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Summary

This thesis focuses on Goal Recognition, an innovative and still developing field of research in
Artificial Intelligence, which involves determining an agent’s goal by observing its behaviour. Sev-
eral real-world applications can be modelled in this context, for example, surveillance problems,
operations where it is necessary to preserve user privacy, chat-boxes, and human-robot interaction.

In this dissertation, we consider an environment in which an intelligent agent, the target,
performs actions that can be observed by another intelligent agent, the observer (or by the envi-
ronment itself). We analyze an evasive or fleeing target that moves in the environment to reach its
destination, while the observer tries to find it. An example of this scenario is a surveillance drone
that flies over a wide geographical area to discover a criminal who is trying to reach a hideout
by car as soon as possible. In this context, the observer runs Goal Recognition algorithms that
aim to discover where the target is going. In particular, the observer needs to reason about the
target’s strategy to obscure its goals. To support this kind of reasoning, we propose a technique
to calculate a new measure, the "undisclosing index", that represents the maximal length of the
prefix of a path that a fleeing agent may take before its goal becomes apparent to the observer.
Moreover, we present methods for the observer to reason about how the target might change its
behaviour based on the resources that it has available: the target will take shorter or longer paths
based on its total travel budget.

We modelled the environment in which the agents move by using a connected graph. For our
experiments, we construct the graphs based on data from a real web map provided by Open-
StreetMap (OSM). We implemented a web application designed for this purpose. Through it, the
user selects and exports an area of interest on the map, identifying the target’s possible goals within
that area. The web-app provides a viewable version of the graph, implements the algorithms that
help the observer reason about the possible paths of the target based on its budget and visualize
them.

The experimental evaluation shows how the solutions proposed in this thesis are useful tools
for solving Goal Recognition problems.
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Chapter 1

Introduction

1.1 Problem Description and Motivation
Nowadays, intelligent systems are used in a wide variety of applications: there are several realities,
more or less consolidated, that make use of them. These intelligent agents are technologically
advanced entities that perceive and respond to the world around them: practically, they analyse
the surrounding environment, therefore decide on rational actions to achieve their objectives.

In Artificial Intelligence, the specific task of determining an agent’s goal by observing its be-
haviour is called Goal Recognition. The need to identify strategies and goals of a system in a
given environment is a very recurrent task in several real-world applications such as surveillance
problems, chat-boxes, operations where it is necessary to preserve user privacy, human-robot in-
teraction, etc.

In this dissertation, we consider an environment in which an intelligent agent, the target,
performs its movement and actions that can be observed by another intelligent agent, the observer
(or by the environment itself). In particular, the target is a fleeing agent, i.e. it moves in the
environment to reach its destination and achieve its final goal, while the observer tries to find
it. An example of this scenario is a surveillance drone that flies over a wide geographical area to
discover a criminal who is trying to reach a hideout by car as soon as possible.

In this context, Goal Recognition techniques allow developing strategies aimed at discovering
where the target is going. In particular, the observer runs Goal Recognition algorithm to reasons
about the target’s strategy to hide its final destination and how this strategy changes based on its
available resources (the target will take shorter or longer paths based on its total travel budget).

1.2 Thesis Aims
The purpose of this dissertation is to understand how the actions that an agent can perform in the
environment reveal its final goal. In other words, through this work, we aim to devise techniques
that allow the creation of an intelligent action plan.

In our specific scenario, the observer, through planning techniques, tries to reason about target’s
possible plans and strategies, in order to increase its chances of finding it. For this purpose, in this
dissertation has been proposed a technique to calculate a new measure, the undisclosing index,
that represents the maximal length of the prefix of a path that a fleeing agent may take before its
goal becomes apparent to the observer. The observer gets this new measure reasoning about how
the target might change its behaviour based on the resources that it has available: the target will
take shorter or longer paths based on its total travel budget.
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1 – Introduction

In this sense, a relevant goal of this dissertation is to maximize the undisclosing index, using
a new algorithm based on the well-known Dijkstra and Yen’s algorithms, and trying to modify the
model of the environment in which the agents move.

We modelled the environment in which the agents move by using a connected graph. For our
experiments, we built the graphs starting from real data provided by OpenStreetMap (OSM). We
implemented a web application designed for this purpose. Through it, the user selects and exports
an area of interest on the map, identifying the target’s possible goals within that area. The web-
app provides a viewable version of the graph, implements the algorithms that help the observer
reason about the possible paths of the target based on its budget and visualize them.

The experimental evaluation at the end of the dissertation shows how the solutions proposed
and the algorithm implemented are useful tools for solving related Goal Recognition problems. The
results obtained could also constitute the starting point for research in the field of Goal Recognition
Design, where the ultimate goal is a real modification of the environment to simplify or hinder the
Goal Recognition.

1.3 Organization
The thesis is organized as follows. We start by providing some general concepts about Graph
theory and associated terminology and algorithms. We continue by introducing the necessary
background to understand the Goal Recognition theory: therefore, we will provide some concepts
related to it such as Plan Recognition and Goal Recognition Design. Then we propose a concrete
instance of the Goal Recognition problem, considering the scenario mentioned above and analysing
it as a precise mathematical optimization problem. We conclude with practical applications of the
implemented algorithms and empirical evaluations of the obtained results, then some considerations
about related and future works.
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Chapter 2

Literature Review

2.1 Introduction
This chapter aims to provide and explain some of the concepts underlying the research carried out
by this thesis work. In addition, the terminology and notation used in this work are provided and
fixed. First of all, let’s start with an introduction to Graph theory.

2.2 Graph theory
Graph theory was introduced by the mathematician Leonhard Euler as a possible solution to the
problem called "Seven Bridges of Königsberg". The problem was to look for a path through the
city that crossed each bridge once and only once. Starting from the considered problem, a new
discipline of mathematics was born and evolved, aimed at modelling and solving decision-making
problems. Reconnecting to the aforementioned problem, a graph represents, in mathematical
terms, a complex network of the real world.

According to ’A Textbook of Graph Theory’ by R. Balakrishnan and K. Ranganathan [1], we
provide the following definition. A graph G is defined as a ordered triple (V(G),E(G),IG), where
(V(G)) represents a nonempty set of elements called vertices, nodes or points, E(G) is the set of
edges, or lines, connecting the nodes, and IG is an "incidence" relation that associates each edges
in E(G) to an unordered pair of nodes in V(G).

Below is a clarifying example:

Example 2.2.1. Let V(G) = {v0, v1, v2, v3, v4}, E(G) = {e0, e1, e2, e3, e4, e5}. According to the
above concepts, the set of relationships could be given by IG(e0) = {v0, v1}, IG(e1) = {v0, v1},
IG(e2) = {v1, v1}, IG(e3) = {v1, v2}, IG(e4) = {v2, v3}, IG(e5) = {v2, v4}. So the triple (V(G),E(G),IG)
is a graph.

For convenience, we will express the triple (V(G),E(G),IG) in the more compact form (V(G),E(G),IG).
Reconnecting to the previous example, it is possible to provide a graphical representation, or

more simply, a planar diagram of the graph considered:

3



2 – Literature Review

Figure 2.1. Graphical representation of the graph described by the example 2.2.1

v0 v1 v2

v3

v4

e0

e1

e2

e3

e4

e5

In the Figure 2.1 it is possible to distinguish the nodes, with the respective labels (v1, v2, ..., v4),
and the edges, (e1, e2, ..., e5), or the lines connecting the vertices to each other. Notice that in a
graphical representation of a graph, two or more edges could intersect each other: this insertion
does not necessarily identify a node of the aforementioned graph.

We now provide some notions related to the cardinality of nodes and edges of a graph. The
number of vertices in a graph G is defined as its order. It is devoted by ∣V∣. We will use n to
denote the order of G. The number of edges, on the other hand, is called size of G and denoted
by ∣E∣. We will use m to denote the size of G.

Depending on the order, a graph can be finite or infinite. For simplicity, in this work, we
will always refer to finite graphs. A graph of order 0 or 1 is defined trivial. In addition, note that
a graph with no vertex or edges is defined empty.

A graph with many edges with respect to the number of vertices n is called dense, whereas a
graph with a few edges is called sparse; in general we can say that a graph is sparse if the number
of edges is of the same order of magnitude as the number of vertices:

m = O (n)

At this point, it is necessary to provide some important theoretical concepts related to nodes
and edges in a graph. Below is a basic concept of end of an edge.

For a given edge e∗, given the related IG(e∗) = {v∗1 , v∗2}, we define v∗1 and v∗2 as the ends or
endpoints of the considered edge e∗. Each edge joins its ends, as well as it is possible to say that
each ends is incident with its edge. The graphic representation provided in Figure 2.1 and the
concept of end just explained allow us to give other simple definitions related to Graph Theory.

Two or more edges are called multiple or parallel if they have the same couple of distinct ends.
A trivial example of parallel edges is shown in Figure 2.1, and consists of the set of edges {e0, e1}.

If the ends of an edge consist of the same node, the edge is called loop at the considered node.
An obvious example is represented by the edge e2 (Figure 2.1).

Concerning these last definitions, it is possible to state that a graph in which there are no loops
or multiple edges is called simple graph.

Now consider the concept of adjacency, first applied to the nodes of a graph, subsequently to its
edges. Suppose we work, for convenience, with undirected graphs (For more details see subsection
2.2.3). Given two vertices v∗1 , v∗2 ∈ V, they are defined adjacent if there is at least one edge e∗ ∈ E
joining them, i.e. the related IG(e∗) exist and it is worth that IG(e∗) = {v∗1 , v∗2}.

Differently, two or more distinct edges are called adjacent if they have a common endpoint.
Therefore, given for example the vertices v∗1 , v∗2 , v∗3 ∈ V, the connecting edges e∗1, e∗2 ∈ E , with
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2.2 – Graph theory

e∗1 ≠ e∗2, and the related IG(e∗1), IG(e∗2), if IG(e∗1) = {v∗1 , v∗3} and IG(e∗2) = {v∗2 , v∗3} then the two
considered edge e∗1, e∗2 are adjacent.

Two or more vertices of a graph which are adjacent are called neighbours. The set of all
neighbours of a vertex v∗ is called neighborhood set of v∗. It is identified by the compact form
N(v∗) or N[v∗]. The first one represents the open neighborhood set, i.e.:

N(v∗) = {u∗ ∈ V∣u∗ adjacent to v∗ and u∗ ≠ v∗}

The second expression is the representation of the closed neighborhood set, that is:

N[v∗] = N(v∗) ∪ {v∗}

Having defined the concept of neighborhood set, consider the following statement. Given a
(non-empty) graph, we define degree or valency of a vertex v∗ the number of edges at v∗. In other
words, the degree dG(v∗) of a node is equal to the number of its neighbours (this last definition is
not valid for multigraphs). A vertex whose degree is zero is called isolated. From a notation point
of view, we can indicate with δ(G) = min{dG(v)∣v ∈ V} the minimum degree of a graph G. The
maximum degree of G will be expressed by ∆(G) = max{dG(v)∣v ∈ V}. In the particular case in
which each node has the same valency, then G is regular.

2.2.1 Graphs: terminology involving Paths and Cycles
First of all, we provide the definition of walk in a graph G. Trivially, a walk can be seen as a
sequence of nodes and edges whose ends are vertices. Truly, a walk is also a sequence of adjacent
two-by-two edges. Given a graph G = (V,E), a walk can be seen as

(v0, e0, ...vk−1, ek, vk)

with IG(ei) = vi, vi+1, for 1 ≤ i ≤ k. The number of edges in a walk is called length of the walk. For
convenience, the edges within the sequence will be omitted, so that a walk will appear as follows:

(v0, v1, ..., vk)

Note that v0 and vk are the origin and termination of the walk respectively. Moreover, if v0 = vk
the walk is said closed, otherwise is open.

A path p is a particular case of walk: in this case all the nodes are different. The considerations
previously written and relating to the concept of walk are still valid. In addiction, a path of length
k can be denoted by pk.

Figure 2.2. Graphical representation of a path p3 in a graph G

The concept of path, as widely used in this thesis work, will be repeatedly taken up and
expanded in the following sections.

Now we define the concept of subpath: given a generic path

p = (v0, v1, v3, v4)

5
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let’s call sub_p of p the following sequence of elements:
sub_p = (v1, v3, v4)

In other words, the subpath sub_p of a path p is an ordered sequence of nodes also contained in
p, then:

sub_p ⊆ p
A path of length greater than or equal to 3 is a cycle if its origin and termination node coincide.

A cycle is a type of sequence as shown below:
(v0, v1, ..., vk−1, v0)

A cycle is said even or odd according to its length (trivially, if its length is an even number, then
the cycle is even, otherwise is odd).

2.2.2 Graph: connectivity
A non-empty graph G is defined connected if every couple of distinct nodes of G are joined by a
path. Otherwise the graph is said disconnected. More specifically, a graph G is called k−connected
if there are no vertices in G separated by fewer than k other nodes. Truly, each graph is at least
0 − connected (unless it is an empty graph). In this regard we define the connectivity κ(G) of
a graph: it is the greatest value k such that the graph is k − connected, then if the graph is
disconnected the connectivity is null. The concept of connection will be taken up in the next
chapter, as essential for the formulation of the problem dealt with by this thesis (See chapter 4,
section 4.2).

2.2.3 Graph: main classification
The following are the main classes to which a graph can belong. According to the type of its edges,
a graph can be defined unweighted or weighted. In particular, given two nodes v1, v2 ∈ V, we
define the graph as unweighted, if the edge connecting the two nodes can exist or not. The type
of edge in question is called unweighted or binary: as for a switch, its value can be 1 (on), if the
edge exists, or 0 (off) if it doesn’t exist. Notice that for a unweighted graph there is no criterion of
importance among the various edges. Below in Figure 2.3 is an example of an unweighted graph:

Figure 2.3. Unweighted Graph

v0

v1

v2

v3

v4
v5

e0

e1

e2

e3

e4

e5

e6

On the other side a graph is weighted, if we can attribute to the edge connecting two nodes
v1, v2 ∈ V a real number wv1,v2 , called weight of the edge.

6



2.2 – Graph theory

Figure 2.4. Weighted Graph

v0

v1

v2

v3

v4
v5

e0, 0.5

e1, 0.3

e2, 0.8

e3, 1.1

e4, 2.5

e5, 0.6

e6, 2.1

The figure 2.4 represents a weighted graph: on each edge it is possible to see the weight of
the considered edge next to its label. It is also possible to use a more compact form to represent
the weights of the graph: let’s talk about a weight matrix W . The weight matrix related to the
considered example is shown in figure 2.5.

Figure 2.5. Weight matrix W related to graph in Fig. 2.4

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

wv0,v0 wv0,v1 . . . wv0,v5

wv1,v0 . . . . .
. . . . . .
. . . . . .
. . . . . .

wv0,v5 . . . . wv5,v5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0.5 0 1.1 0 0
0.5 0 0.3 0 0.8 0
0 0.3 0 0 2.5 0

1.1 0 0 0 2.1 0
0 0.8 2.5 0.8 0 0.6
0 0 0 0 0.6 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Another distinction must be made between direct and undirected graphs. So far, for conve-
nience, we have considered undirected graphs, since much of the classical theory of the graphs has
been developed for this type of structure. Specifically, a graph is defined undirected if each of its
edges is associated with an unordered pair of vertices in V. From a more practical point of view,
given two nodes v1, v2 ∈ V connected by two edges e1, e2, according to the relations IG(e1) = {v1, v2}
and IG(e2) = {v2, v1}, there is no privileged orientation and IG(e1) = IG(e2). Below is an example
of a undirected graph (Fig. 2.6).

7
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Figure 2.6. Undirected Graph

v0

v1

v2

v3

On the other hand, a graph is said directed if the elements of IG are ordered pairs of nodes:
considering the previous case in which we have v1, v2, e1, e2, for a directed graph

IG(e1) ≠ IG(e2)

since

IG(e1) = (v1, v2)
IG(e2) = (v2, v1)

The figure Fig 2.7 represents an example of a direct graph.

Figure 2.7. Directed Graph

v0

v1

v2

v3

A further classification is that which distinguishes cyclic and acyclic graphs. A cyclic graph
is, trivially, a graph containing at least one cycle (See definition of cycle in the previous section
2.2.1).

Figure 2.8 is an example of cyclic graph. It is evident that there exists, for example, a path
from node v1 which connects it to itself. The same is for the nodes v2, v3, v4.

On the other hand, an acyclic graph is a graph without cycles, that is no node can be traversed
back to itself. An example of acyclic graph is shown in Figure 2.9.

8
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Figure 2.8. Example of Cyclic Graph

v0 v1

v2

v3

v4 v5

Figure 2.9. Example of Acyclic Graph

v0 v1

v2

v3

v4

v5

In the considered example, there are no paths which connect a vertex back to itself in the graph.
An acyclic graph is also called forest. A connected forest is called tree [2]. In other words, a

forest is composed of more trees. An example of a tree and a forest are shown in Fig. 2.10.

Figure 2.10. Example of Tree (a) and Forest (b)

v0

v1 v2

v3 v4v4

(a)

(b)
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2.2.4 Data Structures for Representing Graphs
Sometimes a graphical representation is not sufficient to provide a complete description of a graph.
It is, for example, the case of implementation of graph algorithms. There are two common data
structures for representing graphs:

• representation through adjacency matrix

• representation through adjacency lists

An adjacency matrix is a binary square matrixM of order n = ∣V∣, such that, given two vertices
vi, vj ∈ V:

Mvi,vj = {
1 if{vi, vj} ∈ IG
0 otherwise

Note that, if the graph is not oriented, {vi, vj} ∈ IG ⇐⇒ {vj , vi} ∈ IG , then the matrix M is
symmetric. For the sake of greater clarity, the following example presents the adjacency matrix
M related to the unoriented graph in the Figure 2.6:

M=
⎛
⎜⎜⎜
⎝

0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

⎞
⎟⎟⎟
⎠

If the graph is weighted, that is each edge of the graph is associated to a non-zero weight
wvi,vj , then it is possible to modify the representation of the adjacency matrix M, just putting
Mi,j = wvi,vj if {vi, vj} ∈ V belongs to the set IG ,Mi,j = 0 otherwise.

