POLITECNICO DI TORINO

Department of Control and Computer Engineering

Master of Science in Mechatronic Engineering

IMPLEMENTATION OF AUTOSAR
COMMUNICATION STACK MODULES

Academic Supervisor Student
Prof. Massimo Violante Benedetta De Bernardo
252050

October 2019

Acknowledgments

I would like to thank my Academic Tutor, Professor Massimo Violante, for the support
and valuable advices. My Company Tutor, Roberto Pozzo, for patience and for guiding

me in this thesis activity.

I would like to express my greatest gratitude to my mother who taught me not to be
afraid; to my father, he approached me to the world of engineering from an early age
in the small things.

They gave me the opportunity to try a new experience that would forever change my

life.

Thanks to my sisters and my grandfather, they make me feel at home despite being far

away.
Thanks to my boyfriend for helping me overcome my insecurities.

Finally, thanks to my friends of the Politecnico, their presence made the university less

heavy.
I would not have achieved this goal without you all.

Thank you.

II

III

MULTRCNIC “ .': Abstract

Emission Systems

The following paper is the result of a six-month project at the Belgian company
Multronic s.r.l in Carmagnola (TO); it designs, manufactures and supplies diesel

engine emission aftertreatment systems.

The objective of the thesis activity is to implement a communication network for
automotive application with the main reference to the basic elements of AUTOSAR
architecture and features.

The idea is to have a code independent of the hardware, easy to reuse and with a good

level of abstraction.

This paper shows the implementation of a firmware that can meet the need to have a
code as modular as possible, satisfying the functional requirements in a single

platform.

The project was characterized by a training phase through the study of the most
commonly used automotive communication protocols and by an analysis of the
characteristics of the fundamental standards.

In particular, the focus is on development of the Serial network and CAN network.

The fundamental points of the project are followed gradually: in primis there is a brief
introduction that anticipates the characteristics of the developed SW, the main aspects

of the testing phase and the requirements in terms of quality.

1.1
Software

Afterwards, there is a presentation of the technical features of the HW used, followed
by chapters that show the topics studied to be able to address this thesis activity.
The Chapters 5 and 6 represent the core of the project: the SW is described with its

main characteristics and test activity.

The paper ends with a conclusive analysis of the activity proposing possible future

developments.

1.1

Software

Contents

ACKNOWLEDGMENTS 1I
ABSTRACT 1
CONTENTS 3
LIST OF FIGURES 5
LIST OF TABLES 9
LIST OF ABBREVIATIONS 11
CHAPTER 1 INTRODUCTION 13
L1 SOFTWAREoiiiiiiie ettt e ettt e eett e e ettt e e e et eeeetb e e e etaaeaesatseeaeasbaeeaeasaeeesasseeassssseesasseeesnssesesassseeannes 14
1.2 QUALITY 1ottt eeitee e ettt e ettt e e e ettt e e ettt e e e steeeeensseeessssaaeesnsseeaasssaeesnsaaeesnsseeeanssseesansseeesnsseasanssseesanes 15

L 3 T EST oottt — e —— 16
CHAPTER 2 TECHNICAL SPECIFICATIONS 17
2.1 DE-TRONIC V3 ECU.....ciittiiiiiiiieeeeeeeeee ettt e e ettt e e e e et aa e e e e e e s sennaaaaeeeeeeeas 17
2,11 MCOISIZXET256 JUC ..ottt ettt ettt et eenaaeeaneas 20

2.2 NETWORK AND IDE . ..ooiiiiiiiiiiiicce ettt e e e et e e et e e e eata e e e eeavaeaeenaseeeeaes 21
CHAPTER 3 BACKGROUND 23
3.1 AUTOSAR LIGHT ..ottt ettt et e ettt ettt e et e e e eatteeeeeaaaeeeaatseeeensseeeeeasaeeesnsseeeennseeeenanes 23
3.1.1 Layered Software AVCRILECIUTEc.cccoviiriiioieiiiiiiiii ittt 25
3.1.2 S0ftware COMPONENLcccccvcieeiiiiisiisi ettt 27
3.1.3 SW-C COMPURICALION. ..o e et 28
B2ISO 20262 ..ot e et e e enraeeeenns 28

3. 2.1 ISO 26262 SIFUCIHUTE ...t 29
B22V-MOGEL ... 32
CHAPTER 4 COMMUNICATION PROTOCOLS 37
4.1 PROTOCOLS IN EMBEDDED SYSTEMScuttttttttttttttetteeeeeeeeereesseseeseeseeeessessesesseeeseess. 37
4.2 SERIAL COMMUNICATION INTERFACE (SCI)....evuiniiiiiiiiiiiiieiiniineniesieeteteteseesie s 39
4.3 CONTROLLER AREA NETWORK (CAN) ...ctiiiiiiieieiie e site st ete et eite sttt ense e snsesnnesneenneenseenes 40

1.1

Software

4.3.1 CAN AVCRITCCIUFC.ccovee oot 41
4.3.2 CAN Software CONfIQUIALIONc.cocuerieeeieiiieieeiieeieeeiee st saeeseeseeaseseaens 44
CHAPTER 5 IMPLEMENTATION 45
5.1 SERIAL INTERFAGCEooiiiutiieieieie et eee e et e et e e et e e et e e e et e e e eaaeeeeeaaeeeeeaaaeeeeaaeeeeenseeeeennes 45

S A d FW STPUCIUTC ...ttt ettt 45
5.1.2 CommuniCation DVTVEFS, SClccuu eaeeneas 47
5.1.3 MeESSAZES SIUCTUFEc..oeeeieeeee ettt ettt ettt ettt et enne e 52
5.1.4 Communication Hardware Abstraction, SCIcccc.oocieiieiieieeiiee e, 54

5.2 CAN INTERFACE.......cutiiiiuiieeeittieeeetteeeetteeeeetreeeeetaeeeessaseaeasseeeaessseaeastsesaassseeesssaeeeassseeeasseeesnnses 63
52,0 FW SEFUCIUTC ...ttt 63
5.2.2 Communication Drivers, CANcccoooo oot 64
5.2.3 Communication Hardware ABSTraction, CANcoooooee oo 73
5.2.4 Complex Device DFIVET.............ccccooiiiiiiieeeee ettt 75
S2.5EGR VAIVE.......ooooooiiiiiieeeeeeeeeeeeeeeeeee ettt 76

5. 200 SAE JI939....oee et 78

5. 2.7 IMPLEMMEIIGLION ..ottt ettt ettt ettt et e et eetae e saaeeneeens 84
S.2.8 ORCE URILS ... et 91
CHAPTER 6 DEBUG AND TESTING 93
.1 TESTING ..uvtieiieeeeeiitiiee e e e e eeect et e e e e e ettt e e e e eeeetttaaeeeeeeeeeeaassaeeeeeeeaassaaeeeeeseasssssseeeeeesanssraseaeeeeananses 93
6.2 SERIAL NETWORK TESTcuttiiiiiiiiiiiiiiiiie e ettt e ettt eeee ettt e e e e e eeeaataeeeeeeeesasssaseeeeeeennees 94
6.3 CAN NETWORK TEST ...cciiiiiiiiiiiee e ettt e e eeeettte e e e e e ettt e e e e e e eeeaaaaeeeeeeseeassaeeeeeeeesiansraseeeeeeannees 96
0.3.1 TSt EGR VAIVE.........oooooooioeiiiiiieeeeeeeeeeeeeeeeeee et 97
0.3.2 TSt TI939 ..o 98
CHAPTER 7 CONCLUSION 101
7.1 FUTURE WORK, LIN INTERFACEcccuuttetieeeeeiiiiieeeeeeeeeesianeeeeeeseenisseeeeeeeseensseeseeesessnssraneeseeesans 101
7.2 CONCLUSIONoutiiieiiieeeiitee e ettt e e eetteeeeetaeeeeetaeeeeeaaaeeeeaaaeeeesssaseesseeeeesssseeasssseeansseeeenssseeeasseeeennes 104
REFERENCES 107

1.1
Software

List of figures

Figure 1.1 Role of AUTOSAR 1

Figure 1.2 SW Layers Overview 2

Figure 1.3 Testing

Figure 2.1 DE-TRONIC V3 ECU External Box

Figure 2.2 DE-TRONIC V3 Block Diagram

Figure 2.3 DE-TRONIC V3 Functionality

Figure 2.4 S12XE Microcontroller Block Diagram

Figure 2.5 ECU, PEMicro Probe, Instrumentation (on the left), EGR valve (on the
right)

Figure 3.1 Core Partners and Partners

Figure 3.2 SW comparison yesterday and today

Figure 3.3 Overview of Layered Software Architecture

Figure 3.4 Detailed overview of Layered Software Architecture
Figure 3.5 Software Components and Communication

Figure 3.6 ISO 26262 Structure

Figure 3.7 ASIL determination

Figure 3.8 SW development flow, V-model

Figure 4.1 Inter-System Protocol

Figure 4.2 Intra-System Protocol

Figure 4.3 SCI, Frame

Figure 4.4 Simple example of connection of devices through CAN Protocol
Figure 4.5 ISO/OSI Reference Model

Figure 4.6 CAN Signals

Figure 4.7 CAN Frame Structure

Figure 4.8 Example Transceiver

1.1
Software

Figure 5.1 Serial Interface - Communication Stack
Figure 5.2 Communication Drivers Structure

Figure 5.3 sci_cfge.h (MCAL cfg)

Figure 5.4 sci.c (MCAL_S12XET256)

Figure 5.5 sci_if.h (MCAL_S12XET256) definitions
Figure 5.6 sci.c (MCAL S12XET256) SCI_InitSCI1
Figure 5.7 sci.c (MCAL_S12XET256) SCI _InitSchedulerSCI1
Figure 5.8 sci.c (MCAL S12XET256) Disable RX
Figure 5.9 sci.c (MCAL S12XET256) Enable TX
Figure 5.10 Communication HW Abstraction Structure, SCI
Figure 5.11 Element position in a message frame
Figure 5.12 Example of #define in MULcom cfg.h
Figure 5.13 Example of variables in MULcom.h
Figure 5.14 Change-name in MULcom.h

Figure 5.15 SWC Outputs Assignment, MULcom.h
Figure 5.16 Message Frame Scan

Figure 5.17 Mulcom_answer(void)

Figure 5.18 Mulcom_AnswerActiveMess()

Figure 5.19 Mulcom_AnswerErr(byte errorCode)
Figure 5.20 Mulcom_AnswerErr(byte errorCode)
Figure 5.21 Mulcom_Reading Internal Flash(void)
Figure 5.22 CAN — Communication Stack

Figure 5.23 CAN- Layered Structure Example
Figure 5.24 can_cfg.h (CFQG)

Figure 5.25 CAN structure (can_if)

Figure 5.26a Variables and constants (can_if)

Figure 5.26b Functions (can_if)

Figure 5.27 CAN RX/ CAN TX Interrupt (intc.h)
Figure 5.28 Int. CAN 0 TX (void) (intc.c)

Figure 5.29 Cascade of calls for the Interrupt

associated to CANO communication

1.1
Software

Figure 5.29 Communication HW Abstraction Structure, CAN
Figure 5.30 Variables and buffer (can.c)

Figure 5.31 CANO Init (can.c)

Figure 5.32 CAN_ReceiveFrameCANO (can.c)

Figure 5.32 CAN_SendFrameCANO (can.c)

Figure 5.35 Communication Hardware Abstraction, CAN
Figure 5.36 MULcan QueueLoadCANO (MUlcan.c)
Figure 5.37 Circular Buffer for CAN Load

Figure 5.38 CAN_TrasmissionCANO (MULcan.c)

Figure 5.39 Complex Drivers Layer

Figure 5.40 Complex Drivers Structure

Figure 5.41 EGR Valve

Figure 5.42 CAN_EGR_PositionCANO (EGR_APE35EL3.c)
Figure 5.43 CAN_EGR_Read Position CANO (EGR_APE35EL3.c)
Figure 5.44 Typical J1939 Vehicle Network

Figure 5.45 SAE J1939 Message

Figure 5.46 Example CAN Message

Figure 5.47 J1939 Code Structure

Figure 5.48 J1939 Lamp Struct

Figure 5.49 Part of DM1 Table

Figure 5.50 MUL;j1939.c, Part 1

Figure 5.51 MUL;j1939.c, NoFault

Figure 5.52 MULj1939.c, Fault

Figure 5.53 MUL;j1939.c, BAM message

Figure 5.54 MULj1939.c, Case 0: First Message

Figure 5.55 MUL;j1939.c, TrovaDM1Errori function
Figure 5.56 MUL;1939.c, DM3

Figure 6.1 Hercules SETUP

Figure 6.2 Debug Mode Interface

Figure 6.3 PCAN-View

Figure 6.4 Sending data on CAN

1.1
Software

Figure 6.5 Set position EGR valve

Figure 6.6 Timers, Interrupts.c

Figure 6.7 PowerView 101

Figure 6.8 Fano E[192]

Figure 7.1 LIN Network — Physical Layer
Figure 7.2 LIN Stack Structure

Figure 7.3 LIN Configuration

1.1
Software

List of tables

Table 5.1 Request from PC to ECU Structure

Table 5.2 Positive reply message from ECU to PC Structure
Table 5.3 Negative reply message from ECU to PC Structure
Table 5.4 Control of EGR valve position

Table 5.5 PGN 64981 Electronic Engine Controller 5 EEC5

1.1
Software

10

1.1
Software

List of abbreviations

uC — Microcontroller

ADC — Analog-to-Digital Converter
ASIL — Automotive Safety Integrity Level
AUTOSAR — AUTomotive Open System ARchitecture
BSW — Basic Software

BSWL — Basic Software Layer

CAN — Controller Area Network

CD — Collision Detection

CM — SPN Conversion Method

CMD — Command

CSMA — Carrier-Sense Multiple Access
DM — Diagnostic Message

DPF — Diesel Particulate Filter

EAL — ECU Abstraction Layer

ECT — Enhanced capture Timer

ECU - Electronic Control Unit

E/E — Electric/Electronic

EGR — Exhaust Gas Recirculation

FBC — Fuel Borne Catalyst

FMI — Failure Mode Indictor

FW — Firmware

HIS — Hardware Software Interaction
HW — Hardware

IDE — Integrated Development Environment

11

1.1
Software

[IC — Inter-Integrated Circuit

ISO — International Organization for Standardization
LIN — Local Interconnected Network
MCAL — Microcontroller Abstraction Layer
MISO — Master-In/Slave-Out

MOSI — Master-Out/Slave-In

NOx — Nitrogen Oxides

NRZ — Non- Return to Zero

OC — Occurrence Count

OEM - Original equipment manufacturer
OS — Operating System

OSI — Open System Interconnection

P2P — Peer-to-Peer

PIT — Period Interrupt Timer

PWM — Pulse Width Modulation

RAM — Random-Access Memory

RX —Receive

SAE — Society of Automotive Engineers
SCI — Serial Communications Interface
SCK — Serial Clock

SCMD — Subcommand

SCR — Selective Catalytic Reduction
SDLC — Software Development Life Cycle
SOF — Start Of Frame

SPN — Suspect Parameter Number

SW — Software

SW-C — Software Component

TX — Transmit

VFB — Virtual Functional Bus

12

1.1
Software

CHAPTER 1
INTRODUCTION

The modern era market poses new challenges in the automotive industry every day.
In particular, manufacturers are investing in obtaining integrated systems in vehicles
that can be reused and standardized, trying to obtain new platforms that can follow the
needs of the OEMs.

