
Model-based design of a fuzzy logic controller
for an inverse pendulum

POLITECNICO DI TORINO

Mechatronic engineer master degree
Final project work

A.Y. 2018/2019

Candidate:
Salvatore Di Natale 254192

Supervisor:
Prof. Luigi Mazza
Co-supervisor:
Eng. Marco Pontin

Dreams: the source

of innovation

Abstract

The main idea of this work is to design and realize a fuzzy controller to stabilize an
inverse pendulum pneumatically actuated. This system is widely used and studied in
academic and industrial applications. The fuzzy logic introduces a new design method in
this classical system.
The system needs a double control, the position of the cart and the angle of the pendu-
lum. This problem has been solved by using two nested feedback control loop. All the
design has been done using the model-based approach.
The challenge of this work is to use a very low-cost controller, an Arduino board, to sta-
bilize an inverted pendulum mechanically connected to a pneumatic actuator, so also the
system is a low-cost application. The movement of the pneumatic actuator is controlled
by four 2/2 digital pneumatic valves that are controlled by the Arduino board using the
PWM technique.The Arduino board is programmed using the fuzzy logic and the control
action is able to stabilize the cart in a given position.
After an introduction to the fuzzy logic (Chapter 2) and the description of the test bench
(Chapter 3) I will provide a first design of a linear fuzzy controller starting from a PID
controller already designed (Chapter 4). Then I will make the nonlinear model (Chapter
5) to design the nonlinear fuzzy controller (Chapter 6). In the chapter 7 I will provide
the explanation of the program for the Arduino board. The experimental tests will not
do due to time constraints, for this reason the program for the Arduino board is only a
sketch and it should be tested and validated (I ensure that there are not compiler errors).
So the purpose of this work is to give a new method (the fuzzy controller) to stabilize
an inverse pendulum and its cart with low cost application following the model-based
approach.

Contents

List of Figures 4

List of Tables 6

1 Introduction 7

2 An introduction to fuzzy logic 12

3 Description of the test bench 17

3.1 Pneumatic components . 19

3.2 Electric component . 19

3.2.1 PCB . 21

3.3 Mechanic components . 24

4 First design approach 27

4.1 Control structure with PID controllers . 27

4.1.1 Plant’s transfer functions . 28

4.1.2 PID controllers . 32

4.2 PD+I linear fuzzy controllers . 33

4.3 Stability analysis . 40

5 Nonlinear model of the plant 43

5.1 Mechanical plant . 43

5.2 Pneumatic plant . 47

5.2.1 Nonlinear model of the pneumatic actuator 47

5.2.2 Model of the 2/2 NC proportional electrovalve 51

5.3 Model’s test and validation . 54

5.3.1 Test of the mechanical plant . 54

5.3.2 Test of the 2/2 NC proportional electrovalve 55

5.3.3 Test of the pneumatic model . 57

5.3.4 Test of the complete model . 59

6 Design of the nonlinear fuzzy controller 62

6.1 Simulation results and disturbance analysis 65

2

7 Arduino program 69
7.1 System’s data storage . 69
7.2 First setup at starting . 70
7.3 Setup of the timer interrupt . 71
7.4 Timer interrupt . 72

8 Conclusions and further developments 75

A Sketch of the program for Arduino 77

Bibliography 83

3

List of Figures

1.1 Example of an inverse pendulum [8] . 7

1.2 A segway® . 8

1.3 Comparison between the inverse pendulum and an humanoid robot 9

1.4 Membership functions of inputs and outputs 10

1.5 Overall control structure for the rotary inverted pendulum [5] 10

2.1 Glass filled with water . 12

2.2 Comparison between Boolean and Fuzzy logics [7] 13

2.3 A membership function . 13

2.4 A possible fuzzy set for the input variable “temperature” 14

2.5 Main window of the Fuzzy logic toolbox of MatLab® 15

2.6 The windows of the fuzzy logic toolbox accessible through the “edit” menu 16

3.1 The test bench . 17

3.2 Schematic of the test bench [6] . 18

3.3 Valve AP-7211-LR2-U7 and its ISO schematic 19

3.4 Arduino Mega 2560 . 20

3.5 Schematic of a voltage amplifier circuit in the PCB 21

3.6 Schematic of a voltage divider circuit in the PCB 22

3.7 Schematic of the PCB . 23

3.8 PCB . 24

3.9 Drawing of the joining between cart and pendulum [6] 25

4.1 Block scheme of the overall control structure 27

4.2 Scheme of the mechanical system: cart plus inverted pendulum [6] 28

4.3 Free body diagram of the mechanical system [6] 29

4.4 Schematic of the modeled pneumatic 4/3 valve 30

4.5 Step response with PID controllers . 33

4.6 Block scheme of a PD+I fuzzy controller 34

4.7 Set membership functions of e(t) (a), ė(t) (b) and u(t) (c) 36

4.8 Control structure of the cart controller (a) and of the pendulum controller
(b) . 37

4.9 Overall control structure with fuzzy controllers 38

4.10 Step response with k = [1 30] (a) and with k = [30 60] (b) 39

4

4.11 Step response with PID controllers compared with the one with fuzzy con-
trollers . 40

4.12 Nichols plot of the open loop transfer function 42

5.1 Block scheme of the overall nonlinear system 43
5.2 Scheme of the inverse pendulum . 44
5.3 Free body diagram of the cart . 44
5.4 Free body diagram of the pendulum . 45
5.5 Simulink® block scheme for the equation (5.4) 46
5.6 Simulink® block scheme for the equation (5.5) 46
5.7 The sbsystems that compose the pneumatic plant 47
5.8 Free body diagram of the piston and rod of the actuator 47
5.9 Block scheme of the pressure model for chamber A 49
5.10 Block scheme of the pressure model for chamber B 49
5.11 Block scheme of the end strokes of the actuator 50
5.12 Block scheme of the pneumatic actuator 51
5.13 Scheme of a 2/2 NC proportional electrovalve 51
5.14 Simulink® block scheme of a 2/2 NC proportional electrovalve 52
5.15 Simulink® block scheme of the pneumatic circuit 53
5.16 Plot of the response of the mechanical plant with a constant force of 0.1N

as input . 54
5.17 Plot of the flow rate behavior of the valve with a constant unit input . . . 55
5.18 Plot of the flow rate behavior of the valve with a ramp input with 0.1 slope 56
5.19 Plot of the flow rate behavior of the valve with different values of r 57
5.20 Block scheme for the test of the pneumatic model 57
5.21 Test of the pressure model . 58
5.22 Test of the pneumatic model . 59
5.23 Test of the complete model . 60
5.24 Step response with linear fuzzy controller of the two models 61

6.1 Graphic explanation of the minimum function for the logic AND 63
6.2 Set-membership functions of the output variable 64
6.3 Step response with linear and nonlinear controller 65
6.4 Response with a step disturbance . 66
6.5 Response with an impulsive disturbance 67
6.6 Behavior of the system with a non equal initial pressure in the two cham-

bers of the actuator . 68

5

List of Tables

4.1 Experimental numerical values of the model’s variables 32
4.2 Rule table of the fuzzy PD+I controller 36

6.1 Rule table of the nonlinear fuzzy controller 64

6

Chapter 1

Introduction

The inverse pendulum is widely studied in industrial application and for research reasons.
It is a mechanical unstable system that consists of a rigid bar where at the upper end
there is a concentrated mass. The bar is attached by a hinge in a mobile base. The base
(generally a cart) can move freely (its moving can be rotative or linear) in order to guar-
antee the stabilization of the bar in the vertical position which is an unstable equilibrium
point [10].
This type of problem is part of the main class of the under actuated mechanical system,
i.e. all the systems that have less actuated degrees of freedom with respect to their real
degrees of freedom.[8].
For example the inverted pendulum in [8] (very similar to the one that will be used here)
has one input (u), the force, and two degrees of freedom (x and θ), one linear motion of
the cart and one rotative motion around the joint of the pendulum (figure 1.1).

Figure 1.1: Example of an inverse pendulum [8]

Different types and model of the inverse pendulum exists. They differ by:

7

1 – Introduction

� The actuation of the base: it can be a cart or a roadless piston [3] or a cart connected
with a pneumatic piston as in the case of this essay.

� The stabilization action: rotative [5], or linearly as in the case of this essay.

The common objective is to stabilize the bar of the pendulum in its unstable equilibrium
point.
A very common example of application of the inverse pendulum is represented by the
robot’s class of the two wheeled moving robot [11]. From this type of robot the most
common is the Segway® (figure 1.2).

Figure 1.2: A segway®

We can find other applications of the inverse pendulum in military environment, in
fact similar algorithms are used to stabilize some kind of missiles and airplanes [1].
Recent studies [9] demonstrate the possibility to use the model of the inverse pendulum
to develop a control action to stabilize an anthropomorphic robot. In figure 1.3 is possible
to see a comparison between the inverse pendulum and a humanoid robot.

8

1 – Introduction

Figure 1.3: Comparison between the inverse pendulum and an humanoid robot

All of these applications are, in generally, expensive in terms of hardware of the con-
troller and in terms of realization of the system. A low-cost choice is to realize the
actuation of the cart of the pendulum with pneumatics as done in [3] and in [4].
Focusing on fuzzy logic a very interesting work is the [5]; where a fuzzy controller is used
to stabilize a rotary inverted pendulum actuated with an electric motor. In this article
the system is, first of all, modeled and simulated in MatLab® and then the controller is
applied in a real system. The goal of the control action is to stabilize the pendulum in
the vertical position and also to stabilize the arm in a given position.
Concerning the controller configuration, 4 inputs and one output are used. The four in-
puts are: the pendulum angle and its velocity, the arm angle and its velocity. The fuzzy
sets of inputs and output are shown in figure 1.4(a) and 1.4(b).

9

1 – Introduction

(a) Membership functions of four standardized inputs [5]

(b) Membership functions of standardized output [5]

Figure 1.4: Membership functions of inputs and outputs

This configuration results in 81 rules visible in the appendix of the article.
The inputs and output are weighted with different gain. The overall control structure is
shown in figure 1.5.

Figure 1.5: Overall control structure for the rotary inverted pendulum [5]

The gains K1,K2,K3,K4,K5 are chosen with trial and error. At the end of the article
the experimental results shown that the system is stable with some oscillations and shows
that the fuzzy controller is suitable to stabilize the inverse pendulum.

