
Politecnico di Torino

Master of Science in Electronic Engineering

Developement of RISC-V based System Controller

for Coarse Grain Reconfigurable Architecture

Supervisors:

Prof. Luciano Lavagno

Prof. Ahmed Hemani (KTH Stockholm)

Student:

Riccardo Cappai

Abstract

As of 2019, RISC-V Instruction Set is drawing more and more attention

among companies and academia. Due to the fact of being easy to use and

not proprietary, it allows developers to create cheaper designs without the

limitation of proprietary Instruction Set Architecture (ISA), enabling even

faster innovations. The Instruction Set is composed of a very basic one and a

lot of independent addable extensions, allowing developers to customize the

ISA in order to fit their needs.

At the same time, the ASIC industry is struggling to adapt its methods to

always larger designs. The introduction of standard cells allowed a decrease

in design complexity, but since then the designs grew from a complexity of

O(10K) gates to O(10/100M) gates.

In this thesis work, a design of a RISC-V processor is made adaptable to

the SiLago design methodology, developed by KTH university with the goal

of adapting the present needs of the VLSI community. On top of that, a

new algorithm for an adaptable Network on Chip is proposed. The RISC-V

component and the Network on Chip router have been designed down to

their GDSII files following the SiLago flow.

1

2

Contents

1 Introduction 5

1.1 Objective and organization . 5

1.2 Organization . 6

1.3 State of the art . 7

1.3.1 History of VLSI automation 7

1.3.2 Instruction Set Development 13

1.3.3 Interconnections on System on Chips 18

2 SiLago framework 29

2.1 Description of SiLago framework 29

2.2 Silago Design Flow . 30

2.3 Silago Environment . 35

3 SiLago System Controller 39

3.1 Processor decision . 39

3.1.1 RISC-V project . 40

3.1.2 RISC-V Insruction Set 41

3.1.3 Core decision . 45

3.1.4 RV32I Instruction Set 48

3.2 Architecture of SiLago processor 51

3.3 Software side of SiLago Processor 56

3.4 Network on Chip communication 58

3

4 CONTENTS

4 SiLago Global Network on Chip 61

4.1 Network on Chip for VLSI design 61

4.2 SiLago Global Network on Chip 63

4.2.1 Packet Switch . 63

4.2.2 Circuit Switch . 65

4.3 Global NoC Routing Algorithm 67

4.3.1 Topology . 67

4.3.2 Routing . 70

4.3.3 SiLago NoC Algorithm 74

4.4 Limitations and deadlock analysis 83

4.4.1 Deadlock solutions . 87

5 Conclusion 89

5.1 Simulation . 89

5.2 Logic Synthesis . 89

5.2.1 RISCV processor . 90

5.2.2 SiLago Global NoC router 91

5.3 Physical synthesis . 94

5.3.1 RISCV processor . 95

5.3.2 SiLago Global NoC router 98

5.4 Future improvements . 100

Chapter 1

Introduction

1.1 Objective and organization

The aim of this thesis is to describe and contextualize the work done on a

RISC-V processor and the development of a Network on Chip algorithm and

its implementation.

One of the most compelling problems of ASICs (Application Specific In-

tegrated Systems) is the growing cost of designs [4] that limits their usage.

With the introduction of standard cells, a similar problem was solved: in or-

der to cut a design phase (e.g. achieve a cheaper design flow), a performance

cost was paid. SiLago, a project developed by the Department of Electronics

at KTH, tries to mimic that approach to solve today’s problems. By using

atomic blocks larger than standard cells, designs in the order of O(10M)

gates can become more affordable by cutting another phase of design, in or-

der to let ASICs be used to reach the better performance that they bring

compared to general purpouse processors.

One of the beliefs behind the SiLago project is that today’s architectures

need to be more hardware-centric (Hardware accelerators are supposed to

5

6 CHAPTER 1. INTRODUCTION

do most of the work), so that software is only responsible for control and

communication between the accelerators and memory (or other accelerators).

In the software realm RISC-V is one of the newest Instruction Set developed

(It got introduced in 2010 at the University of Berkeley). Due to the fact of

being open source and modular, it fits the needs of a SiLago processor able

to take care of the control and communication duties of the chip.

The communication duties are also fulfilled thanks to a Network on Chip

that operates on two levels. One is primarily used to initialize, control and

configure region instances, instantiate and terminate applications under the

control of the RISC-V processor, the other is used to exchange data between

regions, and whose connections can be changed at run time.

1.2 Organization

This work is divided in five chapters. In this first one the background behind

the thesis is explained. Each section prepares one of the following chapters.

”History of VLSI automation” 1.3.1 is related to the SiLago project, ”In-

struction Set Development” 1.3.2 explains the reasons why a push for open

source ISA was necessary in the industry, and ”Interconnections on System

on Chips” 1.3.3 explains the history of interconnections within systems on

chip, from shared buses to Networks on Chip.

The second chapter gives a overview on Silago, a project carried out by the

Department of Electronics of KTH, and explains in which way it solves the

problems of the standard cell based design flow for Very large Scale Integra-

tion (VLSI) designs.

The third chapter gives a short overview of the RISC-V project and describes

the work done in the thesis on the processor side, from the high level C++

code, to the Network on Chip interface hardware that handles the commu-

nication within the chip.

The fourth chapter is dedicated to the work done on the SiLago Global Net-

1.3. STATE OF THE ART 7

work on Chip. There a description of the communication protocol is given,

as well as a description of the new algorithm developed. At the end of it, a

deadlock analysis of the algorithm is presented, in which the limitations of

the new work are highlighted.

The fifth and last chapter covers the design stages followed during the thesis

work, in particular simulation, logic synthesis, and physical synthesis. At the

end of the chapter, future improvements of the work are suggested.

1.3 State of the art

1.3.1 History of VLSI automation

This section contestualizes standard cells and their historic role in VLSI

automation. At the end an argument to raise the abstraction level from

standard cells is presented.

In order to get an ASIC design, different steps are necessary. The next

figures describes their relationship and how the space of solution varies with

each step of abstraction.

In figure 1.1 it can be seen how a system comprises several application.

Each application can be described by means of different algorithms. An

example would be an application for sorting. One can use different algo-

rithms to do so: quicksort, bubble sort, binary search, linear search, radix

sort, and others. Each algorithm can then be realized with different RTL

(Register Transfer Level) descriptions using different HDLs (Hardware De-

scription Languages) or with the usage of High Level Synthesis tools, for

more complicated designs. Examples would be commercial tools like Stratus

by Cadence (C/C++/SystemC description to RTL) and VivadoHLS by Xil-

inx (C/C++/SystemC description to VHDL/Verilog/SystemC), or academic

8 CHAPTER 1. INTRODUCTION

Figure 1.1: Abstraction level from a system to its physical implementation

tools like DWARV by TU.Delft.

Each RTL architecture can be mapped to several different gates structure.

Each design differs by the type of target and by the tools and methods used.

For FPGA (Field Programmable Gate Arrays) targets there is Quartus II by

Altera, Vivado by Xilinx, and others. For ASICs some examples are Design

Compiler by Synopsys and Genus Synthesis Solution by Cadence, which is

the one used in this thesis.

At the end of the chain there is the actual physical implementation in which

the actual geometries of the architecture are shaped out as well as the clock

tree and metal layers. Tools for this synthesis phase are developed by Ca-

dence, Synopsys, and others.

1.3. STATE OF THE ART 9

Figure 1.2: Limit of global solutions with each synthesis step

From figure 1.2 it can be seen how from each step of the synthesis, the

number of possible solutions available goes down as the abstraction level be-

comes lower. This is because as the abstraction level goes down, less variables

can be changed within the representation. For example, a netlist (Output of

logic synthesis) will have a certain number of physical implementations de-

pending on some variables in the physical synthesis. If the abstraction level

is raised to the algorithmic one, the number of physical implementations will

be considerably higher because now, other than the variables already men-

tioned, there will be also the ones from logic synthesis.

10 CHAPTER 1. INTRODUCTION

The method described in figure 1.1 used to be done all manually with the

usage of Stick Diagrams and Silicon Compilers. The workflow was described

in the book [1]. Eventually with the increase of complexity of designs it was

necessary to automate some of the processes. That’s why when the number

of gates for designs became O(10k) the introduction of the so called standard

cells was necessary, as explained in [2] and [3]. The introduction of standard

cells cut down the design space by freezing the leaf nodes in figure 1.1 with

a one-time engineering effort. The result of that was a method able to elimi-

nate one stage of verification (e.g. reduce the engineering cost) and improve

the engineering efficiency in spite of a loss in customization possibilities. Less

customization means mainly a loss of optimization capabilities.

In short standard cells:

• Abstracted away the circuits and the physical design details enabling

logic synthesis at gate level;

• Introduced a standard layout for placement enabling physical design

automation (figure 1.3);

• Allowed a more reliable verification system at higher abstraction levels;

• Achieved an higher precision for power and timing analysis;

• Increased power consumption and area usage as a tradeoff.

Nowadays designs are in the order of O(10M) gates and the favorable

improvements of the introduction of the standard cells are less visible.

Figure 1.4 shows the trend of the cost of ASIC designs for different tran-

sistors technology. The cost is increasing and how it is suggested in [4] one

of the reason of that increase is that the granularity of standard cells is not

enough to substain today’s state of the art in VLSI design.

Different solutions have been proposed to raise the abstraction level from

1.3. STATE OF THE ART 11

Figure 1.3: Example of standard layout automation. In blue power lines, in red

vias of communication, in grey standard cells which all have the same height and

differ by width

standard cells ([6],[7]). The solution presented in 2.1 is the one used in this

thesis.

12 CHAPTER 1. INTRODUCTION

Figure 1.4: Cost of ASIC designs divided into different phases of realization, from

[5]

1.3. STATE OF THE ART 13

1.3.2 Instruction Set Development

In this paragraph, an overview of Instruction Sets history is given, from CISC

to RISC and the latest call for Open Source Instruction Set Architecture is

reported.

An instruction set architecture is the set of instructions needed by a

processor to operate. It defines addressing modes, data types, memory ar-

chitecture, interrupts, and other characteristics proper to the processor. It’s

the interface between a machine’s hardware and the software.

Historically machines have been of the CISC type. CISC stands for com-

plex instruction set computer. Examples of CISC machines are the following

[8]:

• VAX 11/780 [9] ,[10]

– 303 instructions;

– Instruction size not constant (from 2 to 57 bytes);

– Instruction format not fixed;

– 22 addressing modes;

– 16 general purpose registers;

– Developed in 1978.

• Intel 80486 [11]

– 235 instructions;

– Variable instruction size (1 to 11 bytes);

– Not fixed instruction format;

– 11 addressing modes;

– 8 general purpose registers;

14 CHAPTER 1. INTRODUCTION

– Developed in 1989.