Companies require new, easily scalable features at low cost in a short time: naturally,
this means increasing the complexity of the code.

Software is often not adaptable to any hardware, for this reason SW developers need

to modify the code to overcome the dependency on OEMs and suppliers.

In this scenario, a new generation of software is born thanks to the spread of

AUTOSAR standard.

AUTOSAR

HardWare

L)

Figure 1.1
Role of AUTOSAR

13

1.1
Software

1.1 Software

In the following chapters, the AUTOSAR architecture will be discussed in more detail,
but from the following figure it is already possible to notice the layered structure to
which reference has been made to have an independent SW with a good level of
abstraction.
We have:

e Basic Software (BSW)

e Runtime Environment Layer (RTE)

e Application Layer

Application Layer

Runtime Environment (RTE)

Microcontroller

Figure 1.2
SW Layers Overview

In order to provide a uniform interface for the development of communication
protocols, it is necessary to start from the levels closer to the microcontroller, and then

to continue with those higher ones.

As will be more evident later on, this approach allows the implementation of an easily
scalable FW and it gives the possibility to integrate different modules. In particular,

this also guarantees a significant simplification in terms of maintenance.

14

1.2
Quality

1.2 Quality

The evolution of embedded systems imposes challenges in terms of security: when
new features are added to meet the demands of the automotive market, software
security must not be neglected. If an update or modification of the code is required, it
is necessary to ask what kind of impact it has on the security mechanisms.

Understanding if there are improvements or not in these mechanisms guarantee good

code quality.

To guarantee the SW quality, it is fundamental to have a measures against faults in
order to have a program that is robust (and it does not break) both in working condition
and not.

There are several possible countermeasures, i.e. Unit Test, Integration Test, System
Test...

In general, SW faults must be taking into account during the SW development process.

Create Test Vector

Requirements and Expected
Output
Test
B Vector
Implementation
Model '
100%
Full Coverage Expected
Output
4
Simulation Output ——» Pass?

Figure 1.3
Testing

15

1.3
Test

A fundamental standard reference is the ISO 26262, which gives guidelines to measure

if it is done a sufficient testing on a single unit.

1.3 Test

The last step in the development of the SW involves a test phase.

Testing makes it possible to evaluate the correct functioning of the code and
compliance with the specifications; in the case of this thesis, it allows to validate the
interaction of levels within a network.

Nowadays tests are carried out following automated procedures, with the use of

specific tools that allow to speed up the validation process.

In the following chapters, the tests performed will be shown on the developed code

and the relative results.

16

2.1
DE-TRONIC V3 ECU

CHAPTER 2
TECHNICAL SPECIFICATIONS

The scope of this chapter is to propose a functional description and technical
specifications of the hardware used during the thesis activity: it is presented the
ECU, its features and the main characteristics of the Microcontroller
MCI9S12XET256.

In the end, there is an overview of the network.

2.1 DE-TRONIC V3 ECU

The DE-TRONIC V3 ECU is designed for both 12V and 24V automotive
applications and it is used in combination with Selective Catalytic Reduction
(SCR), Diesel Particulate Filter (DPF), Exhaust gas recirculation (EGR) and Fuel
Borne Catalyst (FBC) system.

Figure 2.1
DE-TRONIC V3 ECU External Box

17

2.1
DE-TRONIC V3 ECU

It is able to drive all the loads connected to these modules with a maximum

temperature of 85°C.

SR T 7 . §
Power ox Low-Side
Az Suppl isi
Anslog Tnput pPply Digital Outputs
y —
p
2x Low-Side
i Frequency
Outputs
1x N~
Digital Inputs —
2x
= Peak & Hold
Outputs
™~ N
2x Communication
Frequency 2 x CAN External 5V
Inputs 2 x Serial Line External 12V
| —

Figure 2.2
DE-TRONIC V3 Block Diagram

In the Figure 2.2 is shown the internal block diagram, the main section are the

following:

e Microcontroller MC9S12XET256
e External connector

e Power Supply

e Analog Inputs

¢ Digital Inputs

e Frequency Inputs

e Low-Side Digital Outputs

e Low-Side Frequency Outputs

e Peak & Hold Outputs

¢ (Communications

e External power supply (sensor, loads)

18

2.1
DE-TRONIC V3 ECU

The general functions with their block diagram are listed below:

Digital

Input 1

PC
tool

serial

K Line

i

Figure 2.3
DE-TRONIC V3 Functionality

Functional connections (Power Supply, GND)
External power supply (5V for sensors)

Analog Inputs

Diagnostic analog reading

Vch (Key contact input)

Digital Input

Frequency Input

Actuator Low Side (Urea Heating, Urea Pressure Pump...)
Peak and Hold Output (Urea injector, Diesel Injector)
External Communications (CANO,CANI...)

DAC output

Internal clock with backup battery power supply
Internal 125 Mbit flash memory

19

2.1
DE-TRONIC V3 ECU

As regards the communication section, the ECU is equipped with a CANO line,

CANI1 line, PC tool serial line, serial line and K line.

2.1.1 MCI9S12XET256 pC

The microcontroller used for this thesis activity is the MC9S12XET256 produced
by Freescale Semiconductor Inc.
It belongs to the MC9S12XE-Family of microcontrollers that are characterized by

standard on-chip peripherals!, including:

8 x LIN/SCI 2x IkC 3xSPI
> -
5 x MSCAN -0 =
168 8-ch. 8-ch. Penodic 168 8-ch.
Timer Interrupt Timer ECT
INT RTI & API CRG
Mg TeikE |
 768KB | ABKB |
et XGATE Coprocesor T
| SBAKE T
Z5EKE [16KE |
128K S 12KB
Flash RAM
Opti Options
— S12XCPU —
B Debugging/Interfaces Pariphetals [l Memory M RAM Cora plus Features
Figure 2.4

S12XE Microcontroller Block Diagram

e up to 64Kbytes of RAM
e 8 asynchronous SClIs

e 3SPI

e 8-channel IC/OC ECT

e Two 16-channels

e 12-bit ADC
e & Channel PWM
e 5CAN2.0A

I MC9S12XEP100RMV1 — NXP , Datasheet

20

2.2
Network and IDE

e software compatible modules (MSCAN12)

e 2 inter-IC bus blocks (IIC)

e 8-channel 24-bit periodic interrupt timer (PIT)
e 8-channel 16-bit standard timer module (TIM)

2.2 Network and IDE

The ECU described above is powered at 12V through a Programmable DC
Laboratory Power Supply. To enable the communication between the PC and the

device is used a PEMicro USB Multilink Debugger.

Figure 2.5
ECU, PEMicro Probe, Instrumentation (on the left),
EGR valve (on the right)

In addition, an EGR valve and a PowerView 101 display have been associated to
verify the correct operation of the CAN communication networks.
This type of display offers the possibility to check engine parameters and more

than 50 SAE J1939 parameters, giving a text description of fault condition.

The SW has been developed in C using CodeWarrior® IDE by NXP
Semiconductors for editing, compiling and debugging.

In order to proceed with the test of the serial communication, it was used Hercules

21

2.2
Network and IDE

Setup Utility (to send messages and verify the correctness of the reply); in the CAN

case, P-CAN view allowed to view, transmit and record CAN data traffic.

22

3.1
AUTOSAR light

CHAPTER 3
BACKGROUND

This section of the paper is dedicated to the description of the fundamental concepts
on which the thesis activity is based.
The description of the AUTOSAR standard, the features of the ISO26262 standard

are shown.

As it can be noticed, in the following paragraph is about "AUTOSAR light”: during
the development of the thesis activity, the goal was to obtain a code as independent
as possible from the hardware, therefore close to the idea of the standard without
going into its details.

The fundamental concepts studied during the in-company training phase will be

presented.

3.1 AUTOSAR light

The AUTomotive Open System ARchitecture (AUTOSAR) consortium was
founded in 2003 by an agreement among the largest protagonists of the automotive
scenario, i.e. Bosch, BMW, Continental, Chrysler, Daimler, Siemens VDO and

Volkswagen that represent the “Core Partners”.

Over time, the consortium has more than 100 members contributing to the growth

of a new automotive programming paradigm.

23

3.1
AUTOSAR light

The proposed architecture is one of the milestones of modern automotive
programming. The idea with which AUTOSAR was born is to have a standardized
methodology of development that allows to have software modules independent
from the hardware. This is possible by having unified interfaces, which allow the
integration of new software components over the lifetime of the vehicle with great

simplicity (as long as they conform to the standard).

@) Q Q
co &= cF
9 Core Partners 53 Premium Partners 38 Development Partners
e

Telematic
Buwcrowp & =B~ Swwomes FONDPA TATA MOTORS B .@ & Gy (@) | gavens ()|samcwn
- e Great Wall

HyUnoA! o

: fti.. $elad
@ BOSCH s @@ £ maseunns

I
1S

Ol @& dspace Denvso JTEKT QLear

Augolfy osvsem S n e (SEEEEEEREEE BRSNS e

(@ntinental »

S : i T =2 OF
DELPHI Panasonic nec oz CNH Valeo s e
P INDUBTRIAL e . - Eﬂﬂ c & s
" = fouiin
<= Standard Software :‘:‘;‘“ e
&
DAIMLER £13 cep #vmins KPIT Hs SO veeron > SCSIC u <{orr @A L 1PCamn_)
: =38 o AAA oso Tirech
P=a Tools and Services :'!ui"m‘o“ IXIA ivrmiinen
aaaaaaa arTRan BETRL 1K @ wr e soves Deloitte. (,:e:l-l‘ills nordsys NCES VALIDAS
GM W JrEe— s sodius® | esET, PN &/popcomsar &
- o
ARC CORE 7 Fraunhofer ' : 2
TR o Atendees
endees
VOLKSWAGEN AG Cifineon Renesas Ly7 PN

Figure 3.1
Core Partners and Partners

The advent of AUTOSAR has produced a great improvement in terms of software

quality, costs and time.

The top-goal of the consortium are:
e Improve portability
e Standardize of basic SW features of ECUs
e Keeping an open architecture

e Composability

24

3.1
AUTOSAR light

Yesterday AUTOSAR

Application
Software
I
[

AUTSSAR

Hardware

Figure 3.2
SW comparison yesterday and today

3.1.1 Layered Software Architecture

What characterizes AUTOSAR is its modular and layered structure, which
involves the use of standardized interfaces in such a way as to allow
communication between the various components (the Figure 2.3 gives a coarse
view of the layered architecture). As anticipated in the introduction, the main layers
are Application Layer, Runtime Environment (RTE), Basic Software (BSW) and

then the Microcontroller.

The BSW is in turn divided in
e Services Layer
e ECU Abstraction Layer
e Complex Drivers

e Microcontroller Abstraction Layer

The Microcontroller Abstraction Layer is identified as MCAL and represents the
lowest level with the task of mapping the ECU peripherals; it contains all the
services and modules with direct access to the uC, i.e. Microcontroller Drivers(e.g.
MCU), Memory Drivers(e.g. RAM Test), Communication Drivers (e.g. CAN
Driver) and 1/O Drivers.

25

3.1
AUTOSAR light

Application Layer

Runtime Environment

Microcontroller

Figure 3.3

Overview of Layered Software Architecture

The ECU Abstraction Layer is identified as EAL and it gives independence to the
upper layers of ECU hardware structure; it contains all the services and interfaces
for the external devices, i.e. On-board Device Abstraction(e.g. External Watchdog
Driver), Memory Hardware Abstraction (e.g. Memory Interface), Communication

Hardware Abstraction (e.g. CAN Interface) and I/O Hardware Abstraction.

Detailed overview of Layered Software Architecture

Application Layer

AUTOSAR Runtime Environment (RTE)

Microcontroller

Figure 3.4

The highest level is the Services Layer; it gives a direct access to the OS, diagnostic

functionalities and the management of vehicle network communication.

26

3.1
AUTOSAR light

The Complex Drivers covers all the layers, from the HW to the RTE; it gives the
possibility to include special drivers for devices, for timing constrains or because

they are not defined in AUTOSAR architecture.

The RTE works like an interface and it is a Middleware Layer: it allows the
communication between applications and connect them to OS and HW. The
Runtime Environment isolates the application layer and so Software Components

can be independent from the ECU layout and the environment.

3.1.2 Software Component

The system functionalities of an application are developed in Software
Components (SW-Cs) than can include a large set of functions; it needs to have a
well-defined and standardized interface for a successful interaction over the ECU
(or several ECUSs is the system is complex).

It is important to underline that SW-Cs are atomic (they are distributed over one
ECU) and AUTOSAR does not give information about their implementation, it

provides specification for a successful interaction between them.