10

1 – Introduction

With my work I will design a fuzzy controller to stabilize a linear inverse pendulum
pneumatically actuated. The challenge of this work is to use a very low-cost controller, an
Arduino board, to stabilize an inverted pendulum mechanically connected to a pneumatic
actuator. The movement of the pneumatic actuator is controlled by four 2/2 digital
pneumatic valves that are controlled by the Arduino board using the PWM technique.
The Arduino board is programmed using the fuzzy logic and the control action is able to
stabilize the cart in a given position.
After an introduction to the fuzzy logic (Chapter 2) and the description of the test bench
(Chapter 3) I will provide a first design of a linear fuzzy controller starting from a PID
controller already designed (Chapter 4). Then I will make the nonlinear model (Chapter
5) to design the nonlinear fuzzy controller (Chapter 6). In the chapter 7 I will provide
the explanation of the program for the Arduino board. The experimental tests will not
do due to time constraints, for this reason the program for the Arduino board is only a
sketch and it should be tested and validated (I ensure that there is not compiler errors).
So the purpose of this work is to give a new method (the fuzzy controller) to stabilize
an inverse pendulum and its cart with low cost application following the model-based
approach.

11

Chapter 2

An introduction to fuzzy logic

The classical logic or Boolean logic provides only two values: true/false or one/zero. Now
thinking at most of the reality conditions, a statement is rarely absolutely true or abso-
lutely false. With the fuzzy logic a statement can be partially true or partially false.
A great example is a glass filled with water (figure 2.1). The glass can be full or empty;
or it can be partially full or partially empty. With this very simple example is possible
to see the difference between Boolean logic and Fuzzy logic.

Figure 2.1: Glass filled with water

Another example from [7] is an air conditioner. With the Boolean logic the tempera-
ture is hot or cold, but with the Fuzzy logic it can be “too cold” or “not so cold” or “too
hot” and so on. Considering the statement “If the temperature is greater than 21°C it is
hot” we can see the difference between the two logics in figure 2.2 where the dashed line
represents the truth function of a statement with Boolean logic and the continuous line
represents the truth function of a statement with Fuzzy logic.

12

2 – An introduction to fuzzy logic

Figure 2.2: Comparison between Boolean and Fuzzy logics [7]

In figure 2.2 by the Fuzzy logic the temperature goes from cold to hot in a continuous
fashion (at least in principle). That represents a very advantage in the control world
because, for instance, by the Fuzzy logic it is possible to control the speed of the fans of
the air conditioner in depending of the temperature of the room continuously and, hence,
the control action should be more precise and more efficient.
A fuzzy controller is known to be a rule-based controller. It consists essentially in a
series of if-then rules. Each rule is composed of an antecedent condition (“if”) and of a
consequent condition (“then”). The precedent condition is the result of the application
of the fuzzy membership function to the input variables. The consequent condition is the
result of the application of the membership functions to the output variables.
A membership function is the core of a fuzzy controller. It is a truth function for a
linguistic variable (e.g. “high”). A clearer explanation is represented in figure 2.3.

Figure 2.3: A membership function

13

2 – An introduction to fuzzy logic

In the figure the variable x is the input or output variable. In depending of its value
the membership function can assume different values of truth (from 0 to 1). In general a
variable has more than one membership functions with different names and the set of all
membership functions is called fuzzy set. Recapping the example of the air conditioner
a possible fuzzy set for the input variable (the temperature) can be the following one
represented in figure 2.4.

Figure 2.4: A possible fuzzy set for the input variable “temperature”

The range of the input variable is chosen by the designer and it is not the real range,
but it is fuzzified, i.e. it is multiplied for a gain. Also, the values and the shape of
each membership function is decided by the designer. The membership function can be
triangular, trapezoidal, gaussian etc.
For the output variables is the same, the designer chooses a fuzzified range and the fuzzy
set.
Once the output is computed accordingly to the rule-base it needs to be defuzzied. In
fact, more than one rule can be activated. The output value will be the result of an
algorithm. The most common one is the COG (Center of gravity) that consists in a
weighted average between all the values given by each rule (if the rule is not activated its
output is zero).
The Fuzzy controllers are widely used in industries for the following advantages:

� The control strategy consists of if-then rules and they are built using common words
like “low”, “high”. In this way process operators can easily understand what the
controller is doing, and designers can embed their experience directly. A fuzzy
controller, in fact, is a human intuition controller.

� A fuzzy controller can accommodate multiple inputs and multiple outputs and they
are connected in the if-then rules with the logic connectives AND/OR. All the rules
are executed in parallel and the outputs are defuzzied according to a defuzzification
method.

In principle a fuzzy controller is intuitively designed from experience. A sort of rigorous
method exists to design it and to verify its stability. The method is depicted in [2] and
it is:

14

2 – An introduction to fuzzy logic

� Design a PID controller

� Replace it with a linear fuzzy controller

� Make it nonlinear

� Fine-tune it

I will use this method in the following chapters to design my fuzzy controller.
Finally, concerning the tools that I will use, they are essentially two. A MatLab® tool
called “Fuzzy logic toolbox” that is a very powerful tool to implement in Simulink® a
fuzzy controller in a graphical view. This tool is useful to simulate the behavior of a con-
trol structure with a fuzzy controller. The tool provides a window in wich the controller
can be set. The window can be open trought the command “fuzzy” (figure 2.5). In this
window the designer can add IN/OUT variables and selected all the methods for the logic
functions and for the defuzzification process.

Figure 2.5: Main window of the Fuzzy logic toolbox of MatLab®

Through the menu “edit” is possible to access to the different area of the tool. They
are two:

� Membership functions: In this window all the membership functions for each
IN/OUT variable can be selected (shape and range). It is shown in figure 2.6(a).

15

2 – An introduction to fuzzy logic

� Rules: In this window all the rules are written in a linguistic way (If...AND—OR...then...).
It is show in figure 2.6(b)

(a) Window of the fuzzy logic toolbox to set
the membership function

(b) Window of the fuzzy logic toolbox to set
the rules

Figure 2.6: The windows of the fuzzy logic toolbox accessible through the “edit” menu

Another tool is a C-library called “Fuzzy.h”, it will be used in the Arduino idle to
implement in a OOP fashion the algorithm of a fuzzy controller in the Arduino board.
The library provides a class called “Fuzzy” where there are a set of functions to set very
easily the controller. They will be explained in detail in a dedicated chapter.

16

Chapter 3

Description of the test bench

Figure 3.1: The test bench

The test bench in figure 3.1 is designed and realized by Marco Pontin [6] and Marino
Alessandro. Its main features are the mounting and maintenance simplicity; it is possible
also to modify some parameters in order to see their effects. The last feature is very
important in a didactic device, that is the case of this bench.
The main components of the test bench can be classified in three categories: pneumatic,
electric, mechanic.
The pneumatic components are:

17

3 – Description of the test bench

� Pneumatic actuator

� 2/2 NC electrovalves

� Pipeline

The electric components are:

� Angular transducer

� Linear transducer

� Power suppliers

� Arduino board and two PLCs (the PLCs will not be used)

� PCB

The mechanic components are:

� Main structure

� Ball recirculating linear guide

� Cart/Pendulum group

An overall schematic view of the test bench is shown in figure 3.2. This figure is significant
to better understand how the components are connected.

Figure 3.2: Schematic of the test bench [6]

18

3 – Description of the test bench

In the following each component will be explained in detail, for more building or de-
signing information please see [6].

3.1 Pneumatic components

The pneumatic actuator is a double effect linear actuator without dampers. It has a
stroke of 500mm. It is fixed to the main structure through a hinge and to the cart
through a spherical joint. The two joints allow to compensate some misalignments and
they guarantee that the force is always applied along the axis of the rod.
Four valves are collocated in the base of the bench. They are 2/2 normally closed propor-
tional electrovalve (figure 3.3). Their opening or closing allows the piston of the actuator
to perform a linear movement.

Figure 3.3: Valve AP-7211-LR2-U7 and its ISO schematic

Their opening is controllable by a driver that guarantee a linear proportional behavior.
The driver perform a PWM feedback current control at 500Hz. By setting as input a volt-
age it is able to perform the control action to the solenoid of the valve, so the driver will be
controlled with a PWM voltage signal provided by the Arduino board in the range 0÷5V
at a greater frequency than the working one of the driver. So after a voltage amplifier
that doubles the voltage provided by the Arduino board, it is sent to the driver: a voltage
equal to 0Vdc corresponds to a 0% duty cycle and so the valve is totally closed, otherwise
a voltage equal to 10Vdc corresponds to a 100% duty cycle and so the valve is totally open.

3.2 Electric component

With the angular transducer the Arduino can measure the angular position of the pendu-
lum’s bar. This is possible because the angle measurement is transformed into a voltage
signal by this transducer. In particular it is a Hall’s effect transducer.
On the same way of the angular transducer, with the position transducer the Arduino
can measure the linear position of the cart. It is an LVDT type and it is fixed to the test

19

3 – Description of the test bench

bench and to the cart through two hinge in order to compensate some misalignments. Its
stroke is equal to the stroke of the pneumatic actuator (500mm) and the output voltage
can assume a value in the range 0÷10Vdc. Due to that range it is not possible to connect
it directly to the analog input pin of the Arduino board because it accepts a maximum
voltage of 5Vdc. So the output voltage of the transducer needs to be halved; hence be-
tween the transducer and the analog input pin of the Arduino there is a voltage amplifier
which will be described after.
To apply the control action to the plant an Arduino Mega 2560 (figure 3.4) board pro-
grammed with Fuzzy logic is used. The Arduino Mega 2560 is a microcontroller board. It
is based on the microchip ATmega2560. It’s ports map consists of 54 digital input/output
pins (of which 15 can be used as PWM outputs), 16 analog inputs, a 16 MHz crystal oscil-
lator, a USB connection, a power jack and a reset button. The board can be programmed
with the Arduino Software (IDE) that provides high-level functions using the C-language.

Figure 3.4: Arduino Mega 2560

The ATmega2560 on the Mega 2560 is already preprogrammed with a bootloader that
allows to upload new code to it without the use of an external hardware programmer.
It has 256 KB of flash memory for storing code (of which 8 KB is used for the bootloader)
and 8 KB of SRAM.

20

3 – Description of the test bench

3.2.1 PCB

A PCB has been designed by me and realized by the online shop JLCPCB. The PCB
works as interface between the sensors, valves’driver and the Arduino board. In fact the
Arduino accepts as input and gives as output a voltage in the range 0 ÷ 5V ; but, as
explained before, the components works with different range of voltages.
In particular the valves’ drivers works with a voltage in the range 0÷ 10V , so a voltage
amplifier circuit that doubles the voltage given by the Arduino board is needed. Since
the valves are controlled in couple, two of these circuits are needed. A schematic of them
is shown in figure 3.5.

