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Abstract
This academic work is part of the BAT-MAN research and development indus-

trial project owned by brain Technologies, sponsored by the regional contribution
POR FESR 2014-2020 (European fund for the regional development) and whose
main goal is the realisation of an electronic device capable of detecting and fore-
casting, in real-time, the working conditions of a Lead-Acid battery. Entering the
team as Algorithm and Control Engineer, I’ve been in charge of analysing the prob-
lem, defining experimental campaigns and creating the algorithm for the real-time
batteries’ states estimation. The work can be divided in three major section:

• Energetic Framework definition

• Battery modelling

• Model-based Solution

The definition of a rigorous Energetic Framework, that mathematically describes the
main quantities necessary to define the state of a battery (SoC, SoH, etc.) and the
energy exchanges, was the first solid milestone on which building all the reasoning.
Then, a suitable battery model were built in order to define strategy for the final
model-based algorithm, always balancing between computational effort, robustness,
required precision and effectiveness. The final solution, implemented in Mathworks
environment (Matlab, Simulink, Simscape, Stateflow) was eventually exported with
the automatic code generation and the Software Team has been responsible for the
micro-controller integration in the first real prototype.
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Chapter 1

Introduction

1.1 The Problem

”Being able to provide, in real-time, an accurate estimate of the state
of charge and health condition of a battery”

A battery, regardless of its technology, is a fairly complex electro-chemical device
of which we can easily measure the terminal voltage Vt and the drawn current I.
Considering the simplest electrical-equivalent model described in [7]:

Figure 1.1: Basic battery model, [7]

we can see that it is made up of a voltage source, also called open circuit voltage
Vocv(SoC, SoH, T, ...) that is strictly related to the energy stored and releasable,
and an internal dynamic impedance Zi that takes into account for ageing effects
and chemical reactions. For the nature of the system, Vt = Vocv only when I = 0
for an amount of time sufficient to let the dynamics be extinguished. Therefore, as
shown in [3], measuring state of charge by the terminal voltage Vt is simple, but
it can be inaccurate because cell materials, internal impedance and temperature
affect the voltage. The most blatant error of the voltage-based SoC measurement
occurs when disturbing a battery with a charge or discharge. The resulting agitation
distorts the terminal voltage and it no longer represents a correct SoC reference.
To get accurate readings, the battery needs to rest in the open circuit state
for at least four hours. This makes the voltage-based SoC method impractical
for real-time application where a battery is in active duty. Moreover each battery
chemistry delivers its own unique discharge signature Vocv(SoC). While voltage-
based SoC works reasonably well for a lead acid battery that has rested, the flat
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discharge curve of nickel- and lithium-based batteries renders the voltage method
impracticable (Figure 1.2).

Figure 1.2: Open circuit voltage characteristics comparison Pc-Ac - Li , [22]

There are other several ways of measuring the SoC, such as detecting the spe-
cific gravity with an hydrometer, measuring the drawn energy with the coulomb
counting and apply parasitic load with the impedance spectroscopy. However, some
of them requires a large amount of time for the correct estimation, others discharge
the battery and finally, like the coulomb counting, can be affected by reset and ini-
tialisation problems. It goes without saying that a state estimator algorithm would
be implemented to face this problem.

In this work we’ll see first and foremost how to mathematically describe the
energy exchanges in an electrochemical device. Then we will create a suitable battery
model and we will exploit this model in a model-based estimation algorithm for the
joint estimation of the state of charge and state of health of a battery.

1.1.1 Key Trends, Market and Industry Forces

Energy storage is one of the main topic of the next century. Almost everything
we use is powered by a battery: mobile-phones, laptops, pace-makers, toothbrushes
and so on. According to the Global EV Outlook [9], electric mobility is expanding
at a rapid pace. In 2018, the global electric car fleet exceeded 5.1 million, up 2
million from the previous year and almost doubling the number of new electric
car sales. Technology advances are delivering substantial cost cuts. Key enablers
are developments in battery chemistry and expansion of production capacity in
manufacturing plants. In 2030, in the New Policies Scenario, which includes the
impact of announced policy ambitions, global electric car sales reach 23 million and
the stock exceeds 130 million vehicles. However, for this to happen, as shown in
this McKinsey articles [26] and [4], access to charging infrastructure must improve.
Although many BEVs are charged at home, public charging is necessary for owners
who are travelling or if they don’t own homes with garages. ”On-site battery storage



at an electric -vehicle station can help smooth out load profiles, charging from the grid
when no vehicles are present”. Storage prices are dropping much faster than anyone
expected, due to the growing market for consumer electronics and demand for EVs.
Battery-pack costs are down to less than $230 per kilowatt-hour in 2016, compared
with almost $1000 per kilowatt-hour in 2010. At today’s lower prices, storage is
starting to play a broader role in energy markets, moving from niche uses such as
grid balancing to broader ones such as replacing conventional power generators for
reliability, providing power-quality services, and supporting renewables integration.

1.2 The Project

The BAT-MAN project is part of the contibution POR FESR 2014-2020 - Azione
I.1b.1.2 Poli di Innovazione - Agenda strategica di Ricerca 2016. (Figure 1.3)

Figure 1.3: BAT-MAN Project

1.2.1 Goal

The main objective of the BAT-MAN project is the realisation of a low-cost device
that measures the state of charge SoC and the health conditions SoH of a battery,
capable of recognising critical situations, process data and inform the user through
a simple interface such as an app on a smartphone.

1.2.2 Stakeholders

Project Leader

brain Technologies S.r.l.
(www.brain-tech.it)

Partner

S.I.V.E. S.p.A.
(www.siveonline.com)

Subcontractor

Dipartimento di Elettronica – Laboratorio di Neuronica del Politecnico di Torino
(https://neuronica.polito.it/)

www.brain-tech.it
www.siveonline.com
https://neuronica.polito.it/


1.2.3 Costs

Total Cost: 805.675 e
Total Contribution: 410.231 e





Chapter 2

Batteries

In this chapter we will make a quick review about the most used battery technology
(Lithium-Ion), the battery technology used in this work (Lead-Acid) and the future
technology that we may expect (Solid Electrolite).

2.1 Actual Technology

2.1.1 Lithium-Ion

”There’s Nothing Better Than Lithium-Ion Coming Soon”
David R. Baker, Bloomberg.com, 2019, [5].

A Lithium-Ion battery is made up of an anode, cathode, separator, electrolyte, and
two current collectors (positive and negative). The anode and cathode store the
lithium. The electrolyte carries positively charged lithium ions from the anode to the
cathode and vice versa through the separator. The separator is a very thin sheet of
microperforated plastic. As the name implies, it separates the positive and negative
electrodes while allowing ions to pass through. The movement of the lithium ions
creates free electrons in the anode which creates a charge at the positive current
collector. The electrical current then flows from the current collector through a load
to the negative current collector. While the battery is discharging and providing an
electric current, the anode made of carbon releases lithium ions to the cathode made
of Lithium cobalt oxide, or LiCoO2, generating a flow of electrons from one side to
the other. In other words, the anode undergoes oxidation, or loss of electrons, and
the cathode sees a reduction, or a gain of electrons. When plugging in the device,
the opposite happens: Lithium ions are released by the cathode and received by
the anode. Li-ion can be considered a low-maintenance battery, an advantage that
most other chemistries cannot claim. The battery has no memory and does not need
exercising (deliberate full discharge) to keep it in good shape. Self-discharge is less
than half that of nickel-based systems and this helps the fuel gauge applications.
Average rated values showed in Table 2.1. Such a high specific values (up to 6 time
higher than Lead-Acid battery) have made this technology suitable for several field
of application, going from mobile devices to electric vehicles. The main drawback
concern safety aspects: if the battery gets hot enough to ignite the electrolyte,
you are going to get a fire. Moreover, for what concern modelling aspects, the
open circuit voltage curve Vocv(SoC) is quite horizontal, making voltage-based SoC
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Parameter Value
Nominal voltage [V/cell] 3.6
Specific Energy [Wh/kg] 150 - 200

Specific Power [W/kg] 300 - 1500

Table 2.1: Li-Ion battery energetic specs

measuring method inapplicable and last but not least, Li-Ion batteries are quite
expensive. For these reasons, we decided to use in our work a safer technology,
nonetheless bearing in mind the chance to extend the result to any kind of batteries.

Content Sources

David R. Baker, Bloomberg.com, [5];
Battery University, [2];
Wikipedia, [33];
Marshall Brain, Howstuffworks, [13];
Energy.gov, [6];

2.1.2 Lead Acid

The electrical energy produced by a discharging lead–acid battery can be attributed
to the energy released when the strong chemical bonds of water (H2O) molecules are
formed from H+ ions of the acid and O2− ions of PbO2. Conversely, during charging
the battery acts as a water-splitting device, and in the charged state the chemical
energy of the battery is stored in the potential difference between the pure lead at the
negative side and the PbO2 on the positive side, plus the Sulphuric Acid in aqueous
condition. In the discharged state both the positive and negative plates become
lead(II) sulfate PbSO4, and the electrolyte loses much of its dissolved sulfuric acid
and becomes primarily water. The discharge process is driven by the pronounced
reduction in energy when 2H+(aq) (hydrated protons) of the acid react with O2–

ions of PbO2 to form the strong O–H bonds in H2O. This highly exergonic process
also compensates for the energetically unfavorable formation of Pb2+(aq) ions or
lead sulfate (PbSO4(s)). Thanks to its ability of withstand high current discharges,
this technology is widely used for engine crank. Starter batteries are rated with Ah
or RS (reserve capacity) to indicate energy storage capability, as well as CCA (cold
cranking amps) to signify the current a battery can deliver at cold temperature.
SAE J537 specifies 30 seconds of discharge at –18°C (0°F) at the rated CCA ampere
without the battery voltage dropping below 7.2 volts. RC reflects the runtime in
minutes at a steady discharge of 25. Lead acid does not lend itself to fast charging
and with most types, a full charge takes 14–16 hours. The battery must always
be stored at full state-of-charge. Low charge causes sulfation, a condition that
robs the battery of performance. Adding carbon on the negative electrode reduces
this problem but this lowers the specific energy. Lead acid is heavy and is less
durable than nickel- and lithium-based systems when deep cycled. A full discharge
causes strain and each discharge/charge cycle permanently robs the battery of a
small amount of capacity. This loss is small while the battery is in good operating



condition, but the fading increases once the performance drops to half the nominal
capacity.

Parameter Value
Nominal voltage [V/cell] 2.1
Specific Energy [Wh/kg] 35 - 40

Specific Power [W/kg] 180

Table 2.2: Lead Acid battery energetic specs
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2.2 Future Technology

2.2.1 Solid Electrolite

“With solid electrolytes, we can realise lithium metal instead of
graphite-based anodes”,

Dr. Johannes Kasnatscheew, Electrive interview [21]

Battery cells with a solid electrolyte promise high energy densities, in fact the intro-
duction of solid electrolytes could increase gravimetric energy density by 40%, and
volumetric energy density by 70%, Dr. Johannes Kasnatscheew of Forschungszen-
trum Jülich explains in the interview with electrive. Reasonable conductivity, high
mechanical robustness, but very high contact resistances during charging and dis-
charging characterise inorganic solid electrolytes. The current flowing is still too
low. Organic solid electrolytes, on the other hand, have less contact resistance,
but low conductivity. At congresses, scientists continue to discuss the suitability
of compounds. At present, sulfid-based inorganic ceramic solid electrolytes are the
favourite in terms of conductivity. Solid electrolyte would also drastically improve
the use of energy in production and thus the CO2 balance: today, drying is a com-
plex and energy-intensive process. This would at least be superfluous on the anode
side when using solid electrolytes because the foil is from lithium metal. This also
reduces toxicity. So far, however, there has been no sample of solid electrolyte bat-
teries that could beat current products in terms of their properties. Besides, it first
would need to be shown, how pure lithium metal anodes could be produced safely
and in mass.
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Chapter 3

State of Art

3.1 Battery Modelling

The main approaches used to model battery behavior are:

• Analytical modelling of electrochemical phenomena

• Data-Driven modelling (Black-Box)

• Physical modelling (Electrical equivalent circuit)

• Hybrid modelling

Each method is able to characterise a different detail level of reality, an aspect that
directly reflects on the required computational effort. It is therefore necessary to
find an optimal compromise taking into account the specific application and the
purpose for which it is going to be used. The minimum complexity requirements of
the models concern the ability to derive an estimate of the voltage to the battery
terminals (Vt), managing and providing the state of charge (SoC) and possibly
some measure of the health status (SoH, which takes into account the aging of the
battery). Below we will review the main modelling techniques highlighting the key
aspects that distinguish them.

3.1.1 Analytical modelling of electrochemical phenomena

This type of technique allows to describe the macroscopic behaviour of the battery
by solving complex nonlinear systems of differential equations that characterise the
molecular behaviour of the chemical reactions underlying the energy production
process. A model of this complexity requires a big experimental effort to identify
static parameters, as well as high computing power. The main disadvantage of
this approach is that very few applications guarantee time and resources useful for
obtaining the necessary parameters and coefficients in real time, not to mention that
some of them, such as the specific heat of the electrolyte, are difficult to determine
for sealed lead-acid batteries. Moreover, the high level of detail obliges not to neglect
the phenomenon of overfitting, which minimizes the robustness of the algorithm and
therefore the ability to adapt the model to the entire space of inference.
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Kinetic battery model

Among the analytical models, KiBaM is undoubtedly the most widely used since
it is based on a simple concept that can be described by the double tank analogy
(Figure 3.1), it only requires the use of three parameters to model the battery
behaviour and has a good precision with regard to the estimate of the battery
duration, with average relative error between 2% and 4%. The system of differential

Figure 3.1: Double tank analogy - KiBaM model [11]

equations describing the KiBaM model is the following:{
dCa
dt

= −I + k
(
h2 − h1)

dCb
dt

= −k
(
h2 − h1)

where Ca is the available capacity that can be immediately supplied to a load, Cb
is the limited capacity that can flow towards the available capacity, regulated by a
’valve’ with fixed conductance k and the level indicators h1 and h2 are closely linked
to the nominal capacity value Cn according to the following relations:

h1 =
Ca
Cn

h2 =
Cb(

1− Cn
)

An extension of this model, called T–KiBaM, introduces the concept of chemical
kinetics to model the influence of temperature on the chemical reactions that take
place inside the battery exploiting the Arrhenius equation:

k′ = A e

(
− Ea
R T

)
and where:

k′ =
k

Cn
(
1− Cn

)
This model has the great advantage of being able to model two very important
effects such as the capacity variation in function of the discharge current intensity
(C-rate) and the charge recovery in the inactivity periods due to electro-chemical
stabilisation.
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3.1.2 Data-Driven modelling (Black-Box)

This type of technique circumvents the need for a complete understanding of the
complicated physical processes, looking for a data based heuristic approach (Data-
Driven) to predict behaviours and battery conditions. To this end, computational
intelligence techniques such as Neural Networks, Particle Swarm Optimization and
Predictive Maintenance can be applied to experimental data in order to generate a
non-linear function able to describe the battery variables of interest.

Neural Networks

In modelling methods with Artificial Neural Networks (ANNs), usually the State
of Charge (SoC) is defined as an independent state variable and it is modelled
by means of a Radial Basis Function (Figure 3.2). Thanks to the Neural Networks

Figure 3.2: Radial Basis Function, Ramraj Chandradevan

strong ability to approximate any Non-linear function, the network receives in input:

• terminal voltage at the previous time instant: Vt(k − 1)

• the actual state of charge: SoC(k)

• the actual current: I(k)

and by means of back-propagation and least mean square algorithms (training phase)

• the activation function weights of neurons inside the hidden layer



• the radial basis function parameters

are chosen in a way that that a cost function is minimised, yielding:

• the terminal voltage at the next time instant: Vt(k)

This technology requires to be trained on a copious amount of experimental data.
The acquisition and the selection of this training data is generally the most difficult
process in using a NN. Once the training is completed, the performance in terms
of robustness outside and inside his training set may vary depending on the design
(number of layers and neurons, local weighting function, etc.).
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Particle Swarm Optimization

The PSO is an advanced computational identification technique capable of searching
for optimal solutions to:

• non-linear continuous functions

• constrained and unconstrained functions

• multimodal non-differentiable functions

This technique was born from the intuition of the needs of producing a computational
intelligence able to represent social interactions as can be that of a flock of birds
in search of corn and is able to optimize a problem moving iteratively the position
and velocity of the particles within the search space. In each iteration in fact, each
particle updates its position and speed in accordance with the own previous optimal
solution in order to converge towards the best global solution(Figure 3.3). This type

Figure 3.3: Particle Swarm Optimization, [8]

of parametric optimization suffers from local minimum problems and it is therefore
necessary to initialise the variables with appropriate values.
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3.1.3 Physical modelling (Electrical equivalent circuit)

By means of an electrical equivalent circuit it is possible to empirically approximate
the macroscopic behaviour of the physical quantities that are observable from the
battery terminals such as current and voltage. Although in this method the cells-
chemistry it is not directly described, it is still essential to have a deep knowledge
in order to succeed in the description and management of the non-linearity deriv-
ing from the experimental tests. The general equivalent circuit scheme is shown in
Figure 3.4. The voltage source, denoted by Em, simulates the open circuit voltage,

Figure 3.4: Electrical equivalent circuit, [24]

also previously defined as Vocv. It consists of a function Vocv(SoC) experimentally
determined with appropriate laboratory tests. At the right top, with the symbol
R0, the internal resistance of the battery is modeled. In the middle, instead, there
is a network consisting of one or more RC − branches that take into account the
dynamics in terms of time constants and frequency response. To consider the chem-
ical processes that give rise to phenomena like self-discharge or leakage due to eddy
currents, a vertical branch is inserted in parallel to the terminals that consist of
a generic impedance Zp and a voltage source Ep. Let’s bear in mind that all the
parameters of the equivalent circuit are dependent on:

• State of charge: SoC

• State of health: SoH

• Discharge current intensity: C − rate

• Temperature

• Battery type: Lead-Acid, li-Ion, Ni-Mh...

At the same time, satisfactory results can be obtained for most real-time applications
by neglecting the vertical branch of the parasitic effects and using at most two RC
branches to avoid hypoerparametrization. In the Laplace domain we can then get
the transfer function between the internal impedance voltage

(
Vocv(s)− V t(s)

)
and

the input I(s) as:

H(s) =
Vocv(SoC, s)− Vt(s)

I(s)
= R0 +

R1

s C1

· 1(
R1 + 1

s C1

) + ...+
Rn

s Cn
· 1(
Rn + 1

s Cn

)



As we will see in chapter 5, you can pass through the Z-domain (remember the
strong dependency on the sampling time Ts) and eventually convert everything in
the discrete time domain to perform the parameters identification.
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3.1.4 Ibrid modelling

The hybrid battery model consists of an Enhanced Coulomb counting and an Electric
equivalent model. The first it is based on the KiBaM electrochemical model described
extensively above and it is used to estimate the SoC of the battery in a robust
manner. In this way, effects such as non-linear variation in capacity and voltage
self-recovery are modelled too. The latter comes with a double RC network to
reproduce a wide spectrum of dynamics. In Figure 3.5, the descriptive scheme.

Figure 3.5: Hybrid battery model, [27]
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3.2 States Estimation Technology

In the literature, the state of charge SoC is defined as the ratio expressed as a
percentage of the energy still available compared to the initial amount of energy.
This quantity can be seen as the equivalent of the petrol level indicator in the tank
of cars. As shown in [3], there are several ways to measure the SoC:



• Voltage based method: experimental Vocv(SoC) curve

• Hydrometer: specific weight measurement

• Coulomb Counting: SoC(t) = 1−
∫ t
0 I(τ)dτ

Cn

• Impedance Spectroscopy: EIS (Electro-Chemical Impedance Spectroscopy)

Each of these methods, taken individually, is unsuitable for a real-time estimate of
the State of Charge. In the one hand, some of them often require ad-hoc experiments
or particular working conditions, while on the other some work by exciting the
battery or, even worse, they need the battery to be removed from the vehicle. This
is the reason why today the model-based estimation solutions are the most used and
we can se pros and cons in Figure 3.6.