Another graph representation technique is based on the use of adjacency lists. This kind of
representation is widely used in computer science. It involves the use of a collection of n lists of
vertices, with n the order of the graph G: in other words, there exist an adjacency list for each
vertex in the graph. Each list contains the nodes belonging to the closed neighborhood set (See
section 2.2) of the corresponding vertex in the graph. In other words, the two sets coincide.

So, for example, consider a graph G = (V,E ,IG) s.t. V = {vk, vk1, vk2}. With the following
relationships between its nodes:

IG(e1) = {vk, vk1}
IG(e2) = {vk, vk2}

We determine the closed neighborhood set of the vk node, for example, in order to obtain the
corresponding adjacency list Lvk . So:

Lvk = N[vk] = {vk, vk1, vk2}

or writing Lvk differently

Lvk ∶ vk → vk1 → vk2

In the more complex case of a weighted graph, it is possible to use the representation by
adjacency lists, simply by changing their structure.

In particular, consider, as in the previous case, a graph G = (V,E) s.t. V = {vk, vk1, vk2}. Then
consider the following relationships between its nodes:

10



2.2 – Graph theory

IG(e1) = {vk, vk1}
IG(e2) = {vk, vk2}

Moreover, consider the following weight indicators, each one relating to a specific edge in the
graph:

wvk,vk1 w.r.t edge e1
wvk,vk2 w.r.t edge e2

As in the previous case, let us consider node vk and compute its adjacency list Lvk . We get,
this time, the open neighborhood set of vk, N(vk): for each node in N(vk) we consider the weight
relative to the edge connecting itself and vk. Then, considering the elements in N(vk), let’s build
the following pairs:

(vk1,wvk,vk1)
(vk2,wvk,vk2)

At this point it is easy to define the adjacency list searched for, Lvk , as a sequence whose head
is the vk node and whose successive elements are pairs node − weight, similar to the one shown
above: to underline the concept, the first element of the pair represents the node adjacent to vk,
while the second one is the weight of the edge that connects vk to the considered adjacent node.

So, in the considered case, the adjacent list Lvk is:

Lvk ∶ vk → (vk1,wvk,vk1) → (vk2,wvk,vk2)

It is worth to notice that in this discussion we will consider weighted graphs. Therefore we
propose below an example of a weighted graph, represented by adjacency lists.

Consider the weighted directed graph in Figure 2.11. A representation of the graph using
adjacency lists is as follows:

Figure 2.11. Weighted directed graph and the related adjacency lists.

0

1
2

3

4

0.3

6

2

1
1

1

L0 ∶ 0→ (1,0.3) → (2,2) → (3,6)

L1 ∶ 1→ (3,1)

L2 ∶ 2→ (3,1)

L3 ∶ 3→ (4,1)

L4 ∶ 4

The set of adjacency lists can also be represented as shown in figure 2.12:
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Figure 2.12. Graphical representation of a weighted directed graph (Fig. 2.12) by using adjacency
lists. The head node is shown in red, while the weight value for each edge is represented in blue

L0 0 1 0.3 2 2 3 6

L1 1 3 1

L2 2 3 1

L3 3 4 1

L4 4

Note the graphical representation just mentioned(figure 2.12), the last element of each list
points to the NULL element (represented by the box with an X). This representative choice is
closely linked to the computer science concept of a list, according to which a list is a container
whose last element points to the special value NULL.

The representation by adjacency lists is preferable to that by adjacency matrices in case of a
sparse graph. Conversely, if the graph is dense, a representation by adjacency matrices is preferred.
These two data structures are useful when we implement an algorithm based on graphs. Depending
on the type of algorithm, one of the two representation techniques is chosen. For example, consider
an algorithms that, having fixed a vertex vi ∈ V, requires iterating a certain number of steps on
all vertices vj ∈ N(vi): the cost of this operation is ∣N(vi)∣ if the list of nodes adjacent to vi is
represented with a list of adjacency Lvi . The same operation has a cost equal to n > ∣N(vi)∣, with
n the order of G, if the representation of the graph occurs through an adjacency matrix.

We shall see the usefulness of these concepts and representation methods in sections 2.3.1 and
2.3.2, where we use them to analyse and explain shortest path algorithms such as Dijkstra and
Yen algorithms. In the next section, we provide some hints on the concept of the shortest path.

2.3 Shortest path problems
The search and calculation of the shortest path over a network, or in our specific case, on a
road network, is a very topical problem, target of many and different research fields over the
years. The shortest path problem consists in identifying the shortest, fastest or cheapest path in a
given network, starting from a source node. Numerous algorithms have been implemented for this
purpose. Of course, the choice of the algorithm depends on the type of problem: depending on
the application, in fact, the algorithm runtime could be a relevant consideration. This discussion,
however, does not analyze in detail aspects related to the comparison between execution times of
different algorithms.

In this thesis work, we use algorithms aimed at solving the problem of finding the shortest
path. Keep in mind, however, that the ultimate goal of this thesis is not to find the shortest path
on a network.

So, based on studies external to this dissertation, we choose to use the most well-known and
used Dijkstra algorithm, which is mentioned in the next section. It is a good choice in case we

12
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only want to find the shortest path from a source vertex to a destination vertex (this is also called
"one − to − one shortest path problem", [3]). Practically, it carries out its research by attributing
a permanent label to each node that constitutes the shortest path tree. In other words, once the
node is permanently labelled, its optimal distance from the source node is known (See section 2.3.1
for more details about distance definition and Dijkstra’s algorithm explanation).

2.3.1 Dijkstra’s algorithm
The objective, as already mentioned in the previous section, is to find in a given graph G a path
of minimum length, connecting a source o to a destination d. In other words, the algorithm looks
for a path such that the distance from source and destination is the minimum.

Before proceeding with the explanation of the algorithm, it is necessary to provide the definition
of distance, closely related to the concept of weight of a path.

Definition 1. Given two vertices v0, vl in a weighted graph G(V,E), a Weight matrix W related
to the graph’s edges, a path p from v0 to vl defined by the vertex sequence

p = (v0, v1, ..., vl)

so that the relation between its nodes is

IG(ej) = {vj−1, vj}, j = 1,2, ..., l

then the weight of the path p is:
l

∑
i=1
wvj−1,vj

We now provide the definition of distance.

Definition 2. Given two vertices a and b in a weighted graph G(V,E), we define a distance da,b
from a to b as:

da,b =min{w(γ)∣γ is a path from a to b}

Note that w(γ) is the weight of path γ connecting a and b.

Go back to the algorithm explanation, the used approach is based on building the solution in
order of increasing length of the wanted optimal path.

The practical implementation, in accordance with the dedicated discussion [4], involves the
division of both node and edge sets in G into other distinct subsets. Concerning the node-set, the
split consists of dividing the elements into the following three subsets:

N.I set for which the shortest path starting from the source is known.

N.II set in which possible candidates for the N.I set are inserted. Practically, for each cycle a
specific node in N.I is considered, according to the algorithm criteria: its neighbours are
placed in N.II.

N.III set of the remaining nodes.

The edges of the graph are split into three different sets:

E.I set of edges that occur in the shortest path from the source node to the nodes belonging to
set N.I.

E.II set in which those edges that are possible candidates for the E.I are inserted.

13
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E.III set of the remaining edges.
The initialization of the sets is the following:

• all nodes are inserted in N.III.

• all edges are inserted in E.III.
Starting from this consideration, we put the source node o in the set N.I. The algorithm then

proceeds, repeating cyclically the two following steps, as reported in Dijkstra’s scientific publication
[4].

Step 1 Considering a node v in N.I, we analyze its neighbours N(v). For simplicity, we identify the
element belonging to N(v) with the symbol nv. Each nv can belong to set N.II or N.III. In
the first case, we consider all edges connecting v to nv. Among these branches, consider edge
e: if it generates a shorter path than the corresponding edge, belonging to set E.II, then it
becomes part of the shortest path. Moreover, the edge e replaces the corresponding edge
in set E.II. In the opposite case, the edge e is rejected. In the case in which, instead, the
node nv belongs to the set N.III, the approach is different: this is added to set N.II and, in
parallel, the edge e is put in the E.II set.

Step 2 Selecting the set of edge E.I and a single edge belonging to E.II, there is only one path
that connects the source o to each node in N.II. Therefore, we choose the node in N.II
whose distance from the source is the shortest and we move it to N.I. We also move the
corresponding edge from the E.II set to the E.I set. The algorithm repeats the entire process
from step 1 until the destination node d is put in N.I. Therefore, the execution ends and the
shortest path from o to d is returned.

Note, however, some relevant observations regarding the algorithm just analyzed: the imple-
mentation is valid for both direct and undirected graphs. Furthermore, in the case of weighted
edges, it is necessary to have non-negative weights. Finally, to calculate the shortest path between
any two nodes of the graph, the graph must be connected.

Below is a more practical explanation of Dijkstra’s algorithm. The implementation involves the
use of basic concepts not mentioned in the theoretical explanation. These concepts were used to
better understand the explanation of the algorithm. Let’s starting by defining a vector of nodes
shp, representing the shortest path between source o and destination d. The algorithm has been
implemented to return this vector. The shp is an essential result as it will be used in the following
sections as input for the implementation of a more complex algorithm (see chapter 4).

We also recall the concept of a "permanently labeled" node [3]. It represents a node for which
the shortest distance from the source node is known. So, trivially, the nodes in N.I are vertices
belonging to this category. The aforementioned concept is used in order not to repeatedly analyse
the same node.

Under these assumptions, let us consider an explanatory example. We are given a weighted,
direct graph G = (V,E) in Fig. 2.13 and a weight set W . As shown in figure, the source node o is
in green and the final destination v5 (or d) is in red.

The correspondent weight matrix is:

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 4 2 1 0 0
0 0 0 0 0 1
0 10 0 3 7 1
0 0 0 0 2 0
0 0 0 0 0 6
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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Figure 2.13. Directed and weighted graph used to explain the Dijkstra algorithm

o

v1

v2

v3

v4

v5

d

e0, 4

e1, 2

e2, 1

e3, 2

e4, 6

e5, 1

e9, 1

e6, 3

e7, 10

e8, 7

The algorithm starts, initializing the system: as previously written, we insert all the nodes and
edges in sets N.III and E.III respectively. Then,

N.I = {}
N.II = {}
N.III = {o, v1, v2, v3, v4, v5}
E.I = {}
E.II = {}
E.III = {e0, e1, e2, e3, e4, e5, e6, e7, e8, e9}

From a practical point of view, and for utility purposes, we use a state indicator for each node
v. Each indicator consist of two elements: the first term dv indicates the distance of the considered
node v from the source node o, the second one identify the node u that precedes the analyzed one
v. Note that, in general, the distance of the node v from the origin is:

dv = du +wu,v

with wu,v the weight of the edge connecting the two node u and v.
So let’s start by initializing all the nodes’ states, except the one related to the source node, as:

(dv, u) = (∞, /)
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The state of the source node o is initialized as (0, /) and is moved from set N.III to set N.I,
becoming a permanent labeled node.

o

(0,/)

v1

(∞,/)

v2

(∞,/)

v3

(∞,/)

v4
(∞,/)

v5

(∞,/)

d

e0, 4

e1, 2

e2, 1

e3, 2

e4, 6

e5, 1

e9, 1

e6, 3

e7, 10

e8, 7

Figure 2.14. Graph with labels

N.I = {o}
N.II = {}
N.III = {v1, v2, v3, v4, v5}
E.I = {}
E.II = {}
E.III = {e0, e1, e2, e3, e4, e5, e6, e7, e8, e9}

Let’s start, therefore, from considering the last node added in N.I (the source node): it is
denoted as a current node. So we find the set of its neighbours. Remember that the search for
neighbouring nodes must be done between the nodes of the N.II and N.III sets. In this first case,
in which the considered node is the source o, the neighbourhood set is

N(o) = {v1, v2, v3}

We start, for example, by considering the node v1 that belong to set N.III. The distance label
of the generic adjacent node vj with respect to vi is update according to the following equation:

new dvj =min{dvj , dvi +wvi,vj} (2.1)

So, in out specific case:

new dv1 = min{dv1, do +wo,v1} =min{∞,0 + 4} = 4
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Note that the formula used is directly linked to that written in Step 1. If dv1 is update by
its new value, the node v1 is moved from the set N.III to the set N.II and, at the same time,
the corresponding edge in E.II, if exist, is replaced by the new one. In our case, we have no
corresponding edge, so e0 is simply shifted from E.III to E.II. Note that, if new dv1 had taken its
old value, the edge e0 would have been removed from E.III and no other operations would have
been performed.

Practically:

N.I = {o}
N.II = {v1}
N.III = {v2, v3, v4, v5}
E.I = {}
E.II = {e0}
E.III = {e1, e2, e3, e4, e5, e6, e7, e8, e9}

Because at the beginning the distance from o of each node is initialized to∞, all nodes adjacent
to the source node during the first cycle are moved from N.III to N.II (the same reasoning is true
for the corresponding edges).

In any case, we calculate the new distances for the remaining nodes in N(o), v2, v3.
Then

new dv2 =min{dv2, do +wo,v1} =min{∞,0 + 2} = 2
new dv3 =min{dv3, do +wo,v1} =min{∞,0 + 1} = 1

Updating all labels, we obtain the graph as shown in figure 2.15.

Figure 2.15. The adjacent nodes of o (in yellow) are labelled. The table shows the
update of their status label.

o

(0,/)

v1

(4,o)

v2

(2,o)

v3

(1,o)

v4
(∞,/)

v5

(∞,/)

d

e0, 4

e1, 2

e2, 1

e3, 2

e4, 6

e5, 1

e9, 1

e6, 3

e7, 10

e8, 7

o v1 v2 v3 v4 v5
d: 0 ∞ ∞ ∞ ∞ ∞
u: / / / / / /
d: 0 4 2 1 ∞ ∞
u: / o o o / /
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The final sets will be equal to:

N.I = {o}
N.II = {v1, v2, v3}
N.III = {v4, v5}
E.I = {}
E.II = {e0, e1, e2}
E.III = {e3, e4, e5, e6, e7, e8, e9}

When all the nodes in the neighbourhood set have been considered and analysed, we proceed
with Step 2. We chose the node in N.II whose distance from the source node is minimal. Then,
among the three newly calculated distances, the minimum value is given by new dv3 . Then we
move the corresponding node v3 from N.II to N.I (the corresponding e2 is moved from E.II to E.I):
v3 has been permanently labelled. So:

N.I = {o, v3}
N.II = {v1, v2}
N.III = {v4, v5}
E.I = {e2}
E.II = {e0, e1}
E.III = {e3, e4, e5, e6, e7, e8, e9}

At this point we designate the node just moved v3 as the current node and repeat the proposed
procedure. Let analyse the nodes belonging to N(v3) = {v2, v4} and compute the new distances
from the source o. Note that edges e3 and e6, referring to v4 and v2 respectively, are moved from
E.III to E.II. v2, instead, is still in N.II, so no operation about nodes are performed. So:

N.I = {o, v3}
N.II = {v1, v2, v4}
N.III = {v5}
E.I = {e2}
E.II = {e0, e1, e3, e6}
E.III = {e4, e5, e7, e8, e9}

Computation of new distances:

new dv2 =min{dv2, dv3 +wv3,v2} =min{2,1 + 3} = 2
new dv4 = min{dv4, dv3 +wv3,v4} =min{∞,1 + 2} = 3

Also referring to the table in the figure 2.17, we determine which of the nodes in N.II presents
minimal distances from the source.
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Figure 2.16. .
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The node, among the possible ones, whose distance from the source is the minimum is v2. It is
the new current node and is moved from N.II to N.I, becoming a permanently labelled node. Since
the value of dv2 has not been modified, we choose not to move, simply deleting the corresponding
edge e6 from E.II. So we have the following sets:

N.I = {o, v3, v2}
N.II = {v1, v4}
N.III = {v5}
E.I = {e2}
E.II = {e0, e1, e3}
E.III = {e4, e5, e7, e8, e9}

At this point, starting from the new current node v2, we analyse its neighbours v1, v5 and move
them, if necessary, from N.III to N.II (e7, e9 are moved from E.III to E.II).

N.I = {o, v3, v2}
N.II = {v1, v4, v5}
N.III = {}
E.I = {e2}
E.II = {e0, e1, e3, e7, e9}
E.III = {e4, e5, e8}

We update the status of the nodes belonging to N(v2), calculating the new distances from the
source:

new dv1 =min{dv1, dv2 +wv2,v1} =min{4,2 + 10} = 4
new dv5 = min{dv5, dv2 +wv2,v5} =min{∞,2 + 1} = 3
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Graphically (Fig. 2.17):

Figure 2.17. .
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So we select the node, among the possible ones, whose distance is the minimum. That node is
v5. Note that it coincides with the destination node d, so the algorithm stops: we found the length
of the shortest path from the origin to the destination node.

At this point, it is necessary to go back over the nodes that constitute the shortest path, to
return the searched node vector shp: remember that this represents the sequence of nodes that
constitute the shortest path from the source node to the destination node. The vector is built
using a temporary variable temp: at each step, temp stores and adds at the beginning of the
vector shp an element constituting the predecessor of the node observed in the previous step. The
process continues until the source node o is added. So, starting from the destination node v5 and
considering the table in figure 2.17:

1. temp = v5 → shp = (v5)

2. temp = v2 → shp = (v2, v5)

3. temp = o→ shp = (o, v2, v5)

We can conclude, therefore, that the shortest path is

shp = (o, v2, v5)

and that the minimum distance of the destination v5 from the source node o is 3.
The pseudocode of the algorithm up to now explained is provided below.
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Pseudocode: Dijkstra’s algorithm

Algorithm 1 Dijkstra
Input: nodesV ector (a vector containing all the nodes of the graph), weighMatrix (weight
matrix of the considered graph), source (source node), destination (destination node)
Output: shortestPath (list representing the shortest path from the source node to the
destination node)

1: shortestPath← NULL
2: tempNode← destination
3: for all vertex v in nodesV ector do
4: dist[v] ← infinite
5: prev[v] ← undefined
6: end for
7: dist[source] ← 0
8: while nodesV ector is not empty do
9: u← vertex in nodesV ector with minimum dist[u]

10: remove u from nodesV ector
11: for all neighbour v of u do
12: tempDist← dist[v] +weight(u, v)
13: if tempDist < dist[v] then
14: dist[v] ← tempDist
15: prev[v] ← u
16: end if
17: end for
18: end while
19: while tempNode ≠ source do
20: shortestPath.add(tempNode)
21: tempNode← prev[tempNode]
22: end while
23: return shortestPath, dist[destination]

Further details, such as the proof of correctness of the algorithm, can be found in dedicated
scientific documents and publications.
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2.3.2 Yen’s algorithm
Based on what was written in the previous section, a more complex problem is now defined, related
to the search for the K shortest paths, KSP, in a given network. KSP are algorithms mainly used
in the field of communications, research operations, computer and transportation science.