Figure 3.5: Schematic of a voltage amplifier circuit in the PCB

In figure 3.5 the operational amplifier is a TL081 provided by Texas Instrument and
the resistor’s values are chosen accordingly to the gain of the circuit that is:

A = 1 +
R2

R1
= 2⇒ R2

R1
= 1 (3.1)

So according to equation (3.1) the two resistors must be equal. The value can be anyone
and it is 10kΩ . With referring to figure 3.5 there is also a voltage divider to supply the
operational amplifier. That is necessary because the voltage supplier in the test bench
gives +24V . In this way the +24V can be divided into +12V and −12V . Concerning
the input of the circuits they are, obviously, the voltage gives by the Arduino board (the
input in the non-inverting pin of the op-amps from the pins 13 and 4 of the Arduino
board). The output of the op-amp will be connected to a pin in the PCB that will be
connected to the valve’s driver (pins X2-2 and X3-2).
The LVDT position sensor gives a voltage in the range 0÷ 10V so it needs to be halved.
Since the input port of the Arduino has a very high impedance a simple voltage divider
can be used to half the voltage. It’s schematic is shown in figure 3.6 where the sensor is
connected in the pins X5-2 (for the input in the port A8 in the Arduino board) and X5-1
(for the ground). Also in this case the resistors’ values must be equal and they are 100kΩ.

21

3 – Description of the test bench

Figure 3.6: Schematic of a voltage divider circuit in the PCB

Referring to figure 3.6 there are also other two pins (X4-1 and X4-2) directly connected
to the pin A2 and to the ground of the Arduino board. They are for the angular sensor
that gives a voltage in the range 0 ÷ 5V so no modifications are needed and it can be
connected directly to the pin of the Arduino board.
The total schematic of the PCB is shown in figure 3.7 where also a schematic of the shield
for the Arduino Mega 2560 is included.

22

3 – Description of the test bench

Figure 3.7: Schematic of the PCB

The realized PCB with all the components is shown in figure 3.8.

23

3 – Description of the test bench

Figure 3.8: PCB

3.3 Mechanic components

The cart and the pendulum are joined together trough a hinge in the cart, in this way
the pendulum can only rotate around one axis with respect to the cart.
The pendulum is built such that an user can modify easily its length and the concentrated
mass at one end. In particular the bar is telescopic, in this way its length can be modified
in the range 400÷ 700mm. I will use a value of 500mm that is a middle value. The mass
can be changed by changing a steel disk.
All the component of the pendulum except the concentrated mass is made of aluminium
because in this way the bar is very light and its inertia moment can be neglected, so it is
very near to an ideal pendulum with only a concentrated mass at one end.
The main goal of the cart is to allow the control action. Screwed holes allow to connect
the cart to the pneumatic actuator and to the LVDT sensor. There are also two small
plates to limit the angular stroke of the pendulum, in this way it can not fall in the bench.
A drawing of the joining between the cart and the pendulum is shown in figure 3.9 where
the movement axes of the system are put in evidence.

24

3 – Description of the test bench

Figure 3.9: Drawing of the joining between cart and pendulum [6]

25

3 – Description of the test bench

The degrees of freedom of this system are two and they are computed through the
Grubler’s equation:

dof = 3(m− 1)−
m∑
i=1

li = 6− 2− 2 = 2 (3.2)

Where m is the number of bodies and li is the number of degrees of freedom subtracted
by the i-th cinematic couple.
The number of the degrees of freedom is correct because the system can perform only
one linear movement (the movement of the cart) and only one rotative movement (the
movement of the pendulum).
Finally, under the cart there is ball recirculating linear guide. Its goal is to allow the cart
to slide easily and with a very low friction.The cart of the inverse pendulum is fixed to
the slider through 4 threaded holes in the slider.

26

Chapter 4

First design approach

A procedure to design a fuzzy controller is explained in [2]. Essentially it consists in 4
steps:

1. Build and tune a conventional PID controller first

2. Replace it with an equivalent linear fuzzy controller

3. Make the fuzzy controller nonlinear

4. Fine-tune it

So according to this procedure I need a conventional PID controller. This controller is
already designed in [6].
In this chapter I will exploit the linear control structure with the PID controllers and
then I will design the fuzzy controllers.

4.1 Control structure with PID controllers

As already said the goal is to stabilize the angle of the pendulum and also the position
of the cart. So the idea (from [6]) is to make two controllers with two nested feedback
control loop, one to control the position of the cart (x) and one to control the angle of
the pendulum (θ).
The block scheme of the overall control structure is shown in figure 4.1.

Figure 4.1: Block scheme of the overall control structure

27

4 – First design approach

4.1.1 Plant’s transfer functions

In order to make the linear model of the plant I did the same considerations and hy-
pothesys made in [6], in this way I can do a comparison between the response using the
PID controllers and the response using the fuzzy controllers; hence I will provide a brief
explanation of the used equations. For more details please see [6].
The overall system is divided into two subsystems: a mechanical system composed by the
cart and the pendulum and a pneumatic system composed by the actuation valve and
the pneumatic cylinder.
The reference conditions of the overall plant are a situation in which the piston is in the
middle of its stroke (this corresponds to x=0) and the pendulum is in the vertical position
(θ = 0).
The starting point is the model of the mechanical system. A scheme of the system is
visible in figure 4.2 where the arrows indicate the positive verse of the generalized coor-
dinates (x and θ) and their derivatives.

Figure 4.2: Scheme of the mechanical system: cart plus inverted pendulum [6]

Now the goal is to find a set of equations that give the generalized coordinates in
depending of the input quantity. The input quantity is the force F that the pneumatic
cylinder gives to the cart. To do that the Newtonian’s equations is used with respect to
the free body diagram represented in figure 4.3

28

4 – First design approach

Figure 4.3: Free body diagram of the mechanical system [6]

Since this first design is based on linear assumptions, the following approximations
are made:

θ ≈ 0

θ̇2 ≈ 0

sin (θ) ≈ θ
cos (θ) ≈ 1

So the equations for the mechanical system are (the subscript c stands for cart):

Mcẍ+ bcẋ− (m+Mc) = F (4.1)

Mcẍ+ bcẋ−mgθ = F (4.2)

The pneumatic system is modeled considering the air as ideal (R = 287 J
kgK , k = 1.4) and

isothermal transformation.
The 4 valves are modeled as a single 4/3 proportional valve, since they are used in pairs.
A scheme of the valve is shown in figure 4.4.

29

4 – First design approach

Figure 4.4: Schematic of the modeled pneumatic 4/3 valve

Referring to figure 4.4 the port S is the supply port, the port D is the discharge port,
the ports A and B are connection ports for the actuator (A for the out-stroke and B for
the in-stroke). The input command is in the range [-1 1].
A value equal to 1 corresponds to the position in which the port S is completely connected
to the port A and the port D is completely connected to the port B.
A value equal to -1 corresponds to the position in which the port S is completely connected
to the port B and the port D is completely connected to the port A.
A value equal to 0 corresponds to the central position in which all the ports are completely
closed.
From now on when referring to pneumatic actuator the letter A corresponds to the rear
chamber and letter B corresponds to the front chamber.
The equations are linearized around the working point defined by pA = pB = ps/2 (where
ps is the supply pressure) and the reference condition (x=0).
So starting from the standard ISO equation for the flow rate in pneumatic valves and
making some computations the equations for the pressure in the two chambers of the
pneumatic actuator are:

ṗA =
p0
2ρ0
· Kpsu
VA0

− AAẋps
2VA0

(4.3)

ṗB = − p0
2ρ0
· Kpsu
VB0

+
ABẋps
2VB0

(4.4)

Where:

� p0 is the air pressure of the environment

� ρ0 is the air density of the environment

� K = Ceqρ0
1−b

� Ceq is the equivalent conductance of the valve considered as directly proportional
to u

� b is the critical pressure ratio of the valve

� ps is the supply pressure

� u is the actuation command

30

4 – First design approach

� VA0 is the volume of the rear chamber of the pneumatic cylinder in the reference
condition

� VB0 is the volume of the front chamber of the pneumatic cylinder in the reference
condition

� AA is the rear area of the piston

� AB is the front area of the piston

Collecting all the constant terms the equations (4.3) and (4.4) becomes:

ṗA = −CAẋ+KAu (4.5)

˙pB = CBẋ−KBu (4.6)

So, finally, the equation for the force is (the subscript P stands for piston):

F = pAAA − pBAB − bpẋ−MP ẍ (4.7)

Now applying the Laplace transform of the equations (4.1) (4.2) (4.5) (4.6) (4.7) it is
possible to retrieve the transfer functions between the output u and the input θ (Guθ)
and between the first output θ and the input x (Gθx):

Guθ=
(KA+AA+KBAB)s

(MC+MP)ls4+(bC+bP)ls3−(m+MC+MP)gs2+(AACA+ABCB)ls2−(bC+bP)gs−(AACA+ABCB)g
· ls

2−g
s2

(4.8)

Gθx =
ls2 − g
s2

(4.9)

In this way the two transfer functions can be put in series as depicted in figure 4.1.
The numerical values of the variables are shown in the table 4.1.

31

4 – First design approach

Numerical data

l Pendulum length 0.5m

m Concentrated pendulum mass 0.2Kg

MC Cart’s mass 1.8Kg

MP Piston’s mass 0.4Kg

b Friction coefficient 20.83N s
m

AA Area of the rear chamber of the piston 2.01 · 10−4m2

AB Area of the front chamber of the piston 1.73 · 10−4m2

CA
AAps
2VA0

1200000

CB
ABps
2VB0

120000

KA
p0
2ρ0
· KpsVA0

2177000

KB
p0
2ρ0
· KpsVB0

2534000

Table 4.1: Experimental numerical values of the model’s variables

4.1.2 PID controllers

From figure 4.1 the two controllers are inserted in the control structure in such a way that
the first controller gives the θset to the second controller in depending of the difference of
the actual position of the cart and the setting position. The second controller gives the
input command to the plant in depending of the difference between the actual angle of
the pendulum and the angle given from the first controller.
This choice of design can be better understood with the following example.
If, for example, the cart is in 0mm and we want to move it to 2mm, the first thing to
do is to move the cart backward in order to move the pendulum with a certain negative
angle. Then we have to move the cart forward to 2mm to re-stabilize the pendulum. So
in this way we can move the cart in the wanted position.
The general transfer function of a PID controller is the following one:

C = kp + ki +
kds

Tfs+ 1
(4.10)

32

4 – First design approach

And considering the (4.10) the transfer functions of the two controllers are:

Cx = −0.000802− 4.68 · 10−6

s
− 0.0306s

0.00875s+ 1
(4.11)

Cθ = 2.09 +
6.31

s
+

0.103s

0.000875s+ 1
(4.12)

The (4.11) is the transfer function of the first controller or the cart controller and the
(4.12) is the transfer function of the second controller or the pendulum controller. The
two transfer functions are provided by [6].
The response is shown in figure 4.5 with xset as a 0.05 step with step time at 1s.