Figure 3.6: Estimation methods comparison

3.2.1 Model-Based

This technique allows for the SoC estimation by means of model-based algorithms
that exploit the models described in section 3.1, to the simultaneous estimate of
both:

• the electric equivalent model parameters

• the state variables

based on real-time input and output observations. In this context the state of charge
is promoted to state variable and the observer must therefore solve a problem of
estimating the state of a discrete nonlinear dynamic system of the type:

xk+1 = f(xk,uk) + vk

yk = h(xk,uk) + nk

where x represent the non-measurable states vector (SoC and Vp = Vocv−Vt), u is the
input of the system (current I[A]), v is the process white noise, n is the measurement
white noise and y is the output of the system. One of the best algorithm for the non-
linear system state estimation is Adaptive extended Kalman Filter - AEKF,
that comparing the real with the estimated output and exploiting the Bayesian
theory, allows the internal state estimation instant by instant. This estimate is then
eventually used by a Recursive Least Squares - RLS algorithm for the on-line
model parameters tuning. In Figure 3.7 the working diagram of this best practice.



Figure 3.7: Model-based estimation technique, [27]
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3.2.2 Data-Driven

Data-driven modelling is a fairly recent tool that is based on the Feature Engineering
theory. The workflow (Table 3.1) starts with the definition and understanding of
the problem to which is associated with an important experimental campaign for
the acquisition and generation of useful data. These data are then selected, cleaned,
transformed and enriched through appropriate processes. When the database is
ready you can apply regression, classification and grouping techniques to generate
a mathematical model capable of receiving input variables or characteristics and
supplying output, such as state of health or charge of a battery.

Problem - definition
- comprehension
- hypothesis formulation

Data generation - specific experimental campaign
- preliminary data evaluation

Data Management - selection
- cleaning
- transformation
- enrichment

Modelling - features
- selection and choice
- tuning
- test and validation

Table 3.1: Feature Engineering process



Predictive Maintenance

Predictive analytics is the engine of evidence-based decision making. Today there
are many opportunities that big data and engineering techniques are bringing to
the world of analytics. Predictive maintenance consists in the intelligent device
condition monitoring in order to avoid future failures or foresee undesired failures.
Predictive models are generated by machine learning algorithms properly identified
by analysing large data series (Figure 3.8). For this purpose the data are in fact pro-
cessed and analysed with the aim of extracting, transforming and selecting peculiar
characteristics able to characterise certain operating conditions of the battery and
therefore predicting future behaviour. Thanks to tools like semantic segmentation
it is possible to automate the process of characterisation of the phenomenon. In

Figure 3.8: Predictive maintenance: classification algorithm, [30]

contrast to preventive maintenance, which follows a set timeline, as we have seen
predictive maintenance schedules are determined by analytic algorithms and data
from equipment sensors.

Content Sources

The Mathworks, Inc., [31];
The Mathworks, Inc., [30];
The Mathworks, Inc., [29];

3.3 Critiques to the State of Art

Although several sophisticated techniques have already been implemented, during
the study of the problem and more, during the data interpretation in the identifi-
cation section (chapter 5) many doubts and incoherence still raised. For instance,
let’s imagine two batteries. One is completely new, the latter is almost dead:

• battery n°1: new

• battery n°2: old



After a charging time long enough to consider both fully charged (constant voltage
threshold reached), what can we say about the charge condition? They are both
fully charged and therefore should they have a SoC = 100%? If so, why can I only
extract less than half of the nominal capacity from battery number 2, meaning that
it could be exhausted with a SoC = 60% while the battery n°1 could be considered
exhausted at SoC = 0%. Does SoC has still meaning? Should I assign to each fully
charged battery a different SoC according to it’s ”ageing”? Let’s have a simple look
at one evidence in the lack of strictness. In the following we are going to see the
experimental open circuit voltage characteristics Vocv(SoC), where:

• green dots: new battery

• blue dots: medium battery

• red dots: old battery

Let’s consider the case in which, when the battery is fully charged we always assign
it the SoC = 100% regardless of its real capacity Creal and we use a single absolute
characteristic: Figure 3.9. As we can clearly see, except for the new battery, we are

Figure 3.9: Open circuit voltage characteristic: single absolute characteristic with
SoC=100% @ full charge

always using the wrong characteristics. Should we use more than one characteristic?
Should we assign a different SoC @ full-charge? etc.
The aim of this work is exactly to find a rigorous framework in which
building a solid solution.





Chapter 4

Energetic Framework

On the basis of the aforementioned doubts about the batteries energetic state de-
scription, I went trough [14] and I’ve tried to enhanced it, with the aim of ending
up in a complete and rigorous energetic framework for batteries.

4.1 Definitions

In this section we are going to analyse, define and explain in details the batteries
fundamental energetic quantities.

4.1.1 Capacity

Nominal Capacity

It’s the ideal value of electric energy potentially deliverable by the battery in stan-
dard conditions, expressed in Ah and given as rated value by the manufacturer.

Cn

Real Capacity

It corresponds to the actual deliverable electrical energy, measured starting from a
complete charge and going all the way down to the minimum voltage threshold (1.75
V/cell for Pb-Ac). In general:

Creal ≤ Cn

The real capacity value is mainly affected by ageing SoH (state of health), temper-
ature T and discharge rate c-rate (intensity of discharge).

Creal
(
SoH, T, I)

However, along a single discharge cycle, ageing effects can be seen as an almost
constant factor (SoH ≈ const.) and for the sake of clarity I’m going to omit the
dependency to temperature and discharge intensity since it’s a level of detail not
necessary in this section.

Creal(SoH) ≈ const.
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Hence, considering a generic time instant t in a single discharge cycle, the real
capacity Creal can be expressed as a sum of two complementary terms:

Creal(SoH) = Creleased(t) + Creleasable(t, SoH) (4.1)

where:

Creleased(t) = Creleased(t0) +

∫ t

t0

I(τ)dτ

Creleasable(t) =

∫ tf

t

I(τ)dτ

with:
tf : end discharge instant (Vt = Vt min)
t0: first data registration instant
t : generic time instant

Lost Capacity

It’s the quantity of energy that, due to electrochemical ageing factors, is no longer
available from the battery. It corresponds to the exact difference between nominal
and real capacity:

Clost(SoH) = Cn − Creal(SoH) (4.2)

Graphical Description

Let’s consider a discharge session starting from full-charge, in a generic time instant
t, the graphical capacity representation is shown in Figure 4.1.

Figure 4.1: Energetic quantities - graphical representation



4.1.2 State of Charge

The State of Charge SoC is the level of releasable charge of an electric battery
relative to its nominal capacity.

SoC(t) = SoC(t0)−
∫ t
t0
I(τ)dτ

Cn
(4.3)

that in energetic terms corresponds to:

SoC(t) =
Creleasable(t0)

Cn
−

(
Creleased(t)− Creleased(t0)

)
Cn

4.1.3 Depth of Discharge

The Depth of Discharge DoD is the level of released charge of an electric battery
relative to its nominal capacity.

DoD(t) = DoD(t0) +

∫ t
t0
I(τ)dτ

Cn
(4.4)

that in energetic terms corresponds to:

DoD(t) =
Creleased(t0)

Cn
+

(
Creleased(t)− Creleased(t0)

)
Cn

=
Creleased(t)

Cn

4.1.4 State of Health

The State of Health is the measure of the batteries ageing and can analytically
interpreted as:

SoH = DoD(t) + SoC(t) =
Creal
Cn

(4.5)

demonstration:

SoH = DoD(t) + SoC(t) =
Creleased(t0)

Cn
+

(
Creleased(t)− Creleased(t0)

)
Cn

+ ...

+
Creleasable(t0)

Cn
−

(
Creleased(t)− Creleased(t0)

)
Cn

=
Creleased(t0)

Cn
+
Creleasable(t0)

Cn
=
Creal
Cn

4.2 Measurable Quantity Analysis

The theoretical framework just described is the basis on which we can build all our
reasoning. In this section we will discuss about the unknown quantities, the ways
of measuring them and the potential interpretation ways.



4.2.1 Absolute approach

At a generic time instant t we have:

DoD(t) =
Creleased(t0)

Cn
+

(
Creleased(t)− Creleased(t0)

)
Cn

=
Creleased(t)

Cn

SoC(t) =
Creleasable(t0)

Cn
−

(
Creleased(t)− Creleased(t0)

)
Cn

SoH = DoD(t) + SoC(t) =
Creal
Cn

in which many of the aforementioned variables are unknown in general such as:
Creleased(t0), Creal and Creleasable(t0). Let’s now introduce the condition for which at
t = t0 the battery is at full charge. This implies:

Creleased(t0) = 0

Creleased(t) =

∫ t

t0

I(τ)dτ

Creleasable(t0) = Creal

yielding to:

DoD(t) =
Creleased(t)

Cn

SoC(t) =
Creal − Creleased(t)

Cn

SoH = DoD(t) + SoC(t) =
Creal
Cn

and as we can see the unique left unknown is the real capacity Creal, that in the
experimental phase will be suitably retrieved (chapter 5) and in the final algorithm
phase (chapter 7) it appears to be the aim of the project.

4.2.2 Relative approach: Creal ignorance

We can change the point of view exploiting some ”ignorance” assumption, switching
to what we call: relative approach. The basic assumption behind the interpretation
is the one of considering unitary state of charge every time the battery is in the
condition of full charge. That means that for t=t0, the SoC(t0)=1 always with
the battery fully charged, yielding to:

DoD(t) =
Creleased(t)

Cn

SoC(t) = 1− Creleased(t)

Cn
(SoH = 1)

Despite still working in theory, the major drawback of this method is that an old
battery can reach, for instance, the the minimum voltage with a state of charge



equal to 70% or even more. This sounds quite strange because how can a battery be
exhausted and still have a SoC so high? In this approach, in fact, the SoC looses it’s
physical meaning and in Figure 4.2 we can see the energetic graphical description.
If on the one hand the advantage of this interpretation is that all the quantities

Figure 4.2: Energetic quantities (relative) - graphical representation

are known, on the other it’s necessary a voltage-based method to determine the
batteries’ conditions.

4.2.3 Relative approach: relative SoC

Let’s now keep the assumption for which at full charge the battery reaches the
unitary state of charge (SoC(t0)=1), but in this case we are now introducing the
relative State of Charge defined as:

SoCr(t) = SoCr(t0)−
∫ t
t0
I(τ)dτ

Creal
(4.6)

and respectively, the relative Depth of Discharge:

DoDr(t) = DoDr(t0) +

∫ t
t0
I(τ)dτ

Creal
(4.7)

Exploting the hypothesis for which at t = t0 the battery is fully charged, we get:

DoDr(t) =
Creleased(t)

Creal

SoCr(t) = 1− Creleased(t)

Creal
(SoH = 1)

The state of charge regains its physical meaning, spanning the range [0,1] and again
the problem is shifted in the determination of the unknown parameters Creal.





Chapter 5

Model Identification

5.1 Design of Experiment

In this section we’ll see what is the design of the experiment and what has been the
shape of the DoE for our project.

5.1.1 DoE theory

Introduction

The term experiment is defined as a systematic procedure performed under con-
trolled conditions in order to discover an unknown effect, verify a hypothesis or
illustrate a known effect. When analysing a process, experiments are often used
to assess which process inputs have a significant impact on the output and what
should be the reference threshold of these inputs to obtain the desired result (out-
put). Many experiments can be designed to collect this information in different
ways. The Design of Experiments (DoE) is also called Experimental Design. The
Design of Experiment technique lowers design costs and accelerates the process ei-
ther reducing the late design changes or the materials and work complexity. The
’designed experiments’ are also powerful tools to achieve savings on production costs
by minimising the variation of process, rework, scrap and the need for inspection.

Set-up and Description

To better understand this powerful technology, general knowledge of statistics and
analysis is required, such as histograms, statistical process control, regressions, cor-
relations and so on. There are three aspects of the process that are analysed by a
designed experiment:

• Process Inputs (Factors)
The factors can be classified as controllable or uncontrollable variables. The
controllable variables include everything we can predict, choose or modify a-
priori. The uncontrollable variables concern the effects of ’noise’ such as the
effect of man or exogenous factors, which in an almost unpredictable way cause
variability of normal operating conditions. In the design of the experiment only
the controllable factors will be considered, while those uncontrollable will be
managed by means of randomisation techniques able to highlight and isolate
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the effects. Potential factors can be identified and classified using the Fishbone
Chart (diagram cause-effect).

• Levels
The levels are the discrete values that a factor can assume.

• Process Outputs
The outputs are the measurable results potentially influenced by the factors
and their respective levels. Experimenters often want to avoid optimising the
process for one answer at the expense of another. For this reason, important
results are measured and analysed in order to determine the factors, and factors
related settings, able to provide the best overall result based on the assessments
in terms of quality of measurable variables and evaluable attributes.

Figure 5.1: Experimental project example [19]

Experimentation Purpose

The designed experiments can find numerous potential applications for process and
products improvement, including:

• Alternatives comparison
In the case of the pastry example in Figure 5.1, we may want to compare the
results of two different types of flour. If it turns out that the flour, coming
from different suppliers, is not a significant factor, we could select the cheapest
supplier. If instead the flour was significant, then we would select the best
flour. Experiments should make it possible to make a well-considered decision
that evaluates both quality and costs.

• Identification of significant inputs (factors) that influence an output
”What are the significant factors besides flour, eggs, sugar and cooking?”



• Achieving optimal process output
”What are the necessary factors and what are the levels of these factors, to
obtain the desired response?”

• Reduction of variability
Is it possible to choose the factors that can guarantee the best reproducibility?

• Minimization, maximization or targeting of an output
”How can you make the cake as moist as possible without disintegrating?”

• Improvement of Robustness - suitability for use in variable conditions
”Let’s condider the factors and their levels (recipe), can they be modified so
that the cake can come out almost similar regardless of the type of used oven?”

• Balance and optimisation of output quality according to the critical character-
istics (CTQC)
”How do you produce the best cake with the simplest recipe (the least number
of ingredients) and the shorter cooking time?”

Experiment design guidelines

The design of an experiment addresses the questions above outlined by stipulating
the following:

• The factors to be tested

• The levels of these factors

• The structure and layout of experimental tests or boundary conditions

A well-designed experiment is as simple as possible and must get the information
requested in a cheap and reproducible way. Statistical process control, so to obtain
reliable experimental results, is based on two conditions:

• a precise measurement system

• a stable process

If the measurement system contributes to an excessive error, the results of the ex-
periment will be confused. Before conducting the experiment it is necessary to
evaluate both the measurement system and the statistical stability the created pro-
cess. The variation that affects the response must be limited to the random error of
the common cause, not to the variation of the special cause deriving from a specific
events. In addition to the measurement error (explained above), other sources of
error or unexplained changes may obscure the results. Note that the term error is
not a synonym for errors. The error refers to all unexplained variations that arise
in the repeated execution of an experiment carried out by fixing the level settings
and structure. Properly designed experiments can identify and quantify the error
sources. Uncontrollable factors, which induce variations under normal operating
conditions, are referred to as noise factors. These factors can be incorporated into
the experiment so that their variation it is not found in the experiment error. A
strength of the designed experiments is the ability of determining factors and settings
that minimise the effects of uncontrollable factors. Be careful:



”Correlation can often be confused with Causality”

Two factors that vary together can be highly correlated without one causing the
other, or both can be caused by a third factor. The above highlights the impor-
tance of a deep understanding of the operational dynamics during the design of an
experiment. Brainstorming exercises and cause/effect diagrams are both excellent
techniques for acquiring this operational knowledge during the design phase. The
key is to involve people living with the process on a daily basis. The combined effects
or interactions between the factors require careful consideration before conducting
the experiment. Factors can generate non-linear effects that are not additive, but
can only be studied with more complex experiments involving more than 2 level
settings. Two levels are defined as linear (two points define a line), three levels are
defined as quadratic (three points define a curve), four levels are defined as cubic
and so on.

Experiment design process

In Figure 5.2 we can see depicted the experimental design process.

Figure 5.2: Experimental design process [19]

Multi-factor experiments

Multi-factor experiments are designed to evaluate multiple factors set on multiple
levels. One approach is called Full Factorial Experiment, where every factor is tested
with each level in every possible combination with the other factors and their lev-
els. Full Factorial experiments that study all the coupled interactions can be cheap
and practical if there are few factors and only two or three levels per factor. The
advantage is that all coupled interactions can be studied. However, the number of ex-
ecutions increases exponentially as additional factors gets added. Experiments with
many factors can quickly become cumbersome and expensive to execute, as shown
in Figure 5.3. To study a larger number of factors and interactions, Fractional
Factor projects can be used to reduce the number of executions by evaluating



Figure 5.3: Runs table for full-factorial experiments, [19]

only a subset of all the possible factors combinations. These projects are very con-
venient, but the study of interactions between the factors is limited and therefore
the experimental layout must be decided before the experiment execution (during
the phase of experiment design). When selecting factor levels for an experiment,
understanding the natural variation of the process is essential. Levels close to the
process average can hide the meaning of the factor compared to its probable range
of values. For the factors that are measured on a variable scale, it is advisable trying
to select the levels with +/- three standard deviations from the average value.

5.2 BAT-MAN DoE

The dual goal of the experimental campaign is that of:

• creating a useful battery model for real-time application

• testing the state-estimation algorithm performances

by means of suitable experiments that allow for the highlight of the peculiar features.
The DoE of our project is made up of three experimental session:

5.2.1 Acquisition test - 0

This preliminary experiment arises from the need to understand the phenomena
underlying the dynamics of the battery free response (I(t) = 0), in order to optimise
subsequent test campaigns. According to technical data sheets, producers suggest
a settling time of 24 hours, that is the rest time required to consider Vt = Vocv,
far too long for a deeper experimental investigation like ours. The test involves a
preparation phase:

• full charge

• 24h rest

and a data acquisition phase:

• complete discharge up to the minimum voltage of 10.8V



Figure 5.4: Acquisition test - 0

• rest at zero current for 12 hours

Figure 5.4 shows the actual execution highlighting the measured quantities. From
the analysis of the open circuit voltage dynamics, we’ve decided to set a settling time
of 3600[s], as an optimal compromise between characterisation of the equilibrium
phase and approximation error that amounts to less than 2% (Figure 5.5).

Figure 5.5: Acquisition test - 0, error trade-off

5.2.2 Acquisition test - 1

This fundamental test can be considered the heart of the analysis as it has multiple
purposes:



• Experimentally determine the real open circuit voltage characteristic in func-
tion of the state of charge: Vocv(SoC)

• Experimentally determine the real capacity of the battery: Creal

• Evaluate battery behaviours to identify mathematical models capable of re-
producing the discharge phase

• Extract features to introduce self-learning approaches for classification and
prediction (predictive maintenance)

The test involves a preparation phase:

• full charge

• 24h rest

and a data acquisition phase:

• discharge at 10% SoC intervals (discharge current: 4 [A])

• rest time at zero current between intervals: 3600 [s]

• STOP condition: Vt = Vmin = 10.8[V]

In Figure 5.6 it’s shown the actual execution:

Figure 5.6: Acquisition test - 1

5.2.3 Acquisition test - 2

The objective of this experimental investigation is to reproduce a real use cycle in
order to evaluate the effect of current intensity in the discharge phase (discharge at
different c-rates) and validate all the done work. The test involves a preparation
phase:



• full charge

• 24h rest

and a data acquisition phase:

• 3-levels discharge profile, with 2% SoC loss

• constant discharge, with 8% SoC loss (total interval -10% SoC loss)

• rest at zero current between intervals: 3600 [s]

• STOP condition: Vt = Vmin = 10.8[V]

In Figure 5.7, a discharge example of a three-level profile:

Figure 5.7: Acquisition test - 2

5.2.4 Data Organisation

Each data set is uniquely marked with an identification code based on this factors
and values legend: Figure 5.8. For instance, a data set from the second acquisition
test, on the medium Bosch battery, started from 70% SoC, repeated for the seventh
time at standard temperature (20°), will be named:

A2 M1 C1 SoC70 RE7 T0

5.2.5 Full BAT-MAN DoE

In Figure 5.22 it is depicted the full design of experiment of this work including:

• 3 battery model

• 3 battery states

• 10 experiment repetition

• 3 temperature levels



Figure 5.8: DoE Legend

5.3 Fundamental quantities

For the correct model identification it’s of paramount importance the definition of
the two main quantities:

• the Real Capacity: Creal

• the Open Circuit Voltage Characteristics: Vocv(SoC)

this because with the first we universally define the actual state of health SoH =
Creal
Cn

of the battery and therefore the maximum state of charge that a battery can
reach, while the latter defines the behaviour of the internal voltage source. Both can
be extracted from the Acquisition Test 01, of which we are now going to analyse
the discharge profile.