As explained above, the problem of finding the shortest path in a graph arises from the objective
of finding a minimum path between two nodes called respectively source and destination. However,
there could be eventualities such as, for example, route interruption or damage: it is, therefore,
necessary to search for an alternative path that links the source and destination, through paths
that are as short as possible between those allowed.

In this section, we will focus on finding the K shortest paths in a network without loops. The
Yen’s algorithm [5] seems to be a good choice when compared with other algorithms solving the
KSP problem. As reported in the paper by Yen [5], in fact, the computational upper bound of this
algorithm increases linearly with the value of K.

Below are some preliminary definitions and considerations useful for explaining the Yen’s algo-
rithm.

Definitions and basic considerations

Recalling the concepts of path and distance already discussed in the previous sections (sections
2.2.1 and 2.3.1 respectively), the following definitions are provided.

Let G be a network, or graph, consisting of n nodes. Let

• di,j ≤ 0 or di,j > 0, ij, be the distance between two adjacent nodes, i, j ∈ G. Note that,
trivially, if the edge doesn’t exist, the distance is considered equal to infinity;

• Ak = (1k,2k,3k, ...,Qkk,N) be the k-th shortest path connecting its node at the first position
to its destination node (at the last position N). So 1k,2k, ...,Qkk are respectively the node in
position 1,2, ...,Qk of the k-th shortest path. Note also that k = 1,2, ...,K;

• Aki , i = 1,2, ...,Qk be a set of deviations from path Ak−1 at node i. Practically, a deviation is
accomplished by searching for the shortest path that coincides with Ak−1 from the first node
to the i-th node of the path and then deviates to a node different from any of the (i + 1)st
nodes in Aj , considering j = 1,2, .., k − 1, that have the same sequence of nodes, from the
first position (source node) to the i-th one as does Ak−1. The deviation must, therefore, lead
to the destination d via the shortest path which must not pass through any nodes already
included in the first part of the path;

• Rki be the root of Aki : it is the subpath consisting of the sequence of nodes that Aki and Ak−1

have in common, i.e. from the source node to the i-th node;

• Ski be the spur of Aki : it is the subpath coinciding with the last part of Aki , from the i-th
node to the last one (i.e. the destination).

Moreover, in this dissertation, we will assume to consider a non − negative − distance and
loopless network.

Description of the algorithm

We assume to work with two different containers, or Lists, of paths, A and B. In the container A,
we hold the K shortest paths from the source o to the destination d, whereas the List B represents
the set of possible candidates from which we can choose, to find Ak.
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For greater clarity, the description of the algorithm is divided into two parts: the first one
related to the first iteration, so for k = 1, the second one related to the generic k-th iteration [5].

Iteration 1
Starting from k = 1, we find Ak = A1. Note that any efficient shortest path algorithm can

be used to solve this first step: in this case, we use the aforementioned Dijkstra’s algorithm (See
section 2.3.1). Using the Dijkstra’s algorithm, and remembering that we consider a no negative
loops network, we should get at least a shortest path. If the Dijkstra’s algorithm returns some
shortest paths greater than or equal to K, we are done because the Yen solution coincides with the
K paths just obtained. In this case, the execution stops and the resulting A1 is stored in List A.
Otherwise, if the Dijkstra algorithm produces a number of paths less than K and greater than 0,
we assign any arbitrary one of these paths to be A1. Then it can be stored in A, while the rest of
the resulting paths can be hold in List B. So the execution continues, until set A is full (Capacity
of B equal to K paths).

Iteration k = 2,3, ...,K
The computation of Ak is strongly dependent on A1,A2, ...,Ak−1, calculated during the previous

iterations. It is, in turn, divisible into two steps, the first one consists in determining all the
deviations Aki , the second one in choosing the shortest path which will become Ak.

Process I. For each i = 1,2, ...,Qk−1:

(a) we identify the root Rki : it is the subpath in Ak−1 whose nodes in sequence coincide
with the sequence of nodes of length i in Aj , j = 1,2, ..., k − 1. So we set the distance
di,i+1 = ∞: it represent the cost of the edge between the i-th node and the (i + 1)-th
node of Aj (j = 1,2, ..., k − 1). This setting coincides with the actual removal of the
edge in question and is valid only during the k-th iteration. Once the k-th iteration is
finished, the modified distance assumes its initial value.

(b) we use a shortest path algorithm (in our case Dijkstra’s algorithm 2.3.1) to obtain the
shortest path from the i-th node to destination d, avoiding to pass through the node
already contained in the path. In other, we find the spur path of Aki previously defined,
Ski . We can, in addition, define i as the spur node.

(c) we add the path Aki , resulting by joining the two set Rki and Ski , to List B.

Process II. We have to select, among the possible paths in List B, the one(s) with minimum length, in
order to denote it (or them) as Ak. So we move it (or them) from B to A. If set A reaches
its maximum capacity of K paths, execution ends, otherwise it is necessary to reset the cost
of the edge removed during the considered k-th iteration and increase the value of k by one,
starting again from the process I.

To provide a more practical explanation, an example is proposed.
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Example 2.3.1. Let G be a loopless network with non-negative edge cost, as shown in Fig. 2.18.
For simplicity, we will consider a 2-SP problem, i.e. in which we have to find the two shortest
paths that connect the source o to the destination node d in G.

Figure 2.18. Loopless graph with no negative edges cost, used to explain Yen’s algorithm
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Starting from k = 1, let determine A1 (See Fig. 2.19), by using the Dijkstra’s algorithm:

A1 = (v0, v3, v2, v5)

Figure 2.19. Nodes and edges that make up path A1 are shown in red

v0

o

v1 v2

v3 v4 v5
d

e0, 3 e1, 4

e2, 2
e3, 1

e4, 2

e5, 3

e6, 2

e7, 2

e8, 1

and the cost of the path is 5.
The obtained path is moved in the A set, so that:

A.push_back((v0, v3, v2, v5))

At this point, we increase the value of k, so that k = 2 (equivalent to the upper limit K): the
sought set is A2. For each i = 1,2, ...,Qk−1, the algorithm follow the three steps previously written,
i.e. computing the root path Rki , the spur path Ski , and the resulting final path Ak. Note also
that, in this case, Qk−1 = 3.

For i =1: • The subpath, consisting of the first node (i = 1) of Ak−1 = A1, coincides with the subpath
composed by the first node of Aj (j = 1, ...,1), that is:

v0 ≡ v0
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Note that this first step makes more sense if K > 2. In that case, we can compare the
first i node of Ak−1 with the first i node of Aj , taking into account that

1 ≤ j ≤ k <K

So we remove the edge between the i-th node and the (i + 1)-th node of A1, i.e. e2: it
also means that the distance dv0,v3 between the two nodes just mentioned is set equal
to infinity (See Fig. 2.20).

Figure 2.20. Loopless graph with no negative edges cost, used to explain Yen’s algorithm
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Moreover we state that the root path Rki is R2
1 = {v0}.

• We compute the spur path S2
1 by using the Dijkstra’s algorithm to find the shortest

path from the 1-st node (i = 1) to the destination v5. So we obtain:

S2
1 = (v0, v1, v2, v5)

• The last step joins the two founded sets, R2
1 and S2

1 , obtaining A2
1 (See Fig. 2.21), that

is:

A2
1 = R2

1 + S2
1 = (v0, v1, v2, v5)

Its cost is 8.

Figure 2.21. Nodes and edges that make up path A2
1 are shown in pink
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So the obtained path A2
1 is added to List B:
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B.push_back((v0, v1, v2, v5))

Note also that the cost of the edge e2 is reset to its initial value 2.

For i =2: The same steps are followed.

• The first two nodes (i = 2) of A1 coincides with the first two nodes of Aj (j = 1, ...,1).
In fact,

{v0, v3} ≡ {v0, v3}
So the edge e4 is removed, i.e. the distance dv3,v2 is set to infinity (See Fig. 2.22) .

Figure 2.22. Removing the e4 edge from the network
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Moreover the root path will be:

R2
2 = (v0, v3)

• By using the Dijkstra algorithm, the spur path is

S2
2 = (v3, v4, v5)

• In the last step we joins the two founded sets, R2
2 and S2

2 , obtaining A2
2 (shown in green

in Fig. 2.23), that is:

A2
2 = R2

2 + S2
2 = (v0, v3, v4, v5)

Its cost is 7.

The obtained path A2
2 is added to List B:

B.push_back((v0, v3, v4, v5))

The cost of the removed edge e4 is reset to its initial value 2.

For i =3: • The first three nodes (i = 3) of A1 coincides with the first three nodes of Aj (j = 1, ...,1).
So the edge e8 is removed, i.e. the distance dv2,v5 is set to infinity (See Fig.2.24).
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Figure 2.23. Nodes and edges that make up path A2
2 are shown in green
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Figure 2.24. Removing the e8 edge from the network
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Moreover the root path will be

R2
3 = (v0, v3, v2)

• By using the Dijkstra algorithm, the spur path is

S2
3 = (v2, v4, v5)

• In the last step we joins the two founded sets, R2
3 and S2

3 , obtaining A2
3 (shown in Fig.

2.25), that is:

A2
3 = R2

3 + S2
3 = (v0, v3, v2, v4, v5)

Its cost is 8.
The obtained path A2

3 is added to List B:

B.push_back((v0, v3, v2, v4, v5))

The cost of the removed edge e8 is reset to its initial value 1.
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Figure 2.25. Nodes and edges that make up path A2
3 are shown in blue
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Then, among the three obtained paths,A2
1,A

2
2,A

2
3, stored in B, we choose the one with the

lowest cost and move it to A. So, given B:

B: (v0, v1, v2, v5) A2
1 cost 8

(v0, v3, v4, v5) A2
2 cost 7

(v0, v3, v2, v4, v5) A2
3 cost 8

we choose the path A2
2, due to its minimum cost of 7, moving it from B to A. So we obtain:

A: (v0, v3, v2, v5) cost 5

(v0, v3, v4, v5) cost 7

and it is the solution of the proposed problem.

The pseudocode of the Yen algorithm is reported and discussed below.
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Pseudocode: Yen’s algorithm

Algorithm 2 Yen
Input: nodesV ector (vector of nodes in the given graph), weightMatrix (weight matrix of
the considered graph), source (source node), destination (destination node), K (number of
shortest paths we are looking for)
Output: A (container of the K shortest paths from the source node to the destination node)

1: A[0] ←Dijkstra(nodesV ector,weightMatrix, source, destination) //See function 1
2: B ← [] //Set of possible candidates
3: for k from 1 to K do
4: for i from 0 to size(A[k − 1]) − 2 do
5: spurNode = A[k − 1].node(i)
6: rootPath = A[k − 1].nodes(0, i) //nodes of A[k − 1] from 0 to i
7: for all path p in A do
8: if rootPath equal to p.nodes(0, i) then
9: remove p.edge(i, i + 1) from weightMatrix

10: end if
11: end for
12: for all node rootPathNode in rootPath except spurNode do
13: remove rootPathNode from nodesV ector
14: end for
15: spurPath =Dijkstra(nodesV ector,weightMatrix, spurNode, destination)
16: totalPath = rootPath + spurPath
17: B.append(totalPath)
18: restore nodes in rootPath to nodesV ector
19: restore edges to weightMatrix
20: end for
21: if B is empty //If there are no spurPath then
22: break
23: end if
24: B.sort() //Sort the potential k-shortest paths by cost
25: A[k] = B[0]
26: B.pop()
27: end for
28: return A

29



2 – Literature Review

30



Chapter 3

Goal Recognition

3.1 Introduction
In this chapter, we provide some concept concerning Goal Recognition (GR) and Goal Recognition
Design(GRD), starting from a brief overview on Plan Recognition, of which the GR is a sub-
problem, and Classical Planning techniques.

3.2 Plan Recognition
Plan recognition (PR) fits into different contexts and applications related, for example, to multi-
agent systems, assisted cognition, natural language ([6], [7], [8]). It is necessary to distinguish
planning and Plan Recognition. In fact, in a typical planning problem, the goals are known: the
problem involves the planning of a strategy useful for achieving the final goals. Differently, in
Plan Recognition, part of the plan is provided: the task of the PR is to identify the goals and the
complete plan. Plan Recognition tries to predict the goal of an agent, based on the observations
of its behavior and actions.

Still object of study and research, Plan Recognition can be treated by exploiting techniques
based on classic planning algorithms, as suggested by modern papers (Ramirez and Geffner 2009
[9]): recent planning algorithms are used to recognize set G∗ of goals G that, given a domain theory,
comply a series of observations. A goal G belongs to set G∗ if exists an action sequence π that
constitutes an optimal plan for both the goal G and the goal G extended with additional goals
representing the observations (Ramirez and Geffner, 2009 [9]). The calculation of set G∗ is based
on the use of modified versions of optimal and suboptimal planning algorithms, as well as on the
polynomial heuristics. Using these tools, it is possible to state that the set G∗ can be calculated
exactly or approximately, obtaining good but slightly different performances concerning speed
and efficiency [9].

We first present a basic planning background, in order to better understand how a PR problem
can fit into a similar context. A Strips planning problem is a tuple

P = ⟨F, I,A,G⟩

where F is a defined as set fluents, I ⊆ F and G ⊆ F are the initial and goal situations, A is the set
of actions a, s.t. Pre(a),Add(a),Del(a) are preconditions, add and delete operations respectively.
All of these elements are subsets of F [9]. For each a ∈ A, it is possible to associate a cost whose
value, for assumption, is non-negative: so, for a plan π = a1, a2, ..., an, it is therefore worth that

c(π) = ∑ c(ai), i = 1, ..., n
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If the cost is the minimum, π is defined as optimal plan [9]. Note that, if we assume that each
action has a unit cost, the optimal plans coincide with the shortest ones.

The concept of cost of a plan is closely related to the probability that a given agent follows that
plan: the higher the cost of the plan, the less, of course, the probability that the agent chooses it.
In order to find a plan that is as probable as possible, the planning looks for a strategy to calculate
a set of optimal paths, using algorithms based on heuristic search, for example. Note that this
calculation is very hard and expensive. In particular, the research aims to find a heuristic h(s)
such that

h(s) ≤ h∗(s)

with h∗(s) the optimal cost from s [9]. In order to make this research less hard, planning techniques
can instead search for suboptimal plans, using suboptimal planners: these planners return good
results and scale up much better than optimal planners [9].

As previously written, the new Plan Recognition approaches base their problems over a domain
theory: they replace the set of plans for a specific goal G in a library by the set of optimal plans
for G given the domain P . It is possible to represent the planning domain P = ⟨F, I,O⟩: it is a
planning problem without a goal [9]. A planning problem is, in fact, defined as P [G]: it is the
concatenation of planning domain and goal G. To solve a typical planning problem, it is possible
to use existing planning tools: the planners are invoked not on the problem P [G] that does not
take into account of the observations. They use, instead, a modified, transformed version of the
problem: the solution will be a set of plans for P [G] that satisfy the observations [9]. In particular,
given a plan recognition problem T = ⟨P,G,O⟩, where P = ⟨F, I,A⟩ is a planning domain, G is the
set of possible goals G∪F and O = o1, ..., om is a sequence of observations (each oi begin an action
in A), we transform it into a different planning recognition problem T ′ = ⟨P ′,G′,O′⟩. Note that
the sequence of transformed observations is an empty set. By using this transformed version of
the problem, we can read off from the solution G∗T ′ for T ′ the sought set G∗T (solution with respect
to T ). The transformation from T to T ′, according to (Ramirez and Geffner, 2009), is such that

• P ′ = ⟨F ′, I ′,A′⟩: F ′ = F ∪ Fo, I ′ = I, A′ = A ∪Ao, Fo = {pa∣a ∈ O$, Ao = {oa∣a ∈ O}.

• G′ is constituted by goals G′ = G ∪Go such that G ∈ G.

• O′ is empty.

Note that the oa actions in P ′ have the same precondition, add and delete settings as the action
a in P , being a the first observation in O. The only difference is the presence of the new fluents
pa and pb, being b the action that immediately precedes a in O. They are added to Add(oa) and
Pre(oa) respectively.

So, by using this transformed planning recognition problem T ′, we obtain additional fluents
pa ∈ Fo, additional actions oa ∈ Ao and additional goals pa ∈ Go [9]. In particular, this extra goals
can only be achieved by the additional actions oa: they can be applied only after all the actions
in O preceding a have been considered (think of precondition pb in Pre(oa)). So the result is a
correspondence between the plan P ′ and the plan P satisfying the observations O. Specifically,
given a plan π = a1, ..., am, it is a plan for G in P that satisfies the observations O = o1, ..., om if
and only if π′ = b1, ..., bn is a plan for G′ in P ′ with bi = oai , if exist a function f such that i = f(j)
and j ∈ [1,m], otherwise bi = ai [9]. So, to find an optimal plan π that satisfies the observations, it
is necessary to find an optimal plan π′ in P ′, such that it achieves two goals, G and G′ = G ∪Go.
Moreover, defining c∗P ′(G) as the optimal cost of achieving G in P ′, it is possible to state that the
goal G belongs to optimal set G∗T iff c∗P ′(G) = c∗P ′(G′) [9]. This means that in the transformed
problem, the extra goals replacing the observations have no extra cost.

Some exact and approximate algorithms to compute the set of optimal goal G∗ are proposed
(Ramirez and Geffner, 2009 [9]). The empirical evaluation shows that the approximate methods
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are faster than optimal ones. Obviously, the optimal algorithms make no error at all, as they are
used to compute the optimal goal exactly. The suboptimal and heuristic ones, instead, work well
with some domains, a little worse with others. Anyway, it is possible to state that the approximate
method are good enough for larger problems [9]. A critical aspect of this model is that it does not
weight the possible goals and it just filter them.