0 2 4 6 8 10 12 14 16 18 20

t [s]

-0.02

0

0.02

0.04

0.06

0.08

x
 [
m

]

0 2 4 6 8 10 12 14 16 18 20

t [s]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

 [
d
e
g
re

e
s
]

Figure 4.5: Step response with PID controllers

4.2 PD+I linear fuzzy controllers

The fuzzy controllers take as input the error, its derivative and its integral. According to
[2] I choose a a PD+I fuzzy controller and not PID fuzzy controller because the second
type requires three premise inputs and, if we make it simple, 3 linguistic terms per input.
So the complete rule base consists of 33 = 27 rules. It is difficult to set all the rule base
and also to set the integral action. So a more simple solution is to combine a PD fuzzy
controller (FPD) and a crisp integral action. This structure is shown in figure 4.6.

33

4 – First design approach

Figure 4.6: Block scheme of a PD+I fuzzy controller

According to figure 4.6 the general transfer function is:

u(t) =

[
f(GE · e(t), GCE · ė(t)) +GIE ·

∫ t

0
e(τ)dτ

]
·GU (4.13)

The function f is the function of the fuzzy controller. If it is linear and equal to the sum
function it becomes:

f(GE · e(t), GCE · ė(t)) ≈ GE · e(t) +GCE · ė(t) (4.14)

This function can be obtained by setting the product as AND method and as Implication
method, the probabilistic or as OR method, the COG as defuzzification method.
So, the equation of a linear fuzzy controller is:

u(t) =

[
GE · e(t) +GCE · ė(t) +GIE ·

∫ t

0
e(τ)dτ

]
·GU (4.15)

Now comparing the (4.15) with the (4.10), a set of equation can be found to get the gains
of the fuzzy controller.

GU =
Kp

GE
(4.16)

GCE =
Kd

GU
(4.17)

GIE =
Ki

GU
(4.18)

The free parameter is GE that is chosen considering the maximum error of the input
variable (emax) and the maximum value of its fuzzified value (fmax):

GE =
fmax
emax

(4.19)

34

4 – First design approach

So considering that the maximum error for the linear position is 0.25mm and for the angle
is 20◦ = 0.35rad the corresponding gains are the following. The subscript “a” stands for
angle and is inserted in the gains for the pendulum controller; the subscript “l” stands
for linear and is inserted in the gains for the cart controller.

GEa = 286.479 GEl = 400

GUa = 0.0073 GUl = −2 · 10−6

GCEa = 14.12 GCEl = 1.53 · 104

GIEa = 865 GIEl = 2.33

To set the fuzzy controller I used the “Fuzzy Logic Toolbox” of MatLab®.
As explained in [2] a very common first choice of the structure of the fuzzy controller is
to set:

� For the input variable e(t) the range [-100 100] and three triangular functions: “Neg-
ative” (N) centered in -100, “Zero” (Z) centered in 0, “Positive” (P) centered in 100.
Figure 4.7(a)

� For the input variable ė(t) the range [-100 100] and three triangular functions: “Neg-
ative” (N) centered in -100, “Zero” (Z) centered in 0, “Positive” (P) centered in 100.
Figure 4.7(b)

� For the output variable the range [-100 100] and five singletons: “Negative big”
(NB) centered in -100, “Negative small” (NS) centered in -50, “Zero” (Z) centered
in 0, “Positive small” (PS) centered in 50, “Positive big” centered in 100. Figure
4.7(c)

35

4 – First design approach

(a) Set membership functions of e(t) (b) Set membership functions of ė(t)

(c) Set membership functions of u(t)

Figure 4.7: Set membership functions of e(t) (a), ė(t) (b) and u(t) (c)

The main criterion to write the rules is to set the control action as big as is e(t) and then
as big as is ė(t) accordingly to its sign. Following this criterion I write the rule base. It
is shown in matrix form in the following table where in red are the linguistic value of the
input and in blue the linguistic value of the output.

ė(t)

e(
t)

N Z P
N NB NS Z
Z NS Z PS
P Z PS PB

Table 4.2: Rule table of the fuzzy PD+I controller

The table 4.2 corresponds to the following linguistic rules:

1. IF e is N AND ė is N => u is NB

2. IF e is N AND ė is Z => u is NS

36

4 – First design approach

3. IF e is N AND ė is P => u is Z

4. IF e is Z AND ė is N => u is NS

5. IF e is Z AND ė is Z => u is Z

6. IF e is Z AND ė is P => u is PS

7. IF e is P AND ė is N => u is Z

8. IF e is P AND ė is Z => u is PS

9. IF e is P AND ė is P => u is PB

Finally, the two controllers have to be inserted in the Simulink® scheme. In order to do
that I have created two subsystems as shown in figure 4.8(a) for the cart controller and
in figure 4.8(b) for the pendulum controller.
The integrator and derivative are discretized (since the fuzzy controller works in discrete
time) and so the z-transform is used. The sampling time Ts is 0.01s.

(a) Control structure of the cart controller

(b) Control structure of the pendulum controller

Figure 4.8: Control structure of the cart controller (a) and of the pendulum controller
(b)

37

4 – First design approach

In figure 4.8 there are saturation blocks after the derivative block to keep the input
variable in the range [-100 100]. This choice makes sense in reality because if the velocity
is too high then it is too negative or to positive and so the fuzzy function gives a value
of 1.
The overall block scheme is the same of figure 4.1, but this time instead the PID con-
trollers there are the two subsystems with the fuzzy controllers (figure 4.9).

Figure 4.9: Overall control structure with fuzzy controllers

In figure 4.9 the xset is a 0.05 step with step time at 1s. With this configuration the
response compared to the response with the PID controllers results too slow.
I noted that increasing the gain GUl and recomputing the other gains accordingly, the
response becomes faster. So another gain kl can be considered to increase the gain GUl.
In figure 4.10(a) is shown the step responses for different values of k in the range [1 30]
with a step of 2 and in figure 4.10(b) the range is [30 60] with the same step.

38

4 – First design approach

(a) Step response with k = [1 30]

(b) Step response with k = [30 60]

Figure 4.10: Step response with k = [1 30] (a) and with k = [30 60] (b)

39

4 – First design approach

So, considering figure 4.10, I choose a value of k of 15.
With this value the step response compared with the one shown in figure 4.5 is shown in
figure 4.11.

0 2 4 6 8 10 12 14 16 18 20

t [s]

-0.02

0

0.02

0.04

0.06

0.08

x
 [
m

]

PID

Fuzzy

0 2 4 6 8 10 12 14 16 18 20

t [s]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

 [
d
e
g
re

e
s
]

PID

Fuzzy

Figure 4.11: Step response with PID controllers compared with the one with fuzzy con-
trollers

Considering the step response of the cart the obtained performances are (performances
with PID controllers in brackets):

� Max overshoot: 5.1% (26%)

� Rising time: 6.15s (2.8s)

� Settling time ±10% : 5.24s (5.3s)

With the fuzzy controllers the system reaches the setting signal a little bit slower (consider
both settling time and rising time) but the overshoot is significant lower. So I keep this
control structure for the next step of design.

4.3 Stability analysis

The stability of this system can be verified by making the transfer function of the overall
system and computing its poles. In order to compute it I will consider the block scheme
in figure 4.9.
First of all I make the transfer function of the controllers. From [7] I have to find an
analytical approximation of the fuzzy controllers. In this case it is easy because I choose

40

4 – First design approach

the fuzzy controllers as PID-like, so their transfer functions is the same of a PID controller
with Laplace transform.

Cθ(s) = 0.0073 ·
(

286.479 +
865

s
+

14.12s

0.01ts+ 1

)
(4.20)

Cx(s) = −30 · 10−6 ·
(

400 +
0.155

s
+

1020s

0.01s+ 1

)
(4.21)

Since the system is linear I can use the block’s algebra.
Starting from the internal loop, its transfer function is:

G1 =
Cθ(s) ·Guθ(s)

1 + Cθ(s) ·Guθ(s)
(4.22)

So the internal loop can be replaced with the transfer function G1 (4.22).
Now the overall transfer function is simply a loop transfer function:

Gtot =
Cx(s) ·G1(s) ·Gθx(s)

1 + Cx(s) ·G1(s) ·Gθx(s)
(4.23)

The poles of Gtot are:

p1 = −101 + 11.46i

p2 = −101− 11.46i

p3 = −0.645 + 14.73i

p4 = −0.645− 14.73i

p5 = −5.2155

p6 = −0.271 + 1.017i

p7 = −0.271− 1.017i

p8 = −0.46

No poles have real part greater than zero, so the system is stable.
Considering the Nichols plot of the open loop transfer function L(s) I can measure the
gain margin and the phase margin and also I can have another proof of the stability.
The open loop transfer function is:

L(s) = Cx(s) ·G1(s) · Cθx(s) (4.24)

The Nichols plot of L(s) is shown in figure 4.12.

41

4 – First design approach

-90 -45 0 45 90 135 180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

40

 6 dB
 3 dB

 1 dB
 0.5 dB
 0.25 dB

Nichols Chart

Open-Loop Phase (deg)

O
p

e
n

-L
o

o
p

 G
a

in
 (

d
B

)

160 170 180 190 200 210

-15

-10

-5

0

5
 6 dB

 (deg)

 (
d

B
)

Figure 4.12: Nichols plot of the open loop transfer function

From figure 4.12 the system seems to be stable and the gain margin is 5.88dB and the
phase margin is 23.85◦.

42

Chapter 5

Nonlinear model of the plant

In order to make a more realistic simulation and to follow the design procedure explained
in [2] I rebuilt the model of the plant without the linear approximations. The overall
system is divided essentially into 3 subsystems as shown in figure 5.1 in which the pneu-
matic plant consists of the model of the pneumatic actuator and of the model of the 2/2
proportional electrovalves; the mechanical plant consists of the model of the cart and
the pendulum and the control action consists of the 2 fuzzy controllers and it will be
explained in the next chapter.

Figure 5.1: Block scheme of the overall nonlinear system

5.1 Mechanical plant

The mechanical plant is the same analyzed in the previous chapter, but this time without
the linear approximation.
A scheme is shown in figure 5.2. It is graphically different from the one in the previous
chapter, but the positive direction of the generalized coordinates and the geometry are,
obviously, the same.

43

5 – Nonlinear model of the plant

Figure 5.2: Scheme of the inverse pendulum

Now the system can be considered as composed of two bodies (the cart and the pen-
dulum) connected through and ideal rotative joint. The free body diagram of the cart is
shown in figure 5.3.

Figure 5.3: Free body diagram of the cart

From figure 5.3 the equilibrium equation is:

F −MC · ẍ− b · ẋ+ T = 0 (5.1)

44

5 – Nonlinear model of the plant

The free body diagram of the pendulum is shown in figure 5.4 where as in the linear case
the bar is considered as ideal and its moment of inertia is neglected.