All the data, resources and interfaces needed by the SW-C (e.g. client, server,
ports...) are contained in the SW-C Description, which also give information about

their specific implementation.

Constraint

System
Déscription

ECU1

U IMS
avsoLny

’—‘ [Basic Sofiware]
Gateway d
I

Figure 3.5

Software Components and Communication

27

32
ISO 26262

3.1.3 SW-C Communication

SW-C Communication is possible only with a specific standardized interface that
is identified as Port Interface: it consists on ports that provide or require data
according to a certain agreement.

The port must provide both Client and Server implementation; the client is the one
that always starts the communication to request a service by the server.

If the port

e provides the element is identified as PPort

e requires the element is identified as RPort.

The communication mechanism and interface between SW-Cs is provided by the
RTE; the sum of RTEs on different ECUs implements the Virtual Functional Bus
(VFB) that gives the possibility to different software components to establish an
exchange of data, without caring about which ECU is running: it implements all
the necessary for the communication. Moreover, it allows the relocation on other
ECUs of the software components.

The set of instructions that can be executed by the RTE is identified as Runnable,

that can be seen as a task running on an ECU.

3.2 1SO 26262

Safety is an essential concept for automotive industry, carmakers aim to security
as a key selling point to take advantage of the competition. It is important to have
an absence of risk and good measures to manage them.
Comes into play here the ISO 26262, an international standard for E/E systems that
defines the safety-related requirements covering the entire vehicle life cycle
process:

e Requirements specification

e Design

e Implementation

28

32
ISO 26262

e Integration
e Verification
e Validation

e Configuration

The standard indicates all the steps to follow in every phase in order to ensure the
avoid of control systematic failures.

The most important aspect of the standard is the concept of Functional Safety that
is defined as “the part of the overall safety of a system that depends on the system
operating correctly in response to its inputs, including the safe management of
likely operator errors, hardware failures and environmental changes™?.

It should be emphasized that functional safety does not implies the total absence of
risks of incorrect operation, but it implies the absence of risks that cannot be

accepted due to the malfunctioning of E/E systems.

3.2.1 ISO 26262 Structure

The standard ISO 26262 is divided in 10 parts:

Vocabulary

Management of functional safety
Concept phase

Product development at the system level
Product development, hardware level
Product development, software level
Production and operation

Supporting processes

A S R R e

ASIL-oriented and safety-oriented analysis

10. Guideline on the safety standard

2SO0, Road vehicles - Functional Safety - 26262-6. ISO, 2011.

29

32
ISO 26262

The thesis activity is focused on SW development, addressed in section 6 of the
standard.

In fact, the part 6 is related to the production development in terms of software, it
describes the phases and the methods in order to have compliance with the

standard.

The following steps compose this section of the standard:

e [nitiation:

Establishment of guidelines, plan of functional safety activities.

I 1. Vooabulary I

2. Management of functional safsty
|=-50ma| salety managemart | |ng.|.., | .rz'fmmmwllntuﬁlnluuhr |

3. Concept phase

35 llem definktion

4, Product development: system lavel

apmauet | 11 Releass for pro

-10 Funztanal aafaty

Production and operation

3-8 Intigtion of the safaly ifecycls ‘

3-7 Hezard analysie end rigk 4-0 Safety valldation
@ssagsment

3-8 Functional safely
con

Core processes

arm unit tesTing
.

@l 20N o WolEs
Jluray i : _

5-10 Hardware integrabion N Scftware integraticn and

tasting |l C

-1 lion Gf
m\ﬁlﬂhgm stftwars salsly|

8, Supporting processes

8-5 Interinces within disiributed 6-10 Documantation

(X3 joution #nd managemant of uirsmATE 8-11 Qualifioation of software tools

[Ed uration 812 Gualificalion of software s
B-8 Che Mt 8-13 Qualificalion of harcwars oo

8-8 Vertfication 8-14 Proven in use argument

9. ASIL-oriented and safsty -orlented aralyses
3-8 Raquirements dacompoaltion with respact to ASIL taloring

Figure 3.6
ISO 26262 Structure

o Specification of software safety requirements:
Specification of safety requirements and HIS. Here there is the addressing
of function module able to detect and handle faults, in order to maintain a

safe state.

30

32
ISO 26262

Software architectural design:

Design of SW architecture, representation of SW components in terms of
Static Aspects (interfaces and data path) and Dynamic Aspects (timing).
Feasibility and testability are taken into account, in particular it is checked

that SW safety requirements are respected.

Software unit design and implementation:

Code development according to coding guidelines and design specification.

Software unit testing:
Test phase, here it is checked that the single module works correctly

without undesired functionality.

Software integration and testing
All the SW entities are integrated. The SW must be compatible with SW
architectural design; the test phase shows that the SW is robust through

interface test, fault-injection test, back-to-back comparison (if possible)...

Verification of software safety requirement:
Demonstration that the system reflects the expected results and works

correctly.

The standard gives provision about the methods and measures for each phase with

specific table; in this way, the methods can be applied according to ASIL level in

relation to specific the safety goal.

The ASIL represents the measure of a risk of failure in a system component. There

are four level of risk A — B — C — D, from the least to the most important; when

there is no safety requirement there is the option QM (quality management).

It is possible to define the ASIL level for each hazardous event by

Severity:

Measures the severity of the damage in case of a system failure (damage in

31

3.2
ISO 26262

terms of people and property).
Classes: SO (No injuries) — S1 — S2 — S3 (Fatal injuries)

o Exposure:
Probability that a fault could be a safety hazard.
Classes: EO (Low probability) — E1 — E2 — E3 (High probability)

o Controllability:
It measures the probability that a dangerous situation can be avoided.

The danger may be due to the driver or external factors.

Classes: CO (Easily Controllable) — C1 — C2 — C3 (Uncontrollable)

Combining Severity, Exposure and Controllability it is possible to determinate the

ASIL with the help of the table proposed by ISO 26262 Part3 (Figure 2.7).

N T
T — T — B BT BT

- B e
e — T T
- BT e
I — BT T T

- I — T
b e .
- I — I T
N— B [|

I — T T
b I — I T
I — T T
I — 0 T

+ 333

+ 3+ 33

Figure 3.7
ASIL determination

3.2.2 V-Model

The automotive industry is constantly evolving and the complexity of the systems

is increasing thanks to new technologies. For programmers it is therefore necessary

32

32
ISO 26262

to follow a very precise coding and testing scheme, in order to have a correctly
functioning product that meets market needs and user requirements.
It is possible to refer to different SDLCs (Waterfall Model, V-shaped Model,

Iterative Model...); in the case of this thesis, it was considered the V-shaped model.

The V-Model, known as Verification and Validation Model, represent the
development phases of a SW where the process are performed according to a V

scheme (Figure 2.7).

User Acceptance

Requirement Analysis Testing

Functional
Specification

Unit Test Plan

Detailed Design /

Program Specification Unit eszing

Figure 3.8

SW development flow,
V-model

The main characteristic of this model is that each step is associated to a
corresponding testing activity.
From the Figure 2.7 is evident that the model is composed by a Verification and a

Validation phase.

e Verification Phase
Requirement Analysis:
This first step is related to the requirement analysis, in particular it is
generated a document with all the requirements and specification in terms
of data, performance and functions. In this phase, it is define what is the

expected behaviour and not the design of the SW.

33

32
ISO 26262

Functional Specification:
Here there is the study of the requirement document and it is possible to
figure out what could be a feasible implementation of the SW. This is phase

is also called System Design.

High Level Design:
Also known as Architecture Design, here there is the SW architecture
design that consists in the definition of interphases, architecture diagram

and list of modules; it is a high-level design.

Detailed Design/Program Specification:

This phase can be identified as low-level design (LLD) step. Programmers
split the system in modules and they start to work on a pseudocode (design
of databases, API interfaces, error...).

Here and in the Code phase there is the real coding process development.

Validation Phase

Unit Testing:

In this phase a program module is tested individually; in particular here it
is checked that this entity works correctly regardless of the rest of the code.

This test is useful to eliminate any bugs.

Integration Testing:
This test checks the interoperability and correct communication of the

entities. The whole system can be tested.

System Testing:
At this stage of the model, it is checked that the functional and non-
functional requirements are correctly met through stress and regression

testing.

34

32
ISO 26262

User Acceptance Testing:
This represents the last step and the business users perform it. It is checked
that the systems respects the requirements using realistic data and it is

possible to define if the system is ready for the real world or not.

The thesis activity was a good opportunity to better understand the phases of the
V-model.

In particular, the work focused on the requirements analysis and SW development
phase; the modules were individually tested in the debug phase, and were
subsequently integrated to check the correct connection of the network during the

Validation Phases.

35

32
ISO 26262

36

4.1
Protocols in Embedded Systems

CHAPTER 4
COMMUNICATION PROTOCOLS

An Embedded System is a microprocessor-based electronic system that integrates
HW and SW, generally has a custom-designed HW platform and is identified as
"special purpose" controller (it is designed for a specific use and it is not
programmable by the user).

It receives inputs (for example from connected sensors) and produces outputs, so
it is necessary that a communication take place between the devices: this is possible

by resorting to communication systems that can be both HW and SW.

This section briefly shows the characteristics of communication protocols in
embedded systems with particular attention to serial and CAN communication,

developed and studied during the thesis activity.

4.1 Protocols in Embedded Systems

The set of rules and characteristics of the communication are contained in the
Protocol, which defines the guidelines on how the exchange of information must
occur among devices.
Protocols can be classifies as

e Inter-System

e Intra-System
In the first case, the communication is between two different devices and takes

place via a bus system (Figure 4.1); an example could be the case of a PC-

37

4.1
Protocols in Embedded Systems

development board communication.

They can be classified in:

e USB
e UART
e USART

CPU uC

Figure 4.1

Inter-System Protocol

In the second case, the communication is between two components that belongs to
the same circuit (Figure 4.2); an example could be an accelerometer connected to

the controller.

CPU Component

Figure 4.2

Intra-System Protocol

They can be classified in:

e [2C
e SPI
e CAN

In this thesis, the attention is focused on the SCI protocol and CAN protocol; in the
following subparagraphs there is a brief description of both.

38

4.2
Serial Communication Interface (SCI)

4.2 Serial Communication Interface (SCI)

The Serial Communication Interface (SCI), also known as Universal
Asynchronous Receiver / Transmitter (UART), allows bit-to-bit communication
that enables data exchange between a uC and a peripheral device, or between puCs.
The SCI can operate in half-duplex mode (one TX, one RX) or in full-duplex mode
(TX and RX is simultaneous).

It also has these following features’:
e Standard mark/space non-return-to-zero (NRZ) format
e 13-bit baud rate selection
e Programmable 8-bit or 9-bit data format
e Separately enabled transmitter and receiver
e Programmable polarity for transmitter and receiver
e Programmable transmitter output parity
e Interrupt-driven operation with eight flags (Noise error, Parity error...)
e Receiver framing error detection
e Hardware parity checking

e 1/16 bit-time noise detection

7 Character bits

StartBit| Bitl Bit2 Bit3 Bit4 Bits Bit6 Bit7 | Parity Stop Stop
Bit
High
Low
8 Data bits
8 Bit per Character

Figure 4.3
SCI, Frame

3 MC9S12XEP100RMV 1 — NXP Datasheet, Chapter.20

39

43
Controller Area Network (CAN)

It is important to underline that the term ‘“asynchronous” means that the
communication is not managed by a clock signal, but the transmission is regulated

by Start and Stop bits. TX and RX must work under the same baud rate.

The communication mechanism is the following: it is enabled the TX through the
Transmit Enable, the data is loaded in a data register, when it is full the data is
transferred, by the HW, to a shift register and then outputted to the RX.
When the Receive Enable is set, the RX receive the data and it reads it at a specific

baud rate.

4.3 Controller Area Network (CAN)

The Controller Area Network (CAN) is a communication protocol designed by
Robert Bosch GmbH in the early 1980s.

The birth of this protocol derives from the need to have a communication between
electronic components that became more and more complex, in order to improve
automotive performance.

Given the difficulty in creating robust communication between these new devices,
the CAN network was proposed by offering a flexible solution with a single cable

that connects all electronic devices.

Engine Power

Control Seats

CAN d CAN
r i
[: ' |
| High Speed el ¢ LowSpeed |
- - A Dashboard A - +

N N
|
Active . .
Suspension Lightning
Figure 4.4

Simple example of connection

of devices through CAN Protocol

40

43
Controller Area Network (CAN)

Before the introduction of the CAN Network, the connection was point-to-point
and it was fine just in case of limited functions, but linking the ECU with all the
many electronic devices ensuring a real time exchange of data requires a more

complete and complex solution like the CAN.

The CAN Protocol is used not only in the automotive application, but also in

medical industries, aircraft and so on, because of its many positive aspects:

e Itis low cost, in terms of price/performance ratio
e Reliability, good errors detection and handling

e Flexibility, no limitation in number of nodes

e Capability of broadcast communication

e Data rate up to 1 MBit/s for a bus of 40 m (see Data-Link Layer).

4.3.1 CAN Architecture

To transfer data, the CAN Protocol uses the ISO/OSI Reference model:

7. Application
6. Presentation
5. Session
4. Transport

3. Network

2. Data-Link

1. Physical

Figure 4.5
ISO/OSI Reference Model

This protocol uses only the Physical Layer, the Data-Link Layer and the
Application Layer.

41

43
Controller Area Network (CAN)

Physical Layer

The CAN Protocol is a 2-wire bus (CAN High, CAN Low) terminated by
a resistance of 120Q2; having two wires means being immune to the noise
because by means of Common Mode Rejection. Without the twisted pair

cable the signal can be disturbed.

Dominant \o

CAN Hi

Recessive \b
CAN Lo \ '

2.5

Dominant \b

Driver Logic

Figure 4.6
CAN Signals

The bus can have a dominant (0) or recessive value (1); the dominant bit
always overwrite the recessive one.