The concept of weight associated with the possible hypotheses (goals) was introduced by a
more recent paper [10]: the approach assigns a weight ∆(G) to each possible goal G equal to the
difference between the cost c∗P ′(G′) of solving the goals G′ = G ∪Go (goals of the transformed set
P ′) and the cost c∗P ′(G) of solving the goals G alone. The greater difference means less probability
that goal G is achieved by satisfying observations: ∆(G) is, in fact, a measure of how far the agent
has to move away from the best plans to reach G, in order to comply with the observations. So,
such weight is used to express the probability distribution over the goals, given the observations
[9].

The preliminary concepts used so far in Ramirez and Geffner’s discussion (2009) [9], are still
valid for the new one: however, the transformation method used to map the domain P into a new
domain P ′ differs slightly. P ′ = ⟨F ′, I ′,A′⟩ is a new domain such that:

• F ′ = F ∪ {pa∣a ∈ O}

• I ′ = I

• A′ = A

The new transformation does not add new actions. This new approach is based on considering the
plans for goal G that satisfy and do not satisfy the observation sequence O (G +O and G + Ō).

The same considerations as before are taken into consideration: in particular

• π is a plan for P [G] that satisfies the observations O iff π is a plan for P ′[G +O].

• π is a plan for P [G] that does not satisfy the observations O iff π is a plan for P ′[G + Ō].

Moreover, assuming that c(G), c(G,O), c(G, Ō) are the optimal cost of the planning problems
P ′[G], P ′[G +O], P ′[G + Ō] respectively, if we applied the old approach, according to which the
goals selected G are the most likely (∆(G) = 0), we should select the goals G ∈ G for which
c(G) = c(G,O) holds [10]. The new approach focuses, instead, on cost difference c(G,O)−c(G, Ō):
this implies a probability distribution over the goals and not just a partition [10].

Under these assumptions, it is possible to define probabilistic distribution. A probabilistic
plan recognition problem is a tuple T = ⟨P,G,O,Prob⟩ [10]: all this elements have been discussed
previously; the just introduced Prob element represents a probability distribution over G.

By using the Bayes Rule and some information about goal priors, it is possible to compute the
posterior probabilities P (G∣O)

P (G∣O) = αP (O∣G)P (G)

where α is a normalizing constant, P (G) is Prob(G), P (O∣G) represents the probability of observ-
ing O when the goal is G. It is possible to shows and verify that the most likely goals G are the
ones that minimize the difference cost proposed above (c(G,O) − c(G, Ō)) [10].

Through experimental evaluations in [10], it is possible to state that the just presented approach
to Plan Recognition leads to good and flexible solutions. Moreover, in this new formulation, the
agents do not assume as perfectly rational agents, so they can follow the plan with no minimum
cost. This is certainly a more realistic scenario than the previous one in [9].

The two approaches to Plan Recognition ([9] and [10]) are defined as generative. Obviously,
there are other types of non-generative approaches based on the use of libraries of plans or policies.
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From a computational point of view, instead, a type of approach based on Bayesian Dynamic Net-
works is spreading. In these approximate algorithms are used (Rao-Blackwellised particle filtering
is an example). The advantage is that these techniques manage and handle stochastic actions and
sensors, and incomplete information. On the other hand, the applicability of such techniques in
applications where the planning horizon is large is still unclear.

3.3 Goal Recognition and Goal Recognition Design
As written below, Goal Recognition (GR) is a sub-problem of Plan Recognition: the objective of
GR is to find out what goal the agent is trying to pursue by observing his actions collected online.
The main difference is that, unlike the PR, the Goal recognition only looks for the terminal goal,
while the plan used to achieve this is somewhat irrelevant.

Goal Recognition Design (GRD) is a different task: it offers an offline evaluation of the action
field of an agent, providing a solution that does not include a specification on observations. It
provides solutions for assessing and decreasing the number of observations needed to recognize the
goal of any optimal agent. Moreover, GRD is relevant in any application where goal recognition
needs to be performed quickly.

From a more practical point of view, the task of GRD is to study how the actions of an intelligent
agent moving in a certain environment reveal its final goal. Therefore GRD tries to modify the
environment so that the agent reveals its goals as soon as possible or as late as possible, depending
on the application and without distorting the environment. In this way, by controlling the model
design, GRD facilitates (or hinders) Goal Recognition.

Recent contributions to the GRD have been made: a new measure has been introduced, the
worst case distinctiveness (wcd), that assesses the Goal Recognition Design models [11]. This
new measure represents the "maximal length of a prefix of an optimal path an agent may take
within a system before it becomes clear at which goal it is aiming" [11].

The GRD problem can be solved by using tools and methods belonging to the automated
planning field: in particular, two methods, based on planning tools, are useful to calculate the
wcd and are presented in Keren et al. discussion (2014) [11]. Recalling the concepts of planing
theory presented above, we affirm that the goal is to find a plan π whose sequence of actions brings
an agent from an initial state to a state that satisfies the goal. The cost of the plan, as before,
corresponds to the sum of the costs of the individual actions of the plan. For simplicity, it is often
assumed that the cost of each action is unitary.

By starting to three assumptions on which the considered model is based, we can formulate
the problem of GRD. The three assumptions we have to take into account are that the agents
act optimally in the system, the results of the actions are deterministic and the model is fully
observable to the system and agents [11].

So, we now explain how to find the wcd index. Before to present the methods, it is necessary
to define some concepts.

In particular, given a problem D = ⟨P,G⟩, we define a plan π as a non-distinctive path in D iff
∃G′,G′′ ∈ G such that the two goals are different and ∃π′ ∈ ∏∗(G′) and π′′ ∈ ∏∗(G′′) such that π
is a prefix of π′ and π′′. Notice that ∏∗(G) is the set of optimal paths to goal G [11].

So using the above definition, we can define the wcd of a model D as

wcd(D) = max
π∈∏D
∣π∣ (3.1)

where ∏D = {π∣π is a non-distinctive path of D} and ∣π∣ is the length of a path π [11].
It is possible to affirm that given an initial state, any optimal agent elaborates its starting

movement strategy by following a non-distinctive path and ends it with a distinctive path that
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leads to its goal [11]: it is evident the correspondence between goal recognition problem defined
by a model D = ⟨P,G and plan recognition problem presented in section 3.2 ([9]) whose objective
is to add in D the set of observations O.

Going back to the calculation of the wcd index, two ways have been analyzed; the first one
consist on exploring the state space using a modified version of BFS tree search, the second one is
called latest-split [11].

BFS search base its strategy on pruning the nodes that represent distinctive paths. Practically,
if the analysed node does not represent a distinctive path, it is added to a queue (the items in the
queue represent nodes that still need to be explored), otherwise, it is marked as solved and it is
not expanded. When the queue is empty, the search stops. The wcd value will be the length of the
sub-paths expanded during the last iteration of the execution. Concerning the traditional version,
this method uses pruning in order to avoid the expansion of useless states. On the other hand,
using the planing techniques for each node in order to understand if it is necessary to expand it or
not can be expensive from an efficiency point of view. So limits are set on the model’s wcd.

The second method used is the latest − split method: it performs a single search for each pair
of goals. This allows compiling the original GRD problem into a classical planning problem. In
particular, each problem P is solved by using classical planning tools that produce the optimal plan
in with each agent i has to achieve its goal Gi. The method looks for the maximal non-distinctive
path that two or more agents, aiming at different goals, may share. The splitting action has no
additional cost. The resulting wcd of the model is the length of the action sequence until the
splitting action occurs [11].

To modify the design of the model, it is possible, for example, to reduce reduce the wcd index.
Practically, we can modify wcd only by removing paths from the optimal set of paths, so by
removing possible actions from the model [11].

Two methods can be used to reduce wcd: they are the exhaustive − reduce method and the
pruned − reduce method. Both are based on the idea that the only actions that can be removed
from the original set are those that appear in optimal plans to the goals. Moreover, it has been
demonstrated that, by removing the actions, it is possible to reduce the value of wcd according to
the methods mentioned, without increasing the value of the optimal cost of the plan to any goals.

What has been written so far is an example of how Goal Recognition Design can act on Goal
Recognition, facilitating or hindering it. There are a lot of applications in which the task is to
hinder the GR, for example when you want to preserve user privacy. Assuming, for example, the
problem of searching for an agent that moves in an environment, according to its intentions. It is
the particular case in which a moving agent, called target, is uncooperative with another agent,
called observer, i.e. it chooses efficient paths, trying to keep hidden its final destination.

On the contrary, in other applications we want to facilitate Goal Recognition, i.e. in all situa-
tions in which an agent interacts with a human user (think of a robot that works with a human
operator, or a chatbox that interacts with a user), etc. In this case, it is necessary to use different
approaches.

Based on the studies on GR and GRD, this thesis takes into account the first scenario, so
we have two agents, a fleeing target and an observer. In this context, the observer runs Goal
Recognition algorithms that aim to discover where the target is going. In particular, the observer
needs to reason about the target’s possible strategies. To support this kind of reasoning, we
proposed a new measure, the "undisclosing index", which represents the maximum length of the
path that a fleeing agent may take before its goal becomes apparent to the observer. Further
details are presented in the next chapter.
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Chapter 4

Statement of the problem

4.1 Introduction
In this section, we propose a concrete instance of a goal recognition problem formulated as a precise
mathematical optimization problem.

We analyze an evasive or fleeing target that moves in the environment to reach its destination,
while the observer tries to find it. An example of this scenario is a surveillance drone that flies over
a wide geographical area to discover a criminal who is trying to reach a hideout by car as soon
as possible. In this context, the observer runs Goal Recognition algorithms that aim to discover
where the target is going. In particular, the observer needs to reason about the target’s strategy
to obscure its goals. To support this kind of reasoning, we propose a technique to calculate a new
measure, the undisclosing index, that represents the maximal length of the prefix of a path that
a fleeing agent may take before its goal becomes apparent to the observer. Moreover, we present
methods for the observer to reason about how the target might change its behaviour based on the
resources that it has available: the target will take shorter or longer paths based on his total travel
budget. In this sense, a way to maximize the undisclosing index is described, using an algorithm
based on the well-known Dijkstra and Yen’s algorithms.

Note also that we modelled the environment in which the agents move by using a connected
graph.

4.2 Abstract formulation of goal recognition
In this section, we provide a first mathematical representation of the environment in which each
agent moves.

In particular, to represent the topology of the system, we build a directed graph G represented
by the triple (V,E ,IG). We are given an initial node o ∈ V and a set of destinations nodes D ⊆ V.
Consider now a set P of paths on G from o to the various destination nodes. We say that P is
(o,D)-connecting if for every d ∈ D there is at least one path in P connecting o to d.

We consider the map δ ∶ P → D such that δ(γ) is the destination node of γ. For every node
d ∈ D, let P(d) = δ−1(d) be the subset of paths in P connecting o to d. We denote by Pk the set
of prefixes of length k of all the paths in P . If γ ∈ P , the prefix of γ of length k is denoted by γk

Definition 3. Given a path γ ∈ P and a positive integer t, we say that γ is t-undisclosing D if
there exists γ′ ∈ P such that

• γt = γ′t

37



4 – Statement of the problem

• δ(γ) ≠ δ(γ′)

The definition just presented is useful to introduce the key concept of our research, that is the
undisclosing index.

Definition 4. We define the following indices:

• The undisclosing index of γ is the maximum t for which γ is t-undisclosing D and is denoted
by tγ,P

• The undisclosing index of d ∈ D is

td,P = min
γ∈P(d)

tγ,P (4.1)

• The undisclosing index of D is
tP =min

γ∈P
tγ,P (4.2)

Remark 5. We notice that tγ,P is monotone with respect to P . Namely, if P1 ⊆ P2 are two
(o,D)-connecting set of paths, then

tγ,P1 ≤ tγ,P2 (4.3)

However, tP does not exhibit any type of monotonicity. Increasing P the undisclosing index
could increase but also decrease as it is shown in the following example (Fig. 4.1):

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Figure 4.1. .

From the origin (0,0), two possible paths branch out, one for each destination d ∈ D. Using
the definitions given above and considering the simple case analyzed, it is trivial to infer that
tP is equal to 5. In fact, it is evident that for a number of steps greater than 5, the final
destination is revealed.
Now we can imagine adding a further path to the set P (Fig. 4.2):
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Figure 4.2. .

In this second case, it is clear that the minimum index for which the final destination remains
unrevealed is 3, i.e. tP = 3. For this reason, it is possible to state that the function t does
not show any type of monotonicity.

The following simple fact holds true:

Proposition 6. Let P1,P2 be two (o,D)-connecting set of paths. Then,

tP1∪P2 ≥min{tP1 , tP2} (4.4)

Proof : We prove the proposition using the previously reported definition 4 of undisclosing
index of D , with D a set of destinations nodes in V:

tP1∪P2 ≜ min
γ∈P1∪P2

tγ,P1∪P2 =min {min
γ∈P1

tγ,P1∪P2 ,min
γ∈P2

tγ,P1∪P2} (4.5)

It is possible to note that, by joining the two sets of paths P1 and P2, the obtaining undis-
closing index can only increase, ie:

min
γ∈P1

tγ,P1∪P2 ≥ min
γ∈P1

tγ,P1 (4.6)

and
min
γ∈P2

tγ,P1∪P2 ≥ min
γ∈P2

tγ,P2 (4.7)

Therefore, using the inequalities just obtained, we derive the following formulation:

min {min
γ∈P1

tγ,P1∪P2 ,min
γ∈P2

tγ,P1∪P2} ≥min {min
γ∈P1

tγ,P1 ,min
γ∈P2

tγ,P2} (4.8)
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Furthermore, recalling the nomenclature already used previously

min
γ∈P1

tγ,P1 = tP1 (4.9)

min
γ∈P2

tγ,P2 = tP2 (4.10)

it is trivial to state the above proposition, namely:

tP1∪P2 ≥min {tP1 , tP2} (4.11)

4.3 Optimization of the undisclosing index
In this section we try to modify the model of the environment in which the agents move, trying
to maximize the probability that the target has to escape. In fact, it tries to keep its destination
hidden as long as possible, making some deviations from the shortest path. The objective of this
section is, therefore, to calculate a set of optimal paths, in which, in addition to the shorter paths,
possible deviations are also inserted, taking into account, however, the limited budget of the fleeing
agent.

Suppose the graph G has no parallel edges and is weighted, namely we have a weight matrix
W ∈ RV×V+ : if i, j are two adjacent nodes in V, Wij is the weight of the edge connecting the two
nodes i, j: it denotes a Euclidean distance. Starting fromW , we choose to use an array of adjacency
lists1 to store the relationships between nodes. Assuming to analyze a sparse graph with millions
of nodes, representation through adjacency lists can be considered an efficient choice in terms of
storage.

To each path γ = (v1, v2, . . . , vk) we can associate the global weight: ∣γ∣ = ∑k−1
i=1 Wvi,vi+1 . As

previously written, we can imagine a moving target that needs to reach any of the destinations
in D starting from o and wants to maintain its destination un-revealed as long as possible at the
price of possibly deviating from the shortest path.

Given o and d ∈ D, we define λ(o, d) as the geodesic distance from these two nodes, namely the
shortest weight of any path from o to d. So we consider the set of shortest paths from o to the
various destinations

Popt = {γ path from o tod, ∣ ∣γ∣ = λ(o, d)} (4.12)

The goal is, as already specified, to expand the set of optimal path, in order to simplify the
escape of the target. It will, therefore, be able to choose between a wider range of escape routes,
taking into account its limited resources, indicated using an index r. Below is a more rigorous
formulation of what has just been said.

Pr−opt = {γ path from o tod, ∣ ∣γ∣ ≤ rλ(o, d)} (4.13)

where r ≥ 1 and Pr−opt is a suboptimal families of paths.
In this section, two specific optimisation problems are of interest. In the first problem, we fix

a budget r̄ and we compute the maximum undisclosing index achievable within that budget, while
in the second problem we fix a desired undisclosing index t̄ and we compute the minimum budget
needed to achieve such performance.

1See the section on Graph theory 2.2

40



4.3 – Optimization of the undisclosing index

Note that only the first problem will be treated and analyzed in this discussion, considered the
cornerstone of much other research work related to the Goal Recognition Design.

4.3.1 Maximum undisclosing index achievable within a set of paths
We first formulate the optimisation problem in a slightly more general form than that proposed
above. Precisely, we are given a set of paths P̄ that is (o −D)-connecting and we define:

TP̄ ∶=max{tP ∣ P ⊆ P̄ (o,D) − connecting} (4.14)

In general, the maximum in (4.14) is not unique. If P1,P2 ⊆ P̄ are two set of paths (o,D)-
connecting and achieving the maximum above, then P1 ∪ P2 is also (o,D)-connecting and, by
Proposition 6:

tP1∪P2 ≥min{tP1 , tP2} = TP̄ (4.15)

Hence, tP1∪P2 = TP̄ that means that also using P1 ∪ P2 we achieve the maximum in (4.14). A
straightforward consequence of this fact is that among the maxima, there exists a largest set of
paths achieving the maximum: it will be denoted P∗. Note that P∗ represents the set of possible
paths the target can choose. Expanding this set means increasing the set of available actions the
target can perform: this makes its movement more difficult to predict.

In order to pursue the goals set in this section, we apply the ideas presented so far, starting
from P̄ = Pr−opt. Coherently, we use the notation Pr−opt

∗ to denote the largest subset of Pr−opt

maximizing the undisclosed index and we define T (r̄) = TPr−opt that is the maximum undisclosing
index obtainable with the budget r̄.

Below, we present an algorithm that computes Pr−opt
∗ and T (r̄). The algorithm starts its search

by considering the entire network of nodes. Therefore, algorithms for finding the shortest path
are applied to the whole graph. Once the optimal set of paths has been obtained, the model is
modified by removing optimal paths that are not considered relevant in order to maximize the
undisclosing indexing of the model. In other words, the largest sub-set of optimal paths is created,
whose undisclosing index is at least equal to the maximum undisclosing index of the obtained
subset.