Figure 5.4: Free body diagram of the pendulum

From figure 5.4 the equilibrium equations are:

m · l · θ̈ · cos (θ)−m · ẍ−m · l · θ̇2 · sin (θ)− T = 0 (5.2)

m ·G · l · sin (θ) +m · ẍ · l cos (θ)−m · l2 · θ̈ = 0 (5.3)

Making some computations the four equations above can be merged in order to obtain
the linear and angular accelerations (the piston’s mass MP is considered as an additive
mass of the cart):

ẍ = (F −m · l · θ̇2 · sin (θ) +m ·G · sin (θ) · cos (θ)− b · ẋ) · 1

m+MC +MP −m · cos2 (θ)
(5.4)

θ̈ = (G · sin (θ) + ẍ cos (θ)) · 1

l
(5.5)

So the Simulink® block scheme for the equation (5.4) is shown in figure 5.5 and the
Simulink® block scheme for the equation (5.5) is shown in figure 5.6.

45

5 – Nonlinear model of the plant

Figure 5.5: Simulink® block scheme for the equation (5.4)

Figure 5.6: Simulink® block scheme for the equation (5.5)

The block schemes in figures 5.5 and 5.6 are both inserted in the subsystem “Mechan-
ical Plant” in figure 5.1.

46

5 – Nonlinear model of the plant

5.2 Pneumatic plant

The pneumatic plant can be divided into two subplants: the pneumatic actuator and the
valves. In fact entering inside the subsystem in figure 5.1 called “Pneumatic plant” 2
subsystems are visible (figure 5.7). This modelling choice makes sense in reality because
the valves impose a flow rate and in depending of this flow rate the pneumatic actuator
gives a force to the cart of the inverse pendulum.
Now I will explain in two different sections the two subsystems.

Figure 5.7: The sbsystems that compose the pneumatic plant

5.2.1 Nonlinear model of the pneumatic actuator

The pneumatic actuator is modeled without friction because it is considered in the model
of the mechanical plant.
The starting point is the free body diagram of the piston and rod of the actuator. It is
shown in figure 5.8.

Figure 5.8: Free body diagram of the piston and rod of the actuator

47

5 – Nonlinear model of the plant

So, considering figure 5.8, the equilibrium equation is:

F = pa ·Aa − pb ·Ab − penv ·Ar (5.6)

Now a pressure model is needed.
The flow rate that enters a chamber of the actuator is simply the time derivative of the
mass:

ṁ =
dm

dt
(5.7)

Considering the air as an ideal gas the mass can be expressed as following:

m =
p · V
R · T

(5.8)

Where R = 287.05 J
kgK .

Hence substituting the (5.8) in the (5.7) and considering the temperature constant (isother-
mal transformation) at the environment temperature (293K):

ṁ =
ṗ · V
R · T

+
p · V̇
R · T

(5.9)

The flow rate in the equation (5.9) is a net flow rate. Conventionally for open systems
the entering flow rate has a positive sign and the exiting flow rate has a negative sign.
Following this one the flow rate balance in the chambers of the actuator is:

Chamber A : ṁINa − ṁOUTa =
ṗa · Va
R · T

+
pa · V̇a
R · T

(5.10)

Chamber B : ṁINb − ṁOUTb =
ṗb · Vb
R · T

+
pb · V̇b
R · T

(5.11)

The chambers’ volume can be computed by the following equations considering that a
value of x equal to zero corresponds to the position of the piston in the middle of its stroke.

Va = VA0 +Aa · (
1

2
c+ x) (5.12)

Va = VB0 +Ab · (
1

2
c− x) (5.13)

V̇a = Aa · ẋ (5.14)

V̇b = Ab · ẋ (5.15)

Where VA0 and VB0 are the death volumes of the chambers A and B respectively (1cm3

for both) and c is the stroke of the actuator (0.5m).
Now making some computations the finally equations of the pressure of the two chambers
of the actuator are:

ṗa =
RT · (ṁINa − ṁOUTa)

VA0 +Aa · (12c+ x)
− paAaẋ

VA0 +Aa · (12c+ x)
(5.16)

ṗb =
RT · (ṁINb − ṁOUTb)

VB0 +Ab · (12c− x)
+

pbAbẋ

VB0 +Ab · (12c− x)
(5.17)

48

5 – Nonlinear model of the plant

Considering the equations (5.16) and (5.17) the block schemes are the ones shown in
figure 5.9 and 5.10.

Figure 5.9: Block scheme of the pressure model for chamber A

Figure 5.10: Block scheme of the pressure model for chamber B

The integrators of the pressures are limited in the range [penv psupply] to avoid to go

49

5 – Nonlinear model of the plant

over the limit of the system.
Now two subsystems containing the models of the pressures can be built. Regarding the
end strokes of the actuator they can be modeled as a spring with an infinity stiffness. In
Simulink® an infinity value corresponds to a very huge number and it can be 1 · 1010.
The block scheme of the end strokes modeled as springs is shown in figure 5.11.

Figure 5.11: Block scheme of the end strokes of the actuator

The implemented logic is: if the piston reaches the stroke limits (x = 0.25m or x =
−0.25m) it goes against the end stroke that is an ideal spring with very huge stiffness.
The reaction force using the Hooke’s equation: F = k ·∆x. There are also a sign block
to distinguish the left end stroke from the right one and a dead zone to neglect very low
values which are computational machine error. The resulting force is negative summed
to the force given by the actuator.
Now is possible to collect all the built subsystems and make the model of the pneumatic
actuator. It is shown in figure 5.12. Also in this case there is a dead zone to avoid
numerical machine errors.

50

5 – Nonlinear model of the plant

Figure 5.12: Block scheme of the pneumatic actuator

5.2.2 Model of the 2/2 NC proportional electrovalve

Like the linear model also in this case the valve is considered to be a zero-order component
and so its conductance is directly proportional to the input command u. This modelling
choice is not so far from reality, in fact the dynamic of the valve is very fast and it can
be neglected.
A scheme of this valve is shown in figure 5.13

Figure 5.13: Scheme of a 2/2 NC proportional electrovalve

The range of the input command u per each valve is [0 1]. When it is zero the valve
is in the closed position and when it is 1 the valve is in the open position. For values
between 0 and 1 the valve is in an intermediate position.

51

5 – Nonlinear model of the plant

To compute the flow rate the equation from standard ISO 6358 is used.

{ ṁ = C · u · ρANR · pUP if r ≤ b

ṁ = C · u · ρANR · pUP ·
√

1−
(
r−b
1−b

)2
if r > b

(5.18)

Two cases must be considered because if the ratio between the downstream pressure and
the upstream pressure (r) is less or equal to the critical ratio (0.3) the flow rate is constant
and equal to the critical flow rate.
The Simulink® block scheme of this model is shown in figure 5.14. In the scheme there
is a saturation block after the computation of the pressure ratio (r) to allow it to stay
only in the range [0 1]. This is done to avoid machine computational errors and to not
go over the limits of the system.

Figure 5.14: Simulink® block scheme of a 2/2 NC proportional electrovalve

The pneumatic plant there are 4 valves so I put the model of a single valve in a subsys-
tem and I conneted the 4 resulting subsystems as shown in figure 5.15 in order to make
the pneumatic circuit.

52

5 – Nonlinear model of the plant

Figure 5.15: Simulink® block scheme of the pneumatic circuit

The implemented logic is very simple: if u is greater than zero the pneumatic actuator
has to perform and outstroke and so the chamber A must be filled (Valve 1 open) and
the chamber B must be discharged (Valve 4 open), the other valves must be closed; if u
si lower than zero the situation is opposite, i.e. the pneumatic actuator has to perform
an instroke and so chamber A must be discharged (Valve 2 open) and chamber B must
be filled (Valve 3 open). So, according to this logic, the upstream pressure of the valve
1 and 3 is the supply pressure (psupply) and the downstream pressure is the pressure in
chambers A and B respectively; the upstream pressure of the valves 2 and 4 is the pres-
sure in chambers A and B respectively and the downstream pressure is the pressure of
the environment (penv).

53

5 – Nonlinear model of the plant

All the block scheme depicted in figure 5.15 constitutes the subsystem “Valve” shown in
figure 5.7.

5.3 Model’s test and validation

In order to make sure that the model is built correctly and it works properly it needs
to be validated. The validation consists on testing each subsystem and then the overall
system. To test each subsystem I put a known input and I verified that the response is
the expected one and the same for the complete model.
In the following I will explain in detail all of those tests.

5.3.1 Test of the mechanical plant

To test the mechanical plant I put as input a constant force (0.1N) and I made a plot of
the linear position of the cart and the angle of the pendulum. The resulting behavior is
shown in figure 5.16

Figure 5.16: Plot of the response of the mechanical plant with a constant force of 0.1N
as input

As expected the pendulum starts to oscillate around the stable equilibrium point that
is 180◦ and the cart has some oscillations due to the oscillation of the pendulum but its

54

5 – Nonlinear model of the plant

average position is increasing.

5.3.2 Test of the 2/2 NC proportional electrovalve

To test the valve I made three tests. In the first one I put as input a constant unit value
that corresponds to the valve totally open. I obtain a constant flow rate as output as
shown in figure 5.17. The upstream pressure and the downstream pressure are fixed and
they are: pup = psupply = 7bar; pdown = 101325Pa.

0 1 2 3 4 5 6 7 8 9 10

t [s]

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

F
lo

w
 r

a
te

 [
k
g

/s
]

10-3

0 1 2 3 4 5 6 7 8 9 10

t [s]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

In
p

u
t

c
o

m
m

a
n

d

Figure 5.17: Plot of the flow rate behavior of the valve with a constant unit input

To verify if the obtained value is correct the flow rate equation can be used. In this
case r = pup

pdown
= 0.143 so the flow rate is the critical one.

ṁ = C · u · ρANR · pUP = 2.4 · 10−9 · 1 · 1.3 · 7 · 105 = 0.0022kg/s (5.19)

So according with the equation and the graph above the behavior is correct.
In the second test I put as input a ramp from 0 to 1 with slope 0.1 in order to reach the
value 1 after 10 seconds. The behavior of the flow rate is shown in figure 5.18.

55

5 – Nonlinear model of the plant

0 1 2 3 4 5 6 7 8 9 10

t [s]

0

0.5

1

1.5

2
F

lo
w

 r
a

te
 [

k
g

/s
]

10-3

0 1 2 3 4 5 6 7 8 9 10

t [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

In
p

u
t

c
o

m
m

a
n

d

Figure 5.18: Plot of the flow rate behavior of the valve with a ramp input with 0.1 slope

As expected the flow rate starts from 0 and it reaches 0.0022kg/s that is the value
computed in (5.19) for the unit input.
The final test consists on computing the flow rate versus a varying of the pressure ratio.
The test is made for 3 different upstream pressure and for a downstream pressure that
varies from the environment pressure to the upstream pressure. The results is shown in
figure 5.19.

