S(1) S(0)Cout

Figure 7.6: A 4-bits ripple carry adder (RCA). The critical path is highlighted
in red.

7.2 From memory to LiM unit simulation

The evaluation of memory performance, bus performance and LiM unit performance

are very important. A change of design paradigm, from von Neumann to Logic-in-

Memory, impacts manly on these three elements. It stands to reason that these

elements are the most critical.

The memory performance are computed by an open source memory simulator

called CACTI. It allows to simulate simple Static RAM, caches and even main
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memories providing access time, read and write energy, static power and area.

The LiM unit is simulated extending CACTI by merging it with TAMTAMS.

In particular, the standard memory operations are simulated by CACTI while the

logic inside the memory array is simulated using the models mentioned above (see

section 7.1.1).

The bus performance estimation is covered by the last section of this Chapter.

7.2.1 CACTI: an open source memory simulator tool

CACTI is a memory simulator designed by HP (Hewlett-Packard). Muralimanohar

et al. has exposed in [20] the capabilities of CACTI. In this thesis work only some

of these features are employed. In particular the scratch RAM simulation is the

most frequently used mode of operation of CACTI. The scratch RAM indeed is a

standard static RAM. This memory is used to simulate the memory performance of

the Logic-in-Memory block.

The tool is run by DExIMA and the output file is then parsed. The data provided

by CACTI are the access time, the area, the dynamic energy for read and write

operations and the static power. After a more detailed analysis some other data can

be extracted. In particular the delay is given by the sum of several contributions,

including the bitline delay, the sense amplifier delay and so on. These metrics are

very important to compute LiM unit performance. In the next section a more

detailed analysis of these features will be provided.

As mentioned before, CACTI is run by DExIMA that takes care of composing

the input file. The first lines are the most important ones and an example is reported

below.

-size (bytes) 16384

2 -block size (bytes) 4

-associativity 1

4 -read -write port 0

-exclusive read port 1

6 -exclusive write port 1

According to the characteristics of memory that has to be simulated, an object of

class ComposeMemoryConfiguration is created and it generates the entire CACTI

input file (.cfg). While the size and the number of ports are easy to understand, the

block size and associativity need a clarification. In fact those data are not defined
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for a scratch RAM, but they are exclusive characteristics of caches. For a scratch

RAM the associativity is set to 1, and the block size is arbitrary.

The other two important parameters to set are the bit-width of the ports and

the cache type which must be set to sram.

7.2.2 LiM unit

The LiM unit can be defined as a magic memory. The evaluation of this unit is very

important since it is a central part of in-memory architectures.

It is made up of a part which simulate the memory behaviour and an other part

that evaluate the logic performance. The memory read/write operations simulation

is a task demanded to CACTI, while the logic simulator is done exactly in the same

way in which the out-of-memory performance are evaluated, i.e. using TAMTAMS

models.

The computing elements are divided in two main categories:

• local computing elements;

• inter-cell computing elements.

The former category contains all the logic present inside the LiM cell. To be more

clear, the logic defined in the section cells of the .lim file. The latter one regards

the logic defined in the section init of the .lim file.

The distinction between these two categories reflects also the class organization.

The LiM cell is described by the class LimCell which model the local logic element

with a TAMTAMS model. The intra-cell computing elements are modelled as a list

of CompiledModule just like the out-of-memory hardware.

The delay and the dynamic power of the LiM unit are computed according to the

pseudo instruction definition. In particular, as discussed in Chapter 6, an operation

is defined by the active part of the circuit and its signal paths. The critical path delay

is computed as the highest one among all the path from all the pseudo instructions.

The dynamic power is computed simply adding together the dynamic power of

the active model for each operation. In other word each and every operation is

characterized by its dynamic power.
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The performances of the memory are obviously affected by the presence of logic

inside the memory array. In order to consider this worsening in performance the

memory access time and power are multiplyied by a corrective factor. This factor

depends on the area occupied by the computing elements.