We, therefore, proceed with a clearer explanation of the algorithm in question. This is composed
of two parts:

(1) Given the graph G representing the analysed environment, the weight matrixW , the starting
node (the source) o and the set of destinations D, we compute the sets Popt and Pr−opt.
The set Popt of shortest paths from o to the various destinations are easily obtained using
the Dijkstra’s algorithm 2.
The suboptimal families of paths, Pr−opt, given a specific maximum budget r̄, are returned
by the implementation of the Yen’s algorithm 3. It is a generalization of the shortest path
routing problem in a given network, also called K-shortest path problem: it provides not
only the shortest path k but also the next k1 shortest paths (which may be longer than the
first shortest path). Essentially, the Yen’s algorithm finds the k shortest paths by extending
the Dijkstra algorithm.
Both algorithms are widely used to solve route planning problems in a network.

2See the section on Dijkstra’s algorithm 2.3.1
3See the section on Yen’s algorithm 2.3.2
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(2) Given any P̄ , that is (o−D)-connecting and was obtained from the previous step (P̄ = Pr−opt),
we compute P̄∗ and TP̄ .
The implemented algorithm is an iterative one, therefore, using an index k, we define a
generic set of paths Qk−1 as follows:

Qk−1 = {γ ∈ P̄∣tγ,P̄ ≥ k − 1} (4.16)

It is trivial to note that, starting from k = 1:

Q0 ≡ P̄ (4.17)

For each k, the algorithm implements the two following steps:

1. Identify the subset of paths in Qk−1 whose undisclosing index is equal to k − 1, that is

Q′k−1 = {γ ∈ Qk−1∣tγ,P̄ = k − 1} (4.18)

2. Remove from Qk−1 the paths whose undisclosing index is equal to k − 1, so

Qk = Qk−1 ∖Q′k−1 (4.19)

Two cases arise:
(i) If Qk is not (o −D)-connected

max
S⊆Qk−1

S(o−D)conn.

tS = k − 1 (4.20)

In this case, the execution stops. Therefore it is necessary to identify the set of paths
R ⊆ Qk−1 whose removal made the graph not connected. From a mathematical point
of view, the set R at the generic iteration k is

R = {γ ∈ Q′k−1∣Qk(dγ) = ∅} (4.21)

considering dγ the destination node of the generic path γ ∈ Q′k−1.
So we get P r−opt

∗ as follows:
Pr−opt
∗ = Qk ∪R (4.22)

(ii) If Qk is (o −D)-connected
max
S⊆Qk−1

S(o−D)conn.

tS ≥ k (4.23)

and the largest subset inside P̄ that is (o −D) − connected and whose undisclosing
index is at least k is Qk. In this last case, the value of k is increased and the
algorithm is repeated starting from the step 1..

It is essential to describe step 1. in more detail, explaining how to calculate the undisclosing
index tγ,Qk−1 in a more practical way.
In this context, a few additional definitions will be helpful.
Let colk[γ] the kth element of the path γ, with γ contained in the set Qk−1, i.e.

colk[γ] = γ[k],∀γ ∈ Qk−1, k ∈ N (4.24)
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Thus, the column colk is the vector of nodes contained in Qk−1 at the kth position.
Moreover, let Vk(γ) be the prefix of length k of path γ, i.e. the subsets of nodes of the path
γ visited at the kth step.
Taking into consideration the notation just presented, we evaluate the generic cycle k: the
algorithm extrapolates and analyses the corresponding column colk, evaluating node by node
of the aforementioned column.
For each element contained in colk, we look for the colk[γ′] such that:

colk[γ] = colk[γ′] (4.25)

being γ′ any path in Qk−1 connecting o to d′, ∀d′ ∈ D and d′ ≠ d. If there is no γ′ such that
the aforementioned equation is valid, then

tγ,Qk−1 = k − 1 (4.26)

Otherwise, if the (4.25) is valid, it is necessary to verify that

Vk(γ) ≡ Vk(γ′) (4.27)

As written above, the subset Vk(Γ), with Γ a generic path in Qk−1, is the prefix of path Γ
of length k: it is returned by the function calculatePref (See pseudocode of calculatePref
function (1)).
So if the equivalences (4.25) and (4.27) are verified, tγ,Qk−1 will be greater than or equal to
k, so the algorithm proceeds with the analysis of the next element in colk, until the entire
column is analysed.
For greater clarity, the following example is presented, assuming to consider the case for
k = 1:

Input Qk−1 = Q0 ≡ P̄ 0 1 3 8 γ conn. o to d1
(Qk−1 computed in the previous cycle) 0 2 4 5 8

0 2 4 9 γ conn. o to d2
0 7 10 9

0 1 4 6 γ conn. o to d3

Identification of the set Q′k−1 = Q′0:
1. consider the k-th column, colk = col1 0 1 3 8 γ conn. o to d1

0 2 4 5 8

0 2 4 9 γ conn. o to d2
0 7 10 9

0 1 4 6 γ conn. o to d3
2. for each element colk[γ] in colk, look for
the node colk[γ′] such that:
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• colk[γ] = colk[γ′] 0 1 3 8 γ conn. o to d1
0 2 4 5 8

0 2 4 9 γ conn. o to d2
0 7 10 9

0 1 4 6 γ conn. o to d3

• Vk(γ) ≡ Vk(γ′) 0 1 3 8 γ conn. o to d1
∀γ′ connecting o to d′, 0 2 4 5 8
∀d′ ∈ D and d′ ≠ d

0 2 4 9 γ conn. o to d2
0 7 10 9

0 1 4 6 γ conn. o to d3

So Q′k−1 = Q′0 is: 0 7 10 9
(The definition of Q′k−1 was given
previously in (4.18))

Output Q1 = Q0 ∖Q′0 0 1 3 8 γ conn. o to d1
(Qk = Qk−1 ∖Q′k−1) 0 2 4 5 8

0 2 4 9 γ conn. o to d2

0 1 4 6 γ conn. o to d3

Check if the resulting output Qk = Q1
is connected:
→ Q1 is connected: Ô⇒ T

P̄
≥ 1

(Q′k is connected Ô⇒ T
P̄
≥ k)

Repeat all the steps for k = 2 (k = k + 1)

Now we consider the case for k = 2:

Input Qk−1 = Q1 0 1 3 8 γ conn. o to d1
0 2 4 5 8

0 2 4 9 γ conn. o to d2
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0 1 4 6 γ conn. o to d3

Identification of the set Q′k−1 = Q′1:
1. consider the k-th column, colk = col2 0 1 3 8 γ conn. o to d1

0 2 4 5 8

0 2 4 9 γ conn. o to d2

0 1 4 6 γ conn. o to d3
2. for each element colk[γ] in colk, look for
the node colk[γ′] such that:

• colk[γ] = colk[γ′] 0 1 3 8 γ conn. o to d1
0 2 4 5 8

0 2 4 9 γ conn. o to d2

0 1 4 6 γ conn. o to d3

• Vk(γ) ≡ Vk(γ′) 0 1 3 8 γ conn. o to d1
∀γ′ connecting o to d′, 0 2 4 5 8
∀d′ ∈ D and d′ ≠ d

0 2 4 9 γ conn. o to d2

0 1 4 6 γ conn. o to d3

So Q′k−1 = Q′1 is: 0 1 2 8
0 1 4 6

Output Q2 = Q1 ∖Q′1 0 2 4 5 8 γ conn. o to d1

0 2 4 9 γ conn. o to d2

∖ γ conn. o to d3

Check if the resulting output Qk = Q2
is connected:
→ Q2 is not connected: Ô⇒ T

P̄
= 1 (T

P̄
= k − 1)

Stop the execution.
Identify the set R (see section (i)) 0 1 4 6 R
and obtain P̄∗ → P̄∗ = Qk ∪R = Q2 ∪R

0 2 4 5 8
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0 2 4 9 P̄∗
0 1 4 6

If execution is not interrupted, the algorithm iterates k up to a maximum value kmax, limited
by the number of vertices V in G.
In particular

kmax = V − 3 (4.28)

This formulation is due to the following: the best case, which is represented in the figure 4.3
and which coincides with the maximisation of TP̄ , consists of a graph in which there are only
two destinations and that branches off only at the end.

0
o

1 2

3
d2

4
d1

Figure 4.3. .

In the simple considered case
kmax = V − 3 = 5 − 3 = 2 (4.29)
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Pseudocode

The following is the pseudocode of the implemented algorithm. It consists of three functions:

(1) calculatePref (Alg. (1)): given a destination d ∈ D, and the initial set of optimal
paths, P̄ , it computes the sets of prefixes prefList of the paths belonging to P̄(d). In
particular, the computed output prefList is an array where in position i there is a list
of prefixes of length i+1 of paths to d. The calculatePref function is used in algorithm
(3), line 3: for each destination d ∈ D, it initializes the value of prefDict. It is used
in subsequent lines to compare the same-length prefixes of paths belonging to different
destinations.

Algorithm 3 calculatePref(d, P̄)
Input: d (destination in D), P̄ (dictionary that maps each destination d to a set of path to
d)
Output: prefList (array where in position i there is a list of prefixes of paths to d of length
i + 1)

1: maxSize_d =maxLength{p ∈ P̄[d]}
2: for i = 0 to maxSize_d − 2 do
3: prefList[i] = P̄[d][0 to i + 1]
4: end for
5: return prefList

(2) retPaths(Alg. (2)): this function takes as input the set of optimal paths P̄ , the prefix
pr and the destination d of a specific path. It returns a list of paths (paths) belonging
to P̄(d) having pr as prefix. Given a destination d ∈ D, the function searches through
the paths in P̄(d), those whose prefix of length k is equal to the prefix pr, so it adds
them to the paths list returned as output.

Algorithm 4 retPaths(P̄ , pr, d)
Input: P̄ (initial set of paths), pr (prefix of a generic path), d (destination in D)
Output: list of paths in P̄[d] having pr as prefix

1: sizePref = pr.size
2: paths.clear
3: for i = 1 to (P̄(d).size) do
4: if P̄(d)[i − 1][0 to sizePref ] == pr then
5: paths.add(P̄(d)[i − 1])
6: end if
7: end for
8: return paths
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(3) calculateIndexAndPaths (Alg. (3)): it is the main function and takes as inputs the
set of destinations, D, the initial set of optimal path, P̄ , the maximum value that the
iteration index k can assume, kmax, and the total number of nodes, n. The function
returns as output the maximum undisclosing index achievable with the fixed budget,
TP̄ . Moreover it provides the largest subset Pr−opt∗ ⊆ P̄ , that is (o − D)-connected and
that guarantees the obtained TP̄ .
Note that in this pseudocode we use the temporary set of paths Q, whose final value
coincides with the largest optimal subset Pr−opt∗ we are looking for. At the beginning,
we impose the set Q = P̄ . Its value is updated during each iteration k.
For each cycle k, the algorithm evaluate one by one the destination in D. So for each
destination d ∈ D, it compares the prefix pr of length k of each paths in Q(d) with the
ones of the paths in Q(d′), having the same length k. Notice that d′ ∈ D and d′ ≠ d
(See the for-loop at line 11). If there is no prefix in Q(d′) equal to pr, it is necessary to
insert the path whose prefix is pr in the so called pathsRemoved. When all the prefixes
of length k of paths in Q(d) was analysed, the algorithm checks if Q(d) is empty. If so,
i.e. if Q is not (o − d)-connected, it is necessary to re-insert in Q(d) the set of paths
removed from it at the kth step (stored in pathsRemoved). Note that, in this case, the
algorithm returns the searched values P̄∗ and TP̄ (See pseudocode at line 37): the first
one will be equal to the obtained Q set, while the second one will be simply equal to
k − 1, as already discussed above (See case (i), at (4.20). At this point the algorithm
stops its execution. On the contrary, if Q(d) is not empty, the algorithm deletes the
content of the pathsRemoved list, proceeding with the analysis of the next destination
in D (for-loop at line 7).
If the algorithm continues its execution up to the iteration k = kmax and if, for each
d ∈ D, Q(d) is non-empty, the two value at line 45 are returned: in particular, P̄∗ = Q,
as in the previous case, while TP̄ = k = kmax. So the algorithm stops its execution and
a practical modification of the initial model is obtained.
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Algorithm 5 calculateIndexAndPaths(D, P̄ , kmax, n)
Input: D (set of destinations), P̄ (dictionary that maps each destination d to a set of path to
d), kmax (maximum value for TP ), n (number of nodes in the graph)
Output: TP̄ (max undisclosing index achievable), P̄∗ (modified version of P̄)

1: Q = P̄
2: for all d ∈ D do
3: prefDict[d] = calculatePref(d, P̄)
4: end for
5: for k = 1 to kmax = n − 3 do
6: remove = True
7: for all d ∈ D do
8: pathsRemoved.clear
9: L = prefDict[d][k]

10: for all pr in L do
11: for all di ∈ D and di ≠ d do
12: Li = prefDict[di][k]
13: if pr in Li then
14: remove = False
15: break
16: end if
17: end for
18: if remove then
19: Ppr = retPaths(P̄ , pr, d)
20: Q.remove(Ppr)
21: pathsRemoved.add(Ppr)
22: if not Q[d] then
23: Q[d].add(pathsRemoved)
24: for all dj ∈ D and dj < d do
25: Lj = prefDict[d][k − 1]
26: for all prj in Lj do
27: pathsj = retPaths(P̄ , prj , dj)
28: for all p in pathsj do
29: if p doesn’t exist in Q[dj] then
30: Q[dj].add(p)
31: end if
32: end for
33: end for
34: end for
35: P̄∗ = Q
36: TP̄ = k − 1
37: return TP̄ , P̄∗
38: end if
39: end if
40: end for
41: end for
42: end for
43: P̄∗ = Q
44: TP̄ = k
45: return TP̄ , P̄∗
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Correctness

We want to be sure that the algorithm works properly and correctly. The correctness of the
calculateIndexAndPaths algorithm is shown below.
We start by proving the correctness of the remove operations in (3). This proof is used
to guarantee that the algorithm calculates exactly both P̄∗ and TP̄ , the main goals of this
implementation.

Lemma 7. Given a starting set P̄ , a destination d ∈ D, a set of destination d′ ∈ D, d′ ≠ d, Li
of prefixes of length k of paths in P̄(d′), a prefix pr ∈ P̄(d) of length k, at each iteration k
(k ∈ [1, kmax]) the algorithm individuates only the paths γ whose undisclosing index is

tγ,P̄ ≤ k − 1

Proof To prove this lemma, we first consider the base case: for k < 1, we should remove
from P̄ the paths γ whose undisclosing index is

tγ,P̄ < 0

By definition, the undisclosing index is always a positive value. So, the algorithm individuates
correctly the paths whose undisclosing index is less than 0, simply by doing nothing: in fact,
we have no paths in P̄ whose undisclosing index is less than 0.
Otherwise, if k ≥ 1, we have to sought the correctness of the kth iteration at line 13 of
the Algorithm (3): it checks if there exists a prefix of length k in Li, that is equal to the
considered prefix pr (belonging to set L, with length k). If there is no prefix in Li equal to
the considered one, pr, recalling the concept of undisclosing index (see section 4), we can
state that the path γ, of which pr is prefix of length k, reveals its goal at a step that precedes
the (k)th step. So

tγ,P̄ ≤ k − 1

Lemma 8. Given a starting set of paths Q, at each iteration k (k ∈ [1, kmax]), the algorithm
chooses to remove the paths γ ∈ Q, such that their undisclosing index is equal to k − 1.

Proof As in the previous case, the base case is k < 1 and the algorithm chooses correctly
which paths to remove (the paths whose undisclosing index is equal to k − 1) by doing
absolutely nothing: it does not remove any paths from set Q. This is related to the previous
lemma (7), in fact, our specific case

tγ,Q = k − 1

is contemplated by

tγ,Q ≤ k − 1

So, the algorithm (3), for k < 1 will not choose any path γ ∈ Q to be removed.
For the more general case k ≥ 1, we can use the previous lemma again. According to lemma
7,

tγ,Q ≤ k − 1
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In other words,

tγ,Q = j − 1

with j = 0,1, ..., k. Since the path removal operation we are discussing is inside a for-loop
(See line 5) and considering the 4.3.1, we can state that, for each generic step, the algorithm
chooses as paths to be removed the paths γ ∈ Q whose undisclosing index is

tγ,Q = k − 1

The step discussed is correct.

Theorem 9. Given a set of paths Q ⊆ P̄ , such that at the beginning Q ≡ P̄ , at the generic
iteration k (k from 1 to kmax), removing from Q the paths whose undisclosing index is k − 1
means that the resulting Q is the largest sub-set of P̄ whose undisclosing index is:

tQ ≥ k

Proof It is simple to affirm that the proposition is valid for the base case k < 0: in this case
no paths are removed from Q (See base case of lemma 7) so that Q is the largest subset of
P̄ (in particular the two sets coincide at the beginning). Moreover, because the undisclosing
index is always a positive number,

tQ ≥ 0

So, for k < 1, it holds that

tQ ≥ k

The undisclosing index is always positive.
For the more generic case of k ∈ [1, kmax], we recall the lemma 8. The algorithm correctly
chooses which path to remove from Q: so, if at the generic step k it removes from Q the set
of paths whose undisclosing index is tQ = k − 1, then the remaining paths in Q will have:

tQ < k − 1 and tQ ≥ k

Since the operation is at the inner of a for-loop (See line 5), the algorithm will remove at
each step kth the paths in Q whose undisclosing index is equal to k − 1 (See lemma 8), so
that the remaining paths, after the execution of the generic cycle k, have undisclosing index
equal to or greater then k. The removal operation will return the largest sub-set Q ⊆ P̄ s.t.
tQ ≥ k.
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Chapter 5

Experimental results

In this chapter, we want to provide a practical application of the analysed problem related to
Goal Recognition. In particular, the algorithm presented in the previous chapter has been tested
on a series of data representing the real world. A graphical user interface has been created in
order to guarantee a simple and direct extrapolation of data belonging to real maps. Moreover,
the algorithm, implemented in java language, allows the conversion of map data into a connected
graph. It represents the model of the environment we are analysing. So we can use this model
to implement some Graph algorithms, like the well-known Dijkstra and Yen’s algorithms. The
algorithm implemented in chapter 4 will be also tested on the obtained graph representation.