In order to do not cause errors during the transmission of data, it is
necessary to that all the nodes involved in the network must work at the
same nominal bit rate (number of bits per seconds).

Synchronization is possible with the first transition recessive-dominant bit
after a period SOF and a resynchronization is done every time there is this
transition, in this way it is possible to reduce of noise and guarantee a

correct arbitration. To be sure, about the synchronization, NRZ is used.

Data-Link Layer
This layer guarantees a reliable transmission, without errors: after sending

a data, it waits for a confirmation ACK.

42

43
Controller Area Network (CAN)

The CAN Protocol has four different type of frame:

Data Frame: a node transmits a data to any other node of the
network (Figure 4.7);

Remote Frame: a node request a specific data to another node
Error Frame: the node in TX or in RX detect an error, so it sends six
dominant bit and an error flag delimiter of eight recessive bits.
Overload Frame: the node is not ready for reception; to avoid

overload.

In the following Figure is shown the Data Frame structure:

€ Data-Frame >,
-
O identifier £ & R DLC DATA cRc I é w| EoF | mm
1 11 bits 111 4 bits 0-8 Bytes 15bits§1§1;1§ 7 bits §3bits
e SRS Y e Y
Arbitration Control Data Check ACK
Figure 4.7

CAN Frame structure

A frame can be Standard or Extended:

e Standard Frame: 11 bits of ID, frame of 44 bits to 108 bits, data from 0 to

64 bits.

o FExtended Frame: 29 bits of ID, frame of 62 bits to 129, data from 0 to 64

bits.

The CAN Protocol is characterized by a mechanism of arbitration to avoid

conflicts when more than one node tries to transmit data over the network.

43

43
Controller Area Network (CAN)

Every transmitter node compares the value that it sends with the value that is on
the bus: if the bit is the same, the node can go on with the transmission, if not it
must stop to transmit.

The arbitration is done by message priority considering the ID bits of the frame

over the network: smaller is the value, higher is the priority.

CAN is CSMA/CD protocol, it verifies the absence of traffic on the bus before
starting the transmission (regulated in relation to the frame priority): the node waits
for a specific time then it start sending data. If more than one node start to transmit,
they detect this collision (collision detection, CD) and stop the transmission.
e Application Layer
It defines the CAN configuration, for example the ID format and the main

function is the network management.

4.3.2 CAN Software Configuration

The CAN SW is structured three layers: HW, Basic Software and Application.

The Basic Software implements the:

o Communication Services

In order to use driver services it define appropriate API.
e Protocol Controller Driver

Related to the management of the operation of the protocol
o Transceiver driver

Related to the physical aspects of the CAN Protocol

il e
SPI master I"l' { CAN Protocol

Controller

transceiver

Figure 4.8

Example Transceiver

44

5.1
Serial Interface

CHAPTER §
IMPLEMENTATION

This chapter shows the details of the thesis, based on the knowledge presented in

the previous paragraphs acquired in the first period of activity.

The first interface presented is the serial one: the structure, the main features and
the common thread of this FW structure will be shown.

The same analysis scheme is used for the implementation of the CAN network.

5.1 Serial Interface

The task of the first software module is to provide a uniform interface to the Serial

Interface used for custom connection between ECU and PC tool interface.

5.1.1 FW structure

The Figure 5.1 shows the structure of the FW relating to the serial interface. The
approach is to start implementing the "lower" levels and then go up and forward

with abstraction layers.

45

5.1
Serial Interface

Application Layer

RTE

Microcontroller (uC)

Figure 5.1

Serial Interface - Communication Stack

The Figure 5.1 shows the modules developed in the following order:

Communication Drivers

MCAL, in Pink.

This is the module with a direct access on-chip, external devices are
mapped.

Dependent on puC.

Communication Hardware Abstraction

ECAL, in Green.

It provides a mechanism of access to devices regardless if they are on-chip
or on-board.

Independent of pC, dependent on ECU HW.

Communication Services,

In Blue.

It provides management of vehicle network, ECU state. Basic SW modules
for applications.

Independent of a uC and ECU.

46

5.1
Serial Interface

5.1.2 Communication Drivers, SCI

This layer is structured in two macro-modules: MCAL cfg and

MCAL S12XET256.

BSWL
MCAL_cfg MCAL_S12XET256
sci_cfg sci sci_if
sci_cfg.h sci.h sci.c sci_ifh

Figure 5.2

Communication Drivers Structure

sci_cfg.h
The first one is related to the SCI Layer Configuration, using the MCU datasheet

it is possible to set the register with standard values at start-up.

In the Figure 5.2 is shown a portion of the file sci cfg.h. The main characteristic
of these definitions is that all the register are dependent on the micro so as to be
easily adaptable if there were changes in the HW (and therefore different settings).
This is possible simply using the #define: if there were any changes, it will not be
necessary to modify the entire code, but it will be sufficient to replace the new
values and consequently the SW will adapt to this change.

With this small detail, it is possible to have a leaner and faster setting.

In this header file SCI Control Register 1, SCI Control Register 2, SCI Baud Rate
and SCI Parity bit are set according standard values.
Constant definitions such as BAUD RATE 115200, are set in sci_if.h contained

in the other module.

47

5.1
Serial Interface

/
* S5CI Layer Configurations

v RS Ol S

#define STATUS SCIL RE TH SCI1SEL & 0=20
#define SCI1 _DATA RE TX SCI1DRL
#define SCI1_CONTROL_REGZ SCI1CRZ
#define SCI1_ENABRLE RX Oz24

#define SCI1_ENARLE_TX 0=88

#define SCI_Control Register 1 0x00
<% SCIICE1 = 0=00; SCI Control Register 1

BT (Parity Bit)
||_ PE (Paritw Enable)

ooo
[1]
[1]
e e o R iy
| 1] WAKE
e
|11 RSRC
|l SCISWAT
| LOORS
*
#define SCI_Control Register 2 0x24
w SETICR2 = 0x2d: SCI Control Register 2 (start only with R¥ interrupt actiwve)
b

SBE (Send Break bit}

EWI (Receiver Walkeup bit)

RE (Receiwer Enable bit)

TE (Transmitter Enable bit)

ILIE (Idle Line Interrupt Enable bit)

RIE (Receiver Full Interrupt Enable bit})

TCIE {(Transmission Complete Interrupt Enable bit)
TIE (Transmis=ion Interrupt Enable bit)

*,

<% Standard walues at start—up uC =~

Fdefine SCI_StandardBaudRate BAUD RATE 115200
% SCI1ED = {uint)SCI1Baudatt;

SCI1ED = O=0011; 115200
SCI1ED = O=0023; 57600
SCI1ED = O=0034; 38400
SCI1ED = O=0068; 19200

SCI Baud Rate Register

SCICLE 32 MH=z
Baud Rate = = = 117674 (115200)
1t = SER le = 17
Figure 5.3

sci_cfg.h (MCAL cfg)

MCAL SI12XET256

Inside MCAL_ S12XET256, there are the sci if (it contains sci_if.h) and sci (it

contains sci.c and sci.h) modules.

Sci_if.c contains all the definition and typedefs (Figure 5.4), variables and

constants, functions and stubs used in the sci.c file.

48

5.1
Serial Interface

* DESCRIPTION: SCI Component IF
*

REVISION HISTORY

Date Description

R

£

#ifndef SCI_IF_H
#dofine SCI_IF_H

% Definitions and typedefs

typedet enun{

BAUD_RATE_115200= 0x0011,
BAUD_RATE 57600 = 0x0023,
BaUD_RATE 36400 = 0x0034,
BAUD_RATE 19200 = 0x0068

J5CT1BsudAttTyp:

typedef enun{

STANDARD = 0=x00,
EVEN_F = 0x02.
ODD P = 0x03

JParityBitConfiguration:

typedsf enun {

MESGAGE_RY_INCOMING =
MESSAGE_RX_END_RE =
HESSAGE_HOT_INCOMING
MESSAGE_TX_SENDING =
MESSAGE_TI_END_SEND

} TypeState_SCI1:

Figure 5.4
sci_if.h (MCAL _S12XET256) definitions

The use of symbols in the typedef enum (such as STANDARD, EVEN P, ODD P

...) facilitates code modification and makes the debugging phase more intuitive and

fast.

Function: SCI_ChangeBaudSCI1
Description: baud management SCI

#pragma CODE_SEG SCI_PLACEMENT_CODE

woid SCI. 2I1{SCI1EBaudAttTyp BaudRate)

SCT1ED = (uint)BaudRate:

*
* Function: SCI_ParityBitSCI
Description: parity bit SCI1
*

*pragma CODE_SEG SCI_FLACEMENT CODE
woid SCI_ParityBitSCI1(ParityBitConfiguration ParitvBit)

SCIICRL = (byte)ParityBit;

Function: SCI_Timerlms
Description: SCI_Timerlims

#pragma CODE _SEG SCI_PLACEMENT CODE

void SCT_Timerins(void)

if (uBSCI_ContSCIITimeOut ¢ SCI1_TIME OUT)
uBSCI_ContSCI1Tins0ut++;

Figure 5.5
sci.c MCAL_S12XET256) functions

49

5.1
Serial Interface

As shown in the last figure, the sci.c file implements the “lower level functions”
such as the setup of the parity bit, the timer or the choice of the baud rate value for

the serial communication.

Important functions to pay attention to are those of “Init”.
The function void SCI InitSCII(void)is necessary in order to have a setup and

initialisation of the SCI control registers .

#pragma CODE_SEG SCI_PLACEMENT CODE
void SCI_InitSCI1{woid}
SCIIBD = {uint)SCI_StandardBaudRate:
SCIICRL = (byte)SCI_StandardParity:
SCIICE2 = SCI_Control Register 2

Figure 5.6
sci.c (MCAL_S12XET256) SCI_InitSCI1

o

>3

Function: SCI_IntSchedulerSCI1
Description: =chedulesr

LR

*

#pragma CODE_SEG SCI_PLACEMENT CODE

woid

{

lerSCI1{void)

1f (STATUS SCI1 RX TX) <% RI active =7
uBSCI ContSCI1TimeOut = 0;
AckDatR=SCI1 = SCI1 DATA RE TX,
uBSCI Buf fE=SCI1[uBIndExSCI1] = AckDatRE=xSCIL:
SCI_StateSCI1 = MESSAGE RE IHCOMING,
uG IndE=S5CT1++;

) ##SCI_StateSCI1 = MESSAGE RE END RX;

el=se
{
if (u85CI_HumByteT=SCI1 > 0}
SCI1_DATA RX THE = uBSCI_BuffTxSCI1[ufSCI IndT=SCI1++4]:
uB5CTI_HumByteTzSCI1 ——;

else

SCI1_CONTROL REGZ = SCI1_ENABLE R¥: % enable RE =~
SCI_State5CI1 = MESSAGE TE EHD SEND:

Figure 5.7
sci.c (MCAL_S12XET256) SCI_InitSchedulerSCI1

50

5.1
Serial Interface

The second Init function, void SCI IntSchedulerSCII (void), is related to the
scheduler. In particular, it enables the reception and checks the RX status. In the
debug phase, it is easily possible to see that a reception is happening or is finished
thanks to the symbolic messages “MESSAGE RX INCOMING”,
“MESSAGE _TX END_SEND” and so on.

The functions implemented in this module are called in the main.c, together with
the ones that enable reception and transmission as shown in the Figure 5.8 and

Figure 5.9.

SRE

*
Function: SCI_EndMessageRESCI1

Description: Wait End Hessage RX
*

*
#pragma CODE_SEG SCI_FLACEMENT CODE
woid SCI_EndMessageRESCIL1(woid)

if ((uBSCI_ContSCI1TimeOut >= SCI1_TIME_OUT) &k (5CI_StateSCI1 == MESSAGE_RI_TNCOMTNG))
{

FineRxS5CI1 = 0OxFF: 4 Bx terminated. corret
SCI_StateSCI1l = MESSAGE R END RX:
SCII1CREZ = 0=00: A7 disable RX and keep Tx disahble

udIndRx5CI1 = 0
¥
+

Figure 5.8
Sci.c (MCAL_S12XET256) Disable RX

#pragma CODE_SEG SCI FLACEMENT CODE
void SCI SendleszzageSCIll({byte Messlength)

UBSCI_HumByteTxSCI1 = Messlength:

SCI_StateSCI1 = HESSAGE TH_SENDING;

uB5CI_IndT=zSCI1 = 0

SCI1_CONTROL_EEGZ = SCI1_ENWAELE TX: ~#* Enable T »~
H

Figure 5.9
sci.c (MCAL_S12XET256) Enable TX

The use of #pragma directive is necessary for each function because it specifies
where its segment is allocated. CODE SEG ensures that all definitions and
function declarations are in the same segment, in this case

SCI_ PLACEMENT _ CODE (that is OTHER _ROM).

51

5.1
Serial Interface

Before proceeding with the description of the code related to Communication

Hardware Abstraction (section 5.1.4), the structure of the messages exchanged

between PC and ECU is presented below.

5.1.3 Messages Structure

Each message has a precise structure, stand out in:

e Request from PC to ECU

STX
LEN
RX
X
CMD
SCMD
DATA
CHK

ETX

START byte message

Total message length

Receiver Code

Transmitter Code

Command Code

Subcommand Code

N bytes of data

Checksum: Sum without reporting from LUNG
to last DATA BYTE

Message STOP Byte

Table 5.1
Request from PC to ECU Structure

e Positive reply message from ECU to PC

STX
LEN
RX
X
ACK

SCMD
DATA

START byte message

Total message length

Receiver Code

Transmitter Code

Acknowledge Command Code (CMD received +
0x20)

Subcommand Code

N bytes of data

52

5.1
Serial Interface

CHK Checksum: Sum without reporting from LUNG
to last DATA BYTE
ETX Message STOP Byte
Table 5.2

Positive reply message from ECU to PC

Structure

e Negative reply message from ECU to PC

STX START byte message

LEN Total message length

RX Receiver Code

TX Transmitter Code

KO KO (“k” in ASCII)

ERR Error Code

DATA N bytes of data (if any)
CHK Checksum: Sum without reporting from LUNG
to last DATA BYTE
ETX Message STOP Byte
Table 5.3

Negative reply message from ECU to PC

Each byte of the message takes on a very precise value and refers to the Multronic
S.r.l. DOCUMENT (updated during the thesis activity) N°: 001-19 ELECTRONIC
CODIFICATION of the ECU.