5.3.1 Discharge Profile Analysis

In the Acquisition Test 01, the battery is stressed with a constant current at
several SoC intervals. However, each interval has similar characteristics and is
important to understand its general behaviour in order to correlate the obtained
data with the equivalent circuit. With reference to Figure 5.9 we can divide the
discharge into three zones:

• Zone A: the battery is in a state of rest (I=0 A) for a time longer than one
hour (3600s). In this way the terminal voltage can be considered equal to
the open circuit voltage: Vt=Vocv(1) and the state of charge does not change:
SoC(t)=SoC(1).

• Zone B: the battery is discharged at constant current until the next state of
charge is reached: SoC(1) > SoC(t) > SoC(2).



• Zone C: the current is again zero and the battery free response is analysed.
It is important to underline that only after an hour (3600s), we consider again
the terminal voltage coinciding with the open circuit voltage: Vt(t) = Vocv(2).

Figure 5.9: Generic discharge profile

5.3.2 Real capacity

This experiment is quite straightforward since we simply integrate over time the
extracted current from full-charge to the minimum voltage threshold Vmin, for each
battery state: New, Medium, Old:

Creal =

tend∑
n=0

I(n) Ts (5.1)

yielding to Table 5.1:

Creal new 47.5 Ah
Creal med 25 Ah
Creal old 3 Ah

Table 5.1: Real capacity, FIAMM Titanium L150P, 50Ah, 12V

5.3.3 Open Circuit Voltage Characteristic

A fundamental section of the equivalent electric model consists of the pseudo-voltage
generator lead by the state of charge: Vocv(SoC). To analyse this relationship and
build the open circuit voltage characteristic, it is necessary to concatenate a series
of voltage values in the right no-load voltage range (Zone A), associated with their
correspondent states of charge. With a standard interpolation we can eventually
build the mathematical continuous relation. According to the absolute physical



Figure 5.10: Absolute Interpretation: Vocv(SoC) characteristic interpolation

interpretation discussed in section 4.1, we have 3 different Vocv(SoC) curve, one for
each battery state (Figure 6.2). The best interpolation curve results to be the 4th

order:
Vocv(SoC) = a4 SoC

4 + a3 SoC
3 + a2 SoC

2 + a1 SoC + a0

whose real values are shown in Table 5.2. It’s important to notice that each of these

Parameter New Med Old
a4 2.962535064794e-08 -7.037522683943e-08 -9.620228489834e-08
a3 -9.256468042548e-07 4.699901598046e-06; 2.215673138530e-05
a2 -3.980317908835e-04 3.347037976185e-04 -1.753418892020e-03
a1 4.044344158681e-02 3.965037927789e-03 5.606582286310e-02
a0 1.150595067431e+01 1.198283050271e+01 1.283047834034e+01

Table 5.2: Open Circuit Voltage Characteristics Coefficients

three characteristic has it’s own working range:

SoCmax > SoC(t) > 0

that it’s determined by the absolute interpretation for which:

SoCmax = SoH @full-charge

5.4 Parameters Identification

Let’s remember that The Bat-Man device is a low-cost Embedded System, that
should be able to provide the current conditions of a battery in real-time. Starting
from this consideration we can immediately exclude complex electrochemical-based



models that require high computational resources and a lot of time for the generation
of the result, albeit very detailed and accurate. Focusing now on the electrical equiv-
alent, it is necessary to take into account that each parameter entered is function
of:

• Battery type: Pb, Li-Ion, LiPo, NiMh ...

• State of Charge: SoC

• Health Status: SoH

• Temperature: T [°C]

• Discharge current: I [A]

Although in our analysis the field of battery technology has been narrowed to the
lead-acid, the space of inference required to analyse all the conditions remains in-
credibly vast. In this regard, our model selection process is of the Bottom-Up type,
that is starting from the simplest model available we gradually increase the com-
plexity keeping track of the improvements obtained. At this stage, where we have
universally selected and experimentally defined the main model quantities, we can
proceed to the identification of the electric equivalent model parameters and model
selection.

5.4.1 Least Square Estimation Theory

Our analysis aims to estimate the parameters of the electrical equivalent model
starting from the acquisition of the discrete measurable signals of the quantities of
the system:

I(k) ; Vt(k), with k = 1, ..., N

To this end, it is initially necessary to derive the dynamic equation of the system
in the Frequency Domain, also known as Laplace Domain, which in general for this
equivalent model (Figure 5.11) has this structure:

Figure 5.11: Generic electric equivalent model

H(s) =
Vocv(SoC, s)− Vt(s)

I(s)
= R0 +

R1

s C1

· 1(
R1 + 1

s C1

) + ...+
Rn

s Cn
· 1(
Rn + 1

s Cn

)



Supposing a Zero Order Hold conversion system type and an experimental acquisi-
tion sampling time of: Ts = 0.01s, we pass to the Z-domain, remembering that:

G(z) =
z − 1

z

{
G(s)

s

}
z

yielding to:

H(z) =
Vocv(SoC, z)− Vt(z)

I(z)
= R0 +R1 + ...+Rn+R1

(1− α1

z − α1

)
+ ...+Rn

(1− αn
z − αn

)
where:

αi = e
− Ts
Ri Ci = e

−Ts
τi

We can finally switch to the Discrete-Time domain with the difference equation,
defining:

w(k) = Vocvk − Vt(k)

and:
q−i

def
= backward shift operator

such that:
x(k) q−i = x(k − i)

and therfore we get:

w(k) = −a1 w(k − 1)− ...− an w(k − n) + b0 I(k) + b1 I(k − 1) + ..+ bn I(k − n)

For each instant we can manage the noise uncertainty introducing an error term e(t)
in ”Equation Error” form:

D(q−i)y(k) = N(q−i)I(k) + e(k)

that translates in:

y(k) = −a1 y(k−1)− ...−an y(k−n) + b0 I(k) + b1 I(k−1) + ..+ bn I(k−n) + e(k)

We can now perform a point estimation by means of a least squares estimator.
Starting from:

b = A θ + e

where in our case:

b =

y(k + n)
...

y(N)


a =

−y(k + n− 1) · · · −y(1) I(k + n) I(k + n− 1) · · · I(1)
...

...
...

...
...

...
...

−y(N − 1) · · · −y(N − n) I(N) I(N − 1) · · · I(N − n)



θ =



a1

a2
...
an
b0

b1
...
bn





we have to solve an optimisation problem of the type:

ˆθLS = argmin
θ
||b− Aθ|| = argmin

θ
||e||

It’s possible to prove that the optimal solution, under the hypothesis previously
described, is:

ˆθLS =
(
A′ A

)−1
A′ b

Considering a first order system (n = 1), it is possible to come back to the original
physical quantities solving the following system:

a1 = −α = −e−
Ts
τ1

b0 = R0

b1 = −R0 α +R1 (1− α)

For more complex models it’s not always possible to retrieve the physical parameters
and may be necessary to work with the discrete time synthetic parameters.

5.4.2 R Model

The single resistance model (Figure 5.12), is made up of an ideal voltage generator
which is a function of the state of charge Vocv and a resistance R0 which is a function
of the temperature T, the state of charge SoC, state of health SoH and discharge
current I. As shown in subsection 5.3.3, the open circuit voltage characteristic is

Figure 5.12: R-model

well represented by a 4th order curve but it is even possible to approximate it with
a straight line while achieving lower performance. The static equation is:

Vocv(SoC) = Vt +R0 I

The main advantage of this very simple model lies in the chance of avoiding overfit-
ting problems, and therefore embracing a bigger inference space, accepting a lower
fidelity.



Identification interval

To obtain satisfactory results it is advisable to choose the smarter time interval on
which performing the identification, exploiting both the knowledge of the physical
phenomenon and the limits of the equivalent model that we are using. It would be
useless the hope of being able to identify the dynamics of the system with a pseudo-
static equivalent model with a single resistance. It is clear that this kind of model
is not suitable for high dynamics and it would be useless trying to let the model
identify them. That is exactly why we set a Voltage Threshold of 500s to avoid the
initial dynamics, resulting in the range highlighted in Figure 5.13.

Figure 5.13: Identification range - R-model

Identification results

In Figure 5.14 we can see on the left side the identified parameters while on the right
side we have the root mean squared error as a measure of identification goodness,
expressed as:

RMSe =

√(
Vt(k)− ˆVt(k)

)2

One of the most blatant evidence is the fact that for low states of charge, where the
non-linearity of the real behaviour are stronger, this simple model is working pretty
badly, with errors up to four time bigger than the ones for high states of charge.

5.4.3 Dynamic Model

The dynamic model (Figure 5.15) is made up of both an ideal voltage generator
which is function of the state of charge and an electrical network composed of a
resistance R0 and an RC − branch. In this way is possible to approximately model
the dynamics of the system response. Also in this case, as shown in subsection 5.3.3,
the open circuit voltage characteristic is well represented by a 4th order curve but it



Figure 5.14: Identification results - R-model

Figure 5.15: Dynamic model

is even possible to approximate it with a straight line while achieving lower perfor-
mance. The dynamic equation equation in the Laplace Domain is:

H(s) =
Vocv(SoC, s)− Vt(s)

I(s)
= R0 +

R1

s C1

· 1(
R1 + 1

s C1

)+

Identification interval

To obtain satisfactory results it is advisable to choose the smarter time interval on
which performing the identification, exploiting both the knowledge of the physical
phenomenon and the limits of the equivalent model that we are using. For this
model we have included in the identification interval, all the experiment, except for
the free-response which would have required very high order systems. The resulting
identification range is highlighted in Figure 5.16.



Figure 5.16: Identification range - Dynamic model

Identification results

In Figure 5.21 we can see the identified parameters: R0,R1, C1, while in Figure 5.18
there is a focus on the τ constant:

τ1 = R1 C1

In this case, the R0 distribution starts to be interesting but the error is still high

Figure 5.17: Identification results - Dynamic model

because the non-linearity are mixed-up with the dynamic and moreover, in the



Figure 5.18: Identification results - τ1 - Dynamic Model

simulation environment, the first order dynamics does not introduce significant im-
provements in term of modelling effectiveness. The real dynamics would re-
quire higher order system, incurring in a curse of parameter dimension
and model complexity, but the problem with the non-linearity will still
persist. This is exactly why we ended up with the following non-linear
model.

5.4.4 Non-Linear R Model

This model stems from the consideration that in a constant current discharge phase,
the terminal voltage assumes non-linear behaviours depending on the state of charge
and the state of health.

const. input =⇒ non− linear output

Examining the dynamic model described above, if for high SoC and SoH can guar-
antee decent performance, the same cannot be said in the final phases in which
complex non-linearities are completely ignored. And is precisely there that the
performance in estimation ”goodness” is still low. The problem can be properly
managed with the following model: Figure 5.19. It maintains the basics structure
but there is the insertion of a non linear term suitably defined. Let’s have a look at
the mathematical description:

Vocv = Vt + (R0 +Rnl) I (5.2)

Rnl = k1

(∫ t
0
I(τ)dτ

Creal

)2

· e
k2

(( ∫ t
0 I(τ)dτ

Creal

)2
Cn

Creleasable(t)

)
(5.3)

where k1 and k2 are a couple of constant function of the SoC and SoH.



Figure 5.19: Non-linear model

Physical meaning

Let’s have a look at the intrinsic meaning of Equation 5.3. The first term:(∫ t
0
I(τ)dτ

Creal

)2

is a quantity that lies in the [0, 1] range and for which when t = 0 (full − charge)
it worth 0 and it nulls the effect of the non linearity, while when t = tf (full −
discharge) it worth 1 and it has maximum effect on the non-linearity. It can be
seen as modulator and we have squared it to change his effect toward the lower state
of charge without affecting the range bounds. The second term:

e
k2

(( ∫ t
0 I(τ)dτ

Creal

)2
Cn

Creleasable(t)

)
it’s an exponential term that include the previous one and introduce a new quantity(

Cn
Creleasable(t)

)
, strictly related to the current status of the battery and its SoH. Indeed

it is always greater than one and it has no effect when Creleasable(t) is close to the
nominal capacity Cn (ratio close to 1), while it has maximum effect when battery is
very discharge or it is fully charge but pretty old (ratio � 1). Finally, we can also
switch from the energetic quantities interpretation to the state variables one:

Rnl = k1

(
DoD(t)

DoD(t) + SoC(t)

)2

· e
k2

((
DoD(t)

DoD(t)+SoC(t)

)2
1

SoC(t)

)
(5.4)

Proof: remembering that

DoD(t) = DoD(t0) +

∫ t
t0
I(τ)dτ

Cn
=

∫ t0
0
I(τ)dτ

Cn
+

∫ t
t0
I(τ)dτ

Cn

SoH =
Creal
Cn

= DoD(t) + SoC(t)

we can rewrite the first term, multiplying and dividing by Cn:∫ t
0
I(τ)dτ

Creal
=

∫ t
0
I(τ)dτ

Creal

Cn
Cn

=
DoD(t)

SoH
=

DoD(t)

DoD(t) + SoC(t)



while the ratio in the exponential can be seen as:

Cn
Creleasable(t)

=
Cn

Creal −
∫ t

0
I(τ)dτ

=
Cn

Creal
1

1−
∫ t
0 I(τ)dτ

Creal

=
1

SoH −DoD(t)
=

1

SoC(t)

yielding to Equation 5.4.

Identification interval

The model is non-linear but it remains static. this is why we have selected smae
identification interval of the R-model: Figure 5.20. In this way we can avoid that

Figure 5.20: Identification range - Non linear model

the initial dynamics affects the estimation performance.

Identification results

In Figure 5.21 we can immediately see the power of this solution. On the left side the
identified resistances describe a mathematical shape similar to a parabola and the
trend is clearly visible. Moreover, on the right side we can see that the error remains
extremely low along all the inference space: < 1.5e−4 for each SoCs. Thanks to
this model we’ve been able to correctly identify the model parameters in
function of the SoC and the SoH and in chapter 6 we’ll see how to create
the final model to be used in the model-based final solution.



Figure 5.21: Identification results - Non-linear model



Figure 5.22: Full BAT-MAN DoE





Chapter 6

Battery Model

In this chapter we will exploit the data coming from the identification section to
create a complete battery model. The model is made up of a couple of convex
combinations that, in function of the provided State of health (SoH), are able to
span all the battery behaviour in a discharge session (0 < SoC(t) < Creal).

6.1 The Structure

Starting from the evidence that during a finite number of charge-discharge cycles
the SOH (State of Health) is a quasi-static physical quantity, we can at first assume
it constant and consider it as a model parameter. In chapter 7 we’ll see how to
exploit this structure to build the solution. The model can be briefly represented
by the electric equivalent circuit model in Figure 6.1.

Figure 6.1: Equivalent electric circuit

It consists of a couple of non-linear elements that act like a voltage source
Vocv(SoC, SoH) and a resistor R(SoC, SoH). This elements are made up of con-
vex combinations in such a way that they receive as input both the SoH (State of
Health) and the SoC (State of Charge) and respectively provide the correspondent
value of the open circuit voltage and resistance. The synthetic model description in
the discrete-time state-space form is:{

DoD(k + 1) = DoD(k) + ∆T
Cn

I(k)

Vt(k) = Vocv

(
DoD(k), SoH

)
−Rnl

(
DoD(k), SoH

)
I(k)

63



and since:
SoH = SoC(k) +DoD(k) ∼= const. ∀k = 1, ..., N

we can equivalently reformulate it as:{
SoC(k + 1) = SoC(k)− ∆T

Cn
I(k)

Vt(k) = Vocv

(
SoC(k), SoH

)
−Rnl

(
SoC(k), SoH

)
I(k)

In the following we’ll see in depth both how Vocv and Rnl are built from the experi-
mental data acquisitions and how they work.

6.1.1 Voltage Source model block

The voltage source should represent the behaviour of the open circuit voltage rela-
tion:

Vocv(SoC, SoH)

or equivalently:
Vocv(DoD, SoH)

According to the analysis performed in chapter 5, where we’ve dealt with the
Vocv curves experimental trends at the three main health conditions (New, Medium,
Old), we notice in the first instance that they can be approximated with a straight
line that rotates and translates with ageing.

Figure 6.2: Linear approximation - Vocv(SoC) characteristic interpolation



Following this insight we can build a convex combination of straight lines that
spans over the SoH range. Defining b1 i the ith angular coefficient and b0 i the
ith intercept, we can represent in the parameters space the starting and the final
conditions: We call xnew the point represented by the couple (b0 new, b1 new) that

Figure 6.3: Convex combination parameters space

corresponds to the line associated to SoH=1 (new battery) and we call xold the
point represented by the couple (b0 old, b1 old) that corresponds to the line associated
to SoH=0 (dead battery). In this way we have defined the limits of the convex
combination and the generic conditions xi is given by:

xi(SoH) = xnew + (1− SoH)k(xold − xnew)

(SoH = 0 7→ xi = xold ; SoH = 1 7→ xi = xnew)

Now that we have the basic structure, we can tune the coefficient k to match the
non linearity with whom the trajectory space it’s spanned by the empirical data.
Indeed, since the base (1 − SoH) lies in the [0, 1] range, the exponent k can be
chosen at will without affecting the convex combination boundaries. In our case the
choice (1− SoH)4 gives the optimal fit to experimental data:

xi(SoH) = xnew + (1− SoH)4 (xold − xnew)

that is:
xi(SoH) = (b0 i, b1 i)

In this way the SoH uniquely defines the line parameters and a first approxima-
tion of the Vocv(SoC/DoD, SoH) is:

Vocv linear i(SoC, SoH) = SoC b1 i + b0 i

Eventually we can add a sinusoidal term that is responsible for the management
of the intrinsic s-shaped non-linearity of the real Vocv characteristics:



Vocv i(SoC, SoH) = SoC b1 i + b0 i + k2 SoH sin(2π (SoH − SoC))

or equivalently

Vocv i(DoD, SoH) = (SoH −DoD) b1 i + b0 i + k2 SoH sin(2π DoD)

where k2 is a model parameter to be experimentally obtained.
In this schematic representation (Figure 6.4) is summarised at high level the struc-
ture of this main model block. The blue squares represent the functions, the green

Figure 6.4: Voltage source model block

and red ones represent the limits (parameters) of the convex combination and the
white squares are the inputs and outputs of this first model block.

6.1.2 Resistor model block

The resistor should represent the behaviour of the battery internal impedance:

Rnl(SoC, SoH)

or equivalently:
Rnl(DoD, SoH)

According to the analysis performed in chapter 5, where we’ve dealt with the
identification of the resistance distributions at the three main health conditions
(New, Medium, Old), we notice in the first instance that they can be approximated
with a parabola that shrinks and translates with ageing (Figure 6.5). Following this
insight we can build a convex combination of parabolas that spans over the SoH
range. Defining c0 i, c1 i, c2 i the parabola’s numeric coefficients, we can represent in
the parameters space the starting and the final conditions (Figure 6.6). We call xnew
the point represented by the triplet (c0 new, c1 new, c2 new) that corresponds to the



Figure 6.5: Rnl parabolic interpolation

Figure 6.6: Rnl - Convex combination parameters space

parabola associated to SoH = 1 (new battery) and we call xold the point represented
by the triplet (c0 old, c1 old, c2 old) that corresponds to the parabola associated to
SoH = 0 (dead battery). In this way we have defined the limits of the convex
combination and the generic conditions xi is given by:

xi(SoH) = xnew + (1− SoH)k(xold − xnew)

(SoH = 0 7→ xi = xold ; SoH = 1 7→ xi = xnew)

Now that we have the basic structure, we can tune the coefficient k to match the
non linearity with whom the trajectory space it’s spanned by the empirical data.