• IBM 370/168 [8]

– 208 instructions;

– Not constant instruction size (From 2 to 6 bytes);

– 4 addressing modes;

– 16 general purpose registers;

– Developed in 1973.

In the examples posted it can be seen how CISC machines have a large

number of instructions and very limited general purpose registers. Also they

have a variable instruction size and multiple addressing modes. The reason

for these choices can be understood with the historical context in mind. Back

when the computers listed above were developed, memory was a very critical

component. Figure 1.5 shows the cost of memory devices throughout the

years. The key column is the cost per MB that has been going down thanks

to Moore’s law. Designers’ goal was then to minimize memory consumption

(e.g. shorter code size) and maximize work per instruction [12].

Over the years, a new generation of processors has tried to take over

the CISC machines. As written before memory cost has gone down thanks

to Moore’s law. Also, different studies showed how computers effectively

used few instructions for most of their execution time. Patterson in [14] and

Anderson in [15] noted how in a particular IBM 360 compiler, only ten in-

structions accounted for more than 80% of the execution time. Also, for a

IBM 370 program (COBOL), Shustek [16] reports that it uses only 84 of the

183 instructions. Other than that, only 26 instructions account for 90.28%

of the total execution time.

1.3. STATE OF THE ART 15

Figure 1.5: Cost of selected memory devices, from Chapter 4 of [13]

16 CHAPTER 1. INTRODUCTION

The two evolutions (cheaper memory and realization of underused instruc-

tions) brought a new generation of processors. RISC (Reduced Instruction

Set Computer) started to be developed and the core ideas, as highlighted in

chapter 10 of [10] were:

• A small pool of instructions;

• A standardized instruction format;

• Direct hardware instruction execution (In contrast to CISC’s micropro-

grammed instructions);

• A limited number of addressing modes;

• Load/store architecture with register to register arithmetic instruc-

tions;

• Small, fixed instruction cycle time.

Jamil in [12] also highlighted the presence of more registers in RISC archi-

tectures and their philosophy to ”Move all functions to software”. Down

below a list of RISC architecture taken from [8] will be presented. The main

differences to be noted from CISC to RISC is the instruction number, the

limited addressing modes, the number of registers, and a constant instruction

format.

• Sun SPARC

– 52 instructions;

– Constant instruction size of 4 bytes;

– Two addressing modes;

– Up to 520 general purpose registers;

– Developed in 1987.

1.3. STATE OF THE ART 17

• PowerPC

– 225 instructions;

– Constant instruction size of 4 bytes;

– Two addressing modes;

– 32 general purpose registers;

– Developed in 1993.

• ARM

– 122 instructions (Some versions provide subsets);

– Instruction size of 4 bytes (standard) or 2 bytes (Thumb instruc-

tion set);

– Fixed instruction format (But different between standard and

Thumb);

– Three possible addressing modes;

– 31 general purpose registers.

Although RISC architectures can be seen as an evolution of CISC, the evo-

lution has been slow because of the retro-compatibility problem: RISC ma-

chines can’t run CISC programs. As noted by Asanović (2014) in [17], mod-

ern CISC machines have solved the compatibility problem designing CISC

that have an outer shell that translates CISC instructions into easier to ex-

ecute ones (micro-ops or µops).

Asanović, in the same paper, explains the state of the art of ISAs and

advocates for the introduction of Open Source ISAs, in particular RISC-V.

The main point raised are the long negotiations and high prices of licenses

(That are not compatible with the always shorter time-to-market), the obso-

lescence of proprietary ISA like ARM and 80x86, and the risk of the company

owning an ISA shutting down.

18 CHAPTER 1. INTRODUCTION

1.3.3 Interconnections on System on Chips

The aim of this section is to list the evolution of interconnections on SoCs

and to explain why Network on Chips have become the preferred way of

communication in the realm of VLSI design.

Historically SoCs’ interconnects have been a mix of point-to-point con-

nections and shared bus, as explained by Bjerregaard and Mahadevan in [18].

The two kinds of connection are illustrated in figure 1.6. In the figure a Sys-

tem on Chip for a simple traffic light controller is presented. On the left a

shared bus is used to interconnect all the components, on the right a point-

to-point communication is used. Each of the two methods was valid at the

beginning of SoCs because interconnections were not a critical component in

neither timing nor power consumption.

Nowadays connections between parts brings the majority of energy dissipa-

tion, per [19]. Figure 1.7 from [20] describes the difference on power dissipa-

tion between technology nodes 10 years apart (11 nm from 2018 and 45 nm

from 2008). It can be seen how, throughout the years, the employment

of smaller transistors brought a drop in computational power (From about

100 pJ to less than 10 pJ), but it didn’t change the power cost of intercon-

nects. The table in the same figure shows that the delay numbers got worse

when a smaller transistor width was used (From 130 nm to 55 nm).

Figure 1.8 shows a more complete point of view of communication power

costs and how it fails to scale down with the transistor width. As of 2008

a floating point operation (DP flop) was as costly as moving 64 bit through

15mm of chip. The same operation scaled to 2018 technology has similar

power requirement as moving 64 bit through 5mm of a chip.

It can be understood then how the effects of technology scaling are very

successfull on the computation realm but fail to maintain the same scalabil-

1.3. STATE OF THE ART 19

Figure 1.6: Example of point-to-point only communication (right) and shared

bus based communication (left), typical of Systems on Chip in the 90’s

20 CHAPTER 1. INTRODUCTION

Figure 1.7: Trend of power dissipation between the 45 nm (2008) and the

11 nm (2018) node and delay estimation between the 130 nm and the 55 nm

node, per [20]

1.3. STATE OF THE ART 21

Figure 1.8: Trend of power dissipation for different communication operations

between the 45 nm (2008) and the 11 nm (2018) node, per [21].

ity when it comes to interconnects. Architectural improvements of intercon-

nects have been employed. From point-to-point communication, shared bus

became the standard way to globally connect different parts of SoCs. Many

companies employed their own Intellectual Properties on bus arbitration and

methods of bus communication. One of the most famous one was the ARM’s

Advanced Microcontroller Bus Architecture (AMBA) presented in 1996 [22].

When multicore and multiprocessor architectures began to spread, the

bus type of communication stopped to be the most preferred method of

global interconnects in SoC design, as Aaron Boxer explains in [23].

With multiple processors, the arbitration time and latency figures were too

high for buses so crossbars became the standard ways of global interconnects

on Systems on Chips. An example of crossbar is in the UltraSPARC T2 [24]

produced in 2007 by Sun Microsystem. In the figure 1.9 it is possible to see

22 CHAPTER 1. INTRODUCTION

the structure and the benefits of the crossbar scheme. Each of the 8 cores

can be connected to each of the level 2 cache bank allowing a maximum of

8 load/store request per clock cycle from the cores and 8 returns from the

cache banks.

A crossbar can be idealized as a series of multiplexer, each set of multiplexers

decides what core to connect to a specific cache block (and viceversa, what

bank to connect to a specific core). The scheme of the crossbar, taken from

[25], is presented in figure 1.10.

Crossbars are a very powerful solution for interconnects but they have

several problems. Those limitations, explained below, are worsened by the

advancement of technology.

• Crossbars require a lot of wires to function, and they don’t scale well

when new blocks are added;

• They need to be designed specifically for the network and they don’t

have any re-usability (a crossbar between a microprocessor and memory

can not be used for the connection between the microprocessor and a

timer);

• Cascaded crossbars are able to reduce wires but they are likely to limit

the maximum frequency of the system;

• Crossbars between N elements require N multiplexer sets, and each set

needs to be connected with wires to both N components and a logic

block to decide the direction. On top of that most wires in today’s

technology require repeaters (As represented in 1.11)

1.3. STATE OF THE ART 23

Figure 1.9: Scheme of the UltraSPARC T2 from Sun Microsystem, from [24].

24 CHAPTER 1. INTRODUCTION

Figure 1.10: Scheme of the UltraSPARC T2 crossbar, from [25]. The crossbar

works is bidirectional from the cache banks to the cores and viceversa

1.3. STATE OF THE ART 25

Figure 1.11: Projected relative delay for local and global wires with and

without repeaters at different technologies, per [26].

26 CHAPTER 1. INTRODUCTION

To solve the problems highlighted above, network-on-chips were devel-

oped.

An example of network on chip is showed in figure 1.12. Each block of the

system has an extra component called network interface that takes care of

the communication between a block and the network on chip. The network

on chip itself is an array of routers.

The routers are less in number than possible crossbars and wires are less

than in a crossbar system. The routers are consisted of logic to route the

information towards their destination and they can also have a small memory

to hold values in case of congestion. Each router can be used by possibly

all the blocks of the system (solving the re-usability problem and enabling

a resource sharing system). The big limitations of the network on chip is

the possibility of deadlocks (Avoidable most of the time if a smart routing

algorithm is chosen) and a variable latency.

In spite of their problems, network on chips have become the standard

in chip communications, especially in big systems in which different blocks

are physically far apart. In chapter 4 different routing algorithms and NoC

topologies will be presented and the architecture of the Silago Global Net-

work on Chip will be explained.

In this first chapter, the background of the thesis was explained, as well as

the context behind the choice of technology used. The next chapter instead

will focus on the SiLago project, developed by the Electronics Department

of KTH university.

1.3. STATE OF THE ART 27

Figure 1.12: An example of a 3x3 regular Network on Chip

28 CHAPTER 1. INTRODUCTION

Chapter 2

SiLago framework

This chapter is threefold. At the beginning, a description of the SiLago

framework is given, as well as a list of motives behind the project.

The second section tries to state all the steps necessary to create a SiLago

instance, and in what way it solves the problems stated in section 1.3.1 with

standard cells.

The third and last section is dedicated to the two tools of SiLago (VESYLA

and Sylva), and how they are used in order to create a SiLago instance.

2.1 Description of SiLago framework

SiLago is a project carried out by the Department of Electronics, school of

ICT, from KTH university. Its objective is to develop a new method for de-

signing VLSI architectures in a cheaper way than the existing ones. This is

possible thanks to a structured grid based physical design scheme (Linked to

the synchroricity property) and a higher abstraction level for Physical Design.

The need of a change in the way VLSI design is done was explained in

1.3.1. Silago tries to introduce, as highlighted in [4]:

• An approach in VLSI design hardware-centric where functionalities are

29

30 CHAPTER 2. SILAGO FRAMEWORK

mainly mapped to coarse grain reconfigurable fabrics and a small pro-

cessor is used mainly for control. This is in contrast with the current

approaches that use multi-processors, in which most of the functionali-

ties are implemented, and specific hardware accelerators used for power

and performance critical applications.

• A fully customizable architecture for computation, control, storage, in-

terconnect, and address generation. This is in contrast with the current

customization centered only on computation optimization.

• A runtime customization for what concerns parallelism and the voltage-

frequency operating point.