56

5 – Nonlinear model of the plant

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5
10

-3

p
1
=3 barA

p
1
=5 barA

p
1
=7 barA

Figure 5.19: Plot of the flow rate behavior of the valve with different values of r

The graphs shows three characteristic curves of the flow rate in a valve. So taking
into account the three tests the model can be considered valid.

5.3.3 Test of the pneumatic model

To test the pneumatic model I used the block scheme shown in figure 5.20.

Figure 5.20: Block scheme for the test of the pneumatic model

The first test was done with the rod of the piston blocked (x = 0 and ẋ = 0) in
order to keep constant the volume of the chambers of the actuator and to verify that the
pressure model is working in a proper way. So, giving to the valves a constant command
equal to 1 the resulting pressure behavior is shown in figure 5.21.

57

5 – Nonlinear model of the plant

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time [s]

1

2

3

4

5

6

7

P
re

s
s
u
re

 [
P

a
]

105

Pressure chamber A

Pressure chamber B

Figure 5.21: Test of the pressure model

The test can be considered valid because the behavior shown in figure 5.21 is the
typical one of the filling a constant volume.
Another test is done with the rod of the piston free to move and giving two steps com-
mand to the valves (1 and -1). In this way the piston should move from its initial position
(x=0) to its end stroke (x=0.25) and then, when the input signal i s-1 it should go to
the other end stroke (x=-0.25). This behavior is shown in figure 5.22 where the resulting
behavior is the expected one, so the model is valid.

58

5 – Nonlinear model of the plant

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

x
 [
m

]

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-1

-0.5

0

0.5

1

u

Figure 5.22: Test of the pneumatic model

In figure 5.22 there are some oscillations when the piston reaches the end stroke due
to the fact that the model is frictionless.

5.3.4 Test of the complete model

The nonlinear model is tested setting as input a constant signal to the valves (u = 0.5).
In this way the piston moves the cart to the endstroke (x = 0.25) and the pendulum starts
oscillating and tends to stabilize in its stable position that is θ = 180◦. This behavior is
shown in figure 5.23 that is the expected one.

59

5 – Nonlinear model of the plant

Figure 5.23: Test of the complete model

I did another test where the nonlinear model is compared against the linear model
using the linear fuzzy controller. The two responses, setting xsetas a step of 0.05m with
step time 1s, are shown in figure 5.24.

60

5 – Nonlinear model of the plant

0 5 10 15 20 25 30

t [s]

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

x
 [

m
]

Nonlinear model

Linear model

0 5 10 15 20 25 30

t [s]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

 [
d

e
g

re
e

s
]

Nonlinear model

Linear model

Figure 5.24: Step response with linear fuzzy controller of the two models

The two behaviors are more or less the same, but in addition there are the effects of
the nonlinearities in the nonlinear model. So considering the test of each susbsysem the
model was valid and this final two tests confirms that the linear approximation was not
so far from the real behavior of the system.

61

Chapter 6

Design of the nonlinear fuzzy

controller

As explained in [2] and reported in the previous chapter, the next step of the design
procedure is to make the fuzzy controller nonlinear.
The control structure remains the same, I modified only the structure of the fuzzy con-
troller.
The nonlinearization of the controller consists, first of all, in replacing the methods for
the logic functions with the nonlinear functions. In particular the minimum function is
used for the logic AND and the maximum function is used for the logic OR (the OR will
not be used in the rules).
The minimum for the AND consists in taking into account the minimum truth value
given by a certain rule for the given inputs. For example, considering a single rule, if the
truth value of input 1 is 0.5 and the truth value of input 2 is 0.2 the truth value given
by the rule is 0.2. Thinking about the Boolean AND it is True only when the two inputs
are True. So extending this concept to the fuzzy logic we have to take into account only
the values where the two inputs are true. So this value corresponds to the minimum of
the two inputs. In a graphic view figure 6.1 can be observed.

62

6 – Design of the nonlinear fuzzy controller

Figure 6.1: Graphic explanation of the minimum function for the logic AND

The maximum method for the logic OR works essentially in the same way of the logic
AND. The defuzzification method remains the same of the linear case (COG).
The methods can be changed simply in the MatLab® tool for the fuzzy controller.
Continuing in the nonlinearization process of the fuzzy controller, I changed the set-
membership functions of the output variable. In the linear case they were singletons,
now they are modified into triangular functions. The centers of the triangles have the
same values of the singletons. In figure 6.2 there is a graphical representation of the
set-membership functions of the output variable.

63

6 – Design of the nonlinear fuzzy controller

Figure 6.2: Set-membership functions of the output variable

In this way the control action should be more precise due to the fact that thanks
to the triangular functions the output variable can assume also the values between the
singletons, and in this way the controller can apply a “more continuous” control action.
The rules are the last change. The new rule table is shown in the following table where
in red are the modified linguistic values.

ė(t)

e(
t)

N Z P
N NB NS NS
Z NS Z PS
P PS PS PB

Table 6.1: Rule table of the nonlinear fuzzy controller

I changed only two rules:

1. IF e is N AND ė is P => u is NS

2. IF e is P AND ė is N => u is PS

In this way the valves does not close during regulation but only when the pendulum or the
cart are stabilized. So the control action should be faster and more ready to compensate
a disturbance. On the other hand the overshoot should be higher.
Concerning the gains, they remain the same of the linear case. Their numerical values

64

6 – Design of the nonlinear fuzzy controller

are:

GEa = 286.479 GEl = 400

GUa = 0.0073 GUl = −3 · 10−5

GCEa = 14.12 GCEl = 1.017 · 103

GIEa = 865 GIEl = 0.1556

6.1 Simulation results and disturbance analysis

First of all I made a comparison with the linear controller with the same input (xset).
The xset was a step of 0.05m with step time 1s. The two responses are shown in figure 6.3.

0 5 10 15 20 25 30

t [s]

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

x
 [

m
]

Linear

Nonlinear

0 5 10 15 20 25 30

t [s]

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

 [
d

e
g

re
e

s
]

Linear

Nonlinear

Figure 6.3: Step response with linear and nonlinear controller

The achieved performances are the following (in brackets the performances achieved
with the linear controller):

� Rising time: 5.94s (6.65s)

� Settling time ±10%: 13.85s (15s)

65

6 – Design of the nonlinear fuzzy controller

� Max overshoot: 49% (30%)

As expected the response is a bit faster but the overshoot increases.
Once the controller is designed its disturbance response can be analyzed.
A very common disturbance that can occur is a force applied on the cart. It can be
impulsive or in the worst case it can be a step (a constant disturbance force applied on
the cart). The response in the two cases of disturbance are shown in the figures 6.4 and
6.5 where the impulsive disturbance is of 50N at 1s (xset = 0m) and the step disturbance
is of 10N at 25s (xset = 0.05m).

0 10 20 30 40 50 60

t [s]

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

x
 [

m
]

0 10 20 30 40 50 60

t [s]

-3

-2

-1

0

1

2

3

4

 [
d

e
g

re
e

s
]

Figure 6.4: Response with a step disturbance

66

6 – Design of the nonlinear fuzzy controller

0 5 10 15 20 25 30

t [s]

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

x
 [

m
]

0 5 10 15 20 25 30

t [s]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

 [
d

e
g

re
e

s
]

Figure 6.5: Response with an impulsive disturbance

A final simulation is done with non equal initial pressures in the two chambers of the
actuator. In fact till now the initial conditions of the chambers of the actuator are with
the atmospheric pressure. For this test I put in the chamber B an initial pressure greater
than the atmospheric pressure of 0.5bar and in the chamber A the atmospheric pressure.
The result is shown in figure 6.6.

67

6 – Design of the nonlinear fuzzy controller

0 5 10 15 20 25 30

t [s]

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

x
 [

m
]

0 5 10 15 20 25 30

t [s]

-4

-3

-2

-1

0

1

2

3

4

5

6

 [
d

e
g

re
e

s
]

Figure 6.6: Behavior of the system with a non equal initial pressure in the two chambers
of the actuator

68

Chapter 7

Arduino program

In this section I will present the prototype of an arduino code but it was not tested in
real life. The code is complete in terms of functionality but an experimental test needs
to be done.
The full code of the program is available in the appendix A. Essentially it is divided into
4 parts:

1. System’s data storage

2. First main setup at starting

3. Setup of the timer interrupt

4. Instructions for the timer interrupt

In the following I will provide an explanation of each part.

7.1 System’s data storage

In this part all the needed variables to store the data of the system are created and ini-
tialized.

Listing 7.1: Data part

1 #define OUTPUT_COMPARE 0x04E2

//0x0138 set to 1.25ms

3 //0x0271 set to 2.5ms

//0x04E2 set to 5ms

5 //0x09C4 set to 10ms

//0x0EA6 set to 15ms

7 //0x186A set to 25ms

//0x30D4 set to 50ms

9

Fuzzy *fc = new Fuzzy(); // Fuzzy variable

69

7 – Arduino program

11

// PIN assignment

13 const int x_pin = A8, th_pin = A2; // Analog PIN for the sensors

const int v1_pin = 4, v2_pin=13; // Analog PIN for the valves

15

// Input variables

17 float x=0;

float th=0;

19 // Errors variables

float ex=0, eth=0, dex=0, deth=0, ex1=0, eth1=0, iex=0, ieth=0;

21

float u=0; // To store the input command for the plant

23 float x_set=0, th_set=0; // To set the x and theta

const float dt=0.005; // Sampling time fixed at 5 ms

25

// Fuzzy gains

27 float Kpa=2.09, Kia=6.31, Kda=0.103;

float Kpl=-0.000802, Kil=-4.68e-6, Kdl=-0.0306;

29 float x_max=0.25;

float GEl=100.0/x_max;

31 float GUl=Kpl/GEl*15.0;

float GCEl=Kdl/GUl;

33 float GIEl=Kil/GUl;

float th_max=3.14*20.0/180.0;

35 float GEa=100.0/th_max;

float GUa=Kpa/GEa;

37 float GCEa=Kda/GUa;

float GIEa=Kia/GUa;

Referring to the listing 7.1 the first line is a constant variable called “OUTPUT COMPARE”.
This variable represents the compare value for the timer interrupt.
In line 10 an object called “fc” from the class “Fuzzy” is created. The class “Fuzzy” is
in the library “fuzzy.h”. The builder of the class does not want any input.
In lines 13-14 the pins variables are created for the inputs and outputs of the controller.
The variables are of type “int” and they are declared as constant, because in this way
they can not be modified. In particular the pins for the input are the analog pins, while
the pins for the output are digital pin and they are written using the PWM technique at
high frequency in order to approximate a continuous signal.
The last part of the code in listing 7.1 is devoted to store the gains values of the controller.
They are computed in the same way of the simulation. In this way their computation is
slower, but since this code is run just once it does not matter. On the other hand in this
way they can be easily modified.