Indeed, since the base (1 − SoH) lies in the [0, 1] range, the exponent k can be
chosen at will without affecting the convex combination boundaries. In our case the
choice (1− SoH)8 gives the optimal fit to experimental data:

xi(SoH) = xnew + (1− SoH)8 (xold − xnew)

that is:
xi(SoH) = (c0 i, c1 i, c2 i)

In this way the SoH uniquely defines the parabola parameters and a first ap-
proximation of the Rnl(SoC/DoD, SoH) is:

Rnl linear i(SoC, SoH) = SoC2 c2 i + SoC c1 i + c0 i

Eventually we can add an exponential term that is responsible for the manage-
ment of the intrinsic non-linearity in the low-charge range:

Rnl i(SoC, SoH) = SoC2 c2 i + SoC c1 i + c0 i + k7 e

(
k6(1− SoC

SoH
)
)8

or equivalently

Rnl i(DoD, SoH) = (SoH −DoD)2 c2 i + (SoH −DoD) c1 i + c0 i + k7 e

(
k6
DoD
SoH

)8
where k6 and k7 are model parameters to be experimentally obtained.
In this schematic representation (Figure 6.7) is summarised at high level the struc-
ture of this main model block. The blue squares represent the functions, the green

Figure 6.7: Non- linear Resistor model block

and red ones represent the limits (parameters) of the convex combination and the
white squares are the inputs and outputs of this second model block.

6.2 Model Equations

With the aim of giving both a rigorous mathematical description and a compre-
hensive visual overview on which the overall model it’s founded, in the following



we’ll merge the model blocks to obtain the input/output relationship. According
to measurement at our disposal, we consider the current drained or provided to the
battery I(t) as the system input U(t) while the terminals voltage Vt(t) is the system
output Y (t). At present the SoH (State of Health) enters the problem as a fixed
parametric input that fixes the behaviour of the model though in the next chapter
we’ll see how to exploit this structure to implement the solution.

6.2.1 State Equation

The state of the system can be chosen at will among the SoC (State of Charge) and
the DoD (Depth of Discharge) bearing in mind the energetic relation expressed in
chapter 4:

SoH = SoC(k) +DoD(k) ∼= const. ∀k = 1, ..., N

IMPORTANT: Henceforward we’ll use the DoD as state X(t) of the system
since both in the experimental environment and in real life it’s easier to end up in a
”safe” condition in which we can do assumption about the initial conditions, though
we are going to discuss more about this in chapter 8.
The state equation in Discrete Time form is quite simple and is given by:

X(k + 1) = X(k) + a1 U(k) (6.1)

where a1 = Ts
Cn

.

6.2.2 Output Equation

The output of the system corresponds to the voltage measured at the battery ter-
minals. According to the complete model structure,the output equation in Discrete
Time form becomes:

Y (k) = b0 + b1

(
SoH −X(k)

)
− k2 SoH sin

(
2π X(k)

)
+

−

(
c0 + c1

(
SoH −X(k)

)
+ c2

(
SoH −X(k)

)2

+ k7 e

(
k6
X(k)
SoH

)8)
U(k) (6.2)

and calling:

b4 = b0 + b1 SoH

b5 = k2 SoH

c4 = c0 + c1 SoH + c2 SoH
2

c5 = c1 + 2 c2 SoH

we can reformulate the output equation in a simplified fashion:

Y (k) = b4 − b1 X(k)− b5 sin
(

2π X(k)
)

+

−

(
c4 − c5X(k) + c2 X(k)2 + k7 e

(
k6
X(k)
SoH

)8)
U(k) (6.3)



Despite the state equation is linear and quite simple, the model presents strong
nonlinearities in the output equation. This aspect has strongly affected the tools
that have been exerted in the estimation algorithm generation (chapter 7). We
should bear in mind that the SoH, in this phase, still enters the problem as known
and given parameter.

6.2.3 Overview

Let’s now have a look at the the overall battery model Simulink implementation
(Figure 6.8) As we can see it’s necessary to provide:

Figure 6.8: Simulink model - High Level

• The Initial State: DoD(t0)
(

or equivalently SoC(t0)
)

• The Real Capacity: Cr

(
that defines the actual State of Health: SoH

)
• The Nominal Capacity: Cn

and the system automatically evolves according to the external output.

6.3 Performance

Let’s have a closer look to the limits and potentialities of the battery model. In this
section are going to be shown the calibration steps and the performance comparison
with our experimental benchmark tests.



6.3.1 Calibration

This non-linear model requires the fundamental blocks calibration, in which we set
the best-fit parameters to the real data. Starting from the Vocv block, we exploit
previous analysis on the ”NEW Battery” open circuit voltage curve to set the upper
limit and the ”OLD Battery” open circuit voltage curve to set the lower limit of
the convex combination. Once the main structure is defined we can fine-tune the
parameter k2 to manage the sinusoidal behaviour of the real data and finally perform
a check of the model with the ”MEDIUM Battery”, resulting in: The same procedure

Parameter Value
b0 new 11.70
b1 new 0.018
b0 old 13.05
b1 old 0.040
k2 0.29

Table 6.1: Vocv model block parameters

holds for the Rnl block, resulting in:

Parameter Value
c0 new 0.1300
c1 new -2.159 e-3
c2 new 2.159 e-5
c0 old 0.4433
c1 old -8.165 e-2
c2 old 6.8041 e-3
k6 12
k7 1 e-4

Table 6.2: Rnl model block parameters

In chapter 8 we’ll introduce some insight to automate the calibration process
exploiting particular initial condition and discharge/charge/rest sessions.

6.3.2 Test

The following plots show the quality of the model for the battery in the three main
conditions: New, Medium, Old.
IMPORTANT: The input signal it’s processed by a moving median filter with a
window length of 10s in order to avoid both noise and abrupt current variation.
Thus, we can clearly see that if on one hand the model is working extremely well
for this battery in new and medium condition, on the other it’s not perfect in the
old one, while keeping remarkable performance. This little modelling error can be
easily accepted since in real-life condition going so deep with the discharge could
result in serious battery damage, mainly for lead-acid batteries.



Figure 6.9: Model performance - Battery: new

Figure 6.10: Model performance - Battery: medium



Figure 6.11: Model performance - Battery: old





Chapter 7

Model-based Solution

7.1 Single Non-Linear State Observer

As former step towards the final solution we reckon the Real Capacity Cr to be
known and we’ll see that this assumption it’s plausible in the logic of the complete
algorithm. The goal in this phase is to be able to retrieve the state initial conditions
by means of a non-linear state observer. Among several algorithm with different
complexity, the most robust, used and validated is the Extended Kalman Filter
(EKF).

Figure 7.1: Extended Kalman Filter, [17]

7.1.1 Extended Kalman Filter

The Extended Kalman Filter is a model-based non-linear online state estimator.
Assuming that the state transition and output equations for a discrete-time nonlin-
ear system have non-additive process and measurement noise terms with zero mean
and covariance matrices Q and R, respectively:x(k + 1) = f

(
x(k), u(k)

)
+ w(k)

y(k) = h
(
x(k), u(k)

)
+ v(k)

w(k) ≈
(

0, Q(k)
)

v(k) ≈
(

0, R(k)
)

Where f(·) is a nonlinear state transition function that describes the evolution of
states x from one time step to the next. The nonlinear measurement function h(·)
relates x to the measurements y at time step k. The process and measurement noise
are w and v, respectively. The covariance matrices Q and R are to be provided
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and act like model tuning parameters. In the following we are going to describe the
fundamental steps of this algorithm while more can be found in [25]:

1) Filter Initialisation
We initialise the state x(0) and the state estimation error covariance matrix P :

x̂(0| − 1) = E[x(0)]

P (0| − 1) = E[
(
x(0)− x̂(0| − 1)

)(
x(0)− x̂(0| − 1)

)T
]

where x̂(0| − 1) is the best guess of the state value before you make any measure-
ments.
Then, for each time steps k=0,1,2...

2.1) Correction
Compute the analytical Jacobian of the measurement function h:

C(k) =
∂h

∂x

∣∣∣
x=x̂(k|k−1)

S(k) =
∂h

∂v

∣∣∣
x=x̂(k|k−1)

= In

update the kalman gain K:

K(k) = P (k|k − 1)C(k)T

(
C(k)P (k|k − 1)C(k)T + S(k)R(k)S(k)T

)−1

and eventually update the state x and state estimation error covariance P using the
measured data y(k):

x̂(k|k) = x̂(k|k − 1) +K(k)
(
y(k)− ŷ(k)

)
P̂ (k|k) = P (k|k − 1) +K(k)C(k)P (k|k − 1)

where ŷ(k) = h
(
x̂(k|k − 1), 0, u(k)

)
2.2) Prediction

Compute the analytical Jacobian of the state transition function f :

A(k) =
∂f

∂x

∣∣∣
x=x̂(k|k)

G(k) =
∂f

∂w

∣∣∣
x=x̂(k|k)

= In

and update the value to be fed back again in the corrector section:

P (k + 1|k) = A(k)P (k|k)A(k)T +G(k)Q(k)G(k)T

x̂(k + 1|k) = f
(
x̂(k|k), 0, u(k)

)



7.1.2 Implementation

In the early stage of the prototyping phase we’ve decided to exploit the Simulink
library to rapidly implement and test the Extended Kalman Filter. As shown in
the diagram we have the main block that receives the real output data y(k) and
estimates the internal state of the system x̂(k), then, we have two simulink functions

that respectively represent x̂(k + 1|k) = f
(
x̂(k|k), 0, u(k)

)
and ŷ(k) = h

(
x̂(k|k −

1), 0, u(k)
)

. Eventually we have also added another couple of Simulink functions

that represent the jacobians of Jf (·) and Jh(·) so to reduce the computational effort
(non strictly mandatory).

Figure 7.2: Extended Kalman Filter - Simulink implementation

The last step includes both the configuration of the initial conditions in terms
of:

• initial state x̂(0)

• initial covariance P (0)

and the setting of the uncertainties:

• model uncertainties covariance Q(0)

• measurement uncertainties covariance R(0)

That results in:



Parameter Value
x̂(0) 10
P (0) 100
Q(0) 10
R(0) 1

Table 7.1: EKF parameters

Content Sources

Simon, [25];
Mathworks, [16];
Mathworks, [15];
Mathworks, [17];

7.1.3 Real data performance

Let’s now have a look at the estimation performances of the implemented EKF. In
this section the estimation algorithm is tested on our real data set for the battery
in the three main health conditions: new (Figure 7.3), medium (Figure 7.4), old
(Figure 7.5).

Figure 7.3: Extended Kalman Filter - Performance: New



Figure 7.4: Extended Kalman Filter - Performance: Medium

Figure 7.5: Extended Kalman Filter - Performance: Old

In the plots we can see the real battery state DoD(t) (yellow line), and the
EKF estimated state ˆDoD(t)(blue line). This algorithm reaches quite good results,
yielding to average absolute estimation errors ≤ 2% with great convergence times
for this slow dynamics. The relatively lower performances in the old battery (3%
max error) are mainly due to the modelling approximation.
IMPORTANT: Thanks to the experimental session shown in subsection 5.3.2, in
which we have measured the real capacity of the battery, and thanks to the created



energetic framework (chapter 4), the yellow line can be considered as ”absolute” in
terms of status. This means that the estimation error with respect to this line can
be considered ”absolute”.

7.2 Real-Time Batteries’ SoC and SoH Estimator

At this stage we have just set the basis for the implementation of the final model-
based solution. Indeed, as seen in subsection 6.2.3, given:

• the real capacity Cr

• the state initial condition DoD(0)

we have built a working approximated battery model.
In subsection 7.1.1, we’ve exploited this model and given only:

• the real capacity Cr

we have built a model-based non-linear state observer (EKF) to retrieve the state
initial condition DoD(0) (or SoC(0) equivalently). Yet the real capacity Cr is un-
known during the standard battery life-cycles and is exactly one of the most crucial
information to extract. In order to overcome this problem we came out with a more
complex solution that at the highest possible level of abstraction can be described as
a series of n augmented non-linear state estimators (ANSE), each of which supplied
with n possible guess in the span:

Cr i ∈ [0, Cn] i = 1, ..., n

and that generate peculiar error signal that are eventually managed by a logic to find
the ”optimum”, that is the ”best” estimated real capacity Ĉr best, and the relative
real-time state estimation ˆDoD(t) (or equivalently ˆSoC(t)).

Figure 7.6: High level algorithm description



Hence the final solution is made up of two main macro-blocks:

• a series of n ANSE (Augmented Non-Linear State Estimators)

• a signal logic unit

Let’s now have a look at the nitty-gritty of these elements.

7.2.1 Series of ANSE

The acronym ANSE stands for Augmented Non-linear State Estimator and it is a
structure that we’ve ideate to generate useful error signals. It corresponds to the
pulsing core of the final solution and the structure is shown in Figure 7.7.

Figure 7.7: Series of n ANSE (Augmented Non-linear State Estimators

The basic idea is that of fixing one of the two unknowns (Cr and DoD(t)) and
parallelize n discrete possible ”solutions” to find the ”best”. In our case the dynamic
of the real capacity Cr is order of magnitudes slower than the one of the DoD(t)
and therefore it perfectly lends itself for the algorithm. Each ANSE (Figure 7.8)
mainly consists of:

• n◦1 Non-linear State Observer (EKF in this case)

• n◦1 Open Loop Battery Model

• n◦2 Sample and hold



EKF

Model
(open loop)

+

-

+

-

+

-
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Figure 7.8: ANSE (Augmented Non-linear State Estimators)

Working Principle
The ith observer receives as input:

• the input signal of the system U(k)

• the output signal of the system Y (k)

• the ith guessed real capacity Ĉr i

and yield:

• the estimated state of the system x̂obs(k)

• the estimated output signal of the system Ŷobs(k)

We define the observer output tracking error as the difference between the real
output Y (k) and the estimated output Ŷobs(k):

eY obs(k) = Y (k)− Ŷobs(k) (7.1)

and when at the generic time instants t1 the error eY obs(k) goes below a fixed
threshold thobs:

eY obs(k) < thobs when k = t1

the estimated state of the system x̂obs(t1) is sampled, hold and provided as ini-
tial condition of the Open Loop Battery Model that from now on will evolve au-
tonomously. The model produces:

• the estimated state of the system x̂m(k)

• the estimated output signal of the system Ŷm(k)



We define the estimated state tracking error as the difference between the state
estimated from the observer x̂obs(k) and the state estimated from the model x̂m(k):

ex̂i(k) = x̂obs(k)− x̂m(k) (7.2)

This error defines the difference in the evolution between the initialised open-loop
model and the observer. However, what really matter to us is not the absolute value
in itself but the relative error with respect to the value assumed in the neighbourhood
of the convergence instant t1:

ex̂i(t1 + δτ)

Therefore, we define the normalised estimated state tracking error as the difference
between the current estimated state tracking error and its value at time t1:

ex̂i norm(k) = ex̂i(k)− ex̂i(t1 + δτ) (7.3)

This process let us to generate a series of n comparable signals whose associated
physical meaning is that of measuring how much the observer changes ”the internal
parameters” to follow the output signal. The less the movement the more accurate
is the initial guess about Ĉr. The algorithm is extendable according to the com-
putational power at your disposal. The higher the number n of ANSE, the more
precise is the joined estimation. However, an important increase of estimators could
not lead to a correspondent rise of performance due to modelling uncertainties.

7.2.2 The Logic

The logic block aims at deciding which of the n parallel guesses is the optimal one.
In order to accomplish this result, this item it’s made up of two parts:

• a signal conditioning section (Figure 7.9)

• a comparator (Figure 7.10)

Figure 7.9: Signal Conditioning



Figure 7.10: Comparator

Working Principle
All the n normalised estimated state tracking error signal are squared to avoid sign
problems and then integrated over time to include the history:

efi(k) =
k∑

j=t2

ex̂i norm(j)2 · δτ (7.4)

where t2 represent each instant in which the value of one of the observer output
tracking error goes below the threshold thobs. This time instants are of paramount
importance because also tells when to reset the integral values. The comparator
simply takes the minimum of the n error signals and assign to it the ”optimal”
label.

7.2.3 Algorithm Performances

Let’s have a look at the tracking performances.

How to interpret the results

As we have seen this model acts like a switch among n different initial guesses. In
this prototyping phase we have decided to make a test with 3 internal parallel
models so initialised (Table 7.2). In channel 0, therefore, we always have the correct

Channel New Med Old
0 Creal new ≈ 0.95 · Cn Creal med ≈ 0.50 · Cn Creal old ≈ 0.10 · Cn
1 0.75 · Cn 0.75 · Cn 0.75 · Cn
2 0.50 · Cn 0.25 · Cn 0.50 · Cn

Table 7.2: Final Algorithm: initialisation values

model initialisation, while in the other two channels there are other wrong model
choices. The goal of our algorithm would be the one of having the channel 0 selected
as soon as possible and maintained as long as possible during the discharge session.



If so, we will pick the estimated internal state x̂ = DoD(t) coming from the model
associated to channel 0 yielding to a complete joint SoC and SoH estimation.
We will eventually compare the absolute state evolution (experimentally measured
in(chapter 4), with the estimated one to find the absolute error. The same hold
for the output signal Vt.

The results: New battery

Figure 7.11: Channel selection, battery: new

As we can see, the performance in terms of channel selection for the battery in
good condition are pretty interesting: over 70% of the time, the channel 0 remains
selected.



Figure 7.12: Internal state identification, battery: new

This directly translates in an internal state estimation absolute error ≤ 1-2 %
along all the discharge section. Blue (ch. 0) and yellow (real) lines are almost
superimposed. IMPORTANT: Thanks to the experimental session shown in sub-
section 5.3.2, in which we have measured the real capacity of the battery, and thanks
to the created energetic framework (chapter 4), the yellow line can be considered as
”absolute” in terms of status. This means that the estimation error with respect to
this line can be considered ”absolute”.



Figure 7.13: Modelling error: terminal voltage Vt, battery: new

As expected, from the modelling side too, the best model is the one associated
to channel 0 (blue line).



The results: Medium battery

Figure 7.14: Channel selection, battery: med

In this this case, channel selection performance for the battery in medium health
condition yields channel 0 to remain selected over 50% of the time. In this case the
convergence conditions takes up to 1e4s, but this is mainly due to a non perfect
signal (in terms of estimation).



Figure 7.15: Internal state identification, battery: med

This directly translates in an internal state estimation absolute error ≤ 2-4 %
along all the discharge section. Blue (ch. 0) and yellow (real) lines are almost
superimposed. IMPORTANT: Thanks to the experimental session shown in sub-
section 5.3.2, in which we have measured the real capacity of the battery, and thanks
to the created energetic framework (chapter 4), the yellow line can be considered as
”absolute” in terms of status. This means that the estimation error with respect to
this line can be considered ”absolute”.



Figure 7.16: Modelling error: terminal voltage Vt, battery: med

As expected, from the modelling side too, the best model is the one associated
to channel 0 (blue line).



The results: Old battery

Figure 7.17: Channel selection, battery: old

In this this case, channel selection performance for the battery in old health condition
yields channel 0 to remain selected a less than 50% of the time. In this case the
convergence conditions takes up to 2e3s, but this is mainly due to a non perfect
signal (in terms of estimation). The final jump to channel 2 should not be taken
into account because it’s a zero input zone where the identification does not work.
Also in this case the signal is not perfect for the identification purposes.