• A design methodology which is orders of magnitude more efficient than

the standard cell based EDA flow, achieved by raising the level of ab-

straction from standard cells to micro-architecture level SiLago blocks.

In this chapter the SiLago design flow and its environment will be presented.

A more complete description can be found in [4], [27], [28], and [29].

2.2 Silago Design Flow

In section 1.3.1, it was explained how standard cells became the preferred

way to do VLSI design and how their benefits are becoming less as designs

get bigger. Silago tries to replicate those benefits and apply them to today’s

designs scale.

Figure 2.1 visualizes the differences between the Silago method and the cur-

rent Standard Cells based flow. On the left it can be seen that the standard

cells novelty was the freezing of the lowest granularity possible (Physical

level) and the creation of libraries that couldn’t be changed by EDA tools.

What Silago aims to do is the creation of libraries for larger objects (4-5 or-

ders of magnitude larger per [28]) and make them the atomic building blocks

2.2. SILAGO DESIGN FLOW 31

Figure 2.1: Comparison between Standard Cells design flow (a) and Silago design

flow (b) from [4]

for VLSI designs. On the right it can be seen that the Silago method aims to

raise the abstraction level to RTL level. This choice causes a series of effects:

• Bigger atomic building blocks for VLSI designs;

• Interconnections between standard cells and clock tree synthesis are

designed and verified a priori;

• EDA tools have a lower design space to explore;

• The difference between the highest abstraction level (System) and the

lowest (In this case RTL) in the new flow is greatly reduced.

With bigger atomic building blocks, each Silago instance defines a mi-

croarchitecture operation rather than the boolean ones of standard cells.

32 CHAPTER 2. SILAGO FRAMEWORK

And inside a block the clock-tree and interconnections are already designed

and most importantly verified.

In addition to that, input and output pins are placed in such a way (on the

right metal layer and on the right position) that two Silago blocks, if neces-

sary, can be placed one next to the other without the need of other logic or

physical synthesis. This ensures a correct by construction design that doesn’t

need an extra round of verification that standard cell designs need (The post

physical verification, a costly task as highlighted in 1.4).

Figure 2.2: A comparison between standard cell based designs (a) and Silago

design with physical regularity in interconnections, from [28]

The concept of physical regularity in Silago is described in [28] where

also the syncroricity property is defined. The effect of that is that at a global

level, point-to-point connections are forbidden and regular interconnection

patterns are defined, as it can be seen in 2.2.

The physical discipline ensures that a Silago cell can be fully characterized

and its metrics correctly estimated. In [28], Hemani et al. argue that by rais-

ing the abstraction level to RTL and using Silago blocks instead of standard

cell designs, the estimation of energy can be up to two orders of magnitude

2.2. SILAGO DESIGN FLOW 33

better than standard cell based high level synthesis tools.

This last result is very interesting because it allows high level synthesis

tools to have a more realistic idea of the characteristics of a design at a very

high abstraction level. The fact that power estimation is more reliable at the

RTL level means that more savings can be done if correct design choices are

taken.

To do a computer science comparison, the choice of an algorithm to do a

certain action (A merge sort instead of a bubble sort) can bring more energy

saving than the choice of the variable length within the code.

Figure 2.3: Findigs of Hemani et al. in [28] for what concerns the error in energy

estimation and synthesis speed

On top of having a more reliable power estimation, the SiLago framework

of high level synthesis allows solutions to be evaluated in a shorter time. In

the same paper, Hemani et al. state that the SiLago method brings a three

orders of magnitude improvement in synthesis speed. Figure 2.3 shows their

findings in both energy estimation (a) and synthesis speed (b).

The benefits of the SiLago solution come with some drawbacks, that will

34 CHAPTER 2. SILAGO FRAMEWORK

be stated here and then explained:

• Area and power consumption overhead with respect to standard cells

ASIC flows;

• Lower design space explorable;

The area and power consumption overhead comes from the syncroricity prop-

erty and for the library of blocks created with a one-time-engineering effort

(e.g. non modifiable).

In [28] it is stated that the area underutilization is on average of 35% on the

applications explored. In [27] an area overhead average of 54% is reported,

while Jafri, Farahini, and Hemani [29] registered an average of 50% in the

same metric.

Hemani et al. in [28] note that similar drawbacks were also present when

standard cells were first introduced [30], but despite that not only standard

cells were accepted in the ASIC community, but they became the benchmark

for ASIC applications.

The other drawback is related to the lower design space explorable by the

high level synthesis tool. This comes from the fact that designs are frozen

at a RTL level rather than at the standard cells level of today’s designs. In

fact the number of solutions possible for a design is in the order of

O((((P S)M)L)A)

where A is the total number of applications in a system, L is the total number

of possible algorithms, M is the micro-architecture level operations, and P is

the physical design options of the standard cells.

The Silago solution reduces the design space to

O(ML)

2.3. SILAGO ENVIRONMENT 35

where M is the number of implementations of the same function present in

the library of Silago blocks and L the number of application needed by the

system. The number of possible solutions is significantly lower but by having

a more precise estimation of the energy consumption of each Silago block

the high level synthesis tool is able to make better choices to meet the con-

straints.

Other than that, the amount of saving possible at RTL level is significantly

more than the one achievable at physical level [27].

At last it should be noted how the Silago method enables a faster synthesis

(2.3), therefore more solutions can be evaluated in a shorter time than com-

mercial HLS tools. The shorter time allows the Silago HLS tool to also ex-

plore global optimization at algorithmic level, something not always present

in commercial HLS tools [27].

2.3 Silago Environment

The Silago method utilizes two main tools: VESYLA [31] [32] for the arith-

metic level synthesis (High Level Synthesis) and Sylva [33] [34] for application

level synthesis.

Figure 2.4 describes the structure of the flow. As a foundation, the Silago

Physical Design Platform has to be defined. In that part of the flow, Silago

blocks like DiMarch (Distributed Memory Architecture), DRRA (Dynamic

Reconfigurable Resource Array), NOC, and flexilators (Small processors used

for support and control operations) need to be defined down to their physical

description.They need to be compliant to the SiLago methodology and fully

characterized.

Each block is then used by the High Level Synthesis Tool Vesyla in order

to create the FIMP (Function Implementation) library. What the tool does

is an arithmetic logic synthesis of algorithms defined in MATLAB. It then

writes the Configware necessary to run the blocks and does the binding and

36 CHAPTER 2. SILAGO FRAMEWORK

Figure 2.4: The Silago flow from standard cells description to final GDSII and

reports

hardware allocation. The output of VESYLA is a certain amount M of FIMP,

each of them differing in terms of parallelism and architecture, therefore car-

rying different cost metric. The entirety of the flow described above is part

of the One Time Engineering effort required by the Silago flow in order to

create the FIMPs library. After that, the application level synthesis can take

place.

Sylva is the application level synthesis tool used by Silago. It performs

the mapping of the FIMP library depending on the constraints and algo-

rithms dictated by the system model. It does so by evaluating a number

of combination of FIMPs (ML if M is the number of FIMPs per algorithm

and L the number of algorithms needed by the application) and selecting the

optimal one based on their metrics (energy consumption, latency, and area).

Sylva also takes care of the global interconnections (The Global NOC which

will be explained in chapter 4) and the floorplanning. At the end of the flow

2.3. SILAGO ENVIRONMENT 37

a GDSII Macro is produced along with reports on power, latency, and area.

The objective of this thesis is to create SiLago blocks for the system con-

troller and the global NOC, from RTL down to physical synthesis. In the

following chapters, the two type of blocks will be presented, and the method-

ologies used to design them explained. In particular the next chapter will

take care of the system controller, which will use the RISC-V Instruction Set.

38 CHAPTER 2. SILAGO FRAMEWORK

Chapter 3

SiLago System Controller

In this chapter the system controller made for Silago will be presented and

the methodologies used to make it usable by Silago explained.

The first section will give an overview of the RISC-V project and the very

processor used for the thesis.

Then two sections are dedicated to the architecture of the processor and the

software characteristics of it (What happens from the C++ code to the bi-

nary file that is used at run-time by the processor).

The last section takes care of the network interface from the RISC-V proces-

sor to the Network on Chip architecture.

3.1 Processor decision

In section 1.3.2 it was explained how the industry moved to RISC architec-

tures and why a call for open source ISAs was made by Asanović [17]. One of

the objective for this thesis was to get over the LEON3 implementation for a

system controller already present and introduce a RISC-V based controller.

In the next section, an overview of the RISC-V project will be given.

39

40 CHAPTER 3. SILAGO SYSTEM CONTROLLER

3.1.1 RISC-V project

RISC-V is a project carried out by the University of California, Berkeley.

It started in 2010 and it was originally designed to support education and

research. Their core motives and goals were described in [35], [17], and [36]:

• Create an ISA free and open source;

• Support both 32 and 64 bits address space;

• Provide a small but complete ISA which allows very different imple-

mentations (ASIC, FPGA, or full-custom);

• Support the IEEE 754-2008 floating point standard;

• Create an ISA fully virtualizable and with position-independent code;

• Support compressed instructions;

• Orthogonalize (e.g. separate) the user ISA and privileged architecture.

The following table, taken from [35] lists commercial and open source ISAs

based on the list given above.

Figure 3.1: Comparison of several ISAs based on RISC-V design goals, from

[35]

3.1. PROCESSOR DECISION 41

From the analysis of the UC Berkeley group, no ISA followed their beliefs,

and the best one was ARMv8, which is not suitable for academic purposes

(Not free to use nor open source). From that, they decided to develop their

own open source and free to use ISA. In 2013 the RISC-V Instruction Set

was presented [37] and since then it has been taken care of by the RISC-V

foundation.

3.1.2 RISC-V Insruction Set

The RISC-V Instruction Set is modular. At the very base there is the ex-

tension RV32I that consists of 45 instruction or RV64I which has 12 extra

instructions.

On top of that different extensions can be added. Extensions after a while

are frozen so that no further change can be added. Down below is a table

taken from the RISC-V foundation website [38] that certifies the state of

different extensions as of 17th of July 2019. Some extensions are also being

ratified.

As mentioned above RISC-V has extensions that can build on the basic

Instruction Set. A description of the main ones will be here presented:

• I - Basic Instruction Set

– 32 or 64 bits registers;

– Integer computational instructions;

– Integer load and store instructions;

– Control Flow instructions;

– Mandatory code: each processor must be at least an I;

– 32 registers (x0; x31).

42 CHAPTER 3. SILAGO SYSTEM CONTROLLER

Base Draft Frozen?

RV32I Yes

RV32E No

RV64I Yes

RV128I No

Extension Draft Frozen?

M Yes

A Yes

F Yes

D Yes

Q Yes

L No

C Yes

B No

J No

T No

P No

V No

N No

Table 3.1: State of Base and Extension for RISCV, per [38] as of 17th of July

2019

• M - Mul/div extension

– Multiply and divide integers operations.