Furthermore, since the interconnects are very important in LiM unit performance

evaluation, they are modelled carefully. In the next section it will be explained how

they are simulated.

7.2.3 In-memory interconnects

The delay and power due to in-memory interconnects are modelled by their capaci-

tance. Since the port fanout is measured in NAND input capacitance unit, also the

interconnects contribution should be expressed in this unit.

The interconnect contribution is computed in three steps:

• computation of wire length;

• computation of wire capacitance;

• express the capacitance in NAND input capacitance unit.

The computation of wire length is computed considering a manhattan intercon-

nect. Suppose to have to interconnect the cell (0,0) with the cell (15,7). The wire

will start from (0,0) running vertically until the row 15. Here it continues horizon-

tally until column 7. The total length depends on the rows height and columns

width.

Knowing the length the capacitance to substrate can be computed with the

following equation:

C = CSUB0 + Cfringe = ε2
WL

H
+ 2πε2

L

log H
T

(7.6)

where W is the wire width, L is the wire length, T is the wire thickness and H is

the distance from the substrate. These parameters are obviously a consequence of

the technology.
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Once the capacitance is computed, express it in NAND input capacitance unit

is just a matter of scaling the value.

NCNAND
=

C

CNAND

(7.7)

In this way it is expressed simply as an addition of load capacitance.

7.2.4 Bus

An entire chapter is dedicate to the bus (Chapter 4). The simulation of the bus is

crucial and it is also costly. For these reason, the performance of the bus are gathered

in a look-up table (LUT). In this way the access to delay and power related to a

bus transaction are easy to find.

The bus simulation is associated to the LiM unit. Every time a LiM unit is

created a bus is created too.

7.3 Cycle-based simulator

COMPUTE 
DYNAMIC 
ENERGY

SUM TO THE 
TOTAL 

DYNAMIC 
ENERGY

PSEUDO
INSTRUCTION

CODE

Figure 7.7: Cycle-based simulation. The simulator iterates on the operations in
the code by computing its dynamic energy and adding to the total dynamic energy
of the architecture.
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The simulator can be classified in the cycle-based simulators. A cycle is repre-

sented by a pseudo instruction. At every cycle the simulator extracts the dynamic

energy related to the current pseudo instruction and sums it to the total dynamic

energy.

Furthermore the dynamic energy is collected by categories: Logic-in-Memory,

memory, bus and out-of-memory hardware. In this way a better performance anal-

ysis can be done. In fact, it is fundamental to know where the power are consumed

so that some considerations about the implementation can be done. If too much

power is consumed in the bus the idea may be to move some computation inside the

memory. Moreover the LiM unit read and write operation can be too slow due to an

excessive presence of logic. All these consideration can be done only if performance

metrics are divided in categories.

Since the simulation cycle corresponds to the circuit cycle, the execution time is

straightforward computed. It is equal to the critical path, which correspond to the

cycle period, multiplyied by the number of instruction in the code.

T = cp · code lenght (7.8)

Suppose to have a pseudo instruction set composed of 3 instructions. The in-

struction delays of the three instructions are 1ns, 1.5ns and 0.8ns. Since the critical

path delay is 1.5ns, the execution time will be computed just multiplying this delay

by the number of instruction in the code.

The other parameters, area and static power, are computed before the execution

of the code. In fact they are static and therefore independent of the code.
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Chapter 8

BNN: a case study

A Binary Neural Network (BNN) is a neural network in which both the weight and

the input matrix has binary value [21]. Starting from a standard Convolutional Neu-

ral Network (CNN) the input are binarized together with weights. The procedure

consists of two main steps:

• normalization of the input matrix: it means that the input matrix is normal-

ized with respect to the mean value;

• binarization: it consists of substituting the positive values with a logic 1 and

the negative ones with a logic 0.