For privacy reasons, these values cannot be shown explicitly.

The requests from PC to ECU are to characterize a command byte (CMD) which

can assume 8 different values in hexadecimal depending on the type of request.

Each type of CMD, in turn, has a set of subcommands SCMD (characterized by a

certain value as well).

53

5.1
Serial Interface

The possible CMDs and some examples of possible SCMDs are shown in the

following set of requests:

e CMD: Read request
SCMD: Reading of N-byte from RAM, 2-byte address, reading of N data
from ECU....

e (CMD: Write request
SCMD: Writing of N-byte on RAM, 2-byte address, writing of data and
time of ECU internal clock...

e CMD: Start - Stop writing, programming and downloading
SCMD: Start programming file s19 ECU, Stop programming file s19 ECU.

e CMD: Lock-unlock flash
SCMD: Unlock Internal Flash, Lock Internal Flash.

e (CMD: Hook and Test present
SCMD: Test Present ECU

e CMD: Memory cleaning
SCMD: Clear n-th External Flash...

e (CMD: General Messages
SCMD: ECU Reset, Subcommand saving EEPROM Memory...

e C(CMD: Testing
SCMD: External Flash Test, Request activation digital output...

5.1.4 Communication Hardware Abstraction, SCI

At this point, it is possible to level up and start a first level of abstraction.

54

5.1
Serial Interface

In order to describe the structure of this macro module, it is useful to refer to the

following figure:

Sources

Y

G

|

COM cfg

l

MULcom_cfg

}

MULcom cfg.h

r

l— BSWL j
FG f

KERNEL
COM
I
v v
MULcom_if MULcom
| MULcom_ifh | | MuULcomc | MULcom.h
Figure 5.10

Communication HW Abstraction Structure, SCI

The prefix "MUL" is used in order to resume the company name (MULCtronic).

MULcom_cfg.h

This branch of the software structure is related to the COM Component

Configuration, are defined:

o FECU Addresses

e Read/Write EEPROM
e Answer Read

o Answer Write

e Answer Lock/Unlock
o Answer Hook Test

o Answer Memory

55

5.1
Serial Interface

o Answer General Message
o Answer Testing

e Position of byte in Message Frame

The MULcom layer configuration is done through the use #define. In the case of
the ECU Addresses, all the registers in hexadecimal are defined.

<% MILocom Pozition in Mes=zage Frame =~
#define MULcom START MESSAGE POSIT
#define MULcom LEHGTH POSIT

#define MULcom RECEIVEER CODE POSIT
#define HULcom TRAHSHITTEE CODE _FOSIT
#define MULcom COMMAHD POSTT

#define MULcom SUBCOMMAND POSIT

e Lk = O

Figure 5.11

Element position in a message frame

The other set of definition have the structure shown in the figure below:

<#MTLocom preszence MULocom Answverlritexs

#define FRESENCE SCHMD EAM NBYTE_WRITIHG 2EYTE

#define FRESENCE SCHMD EAM NEYTE_WRITIHG 3EYTE

#define FRESENCE SCHD INTEREWAL FLASH WNEYTE _WEITIHG
#define PRESENCE SCHMD INTERWAL EEFROM HBYTE WRITIHG 2BEYTE

Figure 5.12
Example of #define in MULcom_cfg.h

For each type of SCMD of all possible CMD, there is a corresponding #define
PRESENCE SCMD ... In following pages, it will be shown how these will be

necessary for handling messages in the MULcom.c file.

MULcom.h

The file related to the MULcom Component Header, is dedicated to the definition

and declaration of variables, arrays and so on.

56

5.1
Serial Interface

extern
extern
extern
extern

byte
bvte
byvte
bvte
byvte
byte
bvte

uint BaudRateSCIlchange:

uint BaundRateHewSCI1:
uint StatoFE:;
uint StartMemFlash:

FilVerTTDM[8] = {0.0.
BootVerUDM[3] = {0.0,
Cod=UDM[8] = {0.0.
CodRewUDM[8] = {0.0.
BatchlDM[8] = {0.0.
SerialHunlUDM[8] = {0.0,
Dat=UDM[8] = {0.0,
Figure 5.13

o e Y s s o e }

cocooooo

cococoooo

coocoooo

coocoooo
=

Example of variables in MULcom.h

To be consistent in the names used, a name-change is done in the same file for each

element in this way:

e

SUC Inputs definition

#define Hllcom GetSCI1{ value)

#define Hllcom GetSCIlStatel)

#define HUlcom SendHes=ageSCIl(values)

#define Mllcom ResetCOP()

#define Hllcom EEXT25COE80_SaveVarEEFROHE=tL ()
#define MUlcom WriteMappatursEEE(waluel, wvalus2)

#def ine
#deifine
#define
Fdefine
Fdeiine
#define

HllLocom_ AddH
HlLcom_ AddH
HlLlcom_ AddL
Hllcom HEvte

Hllcom StSlaveSCRInfo
Hllcom StatolOrol

Figure 5.14

Fi

uB5SCI_BuffR=xSCI1[walus]
SCI_StatesCI1

11 walus)

{ walu=l valus? 3

AddH

AddH

AddL

HEvte
StS5laveSCREInfo
Statolrol

Change-name in MULcom.h

In MULcom.h, there are SWC Outputs Assignments such as

s

*® SWC Jutputs assignement

fdefine HULcom FutSCIl{ wvalue, walusl)
fdefine Hllcom ReadPutSCI1{ walue)

Figure 5.15

A

udSCI_Buff{T=SCI1[valus] = walus=l
uldSCI_Buff{T=xSCI1[wvalus]

SWC Outputs Assignment, MULcom.h

This is done to avoid problems in terms of interoperability between SW modules.

These

two element shown in the Figure 5.12, together with

MULcom_GetSCII (value) and MULcom_GetSCI1State(), are used in the file

57

5.1
Serial Interface

MULcom.c to manage the answer (see next section MULcom.c).

MULcom.c

This file contains the core of the management of request messages from PC to ECU
and transmits the corresponding response or an error message if something goes
wrong.

The code has a “waterfall” structure, i.e. the execution of a function triggers the
call to another one and so on. To better understand the dynamics of the SW it is

useful to refer to the graphs shown in this section.

The first function performed (called in the Main Loop in main.c) is

MULcom_Answer ().

The scans the message that is received and checks step by step if the data is actually

a valid request:

1. Check if a message has been received;

2. Checksum Check (comparison of sent and calculated checksum value);
3. Start Byte Check ;

4. Length and end of the frame Check;

5. RX Code Check;

6. TX Code Check.

If the message does not comply with the expected format, an error frame

corresponding to the anomaly detected is sent.

58

5.1
Serial Interface

: MULcom Answer () \
main.c

(THMULcom AnNSWerErT(Lype
of error)

l Msg STX
[MULcom GetSCIlState() Frame -
| MESSAGE_RX_END_RX Sedn
_¢ _EiDn:) RX
(| TX
‘ MULeom CheckSum(.)
- * 4 CMD
No P SCMD
— Valid?
T el DATA
((MULCOM ANSWSIEIT (TYyDe |
of error) | Vs CHK
END
[START MESSAGE REQUEST |
Na Yes
- MULCom _AnswerErr(type | Tt | STOP MESSAGE REQUEST
cf error) = =
No
|‘ MULCOm ANSWerETT (Lype |
of error) |
| RECEIVER CODE_ REQUEST |
No

No

v
[MULcom AnswerErr(type |
of error) J

lYes

| MULcom AnswerActiveMesa()

Figure 5.16

Message Frame Scan

59

5.1
Serial Interface

*
% Function MOLcon_Answer

* Description: Answer to a request
*

#pragua CODE_SEG MULoow_PLACEMENT_CODE

void MO

r(woid)

if (MULcom GetSCI1State() == MESSAGE RX END RE)
1

if (MULecon GetSCI1(HULcom START MESSAGE FOSIT) == MULcom START KESSACGE REQUEST)
i
if (MULecom GetSCI1(MULcon GetSCI1(HULcom LENGTH FOSIT) - 1) == HULcom END_MESSAGE REQUEST)
{
if (HULcon_GetSCI1(MULcon RECEIVER CODE POSIT) == MULcom RECEIVER CODE_REQUEST)

1f (MULcon_GetSCI1(MULcon TRANSMITTER CODE FOSIT) == MULcom TEANSMITTER CODE_REQUEST)

mval:d TRANSMITTER_CODE_REQUEST */
+(MULcon_WRONG_TZ_IDENTIFIER_ERROR):

2 1nval1d RECEIVER_CODE_REQUEST =~
rr(MULcon WRONG _MESSAGE RECEIVED ERROR);

t
else

i mvalld STOP_MESSAGE_REQUEST *+
HlLco rErr{MULcon_ INCORRECT MESSAGE SEQUENCE ERROR) .

b
else

/* invalid START_MESSAGE_REQUEST s
HULoon_INCORRECT MESSAGE SEQUENCE ERROR) .

/* 1nvah\:1 CHECK_SUN =,
L MuLDEIm CHECKSUM_ERRCR) :

Figure 5.17

Mulcom_ Answer(void)

i ((byte *#far)&llcon_GetSCI1{ HULcom LENGTH_FOSIT). MULcon GetSCIL1(HULcom LENGTH FOSIT) - 3) == HULcom GetSCIL{HULcom GetSCI1(MULcom LENGTH _FOSIT) - 2))

If everything is correct, the void MULcom_AnswerActiveMess(void) function is

executed:

=={void)

switch (HULcon_GetSCI1(HULocon COMMAND POSIT)) e
{
case MULcom CHD READING: S
1
Re=ad ()

b

S

S

|
break:

Comnand Position:4

CHD READING

CHMD WRITING

*®

*.

*

CHMD START-STOP-FROGEAMMING-DOWHLOAD =~

CHD LOCK UNLOCK INTEEWAL FLASH

*

60

5.1
Serial Interface

case MULcom_ CHD HOOK_TEST: s# CHD HOOK AND TEST MESSAGE *
1
break:
+
case MULcom_CHDHEMORY COMHAND: #% CMD CLEANING MEMORY *
1
HULcon_answerbemory ()
break;
}
case MULcom_CHD GENERAL MESSAGE % CMD GENERAL HESSAGE *®
1
MULcom_ér =():
break:
+
case MULcom_CHD_TESTING_MESSAGE <% CHMD TESTING HESSAGE *
{
HULcom AnswerTesting();
break:
default:
1
MULcon_AnswerErr (HULoon COMMAND_NOT_ALTOWED_ERROR) : /% CHD ERROR "
break:

Figure 5.18

Mulcom AnswerActiveMess()

At this point in the execution flow the type of command is checked, depending on
the CMD the corresponding function is called.
Whenever there is any problem, an error function is launched (this applies to all

steps):

void (byte errorCode)

HULocom PutSCI1(HULoon START_MESSAGE _POSIT, HMULcom_START_MESSAGE POS_RESPONSE)

MULcom PutSCI1{HMULocon LENGTH_POSIT, HULcom ERRCR_MESSAGE LENGHT):

MULcom PutSCI1{MULcon RECEIVER CODE POSIT, MULcom GetSCI1{MULcon TRANSHITTER CODE POSIT)):

MULocom_FutSCI1(MTLcon TRARSMITTER_CODE_FPOSIT. MULcom RECEIVER_CODE_REOUEST):

MOTLcom_PutSCI1¢4. MULcom KO CODE_RESPONSE):

MLcom FutSCILES, errorCode):

MULcom_PutSCI1(6, {(byte *far)&MUlcom_GetSCI1(MULcon LENGTH_POSIT), MULcom_GetSCIL(MULcom LENGTH POSIT) — 3)).
MULcom_PutSCI1{7. MULcom END MESSAGE POS_RESPONSE)

HULcom SendMessageSCI1{HULcom ERROE HESSAGE LENGHT)

Figure 5.19

Mulcom_ AnswerErr(byte errorCode)

Once the type of CMD is identified, there is the check of the SCMD byte to identify
the type of subcommand and finally recalls the function that generates the correct
answer.

For example in Figure 5.19, there is the function relative to the CMD of reading

and some of its calls to the SCMD functions.