• A - Atomic extension

– Atomic read/write from/to memory;

– Useful for inter-processor synchronization;

– Load reserved and store conditional instructions.

3.1. PROCESSOR DECISION 43

• F - Single precision floating extension

– Floating point registers added;

– Single precision FP arithmetic;

– Single precision FP load and store.

• D - Double precision floating extension

– Expansion of floating point registers to 64 bits;

– Double precision FP arithmetic;

– Double precision FP load and store.

• G - General purpouse scalar instruction set

– I+M+A+F+D;

– 32 or 64 bits architecture.

• Q - Quad precision floating extension

– 128 bits floating point registers;

– Requires a base of RV64IFD (64-bit architecture with codes I+F+D).

• C - Compressed instructions

– 16 bit instruction encoding for common operations;

– RV32, RV64, RV128 compatible;

– ∼ 30% code reduction.

• E - Embedded (Not a real code)

– Special type of RV32I instruction set (RISCV with 32 bit instruc-

tion set with the I code) which has only 16 registers (Normal I

has 32 registers);

44 CHAPTER 3. SILAGO SYSTEM CONTROLLER

– It can be extended with codes M, A, or C;

– It can’t support floating point operations.

• Other codes (Most of these do not exist yet, they were only proposed)

– L - Decimal floating point extension;

– B - Bit manipulation extension;

– J - Dinamically translated languages extension (Support for Java);

– T - Transactional memory extension (Support for atomic opera-

tions involving multiple addresses);

– P - Packed-SIMD extension;

– V - Vector operations extension;

– N - User-level interrupt extension.

This thesis work aimed at introduce the RISC-V Instruction Set to the

SiLago framework. Because of that, a decision on the base and extensions

of RISC-V used needed to be made. Because of the design goals of SiLago

explained in 2.1, the targets have to be very basic and used for simple oper-

ations and mainly control of the Global Network on Chip.

With the above premises in mind, the simplest architecture would be a

base I core. Useful extensions would be M, A, T, C, and E. M to be able

to do multiplication or division (although not necessary at the current stage

of development), A and T to allow better control operations (At the time

of this writing, the T extension doesn’t exist yet), and C and E to have the

possibility to have 16 bit instructions or a more efficient area usage with the

reduced number of registers. As for the type of address space 32, 64, and 128

bits are all valid but because of the limited use of the processor in SiLago

phylosophy, a 32 bit architecture would be the most suitable.

3.1. PROCESSOR DECISION 45

3.1.3 Core decision

Since the objective of the thesis was more centered on the integration of

RISC-V to SiLago rather than the creation of a processor, it was chosen to

use a open source core to start the Silagofication of the RISC-V Instruction

Set. Between all available cores at the RISC-V foundation website [38], only

the ones that targeted the extension spectrum highlighted in section 3.1.2

were taken into consideration. The list below presents the pool of candidates

for the first SiLago RISC-V processor core:

• Rocket Chip

– A SoC design generator that emits synthesizable RTL;

– Written in Chisel;

– Extension for custom accelerator is possible;

– 5 stage in order ”G” architecture.

• VexRiscV

– 5 stage RV32I with possible ”M”, ”A”, and ”C” extensions;

– Written in Scala;

– Optimized for FPGA;

– Instruction and data caches possible, as well as MMU and debug

by Eclipse;

– Optional interrupt and exception handling with machine and user

modes;

– Plug-in can be used to add custom instructions;

– Tested on Cyclone IV with different configurations (different plu-

gins added)

– Minimum area → 732 LUT 494 FF with frequency of 177 Mhz.

Maximum area→ 3,324 LUT 2,010 FF with frequency of 116 Mhz.

46 CHAPTER 3. SILAGO SYSTEM CONTROLLER

• RV12

– Highly configurable, single issue, single core RV32I or RV64I ar-

chitecture;

– Harvard architecture with simultaneous data/memory accesses;

– Written in System Verilog;

– 6 stage pipeline;

– Optional modules: branch prediction, instruction cache, data cache,

debug unit;

– Configurable modules: instruction and data interfaces, BPU, cache

size, associativity, and replacement algorithm;

– Fast and precise interrupts.

• SCR1

– It can be adapted to RV32E (Originally it’s a RV32I);

– Machine privilege mode;

– Written in System Verilog;

– 2 to 4 stage pipeline;

– AX14/AHB-lite interfaces;

– IRQ controller and advanced debug;

– Features a number of configurable parameters.

• PicoRV32

– The one chosen to replace the LEON3 in SiLago;

– RV32I, RV32E, RV32IC, RV32IM, or RV32IMC;

– Written in Verilog;

– ASIC compatible;

3.1. PROCESSOR DECISION 47

– Only one bus for both data and instructions;

– IRQ features;

– Co-processor and look-ahead memory implemented;

– AXI compatible;

– Clock frequency between 416 and 714 Mhz, area between 750 and

2000 LUTs with different implementations.

• MR1

– As minimal as possible;

– No interrupts, halt, traps;

– Written in Scala;

– 3 stage pipeline;

– ∼1300 LUT and ∼84 Mhz clock.

• Ibex

– Supported codes are ”I”, ”M”, ”C”, and ”E”;

– 18.9 kGE with RV32IMC and 11.6 kGE when RV32EC is used;

– ASIC and FPGA compatible;

– 2-stage in order;

– Written in System Verilog.

As it can be seen from the list above, PicoRV32 was the core used to

introduce RISC-V into the SiLago framework. The choice was made mainly

because its compatibility with ASIC, its semplicity, and the presence of the

look-ahead memory interface.

48 CHAPTER 3. SILAGO SYSTEM CONTROLLER

3.1.4 RV32I Instruction Set

This subsection will be used to present the range of RISC-V instructions

that are available with the choice of the PicoRV32 core, with the exclusion

of the C extension. The figures reported, taken from the manual available in

the RISC-V foundation website [38] (version dated 2019-06-08 yyyy-mm-dd)

present:

3.2 The Instruction types in RV32I;

3.3 The RV32I base Instruction Set;

3.4 The RV32M extension;

3.5 The general purpose register listing.

Figure 3.2: The bit division for the RV32I Instruction Set

In the next section the design of the SiLago global controller will be

presented, and the design choices explained.

3.1. PROCESSOR DECISION 49

Figure 3.3: RV32I Base Instruction Set

50 CHAPTER 3. SILAGO SYSTEM CONTROLLER

Figure 3.4: RV32M Extension Instruction Set

Figure 3.5: The General Purpose Register listing for the RV32I Instruction

Set

3.2. ARCHITECTURE OF SILAGO PROCESSOR 51

3.2 Architecture of SiLago processor

One of the main and peculiar characteristics of the PicoRV32 processor is

the presence of only one bus for both instructions and data. The main goal

of the processor is to control the Network On Chip and send data to it. In

order to do it, the architecture showed below 3.6 has been designed.

Figure 3.6: A system view of the Silago Processor. PicoRV32 is the processor

itself, memory arbiter decides whether the memory request has to be han-

dled by the external memory of the Network on Chip, loader is the network

interface between the processor and the Network on Chip

The component on the left is the PicoRV32 processor described in 3.1.3.

It interfaces only with the memory arbiter to which it exchanges addresses,

data, and control signals. The control signals are: mem valid, mem instr,

mem ready, mem wstrb[4], and mem la wstrb[4] A memory read works as

follows:

52 CHAPTER 3. SILAGO SYSTEM CONTROLLER

• The processor raises mem valid;

• mem strb gets a value of ”0000”;

• the memory reads the value of mem address and writes the correct value

to mem rdata in the same clock cycle as it writes ’1’ to mem ready;

• The processor deasserts mem valid.

A memory write instead needs these steps:

• The processor raises mem valid;

• mem wstrb gets one of these values:

– ”0001” if the bits 0 to 7 need to be written;

– ”0010” if the bits 8 to 15 need to be written;

– ”0100” if the bits 16 to 23 need to be written;

– ”1000” if the bits 24 to 31 need to be written;

– ”0011” if the bits 0 to 15 need to be written;

– ”1100” if the bits 16 to 31 need to be written;

– ”1111” if the bits 0 to 31 need to be written;

• The memory writes the right range of data at mem wdata to the

mem address address;

• The memory sends confirmation by raising mem ready;

• The processor deasserts mem valid.

The other two signals (mem la address and mem la wstrb) are part of the

look-ahead interface. They anticipate the main signals by one clock cycle.

3.2. ARCHITECTURE OF SILAGO PROCESSOR 53

The component in the middle of figure 3.6 is the memory arbiter. Its role

is to catch every memory transfer and vehicolate it to the right component:

either the main memory or the Network On Chip. This can be made possible

if the network on chip is mapped to the main memory. More details about

it will be explained when the API are presented.

The component is structured as a simple Finite State Machine that rotates

between two main states: NOC and RAM. In the first one, it opens the

communication with the Network on Chip, in the second one the memory

request is forwarded to the memory where the code is placed.

The component on the right of figure 3.6 is a Network Interface between

the processor and the Network on Chip. It translates the information sent by

the processor to Packet Switch words or Circuit Switch words, understand-

able by the Network on Chip. It is structured as a Finite State Machine.

When the loader senses a valid strobe coming from the arbiter it takes the

mem wdata and in case the address refers to a write in the CsWLoader, it

writes the data directly in that output (State W1111 in 3.7), otherwise it

uses the address and the data to create the right word understandable by

the network on chip.

The bit manipulation used to create the right PsWLoader is explained

in figure 3.8. The signal mem address carries the information about the

destination inside the network (Row R3 ÷ R0 and Column C3 ÷ C0), the

type of message (T1 and T0) and Private DRRA signals (P4 ÷ P0). The bits

not displayed are just used as an offset (The Network on Chip is mapped to

memory). The signal mem wdata carries the proper data. Each write in the

network on chip can be done 16 bits at the time (Except for circuit switch

data). More about the network on chip will be explained in the next chapter.

54 CHAPTER 3. SILAGO SYSTEM CONTROLLER

Figure 3.7: State machine table of the Network on Chip Loader. Picture

taken from the software Quartus II

3.2. ARCHITECTURE OF SILAGO PROCESSOR 55

Figure 3.8: Visualization of the function used by the SiLago Network Inter-

face between the processor and the Network on Chip

56 CHAPTER 3. SILAGO SYSTEM CONTROLLER

3.3 Software side of SiLago Processor

In the previous section (3.2) the hardware description of the processor side

has been outlined. In this section the aim is to explain the chain of needed

actions in order to go from a program written in a high level language like

C/C++ to a binary file understandable by the processor. The process is

divided into four parts:

1. Pre-Processing, the initial file (.c, .cc, .cpp, .cxx or similar) turns into

a Preprocessor output file (extension .i or .ii). In turns:

• Macros are substituted with actual values;

• Comments are taken away;

• Header files (i.e. stdio.h and stdlib.h) are substituted with the

actual files.