In this way the convolution layer which is normally a multiply and accumulate

circuit is turned into a XNOR between the filter and the input matrix and then a

bit counting. This reduces the computation cost significantly.

Some important parameters characterize a binary neural network:

• input matrix size n× n;

• filter size m×m;

• stride s.

8.1 Von Neumann implementation

A von Neumann implementation is shown in Figure 8.1. The input matrix is stored

in the memory (blue box) which has 1 read port and 1 write port. The XNOR-net,

which computes the binary multiplication, is composed of m×m XNOR gates. The

output of the XNOR-net feeds the pop counter inputs. The pop counter performs

the bit counting and the MSB, which represents the sign, is stored in a register.
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MEMORY

POP
COUNTER

WR

RD

Figure 8.1: A von Neumann implementation a the convolutional layer of
BNN.

The convolution is done in several step. At the beginning the portion of the

matrix shown in Figure 8.2 is read. This portion of matrix has m rows and has

a bus width number of columns. This portion is stored in the register outside the

memory. A first convolution is done and then the matrix is shifted left. Then an

other convolution is done and so on until the first portion is totally convoluted. The

output data are then stored in the memory.

A new portion of matrix is read from memory and the same procedure is followed

until the matrix is completely convolutes and the output matrix is stored in the

memory.
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m

memory bus width

Figure 8.2: Input matrix blocks.

8.2 In-memory XNOR-net, out-of-memory bitcount-

ing

In the second implementation the XNOR-net is implemented in memory. The matrix

is stored in the memory as rows and columns just like it is for the von Neumann

implementation.

In Figure 8.3, the input matrix (white boxes on grey background) is moved step

by step to the filters (green boxes). The filters are composed of a m×m matrix of

lim-xnor cells (see Section ??). The number of filters per matrix extended row is a

design parameter. For the sake of simplicity in the circuit shown in Figure 8.3 this

parameter is 4, but is most often far greater. Note that the matrix extended row is

a group of m input matrix rows, which is the filter dimension.

Each and every filter cell has a multiplexer on the read/write port, which selects

among the possible inputs of the filter. The Figure 8.3 shows also which matrix

section is moved to the filter. The equation below computes the number of inputs
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Figure 8.3: A Logic-in-Memory implementation of the convolutional layer
of BNN.

per mux:

N
(MUX)
inputs =

n

filters per matrix extended row
·m (8.1)
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The content of the red, green, orange and blue boxes goes to the the multiplexer

inputs of the first, the second, the third and the fourth cell of the first filter respec-

tively. The columns from 4 to 7 will feed the the second filter of the first row and

so on.

After XNOR-computation the results are stored in a different part of the memory.

The results occupy a larger amount of memory with respect to the input matrix. In

fact for each and every convolutional layer output bit the memory has to allocate

m×m bits for these intermediate results.

Once the intermediate results are stored, the memory is read and the bit-counting

is performed out-of-memory by means of a pop counter.

This is a partial in-memory architecture in which part of computation is per-

formed in memory. The convolutional layer of a BNN can be also implemented

entirely in memory.

8.3 In-memory XNOR-net, in-memory bitcount-

ing with extended matrix

The last architecture is implemented totally in memory. The data are read from

or write to the memory during the computation. For these architectures the power

consumption due to both the memory read/write and the bus usage get zero.

To perform the convolution in parallel the matrix has to be store in memory in

slightly different way with respect to the previous two implementations. The matrix

is extended and input matrix element is present more than once in the memory.

Soppose to have a matrix of 8x8 bits and a 2x2 filter. The output matrix of the

convolution layer has 7x7 bits. Each and every bit is computed performing the

XNOR between 4 input bits and the four wights.

The Figure 8.4 shows how the matrix is stored in the memory. The memory

cells containing the matrix are all lim-xnor. They are divided into 7x7 groups which

represent the number of output bits. The outputs of the XNOR gate of every cell

inside a group goes to the inputs of a pop counter as shown in Figure 8.5.
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Figure 8.4: Matrix organization of a LiM based BNN. The matrix is extended
to allow the parallel computation of the XNOR operation.