Figure 7.18: Internal state identification, battery: old

This directly translates in an internal state estimation absolute error ≤ 3-5 %
along all the discharge section. Blue (ch. 0) and yellow (real) lines are almost
superimposed. IMPORTANT: Thanks to the experimental session shown in sub-
section 5.3.2, in which we have measured the real capacity of the battery, and thanks
to the created energetic framework (chapter 4), the yellow line can be considered as
”absolute” in terms of status. This means that the estimation error with respect to
this line can be considered ”absolute”.



Figure 7.19: Modelling error: terminal voltage Vt, battery: old

As expected, from the modelling side too, the best model is the one associated
to channel 0 (blue line).





Chapter 8

Conclusions

The whole work focuses on replying to a question that results as simple as it is
complex: how much is my battery charge?
While I was conducting the early stage research and managing the first bunch of
experimental results, I’ve experienced a sense of ambiguity in the interpretation of
the energetic quantities. What does it means that a battery is fully charged? Which
is it’s associated State of charge? Considering a battery fully charged from which
you can extract only the 35% of the nominal capacity, how much is it’s SoC? 100%,
35%? etc.
The SOC and SoH definitions that you can find in literature are correct but not
complete and, above all, not connected. There was a lack of an energetic framework
able to explain with a mathematical description, the macro energetic exchanges and
the deterioration of the battery. This forced me to keep open several interpretation
as seen in section 4.2, giving rise to the Measurable Quantity Analysis. Then fortu-
nately, I came across [14], in which new concepts such as releasable capacity where
used. Taking a clue from that article I’ve built the Energetic Framework (chapter 4):
a mathematical description of the basic working principle and energetic exchanges
of the batteries. With such a solid foundation we’ve then identified, created and cal-
ibrated a battery model that has been exploited from the model-based estimation
algorithm to find the real-time joint SoC and SoH estimation.

Future Release

The major limits we can find, consist in the model calibration. However in future
works one could exploit limit conditions such as:

• full charge

• full discharge

• new battery: SoH=1

to fix some variables to perform online parameter identification. Moreover the model
could be enriched with temperature dependency and so on. Alternatively, the logic
could also be replaced by an optimisation algorithm that with data-driven techniques
could be trained to choose the best channel of the model algorithm.
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Appendix A

Appendix

A.1 Matlab Code

A.1.1 Open Circuit Voltage Characteristic

1 c l c , c l e a r a l l , c l o s e a l l
2 run ( ’ DATA M2 Bianconiglio ’ ) ;
3 f o r i = 1 : Numero Esperimenti M2 new new
4 i s o u t =0;
5 f o r k = 1 : Sez ioni Esper imenti M2 new new ( i )
6 data=[ ’ SoCSafeMon−FIAMM−L150P−New+ 0 ’ num2str ( k )

’ ’ num2str ( i ) ’ . mat ’ ] ;
7 load ( data )
8

9 %Out l i e r Correc t ion
10 i f i s o u t == 0 & k == 1
11 Chg err = 13.5−Vbat (1 ) ;
12 i f Chg err > 0
13 Vbat = Vbat + Chg err ;
14 i s o u t = 1 ;
15 end
16 e l s e i f i s o u t == 1
17 Vbat = Vbat + Chg err ;
18 end
19

20 y new new M2 (k , i ) = mean( Vbat (10 : 3000 ) ) ; %Vocv
21 x new new M2 (k , i ) = SoC(1) ; %SoC
22 end
23 end
24

25 idx =0;
26 f o r i = 1 : Numero Esperimenti M2 new
27 i s o u t = 0 ;
28 f o r k = 1 : Sez ioni Esper iment i M2 new ( i )
29 data=[ ’SoCMon−FIAMM−L150P−New 0 ’ num2str ( k ) ’ ’

num2str ( i ) ’ . mat ’ ] ;
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30

31 load ( data )
32

33 %Out l i e r Correc t ion
34 i f i s o u t == 0 & k == 1
35 Chg err = 13.1−Vbat (1 ) ;
36 i f Chg err > 0
37 Vbat = Vbat + Chg err ;
38 i s o u t = 1 ;
39 end
40 e l s e i f i s o u t == 1
41 Vbat = Vbat + Chg err ;
42 end
43 y new M2 (k , i ) = mean( Vbat (10 : 3000 ) ) ; %Vocv
44 x new M2 (k , i ) = SoC(1) ; %SoC
45

46

47 idx=idx +1;
48 y M2( idx ) = y new M2 (k , i ) ;
49 x M2( idx ) = x new M2 (k , i ) ;
50 end
51 end
52

53 f o r i = 1 : Numero Esperimenti M2 old
54 f o r k = 1 : Sez ion i Esper iment i M2 o ld ( i )
55 data=[ ’SoCMon−FIAMM−L150P−Used 0 ’ num2str ( k ) ’ ’

num2str ( i ) ’ . mat ’ ] ;
56 load ( data )
57

58 y old M2 (k , i ) = mean( Vbat (10 : 3000 ) ) ; %Vocv
59 x old M2 (k , i ) = SoC(1) ; %SoC
60

61 end
62 end
63

64 C h a r a c t e r i s t i c computed with the MEDIUM batte ry and then
tuned accord ing to the new and old batte ry :

65 %l i n e a r r e g r e s s i o n (1 s t order )
66 x M2
67 y M2
68

69 ao=1; %approximation order
70 N=length (x M2) ;
71 phi=vander (x M2) ; % Vandermonde Matrix : A( i , j )=x 1 ( i ) ˆ(n

+1? j )
72 phi=phi ( : ,N−ao : end ) ;
73



74 c M2=phi\y M2 ’ ; %LS −> est imated c o e f f i c i e n t s vec to r from
y =phi ( x ) ∗c

75 a M2=c M2 (1)
76 b M2=c M2 (2)
77

78

79

80 %4th order
81 % Vmax = 1 3 . 7 ; %[V]
82 % Vmin = 9 . 5 ; %[V]
83 %
84 % I1 =25; % SoC[%]
85 % I2 =95; % SoC[%]
86 % % a M2 4 = a M2 ∗ 0 . 7 ;
87 % % b M2 4 = b M2 ∗1 . 1 1 5 ;
88 % a M2 4 = a M2 ∗ 0 . 8 ;
89 % b M2 4 = b M2 ∗1 . 0 8 ;
90

91 Vmax = 1 3 . 7 5 ; %[V]
92 Vmin = 9 . 5 ; %[V]
93

94 I1 =25; % SoC[%]
95 I2 =95; % SoC[%]
96 % a M2 4 = a M2 ∗ 0 . 7 ;
97 % b M2 4 = b M2 ∗1 . 1 1 5 ;
98 a M2 4 = a M2 ∗ 0 . 8 ;
99 b M2 4 = b M2 ∗1 . 0 8 ;

100 [ a0 M2 , a1 M2 , a2 M2 , a3 M2 , a4 M2 ] = Or d e r 4 Ch a ra c t e r i s t i c (
I1 , I2 , a M2 4 , b M2 4 , Vmax, Vmin)

101

102 %Data V i s u a l i z a t i o n
103

104 TF new new M2 = x new new M2 > 0 ;
105 TF new M2 = x new M2 > 0 ;
106 TF old M2 = x old M2 > 0 ;
107

108

109 f i g u r e ,
110 s c a t t e r ( x new new M2 ( TF new new M2 ) , y new new M2 (

TF new new M2 ) , ’ green ’ , ’ f i l l e d ’ ) , hold on , g r i d on
111 s c a t t e r ( x new M2 (TF new M2) , y new M2 (TF new M2) , ’ b lue ’ , ’

f i l l e d ’ )
112 s c a t t e r ( x old M2 ( TF old M2 ) , y old M2 ( TF old M2 ) , ’ red ’ , ’

f i l l e d ’ ) , xl im ( [ 0 100 ] ) , yl im ( [ 1 0 1 4 ] )
113

114

115 x p l o t =0 :1 :100 ; %used be f o r e : not nece s sa ry
116 y p l o t=po lyva l ( [ a M2 , b M2 ] , x p l o t ) ;



117 y plot4 new=po lyva l ( coeff4 new new M2 , x p l o t ) ;
118 % y p lo t4=po lyva l ( [ a4 M2 , a3 M2 , a2 M2 , a1 M2 , a0 M2 ] , x p l o t )

;
119 y plot4 medium=po lyva l ( coeff4 new M2 , x p l o t ) ;
120

121 y p l o t 4 o l d=po lyva l ( coe f f4 o ld M2 , x p l o t ) ;
122 % plo t ( x p lot , y p lot , ’ black ’ , ’ LineWidth ’ , 1 , ’ L ineSty le ’ , ’−− ’)

, hold on
123 p lo t ( x p lot , y plot4 new , ’ green ’ , ’ LineWidth ’ ,1 , ’ L ineSty l e ’ , ’

−. ’ ) , hold on
124 p lo t ( x p lot , y plot4 medium , ’ b lue ’ , ’ LineWidth ’ ,1 , ’ L ineSty l e ’ ,

’−. ’ ) , hold on
125 p lo t ( x p lot , y p l o t 4 o ld , ’ red ’ , ’ LineWidth ’ ,1 , ’ L ineSty l e ’ , ’−. ’

) , hold on
126

127

128

129

130 %Tuning
131 a M2 t=c M2 (1)−c M2 (1) ∗0 .02
132 b M2 t=c M2 (2) +0.5
133

134 y p l o t t=po lyva l ( [ a M2 t , b M2 t ] , x p l o t ) ;
135 p lo t ( x p lot , y p l o t t , ’ b lack ’ , ’ LineWidth ’ , 2 ) , hold on
136

137

138 l egend ( ’new ’ , ’medium ’ , ’ o ld ’ , ’ Or i g i na l C h a r a c t e r i s t i c ’ , ’Tuned
C h a r a c t e r i s t i c ’ , ’ l o c a t i o n ’ , ’ northwest ’ ) , t i t l e ( ’ Vocv (

SoC) M2 ’ )

A.1.2 Static non-linear model

1

2 c l c , c l e a r a l l , c l o s e a l l
3 run ( ’ DATA M2 Bianconiglio ’ ) ;
4

5 %Slow Dynamic Threshold : d e l e t e the f i r s t 100 seconds
6 d in th r e sh = 500 ; %[ s ]
7

8 Ts = 0 . 0 1 ;
9

10 NEW
11 c1 = 0 ;
12 c2 = 0 ;
13

14

15 f o r i = 1 : Numero Esperimenti M2 new new



16 i s o u t = 0 ;
17 i f Sez ioni Esper imenti M2 new new ( i ) ˜= −1 %e s c l u s i o n e

e spe r iment i s b a g l i a t i
18 f o r k = 1 : Sez ioni Esper imenti M2 new new ( i )
19 data=[ ’ SoCSafeMon−FIAMM−L150P−New+ 0 ’

num2str ( k ) ’ ’ num2str ( i ) ’ . mat ’ ] ;
20 load ( data )
21 SoC = f i l l m i s s i n g (SoC , ’ p rev ious ’ ) ; %c r e a t e

the f u l l SoC vecto r
22

23 %Out l i e r Correc t ion
24 i f i s o u t == 0 & k == 1
25 Chg err = 13.5−Vbat (1 ) ;
26 i f Chg err > 0
27 Vbat = Vbat + Chg err ;
28 i s o u t = 1 ;
29

30 end
31 e l s e i f i s o u t == 1
32 Vbat = Vbat + Chg err ;
33 end
34

35 %DoD
36 i f k == 1
37

38 DoD0 = 0 ;
39 DoD = DoD0 + 100 ∗ cumsum( I l oad ∗Ts) / Cn

;
40 DoD01 = DoD( end ) ;
41

42 e l s e
43

44 DoD = DoD01 + 100∗ cumsum( I l oad ∗Ts) / Cn
;

45 DoD01 = DoD( end ) ;
46

47 end
48

49

50

51 di sp ( [ ’M2 newnew ’ ’ Sec t i on : ’ num2str ( k ) ’
Rep : ’ num2str ( i ) ] )

52

53

54

55 %Simple Model R Est imation
56 % % [ R new new M2 (k , i ) , SoCi R new new M2 (k

, i ) , LC R new new M2 (k , i ) ] = R Estimate LS SoC Tuning (



Vbat , I load , SoC , Time , coef f4 b4 new M2 , d in th r e sh ) ;
57

58 [ R new new M2 ( 1 : 2 , k , i ) , Rs new new M2 (k , i )
, SoCi R new new M2 ( 1 : 2 , k , i ) ,
DoDi R new new M2 ( 1 : 2 , k , i ) ,
LC R new new M2 ( 1 : 2 , k , i ) ] =
R Est NL SoC Tuning1 V2 ( Vbat , I load , SoC ,
DoD, Time , coeff4 b4 new M2 , d in thre sh ,
c1 , c2 ) ;

59

60 end
61 end
62 end
63

64

65

66

67

68

69 MEDIUM
70 c1 = 0 . 0 7 ; %o r i g i n a l
71 c2 = 0 . 0 6 ;
72 % % c1 = 0 . 0 2 5 ; % Mg2
73 % % c2 = 0 . 0 4 5 ;
74 % % c1 = 0 . 0 2 5 ; % Mg3
75 % % c2 = 0 . 1 6 5 ;
76 % % c1 = 0 . 0 0 5 ; % Mg4
77 % % c2 = 0 . 3 ;
78 %
79 % % c1 = 0 ;
80 % % c2 = 0 ;
81

82 % c1 =0.3;
83 % c2 =1;
84

85

86 f o r i = 1 : Numero Esperimenti M2 new
87 i s o u t = 0 ;
88 i f Sez ioni Esper iment i M2 new ( i ) ˜= −1 %e s c l u s i o n e

e spe r iment i s b a g l i a t i
89 f o r k = 1 : Sez ioni Esper iment i M2 new ( i )
90 data=[ ’SoCMon−FIAMM−L150P−New 0 ’ num2str ( k )

’ ’ num2str ( i ) ’ . mat ’ ] ;
91 load ( data )
92

93 %Out l i e r Correc t ion
94 i f i s o u t == 0 & k == 1
95 Chg err = 13.1−Vbat (1 ) ;



96 i f Chg err > 0
97 Vbat = Vbat + Chg err ;
98 i s o u t = 1 ;
99 end

100 e l s e i f i s o u t == 1
101 Vbat = Vbat + Chg err ;
102 end
103

104

105 % SoC r e c a s t i n g : SoC(0) computed with the
Ctrue/Cn r a t i o but s t i l l d e f i n ed wrt Cn (
speed accord ing to Cn)

106

107

108 i f k == 1
109

110 % DVorig = 0 . 4 ;
111 % [ SoC err ] = SoC reca s t ing 4 ( Vbat ,

I load , SoC , Time , coeff4 M2 , d in thre sh , DVorig )
112 %
113 SoC true i = Cn true new ( i ) /Cn∗100 ;
114 SoC err = 100 − SoC true i ;
115 i f SoC err > 0
116 SoC err ;
117 SoC = SoC − SoC err ;
118 e l s e
119 SoC err = 0 ;
120 end
121

122 DoD0 = 0 ;
123 DoD = DoD0 + 100 ∗ cumsum( I l oad ∗Ts) / Cn

;
124 DoD01 = DoD( end ) ;
125

126 e l s e
127 SoC = SoC − SoC err ;
128

129 DoD = DoD01 + 100 ∗ cumsum( I l oad ∗Ts) /
Cn ;

130 DoD01 = DoD( end ) ;
131

132 end
133

134 di sp ( [ ’M2 new ’ ’ Sec t i on : ’ num2str ( k ) ’ Rep :
’ num2str ( i ) ] )

135

136 %Simple Model R Est imation



137 % [ R new new M2 (k , i ) , SoCi R new new M2
(k , i ) , LC R new new M2 (k , i ) ] =
R Estimate LS SoC Tuning ( Vbat , I load , SoC , Time ,
coeff4 b4 med M2 , d in th r e sh ) ;

138

139

140 [ R new M2 ( 1 : 2 , k , i ) , Rs new M2 (k , i ) ,
SoCi R new M2 ( 1 : 2 , k , i ) , DoDi R new M2
( 1 : 2 , k , i ) , LC R new M2 ( 1 : 2 , k , i ) ] =
R Est NL SoC Tuning1 V2 ( Vbat , I load , SoC ,
DoD, Time , coeff4 b4 med M2 , d in thre sh ,
c1 , c2 ) ;

141

142 end
143 end
144 end
145

146

147 OLD
148 c1 = 0 . 0 2 2 ;
149 c2 = 0 . 0 0 4 ;
150

151 % c1 = 0 . 0 0 2 5 ; %Mg2
152 % c2 = 0 . 0 0 0 3 ;
153

154 % c1 = 0 . 0 4 ; % Mg3
155 % c2 = 0 . 0 4 5 ;
156

157 % c1 = 0 . 0 4 ; % Mg4
158 % c2 = 0 . 0 4 5 ;
159

160 % c1 = 0 ;
161 % c2 = 0 ;
162

163

164 f o r i = 1 : Numero Esperimenti M2 old
165 i f Sez ion i Esper iment i M2 o ld ( i ) ˜= −1 %e s c l u s i o n e

e spe r iment i s b a g l i a t i
166 f o r k = 1 : Sez ion i Esper iment i M2 o ld ( i )
167 data=[ ’SoCMon−FIAMM−L150P−Used 0 ’ num2str ( k )

’ ’ num2str ( i ) ’ . mat ’ ] ;
168 load ( data )
169

170 % SoC r e c a s t i n g : SoC(0) computed with the
Ctrue/Cn r a t i o but s t i l l d e f i n ed wrt Cn (
speed accord ing to Cn)

171 i f k == 1
172 k



173 i
174 % DVorig = 0 . 4 ;
175 % [ SoC err ] = SoC reca s t ing 4 ( Vbat ,

I load , SoC , Time , coeff4 M2 , d in thre sh , DVorig )
176 %
177 SoC true i = Cn true o ld ( i ) /Cn∗100 ;
178 SoC err = 100 − SoC true i ;
179 i f SoC err > 0
180 SoC err ;
181 SoC = SoC − SoC err ;
182 e l s e
183 SoC err = 0 ;
184 end
185

186 DoD0 = 0 ;
187 DoD = DoD0 + 100 ∗ cumsum( I l oad ∗Ts) / Cn

;
188 DoD01 = DoD( end ) ;
189

190 e l s e
191 SoC = SoC − SoC err ;
192

193 DoD = DoD01 + 100 ∗ cumsum( I l oad ∗Ts) /
Cn ;

194 DoD01 = DoD( end ) ;
195

196 end
197

198 di sp ( [ ’M2 old ’ ’ Sec t i on : ’ num2str ( k ) ’ Rep :
’ num2str ( i ) ] )

199

200

201 %Simple Model R Est imation
202 % [ R new new M2 (k , i ) , SoCi R new new M2

(k , i ) , LC R new new M2 (k , i ) ] =
R Estimate LS SoC Tuning ( Vbat , I load , SoC , Time ,
coe f f 4 b4 o ld M2 , d in th r e sh ) ;

203

204 [ R old M2 ( 1 : 2 , k , i ) , Rs old M2 (k , i ) ,
SoCi R old M2 ( 1 : 2 , k , i ) , DoDi R old M2
( 1 : 2 , k , i ) , LC R old M2 ( 1 : 2 , k , i ) ] =
R Est NL SoC Tuning1 V2 ( Vbat , I load , SoC ,
DoD, Time , coe f f4 b4 o ld M2 , d in thre sh ,
c1 , c2 ) ;

205

206 end
207 end
208 end



209

210

211 % % r e s u l t d i sp l ay
212

213

214 % R new new M2
215 %
216 % R1 new new M2
217 % R2 new new M2
218 % C2 new new M2
219 %
220 % SoCi R new new M2
221 % SoCi RRC new new M2
222 %
223 %
224 % R new M2
225 % R1 new M2
226 % R2 new M2
227 % C2 new M2
228 %
229 % SoCi R new M2
230 % SoCi RRC new M2
231 %
232 %
233 % R old M2
234 % R1 old M2
235 % R2 old M2
236 % C2 old M2
237 %
238 % SoCi R old M2
239 % SoCi RRC old M2
240