7.2 First setup at starting

The instructions to run at the starting of the board are written inside a function called
“setup”. This function is run only once, so the instructions inside this function are to

70

7 – Arduino program

setup the board (listing 7.2).

Listing 7.2: Setup

void setup() {

2

Serial.begin(9600); // To set the speed of the serial monitor

4 timerInterruptSetup(); // To set the timer interrupt

FuzzySetup(); // To set the fuzzy controller

6 TCCR0B = TCCR0B & 0b11111000 | 0x02; // Timer 0 to set the frequency to 8kHz

8 // Zero initial value to the output ports for safety

analogWrite(v1_pin, 0);

10 analogWrite(v2_pin, 0);

}

Referring to the listing 7.2 in line 4 a void function called “ timerInterruptSetup” is run.
In this function there are all the instructions to setup the timer interrupt and they will
be explained in the next section.
In line 5 another void function called “FuzzySetup” is run. In this function there are all
the instructions to setup the fuzzy controller in OOP fashion. In fact the class “Fuzzy”
provides all the methods to set in an easy way the structure of the controller (rules, fuzzy
sets...). These instructions is not reported in this section, they are shown in the full code
in the appendix A. Obviously the controller settings are the same of the nonlinear case
in the simulations.
In line 6 there is a particular instruction to set the frequency of the PWM in ports 4
and 13. The PWM of these ports uses the clock of timer 0 (in the board four timers are
available). So choosing a correct prescaler the frequency of the resulting PWM can be
changed. The prescaler is chosen knowing that the base working frequency of timer 0
is 62500Hz. Considering the fact that the valve’s driver works with a PWM at 500Hz
as output and with a continuous signal as input; a PWM with a frequency greater than
500Hz should be given by the Arduino. So I choose a value of the prescaler equal to 8:

fPWM =
62500

8
= 7812.5Hz

This value is only indicative, it should be tested and eventually modified. I ensure that
the instruction works properly in fact the frequency of the resulting PWM was measured
with an oscilloscope.

7.3 Setup of the timer interrupt

As shown in the listing 7.2 in the main setup a function called “timerInterruptSetup” is
run. It is a void function and its goal is to run a set of instructions to setup the timer/-
counter 1 in order to rise an interrupt after a given time. The set of instructions of the
function are shown in the listing 7.3.

71

7 – Arduino program

Listing 7.3: Timer interrupt setup

1 // Timer interrupt setup

void timerInterruptSetup(){

3 cli(); //disable the global interrupt

//Timer/Counter 1

5 TCCR1A = 0x00;

TCCR1B = (_BV(WGM12)) | (_BV(CS11)) | (_BV(CS10)); //CTC mode, clk/64

7 OCR1A = OUTPUT_COMPARE; //set to ...

TCNT1 = 0x00; //initialise the counter

9 TIMSK1 = _BV(OCIE1A); //Output Compare A Match Interrupt Enable

sei(); //enable global interrupt

11 }

Essentially the main idea idea is to use a counter that is incremented by 1 every time the
clock of timer 1 goes from 0 to 1. When the counter’s value reaches the compare’s value
an interrupt is raised and a series of instructions are executed (they will be explained n
the next section).
Then the counter is reset. In this way choosing properly the value of the compare, the
sampling time of the controller is consequently chosen. In this case the sampling time is
5ms. Also in this case this value should be tested and eventually modified.

7.4 Timer interrupt

When the interrupt from the counter of the timer 1 is raised the instructions inside a
particular function called “ISR” are executed.
The first part of this function is devoted to print in the serial monitor the system’s value
x and θ. In this way is possible to collect them and to build a graph to make a comparison
with the simulation. Then the “old” values of x and θ (corresponding to the prevoius
cycle) are stored and also the actual values are read and stored (listing 7.4).

Listing 7.4: Data acquisition and storing

1 ISR(TIMER1_COMPA_vect){

// Data acquisition

3 Serial.print("u: ");

Serial.print(u,3);

5 Serial.print(" x: ");

Serial.print(x,3);

7 Serial.print(" th: ");

Serial.print(th,3);

9

// Storing the error’s values of the previous cycle

11 ex1 = ex;

eth1 = eth;

13

// Reading the actual values

15 x = (float) -1.0*(analogRead(x_pin)*0.5/1023.0-0.25);

72

7 – Arduino program

th = (float) -1.0*(analogRead(th_pin)*1.57/1023.0-0.785)-0.291;

17 // To have a precision of the third decimal

th=th*1000;

19 th=th/1000.0;

Once the old and new values of the system’s variables are updated the error’s values
and their integrator and derivative have to be computed. So, according to the control
structure, the first computation is devoted to the position of the cart x (listing 7.5). Then
the computed values are fuzzified and, according to the fuzzy rules, the value of θset is
computed and defuzzified.

Listing 7.5: Error’s computation for the position of the cart

1 // Computation of the x error’s value

ex = (float) x_set - x;

3

// Derivative of the error and saturation at -100 100

5 dex = (float) ((ex - ex1)/dt)*GCEl;

if (dex>100) dex = 100;

7 if (dex<-100) dex = -100;

9 // Integral of the error through trapezoidal approximation

iex = (float) ((ex1+ex)*dt)/2;

11 // Application of the fuzzy rules and computation of the theta_set

fc->setInput(1,ex*GEl);

13 fc->setInput(2,dex);

fc->fuzzify();

15 th_set = (float) ((iex*GIEl)+(fc->defuzzify(1)))*GUl;

The derivative is computed using the linear equation and the integrator using the equa-
tion for the computation of the area of a trapezium. The use of these equations for the
derivative and the integral is not a big approximation due to the fact that the sampling
time is little (5ms) and so the variations from the previous value and the actual one is
little and so can be considered linear.
Once the θset is computed on the same way the valves’ command u can be computed, but
this time the value of the angle should be considered (listing 7.6).

Listing 7.6: Error’s computation for the angle of the pendulum

1 // Computation of the theta error’s value

eth = (float) th_set - th;

3 // Derivative of the error and saturation at -100 100

deth = (float) ((eth-eth1)/dt)*GCEa;

5 if (deth>100) deth = 100;

if (deth<-100) deth = -100;

7

// Integral of the error through trapezoidal approximation

9 ieth = (float) ((eth1+eth)*dt)/2;

73

7 – Arduino program

11 // Application of the fuzzy rules and computation of the command u

fc->setInput(1,eth*GEa);

13 fc->setInput(2, deth);

fc->fuzzify();

15 u = (float) ((ieth*GIEa)+(fc->defuzzify(1)))*GUa;

Finally the computed value of u is sent to the output ports considering the fact that it
can be negative or positive. For this reason there are three if-statement (see the appendix
A).

74

Chapter 8

Conclusions and further

developments

The main idea of this work was to design and realize a fuzzy controller to stabilize a
pneumatically actuated inverse pendulum. This type of system is widely used and studied
in academic and industrial applications. The fuzzy logic introduce a newer control method
appllied in this classical system. During my litherature review I did not find any other
project like the one of my work.
The system needs a double control, the position of the cart and the angle of the pendulum.
That problem was resolved by using two nested feedback control loops.
All of the design is done using the model-based approach. Thanks to that method the
system can be simulated in a more or less realistic dynamic model. The simulation
resulted very helpful because building a very simple linear model, a first controller can
be designed and then it can be fine-tuned in more realistic model. Those steps were done
without using any real system. The advantages of this method is that the design of the
controller, and also the tuning, was faster. In an industrial environment that method
should result in a cheaper design phase.
Unfortunately the experimental tests were not done because of time constraints for the
graduation, so a first proposed further development is to implement and test my program
in the Arduino board to show if the simulation corresponds to the real behavior of the
system. In this way, with the realization of the controller, the design is completed.
Concerning the simulations they show that a stable controller can be developed and also
that it is very robust against disturbance. The response is a little bit slower than the PID,
but the control action is very precise and stable. The model is built without considering
the Coulombian’s friction, so in the future some tests can be done in the system in order
to evaluate this effect.
Thinking about the response of the controller, it can be modified in order to get a specific
performance. For example a faster response, less overshoot or less oscillations in the
transient phase. So with this goal another fuzzy controller, with different gains or maybe
with different structure, can be developed.
Once the controller is realized a very interesting evolution could be the possibility to
change the variable xset of the cart. A first idea should be to design and realize a sort

75

8 – Conclusions and further developments

of manual controller to set manually the final position of the cart. Another idea is to
program a remote control. For example building a web service a user can set the position
of the cart in remote and can visualize the graphs of the response and, in this environment,
he can set also the gains of the controller and see the difference in the behavior of the
system. This idea can be very useful in a didactic environment.

76

Appendix A

Sketch of the program for Arduino

1 #include <Fuzzy.h>

#define OUTPUT_COMPARE 0x04E2

3 //0x0138 set to 1.25ms

//0x0271 set to 2.5ms

5 //0x04E2 set to 5ms

//0x09C4 set to 10ms

7 //0x0EA6 set to 15ms

//0x186A set to 25ms

9 //0x30D4 set to 50ms

11 Fuzzy *fc = new Fuzzy(); // Fuzzy variable

13 // PIN assignment

const int x_pin = A8, th_pin = A2; // Analog PIN for the sensors

15 const int v1_pin = 4, v2_pin=13; // PWM PIN for the valves

17 // Input variables

float x=0;

19 float th=0;

// Errors variables

21 float ex=0, eth=0, dex=0, deth=0, ex1=0, eth1=0, iex=0, ieth=0;

23 float u=0; // To store the input command for the plant

float x_set=0, th_set=0; // To set the x and theta

25 const float dt=0.005; // Sampling time fixed at 5 ms

27 // Fuzzy gains

float Kpa=2.09, Kia=6.31, Kda=0.103;

29 float Kpl=-0.000802, Kil=-4.68e-6, Kdl=-0.0306;

float x_max=0.25;

31 float GEl=100.0/x_max;

float GUl=Kpl/GEl*15.0;

33 float GCEl=Kdl/GUl;

float GIEl=Kil/GUl;

35 float th_max=3.14*20.0/180.0;

77

A – Sketch of the program for Arduino

float GEa=100.0/th_max;

37 float GUa=Kpa/GEa;

float GCEa=Kda/GUa;

39 float GIEa=Kia/GUa;

41 void setup() {

43 Serial.begin(9600); // To set the speed of the serial monitor

timerInterruptSetup(); // To set the timer interrupt

45 FuzzySetup(); // To set the fuzzy controller

TCCR0B = TCCR0B & 0b11111000 | 0x02; // Timer 0 to set the frequency to 8kHz

47

// Zero initial value to the output ports for safety

49 analogWrite(v1_pin, 0);

analogWrite(v2_pin, 0);

51 }

53 void loop() {

}

55

57 // Timer interrupt

ISR(TIMER1_COMPA_vect){

59 // Data acquisition

Serial.print("u: ");