8.4 DExIMA simulations

Von Neumann LiM 1 LiM 2

64x64 0.295601 ns 0.361886 ns 1.60356 ns
128x128 0.295601 ns 0.520913 ns 2.73599 ns
256x256 0.373833 ns 0.792391 ns 2.44902 ns

Table 8.1: Critical path

Von Neumann LiM 1 LiM 2

64x64 1.301237 µs 0.3828751 µs 1.603565 ns
128x128 5.177164 µs 0.9058676 µs 2.73599 ns
256x256 26.11221 µs 2.450864 µs 2.44902 ns

Table 8.2: Execution time

The three implementations are described to be simulated in DExIMA. They
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Figure 8.5: BNN convolution layer in memory processing elements. The
figure shows the computing element of an in-memory implementation of a BNN
convolutional layer.

Von Neumann LiM 1 LiM 2

64x64 1.382623 · 104µm2 4.787402 · 104µm2 2.539689 · 105µm2

128x128 4.667965 · 104µm2 1.755846 · 105µm2 1.028480 · 106µm2

256x256 1.668747 · 105µm2 7.351387 · 105µm2 1.036889 · 106µm2

Table 8.3: Area

Von Neumann LiM 1 LiM 2

64x64 62.42631 mW 216.2110 mW 756.7076 mW
128x128 59.89511 mW 357.8932 mW 1818.343 mW
256x256 42.42832 mW 528.9544 mW 2031.410 mW

Table 8.4: Dynamic power

Von Neumann LiM 1 LiM 2

128x128 4.540415 mW 62.99049 mW 172.2904 mW
128x128 10.59488 mW 246.8088 mW 289.4778 mW
256x256 32.17326 mW 985.2453 mW 707.4029 mW

Table 8.5: Static power
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Von Neumann LiM 1 LiM 2
Mem LiM Bus Mem LiM Bus Mem LiM Bus

64x64 0.95 0 11.47 1.72 204.0 8.66 0 756.7 0
128x128 1.66 0 10.70 4.02 344.9 7.37 0 1818 0
256x256 2.81 0 7.39 6.42 515.9 5.45 0 2031 0

Table 8.6: Dynamic power per category (mW)

are simulated for different input matrix dimensions but the same filter size. The

simulation parameters are listed below:

• input matrix 64x64, 128x128, 256x256;

• filter size 3x3.

So the different architecture generated are 9. Every architecture is described with

the 4 canonical files: the architecture description, the LiM unit description, the

ASIC pseudo instruction definition and the pseudo code.

The results are reported in the tables below (Tables 8.1, 8.2, 8.3, 8.4, 8.4 and

8.6).

8.4.1 Results

Starting from the Table 8.1 and Table 8.2 it is clear that the critical path delay is

not a significant parameter. In fact, the faster architecture, regardless of the number

of bits, is also the architecture with the higher critical path delay.

This is because in the last architecture (LiM 2) the computation is performed

all in parallel.

Although the last architecture is also the most power consuming, apparently. In

fact, it consumes from 3.5 to 5 times the other architectures. Since it outperforms

the other two architecture by at least 190 times there are room to decrease supply

voltage to decrease the dynamic power consumption.

Even though the architecture LiM 1 has some of computation performed in

memory it consumes at least 25 times the power consumption of von Neumann

architecture, but there is a small advantage in terms of execution time.
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Probably because in architecture LiM 1 it is necessary a bigger memory. The

memory size impacts on the memory performance and the read/write operation are

costly. Against this the parallelism is not sufficient to speed up the computation.

An important point is that the critical path in von Neumann architectures is

given by the out-of-memory circuit for the two smaller design, while for the last one,

i.e. 256x256, the critical path becomes the access time.