As specified in the previous chapters, in this Goal Recognition problem we analyse the case in
which a given target flees from an observer, trying to hide its final goal for as long as possible.
Consider putting yourself on the side of the observer: it evaluates a series of possible actions the
fleeing agent can perform in the given environment.

Imagine, for example, the scenario in which, at a given instant, the target disappears from the
observer’s visual radius. So, based on the last known position of the fleeing agent, it must devise
a planning strategy aimed at recognized the target’s final goal.

The observer, as a user of the web application implemented, selects on a real map an area
of interest, so exports it. It must try to identify the target’s possible goals within that area.
So, the web-app converts the data and provides a viewable version of the corresponding graph,
implementing on it some algorithms: this tool helps the observer reason about the possible paths
of the target based on its budget and visualize them. In this way, it can devise its plan strategy.

5.1 Graphical user interface design
The application requires spatial information as input. For this reason, the graphical interface takes
its data from optimal data source OpenStreetMap: it is a collaborative project to create and export
maps and data related to them. In this case, the exported data are used for route planning.

At first glance, the interface appears as in figure 5.1.
The user taps the zoom labels to select the part of the map it is interested in. So it exports

the submap in XML format to build the corresponding graph.
It may be useful to provide some additional concepts to better understand how the conversion

from the XML file to the graph takes place.
The next sections will explain what the XML format is and how it can be analyzed. Moreover,

we will provide some practical concepts related to the XML/graph conversion.
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Figure 5.1. A view of the graphical user interface.

5.1.1 XML file
As written in the previous section, an XML file, representing the area selected by the user, is
exported by using the web application.

The XML format stores data according to a structure that is machine-readable and human-
readable. It is formatted much like an HTML document but uses custom tags to define objects
and data within each object.

An OSM XML file is a list of instances of data primitives such as nodes, ways and relations.
A node consists of a single point in space, defined by its latitude, longitude and node ID. Other

optional characteristics can also be included in the node description (e.g. altitude, layer, level,
etc.). These optional features will not be considered in this thesis, as only standard cases will be
analysed.
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Nodes are used to define the shape of ways. A way is an ordered list of nodes. It also has tags
and can be included within a relation. A way can have more than a thousand nodes, although
faulty ways with zero or a single node may exist. A way can be open or closed. In a closed way, the
last node is also the first one. There exist different types of way tags that indicate, for example,
the type of highway (residential, primary and others), the name of the way, etc. A relevant tag for
our application is the one indicating the direction of the way: in particular, if the oneway tag is
set as yes, the way is a ’one-way road’. If oneway = no, the situation is opposite to the previous
one.

Finally, there are relations. A relation is another of the core data elements of an OSM XML
file. It defines logical or geographic relationships between elements of a map. There exist different
types of relations (multi − polygon type, to represent areas, bus route, in which each variation of
a bus route itinerary is represented by a relation containing customized tags, and others).

In an OSM XML file we have three types of block:

• block of nodes: each block presents an identification number id, latitude lat and longitude
lon tags.

Figure 5.2. Example of Node blocks in a OSM XML file

• block of ways: an id tag identifies each way we are considering. Moreover, for each block
there is a list of nodes, belonging to a specific way, with a reference number (ref tag). These
values correspond with their id. We see an example in figure 5.3.

Figure 5.3. Example of W ay block in a OSM XML file
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• block of relation: each block is identified by an id tag, and contains the references to its
members (ref tag). An example of a relation block is shown in figure 5.4.

Figure 5.4. Example of Relation block in a OSM XML file

5.1.2 Preprocessing
Data obtained from OSM XML file are analysed by the implemented algorithm to obtain the
corresponding graph.

The analysis and parsing procedures of the OSM XML file takes into account of different
aspects, such as the node reduction, the computation of the edge cost (distance between two
adjacent nodes), etc.

So we present a list of subsections explaining this parsing preliminary steps.

Node Reduction

Spacial data provided by the OSM XML file describe the Earth: in particular, it is a set of nodes
joined by lines.

Imagine the particular case of a bending road, graphically represented by a bending line. To
describe this particular shape, it is necessary to use a large number of linked nodes to depict the
curvature of the way (See Fig. 5.5 and 5.6)

The two figure represent the map representation (on the left) and its data representation (on
the right).

Figure 5.5. Map representation of
a bending line

Figure 5.6. Data representation of
a bending line
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In our discussion, it is not necessary to build a graph whose representation is too accurate: in
particular, the shape of its arcs allows less accuracy, in favour of a faster and less heavy conversion
and representation of data.

The strategy used to build the graph is based on the following association:

a node for each crossroad

Notice that a crossroad is, trivially, an intersection between two or more ways. In this way, we
avoid representing a graph with superfluous nodes and edges (See Fig. 5.7 and 5.8).

Figure 5.7. Map with four crossroads

C

A B

D

Figure 5.8. Data representation of
the map in figure 5.7

The building of a weighted graph

After removing the superfluous nodes, proceed with the assignment of the weight to each edge
joining two adjacent nodes.

Data in the OSM XML file are provided, as previously written, as lists of nodes, ways and
relations. It does not contain any direct information about nodes distance, way’s length, etc. This
kind of information is relevant in this dissertation, since we are interested to know the path’s
length, that is its cost.

Each node has two coordinates, latitude and longitude. Trivially, the latitude is a value from
−90○ to 90○, while longitude is a value between −180○ and 180○.

This set of coordinates represents a unique label for every node in the map.
Imagine to have two adjacent nodes, A and B s.t.:

A ∶ lat = LATA, lon = LONA

and

B ∶ lat = LATB , lon = LONB

Note that the two pairs cannot be equal, i.e.

LATA ≠ LATB

or

LONA ≠ LONB

Otherwise, A ≡ B.
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In the case in which A ≠ B, i.e. at least one of the coordinates differs between nodes A and B,
then their distance is greater than zero. Trivially, by using Pythagorean theorem, we can compute
the distance between the two considered points. So:

d =
√
(xA − xB)2 + (yA − yB)2 =

√
(LATA −LATB)2 + (LONA −LONB)2 (5.1)

assuming to map latitude on x-coordinate and longitude on y-coordinate.
In order to compute the distance on Earth, it is needed to use the great circle distances. It

considers the curvature of the sphere. This allows us to obtain a good approximation of the
represented real world.

For this purpose, the Haversine formula is used:

a = sin2(∆Ψ/2) + cos(ΨA)cos(ΨB)sin2(∆λ/2) (5.2)

where ∆Ψ is the difference between the two latitudes, ΨA is the latitude of A and ΨB is the
latitude of B, ∆λ is the difference of the two longitudes.

By using the 5.2
c = 2atan2(

√
a,
√

1 − a) (5.3)

So the resulting distance is:
d = Rc (5.4)

where R is the radius of Earth.

Export from a bounding box on map

Once we have defined the latitude and longitude coordinates, we can present the concept of "bound-
ing box". In particular, when the user taps the zoom labels, it selects the part of the map it is
interested in. So it exports the submap in XML format, in order to build the corresponding graph.
The selected area is a bounding box defined by four coordinates, two latitude coordinates and two
longitude coordinates.

The export of the area bounded by the box operates according to command similar to the one
shown below:

bounding box = min Lon, min Lat, max Lon, max Lat

or, in a more simple way, considering the edges of the "box":

bounding box = left, bottom, right, top

GraphViz Tool and DOT language

Before to explain how the processing module works, it is necessary to provide some information
about a specific tool used by our web-app to display the graph. The used tool is GraphV iz:
it is a simple Graph Visualization Tool that reads attributed graph from a text file and returns
images or SVG for web pages, PDF or Postscript for inclusion in other documents, etc. In our
implementation, the tool receives as input a text file that describes the considered graph by using
a specific language, called DOT. It can represent both directed and undirected graphs.

We can see two simple examples of DOT file (Fig. 5.9 and 5.11) converted into the corresponding
graphs (Fig. 5.10 and 5.12) by using GraphV iz tool.
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Figure 5.9. Example of simple undirected graph represented in DOT format

Figure 5.10. Example of undirect graph built by using GraphViz, starting from DOT
format (See fig. 5.9)

It is often useful to adjust the graph representation or position of its nodes and edges. For this
purpose, it is possible to use and set attributes of nodes and edges in the input DOT file.

In order to build a directed graph, we can use the digraph functionality of the tool. The
example in figure 5.11 is a DOT representation of a directed graph, in which we also introduce
label attributes. It is used in our implementation in order to show the weight of each edge.
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Figure 5.11. Example of directed weighted graph represented in DOT format

Figure 5.12. Example of direct graph built by using GraphViz, starting from DOT
format (See fig. 5.11)

5.1.3 Processing

After receiving the entry directive from the user, the application, as previously written, starts its
computation by exporting the XML file. It is adequately analysed through specific functions, that
export the data and store it in a different type of map. In particular, we use the specif Map class
of Java programming language, so:

Map <K,V >
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where

• K is the type of keys maintained by this map

• V is the type of mapped values

So, by using this class, we create a Map object in which the keys are the ID of the elements,
while the mapped values are the OSM elements objects. The OSM objects are, trivially, nodes,
ways and relations, whose description has been provided in the previous section. Each of them
is described by a dedicated class and therefore stored among the elements of the Map. Note also
that we provide a tag storage system for each of the OSM objects.

Once the map is obtained, it is possible to build a graph whose nodes and edges are the elements
of the Map class. The algorithm searches, among the nodes in Map, for those that could constitute
nodes of our graph. Recalling what previously written about the choice of the graph nodes, we
look for those that identify a crossroad. From a practical point of view, if a node on a specific
way is also present in another way, then it represents a crossroad, therefore it will be added to
the graph.

In order to identify the edges between adjacent nodes, it is necessary to use the set of nodes of
the newly graph. So the algorithm combines the set of nodes just mentioned in groups of two: for
each combination, it checks that the elements of the pair are both in one of the ways contained
in Map: if so, the pair is made up of adjacent nodes, so we can add the corresponding edge to the
graph. Note that, if no information are specified about the oneway tag of the way in question,
a bidirectional edge will be added to the graph. Moreover, in this phase, it is necessary to use
a function useful for calculating the distance between the two considered nodes, thus assigning a
weight to the considered edge. In particular, using the coordinates of the two adjacent nodes, the
distance is calculated, using the formulas written in the previous section (See eq. 5.4).

At this point, having the graph, it is necessary to display on it some planning algorithms.
Remember, in fact, that the user (the observer), after having selected a region on the map, runs
Goal Recognition algorithms that aim to discover where the target is going: in particular, it needs
to reason about the target’s strategy to obscure its goals. So, by using the planning algorithm
provided in chapter 4, in addition to the well-known Dijkstra and Yen’s algorithms, the web-app
displays the possible paths the target can select, based on its budget. To do this, the web-app uses
the GraphV iz tool.

Before to show how the application displays the algorithms on the graph, we test that it returns
the correct graphical representation of the graph described by the OSM XML file. To do this, we
compare the map received from the OSM web page with the graph created by GraphViz tool.

Given the simple map in figure 5.13, the corresponding graph in figure 5.14 shows the corre-
sponding graphical representation: there is, as expected, a node for each crossroad.

Obviously, the ways that are outside the box the user create are not tacked into account during
the graph building.

As previously explained, it was computed the distance between nodes: it is represented on the
edges of the graph in figure 5.14.

The map in figure 5.13 presents a main way in yellow with different nodes N0,N1,N2,N3 on
it. The other ways are not represented on the corresponding graph (Fig. 5.14) due to the fact
that we have no information about their end. It could be, for example, a dead end, so it would
not lead to any node or target goal. Note also that, if we have more than one node on the same
way, then the algorithm creates an edge for every possible combination of two nodes.
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Figure 5.13. Portion of map that the user selects on OSM

Figure 5.14. Graph corresponding to the Map in figure 5.15

Before presenting the tests performed, some details are provided regarding the choice of the
algorithms implemented on the graph.
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We have chosen to implement on the obtained graph three planning algorithm, the Dijkstra
algorithm, the Yen algorithm and the main algorithm (presented and explained in chapter 4).
Remember that the first one returns the optimal path from source to destination, while the second
one has been implemented such that it returns the set of suboptimal paths whose cost is less than
or equal to a specified travel budget. Finally, the main algorithm returns the largest subset of
suboptimal paths s.t. its undisclosing index is maximum. So the web-app shows on the display
different versions, i.e. different graphical windows, of the same graph.

The first set of windows shows the optimal paths obtained by the implementation of Dijkstra’s
algorithm on the given graph: we have a window for each destination.

The implementation of Yen’s algorithm on the graph produces a new set of windows: it uses the
budget index r, mentioned in chapter 4, and provided by the user, to compute a set of suboptimal
paths γ s.t.

∣γ∣ ≤ rλ(o, d)

where d ∈ D is a generic destination in the given graph, ∣γ∣ is the cost of path γ and λ is the weight
of the shortest path connecting the source o to the destination d (See 4).

The last set of windows shows the set of remaining paths after the algorithm presented in
chapter 4 has been implemented on the given graph. The algorithm also provides the value of
maximum undisclosing index achieved within a certain budget value.

5.1.4 First Test
Now we can present a simple test: the goal is to show that the application actually converts a map
from XML format to graph representation, and correctly applies on it the planning algorithm just
discussed. To do this, consider the map in figure 5.15.

The bounding box returns the following four coordinates:

min Lon = 7.67635
min Lat = 45.08373
max Lon = 7.67927
max Lat = 45.08521

Then the user selects the source node and the set of possible destinations by using the command
line. In this case

source node : N0
destinations node: N3, N5

Given the starting data, the application shows the resulting graph (See Fig. 5.16) and imple-
ments on it the algorithm previously mentioned.
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Figure 5.15. Map that the
user selects on OSM Figure 5.16. Graph corresponding to

the Map 5.15

The first implemented algorithm is the Dijkstra algorithm. The system returns the optimal
paths (See figure 5.17 and 5.18) with the corresponding optimal costs:

Optimal path wrt destination N3 : N0 −N1 −N3
Optimal path wrt destination N5 : N0 −N1 −N3 −N5

The corresponding optimal costs are:

costN3∗ = 139
costN5∗ = 253
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Figure 5.17. Implementation of Dijkstra Algorithm
wrt destination N3 on the graph corresponding to the
Map in figure 5.15

source node: N0
destination node: N3
shortest path: N0 - N1 - N3
cost: 139

source node: N0
destination node: N5
shortest path: N0 - N1 - N3- N5
cost: 253

Figure 5.18. Implementation of Dijkstra Algo-
rithm wrt destination N5 on the graph corre-
sponding to the Map in figure 5.15
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Starting from the optimal cost values, the Yen algorithm is implemented: it returns the set
of suboptimal paths. Their cost has to be less than an upper limit depending on the optimal
corresponding cost. In particular, by selecting, for example, a budget value r = 1.2, the Yen
algorithm returns the paths in table 5.1.

Suboptimal paths wrt destination N3 N0 −N1 −N3

N0 −N2 −N3

N0 −N3

Suboptimal paths wrt destination N5 N0 −N1 −N3 −N5

N0 −N2 −N3 −N5

Table 5.1. Suboptimal paths obtained by using Yen’s algorithm, budget r = 1.2, source
node N0, destination nodes N3, N5

The web app return a graph for each of this suboptimal paths: they are shown in figures 5.19,
5.20, 5.21, 5.22 and 5.23.

For the destination N3 the suboptimal paths are shown in blue: the costs of that paths must
be less than or equal to r ⋅ costN3∗ (r = 1.2, costN3∗ = 139).

Figure 5.19. A suboptimal path from source N0
to destination N3

source node: N0
destination node: N3
suboptimal path: N0 - N1 - N3
cost: 139
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Figure 5.20. A subopt. path from source N0 to dest. N3

source node: N0
destination node: N3
suboptimal path: N0 - N2 - N3
cost: 139

source node: N0
destination node: N3
suboptimal path: N0 - N3
cost: 140

Figure 5.21. A subopt. path from source N0 to dest. N3
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For the destination N5 the suboptimal paths are shown in green: the costs of that paths will
be less than or equal to r ⋅ costN5∗ (r = 1.2, costN5∗ = 253).

Figure 5.22. A subopt. path from source
N0 to dest. N5

source node: N0
destination node: N5
suboptimal path: N0 - N1 - N3 - N5
cost: 253

source node: N0
destination node: N5
suboptimal path: N0 - N2 - N3 - N5
cost: 253

Figure 5.23. Subopt. path from source N0 to dest. N5
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The last algorithm that we implement on the considered graph (See Fig. 5.16) is the main
algorithm described in chapter 4: practically, it selects the largest subset of paths reported in table
5.1 s.t. its undisclosing index is the maximum achievable. The algorithm returns the following set
of paths and its maximum undisclosing index:

Subset of subopt. paths N0 −N1 −N3
N0 −N2 −N3

N0 −N1 −N3 −N5
N0 −N2 −N3 −N5

Max. undisclosing index achievable (r=1.2) 2

Table 5.2. Subset of paths P̄∗ whose undisclosing index T
P̄

As expected, the graph is still (o, d) − connected, where d ∈ D and D is the set of destinations
of the given graph. Moreover, since the graph considered is very small, it is possible to verify that
the maximum undisclosing index achievable within the new subset of paths is actually equal to 2.

5.2 Results, precision and speed
The tests were performed on three data sets obtained from OSM web page. The data are derived
from the export of concentric bounded boxes with different sizes. In our case, the central point
could be, for example, the last known position of the fleeing agent: the user, in this case the
observer, must plan possible trajectories from that point (it is considered, therefore, the source of
the graph) to the various destinations available in the map, in order to find the target.

The first set is the one used in the previous section (sec. 5.1.4) in order to show how the app
graphically displays the results. The second set is larger than the first one, as already written: its
coordinates and graphic representation are in the appendix (sec. .1.1). The same applies to the
third set (sec. .1.2).

Then, for each set, different tests were performed, one for each value of r chosen. The appendix
shows the algorithm results for the different data sets and budget values chosen (see appendix,
Sec. .2.1, .2.2 and .2.3).