61

5.1
Serial Interface

void HULcom_ AnswerREead{woid)
switch{HULcon_GetSCI1 (MULoon SUBCOMMAND POSIT)) <% Subcommand Position: 5 %7
{
case MULcon_ SCHD RAM HWEYTE READING 2BYTE:
{

#if defined (PRESENCE SCHD RAM NBYTE_READING 2BYTE)
HULcon ReadingRam_ 2bytel):
felse

HULcon AnsverErr(HULocom COMMAND HOT_ALLOWED EERCR);
Fendif
break:

H
case MULcom_ SCHD RAM NWEYTE READING 3BYTE:
{

#if defined (PRESENCE SCHD RAM NBYTE_READING 3BYTE)
HULcon ReadingRam_ 3bvtel):
felse

HULcon AnsverErr(HULocom COMMAND HOT_ALLOWED EERCR);
Fendif
break:

H
case MULcom_ SCHMD INTERWATL_FLASH NEBYTE _READING:
{

#if defined (PRESENCE SCHD INTERNWAL _FLASH NEYTE READIHG)
HULlcon_ Reading Internal Flash():
felse

HULcon AnsverErr(HULocom COMMAND HOT_ALLOWED EERCR);
Fendif
break:

H
case MULcom_ SCHD_ INTERNAL EEFPROM HEYTE READING 2BYTE:
{

#if defined (PRESENCE SCHD INTERNAL_EEPRCOH_NEYTE _READING _2EYTE)
HULlcon Reading Internal EEFROMZ():
felse

HULcon AnsverErr(HULocom COMMAND HOT_ALLOWED EERCR);
Fendif
break:

H
case MULcom_ SCHD_ INTERNAL EEFPROM HEYTE READING 3BYTE:
{
#if defined (PRESENCE SCHD COMMAND HOT_ALLOWED ERROR)

HULlcon Reading Internal EEFROM3():
felse

HULcon AnsverErr (HULocom COMHAND HOT_ATLLOWED EERCE):
Fendif
break:

Figure 5.20

Mulcom AnswerRead(void)

As an example, the internal flash reading function is chosen to show how the frame

is structured.

void HULcom Reading Internal Flash{void)
{

ulong AppAddriB = 0;
byte i:

Appiddr3B = =(ulong *far)&Hllcon GetSCTI1(S):
AppAddr3BE &= 0x=00FFFFFF:

if
{

(¢ (AppAddr3B »>= MULcon_INIZIO_FI_R_EC) && {(Appiddr3E + HULcon GetSCIL(9) — 1) <= HULcon FINE_FI_FC)) |
{(AppAddr3B »= MULcow INIZIO FI R PC2) && | (APpAddr3B + HULcom GetSCI1(9) — 1) <= HULcom FINE FI_PC2)Y)

HULcom_PutSCI1(HULcon START_MESSAGE_FOSIT, MULcom START_MESSAGE_POS_RESPONSE), s% Start ®
MULcon_PutSCI1(MULcon LENGTH_POSIT, RESEOHSE_LENGHT) s% Lenght =/
MULcom_PutSCI1{HULcon RECEIVER_CODE_FOSIT, HULcom_GetSCIL(MULeon TRANSHITTER_CODE_POSIT)), % EX =
MULcon_PutSCI1(MULcow TRANSHITTER CODE_POSIT, ULcom TRANSHITTER CODE_POS_RESPONSE). sx TH */
MULcom_PutSCIL(4, HULcon_ACK); % MK ws
MULcon_PutSCI1(5. HULoon SCHD INTERNAL FLASH WEYTE_READING) % SCHD %~

for (i = 1; i <= HULcon GetSCIL{9); itt)

i

HULeom_FutSCIL(E + i,#(byte *far)ApphddriBit)

¥
MULoon_PutSCI1(MULcom GstSCI1{9)+6, HUloon CheckSun((byte *far)&MULoon ReadPutSCI1(MULcom LENGTH POSIT), MULcom ResdPutSCI1(MULcom LENGTH FOSIT) - 3))
MULcom_PutSCI1({HULcon_GetSCI1{93+7, HULcon END_MESSAGE POS_RESPONSE)

HULcom_SendMessageSCI1(RESPONSE _LEHGHT) ;
relse

HULcom_AnswerErr (MULcom _WRONG_ADDRESS_READING_ERROR)

Figure 5.21
Mulcom Reading Internal Flash(void)

62

5.2
CAN Interface

Through MULcom PutSCII(... , ...) is possible to structure each element of the
response frame plus the checksum calculation, depending on the type of CMD and

SCMD.

In every function, it is always considered that there may be an anomaly. In
particular, it is possible to find and report the following errors:

Wrong checksum

Message code received non-existent

Incorrect TX identification code

Message queue not received

Writing failed

Incorrect writing address

So on...

5.2 CAN Interface

The task of the module is to provide a uniform interface to the CAN network.

The CAN Communication Stack supports classic CAN 2.0.

5.2.1 FW structure

Application Layer
RTE

Communi-

o
Microcontroller (uC)

Figure 5.22

CAN — Communication Stack

63

5.2
CAN Interface

For the CAN network the same approach was taken into account, in fact even the

structure of the FW is very similar to that of serial communication.

CRIE] | =

State
Manager

CAN Transport
Protocol

CAN Interface

CAN Transceiver Driver for ext.
Driver CAN ASIC

CAN Driver

CAN Controller

Figure 5.23
CAN - Layered Structure Example

Considering the Figure 5.22, it is possible to refer to the description of page 37.
The difference is that in this case, at the communication drivers level, there are the

drivers also for the 1/0.
5.2.2 Communication Drivers, CAN

In the Figure 5.24 is shown a flowchart of the code related to the CAN
communication drivers, again here, a first macro module related to the CAN

configuration and another one to the Kernel composes the structure.

64

5.2
CAN Interface

Sources

MEAL (CFG MCAL_S12XET256
[
I) .
can_cfg .
l can_if can
can_cfg.h] [can_if.h] [can.h] [can.c]
Figure 5.23

Communication Drivers, CAN

In the next sections the most important part of the code related to the CAN Network
will be shown.

It must be underlined that the ECU provides two CAN connection (CANO and
CANT1) and both of them have been developed and configured. The test was done

on both lines as well.

can_cfg.h

This header file is related to the configuration of the CAN parameters such as
Control Register 0 and 1, Bus Timing Register for CANO and CANI.

Here there are several declarations related to the data rate and characteristics of the
CAN message (info like standard/extended ID...).

Thanks to these #defines the setting of the parameters is facilitated. Here too, if
there were variations in the HW, there would be no problem as the configuration
file would be the only one to be modified: the rest of the code adapts to the different

pinout.

65

5.2

CAN Interface
#define DATA FRAWE i} ~% DATA frame *
#def ine REHMOTE FRAME 1 <% REEHOTE f{rame *
#def ine EXTEHDED FRAME TID 2047 % max value of standard frane *
#def ine STANDARD FORMAT I} <% 1D standard frame (11 bit) *
#def ine EXTEHDED FOREMAT 1 <% 1D gxtended frame (29 bit) *

fdefine CAND Control Register 0 0=x01

<% CAHNOCTLO = 0=01: s Inizialization Hode Reguest
Ee

<< 0b00000001

e [T11111]_ Enter Initialization Mode
I [111]]_ Sleep Hode Reguest bit

S [11]]]_ Wake-Up disabled

A [111l_ Time stamping di=sabled

A [11l___ Synchronized Status

s |11 CAN not affected by Wait
s | Receiver Actiwe Status bit
s | Feceived Frame Flag bit

* .

fdefine CAHO Control Fegister 1 0=xC0

% CANOCTL1 = 0=CO; #« Enable MSCAN Module
A
S« 0b11000000
s [TITTT]]_ Initialization Mode Acknowledge
s [T111]]_ Sleep Mode Acknowledge
o [T111]__ Wake—up low-pa=ss filter disabled
s [1111 BOEM (Bus—0ff Recovery Hode)
s |11 Li=ten Only Mode di=sbled
s |11 Loop Back Hode enabled
s | Bu=s clock as Clock Source
s | HSCAH Module enabled

*.
#define CAHO_Bus Timing Fegister 1 0x=G8
<% CAHOBTR1 = 0=58: s 1 mample per bit, TSEGL = 8 (9 Tg) = TSEGZ = & (6 Tqg)
<< 0b01011000
A

|
|- TSEGL = 8 —» 9 Tg
|

|_ TEEGZ = & -» 6 Tg

S
S

1 =zample per bit

*.

fdefine CAN1 Control Register 0 0x01

Figure 5.24
can_cfg.h (CFG)

can_if.c

The can_if.c file is used to define the structure of a CAN message in terms of

Priority, Flag, Length, Data and ID, Pointer to the entry and exit of a circular buffer.

66

5.2

CAN Interface
<% CANO =7
typedef struct
1
union
uchar B:
struct
uchar priority :3; ~% Priority CAH Heszage *.
uchar flag £ o <% Flag for the identification of the cell state
1=full cell - D=empty cell */
uchar length 14 <% ID CAN Mes=zage *
} b:
T opfl;
byte message_p: <% Real Priority on walue between 0-255, in this case %7
byte datal[B]: «% CAN data messzage is not enought *
ulong ID: <% ID CAN Mes=zage *
} CAHOstruct;
typedef union
uchar B:
=truct
uchar pQut 4 ~% Pointer to the exit of circular buffer *7
uchar pIln 4 ~# Pointer to the entry of circular buffer */
} b;
} CANOptr_TYFE:
<% CAN1 %~
typedef struct
union
uchar B:
struct
uchar priority :3; ~% Priority CAN Hessage *./
uchar flag i ~% Flag for the identification of the cell state
1=full cell ~ O=empty cell *.
uchar length BE % ~% CAN Hessage lenght x
} b:
} pil;
byte mnessage_p: +% Heal Priority on valuse between 0-255. in this case #7
bywte datal[8]: ~%® CAN data message i= not enought *
ulong ID; ~% ID CAN Message *

} CAHlstruct:

Figure 5.25
CAN structure (can_if)

After the definition of variables and constant as shown in the next Figure, the

<2 CAND .-

SCOPE CaHOstruct CAN_QuenseCANO[CAND_QUETE LEWGHT]:
SCOPE CaNOptr TYPE CAN PointerCANO;

SCOFE byte WBCAN TokenBuf ferCAND:

SCOPE ulong CANODIDR=

SCOPE uint CANOIDRE=PGH

SCOPE byte CAHOIDRE=Priority;

SCOPE byte CANOIDExSend;

SCOPE byte CANOBuffRu[8]:

<2 CAHN1 =~

#pragma DATA SEG _ GPAGE SEG CAN PLACEMENT RAH

SCOFE
SCOFE
SCOPE
SCOFE

SCOFE
SCOFE
SCOFE
SCOPE

CAN QueusCAN1[CAN1 QUEUE_LEHGHT]:
CAN_PointerCAaN1:

uBCAN TokenBufferCANL:

CaNl=truct

CAaHlptr TYFE

byrte

ulong CAN1TIDR=;
uint CANIIDE=PGH:

byte CAHNIIDR=Priority;
byte CAN1IDExSend:
byte CANIBuffR=[8]:

Variables and constants (can _if)

Figure 5.26a

67

5.2
CAN Interface

function with their prototypes are defined here (Figure 5.26 b).

<% CONST =~

.

* Functions

% CAND -

extern woid CAH TnitCaNO(bvte, byvte, byte %far. hbyvte =far):
extern void CAN TransnissionCAND(wvoid);

extern void CAN _EnsblelnterruptCANO(woid);

extern void CAN Intc Int TE CANO(woid);

extern woid CAH Intc I RE CAND(woid):

#pragmna CODE_SEG CAN _FPLACEMENT CODE

<% CAH1 =~

extern woid CAH AN1(hbyvte, byte, byte %far, byte =far):
extern void CAN TransmissionCAN1(void);

extern wvoid CAN EnablelnterruptCANI (woid):

extern void CAN Int Int_THE CAN1(wvoid):

extern woid CAN Intec Int RE CAN1(woid):

Figure 5.26b

Functions (can_if)

Each function must have the keyword extern, in this way it is available globally

throughout the function execution.

The functions CAN Intc Int TX CANO, CAN Intc Int RX CANO (in this case
CANO is taken as an example, but also applies to CAN1) are Interrupt Function
related to the transmission and the reception of CAN messages.

They are defined in can.c file and they contain a call to another function defined in
a higher level of abstraction (MULcan.c), which handles the buffer initialisation,
the pointer and so on.

Every time there is a transmission or reception of a CAN message, a proper
Interrupt comes in play.

The Figure 5.27 shows a portion of code where it is done a change-name, it is
necessary in order to use the function in orange (defined in can.c) inside the

interrupt function in the infc.h file.

68

5.2
CAN Interface

i
SWC Inputs definition

#define

#define
#define
#define
#define

#define
#define
#define

Intc SCI_IntSchedulerSCIi()

Intc_CAN_ IntCANO_TH()
Intc_CAN_IntCANO_RH()
Intc_CAN_IntCANO_ERE()
Intc_CAN_IntCANO_EGE_READ()

Intc_CAN IntCN1_TH()
Intc_CAN IntCANI_RE()
Intc_CAN IntCANI ERR()

Figure 5.27
CAN RX/ CAN TX Interrupt (intc.h)

#pragma CODE_SEG INTC _PLACEMENT CODE
vold interrupt (woid)

{

byte AppGPAGE:

bvte AppRPAGE:
bvte AppEPAGE:

AppGPAGE = GPAGE:
AppRPAGE = RPAGE:
AppEPAGE = EFAGE;

Intc CAN IntCANO_TH():

GEAGE = AppGPAGE:
REAGE = AppRPAGE:
EPACE = AppEPAGE:
}
Figure 5.28
Int CAN 0 TX (void) (intc.c)
void interrupt (void) Exccuted everytime there is
a CANOTX
Intc_CAN_IntCANO_TX()
inte.c
#define]
intc.h
extern void (void) void (void)
{ {
(void) — HpOv tmp)
} MULcan.c !
can.c t
Figure 5.29

Cascade of calls for

the interrupt associated to CANO communication

69

5.2
CAN Interface

can.c

The CAN Component kernel has the definition of all the variables buffers, used in
the sub-modules related to the MCAL S12XET256, necessary for the

communication handled in the MULcan SW group.

ulong CANOIDT= = 0; A% Identification Tx Hessage (no control bit) *.
ulong CAN1IDTx =0; SE Identification Tex Hes=age (no control bit) *
byte CANOFraneTypeT= = 0;
Lyte CAN1FraneTypeTz = 0;
7% Tz Twpe:
0 — DATA FRAME —» Data Frams
1 - REMOTE FEAME -: REemote Frame
*®.
byte CAHOLengthT= = 0; SE Tran=mitted data lenght (in byte) *
byrte CANl1LengthTx =0:
byte CANDFraneTypeRx = 0;
byte CAH1FrameTypeR=z = 0: SE Ex Twype:
0 — DATA FRAME —» Data Frames
1 - REMOTE FEAME -: REemote Frame *
byrte CAN1FransFormE= = 0
byte CAHOFrameFormE=x = 0; S Ex Form:
0 — STANDARD FORMAT -» 11 bit ID
1 — EXTEWDED FORMAT - 29 bit ID */
byte CANOBuf fEx[8] = {0x00, 0x00, 0x00, Ox00, 0x00, O=x00, 0x00, Ox00}; ~#% CAND buffer Rz =~
byte CANDBuf fR=Mem[8] = {0.0.0.0,0.0, 0.0}
byte CAN1Buf fEx[8] = {0x00, 0x00, 0x00, Ox00, 0x00, O=x00, 0x00, Ox00}: <% CAN1 buffer Rx =~
byte CAN1BuffR=Mem[8] = {0.0.0.0,0.0, 0.0}
extern ulong CANODIDE= =0; % RBx Message Identification (no control bit)
extern ulong CANIIDR= =0 #% Bx Message Identification (no control bit)

uint CANOIDR=PGH = 0; ~% PGH
byte CANOIDR=Priority = 0: % Priority
byte CANOIDR=Send =0 % Identify who is sending the message

Figure 5.30

Variables and buffer (can.c)

After that, the initialization function is defined for the CANO and CANI in a very
similar way: the fundamental registers necessary for the activation mode request
are set, together with the configuration of baud rate and, filters, bus timing

register.