61 Serial.print(u,3);

Serial.print(" x: ");

63 Serial.print(x,3);

Serial.print(" th: ");

65 Serial.print(th,3);

67 // Storing the error’s values of the previous cycle

ex1 = ex;

69 eth1 = eth;

71 // Reading the actual values

x = (float) -1.0*(analogRead(x_pin)*0.5/1023.0-0.25);

73 th = (float) -1.0*(analogRead(th_pin)*1.57/1023.0-0.785)-0.291;

// To have a precision of the third decimal

75 th=th*1000;

th=th/1000.0;

77

// Computation of the x error’s value

79 ex = (float) x_set - x;

81 // Derivative of the error and saturation at -100 100

dex = (float) ((ex - ex1)/dt)*GCEl;

83 if (dex>100) dex = 100;

if (dex<-100) dex = -100;

85

78

A – Sketch of the program for Arduino

// Integral of the error through trapezoidal approximation

87 iex = (float) ((ex1+ex)*dt)/2;

// Application of the fuzzy rules and computation of the theta_set

89 fc->setInput(1,ex*GEl);

fc->setInput(2,dex);

91 fc->fuzzify();

th_set = (float) ((iex*GIEl)+(fc->defuzzify(1)))*GUl;

93

// Computation of the theta error’s value

95 eth = (float) th_set - th;

97 // Derivative of the error and saturation at -100 100

deth = (float) ((eth-eth1)/dt)*GCEa;

99 if (deth>100) deth = 100;

if (deth<-100) deth = -100;

101

// Integral of the error through trapezoidal approximation

103 ieth = (float) ((eth1+eth)*dt)/2;

105 // Application of the fuzzy rules and computation of the command u

fc->setInput(1,eth*GEa);

107 fc->setInput(2, deth);

fc->fuzzify();

109 u = (float) ((ieth*GIEa)+(fc->defuzzify(1)))*GUa;

// Writing the corresponding pins to move the actuator

111 if (u==0){

analogWrite(v1_pin, 0);

113 analogWrite(v2_pin, 0);

}

115 if (u>0){

analogWrite(v1_pin, u*255);

117 analogWrite(v2_pin, 0);

}

119 if(u<0){

analogWrite(v2_pin, abs(u)*255);

121 analogWrite(v1_pin, 0);

}

123 }

125 // Timer interrupt setup

void timerInterruptSetup(){

127 cli(); //disable the global interrupt

//Timer/Counter 1

129 TCCR1A = 0x00;

TCCR1B = (_BV(WGM12)) | (_BV(CS11)) | (_BV(CS10)); //CTC mode, clk/64

131 OCR1A = OUTPUT_COMPARE; //set to ...

TCNT1 = 0x00; //initialise the counter

133 TIMSK1 = _BV(OCIE1A); //Output Compare A Match Interrupt Enable

sei(); //enable global interrupt

135 }

79

A – Sketch of the program for Arduino

137 // Fuzzy controller setup

void FuzzySetup(){

139 // Fuzzy sets

FuzzySet *N = new FuzzySet(-100, -100, -100, 0);

141 FuzzySet *Z = new FuzzySet(-100, 0, 0, 100);

FuzzySet *P = new FuzzySet(0, 100, 100, 100);

143 FuzzySet *NB = new FuzzySet(-100, -100, -100, -50);

FuzzySet *NS = new FuzzySet(-100, -50, -50, 0);

145 FuzzySet *ZE = new FuzzySet(-50, 0, 0, 50);

FuzzySet *PS = new FuzzySet(0, 50, 50, 100);

147 FuzzySet *PB = new FuzzySet(50, 100, 100, 100);

149 // Input e

FuzzyInput *e = new FuzzyInput(1);

151 e->addFuzzySet(N);

e->addFuzzySet(Z);

153 e->addFuzzySet(P);

fc->addFuzzyInput(e);

155

//Input de

157 FuzzyInput *de = new FuzzyInput(2);

de->addFuzzySet(N);

159 de->addFuzzySet(Z);

de->addFuzzySet(P);

161 fc->addFuzzyInput(de);

163 // Output

FuzzyOutput *u = new FuzzyOutput(1);

165 u->addFuzzySet(NB);

u->addFuzzySet(NS);

167 u->addFuzzySet(ZE);

u->addFuzzySet(PS);

169 u->addFuzzySet(PB);

fc->addFuzzyOutput(u);

171

// Rules

173 // (1) IF e is N AND de is N => u is NB

FuzzyRuleAntecedent *eNdeN = new FuzzyRuleAntecedent();

175 eNdeN->joinWithAND(N, N);

FuzzyRuleConsequent *uNB = new FuzzyRuleConsequent();

177 uNB->addOutput(NB);

FuzzyRule *fuzzyRule1 = new FuzzyRule(1, eNdeN,uNB);

179 fc->addFuzzyRule(fuzzyRule1);

181 // (2) IF e is N AND de is Z => u is NS

FuzzyRuleAntecedent *eNdeZ = new FuzzyRuleAntecedent();

183 eNdeZ->joinWithAND(N, Z);

FuzzyRuleConsequent *uNS1 = new FuzzyRuleConsequent();

185 uNS1->addOutput(NS);

80

A – Sketch of the program for Arduino

FuzzyRule *fuzzyRule2 = new FuzzyRule(2, eNdeZ,uNS1);

187 fc->addFuzzyRule(fuzzyRule2);

189 // (3) IF e is N AND de is P => u is NS

FuzzyRuleAntecedent *eNdeP = new FuzzyRuleAntecedent();

191 eNdeP->joinWithAND(N, P);

FuzzyRuleConsequent *uNS2 = new FuzzyRuleConsequent();

193 uNS2->addOutput(NS);

FuzzyRule *fuzzyRule3 = new FuzzyRule(3, eNdeP,uNS2);

195 fc->addFuzzyRule(fuzzyRule3);

197 // (4) IF e is Z AND de is N => u is NS

FuzzyRuleAntecedent *eZdeN = new FuzzyRuleAntecedent();

199 eZdeN->joinWithAND(Z, N);

FuzzyRuleConsequent *uNS3 = new FuzzyRuleConsequent();

201 uNS3->addOutput(NS);

FuzzyRule *fuzzyRule4 = new FuzzyRule(4, eZdeN,uNS3);

203 fc->addFuzzyRule(fuzzyRule4);

205 // (5) IF e is Z AND de is Z => u is Z

FuzzyRuleAntecedent *eZdeZ = new FuzzyRuleAntecedent();

207 eZdeZ->joinWithAND(Z, Z);

FuzzyRuleConsequent *uZ = new FuzzyRuleConsequent();

209 uZ->addOutput(ZE);

FuzzyRule *fuzzyRule5 = new FuzzyRule(5, eZdeZ,uZ);

211 fc->addFuzzyRule(fuzzyRule5);

213 // (6) IF e is Z AND de is P => u is PS

FuzzyRuleAntecedent *eZdeP = new FuzzyRuleAntecedent();

215 eZdeP->joinWithAND(Z, P);

FuzzyRuleConsequent *uPS1 = new FuzzyRuleConsequent();

217 uPS1->addOutput(PS);

FuzzyRule *fuzzyRule6 = new FuzzyRule(6, eZdeP,uPS1);

219 fc->addFuzzyRule(fuzzyRule6);

221 // (7) IF e is P AND de is N => u is PS

FuzzyRuleAntecedent *ePdeN = new FuzzyRuleAntecedent();

223 ePdeN->joinWithAND(P, N);

FuzzyRuleConsequent *uPS2 = new FuzzyRuleConsequent();

225 uPS2->addOutput(PS);

FuzzyRule *fuzzyRule7 = new FuzzyRule(7, ePdeN,uPS2);

227 fc->addFuzzyRule(fuzzyRule7);

229 // (8) IF e is P AND de is Z => u is PS

FuzzyRuleAntecedent *ePdeZ = new FuzzyRuleAntecedent();

231 ePdeZ->joinWithAND(P, Z);

FuzzyRuleConsequent *uPS3 = new FuzzyRuleConsequent();

233 uPS3->addOutput(PS);

FuzzyRule *fuzzyRule8 = new FuzzyRule(8, ePdeZ,uPS3);

235 fc->addFuzzyRule(fuzzyRule8);

81

A – Sketch of the program for Arduino

237 // (9) IF e is P AND de is P => u is PB

FuzzyRuleAntecedent *ePdeP = new FuzzyRuleAntecedent();

239 ePdeP->joinWithAND(P, P);

FuzzyRuleConsequent *uPB = new FuzzyRuleConsequent();

241 uPB->addOutput(PB);

FuzzyRule *fuzzyRule9 = new FuzzyRule(9, ePdeP,uPB);

243 fc->addFuzzyRule(fuzzyRule9);

}

82

Bibliography

[1] Valerio Einaudi. Studio Teorico Numerico e Sperimentale della Stabilità di un Pen-
dolo Inverso su Base Mobile. 1995.

[2] J. Jantzen. Foundations of Fuzzy Control: A Practical Approach. Wiley, 2013.
[3] Zeljko Situm Josko Petric. Inverted Pendulum Driven by Pneumatics. 2003.
[4] C. Krupke and J. Wang. Modelling and robust control of an inverted pendulum driven

by a pneumatic cylinder. IEEE International Conference on Advanced Intelligent
Mechatronics (AIM), Busan, 2015.

[5] Thi Thanh Hoang Le, Anh Khoa Vo, Thien Van Nguyen, Van Khanh Doan, Duc Ha
Vu, Manh Son Tran, and Van Dong Hai Nguyen. Fuzzy controller of rotary inverted
pendulum. 2018.

[6] Pontin Marco. Modellazione, realizzazione e controllo mediante PLC di un sistema
a pendolo inverso ad attuazione pnematica. 2018.

[7] K. Michels, F. Klawonn, R. Kruse, and A. Nürnberger. Fuzzy Control: Funda-
mentals, Stability and Design of Fuzzy Controllers. Studies in Fuzziness and Soft
Computing. Springer Berlin Heidelberg, 2007.

[8] Lal Bahadur Prasad, Barjeev Tyagi, and Hari Om Gupta. Optimal control of non-
linear inverted pendulum system using pid controller and lqr: Performance analysis
without and with disturbance input. International Journal of Automation and Com-
puting, 2014.

[9] Tomomichi Sugihara, Yoshihiko Nakamura, and Hirochika Inoue. Realtime Hu-
manoid Motion Generation through ZMP Manipulation Based on Inverted Pendulum
Control. 2002.

[10] Marco Triverio. Progetto E Implementazione Del Sistema Di Controllo Per Un Pen-
dolo Inverso. 2008.

[11] Junfeng Wu, Wanying Zhang, and Shengda Wang. A Two-Wheeled Self-Balancing
Robot with the Fuzzy PD Control Method. 2012.

83