Even this simple application, the convolutional layer of a BNN, presents some

unexpected results.
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Conclusion

The thesis goal was initially to find a generic structure that complies with the

requirements of an in-memory architecture. Starting from CLiMA, the architecture

proposed in [1], it has been develop a LiM-based architecture model as generic as

possible. In this architecture they are taken into account almost all the possible

form of computation. This model has to be thought as a set of empty boxes. The

task to fill in the boxes is demanded to the designer.

Soon, the need to develop an architectural-level simulator specifically design to

evaluate in-memory architectures performance came out. A tool that can answer

some design question. What should a specific box contain? Where is it better to bind

a given operation? Should this implementation fine also for a larger amount of data

involved in computation?

DExIMA should assist the designer and should help him or her to answer the

above questions.

In Chapter 3 there are exposed the required features that this tool was supposed

to have:

• configurability;

• ability to describe the execution of an algorithm;

• a sufficient number of available models;

• mantainability.

The configurability has been achieved introducing 3 input files that are used to

describe the out-of-memory hardware, the LiM unit configuration, the operations

that can perform and the definition of the out-of-memory pseudo instructions.

The fourth file guarantees the ability to describe the execution of an algorithm.

It describes the execution of an algorithm step by step using the pseudo instructions

selecting them among the pseudo instruction defined by the pseudo instruction set.

The number of available models is sufficient to model most of circuits but they

will never been enough. Although, the most frequently used circuit are implemented:
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flip-flop, full adder, half adder, ripple carry adder, counters, logic gates, booth

multiplier and so on.

However, the implementation of an additional model would change mainly the

front-end of DExIMA. In fact it should be defined a proper keyword, its parame-

ters and its ports. Furthermore, the model has to be design similar to the other

models. It should be a class inherited from the SimulatorBaseClass class and the

performance equation has to be included in the method compute performance.

Further improvements

DExIMA is composed of about 65 C++ classes. This is the first version of the

software. It can be said that it is the β-version. Like all the β-version there are, of

course, several problems that should be solved in the next versions.

Parallelization The tool is really too slow when the circuit becomes large. Both

the parsing of the input files and the execution of the pseudo instructions have

high computational cost. In fact the input files can be even very large reaching

many hundreds of thousands of lines generating list of objects, manly LimCell,

CompiledModule and SimulatorBaseClass).

A solution can be to parallelize the parsing of the file in which most of times a

line is independent of all others. Similarly the execution of the code can be done in

parallel because the execution of an instruction doesn’t compromise the execution

of an other instruction.

Syntax improvements In order to speed up the simulation somethings can be

done on the input file syntax. As mentioned before the input files can be very large.

This is manly due to the minimal syntax. In the code description it is impossible

to use any kind of loop. Also in the description of hardware, both in-memory and

out-of-memory, there’s no possibility to generate the same module multiple times.

It is not rare to have tens of parallel identical flip flop that would be easily

described with a loop with some lines of code. Now, they have to be defined using

one line per flip flop.
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Better integration between CACTI and LiM unit simulation A strong

limitation is the poor integration between the model of the memory and the model

of logic inside the memory. In fact some consideration about how the memory

performance gets worse by including computing elements in memory are not precise.

At this moment the memory delay and power consumption are evaluated accord-

ing to the memory area increment. Although this is a good idea, that gets closer to

the reality, it is difficult to evaluate how much is this contribution.

Fortunately, CACTI is open source and it can be changed to meet the Logic-

in-Memory requirements. It would be a good idea to turn CACTI in a LiM unit

simulator and not just a conventional memory simulator.

Better front-end In some cases, the three compilers doesn’t help the user. When

long compilation processes are running, DExIMA seems to do nothing even when it

is working well. Maybe some outputs showing the progress of the compilation can

be helpful.

At the same time when long simulation are started there are no information

about the number of instructions executed among all. It would be better to show

some minimal indication about the simulation.
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