70

s
®s

* 7

=

5.2

CAN Interface

Function

KKK

CAN_TnitCAND

Description: CAN_initCAND

®/

#pragms CODE_SEG OTHER_ROM

void

CANOCTLO = CANO_Comtrol_Registez_0;
while (!{CAND_INIZIALIZATION MODE1))
{

CANOCTLL = CANO_Comtrol_Register_1;

(byte Baud, byte FilterType.

A CANOTEERROld = CANOTHEER:

CANOETRO &= CAN_RESET_BAND:

CAHOETRO |= Baud:

CANOETEL = CANO_Bus_Timing_Register 1;
CANOIDAC &= CAN_RESET_FILTER:

CANOIDAC |=

CANOIDARD
CANDIDARL
CANOIDARZ
CANOIDARS

CANDIDHED
CANDIDHEL
CANOIDHRZ
CANOIDHRZ

CANDIDARY
CANDIDARS
CANDIDARG
CANOIDAR?

CANOIDMR4
CANOIDMRS
CANDIDHRG
CANOIDHR?

FilterType:

CANOFiltriIDA[
CANDFiltriIDA[
CANDFiltriIDA[
CANOFiltriIDA[

o
1
2
3
CANOFiltriIDH[O
CANOFiltriIDH[1
CANOFiltriIDH[2
CANDFiltriIDM[3
CANDFiltriIDA[4
CANOFiltriIDA[S
CANOFiltriIDA[&
CANOFiltriIDA[7
4

5

[

7

CANDFiltriIDM[
CANDFiltriIDM[
CANDFiltriIDM[
CANOFiltriIDH[

CANOCTLO = CAN_END_REQUEST:

while ((CANO_INIZIALIZATION_MODE1) |= 0}
{

CANORIER |= CANO_ABILITAZION_STATUS_CHANGE_INT:

CANORIER |= 0=01:

P

s

pes

P
P

o

P

s

s

pes

s
o

ey

P

s

sx

byte *fsr FilterIDa, byte *far FilterIDH)

Initialization Mode Request

Waiting for ACK in Inizialization Hode
Enable HSCAN moduls

Memorize counter CANTXERE for testing
during hook if there i= a Tz error

Resst Baud hit

1 zample per bit, TSEGL = 8 (9 Tg) e TSEGZ = 5 (& Tqg)

Bit reset to sst with FilterTyps

ID Filter

ID Filter Mask (1 pass all, 0 filter activation)

ID Filter

ID Filter Mask (1 pass all. 0 filter activation

Initialization Hods End Request
Waiting for ACK in Inizialization Mode
CAN Status Change Interrnpt (CSCIE=1)

Interrupt every status changs (TSTATE1-0 = 11)
Ensble Interrupt CAN RX

Figure 5.31
CANO Init (can.c)

*

*

*

*
*

*

*

*

s

*s

*

.
*s

*

*

*

In the Figure 5.31 it is shown as an example the configuration of CANO, in the case

of CANI the structure is the same but the only difference is obviously related to

the configuration of the communication channel.

When the setting is complete, it is time to manage the real communication: for both

CAN lines, there are two function in order to manage the reception and

transmission of data.

In the Figure 5.32 it is shown the function related to the frame reception both for

Remote/Data and Standard/Extended frame.

It receives:

e Message IDRx

Pointer to message received ID

e FrameTypeRx
Pointer to the frame type: DATA Frame or REMOTE Frame

71

5.2
CAN Interface

e LenghtRx

Pointer to the data length in byte (REMOTE DATA Frame: 0)

e DataRx

Pointer to the received buffer

#pragma CODE_SEG OTHER_ROH

byte (ulong *far MessageIDRx,
{

byte i, ris;

ulong ID;

ID = *(ulong *far)CANORXIDR_ARR:

if {(*{ulong *=far)CANOREIDR_ARR & 0=00080000))
{

/7 Extended Frame

byts *far FramsTypeRx. byte *far FrameFormRx, bvts *far LengthRx, byte *far DataRz)

% resd ID nessage E
7% head if standard frame or estended (IDE) */

ID = { ((ID >> 1} & 0=0003FFFF) | ((ID >> 3) & OxFFFCO000)): #% Prepars ID Rx x
FrameTypsRx = ((ulong *Ear)CANORETDR ARR & 1)? RENOTE FRANE : DATA FRAME; % Load frame type %/
*FrameFormRz - EXTENDED_FORMAT, % Load Frame Format w0
slss
{ s Standard Frame
ID 5= 21; #% Prepare ID Rm preparo ID Rx #/
*FrameTypeRx - (#(ulong *far)CANOREIDR_ARR & 0=00100000)7 REMOTE_FRAME | DATA FRAME; «# Load type frame *
*FramsFormRe = STANDARD FORMAT, ¢% Load format frame s
¥
*HessagelDRx - ID, % Tramsier ID RY message */
*lengthRz - CANORIDIR & 0=0F; ~% Transier lenght *

if (*FramsTypsRx == DATA FRENE)
or{i-0; ic*LengthRx; it+)
#(DataRx +i) -
#/DatsRz[1] = CANOREDSRO[1]
CANORFLG |= 0=01;
ris - CAN_RE OK;
return ris,

#(CANORXDSE_ARR +i): e

Change due to different definition of CAHD register of the uC =~
% Transfer data (if frams) *
<% ACE reception flag ®s
7% Rx OK ®

Figure 5.32

CAN_ReceiveFrameCANO (can.c)

The preparation of the message to be sent is done with a proper function in the

same SW module; all the details and information can be set. If it is necessary it is

possible to set the priority of the message as well.

#pragna CODE_SEG OTHER_ROM

void CAN SendFramseCAN0(byte pointer)

uchar i, txbuffer: #% Index i and wariable for the numnber of selected tx buffer =~
ulong CAHOIDT= = CAN_QueueCANO[pointer].ID; «% Temporary wariable for shift */
CANOTBSEL = CANOTFLG: #% Check first empty tx buffer *®/
txbuffer = CANOTBSEL: <% Backup selected buffer */
if (CANOIDT= <= EXTENDED FRAME ID) <% Standard Framne or Extended =0
! *{ulong *far)CANDTHIDR_ARR = (CANDIDTx<<21): ~* Prepare ID standard frame */
else <% Prepare 1D extended frams =/,

*{ulong *far)CANOTXIDR_ARR = (((CANDIDT=<<1) & OxO007FFFE)|{{CANOIDT=<<3) & 0xFFE00D000))| 0x00180000:
for(i=0;i<CAN_OususCANO[pointer].pfl.b.length:i++)

®{CANOTHEDSE_ARE + 1)=CAN_QueueCANO[pointer].data[i]:

<% Load datas *s

CAHOTEDLE = CAN_QueusCANO[pointer].pfl.b.length; #% Load Tx data lenght */
##CANOTETBPR = CAN_ QueusCANO[pointer].pfl.b. priority; <% Uzually ==t at 0, max priority =7
CAHNDTETEPR = CAN_QueusCANOD[pointer] . message_p:
CANOTFLG = tmbuffer; <% Start Transnission x

Figure 5.33
CAN_SendFrameCANO (can.c)

72

5.2
CAN Interface

As mentioned in the page 59, the can.c file contains the definition of the function
that enables the interrupt for the beginning of the communication (i.e. Figure 5.34).

void (woid)

i
if (CANOTXBusy == CAN_TE OK)
i

CANOTEBu=y = CAN_BUSY; <% Communication token CAHOD TE =-
CANOTIER |= 0=01: <% Enable interrupt *.7
}
}
Figure 5.34

CAN_EnablelnterruptCANO (can.c)

CANOTXBusy is a Semaphore to manage the transmission,
0 = Transmission ok

1 2> Wait

The CANOTIER register is held in the reset state when the initialization mode
is active. Putting 0x01 in this register is an event that causes a interrupt request that

starts TX.

5.2.3 Communication Hardware Abstraction, CAN

This section of the paragraph is reserved to the Communication Hardware

Sources

| Bswi |

Abstraction.

CFG KERNEL
COM_CFG L
L COM
MULcan_cfg L2 v
¢ MULcan MULcan_if
MULcan_cfg.h ¥ L
MULcan.c MULcan.h
MulLeean_if.h
Figure 5.35

Communication Hardware Abstraction, CAN

73

5.2
CAN Interface

MULcan.c

The load of data on the CAN network is carried out using a queue with circular
buffer of length CANO QUEUE LENGHT (in this case 8); the variable advancing

in the array is identified with "b".

woid HULcar azusloadCANO (ulong msg_ID, uchar =far b)
E u8CAN_TokenBuf ferCAND = 1:
if ((CaAN_QueusCANO[CAN PointerCANO . b.pIn].pfl.b.flag == 0}}
t % Put token when buffer is loading so it's not possible to call interrupt from base timer *s

CAN_CueusCANO[CAN_PointerCAND
CAH_CmeusCANO[CAN PointerCANO.
CAH_CmeusCANO[CAN PointerCANO.
CAN_CueusCANO[CAN PointerCANO.
CAN QueusCAND[CAN PointerCAND.
CAN QueusCAND[CAN PointerCAND.
CAN_ QueusCANO[CAN_ PointerCANOD
CAN_QueusCANO[CAN_PointerCAND

o

pIn] . ID = m=g_ID;
pIn].pfl b.length =
pIn] . pfl. b.priority
pln].pil b.flag = 1:
pln].datal[0] = {uchar)(=h);
pln].datal[l] fuchar) (*{b+1))
pln].datal[2] fuchar) (®{b+2))
plIn] data[3] (uchar) (x(b+3)):
{uchar) (®(b+4)):
5)):
6))
[RD]

8
= 0

P e
fade e e do e Ao d et e

CAN_QueusCANO[CAN_PointsrCANOD pIn] data[4]
CAN_CmeusCANO[CAN PointerCAHO pIn] .data[&] {uchar) (={b+
CAH_CmeusCANO[CAN PointerCANO.b.pIn].datal6] {uchar) (={b+
CAN_CmeusCANO[CAN PointerCANO.b.pIn].datal?] {uchar) (={b+
if (CAH PointerCAND.L.pIn »= 7) ~#% Eliminating nessages. putting anomaly *-
CAN_PointerCAND.b.pIn=0;
else
CAN_PointerCAND.b.pIn++:
}
uBCAN TokenBufferCANO = 0;
% Try to send message, otherwise there's the function at 1 ms tast *7
()
}
Figure 5.36

MULcan QueueLoadCANO (MULcan.c)

: data[0]

data[1] ‘

" datal2] /

Figure 5.37
Circular Buffer for CAN Load

It is developed a version of the queue with the possibility to set the priority.

74

5.2

CAN Interface
woid (woid)

byte 1;

byte pOut_tmp = 0 #% temporary variable to handle message transmission and %~

<% messages with the sans interrupt *
pOut_tmp = CAN_PointerCAN0D.b. pOut: <% Current walue of plut pointer *®

if (CAN_QueusCAND[pOut_tmp] pfl b flag == 1}

{ (pOut_tmp}; <% CAN message transmission =
CAN_OueusCANO[pOut_tmp] .pfl.b.flag = 0. % Ho =ent nessage *®
CAN_QuewsCANO[pOut_tnp] .message_p = 0; % Reset msssage priority not used *®
for (1=0:1<8;1++) % Buffer initialisation *

CAN CueusCANO[pOut_tmp].data[1] = O=dd;
if (pOut_tmp »= 7)
pOut_tmp=0: <% Circual Buffer *
else
pOut_tmp++;
K
while ({CAN_QueusCANO[pOut_tmp].pfl.b.flag == 1) && {(CANOTELG & 7) != 0))
#% If there are message to send and free trasmission %~
(pOut_tmp}; <% CiN message transmission *s
CAN_OueusCANO[pOut_tmp] .pfl.b.flag = 0. % Ho =ent nessage *®
CAN_QuewsCANO[pOut_tnp] .message_p = 0; % Reset msssage priority not used *
for (1=0;1<8;1++) ##% Buffer initialization *®
CAN CueusCANO[pOut_tmp].data[1] = O=dd;
if (pOut_tmp »= 7) <% Circual Buffer xs
pOut_tmp=0;
else
pOut_tmp++;

K

CAN_PointerCANO . b.pOut=pOut_tmp: /% Reactivation of pout after transmission of multiple

nmessages with the sane interrupt -

Figure 5.38
CAN_TrasmissionCANO (MULcan.c)

The transmission on CANO/1 is handled by the function shown in the Figure 5.38.

5.2.4 Complex Device Driver

The Complex Device Driver accesses directly to the MCU (strong dependency)

and reaches the RTE. It is used when there are functions that must be implemented

ECU Abstraction Layer

Microcontroller Abstraction Layer

Microcontroller

Figure 5.39

Complex Drivers Layer

75

5.2
CAN Interface

and it is not possible to find them in other layers; in particular meets the need to

operate with complex actuators and sensors.

Sources

BSWL

v

KERNEL

EGR_APE35EL3 EGR_APE35EL3_if

EGR_APE35EL3.c EGR_APE35EL3.h EGR_APE35EL3 if.h

Figure 5.40

Complex Drivers Code Structure

This layer was used to develop the code for the EGR valve APE35EL2: this was
used as an actuator to verify the correct operation of the CANO and CANT1 network.
The valve opening percentage (the operational range is 0 to 100%) is sent on the
CAN network, the reply message is interpreted to assess whether the correct value

has been received.