241

242 % R plo t
243 TF new new = SoCi R new new M2 > 0 ;
244 TF new = SoCi R new M2 > 0 ;
245 TF old = SoCi R old M2 > 0 ;
246

247 f i g u r e ,
248 subplot ( 1 , 2 , 1 )
249 s c a t t e r ( SoCi R new new M2 ( TF new new ) , R new new M2 (

TF new new ) , ’ green ’ , ’ f i l l e d ’ ) , hold on , g r i d on
250 s c a t t e r ( SoCi R new M2 (TF new) , R new M2(TF new) , ’ b lue ’ , ’

f i l l e d ’ ) , hold on
251 s c a t t e r ( SoCi R old M2 ( TF old ) , R old M2 ( TF old ) , ’ red ’ , ’

f i l l e d ’ ) , x l a b e l ( ’ SoC i i d [%] ’ ) , y l a b e l ( ’ R h [Ohm] ’ )
252 l egend ( ’new ’ , ’medium ’ , ’ o ld ’ ) , t i t l e ( ’R−Estimate −

B i a n c o n i g l i o 4 − M2 ’ )



253

254 subplot ( 1 , 2 , 2 )
255 s c a t t e r ( SoCi R new new M2 ( TF new new ) , LC R new new M2 (

TF new new ) , ’ green ’ , ’ f i l l e d ’ ) , hold on , g r i d on
256 s c a t t e r ( SoCi R new M2 (TF new) , LC R new M2(TF new) , ’ b lue ’ , ’

f i l l e d ’ ) ,
257 s c a t t e r ( SoCi R old M2 ( TF old ) , LC R old M2 ( TF old ) , ’ red ’ , ’

f i l l e d ’ ) , x l a b e l ( ’ SoC i i d [%] ’ ) , y l a b e l ( ’RMSe ’ )
258 l egend ( ’new ’ , ’medium ’ , ’ o ld ’ ) , t i t l e ( ’ L i n e a r i t y C o e f f i c i e n t −

B i a n c o n i g l i o 4 − M2 ’ )
259

260 f i g u r e ,
261 % subplot ( 1 , 2 , 1 )
262 s c a t t e r ( DoDi R new new M2 ( TF new new ) , R new new M2 (

TF new new ) , ’ green ’ , ’ f i l l e d ’ ) , hold on , g r i d on
263 s c a t t e r ( DoDi R new M2 (TF new) , R new M2(TF new) , ’ b lue ’ , ’

f i l l e d ’ ) , hold on
264 s c a t t e r ( DoDi R old M2 ( TF old ) , R old M2 ( TF old ) , ’ red ’ , ’

f i l l e d ’ ) , x l a b e l ( ’ SoC i i d [%] ’ ) , y l a b e l ( ’ R h [Ohm] ’ )
265 l egend ( ’new ’ , ’medium ’ , ’ o ld ’ ) , t i t l e ( ’R−Estimate −

B i a n c o n i g l i o 4 − M2 ’ )
266

267

268 f i g u r e ,
269 % subplot ( 1 , 2 , 1 )
270 s c a t t e r 3 ( SoCi R new new M2 ( TF new new ) , 100−

DoDi R new new M2 ( TF new new ) , R new new M2 ( TF new new ) , ’
green ’ , ’ f i l l e d ’ ) , hold on , g r id on

271 s c a t t e r 3 ( SoCi R new M2 (TF new) , 100−DoDi R new M2 (TF new) ,
R new M2(TF new) , ’ b lue ’ , ’ f i l l e d ’ ) , hold on

272 s c a t t e r 3 ( SoCi R old M2 ( TF old ) , 100−DoDi R old M2 ( TF old ) ,
R old M2 ( TF old ) , ’ red ’ , ’ f i l l e d ’ ) , x l a b e l ( ’SoC [%] ’ ) ,
y l a b e l ( ’ SoC R e l [%] ’ ) , z l a b e l ( ’ R h [Ohm] ’ )

273 l egend ( ’new ’ , ’medium ’ , ’ o ld ’ ) , t i t l e ( ’R−Estimate −
B i a n c o n i g l i o 4 − M2 ’ )

274

275

276

277 Curva 2d − s e t d i parabo le
278 f i g u r e ,
279 s c a t t e r ( SoCi R new new M2 ( TF new new ) , R new new M2 (

TF new new ) , ’ green ’ , ’ f i l l e d ’ ) , hold on , g r i d on
280 s c a t t e r ( SoCi R new M2 (TF new) , R new M2(TF new) , ’ b lue ’ , ’

f i l l e d ’ ) , hold on
281 s c a t t e r ( SoCi R old M2 ( TF old ) , R old M2 ( TF old ) , ’ red ’ , ’

f i l l e d ’ ) , x l a b e l ( ’ SoC i i d [%] ’ ) , y l a b e l ( ’ R h [Ohm] ’ )
282 l egend ( ’new ’ , ’medium ’ , ’ o ld ’ ) , t i t l e ( ’R−Estimate −

B i a n c o n i g l i o 4 − M2 ’ )



283

284

285 ax par new new = 50 ;
286 ax par o ld = 6 ;
287 %
288 % a p a r i =100000;
289 % b p a r i = −(2∗ a p a r i ∗ ax par o ld )
290 % c p a r i = 50 ;
291 %
292 % x p l o t p a r = 0 : 1 0 0 ;
293 % y p l o t p a r = po lyva l ( [ a p a r i b p a r i c p a r i ] , x p l o t p a r

)
294 %
295 % plo t ( x p lo t pa r , y p l o t p a r )
296

297 %
298 R old t= [ R old M2 ( TF old ) +0.05; f l i p l r ( R old M2 ( TF old )

+0.05) ] ;
299 SoC old t = [ SoCi R old M2 ( TF old ) +1; ax par o ld +(ax par o ld

−SoCi R old M2 ( TF old ) )−1 ] ;
300

301 s c a t t e r ( SoC old t , R o ld t )
302

303 R new new t= [ R new new M2 ( TF new new ) ; f l i p l r ( R new new M2
( TF new new ) ) ] ;

304 SoC new new t = [ SoCi R new new M2 ( TF new new ) ;
ax par new new − (−ax par new new+SoCi R new new M2 (
TF new new ) ) ] ;

305

306 s c a t t e r ( SoC new new t , R new new t )
307

308

309 % p1 old = 0.003264 ;
310 % p2 old = −0.1045 ;
311 % p3 old = 0.9629 ;
312

313 % p1 old = 0.005 ;
314 % p2 old = −0.08001 ;
315 % p3 old = 0 . 5 2 7 3 ;
316

317 p1 o ld = 0.006804 ;
318 p2 o ld = −0.08165 ;
319 p3 o ld = 0 . 4 4 3 3 ;
320

321

322

323

324 C o e f f p a r f = [ p1 o ld p2 o ld p3 o ld ] ;



325

326 p1 new new = 2.159 e−05 ;
327 p2 new new = −0.002159 ;
328 p3 new new = 0.145 ;
329

330 C o e f f p a r i = [ p1 new new p2 new new p3 new new ] ;
331

332

333

334 x p l o t p a r = 0 : 1 0 0 ;
335

336 f o r SoH = 0 : 0 . 0 5 : 1
337

338 s = C o e f f p a r i + (1−SoH) ˆ8 ∗ [ C o e f f p a r f−C o e f f p a r i ] ;
339 % s = C o e f f p a r f + (1−SoH) ˆ2 ∗ [ C o e f f p a r i−C o e f f p a r f

] ;
340 y p l o t p a r = po lyva l ( s , x p l o t p a r ) ;
341

342

343 i f SoH == 0
344 p lo t ( x p lo t pa r , y p lo t pa r , ’ red ’ ) , hold on
345

346 end
347 i f SoH == 1
348 p lo t ( x p lo t pa r , y p lo t pa r , ’ green ’ ) , hold on
349

350 end
351 i f SoH < 1 && SoH > 0
352 p lo t ( x p lo t pa r , y p lo t pa r , ’ b lue ’ ) , hold on
353

354 end
355

356

357

358 end
359

360 ylim ( [ 0 . 0 5 , 0 . 4 ] )
361

362

363

364

365

366

367

368 % R o l d o r i g = [ R new new M2 ( TF new new ) ; R new M2(TF new) ;
R old M2 ( TF old ) ] ;

369 % SoC tot = [ SoCi R new new M2 ( TF new new ) ; SoCi R new M2 (
TF new) ; SoCi R old M2 ( TF old ) ] ;



370 %
371 % % Tuning
372 % R tot = R t o t o r i g ;
373 % R tot ( R tot >0.2) = R tot ( R tot >0.2) + 0 . 3 ;
374 %
375 %
376 % % coef f SoC R = [ deg6 f i t R SoC . p1 , deg6 f i t R SoC . p2 ,

deg6 f i t R SoC . p3 , deg6 f i t R SoC . p4 , deg6 f i t R SoC . p5 ,
deg6 f i t R SoC . p6 , deg6 f i t R SoC . p7 ] ;

377 % % f i g u r e
378 % % plo t ( [ 0 : 1 0 0 ] , po lyva l ( coef f SoC R , [ 0 : 1 0 0 ] ) )
379 % % save ( ’ coef f SoC R ’ , ’ coef f SoC R ’ )
380 %
381 % f i g u r e
382 % % c o e f f s p l i n e=S p l i n e f i t So C R . p
383 %
384 % plo t ( [ 0 : 1 0 0 ] , f nva l ( c o e f f s p l i n e , [ 0 : 1 0 0 ] ) )
385 %
386 % save ( ’ sp l ine Fi t SoC R ’ , ’ c o e f f s p l i n e ’ )
387

388

389 S u p e r f i c e 3d
390 %
391 % [ xq , yq ] = meshgrid ( 0 : 1 : 1 0 0 , 0 : 1 : 1 0 0 ) ;
392 % x = [ SoCi R new new M2 ( TF new new ) ; SoCi R new M2 (TF new) ;

SoCi R old M2 ( TF old ) ] ;
393 % y = [100−DoDi R new new M2 ( TF new new ) ; 100−DoDi R new M2 (

TF new) ; 100−DoDi R old M2 ( TF old ) ] ;
394 % v = [ R new new M2 ( TF new new ) ; R new M2(TF new) ; R old M2 (

TF old ) ] ;
395 % % ’ nearest ’ , ’ l i n e a r ’ , ’ natura l ’ , and ’ cubic ’
396 % vq = gr iddata (x , y , v , xq , yq , ’ natura l ’ )
397 % % vq = f i l l m i s s i n g ( vq , ’ l i n e a r ’ , 1 )
398 % % vq = f i l l m i s s i n g ( vq , ’ l i n e a r ’ , 2 )
399 % mesh ( xq , yq , vq )
400 %
401 % save ( ’ Lookup Table ’ , ’ vq ’ )
402 %
403

404

405

406 % % RRC plo t
407 %
408 % TF new new = SoCi RRC new new M2 > 0 ;
409 % TF new = SoCi RRC new M2 > 0 ;
410 % TF old = SoCi RRC old M2 > 0 ;
411 %
412 % f i g u r e ,



413 % subplot ( 1 , 3 , 1 )
414 % s c a t t e r ( SoCi RRC new new M2 ( TF new new ) , R1 new new M2 (

TF new new ) , ’ green ’ , ’ f i l l e d ’ ) , hold on , g r i d on
415 % s c a t t e r (SoCi RRC new M2(TF new) , R1 new M2(TF new) , ’ blue

’ , ’ f i l l e d ’ ) ,
416 % s c a t t e r ( SoCi RRC old M2 ( TF old ) , R1 old M2 ( TF old ) , ’ red ’ , ’

f i l l e d ’ ) , t i t l e ( ’R1−Estimate − B i a n c o n i g l i o 3 Bis ’ ) ,
x l a b e l ( ’ SoC [%] ’ ) , y l a b e l ( ’ R1 h [Ohm] ’ )

417 % legend ( ’ new ’ , ’ medium ’ , ’ old ’ )
418 %
419 % subplot ( 1 , 3 , 2 )
420 % s c a t t e r ( SoCi RRC new new M2 ( TF new new ) , R2 new new M2 (

TF new new ) , ’ green ’ , ’ f i l l e d ’ ) , hold on , g r i d on
421 % s c a t t e r (SoCi RRC new M2(TF new) , R2 new M2(TF new) , ’ blue

’ , ’ f i l l e d ’ ) ,
422 % s c a t t e r ( SoCi RRC old M2 ( TF old ) , R2 old M2 ( TF old ) , ’ red ’ , ’

f i l l e d ’ ) , t i t l e ( ’R2−Estimate − B i a n c o n i g l i o 3 Bis ’ ) ,
x l a b e l ( ’ SoC [%] ’ ) , y l a b e l ( ’ R2 h [Ohm] ’ )

423 % legend ( ’ new ’ , ’ medium ’ , ’ old ’ )
424 %
425 % subplot ( 1 , 3 , 3 )
426 % s c a t t e r ( SoCi RRC new new M2 ( TF new new ) , C2 new new M2 (

TF new new ) , ’ green ’ , ’ f i l l e d ’ ) , hold on , g r i d on
427 % s c a t t e r (SoCi RRC new M2(TF new) , C2 new M2(TF new) , ’ blue

’ , ’ f i l l e d ’ ) ,
428 % s c a t t e r ( SoCi RRC old M2 ( TF old ) , C2 old M2 ( TF old ) , ’ red ’ , ’

f i l l e d ’ ) , t i t l e ( ’C2−Estimate − B i a n c o n i g l i o 3 Bis ’ ) ,
x l a b e l ( ’ SoC [%] ’ ) , y l a b e l ( ’ C2 h [F ] ’ )

429 % legend ( ’ new ’ , ’ medium ’ , ’ old ’ )
430

431 % % RRC SLOW plo t
432 %
433 % TF new new slow = SoCi RRC new new slow M2 > 0 ;
434 % TF new slow = SoCi RRC new slow M2 > 0 ;
435 % TF old slow = SoCi RRC old slow M2 > 0 ;
436 %
437 % f i g u r e ,
438 % subplot ( 1 , 3 , 1 )
439 % s c a t t e r ( SoCi RRC new new slow M2 ( TF new new slow ) ,

R1 new new slow M2 ( TF new new slow ) , ’ green ’ , ’ f i l l e d ’ ) ,
hold on , g r i d on

440 % s c a t t e r ( SoCi RRC new slow M2 ( TF new slow ) , R1 new slow M2 (
TF new slow ) , ’ blue ’ , ’ f i l l e d ’ ) , hold on , g r id on

441 % s c a t t e r ( SoCi RRC old slow M2 ( TF old slow ) , R1 old slow M2 (
TF old slow ) , ’ red ’ , ’ f i l l e d ’ ) , t i t l e ( ’R1 slow−Estimate −
B i a n c o n i g l i o 4 ’ ) , x l a b e l ( ’ SoC [%] ’ ) , y l a b e l ( ’ R1 h [Ohm] ’ )

442 %
443 % subplot ( 1 , 3 , 2 )



444 % s c a t t e r ( SoCi RRC new new slow M2 ( TF new new slow ) ,
R2 new new slow M2 ( TF new new slow ) , ’ green ’ , ’ f i l l e d ’ ) ,
hold on , g r i d on

445 % s c a t t e r ( SoCi RRC new slow M2 ( TF new slow ) , R2 new slow M2 (
TF new slow ) , ’ blue ’ , ’ f i l l e d ’ ) , hold on , g r id on

446 % s c a t t e r ( SoCi RRC old slow M2 ( TF old slow ) , R2 old slow M2 (
TF old slow ) , ’ red ’ , ’ f i l l e d ’ ) , t i t l e ( ’R2 slow−Estimate −
B i a n c o n i g l i o 4 ’ ) , x l a b e l ( ’ SoC [%] ’ ) , y l a b e l ( ’ R2 h [Ohm] ’ )

447 %
448 %
449 % subplot ( 1 , 3 , 3 )
450 % s c a t t e r ( SoCi RRC new new slow M2 ( TF new new slow ) ,

C2 new new slow M2 ( TF new new slow ) , ’ green ’ , ’ f i l l e d ’ ) ,
hold on , g r i d on

451 % s c a t t e r ( SoCi RRC new slow M2 ( TF new slow ) , C2 new slow M2 (
TF new slow ) , ’ blue ’ , ’ f i l l e d ’ ) , hold on , g r id on

452 % s c a t t e r ( SoCi RRC old slow M2 ( TF old slow ) , C2 old slow M2 (
TF old slow ) , ’ red ’ , ’ f i l l e d ’ ) , t i t l e ( ’C2 slow−Estimate −
B i a n c o n i g l i o 4 ’ ) , x l a b e l ( ’ SoC [%] ’ ) , y l a b e l ( ’ C2 h [F ] ’ )

453 % legend ( ’ new ’ , ’ medium ’ , ’ old ’ )
454 %
455 %
456 % % tau
457 % f i g u r e ,
458 % s c a t t e r ( SoCi RRC new new slow M2 ( TF new new slow ) ,

R2 new new slow M2 ( TF new new slow ) .∗ C2 new new slow M2 (
TF new new slow ) , ’ green ’ , ’ f i l l e d ’ ) , hold on , g r i d on

459 % s c a t t e r ( SoCi RRC new slow M2 ( TF new slow ) , R2 new slow M2 (
TF new slow ) .∗ C2 new slow M2 ( TF new slow ) , ’ blue ’ , ’ f i l l e d
’ ) ,

460 % s c a t t e r ( SoCi RRC old slow M2 ( TF old slow ) , R2 old slow M2 (
TF old slow ) .∗ C2 old slow M2 ( TF old slow ) , ’ red ’ , ’ f i l l e d ’ )
, t i t l e ( ’Tau − B i a n c o n i g l i o 4 ’ ) , x l a b e l ( ’ SoC [%] ’ ) ,
y l a b e l ( ’Tau [1/ s ] ’ )

461 % legend ( ’ new ’ , ’ medium ’ , ’ old ’ )
462 %
463 % % Model Error
464 % f i g u r e
465 % s c a t t e r ( SoCi RRC new new slow M2 ( TF new new slow ) ,

LC RRC new new slow M2 ( TF new new slow ) , ’ green ’ , ’ f i l l e d ’ )
, hold on , g r i d on

466 % s c a t t e r ( SoCi RRC new slow M2 ( TF new slow ) ,
LC RRC new slow M2 ( TF new slow ) , ’ blue ’ , ’ f i l l e d ’ ) , hold on ,

g r i d on
467 % s c a t t e r ( SoCi RRC old slow M2 ( TF old slow ) ,

LC RRC old slow M2 ( TF old slow ) , ’ red ’ , ’ f i l l e d ’ )
468 %



469 % legend ( ’ new ’ , ’ medium ’ , ’ old ’ ) , t i t l e ( ’ L i n e a r i t y C o e f f i c i e n t
− B i a n c o n i g l i o 4 − M2’ ) , x l a b e l ( ’ SoC i i d [% ] ’ ) , y l a b e l

( ’RMSe’ )

A.1.3 Real capacity

1

2 V threshold min = 11 .2 V
3

4

5 c l c , c l e a r a l l , c l o s e a l l
6 run ( ’ DATA M2 Bianconiglio .m’ )
7

8 format long
9

10

11 Ts = 0 . 0 1 ;
12 V th min = 1 1 . 2 ; % [V]
13 r e a l C c o r r e c t i o n = 1+(V th min−10.5) /(13.6−10.5) %to be

d i s cu s s ed
14

15 %medium batte ry
16

17 Cn true = ze ro s ( Numero Esperimenti M2 new , 1 ) ;
18 Cn extract = ze ro s ( Numero Esperimenti M2 new , 1 ) ;
19 f o r i = 1 : Numero Esperimenti M2 new
20 i f Sez ioni Esper iment i M2 new ( i ) ˜= −1 %e s c l u s i o n e

e spe r iment i s b a g l i a t i
21 f o r k = 1 : Sez ioni Esper iment i M2 new ( i )
22 data = [ ’SoCMon−FIAMM−L150P−New 0 ’ num2str ( k ) ’