Tests related to the speed and accuracy of the implemented web application have also been
performed. Note that only the execution time of the main computation part was measured, that
is the part of code related to the acquisition of the graph described by adjacency lists and the
implementation of the planning algorithms on it.

First of all, we present and highlight how the computational time strongly increases, as the
chosen area increases. For the observer, choosing a large area can be advantageous: it can consider
a wider set of target’s escape routes. At the same time, the greater the range of possible paths,
the greater the possibility of the target to keep its final destination hidden. The considered tests
were performed for different values of r (i.e. for different travel budgets). The results are shown
in the table 5.24.
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Figure 5.24. Computation time trend with respect to the number of nodes. Test performed for
different values of r (r = 1.2, 1.417, 2, 3, 4, 5)

The values of r chosen derive from the particular topology of the environment. In particular,
"critical" values were chosen. For each of these critical values, by applying the Yen algorithm,
suboptimal sets of different sizes are obtained. For example,

• for r = 1.200 the set of paths connecting the source to the first destination N3 consists of
3 paths, while the set of paths connecting the source and the destination N5 consists of 2
paths,

• for r = 1.417 the set of paths connecting the source to the first destination N3 consists of 3
paths, as well as the set of paths connecting the source and the destination N5,

• for r = 1.5 the set of paths connecting the source to the first destination N3 consists of 3
paths, while the set of paths connecting the source and the destination N5 consists of 4
paths,

and so on.
Note that the computation time trend has been represented with respect to the number of

nodes using a logarithmic scale, in order to better visualize the results. The computation time,
in fact, grows exponentially, as the number of nodes in the graph increases, as expected (See Fig.
5.24). Then, the size of data set strongly influences the speed of the web-app execution. The trend
depends on the topology of the map. In some particular case, we can have the same number of
nodes in two or more concentric areas with different size: think, for example, of an area delimited
by green areas, without viable roads.

It may be useful to isolate the results for each map, to analyze the evolution of the computation
time with respect to the budget increase (See figures 5.25, 5.26 and 5.27).
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Figure 5.25. First Data Set: trend of computational time wrt r (index related to the target’s budget)

Figure 5.26. Second Data Set: trend of computational time wrt r (index related to the target’s budget)
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Figure 5.27. Third Data Set: trend of computational time wrt r (index related to the target’s budget)

The first data set does not present evident variations regarding the running time: with an
increase of r, the speed does not differ too much from the average value of 4.91 ms.

The second data set, on the other hand, presents a more evident growth of the computation
time, compared to the increase in the budget (r). Quite simply, the greater the value of r, the
greater the number of paths that can be traversed by the target within its budget, the greater the
computational effort of the web application in calculating all the possible paths.

Finally, the running time with respect to the third set of data presents an even more accentuated
growth than the second case. The growth of the computation time is evident for r ≥ 3. Note,
however, that tripling, quadrupling, etc. the value of r means greatly increasing the resources that
the target has at its disposal. Such cases are, generally, not taken into consideration.

We want to show how the undisclosing index varies by executing algorithm (3) on the set of
suboptimal paths. In particular, we aim to show that the implemented algorithm helps increases
the undisclosing index value of a given set of paths, properly removing some of its elements. So,
for each data set and for each corresponding suboptimal set obtained from the implementation of
the Yen’s algorithm, the value of the initial undisclosing index was calculated and compared with
the final one, taken by executing the algorithm (3). Recalling the mathematical notation used,
we denote by P̄ , the suboptimal set of paths: the undisclosing index of the considered set is tP̄ .
The maximum undisclosing index achievable within the subset of paths obtained by executing the
algorithm (3) was indicated, instead, with TP̄ . The tables 5.3, 5.4 and 5.5 show a comparison
between tP̄ and TP̄ for each data sets and travel budgets.
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tP̄ TP̄
r = 1.2, 1.417,

1.5, 2, 3, 0 2
4, 5

Table 5.3. The undisclosing index of the set P̄ obtained starting from the implementation of the
Yen’s algorithm and the undisclosing index after the execution of the algorithm (3)

tP̄ TP̄

r = 1.200, 1,417, 0 2
1.5, 2, 3,

r = 4, 5 0 4

Table 5.4. The undisclosing index of the set P̄ obtained starting from the implementation of the
Yen’s algorithm and the undisclosing index after the execution of the algorithm (3)

tP̄ TP̄

r = 1.200, 1,417, 0 2
1.5, 2, 3,

r = 4, 5 0 4

Table 5.5. The undisclosing index of the set P̄ obtained starting from the implementation of the
Yen’s algorithm and the undisclosing index after the execution of the algorithm (3)

The tables show how the execution of the algorithm (3), given the suboptimal set of paths P̄ ,
leads to an increase in its undisclosing index. Remember that the strategy used, involves removing
from the starting set the paths whose undisclosing index is less than the maximum one achievable.
So, through this approach, as is evident in the tables 5.3, 5.4 and 5.5, we were able to maximize
the undisclosing index of a set of paths.

We now want to show how the trend of the undisclosing index varies with changes in the travel
budget of the target. By increasing the budget, the number of paths that make up the suboptimal
set increases: the larger the set of suboptimal path, the greater can be the maximum undisclosing
index achievable (see proposition 6). Remember that, given a source o and a destination d, the
suboptimal set consists of all the paths that connect o and d and whose cost is less than or equal
to r ⋅ cost∗, where cost∗ is the optimal cost (the shortest path length connecting o and d). The
reasoning in our case is extended to a number of destinations greater than one. The trend of the
maximum undisclosing index achievable is shown in figure 5.28.
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Figure 5.28. Trend of the Maximum Undisclosing Index achievable t wrt budget value r

In general, the undisclosing index value increases as the available budget increases. In reality,
the relationship between the undisclosing index and the budget is strongly dependent on the size
of the area considered: for small areas where the number of nodes is not too large, the number of
possible paths is very limited. Therefore, even if the budget increases, the maximum undisclosing
index remains unchanged, since the number of paths that constitutes the set of suboptimal paths
remains unchanged (See Max.t achievable for a number of nodes equal to 9, blue set, Fig. 5.28).

Differently, considering areas with a higher number of nodes, then the maximum undisclosing
index varies more consistently, depending on the travel budget available (See Fig. 5.28, orange and
yellow sets).

Practically, with the same travel budget, as the area considered increases, the number of nodes
increases, so the number of paths belonging to the suboptimal set could increase. Therefore, for
the first set of data, whose number of suboptimal paths is strongly less than the ones in sets 2 and
3, we will have a maximum undisclosing index achievable lower than the maximum undisclosing
indexes achievable in map 2 and 3, considering the same budget conditions (See figure 5.28, values
of t in Map 1, 2, 3 for r = 4 and for r = 5).
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Chapter 6

Conclusion

6.1 Conclusion and Future Work
Through this thesis we have provided an instance of Goal Recognition: the considered scenario
was a typical surveillance problem in which an evasive target, for example, a criminal, moving in
the environment, aims to reach its destination (a hideout) by car as soon as possible, while an
observer, for example, a drone, flies over the geographical area to discover the fleeing target.

The problem was analyzed using planning techniques and graph algorithms, such as Dijkstra
and Yen’s algorithms. Furthermore, the introduction of a new measure, the the undisclosing index,
contributing to the modification of the environment model, was useful for the observer to reason
about the possible target’s strategies to obscure its goals. The undisclosing index represents the
maximal length of the prefix of a path that a fleeing agent may take before its goal becomes apparent
to the observer: therefore, maximizing the value of the undisclosing index means modifying the
model of the environment in order to increase the probability that the target has to escape. In
fact, the greater the maximum value of the undisclosing index within a given travel budget, the
greater the number of moves the target can perform before its final goal is evident to the observer.

Experimental evaluations have confirmed that the undisclosing index strongly depends on the
imposed travel budget: in particular, as the available travel budget grows, the maximum achievable
undisclosing index increases. In particular, the number of paths whose cost is within the imposed
travel budget increases as the latter increases. In a larger set, the probability of finding paths
whose prefixes coincide also increases, therefore, according to the theoretical concepts already
expressed in the previous chapters, the maximum undisclosing index achievable within the given
set increases. The results also showed that the maximum undisclosing index that can be reached
depends on the area chosen by the user: the greater the extent of the selected region, the greater
the number of suboptimal paths found on it. A larger set of suboptimal paths implies a greater
probability of obtaining a higher maximum undisclosing index value. Trivially, the higher the
achievable undisclosing index, the greater the probability of the target reaching its final goal,
before the observer finds it.

The creation of a graphic interface has simplified the use of the implemented algorithms and the
visualization of these on graphs, built starting from real data and exported from OpenStreetMap
web page.

A natural extension of the problem in question involves considering real changes and modifi-
cation in the environment, therefore developing strategies aimed at favouring or hindering Goal
Recognition, depending on the application of interest. The implemented algorithms and the exper-
imental evaluations presented in this thesis could be useful tools for solving these more complex
problems that fall under the category of Goal Recognition Design problems.
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.1 – Tested Areas

.1 Tested Areas

.1.1 Map and data: second tested area

Figure 1. Map of the second selected area

minLat 45.08273
minLon 7.67535
maxLat 45.08621
maxLon 7.68027

nodes found 2330
nodes added to graph 60

ways 55
relations 81

Table 1. Table representing the area selected and the corresponding graph’s elements statistic
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.1.2 Map and data: third tested area

Figure 2. Map of the third selected area
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.2 – Tables of Tests

minLat 45.08173
minLon 7.67435
maxLat 45.08721
maxLon 7.68127

nodes found 4479
nodes added to graph 407

ways 328
relations 110

Table 2. Table representing the area selected and the corresponding graph’s elements statistic

.2 Tables of Tests

.2.1 Results: first data set

Source Dest r=1.2 r=1.417 r=1.5 r=2 r=3 r=4 r=5 cost*[m]
N0 N3 (N0,N1,N3) / / / / / / 139

N0 N5 (N0,N1,N3) / / / / / / 253

Table 3. Optimal paths from source N0 to destinations N3 and N4

r = 1.2

Source Dest Suboptimal paths
N0 N3 (N0,N1,N3)
N0 N3 (N0,N2,N3)
N0 N3 (N0,N3)

N0 N3 (N0,N1,N3,N5)
N0 N3 (N0,N2,N3,N5)

Table 4. Yen algorithm results: suboptimal paths whose cost is less than r ⋅ cost∗, where r = 1.2

Source Dest Suboptimal paths
N0 N3 (N0,N1,N3)
N0 N3 (N0,N2,N3)

N0 N3 (N0,N1,N3,N5)
N0 N3 (N0,N2,N3,N5)

Table 5. Main algorithm results: subset of suboptimal paths whose maximum
undisclosing index is t = 2 (r = 1.2)
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r = 1.417

Source Dest Suboptimal paths
N0 N3 (N0,N1,N3)
N0 N3 (N0,N2,N3)
N0 N3 (N0,N3)

N0 N3 (N0,N1,N3,N5)
N0 N3 (N0,N2,N3,N5)
N0 N3 (N0,N3,N5)

Table 6. Yen algorithm results: suboptimal paths whose cost is less than r ⋅ cost∗, where r = 1.417

Source Dest Suboptimal paths
N0 N3 (N0,N1,N3)
N0 N3 (N0,N2,N3)

N0 N3 (N0,N1,N3,N5)
N0 N3 (N0,N2,N3,N5)

Table 7. Main algorithm results: subset of suboptimal paths whose maximum
undisclosing index is t = 2 (r = 1.417)

r = 1.5

Source Dest Suboptimal paths
N0 N3 (N0,N1,N3)
N0 N3 (N0,N2,N3)
N0 N3 (N0,N3)

N0 N3 (N0,N1,N3,N5)
N0 N3 (N0,N2,N3,N5)
N0 N3 (N0,N3,N5)
N0 N3 (N0,N3,N7,N5)

Table 8. Yen algorithm results: suboptimal paths whose cost is less than r ⋅ cost∗, where r = 1.5
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Source Dest Suboptimal paths
N0 N3 (N0,N1,N3)
N0 N3 (N0,N2,N3)

N0 N3 (N0,N1,N3,N5)
N0 N3 (N0,N2,N3,N5)

Table 9. Main algorithm results: subset of suboptimal paths whose maximum
undisclosing index is t = 2 (r = 1.5)

r = 2,3,4,5

Source Dest Suboptimal paths
N0 N3 (N0,N1,N3)
N0 N3 (N0,N2,N3)
N0 N3 (N0,N3)

N0 N3 (N0,N1,N3,N5)
N0 N3 (N0,N2,N3,N5)
N0 N3 (N0,N3,N5)
N0 N3 (N0,N3,N7,N5)

Table 10. Yen algorithm results: suboptimal paths whose cost is less than r ⋅ cost∗, where r = 2,3,4,5

Source Dest Suboptimal paths
N0 N3 (N0,N1,N3)
N0 N3 (N0,N2,N3)

N0 N3 (N0,N1,N3,N5)
N0 N3 (N0,N2,N3,N5)

Table 11. Main algorithm results: subset of suboptimal paths whose maximum
undisclosing index is t = 2 (r = 2,3,4,5)
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.2.2 Results: second data set
Note that, in the following tables, the source node is called N35 (it is equivalent to the old N0),
while the destinations are N37 and N53 (they are equivalent to the old N3 and N5 respectively).

Source Dest r=1.2 r=1.417 r=1.5 r=2 r=3 r=4 r=5 cost*[m]
N35 N37 (N35, N36, N37) / / / / / / 139

N35 N53 (N35, N36, N37, N53) / / / / / / 253

Table 12. Optimal paths from source N35 to destinations N37 and N53

r = 1.2

Source Dest Suboptimal paths
N35 N37 (N35,N36,N37)
N35 N37 (N35,N23,N37)
N35 N37 (N35,N37)

N35 N53 (N35,N36,N37,N53)
N35 N53 (N35,N23,N37,N53)

Table 13. Yen algorithm results: suboptimal paths whose cost is less than r ⋅ cost∗, where r = 1.2

Source Dest Suboptimal paths
N35 N37 (N35,N36,N37)
N35 N37 (N35,N23,N37)

N35 N53 (N35,N36,N37,N53)
N35 N53 (N35,N23,N37,N53)

Table 14. Main algorithm results: subset of suboptimal paths whose maximum
undisclosing index is t = 2 (r = 1.2)
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r = 1.417

Source Dest Suboptimal paths
N35 N37 (N35,N36,N37)
N35 N37 (N35,N23,N37)
N35 N37 (N35,N37)

N35 N53 (N35,N36,N37,N53)
N35 N53 (N35,N23,N37,N53)
N35 N53 (N35,N37,N53)

Table 15. Yen algorithm results: suboptimal paths whose cost is less than r ⋅ cost∗, where r = 1.417

Source Dest Suboptimal paths
N35 N37 (N35,N36,N37)
N35 N37 (N35,N23,N37)

N35 N53 (N35,N36,N37,N53)
N35 N53 (N35,N23,N37,N53)

Table 16. Main algorithm results: subset of suboptimal paths whose maximum
undisclosing index is t = 2 (r = 1.417)

r = 1.5

Source Dest Suboptimal paths
N35 N37 (N35,N36,N37)
N35 N37 (N35,N23,N37)
N35 N37 (N35,N37)

N35 N53 (N35,N36,N37,N53)
N35 N53 (N35,N23,N37,N53)
N35 N53 (N35,N37,N53)
N35 N53 (N35,N37,N54,N53)

Table 17. Yen algorithm results: suboptimal paths whose cost is less than r ⋅ cost∗, where r = 1.5
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Source Dest Suboptimal paths
N35 N37 (N35,N36,N37)
N35 N37 (N35,N23,N37)

N35 N53 (N35,N36,N37,N53)
N35 N53 (N35,N23,N37,N53)

Table 18. Main algorithm results: subset of suboptimal paths whose maximum
undisclosing index is t = 2 (r = 1.5)

r = 2

Source Dest Suboptimal paths
N35 N37 (N35,N36,N37)
N35 N37 (N35,N23,N37)
N35 N37 (N35,N37)

N35 N53 (N35,N36,N37,N53)
N35 N53 (N35,N23,N37,N53)
N35 N53 (N35,N37,N53)
N35 N53 (N35,N37,N54,N53)
N35 N53 (N35,N38,N52,N53)
N35 N53 (N35,N4,N5,N36,N37,N53)

Table 19. Yen algorithm results: suboptimal paths whose cost is less than r ⋅ cost∗, where r = 2

Source Dest Suboptimal paths
N35 N37 (N35,N36,N37)
N35 N37 (N35,N23,N37)

N35 N53 (N35,N36,N37,N53)
N35 N53 (N35,N23,N37,N53)

Table 20. Main algorithm results: subset of suboptimal paths whose maximum
undisclosing index is t = 2 (r = 2)
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r = 3

Source Dest Suboptimal paths
N35 N37 (N35,N36,N37)
N35 N37 (N35,N23,N37)
N35 N37 (N35,N37)

N35 N53 (N35,N36,N37,N53)
N35 N53 (N35,N23,N37,N53)
N35 N53 (N35,N37,N53)
N35 N53 (N35,N37,N54,N53)
N35 N53 (N35,N38,N52,N53)
N35 N53 (N35,N4,N5,N36,N37,N53)
N35 N53 (N35,N4,N5,N36,N23,N37,N53)
N35 N53 (N35,N30,N20,N53)
N35 N53 (N35,N30,N31,N20,N53)
N35 N53 (N35,N30,N25,N20,N53)
N35 N53 (N35,N27,N28,N51,N53)
N35 N53 (N35,N39,N27,N28,N51,N53)
N35 N53 (N35,N39,N27,N28,N53)
N35 N53 (N35,N39,N27,N28,N52,N53)
N35 N53 (N35,N39,N56,N55,N54,N53)

Table 21. Yen algorithm results: suboptimal paths whose cost is less than r ⋅ cost∗, where r = 3

Source Dest Suboptimal paths
N35 N37 (N35,N36,N37)
N35 N37 (N35,N23,N37)

N35 N53 (N35,N36,N37,N53)
N35 N53 (N35,N23,N37,N53)

Table 22. Main algorithm results: subset of suboptimal paths whose maximum
undisclosing index is t = 2 (r = 3)
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r = 4