2. Compiling, the pre-processed file is compiled and the output (extension

.s) is an assembly file;

3. Assembling, the assembly instructions are translated into machine-level

instructions (binary code, extension .o), divided in: text segment (the

actual code), data segment (with the global variables), relocation in-

formation, and symbol table (these last two are used by the linker file);

4. Linking, the object files created in the assembling stage are linked to-

gether and library functions are put in a single executable file (exe-

cutable and linkable format file, extension .elf). A custom linker file

has been used which has its entry point at 0x10000.

On top of those actions, extra ones are needed to run a program in the SiLago

processor.

3.3. SOFTWARE SIDE OF SILAGO PROCESSOR 57

The memory of the system control is not in the SiLago processor itself.

In the design stage, a virtual memory has been created by means of a vhdl

shared variable in the testbench simulation. In order to load the machine

code into the memory some modifications of the file have been done by means

of a python script. The output file of the python script is the final .hex file

which is used in the actual ModelSim simulation. Figure 3.9 tries to visualize

the entire process. It is possible to write different C/C++ files, everything

will be linked together in a unique .hex file.

Figure 3.9: Visualization of the process from a high level language file to

bare metal simulation

58 CHAPTER 3. SILAGO SYSTEM CONTROLLER

The standard memory size used is 8MB but programs tested with -Os

compiling option (Optimization for small code) don’t go over 1MB.

3.4 Network on Chip communication

In this section the decision of a memory mapped network on chip will be

discussed. The design decision on the processor side of the network on chip

was to map part of the addressing space of the processor to the global inter-

connects of SiLago. An offset value of the memory has been chosen for both

the Packet Switch and Circuit Switch outputs of 3.6, and the component

Memory Arbiter decides whether the memory operation has to be performed

by the memory itself or the network on chip.

The decision on memory-mapped IO was made after the compilation of

several programs. The total addressable space of the Instruction set is 32 bits.

Every cell of memory addressed is 8 bits, so the total memory addressable

for the RV32I Instruction Set is:

TOTmemory =
8 bit

memory cell
∗ 232memory cell = 34, 359, 738, 368 bits = 4GB

Compilation of the simple programs who ran on the previous versions of

the LEON3 processor never went over the 18th bit of addressing (256KB of

addressable space), so the 32 bits addressable space was enough to fit also

the network on chip. The NoC addressing takes 15 bits, so a total of 64KB

has been reserved (32KB for the Packet Switch NoC, 32KB for the Circuit

Switch NoC). The exact structure of the network on chip will be discussed

in the next chapter.

Since the communication processor-NoC is memory-mapped based, the

way to send information to it is using the store half word assembly instruction

(sh, an S-type instruction as of 3.2), which writes 16 bits to the memory.

3.4. NETWORK ON CHIP COMMUNICATION 59

Figure 3.10 visualizes the store instruction. The opcode is 0x23, funct3 is

001, rs2 is the register that holds the value to be sent to memory (only the

16 lower bits are taken), and the destination in memory is found by adding

the sign-extended 12-bit offset to the value of register rs1. An assembly store

instruction then would look like this:

sh rs2,offset(rs1)

Figure 3.10: Format of the store instruction for the RISCV 32I instruction

set, from [38]

60 CHAPTER 3. SILAGO SYSTEM CONTROLLER

Chapter 4

SiLago Global Network on Chip

This chapter’s goal is to describe the existing SiLago Global Network com-

munication protocol and to illustrate what algorithm has been designed for

this thesis.

The first section a visual example of the Global NoC within a chip is pre-

sented. Then an explanation of the communication protocol is given.

The last two sections are dedicated to the new algorithm. Firstly there is a

general presentation of Network on Chips as a whole, where different char-

acteristics of them are presented (Mainly different topologies and routing

techniques). Here the algorithm is presented along with some examples of its

functioning. The last section instead focuses on deadlock analysis and what

are the limitations of the algorithm as of the end of the thesis work.

4.1 Network on Chip for VLSI design

In section 1.3.3 it was explained the reasons why NoCs became the standard

way of communications at the global level of VLSI systems.

The area overhead of network interfaces and the variable latency are tradeoffs

that have been accepted in the VLSI community thanks to the sharability of

routers and the reduction of wires (especially the longer ones).

61

62 CHAPTER 4. SILAGO GLOBAL NETWORK ON CHIP

For the SiLago project a global network on chip was needed in order to

connect different blocks. In picture 4.1 a possible implementation of a Silago

system is shown. The Network on Chip is pictured in orange and each router

(dark orange) is connected to a network interface block (darker grey in the

DiMarch, darker blue in the DRRA, dark green in the Protocol Processing

Region).

Figure 4.1: Example of a Silago system on chip. The Network on Chip puts

into communication the different parts of the system

4.2. SILAGO GLOBAL NETWORK ON CHIP 63

4.2 SiLago Global Network on Chip

The main goal of the network is to allow exchange of information along the

chip. The main area are: control, configuration, and creating system paths.

Hemani et al. in [28] explain the Network on Chip protocol and its structure.

In this section the packet switch and the circuit switch will be presented.

The main structure is composed of three elements:

• Buffered or pipelined wires, passive elements that provide connectivity

between the routers;

• Packet Switch, active element used for control and configuration;

• Circuit Switch, active element used for creating system paths.

4.2.1 Packet Switch

In figure 4.2 the architecture of the packet switch is explained. The input

word is sent to both the destination selector, to compute the output direc-

tion, and the demultiplexers, to actually route the word. In case the word

has found its destination (self), the packet type is used to understand the

operation needed.

The Packet Switch (PsW) has then 5 full-duplex channels (North, South,

East, West, Resource) and a Circuit Switch configuration channel (half-

duplex). The data word is made of 32 bits organized as follows 4.3:

• Valid (1 bit);

• Packet Type (2 bits);

• Destination (8 bits, first 4 for row, second 4 for column);

• Data (16 bits);

64 CHAPTER 4. SILAGO GLOBAL NETWORK ON CHIP

Figure 4.2: Packet switch architecture. The incoming packet goes into the

destination selector and the 32-bit data word is then sent to the right output

• Private (5 bits).

Figure 4.3: Packet switch word structure

The packet type indicates the purpouse of the PsW data. In particular:

”00” used to configure the packet switch registers. The data in this case is 4

bits long and indicates whether the router is connected to its neighbour

to the South (bit 3), to the North (bit 2), to the East (bit 1), or to the

West (bit 0). ;

4.2. SILAGO GLOBAL NETWORK ON CHIP 65

”01” used to configure the region connected to the router. Here the data

is a 16-bit word which is translated by the Network Interface of the

destination region;

”10” used to configure the Circuit Switch at the same position of the Packet

Switch. Here the data is 15 bits long (Pictured in 4.4). Each connection

uses 3 bits and the possibilities are:

0x0 No change

0x1 This channel is the output of the West input;

0x2 This channel is the output of the East input;

0x3 This channel is the output of the North input;

0x4 This channel is the output of the South input;

0x5 This channel is the output of the Resource input.

”11” used for PMU (Power Management Unit), not yet defined.

Figure 4.4: Data bits of a Circuit Switch configuration packet

4.2.2 Circuit Switch

The circuit switch is a parallel network to the packet switch and it’s used for

fast, low power communications. The circuit switch can be programmed by

the packet switch to create dynamic system paths (unlike the packet switch,

which relies on an algorithm to route the data). A picture of the circuit

switch is presented in 4.5

66 CHAPTER 4. SILAGO GLOBAL NETWORK ON CHIP

Figure 4.5: Circuit switch architecture. The incoming data gets routed fol-

lowing the indication on the connection registers, initialized by the packet

switch

4.3. GLOBAL NOC ROUTING ALGORITHM 67

4.3 Global NoC Routing Algorithm

In this section some routing algorithms will be presented and the one used

for the SiLago Global Network on Chip will be explained.

4.3.1 Topology

Network on Chips can have different topologies, the most common are:

• Rings, which are cheap and also the preferred disposition in multicores

systems [39];

• Meshes, which have diversity of paths but have different performances

depending on the routers disposition (A router on the edge has a worse

performance than a router on the middle of the network);

• Torus, which are meshes that eliminate the performance diversity em-

ploying more links. The link length can be unequal (Normal torus) or

equal (Folded torus);

• 3-D placing, used in supercomputers or data centers.

The SiLago Global Network on Chip employs an irregular mesh. The

structure is fixed on a maximum of a 16x16 grid (Addresses of the NoC are

enclosed in 8 bit, 4 for the row, 4 for the column, as explained in 4.2.1) but

inside different configurations are possible. Two examples of topologies are

pictured in figure 4.7.

68 CHAPTER 4. SILAGO GLOBAL NETWORK ON CHIP

(a) Ring

(b) Mesh

(c) Taurus (d) 3-D

Figure 4.6: Different Network on Chip topologies, grey boxes are the routers

in the network, white boxes are empty

4.3. GLOBAL NOC ROUTING ALGORITHM 69

Figure 4.7: Two examples of Global NoC implementation inside a 10x10 grid.

Maximum grid size is 16x16

70 CHAPTER 4. SILAGO GLOBAL NETWORK ON CHIP

4.3.2 Routing

Routing in a Network on Chip is closely related to topologies. Different

topologies can employ the same routing algorithms, but the performance can

vary a lot.

Routing tecnhiques can be observed on three different levels:

• Path length;

• Path diversity;

• Hardware implementation.

The path length can be of two types: minimal, if the shortest path is

always chosen, or non-minimal, if non-shortest paths can be chosen. Since

the Global NoC doesn’t have a fixed structure, the routing style will be non-

minimal.

The path diversity indicates how to select different paths between the set

of paths Pa,b from router a to router b. Path diversity can be:

• Deterministic if between router a and b always the same route is chosen.

It’s easy to implement and analyze but it is quite restrictive;

• Oblivious if a route is chosen without considering any information

about the router and the network state;

• Adaptive if the route is chosen with a consideration on the current state

of the network;

• Profitable if the packet always moves toward the destination (Minimal

routing is profitable by definition);

• Non-profitable if routes moving away from the destination can be cho-

sen;

4.3. GLOBAL NOC ROUTING ALGORITHM 71

For what concerns the hardware implementation choices can be:

• Source routing, in which the entire route is embedded in the packet.

This moves the routing algorithm from the routers to the packets mov-

ing through the network so it will results in longer packets and smaller

routers;

• Node-Table routing, in which the router itself has a look-up table with

a number of rows equal to the number of routers in the network and

as data the best output in order to reach the given router. This is

the opposite of source routing and will give shorter packets but bigger

routers in terms of area. This solution doesn’t scale well because look-

up tables can end up being very big depending on the number of routers;

• Combinational circuits, in which the packet carries only the destination

coordinates and the router computes the output port based on the

network state.