’ num2str ( i ) ’ . mat ’ ] ;
23 load ( data )
24

25 Cn true ( i ) = Cn true ( i ) + sum( I l oad ∗Ts) ;
26

27 Vbat = smoothdata ( Vbat , ’ movmedian ’ ,1 e3 ) ;
28 TF = Vbat > V th min & I l oad > 1 ;
29 Cn extract ( i ) = Cn extract ( i ) + sum( I l oad (TF) ∗

Ts) ;
30

31 % f i g u r e ,
32 % plo t (Time , Vbat ) , t i t l e ( [ ’ s e c t i o n : ’ num2str ( k

) ’ rep ’ num2str ( i ) ] )
33 min V (k , i ) = min ( Vbat ) ;
34

35 i f k == 1
36 f i g u r e ,



37 p lo t (Time , Vbat ) , t i t l e ( [ ’ s e c t i o n : ’ num2str
( k ) ’ rep ’ num2str ( i ) ] )

38 Vt i ( i ) = mean( Vbat ( 1 : 3 0 0 ) ) ;
39 end
40 end
41 end
42 end
43

44 Cn true
45 Cn extract
46 min V
47 Vt i
48

49

50 f i g u r e
51 TF = Cn true ˜= 0 ;
52 s c a t t e r ( Vt i (TF) , Cn true (TF) , ’ ∗ ’ ) , x l a b e l ( ’Vt( t=0) [V] ’ ) ,

y l a b e l ( ’C ex t r a c t to end experiment [A∗ s ] ’ )
53

54 f i g u r e
55 TF = Cn extract ˜= 0 ;
56 s c a t t e r ( Vt i (TF) , Cn extract (TF) , ’ ∗ ’ ) , x l a b e l ( ’Vt( t=0) [V] ’ ) ,

y l a b e l ( ’C ex t r a c t @ thre sho ld [A∗ s ] ’ )
57

58

59

60 c l c , c l e a r a l l , c l o s e a l l
61 run ( ’ DATA M2 Bianconiglio .m’ )
62

63 format long
64

65

66 Ts = 0 . 0 1 ;
67 V th min = 1 1 . 2 ; % [V]
68 r e a l C c o r r e c t i o n = 1+(V th min−10.5) /(13.6−10.5)
69

70

71

72 %oldbat t e ry
73

74 Cn true o ld = ze ro s ( Numero Esperimenti M2 old , 1 ) ;
75 Cn ext rac t o ld = ze ro s ( Numero Esperimenti M2 old , 1 ) ;
76 f o r i = 1 : Numero Esperimenti M2 old
77 i f Sez ion i Esper iment i M2 o ld ( i ) ˜= −1 %e s c l u s i o n e

e spe r iment i s b a g l i a t i
78 f o r k = 1 : Sez ion i Esper iment i M2 o ld ( i )
79 data=[ ’SoCMon−FIAMM−L150P−Used 0 ’ num2str ( k ) ’

’ num2str ( i ) ’ . mat ’ ] ;



80 load ( data )
81

82 Cn true o ld ( i ) = Cn true o ld ( i ) + sum( I l oad ∗Ts)
;

83

84 Vbat = smoothdata ( Vbat , ’ movmedian ’ ,1 e3 ) ;
85 TF = Vbat > V th min & I l oad > 1 ;
86 Cn ext rac t o ld ( i ) = Cn ext rac t o ld ( i ) + sum(

I l oad (TF) ∗Ts) ;
87

88 f i g u r e ,
89 p lo t (Time , Vbat ) , t i t l e ( [ ’ s e c t i o n : ’ num2str ( k )

’ rep ’ num2str ( i ) ] )
90 min V (k , i ) = min ( Vbat ) ;
91

92 i f k == 1
93 % f i g u r e ,
94 % plo t (Time , Vbat ) , t i t l e ( [ ’ s e c t i o n : ’

num2str ( k ) ’ rep ’ num2str ( i ) ] )
95 Vt i ( i ) = mean( Vbat ( 1 : 3 0 0 ) ) ;
96 end
97 end
98 end
99 end

100

101 Cn true o ld
102 Cn ext rac t o ld
103 min V
104 Vt i
105

106

107 f i g u r e
108 TF = Cn true o ld ˜= 0 ;
109 s c a t t e r ( Vt i (TF) , Cn true o ld (TF) , ’ ∗ ’ ) , x l a b e l ( ’Vt( t=0) [V] ’ )

, y l a b e l ( ’C ex t r a c t to end experiment [A∗ s ] ’ )
110

111 f i g u r e
112 TF = Cn ext rac t o ld ˜= 0 ;
113 s c a t t e r ( Vt i (TF) , Cn ext rac t o ld (TF) , ’ ∗ ’ ) , x l a b e l ( ’Vt( t=0) [V

] ’ ) , y l a b e l ( ’C e x t r a c t @ thre sho ld [A∗ s ] ’ )

A.1.4 Absolute Interpretation: R, RC, Rnl

1 c l c , c l e a r a l l , c l o s e a l l
2

3

4 run ( ’ DATA M2 Bianconiglio ’ ) ;



5

6

7 %Slow Dynamic Threshold : d e l e t e the f i r s t 100 seconds
8 d in th r e sh = 500 ; %[ s ]
9

10

11

12 f o r i = 2 : Numero Esperimenti M2 new new
13 i s o u t = 0 ;
14 f o r k = 1 : Sez ioni Esper imenti M2 new new ( i )
15 data=[ ’ SoCSafeMon−FIAMM−L150P−New+ 0 ’ num2str ( k )

’ ’ num2str ( i ) ’ . mat ’ ] ;
16 load ( data )
17

18 %Out l i e r Correc t ion
19 i f i s o u t == 0 & k == 1
20 Chg err = 13.5−Vbat (1 ) ;
21 i f Chg err > 0
22 Vbat = Vbat + Chg err ;
23 i s o u t = 1 ;
24

25 end
26 e l s e i f i s o u t == 1
27 Vbat = Vbat + Chg err ;
28 end
29

30

31

32

33 di sp ( [ ’M2 newnew ’ ’ Sec t i on : ’ num2str ( k ) ’ Rep :
’ num2str ( i ) ] )

34

35 % %Simple Model R Est imation
36 % % [ R new new M2 (k , i −1) , SoCi R new new M2 (k ,

i −1) , LC R new new M2 (k , i −1) ] = R Estimate LS SoC Tuning
( Vbat , I load , SoC , Time , coef f4 b4 new M2 , d in th r e sh ) ;

37 % n s p l i t = 2 ;
38 % pSoC=10; %s l p i t percentage
39 % [ R new new M2 ( 1 : n s p l i t , k , i −1) ,

SoCi R new new M2 ( 1 : n s p l i t , k , i −1) , LC R new new M2 ( 1 :
n s p l i t , k , i −1) ] = R Est imate LS SoC Tuning spl i t ( Vbat ,
I load , SoC , Time , coeff4 b4 new M2 , d in thre sh , n s p l i t ,
pSoC) ;

40

41 %RRC Estimation
42 C u r r e n t F i l t e r = 0 ; % 1 = ON 0 = OFF
43 % [ R1 new new M2 (k , i −1) , R2 new new M2 (k , i −1) ,

C2 new new M2 (k , i −1) , SoCi RRC new new M2 (k , i −1) ] =



RRC Estimate LS ( Vbat , I load , SoC , Time , a , b ,
Cur r en t F i l t e r , d i n th r e sh ) ;

44 [ R1 new new M2 (k , i −1) , R2 new new M2 (k , i −1) ,
C2 new new M2 (k , i −1) , SoCi RRC new new M2 (k ,

i −1) ] = RRC Estimate LS SoC Tuning ( Vbat ,
I load , SoC , Time , coeff4 b4 new M2 ,
Cur r en t F i l t e r , d i n th r e sh ) ;

45

46 % %RRC Slow Dynamics Est imation
47 % [ R1 new new slow M2 (k , i −1) ,

R2 new new slow M2 (k , i −1) , C2 new new slow M2 (k , i −1) ,
SoCi RRC new new slow M2 (k , i −1) , LC RRC new new slow M2 (
k , i −1) ] = RRC Estimate SLOW LS SoC Tuning ( Vbat , I load ,
SoC , Time , coef f4 b4 new M2 ) ;

48 % [ R1 rnew new slow M2 (k , i −1) ,
R2 new new slow M2 (k , i −1) , C2 new new slow M2 (k , i −1) ,
SoCi RRC new new slow M2 (k , i −1) , LC RRC new new slow M2 (
k , i −1) ] = RRC Estimate SLOW LS SoC Tuning Full ( Vbat ,
I load , SoC , Time , coef f4 b4 new M2 ) ;

49

50 end
51 end
52

53

54

55

56

57 f o r i = 2 : Numero Esperimenti M2 new
58 i s o u t = 0 ;
59 f o r k = 1 : Sez ioni Esper iment i M2 new ( i )
60 data=[ ’SoCMon−FIAMM−L150P−New 0 ’ num2str ( k ) ’ ’

num2str ( i ) ’ . mat ’ ] ;
61 load ( data )
62

63 %Out l i e r Correc t ion
64 i f i s o u t == 0 & k == 1
65 Chg err = 13.1−Vbat (1 ) ;
66 i f Chg err > 0
67 Vbat = Vbat + Chg err ;
68 i s o u t = 1 ;
69 end
70 e l s e i f i s o u t == 1
71 Vbat = Vbat + Chg err ;
72 end
73

74

75 % SoC r e c a s t i n g : SoC(0) computed with the Ctrue/
Cn r a t i o but s t i l l d e f i n ed wrt Cn ( speed



accord ing to Cn)
76 i f k == 1
77 k
78 i
79 % DVorig = 0 . 4 ;
80 % [ SoC err ] = SoC reca s t ing 4 ( Vbat , I load ,

SoC , Time , coeff4 M2 , d in thre sh , DVorig )
81 %
82 SoC true i = Cn true new ( i ) /Cn∗100 ;
83 SoC err = 100 − SoC true i ;
84 i f SoC err > 0
85 SoC err ;
86 SoC = SoC − SoC err ;
87 e l s e
88 SoC err = 0 ;
89 end
90 e l s e
91 SoC = SoC − SoC err ;
92 end
93

94 di sp ( [ ’M2 new ’ ’ Sec t i on : ’ num2str ( k ) ’ Rep : ’
num2str ( i ) ] )

95

96 % % %Simple Model R Est imation
97 % % [ R new M2(k , i −1) , SoCi R new M2 (k , i −1) ,

LC R new M2(k , i −1) ] = R Estimate LS SoC Tuning ( Vbat ,
I load , SoC , Time , coeff4 b4 med M2 , d in th r e sh ) ;

98 % n s p l i t = 2 ;
99 % pSoC=10; %s l p i t percentage

100 % [ R new M2 ( 1 : n s p l i t , k , i −1) , SoCi R new M2 ( 1 :
n s p l i t , k , i −1) ,LC R new M2 ( 1 : n s p l i t , k , i −1) ] =
R Est imate LS SoC Tuning spl i t ( Vbat , I load , SoC , Time ,
coeff4 b4 med M2 , d in thre sh , n s p l i t , pSoC) ;

101

102 % %RRC Estimation
103 C u r r e n t F i l t e r = 0 ; % 1 = ON 0 = OFF
104 % [ R1 new M2(k , i −1) , R2 new M2(k , i −1) ,

C2 new M2(k , i −1) , SoCi RRC new M2(k , i −1) ] =
RRC Estimate LS ( Vbat , I load , SoC , Time , a , b ,
Cur r en t F i l t e r , d i n th r e sh ) ;

105 [ R1 new M2(k , i −1) , R2 new M2(k , i −1) ,C2 new M2(
k , i −1) , SoCi RRC new M2(k , i −1) ] =
RRC Estimate LS SoC Tuning ( Vbat , I load , SoC ,
Time , coeff4 b4 med M2 , Cur r en t F i l t e r ,
d i n th r e sh ) ;

106

107

108 %RRC Slow Dynamics Est imation



109 % [ R1 new slow M2 (k , i −1) , R2 new slow M2 (k , i −1)
, C2 new slow M2 (k , i −1) , SoCi RRC new slow M2 (k , i −1) ,
LC RRC new slow M2 (k , i −1) ] =
RRC Estimate SLOW LS SoC Tuning ( Vbat , I load , SoC , Time ,
coeff4 b4 med M2 ) ;

110 % [ R1 new slow M2 (k , i −1) , R2 new slow M2 (k , i
−1) , C2 new slow M2 (k , i −1) , SoCi RRC new slow M2 (k , i −1) ,

LC RRC new slow M2 (k , i −1) ] =
RRC Estimate SLOW LS SoC Tuning Full ( Vbat , I load , SoC ,
Time , coeff4 b4 med M2 ) ;

111 end
112 end
113

114 f o r i = 2 : Numero Esperimenti M2 old
115 f o r k = 1 : Sez ion i Esper iment i M2 o ld ( i )
116 data=[ ’SoCMon−FIAMM−L150P−Used 0 ’ num2str ( k ) ’ ’

num2str ( i ) ’ . mat ’ ] ;
117 load ( data )
118

119 % SoC r e c a s t i n g : SoC(0) computed with the Ctrue/
Cn r a t i o but s t i l l d e f i n ed wrt Cn ( speed
accord ing to Cn)

120 i f k == 1
121 k
122 i
123 % DVorig = 0 . 4 ;
124 % [ SoC err ] = SoC reca s t ing 4 ( Vbat , I load ,

SoC , Time , coeff4 M2 , d in thre sh , DVorig )
125 %
126 SoC true i = Cn true o ld ( i ) /Cn∗100 ;
127 SoC err = 100 − SoC true i ;
128 i f SoC err > 0
129 SoC err ;
130 SoC = SoC − SoC err ;
131 e l s e
132 SoC err = 0 ;
133 end
134 e l s e
135 SoC = SoC − SoC err ;
136 end
137

138 di sp ( [ ’M2 old ’ ’ Sec t i on : ’ num2str ( k ) ’ Rep : ’
num2str ( i ) ] )

139

140 % %Simple Model R Est imation
141 % % [ R old M2 (k , i −1) , SoCi R old M2 (k , i −1) ,

LC R old M2 (k , i −1) ] = R Estimate LS SoC Tuning ( Vbat ,
I load , SoC , Time , coe f f4 b4 o ld M2 , d in th r e sh ) ;



142 % n s p l i t = 2 ;
143 % pSoC=10; %s l p i t percentage
144 % [ R old M2 ( 1 : n s p l i t , k , i −1) , SoCi R old M2 ( 1 :

n s p l i t , k , i −1) , LC R old M2 ( 1 : n s p l i t , k , i −1) ] =
R Est imate LS SoC Tuning spl i t ( Vbat , I load , SoC , Time ,
coe f f4 b4 o ld M2 , d in thre sh , n s p l i t , pSoC) ;

145

146 %RRC Estimation
147 C u r r e n t F i l t e r = 0 ; % 1 = ON 0 = OFF
148 % [ R1 old M2 (k , i −1) , R2 old M2 (k , i −1) ,

C2 old M2 (k , i −1) , SoCi RRC old M2 (k , i −1) ] =
RRC Estimate LS ( Vbat , I load , SoC , Time , a , b ,
Cur r en t F i l t e r , d i n th r e sh ) ;

149 [ R1 old M2 (k , i −1) , R2 old M2 (k , i −1) , C2 old M2 (
k , i −1) , SoCi RRC old M2 (k , i −1) ] =
RRC Estimate LS SoC Tuning ( Vbat , I load , SoC ,
Time , coe f f4 b4 o ld M2 , Cur r en t F i l t e r ,
d i n th r e sh ) ;

150

151 %RRC Slow Dynamics Est imation
152 % [ R1 old slow M2 (k , i −1) , R2 old slow M2 (k , i

−1) , C2 old slow M2 (k , i −1) , SoCi RRC old slow M2 (k , i −1) ,
LC RRC old slow M2 (k , i −1) ] =

RRC Estimate SLOW LS SoC Tuning ( Vbat , I load , SoC , Time ,
coe f f 4 b4 o ld M2 ) ;

153 % [ R1 old slow M2 (k , i −1) , R2 old slow M2 (k , i
−1) , C2 old slow M2 (k , i −1) , SoCi RRC old slow M2 (k , i −1) ,

LC RRC old slow M2 (k , i −1) ] =
RRC Estimate SLOW LS SoC Tuning Full ( Vbat , I load , SoC ,
Time , coe f f 4 b4 o ld M2 ) ;

154

155 end
156 end
157

158

159 % % r e s u l t d i sp l ay
160

161

162 % R new new M2
163 %
164 % R1 new new M2
165 % R2 new new M2
166 % C2 new new M2
167 %
168 % SoCi R new new M2
169 % SoCi RRC new new M2
170 %
171 %



172 % R new M2
173 % R1 new M2
174 % R2 new M2
175 % C2 new M2
176 %
177 % SoCi R new M2
178 % SoCi RRC new M2
179 %
180 %
181 % R old M2
182 % R1 old M2
183 % R2 old M2
184 % C2 old M2
185 %
186 % SoCi R old M2
187 % SoCi RRC old M2
188

189

190 % % R plo t
191 % TF new new = SoCi R new new M2 > 0 ;
192 % TF new = SoCi R new M2 > 0 ;
193 % TF old = SoCi R old M2 > 0 ;
194 %
195 % f i g u r e ,
196 % subplot ( 1 , 2 , 1 )
197 % s c a t t e r ( SoCi R new new M2 ( TF new new ) , R new new M2 (

TF new new ) , ’ green ’ , ’ f i l l e d ’ ) , hold on , g r i d on
198 % s c a t t e r ( SoCi R new M2 (TF new) , R new M2(TF new) , ’ blue ’ , ’

f i l l e d ’ ) ,
199 % s c a t t e r ( SoCi R old M2 ( TF old ) , R old M2 ( TF old ) , ’ red ’ , ’

f i l l e d ’ ) , x l a b e l ( ’ SoC i i d [% ] ’ ) , y l a b e l ( ’ R h [Ohm] ’ )
200 % legend ( ’ new ’ , ’ medium ’ , ’ old ’ ) , t i t l e ( ’R−Estimate −

B i a n c o n i g l i o 4 − M2’ )
201 %
202 % subplot ( 1 , 2 , 2 )
203 % s c a t t e r ( SoCi R new new M2 ( TF new new ) , LC R new new M2 (

TF new new ) , ’ green ’ , ’ f i l l e d ’ ) , hold on , g r i d on
204 % s c a t t e r ( SoCi R new M2 (TF new) , LC R new M2(TF new) , ’ blue

’ , ’ f i l l e d ’ ) ,
205 % s c a t t e r ( SoCi R old M2 ( TF old ) , LC R old M2 ( TF old ) , ’ red ’ , ’

f i l l e d ’ ) , x l a b e l ( ’ SoC i i d [% ] ’ ) , y l a b e l ( ’RMSe’ )
206 % legend ( ’ new ’ , ’ medium ’ , ’ old ’ ) , t i t l e ( ’ L i n e a r i t y C o e f f i c i e n t

− B i a n c o n i g l i o 4 − M2’ )
207

208

209 % RRC plo t
210

211 TF new new = SoCi RRC new new M2 > 0 ;



212 TF new = SoCi RRC new M2 > 0 ;
213 TF old = SoCi RRC old M2 > 0 ;
214

215 f i g u r e ,
216 subplot ( 1 , 3 , 1 )
217 s c a t t e r ( SoCi RRC new new M2 ( TF new new ) , R1 new new M2 (