Source Dest Suboptimal paths
N35 N37 (N35,N36,N37)
N35 N37 (N35,N23,N37)
N35 N37 (N35,N37)
N35 N37 (N35,N4,N5,N36,N37)
N35 N37 (N35,N4,N5,36,N23,N37)
N35 N37 (N35,N38,N52,N53,N53,N37)

N35 N53 (N35,N36,N37,N53)
N35 N53 (N35,N23,N37,N53)
N35 N53 (N35,N37,N53)
N35 N53 (N35,N37,N54,N53)
N35 N53 (N35,N38,N52,N53)
N35 N53 (N35,N4,N5,N36,N37,N53)
N35 N53 (N35,N4,N5,N36,N23,N37,N53)
N35 N53 (N35,N30,N20,N53)
N35 N53 (N35,N30,N31,N20,N53)
N35 N53 (N35,N30,N25,N20,N53)
N35 N53 (N35,N27,N28,N51,N53)
N35 N53 (N35,N39,N27,N28,N51,N53)
N35 N53 (N35,N39,N27,N28,N53)
N35 N53 (N35,N39,N27,N28,N52,N53)
N35 N53 (N35,N39,N56,N55,N54,N53)
N35 N53 (N35,N39,N56,N57,N52,N53)
N35 N53 (N35,N39,N56,N57,N38,N52,N53)
N35 N53 (N35,N39,N56,N21,N22,N54,N53)
N35 N53 (N35,N39,N56,N21,N22,N54,N37,N53)
N35 N53 (N35,N39,N56,N21,N23,N37,N53)
N35 N53 (N35,N39,N56,N21,N23,N37,N38,N52,N53)
N35 N53 (N35,N39,N56,N21,N23,N38,N52,N53)

Table 23. Yen algorithm results: suboptimal paths whose cost is less than r ⋅ cost∗, where r = 4

Source Dest Suboptimal paths
N35 N37 (N35,N38,N52,N53,N37)

N35 N53 (N35,N38,N52,N53)

Table 24. Main algorithm results: subset of suboptimal paths whose maximum
undisclosing index is t = 4 (r = 4)
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r = 5

Source Dest Suboptimal paths
N35 N37 (N35,N36,N37)
N35 N37 (N35,N23,N37)
N35 N37 (N35,N37)
N35 N37 (N35,N4,N5,N36,N37)
N35 N37 (N35,N4,N5,36,N23,N37)
N35 N37 (N35,N38,N52,N53,N53,N37)

N35 N53 (N35,N36,N37,N53)
N35 N53 (N35,N23,N37,N53)
N35 N53 (N35,N37,N53)
N35 N53 (N35,N37,N54,N53)
N35 N53 (N35,N38,N52,N53)
N35 N53 (N35,N4,N5,N36,N37,N53)
N35 N53 (N35,N4,N5,N36,N23,N37,N53)
N35 N53 (N35,N30,N20,N53)
N35 N53 (N35,N30,N31,N20,N53)
N35 N53 (N35,N30,N25,N20,N53)
N35 N53 (N35,N27,N28,N51,N53)
N35 N53 (N35,N39,N27,N28,N51,N53)
N35 N53 (N35,N39,N27,N28,N53)
N35 N53 (N35,N39,N27,N28,N52,N53)
N35 N53 (N35,N39,N56,N55,N54,N53)
N35 N53 (N35,N39,N56,N57,N52,N53)
N35 N53 (N35,N39,N56,N57,N38,N52,N53)
N35 N53 (N35,N39,N56,N21,N22,N54,N53)
N35 N53 (N35,N39,N56,N21,N22,N54,N37,N53)
N35 N53 (N35,N39,N56,N21,N23,N37,N53)
N35 N53 (N35,N39,N56,N21,N23,N37,N38,N52,N53)
N35 N53 (N35,N39,N56,N21,N23,N38,N52,N53)
N35 N53 (N35,N39,N56,N50,N34,N36,N37,N53)
N35 N53 (N35,N39,N56,N50,N34,N23,N37,N53)
N35 N53 (N35,N39,N56,N50,N34,N37,N53)
N35 N53 (N35,N39,N56,N50,N34,N38,N52,N53)

Table 25. Yen algorithm results: suboptimal paths whose cost is less than r ⋅ cost∗, where r = 5

Source Dest Suboptimal paths
N35 N37 (N35,N38,N52,N53,N37)

N35 N53 (N35,N38,N52,N53)

Table 26. Main algorithm results: subset of suboptimal paths whose maximum
undisclosing index is t = 4 (r = 5)
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.2.3 Results: third data set
Note that, in the following tables the source node is called N180 (it is equivalent to the old N0),
while the destinations are N182 and N297 (they are equivalent to the old N3 and N5 respectively).

Source Dest r=1.2 r=1.417 r=1.5 r=2 r=3 r=4 r=5 cost*[m]
N180 N182 (N180, N181, N182) / / / / / / 139

N180 N297 (N180, N181, N182, N297) / / / / / / 253

Table 27. Optimal paths from source N180 to destinations N182 and N297

r = 1.2

Source Dest Suboptimal paths
N180 N182 (N180,N181,N182)
N180 N182 (N180,N166,N182)
N180 N182 (N180,N182)

N180 N297 (N180,N181,N182)
N180 N297 (N180,N166,N182,N297)

Table 28. Yen algorithm results: suboptimal paths whose cost is less than r ⋅ cost∗, where r = 1.2

Source Dest Suboptimal paths
N180 N182 (N180,N181,N182)
N180 N182 (N180,N166,N182)

N180 N297 (N180,N181,N182,N297)
N180 N297 (N180,N166,N182,N297)

Table 29. Main algorithm results: subset of suboptimal paths whose maximum
undisclosing index is t = 2 (r = 1.2)
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r = 1.417

Source Dest Suboptimal paths
N180 N182 (N180,N181,N182)
N180 N182 (N180,N166,N182)
N180 N182 (N180,N182)

N180 N297 (N180,N181,N182)
N180 N297 (N180,N166,N182,N297)
N180 N297 (N180,N182,N297)

Table 30. Yen algorithm results: suboptimal paths whose cost is less than r ⋅ cost∗, where r = 1.417

Source Dest Suboptimal paths
N180 N182 (N180,N181,N182)
N180 N182 (N180,N166,N182)

N180 N297 (N180,N181,N182,N297)
N180 N297 (N180,N166,N182,N297)

Table 31. Main algorithm results: subset of suboptimal paths whose maximum
undisclosing index is t = 2 (r = 1.417)

r = 1.5

Source Dest Suboptimal paths
N180 N182 (N180,N181,N182)
N180 N182 (N180,N166,N182)
N180 N182 (N180,N182)

N180 N297 (N180,N181,N182)
N180 N297 (N180,N166,N182,N297)
N180 N297 (N180,N182,N297)
N180 N297 (N180,N182,N298,N297)

Table 32. Yen algorithm results: suboptimal paths whose cost is less than r ⋅ cost∗, where r = 1.5
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Source Dest Suboptimal paths
N180 N182 (N180,N181,N182)
N180 N182 (N180,N166,N182)

N180 N297 (N180,N181,N182,N297)
N180 N297 (N180,N166,N182,N297)

Table 33. Main algorithm results: subset of suboptimal paths whose maximum
undisclosing index is t = 2 (r = 1.5)

r = 2

Source Dest Suboptimal paths
N180 N182 (N180,N181,N182)
N180 N182 (N180,N166,N182)
N180 N182 (N180,N182)

N180 N297 (N180,N181,N182)
N180 N297 (N180,N166,N182,N297)
N180 N297 (N180,N182,N297)
N180 N297 (N180,N182,N298,N297)
N180 N297 (N180,N116,117,N297)
N180 N297 (N180,N159,N160,N181,N182,N297)

Table 34. Yen algorithm results: suboptimal paths whose cost is less than r ⋅ cost∗, where r = 2

Source Dest Suboptimal paths
N180 N182 (N180,N181,N182)
N180 N182 (N180,N166,N182)

N180 N297 (N180,N181,N182,N297)
N180 N297 (N180,N166,N182,N297)

Table 35. Main algorithm results: subset of suboptimal paths whose maximum
undisclosing index is t = 2 (r = 2)
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r = 3

Source Dest Suboptimal paths
N180 N182 (N180,N181,N182)
N180 N182 (N180,N166,N182)
N180 N182 (N180,N182)

N180 N297 (N180,N181,N182)
N180 N297 (N180,N166,N182,N297)
N180 N297 (N180,N182,N297)
N180 N297 (N180,N182,N298,N297)
N180 N297 (N180,N116,117,N297)
N180 N297 (N180,N159,N160,N181,N182,N297)
N180 N297 (N180,N159,N160,N181,N166,N182,N297)
N180 N297 (N180,N177,N164,N297)
N180 N297 (N180,N177,N178,N164,N297)
N180 N297 (N180,N177,N168,N164,N297)
N180 N297 (N180,N124,N177,N164,N297)
N180 N297 (N180,N170,N171,N296,N297)
N180 N297 (N180,N183,N170,N171,N296,N297)
N180 N297 (N180,N183,N170,N171,N297)
N180 N297 (N180,N183,N170,N171,N117,N297)
N180 N297 (N180,N183,N303,N299,N298,N297)

Table 36. Yen algorithm results: suboptimal paths whose cost is less than r ⋅ cost∗, where r = 3

Source Dest Suboptimal paths
N180 N182 (N180,N181,N182)
N180 N182 (N180,N166,N182)

N180 N297 (N180,N181,N182,N297)
N180 N297 (N180,N166,N182,N297)

Table 37. Main algorithm results: subset of suboptimal paths whose maximum
undisclosing index is t = 2 (r = 3)

r = 4

Source Dest Suboptimal paths
N180 N182 (N180,N181,N182)
N180 N182 (N180,N166,N182)
N180 N182 (N180,N182)
N180 N182 (N180,N159,N160,N181,N182)
N180 N182 (N180,N159,N160,N181,N166,N182)
N180 N182 (N180,N116,N117,N297,N182)
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N180 N297 (N180,N181,N182)
N180 N297 (N180,N166,N182,N297)
N180 N297 (N180,N182,N297)
N180 N297 (N180,N182,N298,N297)
N180 N297 (N180,N116,117,N297)
N180 N297 (N180,N159,N160,N181,N182,N297)
N180 N297 (N180,N159,N160,N181,N166,N182,N297)
N180 N297 (N180,N177,N164,N297)
N180 N297 (N180,N177,N178,N164,N297)
N180 N297 (N180,N177,N168,N164,N297)
N180 N297 (N180,N124,N177,N164,N297)
N180 N297 (N180,N170,N171,N296,N297)
N180 N297 (N180,N183,N170,N171,N296,N297)
N180 N297 (N180,N183,N170,N171,N297)
N180 N297 (N180,N183,N170,N171,N117,N297)
N180 N297 (N180,N183,N303,N299,N298,N297)
N180 N297 (N180,N183,N303,N115,N299,N298,N297)
N180 N297 (N180,N183,N303,N115,N117,N297)
N180 N297 (N180,N183,N303,N115,N116,N117,N297)
N180 N297 (N180,N52,N309,N310,N51,N178,N164,N297)
N180 N297 (N180,N52,N290,N309,N310,N51,N178,N164,N297)
N180 N297 (N180,N52,N76,N290,N309,N310,N51,N178,N164,N297)
N180 N297 (N180,N52,N76,N290,N309,N310,N289,N51,N178,N164,N297)
N180 N297 (N180,N52,N76,N290,N309,N310,N75,N51,N178,N164,N297)
N180 N297 (N180,N52,N76,N290,N309,N310,N75,N51,N178,N168,N164,N297)
N180 N297 (N180,N52,N76,N309,N310,N51,N178,N164,N297)
N180 N297 (N180,N52,N67,N68,N51,N178,N164,N297)
N180 N297 (N180,N52,N67,N68,N310,N51,N178,N164,N297)
N180 N297 (N180,N52,N67,N68,N289,N51,N178,N164,N297)
N180 N297 (N180,N52,N67,N68,N75,N51,N178,N164,N297)
N180 N297 (N180,N52,N300,N301,N68,N51,N178,N164,N297)
N180 N297 (N180,N52,N300,N301,N51,N178,N164,N297)
N180 N297 (N180,N52,N300,N301,289,51,N178,N164,N297)
N180 N297 (N180,N52,N300,N301,N75,N51,N178,N164,N297)
N180 N297 (N180,N52,N300,N301,N75,N51,N177,N164,N297)
N180 N297 (N180,N52,N300,N301,N75,N76,N290,N309,N310,N51,N178,N164,N297)
N180 N297 (N180,N52,N300,N301,N75,N76,N290,N67,N68,N51,N178,N164,N297)

Table 38: Yen algorithm results: suboptimal paths whose cost is
less than r ⋅ cost∗, where r = 4

Source Dest Suboptimal paths
N180 N182 (N180,N116,N117,N297,N182)

N180 N297 (N180,N116,N117,N297)

Table 39. Main algorithm results: subset of suboptimal paths whose maximum
undisclosing index is t = 4 (r = 4)
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.2 – Tables of Tests

r = 5

Source Dest Suboptimal paths
N180 N182 (N180,N181,N182)
N180 N182 (N180,N166,N182)
N180 N182 (N180,N182)
N180 N182 (N180,N159,N160,N181,N182)
N180 N182 (N180,N159,N160,N181,N166,N182)
N180 N182 (N180,N116,N117,N297,N182)

N180 N297 (N180,N181,N182)
N180 N297 (N180,N166,N182,N297)
N180 N297 (N180,N182,N297)
N180 N297 (N180,N182,N298,N297)
N180 N297 (N180,N116,117,N297)
N180 N297 (N180,N159,N160,N181,N182,N297)
N180 N297 (N180,N159,N160,N181,N166,N182,N297)
N180 N297 (N180,N177,N164,N297)
N180 N297 (N180,N177,N178,N164,N297)
N180 N297 (N180,N177,N168,N164,N297)
N180 N297 (N180,N124,N177,N164,N297)
N180 N297 (N180,N170,N171,N296,N297)
N180 N297 (N180,N183,N170,N171,N296,N297)
N180 N297 (N180,N183,N170,N171,N297)
N180 N297 (N180,N183,N170,N171,N117,N297)
N180 N297 (N180,N183,N303,N299,N298,N297)
N180 N297 (N180,N183,N303,N115,N299,N298,N297)
N180 N297 (N180,N183,N303,N115,N117,N297)
N180 N297 (N180,N183,N303,N115,N116,N117,N297)
N180 N297 (N180,N52,N309,N310,N51,N178,N164,N297)
N180 N297 (N180,N52,N290,N309,N310,N51,N178,N164,N297)
N180 N297 (N180,N52,N76,N290,N309,N310,N51,N178,N164,N297)
N180 N297 (N180,N52,N76,N290,N309,N310,N289,N51,N178,N164,N297)
N180 N297 (N180,N52,N76,N290,N309,N310,N75,N51,N178,N164,N297)
N180 N297 (N180,N52,N76,N290,N309,N310,N75,N51,N178,N168,N164,N297)
N180 N297 (N180,N52,N76,N309,N310,N51,N178,N164,N297)
N180 N297 (N180,N52,N67,N68,N51,N178,N164,N297)
N180 N297 (N180,N52,N67,N68,N310,N51,N178,N164,N297)
N180 N297 (N180,N52,N67,N68,N289,N51,N178,N164,N297)
N180 N297 (N180,N52,N67,N68,N75,N51,N178,N164,N297)
N180 N297 (N180,N52,N300,N301,N68,N51,N178,N164,N297)
N180 N297 (N180,N52,N300,N301,N51,N178,N164,N297)
N180 N297 (N180,N52,N300,N301,289,51,N178,N164,N297)
N180 N297 (N180,N52,N300,N301,N75,N51,N178,N164,N297)
N180 N297 (N180,N52,N300,N301,N75,N51,N177,N164,N297)
N180 N297 (N180,N52,N300,N301,N75,N76,N290,N309,N310,N51,N178,N164,N297)
N180 N297 (N180,N52,N300,N301,N75,N76,N290,N67,N68,N51,N178,N164,N297)
N180 N297 (N180,N52,N300,N301,N75,N76,N67,N68,N51,N178,N164,N297)
N180 N297 (N180,N52,N300,N301,N75,N76,N67,N68,N51,N178,N177,N164,N297)
N180 N297 (N180,N52,N300,N137,N42,N47,N49,N164,N297)
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N180 N297 (N180,N52,N300,N137,N42,N70,N47,N49,N164,N297)
N180 N297 (N180,N52,N300,N137,N42,N56,N47,N49,N164,N297)
N180 N297 (N180,N52,N300,N137,N42,N210,N56,N47,N49,N164,N297)
N180 N297 (N180,N52,N300,N137,N42,N73,N47,N49,N164,N297)
N180 N297 (N180,N52,N300,N137,N42,N73,N47,N48,N49,N164,N297)
N180 N297 (N180,N52,N300,N137,N42,N73,N47,N296,N297)
N180 N297 (N180,N52,N300,N137,N42,N73,N47,N179,N296,N297)
N180 N297 (N180,N52,N300,N137,N42,N73,N47,N179,N296,N117,N297)
N180 N297 (N180,N52,N300,N139,N140,N51,N178,N164,N297)

Table 40: Yen algorithm results: suboptimal paths whose cost is
less than r ⋅ cost∗, where r = 5

Source Dest Suboptimal paths
N180 N182 (N180,N116,N117,N297,N182)

N180 N297 (N180,N116,N117,N297)

Table 41. Main algorithm results: subset of suboptimal paths whose maximum
undisclosing index is t = 4 (r = 5)

.3 Computational Time

r = 1.2 r = 1.417 r = 1.5 r = 2 r = 3 r = 4 r = 5

Comp. Time of the 1st Data Set [ms] 4.12 4.8417 5.55 6.1 5.3 4 5.6

Comp. Time of the 2nd Data Set [ms] 18 25 24 30.9 46.9 74.6 99.1

Comp. Time of the 3rd Data Set [ms] 93.8 142.9 159.2 161.2 287.1 866.7 1362.3

Table 42. Mean values of the computational times wrt to the value of r (budget)
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