Each of the three metrics (Path length, path diversity, and hardware imple-

mentation) possibilities can be combined in order to fit the specific of the

given network.

In the next subsection a couple of examples of routing techniques will be

presented and in the next section, the one chosen for the Global NoC will be

explained.

Routing examples

The DOR algorithm is the basic algorithm for mesh or torus type Network

on Chip. DOR stands for Dimension Order Routing and the packet is first

routed to the correct X coordinate, and then sent to the correct Y coordinate.

That is called XY routing (x first, y second), the opposite is called YX

routing. So if a packet need to go to position Pa,b from position P0,0, it will

72 CHAPTER 4. SILAGO GLOBAL NETWORK ON CHIP

firstly go to Pa,0, and then finally to Pa,b. The example is pictured in figure

4.8.

Figure 4.8: Example of a DOR x first algorithm, the packet gets routed to

Pa,0 from P0,0, and then to Pa,b

The basic DOR algorithm is minimal because the shortest route is always

chosen and deterministic because the path can be predicted a priori. It then

doesn’t give a good load balancing between routers.

A modification of the DOR algorithm is the O1TURN [40] in which at the

beginning of a path, the first router decides whether to do XY-DOR or

YX-DOR. This algorithm adds some complexity to the routers but it’s still

minimal and not deterministic (it’s oblivious because the XY or YX decision

doesn’t take into account the state of the network).

Another variation of the DOR algorithm is the Valiant’s algorithm [41],

4.3. GLOBAL NOC ROUTING ALGORITHM 73

[42]. In this version of the DOR a random router Dpart is chosen and the

packet is firstly routed from source S to Dpart, and then from Dpart to D, as

pictured in figure 4.9. This approach is not minimal but balances the loads

in a better way than the O1TURN. The algorithm can be oblivious if the

intermediate node is choosen randomly, or adaptive if the network state is

taken into consideration in the choice.

Figure 4.9: Example of a Valiant algorithm, the packet gets routed to Dpart

from S with YX-DOR, and then to D with again YX-DOR

74 CHAPTER 4. SILAGO GLOBAL NETWORK ON CHIP

4.3.3 SiLago NoC Algorithm

The NoC algorithm used in Silago is a XY-DOR with both oblivious and

adaptive behavior in order to solve the randomness in the network construc-

tion.

The router uses a combinational circuit approach in order to compute the

correct output, and the algorithm is non-profitable and not minimal.

The only NoC that needs an algorithm is the Packet Switch, since the

Circuit Switch is totally passive to the Packet Switch. In the PsW router

the registers are:

• ’configured’, indicates whether the router is initialized or not, and it

can only change once;

• ’row reg’, indicates the Y-position of the router, it can be initialized

only once;

• ’col reg’, indicates the Y-position of the router, it can be initialized

only once;

• ’config reg’, can be modified and indicates what kind of connection the

router has. It is a 4 bit vector and the bits indicate:

– config reg(3), if ’1’ the South direction exists;

– config reg(2), if ’1’ the North direction exists;

– config reg(1), if ’1’ the East direction exists;

– config reg(0), if ’1’ the West direction exists.

• ’howmanyoutputs’, indicates how many outputs the router has;

• ’circuitSW config’, used to send the data to the Circuit Switch router.

The main ideas of the algorithm are:

4.3. GLOBAL NOC ROUTING ALGORITHM 75

• The reading order is always Resource first, then West, South, East, and

lastly the North input;

• The bits 5, 4, and 3 of the incoming data are called private code and

carry the history of the packet and information in case of re-routing

(Adaptive part of the algorithm);

• The first valid word received by the router after power on has to be the

initialization word;

• Each router has at least two outputs between North, South, East, and

West directions.

The router’s algorithm consists in three checks. At the start of the cycle

the router checks if it’s initialized (i.e. checks its ”configured” register). If the

initialization hasn’t been made it checks every input in the read order and if

it finds a valid word with a packet type (bit 30 and 29 of the incoming data)

of ”00” it changes the configured register to ’1’, writes the row and column

bits in the row reg and col reg registers, sets the correct value of the register

config reg, and writes in the register ”howmanyoutputs” the correct number

of outputs (i.e. how many bits have been set in the config reg register). Refer

to figure 4.10 for a visualization of a configuration packet for the PsW router.

Figure 4.10: Configuration of an initialization packet for the Packet Switch

router, the bit 31 is a valid bit, the bits 30 and 29 are ”00” to indicate the

packet type, bits 28-25 will become the row reg, bits 24-21 will become the

col reg, and bits 8-5 are copied into register config reg

The second check is done to understand if a value has been sent back the

previous clock cycle.

76 CHAPTER 4. SILAGO GLOBAL NETWORK ON CHIP

A packet is sent back if and only if in the previous clock cycle no other out-

put direction other than the input one were available (The routing algorithm

tries to never send back any packet, so if a data comes in from the South

port, the South output becomes the least preferred output). A packet carries

this information in the private code (bits 4, 3, and 2 of the packet), which is

in this case set to ”X11” in the previous clock cycle, and reset to ”X00” by

the router before sending the word back.

Due to the function of the Packet Switch, it’s high unlikely that a value is

sent back: the Packet Switch main task is to set the Circuit Switch, where

the bulky transfer of data takes place.

The third check is the main one and involves the routing algorithm.

If the packet has reached its destination, the data is routed to the resource

output. Otherwise the routing algorithm takes action.

The algorithm behaves in two different ways, whether the router itself has

two or more directional output (North, South, East, West, not considering

the Resource). If the router has only two outputs the data is sent to the

opposite output with respect to the input. If the router is of the type of

figure 4.11 for example, if the data comes from the West input, it will be

re-routed to the North output.

If the router instead of two has three or four outputs, it follows the classic

XY-DOR algorithm: the router tries to send the data to the right X position

first (right column), then to the correct Y position (correct row). If the

desired position is not available, the router has different behaviors depending

on the network state(adaptive behaviour).

If the router is in the wrong row, the private code (bits 5, 4, and 3 of the

data) is checked. The private code, as mentioned before, carries information

about the past state of the network, and adds both the adaptive and the

oblivious behaviour. The possible configurations are:

4.3. GLOBAL NOC ROUTING ALGORITHM 77

Figure 4.11: A representation of a router with two directional output, in this

case North and West. If a data comes from the North input, the algorithm

tries to re-route it to the West output and vice-versa

• ”X00” means that the normal DOR algorithm can be performed. If

the XY-DOR algorithm gives an output which is not available, or it’s

the input direction, the router tries to re-route the incoming word in

this order (the first available output in the following list is used):

1. Correct output of YX-DOR;

2. Opposite output of the XY-DOR;

3. Opposite output of the YX-DOR.

;

• ”001” means that the word needs to be sent to the first available output

of this list (if the output direction would not be the same as the input

one):

1. North;

2. West;

3. East;

4. South.

• ”010” is the same as ”001” but the order is:

78 CHAPTER 4. SILAGO GLOBAL NETWORK ON CHIP

(a)

(b)

(c)

(d)

Figure 4.12: Fourrepresentations of a router with three or four directional

outputs

4.3. GLOBAL NOC ROUTING ALGORITHM 79

1. South;

2. West;

3. East;

4. North.

• ”101” is the same as ”001” but the order is:

1. North;

2. East;

3. West;

4. South.

• ”110” is the same as ”001” but the order is:

1. North;

2. West;

3. East;

4. South.

• ”X11” means that the word needs to be sent back to the input direction.

If the packet is in the correct row, and the bits 2 and 3 the incoming data

are both ’0’, the router tries to send the packet North or South, depending

on the XY-DOR correct direction. If that direction is not available, the

oblivious part of the agorithm takes place:

• If the packet needs to go South but the direction is not available, the

bit number 3 of the incoming word is raised, so that the word will try

to go South as soon as possible. The packet is then routed following

this order (The first output available which is not the same as the input

is chosen):

80 CHAPTER 4. SILAGO GLOBAL NETWORK ON CHIP

1. East if bit 4 of the private code is ’1’, West if ’0’. That bit is then

negated;

2. East if bit 4 of the private code is ’0’, West if ’1’. That bit is then

negated;

3. North.

• If the packet needs to go North but the direction is not available, the

bit number 2 of the incoming word is raised, so that the word will try

to go North as soon as possible. The packet is then routed following

this order (The first output available which is not the same as the input

is chosen):

1. East if bit 4 of the private code is ’1’, West if ’0’. That bit is then

negated;

2. East if bit 4 of the private code is ’0’, West if ’1’. That bit is then

negated;

3. South.

In figure 4.13 and 4.14 two simple examples of the routing algorithm are

explained. In figure 4.14 in particular it’s possible to understand the basic

idea of the algorithm: the word tries first to find the right column, then goes

around horizontally trying to move North/South as soon as it can.

4.3. GLOBAL NOC ROUTING ALGORITHM 81

Figure 4.13: In this example the information travels from router (0,0) to

router (2,3). As soon as the word reaches the right column it tries to go up

and when in position (2,1) it goes east (supposing that the private bit in that

case was ’1’ to start off)

82 CHAPTER 4. SILAGO GLOBAL NETWORK ON CHIP

Figure 4.14: In this example a word needs to go from position (4,0) to (6,1).

It can be seen how, the data tries to always go back to the right destination

column.

4.4. LIMITATIONS AND DEADLOCK ANALYSIS 83

4.4 Limitations and deadlock analysis

Deadlock in a Network on Chip happens whenever a packet is stuck in the

same router (static deadlock), or it follows a circular trail without never

reaching its destination (dynamic deadlock).

In the SiLago Global NoC static deadlock is virtually impossible for two

main reasons:

• The majority of information for the Silago global NoC is supposed to

be handled by the Circuit Switch, so the Packet Switch is supposed to

have few words going around at all times;

• The algorithm is neither deterministic nor purely oblivious, so a packet

is always re-routed in case the computed output direction is occupied.

On the other hand, some NoC configurations can lead to dynamic deadlocks.

Currently there are deadlock-free algorithms for irregular meshes but they

mostly cover holes in a mesh structure, or add stringent limitations on the

possible architectures [43], [44], and [45].

Dynamic deadlocks can come from two different reasons:

• Network on Chip structures that are not suitable for the algorithm;

• Some initialization words can not reach all the routers in order.

For what concerns the first cause of deadlock, the following example can ex-

plain the situation. In picture 4.15, a deadlock-prone structure is presented.

There two parts of the structure are not very well connected so some packets

can’t find their way from a region of the NoC to the other.

The algorithm is developed so that the words move west and east until they

find a path north/south. In this case some routers are impossible to connect,

84 CHAPTER 4. SILAGO GLOBAL NETWORK ON CHIP

like in the example of figure 4.16.