TF new new ) , ’ green ’ , ’ f i l l e d ’ ) , hold on , g r i d on
218 s c a t t e r (SoCi RRC new M2(TF new) , R1 new M2(TF new) , ’ b lue ’ , ’

f i l l e d ’ ) ,
219 s c a t t e r ( SoCi RRC old M2 ( TF old ) , R1 old M2 ( TF old ) , ’ red ’ , ’

f i l l e d ’ ) , t i t l e ( ’R1−Estimate − B i a n c o n i g l i o 4 ’ ) , x l a b e l ( ’
SoC [%] ’ ) , y l a b e l ( ’ R1 h [Ohm] ’ )

220 l egend ( ’new ’ , ’medium ’ , ’ o ld ’ )
221

222 subplot ( 1 , 3 , 2 )
223 s c a t t e r ( SoCi RRC new new M2 ( TF new new ) , R2 new new M2 (

TF new new ) , ’ green ’ , ’ f i l l e d ’ ) , hold on , g r i d on
224 s c a t t e r (SoCi RRC new M2(TF new) , R2 new M2(TF new) , ’ b lue ’ , ’

f i l l e d ’ ) ,
225 s c a t t e r ( SoCi RRC old M2 ( TF old ) , R2 old M2 ( TF old ) , ’ red ’ , ’

f i l l e d ’ ) , t i t l e ( ’R2−Estimate − B i a n c o n i g l i o 4 ’ ) , x l a b e l ( ’
SoC [%] ’ ) , y l a b e l ( ’ R2 h [Ohm] ’ )

226 l egend ( ’new ’ , ’medium ’ , ’ o ld ’ )
227

228 subplot ( 1 , 3 , 3 )
229 s c a t t e r ( SoCi RRC new new M2 ( TF new new ) , C2 new new M2 (

TF new new ) , ’ green ’ , ’ f i l l e d ’ ) , hold on , g r i d on
230 s c a t t e r (SoCi RRC new M2(TF new) , C2 new M2(TF new) , ’ b lue ’ , ’

f i l l e d ’ ) ,
231 s c a t t e r ( SoCi RRC old M2 ( TF old ) , C2 old M2 ( TF old ) , ’ red ’ , ’

f i l l e d ’ ) , t i t l e ( ’C2−Estimate − B i a n c o n i g l i o 4 ’ ) , x l a b e l ( ’
SoC [%] ’ ) , y l a b e l ( ’ C2 h [F ] ’ )

232 l egend ( ’new ’ , ’medium ’ , ’ o ld ’ )
233

234 f i g u r e ,
235 s c a t t e r ( SoCi RRC new new M2 ( TF new new ) , R2 new new M2 (

TF new new ) .∗ C2 new new M2 ( TF new new ) , ’ green ’ , ’ f i l l e d ’ ) ,
hold on , g r i d on

236 s c a t t e r (SoCi RRC new M2(TF new) , R2 new M2(TF new) .∗
C2 new M2(TF new) , ’ b lue ’ , ’ f i l l e d ’ ) ,

237 s c a t t e r ( SoCi RRC old M2 ( TF old ) , R2 old M2 ( TF old ) .∗
C2 old M2 ( TF old ) , ’ red ’ , ’ f i l l e d ’ ) , t i t l e ( ’Tau −
B i a n c o n i g l i o 4 ’ ) , x l a b e l ( ’SoC [%] ’ ) , y l a b e l ( ’Tau ’ )

238 l egend ( ’new ’ , ’medium ’ , ’ o ld ’ )
239

240 % % RRC SLOW plo t
241 %
242 % TF new new slow = SoCi RRC new new slow M2 > 0 ;



243 % TF new slow = SoCi RRC new slow M2 > 0 ;
244 % TF old slow = SoCi RRC old slow M2 > 0 ;
245 %
246 % f i g u r e ,
247 % subplot ( 1 , 3 , 1 )
248 % s c a t t e r ( SoCi RRC new new slow M2 ( TF new new slow ) ,

R1 new new slow M2 ( TF new new slow ) , ’ green ’ , ’ f i l l e d ’ ) ,
hold on , g r i d on

249 % s c a t t e r ( SoCi RRC new slow M2 ( TF new slow ) , R1 new slow M2 (
TF new slow ) , ’ blue ’ , ’ f i l l e d ’ ) , hold on , g r id on

250 % s c a t t e r ( SoCi RRC old slow M2 ( TF old slow ) , R1 old slow M2 (
TF old slow ) , ’ red ’ , ’ f i l l e d ’ ) , t i t l e ( ’R1 slow−Estimate −
B i a n c o n i g l i o 4 ’ ) , x l a b e l ( ’ SoC [%] ’ ) , y l a b e l ( ’ R1 h [Ohm] ’ )

251 %
252 % subplot ( 1 , 3 , 2 )
253 % s c a t t e r ( SoCi RRC new new slow M2 ( TF new new slow ) ,

R2 new new slow M2 ( TF new new slow ) , ’ green ’ , ’ f i l l e d ’ ) ,
hold on , g r i d on

254 % s c a t t e r ( SoCi RRC new slow M2 ( TF new slow ) , R2 new slow M2 (
TF new slow ) , ’ blue ’ , ’ f i l l e d ’ ) , hold on , g r id on

255 % s c a t t e r ( SoCi RRC old slow M2 ( TF old slow ) , R2 old slow M2 (
TF old slow ) , ’ red ’ , ’ f i l l e d ’ ) , t i t l e ( ’R2 slow−Estimate −
B i a n c o n i g l i o 4 ’ ) , x l a b e l ( ’ SoC [%] ’ ) , y l a b e l ( ’ R2 h [Ohm] ’ )

256 %
257 %
258 % subplot ( 1 , 3 , 3 )
259 % s c a t t e r ( SoCi RRC new new slow M2 ( TF new new slow ) ,

C2 new new slow M2 ( TF new new slow ) , ’ green ’ , ’ f i l l e d ’ ) ,
hold on , g r i d on

260 % s c a t t e r ( SoCi RRC new slow M2 ( TF new slow ) , C2 new slow M2 (
TF new slow ) , ’ blue ’ , ’ f i l l e d ’ ) , hold on , g r id on

261 % s c a t t e r ( SoCi RRC old slow M2 ( TF old slow ) , C2 old slow M2 (
TF old slow ) , ’ red ’ , ’ f i l l e d ’ ) , t i t l e ( ’C2 slow−Estimate −
B i a n c o n i g l i o 4 ’ ) , x l a b e l ( ’ SoC [%] ’ ) , y l a b e l ( ’ C2 h [F ] ’ )

262 % legend ( ’ new ’ , ’ medium ’ , ’ old ’ )
263 %
264 %
265 % % tau
266 % f i g u r e ,
267 % s c a t t e r ( SoCi RRC new new slow M2 ( TF new new slow ) ,

R2 new new slow M2 ( TF new new slow ) .∗ C2 new new slow M2 (
TF new new slow ) , ’ green ’ , ’ f i l l e d ’ ) , hold on , g r i d on

268 % s c a t t e r ( SoCi RRC new slow M2 ( TF new slow ) , R2 new slow M2 (
TF new slow ) .∗ C2 new slow M2 ( TF new slow ) , ’ blue ’ , ’ f i l l e d
’ ) ,

269 % s c a t t e r ( SoCi RRC old slow M2 ( TF old slow ) , R2 old slow M2 (
TF old slow ) .∗ C2 old slow M2 ( TF old slow ) , ’ red ’ , ’ f i l l e d ’ )
, t i t l e ( ’Tau − B i a n c o n i g l i o 4 ’ ) , x l a b e l ( ’ SoC [%] ’ ) ,



y l a b e l ( ’Tau [1/ s ] ’ )
270 % legend ( ’ new ’ , ’ medium ’ , ’ old ’ )
271 %
272 % % Model Error
273 % f i g u r e
274 % s c a t t e r ( SoCi RRC new new slow M2 ( TF new new slow ) ,

LC RRC new new slow M2 ( TF new new slow ) , ’ green ’ , ’ f i l l e d ’ )
, hold on , g r i d on

275 % s c a t t e r ( SoCi RRC new slow M2 ( TF new slow ) ,
LC RRC new slow M2 ( TF new slow ) , ’ blue ’ , ’ f i l l e d ’ ) , hold on ,

g r i d on
276 % s c a t t e r ( SoCi RRC old slow M2 ( TF old slow ) ,

LC RRC old slow M2 ( TF old slow ) , ’ red ’ , ’ f i l l e d ’ )
277 %
278 % legend ( ’ new ’ , ’ medium ’ , ’ old ’ ) , t i t l e ( ’ L i n e a r i t y C o e f f i c i e n t

− B i a n c o n i g l i o 4 − M2’ ) , x l a b e l ( ’ SoC i i d [% ] ’ ) , y l a b e l
( ’RMSe’ )

A.2 Simulink Code

A.2.1 Model

Figure A.1

A.2.2 EKF

Figure A.2

A.2.3 ANSE

Figure A.3

A.2.4 Final Solution

Figure A.4



Figure A.1: Simulink Implementation: battery model



Figure A.2: Simulink Implementation: Extended Kalman Filter



Figure A.3: Simulink Implementation: ANSE



Figure A.4: Simulink Implementation: Final solution
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[10] Ingemar Kaj, Victorien Konanéb. “Modeling battery cells under discharge us-
ing kinetic and stochastic battery models”. In: Elsevier, Applied Mathematical Modelling
(2016).

[11] J.F. Manwell, J.G. McGowan. “Lead Acid Battery Storage Model for Hybrid
Energy Systems”. In: Sol. Energy 1993, 50, 399–405. (1993).

[12] Leonardo M. Rodrigues, Carlos Montez, Ricardo Moraes, Paulo Portugal and
Francisco Vasques. “A Temperature-Dependent Battery Model for Wireless
Sensor Networks”. In: Sensors 2017, 17, 422 (2017).

129

https://batteryuniversity.com/learn/article/lead_based_batteries
https://batteryuniversity.com/learn/article/lithium_based_batteries
https://batteryuniversity.com/learn/article/lithium_based_batteries
https://batteryuniversity.com/learn/article/how_to_measure_state_of_charge
https://batteryuniversity.com/learn/article/how_to_measure_state_of_charge
https://batteryuniversity.com/learn/article/how_to_measure_state_of_charge
https://www.mckinsey.com/business-functions/sustainability/our-insights/battery-storage-the-next-disruptive-technology-in-the-power-sector
https://www.mckinsey.com/business-functions/sustainability/our-insights/battery-storage-the-next-disruptive-technology-in-the-power-sector
https://www.mckinsey.com/business-functions/sustainability/our-insights/battery-storage-the-next-disruptive-technology-in-the-power-sector
https://www.bloomberg.com/news/articles/2019-04-03/battery-reality-there-s-nothing-better-than-lithium-ion-coming-soon
https://www.bloomberg.com/news/articles/2019-04-03/battery-reality-there-s-nothing-better-than-lithium-ion-coming-soon
https://www.bloomberg.com/news/articles/2019-04-03/battery-reality-there-s-nothing-better-than-lithium-ion-coming-soon
https://www.energy.gov/eere/articles/how-does-lithium-ion-battery-work
https://www.energy.gov/eere/articles/how-does-lithium-ion-battery-work
www.iea.org/publications/reports/globalevoutlook2019/
www.iea.org/publications/reports/globalevoutlook2019/


[13] Marshall Brain, Howstuffworks. How Lithium-ion Batteries Work. 2019. url:
https://electronics.howstuffworks.com/everyday-tech/lithium-ion-

battery.htm.

[14] Martin Murnane, Adel Ghazel. “A Closer Look at State of Charge (SOC) and
State of Health (SOH) Estimation Techniques for Batteries”. In: Analog Devices
(2017).

[15] Mathworks. Estimate States of Nonlinear System with Multiple, Multirate Sensors.
2016. url: https://it. mathworks. com/help/ident/ug/multirate-

nonlinear-state-estimation-in-simulink.html.

[16] Mathworks. Extended and Unscented Kalman Filter Algorithms for Online State Estimation.
2018. url: https://it.mathworks.com/help/ident/ug/extended-and-
unscented-kalman-filter-algorithms-for-online-state-estimation.

html.

[17] Mathworks. Extended Kalman Filter. 2017. url: https://it.mathworks.
com/help/ident/ref/ekf_block.html#examples.

[18] Mohammad Charkhgard and Mohammad Farrokhi. “State-of-Charge Estima-
tion for Lithium-Ion Batteries Using Neural Networks and EKF”. In: IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 57, NO. 12
(2010).

[19] MoreSteam. Design of Experiments (DOE). url: https://www.moresteam.
com/toolbox/design-of-experiments.cfm.

[20] NALIN A. CHATURVEDI, REINHARDT KLEIN, JAKE CHRISTENSEN,
JASIM AHMED, and ALEKSANDAR KOJIC. “MODELING, ESTIMATION,
AND CONTROL CHALLENGES FOR LITHIUM-ION BATTERIES”. In:
IEEE CONTROL SYSTEMS MAGAZINE (2010).

[21] Nora Manthey, electrive.com. Solid electrolyte batteries – the next big thing?!
2019. url: https://www.electrive.com/2019/08/02/solid-electrolyte-
batteries-the-next-big-thing/.

[22] Power Tech. Lithium-Ion State of Charge (SoC) measurement. 2019. url: https:
//www.powertechsystems.eu/home/tech-corner/lithium-ion-state-

of-charge-soc-measurement/.

[23] Robyn A. Jackey. “A Simple, Effective Lead-Acid Battery Modeling Process
for Electrical System Component Selection”. In: The MathWorks, Inc. (2007).

[24] Robyn Jackey, Aubrey da Cunha, Javier Gazzarri. Automating Battery Model Parameter Estimation using Experimental Data.
2013. url: https://it.mathworks.com/videos/automating-battery-
model-parameter-estimation-using-experimental-data-81987.html?

elqsid=1548087779778&potential_use=Student.

[25] Dan Simon. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches.
Cleveland: John Wiley and Sons Inc., 2006.

[26] Stefan Knupfer, Jesse Noffsinger and Shivika Sahdev. How battery storage can help charge the electric-vehicle market.
2018. url: https://www.mckinsey.com/business-functions/sustainability/
our-insights/how-battery-storage-can-help-charge-the-electric-

vehicle-market.

https://electronics.howstuffworks.com/everyday-tech/lithium-ion-battery.htm
https://electronics.howstuffworks.com/everyday-tech/lithium-ion-battery.htm
https://it.mathworks.com/help/ident/ug/multirate-nonlinear-state-estimation-in-simulink.html
https://it.mathworks.com/help/ident/ug/multirate-nonlinear-state-estimation-in-simulink.html
https://it.mathworks.com/help/ident/ug/extended-and-unscented-kalman-filter-algorithms-for-online-state-estimation.html
https://it.mathworks.com/help/ident/ug/extended-and-unscented-kalman-filter-algorithms-for-online-state-estimation.html
https://it.mathworks.com/help/ident/ug/extended-and-unscented-kalman-filter-algorithms-for-online-state-estimation.html
https://it.mathworks.com/help/ident/ref/ekf_block.html#examples
https://it.mathworks.com/help/ident/ref/ekf_block.html#examples
https://www.moresteam.com/toolbox/design-of-experiments.cfm
https://www.moresteam.com/toolbox/design-of-experiments.cfm
https://www.electrive.com/2019/08/02/solid-electrolyte-batteries-the-next-big-thing/
https://www.electrive.com/2019/08/02/solid-electrolyte-batteries-the-next-big-thing/
https://www.powertechsystems.eu/home/tech-corner/lithium-ion-state-of-charge-soc-measurement/
https://www.powertechsystems.eu/home/tech-corner/lithium-ion-state-of-charge-soc-measurement/
https://www.powertechsystems.eu/home/tech-corner/lithium-ion-state-of-charge-soc-measurement/
https://it.mathworks.com/videos/automating-battery-model-parameter-estimation-using-experimental-data-81987.html?elqsid=1548087779778&potential_use=Student
https://it.mathworks.com/videos/automating-battery-model-parameter-estimation-using-experimental-data-81987.html?elqsid=1548087779778&potential_use=Student
https://it.mathworks.com/videos/automating-battery-model-parameter-estimation-using-experimental-data-81987.html?elqsid=1548087779778&potential_use=Student
https://www.mckinsey.com/business-functions/sustainability/our-insights/how-battery-storage-can-help-charge-the-electric-vehicle-market
https://www.mckinsey.com/business-functions/sustainability/our-insights/how-battery-storage-can-help-charge-the-electric-vehicle-market
https://www.mckinsey.com/business-functions/sustainability/our-insights/how-battery-storage-can-help-charge-the-electric-vehicle-market


[27] Taesic Kim, Wei Qiao and Liyan Qu. “Real-Time State of Charge and Elec-
trical Impedance Estimation for Lithium-ion Batteries Based on a Hybrid
Battery Model”. In: 978-1-4673-4355-8/13, IEEE (2013).

[28] Tarun Huria, Massimo Ceraolo, Javier Gazzarri and Robyn Jackey. “High
Fidelity Electrical Model with Thermal Dependence for Characterization and
Simulation of High Power Lithium Battery Cells”. In: 71900, IEEE (2012).

[29] The Mathworks, Inc. “Predictive Analytics with MATLAB: Unlocking the
Value in Engineering and Business Data”. In: Mathworks Whitepaper (2016).

[30] The Mathworks, Inc. “Predictive Maintenance with MATLAB: Avoid costly
equipment failures by using sensor data analytics”. In: Mathworks Whitepaper
(2016).

[31] The Mathworks, Inc. “Risolvere quattro problemi comuni legati alla manuten-
zione predittiva con MATLAB e Simulink”. In: Mathworks Whitepaper (2018).

[32] Wikipedia. Lead–acid battery. 2019. url: https://en.wikipedia.org/

wiki/Lead%5C%E2%5C%80%5C%93acid_battery#cite_note-crompton-7.

[33] Wikipedia. Lithium-ion battery. 2019. url: https://en.wikipedia.org/
wiki/Lithium-ion_battery.

https://en.wikipedia.org/wiki/Lead%5C%E2%5C%80%5C%93acid_battery#cite_note-crompton-7
https://en.wikipedia.org/wiki/Lead%5C%E2%5C%80%5C%93acid_battery#cite_note-crompton-7
https://en.wikipedia.org/wiki/Lithium-ion_battery
https://en.wikipedia.org/wiki/Lithium-ion_battery

	Introduction
	The Problem
	Key Trends, Market and Industry Forces

	The Project
	Goal
	Stakeholders
	Costs


	Batteries
	Actual Technology
	Lithium-Ion
	Lead Acid

	Future Technology
	Solid Electrolite


	State of Art
	Battery Modelling
	Analytical modelling of electrochemical phenomena
	Data-Driven modelling (Black-Box)
	Physical modelling (Electrical equivalent circuit)
	Ibrid modelling

	States Estimation Technology
	Model-Based
	Data-Driven

	Critiques to the State of Art

	Energetic Framework
	Definitions
	Capacity
	State of Charge
	Depth of Discharge
	State of Health

	Measurable Quantity Analysis
	Absolute approach
	Relative approach: Creal ignorance
	Relative approach: relative SoC


	Model Identification
	Design of Experiment
	DoE theory

	BAT-MAN DoE
	Acquisition test - 0
	Acquisition test - 1
	Acquisition test - 2
	Data Organisation
	Full BAT-MAN DoE

	Fundamental quantities
	Discharge Profile Analysis
	Real capacity
	Open Circuit Voltage Characteristic

	Parameters Identification
	Least Square Estimation Theory
	R Model
	Dynamic Model
	Non-Linear R Model


	Battery Model
	The Structure
	Voltage Source model block
	Resistor model block

	Model Equations
	State Equation
	Output Equation
	Overview

	Performance
	Calibration
	Test


	Model-based Solution
	Single Non-Linear State Observer
	Extended Kalman Filter
	Implementation
	Real data performance

	Real-Time Batteries' SoC and SoH Estimator
	Series of ANSE
	The Logic
	Algorithm Performances


	Conclusions
	Appendix
	Matlab Code
	Open Circuit Voltage Characteristic
	Static non-linear model
	Real capacity
	Absolute Interpretation: R, RC, Rnl

	Simulink Code
	Model
	EKF
	ANSE
	Final Solution