On the other hand the algorithm allows for some configurations to be viable

even if the west/east research doesn’t produce a viable output (figure 4.17).

Figure 4.15: This configuration leads to deadlock because the structure is

divided into two macroareas that don’t have a good north/south connection

4.4. LIMITATIONS AND DEADLOCK ANALYSIS 85

Figure 4.16: Going from router (0,0) to router (8,2) creates a static deadlock

because row 7 is not available when moving east/west in row 6

Figure 4.17: This configuration is allowed thanks to the oblivious/adaptive

part of the algorithm

86 CHAPTER 4. SILAGO GLOBAL NETWORK ON CHIP

(a) (b)

Figure 4.18: This configuration solves one of the problems of dynamic dead-

lock but initialization words can not travel correctly at start-up. In both

configurations it is supposed that the yellow squares are the routers already

initialized, while the grey ones are the routers left to initialize (as well as the

red and green one). In 4.18a the route to initialize the red router (6,3) is

drawn, and it goes over the green router (8,2). In 4.18b the opposite situation

is pictured, and the router in (6,3) is in the way.

The second source of deadlock is given by the initialization words.

In order for the NoC to function correctly, each router needs to receive an

initialization word before forwarding other messages. In the configuration

highlighted in 4.18 it can be seen how different routers take different routes

to arrive to their destinations. The potential problem highlighted there is

that a router may need another one initialized in order to close the commu-

nication link and vice-versa, creating an impasse.

Another problem related to initialization words is the timing of them.

4.4. LIMITATIONS AND DEADLOCK ANALYSIS 87

The developed algorithm is thought so that if two words are sent from router

A to router B, they arrive in the order they have been sent. The same does

not apply if two words are sent from router A to two different routers. Two

things can be done in order to preserve timing (Both ways can be viable and

automated):

• Creation of a model of the NoC to understand what is the critical

path in term of clock cycles (e.g. the longest latency that exists in the

structure);

• Simulate an initialization of the NoC in order to fix possible impasses;

Usually in order to avoid deadlock in mesh-based NoCs, a kind of turn

is forbidden (For example it’s never allowed for an input coming from the

North to be directed to the West).

This approach is not viable in non-regular meshes like the ones in the SiLago

Global NoC because sometimes a kind of turn is the only one available for

the router, like in figure 4.11.

4.4.1 Deadlock solutions

Taking into account the randomness of the SiLago Global NoC structure, a

deadlock-free algorithm was not implementable. What the current iteration

of the SiLago Global NoC algorithm, it is allowed to create a wide variety of

irregular mesh structures. The deadlock component could be eliminated by

means of a check in the SiLago Physical Design Platform described in 2. In

this way it would be possible to select an acceptable solution depending on

the chip that is being developed.

As a final note, current iterations of SiLago structures do not utilize very

complicated paths. A picture of a possible instance was presented at the be-

ginning of the chapter 4.1, and that does not present any deadlock concern.

88 CHAPTER 4. SILAGO GLOBAL NETWORK ON CHIP

This work on the SiLago Global NoC tried to adapt the structure to pos-

sible future developments, so that the NoC algorithm could sustain future

improvements of the structures size.

The next chapter will be the last of this thesis and will concentrate on the

synthesis results.

Chapter 5

Conclusion

In this chapter information about simulation and synthesis will be given

as well as their results. The last section will finally suggest some future

improvements for the entire structure.

5.1 Simulation

The simulation tool used was QuestaSim by MentorGraphics. The simulation

structure is described in figure 5.1. The whole simulation is done using a .do

script able to run in QuestaSim. The C++ program is used to initialize

the PacketSwitch routers and test different configurations of CircuitSwitch

communications. Most of the simulation time is used by the processor to

initialize. For all the simulation done the actual running time of the code

took about 3% of the simulation time.

5.2 Logic Synthesis

Logic synthesis was done using the tool Genus by Cadence and scripts written

in TCL language. The logic synthesis done on the RISCV processor and on

the Global NoC router was done using very similar processes:

89

90 CHAPTER 5. CONCLUSION

Figure 5.1: Simulation environment for the NoC+RISCV system. On the

left the program to run is turned into an .hex file. It is then fed to the

local memory which is initialized as a variable inside a testbench. Inside the

testbench the processor and the NoC is initialized.

• Use of the TSMC 28 nm library;

• Clock gating with latch option on ”clock gating style”;

5.2.1 RISCV processor

The synthesis done on the PicoRV32 processor and the network interface

produced a minimal clock period of 1.962 ns with a cell count of 7430. The

table 5.1 gives some combination of clock period and area as reported by the

tool used.

5.2. LOGIC SYNTHESIS 91

clock period (ns) cell count area

1.962 7430 7047.180

3.5 6338 5976.810

5 6325 5943.924

10 5799 5810.994

Table 5.1: Results on area given by Cadence Genus with different clock

periods

5.2.2 SiLago Global NoC router

The synthesis was done on a single router which in itself has both a Packet

Switch and a Circuit Switch.

Because of the 2-D nature of the structure, and the structure itself being

a mesh, it was necessary to synthesize five different instances of the router.

Each has a missing link because in a 2-D mesh each router can only have

four in/out channels.

In the table 5.2 a report on the five different instances with a fixed clock

contraint of 5 ns is given. Each instance is labeled as the direction it doesn’t

present in its structure. So for example the component noSouth has the

North, East, West directions, as well as the Resource one (That substitutes

the southern input/output), as pictured in 5.2.

On table 5.3 the result on synthesis with the highest achievable frequency

is given for all the instances.

92 CHAPTER 5. CONCLUSION

router clock period (ns) cell count area

noNorth 3.619 2014 1513.764

noEast 3.627 2022 1529.640

noSouth 3.618 1986 1494.486

noWest 3.630 2027 1513.134

noResource 3.629 2041 1517.418

Table 5.2: Results on area and clock cycle on five different instances of the

SiLago Global NoC router given by Cadence Genus with a fixed constraint

on clock cycle (5 ns)

router clock period (ns) frequency (MHz) cell count area

noNorth 1.521 657.5 3503 2930.130

noEast 1.645 607.9 3702 3049.074

noSouth 1.623 616.1 3503 3120.264

noWest 1.603 623.8 3507 2985.444

noResource 1.546 646.8 3614 3196.998

Table 5.3: Results on area and clock cycle on five different instances of the

SiLago Global NoC router given by Cadence Genus for highest achievable

frequency

5.2. LOGIC SYNTHESIS 93

Figure 5.2: Representation of the noSouth instance of the Global Switch for

the SiLago NoC. Instead of the South channel, the Resource one is inserted,

in order to abide with the 2-D mesh structure

94 CHAPTER 5. CONCLUSION

5.3 Physical synthesis

The physical synthesis was done with the tool Innovus by Cadence. The

physical synthesis was done in this order:

1. Floorplan with an utilization of the area of around 70%;

2. Power and ground routing to add the rings of power supply and hori-

zontal stripes;

3. Special route with vertical power supply lines;

4. First placement of standard cells;

5. Pin placement on the border of the chip;

6. Optimization of placement;

7. Clock tree-synthesis with optimization;

8. Routing between standard cells and optimization;

The floorplan, because of the TSMC 28 nm library size, is a square with a

side of a multiple of 6.3 ➭m.

This is due to the horizontal and vertical pitches of the transistors, respec-

tively 0.14 and 0.9 micron. Since the two values are different, the least

common multiple has to be taken to ensure integer ratios for every square

(and thus synchroricity). The power ring width is of 2 micron, with a spacing

between two rings of 1 micron, and 0.5 micron offset from cell border. An

overview of the cell floorplan, taken from Innovus, is presented in 5.3. For

the pins, the ones put on the lateral sides are on metals M3 and M5, while

the top and bottom sides use metals M2, M4, and M6.

The netlist used for all the designs are the ones synthesized with a clock

period of 5 ns.

5.3. PHYSICAL SYNTHESIS 95

Figure 5.3: Floorplan for the RISCV processor. The structure is a square

with a side of K·6.3 ➭m. The structure can be divided in four sections with

the same area.

5.3.1 RISCV processor

For the RISCV processor the utilization is at 70.4% and the square side is

94.5 ➭m = 6.3 ➭m · 15

A screen dump taken from Innovus is presented in 5.4. On the right side

of the chip, the interface with the router is put, while on the top the RISCV

connects with the memory. The clock and the reset pins are put on the top

left. The pins position are described on table 5.4

96 CHAPTER 5. CONCLUSION

pins metal layer width(µm)/depth(µm) side spacing (µm) spread type

Memory input M4 0.05/0.34 top 0.60 from starting point

Memory Output M2 0.05/0.34 top 0.14 from starting point

Packet Switch M3 0.05/0.34 right 0.75 from starting point

Circuit Switch M5 0.05/0.34 right 0.75 from starting point

Table 5.4: Pins position within the RISCV chip

5.3. PHYSICAL SYNTHESIS 97

Figure 5.4: Screen dump at the end of physical synthesis on the RISCV

component. The interface with the memory as well as the clock and reset

inputs are on the top, on the right side the chip connects with the network

on chip

98 CHAPTER 5. CONCLUSION

5.3.2 SiLago Global NoC router

The five instances of SiLago Global NoC routers all have an utilization of

under 65%. The square side is the same for all of them and it is

50.4 ➭m = 6.3 ➭m · 8

The overview of the chip can be seen in figure 5.5, while the pins information

can be found in table 5.5

pins metal layer width(µm)/depth(µm) spacing (µm) spread type

Packet Switch horizontal M3 0.05/0.34 0.75 from starting point

Circuit Switch horizontal M5 0.05/0.34 0.75 from starting point

Packet Switch vertical M2 0.05/0.34 0.75 from starting point

Circuit Switch vertical M4 0.05/0.34 0.75 from starting point

Table 5.5: Pins position within the instances of a SiLago Global NoC router.

The pins are indicated as vertical (top or bottom side) or horizontal (left or

right side) because each instance has a different placement of the Resource

in/out pins

5.3. PHYSICAL SYNTHESIS 99

Figure 5.5: Screen dump at the end of physical synthesis of an instance of

the SiLago Global NoC router. Each side has pins inserted with the same

configuration.

100 CHAPTER 5. CONCLUSION

5.4 Future improvements

The objective of the thesis was to use a RISCV controller in order to man-

age the SiLago Coarse Grain Reconfiguarable Architecture (CGRS) and the

connection between the different parts of the chip on a global scale.

As of the end of this thesis work, a connection between a RISCV pro-

cessor and the SiLago Global NoC exists. On top of that a more powerful

algorithm of the Global NoC has been developed without changing the al-

ready existing protocol, so that it can be used also on future improvements

of SiLago size-wise.

The new architectures have been tested twice (post behavioural design and

post logic synthesis) and the design has been synthesized down to physical

synthesis, so that a .gds file is available for all the instances described in this

chapter.

On the software side, programs can be run using a VHDL/Verilog sim-

ulator and a RISCV-32I (32 bits on the basic instruction set) compiler and

are able to send commands in order to: initialize the NoC routers and cre-

ate dynamic links between routers using the packet switch, and send data

through the circuit switches.

Among the possible improvements for the structure, a high level language

model for the algorithm described in 4 would be necessary in order to iden-

tify possible NoC structures that are not deadlock free. On the hardware

side a characterization of the designed components is missing as well as a

verification post physical layout.

Bibliography

[1] L. C. Carver Mead, Introduction to Vlsi Systems. Addison-Wesley Pub

(Sd), 1979.

[2] C. Sechen and A. Sangiovanni-Vincentelli, “Timberwolf3. 2: a new stan-

dard cell placement and global routing package,” in Proceedings of the

23rd ACM/IEEE Design Automation Conference, pp. 432–439, IEEE

Press, 1986.

[3] A. Kessler and A. Ganesan, “Standard cell vlsi design: A tutorial,”

IEEE Circuits and Devices Magazine, vol. 1, no. 1, pp. 17–34, 1985.

[4] A. H. A. J. H. T. e. Amir M. Rahmani, Pasi Liljeberg, The Dark Side of

Silicon: Energy Efficient Computing in the Dark Silicon Era. Springer

International Publishing, 2017. Chapter 3.

[5] R. Merritt, “FPGAs add comms cores amid asic debate.” EETimes,

Accessed: 27-06-2019.

[6] S. Borkar, “Design perspectives on 22nm cmos and beyond,” in 2009

46th ACM/IEEE Design Automation Conference, pp. 93–94, IEEE,

2009.

[7] W. J. Dally, C. Malachowsky, and S. W. Keckler, “21st century digital

design tools,” in Proceedings of the 50th Annual Design Automation

Conference, p. 94, ACM, 2013.

101

102 BIBLIOGRAPHY

[8] W. Stallings, Computer Organization and Architecture. Prentice Hall,

6 ed., 2002.

[9] Maynard, Vax-11-780 Architecture Handbook. MA: Digital Equipment

Corp, 1977. Print., 1977.

[10] H. Levy and R. E. (Auth.), Computer Programming and Architecture.

The VAX. Elsevier Inc, Digital Press, 2 ed., 1988.

[11] B. B. Brey, The Intel Microprocessors: 8086 8088, 80186 80188, 80286,

80386, 80486 - Pentium and Pentium Processor - Architecture, Pro-

gramming and Interfacing (Prentice Hall International Editions).

[12] T. Jamil, “Risc versus cisc,” Ieee Potentials, vol. 14, no. 3, pp. 13–16,

1995.

[13] V. G. O. et al., The Computer Engineering Handbook. CRC, 2002.

[14] D. A. Patterson and D. R. Ditzel, “The case for the reduced instruction

set computer,” SIGARCH Comput. Archit. News, vol. 8, pp. 25–33, Oct.

1980.

[15] W. G. Alexander and D. B. Wortman, “Static and dynamic character-

istics of xpl programs,” Computer, no. 11, pp. 41–46, 1975.

[16] L. J. Shustek, Analysis and Performance of Computer Instruction Sets.

PhD thesis, Stanford, CA, USA, 1978. AAI7814208.

[17] K. Asanović and D. A. Patterson, “Instruction sets should be free: The

case for risc-v,” EECS Department, University of California, Berkeley,

Tech. Rep. UCB/EECS-2014-146, 2014.

[18] T. Bjerregaard and S. Mahadevan, “A survey of research and practices

of network-on-chip,” ACM Comput. Surv., vol. 38, June 2006.

[19] “International technology roadmap for semiconductors 2.0,” 2015.

BIBLIOGRAPHY 103

[20] C. Batten, “An exa-op data center at ¡10MW by 2020? too many ops

and not enough energy,” IAP Workshop, 2013.

[21] P. Kogge and J. Shalf, “Exascale computing trends: Adjusting to the”

new normal”’for computer architecture,” Computing in Science & En-

gineering, vol. 15, no. 6, pp. 16–26, 2013.

[22] G. Budd and G. Milne, “Arm7100-a high-integration, low-power micro-

controller for pda applications,” in COMPCON’96. Technologies for the

Information Superhighway Digest of Papers, pp. 182–187, IEEE, 1996.

[23] A. Boxer, “Where buses cannot go,” IEEE Spectrum, vol. 32, no. 2,

pp. 41–45, 1995.

[24] OpenSPARC T2 CoreMicroarchitecture Specification. Sun Microsys-

tems, 1 ed., 2007.

[25] U. G. Nawathe, M. Hassan, K. C. Yen, A. Kumar, A. Ramachan-

dran, and D. Greenhill, “Implementation of an 8-core, 64-thread, power-

efficient sparc server on a chip,” IEEE Journal of Solid-State Circuits,

vol. 43, no. 1, pp. 6–20, 2008.

[26] A. Allan, D. Edenfeld, W. H. Joyner, A. B. Kahng, M. Rodgers, and

Y. Zorian, “2001 technology roadmap for semiconductors,” Computer,

vol. 35, no. 1, pp. 42–53, 2002.

[27] N. Farahini, A. Hemani, H. Sohofi, and S. Li, “Physical design aware

system level synthesis of hardware,” in 2015 International Conference on

Embedded Computer Systems: Architectures, Modeling, and Simulation

(SAMOS), pp. 141–148, IEEE, 2015.

[28] A. Hemani, S. M. A. H. Jafri, and S. Masoumian, “Synchoricity and

nocs could make billion gate custom hardware centric socs affordable,”

104 BIBLIOGRAPHY

in Proceedings of the Eleventh IEEE/ACM International Symposium on

Networks-on-Chip, p. 8, ACM, 2017.

[29] S. M. A. H. Jafri, N. Farahini, and A. Hemani, “Silago-cog: Coarse-

grained grid-based design for near tape-out power estimation accuracy

at high level,” in 2017 IEEE Computer Society Annual Symposium on

VLSI (ISVLSI), pp. 25–31, IEEE, 2017.

[30] D. G. Chinnery and K. Keutzer, “Closing the gap between asic and

custom: An asic perspective,” in dac, pp. 637–642, Citeseer, 2000.

[31] M. A. Tajammul, M. A. Shami, and A. Hemani, “Segmented bus based

path setup scheme for a distributed memory architecture,” in 2012 IEEE

6th International Symposium on Embedded Multicore SoCs, pp. 67–74,

IEEE, 2012.

[32] O. Malik, A. Hemani, and M. A. Shami, “A library development frame-

work for a coarse grain reconfigurable architecture,” in 2011 24th Inter-

natioal Conference on VLSI Design, pp. 153–158, IEEE, 2011.

[33] S. Li, N. Farahini, and A. Hemani, “Global control and storage synthesis

for a system level synthesis approach,” in 2013 IEEE 21st Annual In-

ternational Symposium on Field-Programmable Custom Computing Ma-

chines, pp. 239–239, IEEE, 2013.

[34] S. Li, N. Farahini, A. Hemani, K. Rosvall, and I. Sander, “System level

synthesis of hardware for dsp applications using pre-characterized func-

tion implementations,” in Proceedings of the Ninth IEEE/ACM/IFIP

International Conference on Hardware/Software Codesign and System

Synthesis, p. 16, IEEE Press, 2013.

[35] A. S. Waterman, Design of the RISC-V instruction set architecture. PhD

thesis, UC Berkeley, 2016.

BIBLIOGRAPHY 105

[36] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovic, “The risc-v in-

struction set manual, volume i: Base user-level isa,” EECS Department,

UC Berkeley, Tech. Rep. UCB/EECS-2011-62, vol. 116, 2011.

[37] A. Waterman, Y. Lee, R. Avizienis, H. Cook, D. A. Patterson, and

K. Asanovic, “The risc-v instruction set.,” in Hot Chips Symposium,

p. 1, 2013.

[38] “Risc-v foundation website https://riscv.org/.” Accessed: 16-07-2019.

[39] N. E. Jerger, T. Krishna, and L.-S. Peh, On-chip networks, vol. 12.

Morgan & Claypool Publishers, 2017.

[40] D. Seo, A. Ali, W.-T. Lim, N. Rafique, and M. Thottethodi, “Near-

optimal worst-case throughput routing for two-dimensional mesh net-

works,” in ACM SIGARCH Computer Architecture News, vol. 33,

pp. 432–443, IEEE Computer Society, 2005.

[41] A. W. Richa, M. Mitzenmacher, and R. Sitaraman, “The power of two

random choices: A survey of techniques and results,” Combinatorial

Optimization, vol. 9, pp. 255–304, 2001. section 3.4.

[42] S. Haas, The IEEE 1355 Standard. Developments, performance and ap-

plication in high energy physics. PhD thesis, Liverpool U., 1998. page

15.

[43] Z. Shi, Y. Yang, X. Zeng, and Z. Yu, “A reconfigurable and deadlock-free

routing algorithm for 2d mesh network-on-chip,” in 2011 IEEE Inter-

national Symposium of Circuits and Systems (ISCAS), pp. 2934–2937,

IEEE, 2011.

[44] M. K. Schafer, T. Hollstein, H. Zimmer, and M. Glesner, “Deadlock-free

routing and component placement for irregular mesh-based networks-on-

chip,” in Proceedings of the 2005 IEEE/ACM International conference

on Computer-aided design, pp. 238–245, IEEE Computer Society, 2005.

106 BIBLIOGRAPHY

[45] V. Janfaza and E. Baharlouei, “A new fault-tolerant deadlock-free fully

adaptive routing in noc,” in 2017 IEEE East-West Design & Test Sym-

posium (EWDTS), pp. 1–6, IEEE, 2017.

	Introduction
	Objective and organization
	Organization
	State of the art
	History of VLSI automation
	Instruction Set Development
	Interconnections on System on Chips

	SiLago framework
	Description of SiLago framework
	Silago Design Flow
	Silago Environment

	SiLago System Controller
	Processor decision
	RISC-V project
	RISC-V Insruction Set
	Core decision
	RV32I Instruction Set

	Architecture of SiLago processor
	Software side of SiLago Processor
	Network on Chip communication

	SiLago Global Network on Chip
	Network on Chip for VLSI design
	SiLago Global Network on Chip
	Packet Switch
	Circuit Switch

	Global NoC Routing Algorithm
	Topology
	Routing
	SiLago NoC Algorithm

	Limitations and deadlock analysis
	Deadlock solutions

	Conclusion
	Simulation
	Logic Synthesis
	RISCV processor
	SiLago Global NoC router

	Physical synthesis
	RISCV processor
	SiLago Global NoC router

	Future improvements