5.2.5 EGR Valve

The valve used as an actuator for the network is a control system to manage the
NOx emission generated during the combustion process in the engine cylinders.
The EGR reduces the combustion temperature bringing back part of the exhausted
gas to the intake manifold, in this way the air 1s diluted.

Opening and closing is carried out via a computer in relation, generally, to the

temperature detected by sensors.

76

5.2
CAN Interface

Exhaust
wanifold

Figure 5.41
EGR Valve

The position control message is structured on 8 bytes and has a specific ID; the

idea is therefore to replicate this frame.

D Byte Byte Byte Byte ByteS5 Byte6 Byte Byte
| 2 R) 4 7 8

18FDD500 h | FF FF FF FF Valve Valve FF FF
Control Control

Table 5.4
Control of EGR valve position

All the code is structured in the file EGR_APE35EL3.c with all the variables and

the implementation of reading and sending function.

woid CAN ECE PositicnCiH0{byte EGR_Desired Position)
{

uint walue:
valuse= {(uint)EGE_Desired_Position=400:

ECGR_CANOIDT== 0Ox18FDDE00

EGR_CANOBuffT=[0] = (byte){0=FF);
EGR_CANOEuffT=[1] = (byte)(0=FF):
EGR_CANOEufiT=[2] = (byte)(0=FF):
EGR_CANOEuiiT=[3] = (byte)(0=FF):

EGRE_CANOBuffT=[4] (byte) (valus):
EGE_CANOBuffT=[5] (byte)(wvalues>»8):
EGRE_CANOBuffT=[6] (byte) (0=FF):
EGRE_CANOBuffT=[7] = (byte)(0=FF):

HlLean OueusloadCAN0(EGRE_CANOIDT=, EGRE_CANOBuffTx):

Figure 5.42
CAN_EGR PositionCANO (EGR_APE35EL3.c)

In position 4 and 5 the hexadecimal (inverted) value of the valve opening

percentage is entered.

77

5.2
CAN Interface

The value is set in the debug phase and the variable is calculated as the
multiplication of the entered value by 400.
This is done considering the examples on the actuator's datasheet: 100% open

corresponds to the message with

e ID:18FDD500 h

e Bytes:
FF | FF | FF | FF | 40 | 9C | FF | FF

Hex: 9C40 = Dec: 40000

1
0.0025

Therefore, the desired value must be multiplied by 400 ().
The valve communication occurs through J1939 message; the details are presented

in the following section.

void]

if (CANOTIDR= == 0x18FD9422)

EGR_CAHD Conwersion = CANODBuffR=[1]<<8:;
EGE_CAND Conwersion |= CANOBufiR=[0]:

EGR_CANN_Comwersion = EGR_CANO_Comwersion/400;

Figure 5.43
CAN _EGR Read Position CANO (EGR_APE35EL3.c)

5.2.6 SAE J1939

The thesis path included the study of the SAE J1939 standard and the

implementation of the relative SW module to be able to manage the EGR valve.

SAE J1939 is a standard used in the communication and diagnosis of components
in commercial (heavy-duty) vehicles such as trucks, buses but it involves also

agriculture and maritime domains.

78

5.2
CAN Interface

Thanks to J1939 it is offered the possibility to have a standard way to communicate
across ECUs giving a manufacturer interoperability, in contrast with passenger cars

that are strictly related to specific protocols (different for every manufacturer).

The standard uses the CAN technology: if the CAN is the tool, J1939 is the

“language”.

It is characterized by:
e 29-bit extended ID (CAN 2.0B)
e Baud Rate typically of 250 kbits/s, but it supports 500 kbits/s
e PGN: Parameter Group Number, 18 of 29 bit of ID
e SPN: Suspect Parameter Number, 19 bit number used for diagnostic
purpose
e Broadcast or P2P Messages

125 kbit/s
Bridge Bridge
(1S011992)

250 kbit/s 250 kbit/s
] | !

['l

¥ 1 F 1

@ Tractor Bus Traller Subnet m
Brakes

Figure 5.44
Typical J1939 Vehicle Network*

CAN Protocol provides to the standard the physical and data link layer of the
ISO/OSI model, this means that on the bus there are small packets but a complex
exchange of data is possible with a multi-packet messages, more than 8 bytes can
be transferred.

The protocol specifies how to have a human-readable data by the conversion of
starting data; to understand a J1939 message it is necessary to interpret its
parameters.

The document J1939-71 gives all the information for the conversion of a large set

of standardized J1939 message into readable data.

4 https://www.vector.com/

79

5.2
CAN Interface

PGN

Each frame it is characterized by a PGN that contains 8 bytes of data, divided into
parameters (SPN).

The PGN is the ID of a J1939 message, it is unique and describes the function of
the message and for looking up the SPN.

Consider the EGR valve and the PGN of the control message for the position as an

example:

SAE 11939 MESSAGE

Identifier Data Field

29 bit 64 bit
18 bit
Figure 5.45
SAE J1939 Message

Control of EGR valve position (PGN 64981 Electronic Engine Controller 5
EECS)

Transmission Repetition Rate: On request
Data Length: 8

Extended Data Page: 0

Data Page: 0

PDU Format: 253

PDU Specific: 213 PGN Supporting Information:
Default Priority: 6

Parameter Group Number: 64981 (0x00FDDS5)

Start Position | Length SPN SPN Name

1-2 2 bytes 2789 Engine Turbocharger 1 Calculated Turbine
Intake Temperature

34 2 bytes 2790 Engine Turbocharger 1 Calculated Turbine
Outlet Temperature

80

5.2

CAN Interface
5-6 2 bytes 2791 Engine Exhaust Gas Recirculation 1 Valve 1
Control 1
7.1 2 bytes 2792 Engine Variable Geometry Turbocharger

(VGT) Air Control Shutoff Valve

7.3 2 bytes 5323 Engine Fuel Control Mode

7.5 2 bytes 5457 Engine Variable Geometry Turbocharger 1
Control Mode

8 1 bytes 2795 Engine Variable Geometry Turbocharger
(VGT) 1

Engine Variable Geometry Turbocharger
(VGT) 1 Actuator Position

Table 5.5
PGN 64981 Electronic Engine Controller 5 EEC5

The ID is 0x0O0FDDS, the PGN starts bit 9 with length 18, so in this case is
0x0FDDS5, 64981 in decimal; looking for this value on the document SAE J1939-
71 there will be Electronic Engine Controller 5. The documentation shows that
there are seven SPNs related to this message.

Consider so that the PGN (64981, ID: 0x00FDD5) is identified; then the SPN 2791

1s taken into account:

SPN 2791 - Engine Exhaust Gas Recirculation 1 Valve 1 Control 1
Desired percentage of maximum Exhaust Gas Recirculation (EGR) valve 1 opening. 0%

means valve is closed. 100% means maximum valve opening (full gas flow).

Data Length: 8

Data Range: 0 to 100%
Data Page: 0

Type: Status

SPN: 2791

81

5.2
CAN Interface

Parameter Group Number: 64981

The message received shown in the next Figure is used as an example of
interpretation.

The document tells that the relevant data is in byte 5 (0x40) and 6 (0x1F):

Hex: 0x1F40 = Dec: 8000

In percentage, %= 20% opening.

= PCAN-View - O IEEE
File CAN Edit Transmit View Trace Window Help
FPHIG Ree 202 %0 @ i 7 N

B Receive / Transmit JECBEET-aE- o\ ETM:}

O CAN-ID e Type Length Data Cycle Time Count
18FECAQOA 8 00 FF 00 00 00 OO FF FF 10004 4
18FDD500h 8 FF FF FF FF 40 1F FF FF 1024,0 4
18FD9422h 8 40 1F FF FF FF FF FF FF 100,3 41

o 18FCCB22h 8 5F 43 32 FF FF FF 00 FF 1003 40

5 18EA002Bh 5 56 FE 00 101 6

Figure 5.46
Example CAN Message

The standard J1939 allows messages longer than 8 bytes even if the CAN can
support only eight byte of data transfers. A solution is to have a multiple packet
communication: the J1939-21 defines all the guidelines to send and assemble the
messages.

There are two types of possible transport:

e Broadcast Announce Message (BAM)
It is a broadcast communication, the message by a sender is sent to
all the other nodes. If something goes wrong, the receiver cannot
reply or signal it.
The sender is the only one that manage the data flow.

e Peer-to-Peer
This protocol establish a sender-receiver communication. Here the
receiver has the opportunity to influence the data flow and have the

control on its data packets.

82

5.2
CAN Interface

To send a multipacket data the sender first transmits a BAM, it is a sort of warning
message for the entire network. The BAM contains the PGN, the size, number of
packets and information to allocate the resources necessary for a correct message

reassemble.

The SAE J1939 has specific parameters intended for diagnostic messages called
DM. They give information about the state of the system, in terms of health, and

about malfunctions that have occurred in the automotive system.

There are several DM in J1939, but during the thesis activity the attention was

focused on DM1, DM2 and DM3.

e DMI- Active Diagnostic Trouble Codes
Provides lamp status and DTC information, together report
diagnostic condition of the electronic component.
DMI is transmitted, usually, every second and on change of the
state.

Given a = lamp status

b =SPN
c=FMI
d=CM and OC

The message format is : a,b.c.d.b,c.d,b.c.d.b,c.d...

e DM?2- Previously Active Diagnostic Trouble Codes

Provides a list of previously active diagnostic codes.

e DM3 — Diagnostic Data Clear/Reset of Previously Active DTCs
When it is supported, it indicates that all the diagnostic information
related to the previously active trouble codes should be cleared or

reset in the case of non-active trouble codes.

83

5.2
CAN Interface

5.2.7 Implementation

Sources

CFG KERNEL
COM_CFG 1
7 coMm

MULj1939_cfg +_'—+
MULj1939 MULj1939_if
MULj1939_cfg.h ¥ v
[MULj1939.c] [MULj1939.h]

MULj1939_if.h

Figure 5.47
J1939 Code Structure

For the implementation of J1939 messages, it has been used the same code scheme
as the previous modules: one part is linked to the configuration and one to the

BSWL.

MULj1939 ifh
This module is dedicated to the definitions and typedef. In particular, the structs

necessary for the lamp status definition (DM1) is shown below.

typedef struct

byte Indicatorlamp
byte RedLamp
byte WarningLlamp
byte Protectlamp
byte bitd
byte bits
byte bitée
byte bit?

1 StructLamp;

e e = ey

typedef struct

{
uint SPH:
byte FMI:

StructLanp Lamp:
T AnoDH1:

Figure 5.48
J1939 Lamp Struct

84

5.2
CAN Interface

The components of lamp status are

e Malfunction Indicator Lamp
Used for emission-related information
e Red Stop Lamp
Used in a problematic scenario sever enough as to have the vehicle
stop
o Amber Warning Lamp
Used to report a vehicle problem but does not require a stop
e Protect Lamp
Used to report a problem most probably not related to an electronic

system.

Their role is to reflect the current state of the electronic component that is in TX.
The second struct deals with the second part of the message form of DM1, SPN
and FML

MULj1939.c

This file is reserved for the implementation of the DM1/2/3 messages with their
relative timers and request functions, i.e.:
void (void);
void (void);
void (byte);
void (void);
void (void);
byte (byte);
void (void);
void (void);
void (void);
void (void);
void (void);

void (void);
void (byte);

85

5.2
CAN Interface

void (void);
void (void);

void (void);

void (void);

void (void);

void (void);

In the next figure is shown the array related to DM1 for every warning or fault, for

the states in which one of them is not available the SPN is 65535 (OxFFFF).

bed SPN FMI IndL RedL WarL Prol bit4, bith, bité, bit?

AncDM1 MULi1939_TabinoDM1[192] = { O, 0. o, 0. 0. o, O, 4. 0, 0o /20 - 0K
1350, 17, 1. 0. 1. o, o, a, o, a, wE & — maintenance warning
1350, 17 1 17 0. o, o, o, o, o, w2 - maintenance alarm
al. 0. 1, 1, 0. 0, 0, 0, 0, 0, S 3 — bypass mode
65535, 255, 1. 1. 1. 1. 1. 1. 1. 1. Ea — backpressure latching
655355 2553 1% 1% 1% 13 13 13 13 13 77 B — P1 high warning
BRo35,. 255, 1. 1. 1. i L. L. L. L. e — P1 high alarm
65535, 286, 1 1 1 1 1 1 1 1 w7 = frees
65535, 255, 1 1 1. A5E A5E A5E A5E A5E <8 - free
65535, 285, 1, 1, 1, 1, 1, 1. 1. 1. i 8 = free
65535, 286, 1 12 1z 1Lz 1Lz k2 k2 k2 #s 10 - SLI6O0 low
4783, 1, 1, 0. 1, 0, 0, 0, 0, 0, s+ 11 - SLI300 low
65535, 255, 1. 1. 1. 1. 1. 1. 1. 1. ## 12 — SLIGN high
4783, 16, 1% 1% 0. o, o, o, o, o, #7 13 - SLI300 high
65535, 255, 1, 1, 1, 1, 1, 1, 1, 1, #7 14 - SLIG0 clog up level
4783, 0 1 1 0. 0. 0. 0. 0. 0. <+ 15 =~ ELI300 clog up level
3699 It B B 0. L o. o. o. o. < 16 — TC low

Figure 5.49

Part of DM1 Table

The function related to the DM1 implementation (void CANODMI (void)), first
checks the variables that depend on the situation in which the vehicle is located, to
then read the anomalies taking care that /((MULj1939 TabAnoDMI1][i].SPN ==
65535) because not supported.

86

5.2
CAN Interface

if (StatusDHL == 0) ## If I send a status message. everything is ok #/
{

[OH #% I compose the message 7

ContTaskCANODHL = 0; s% Relaunch the task timer *~
elss if (StatusDHl == 1) /% 1f a single message s
for(i=1; (i<182); it+) s# It starts from 1 beceuse with i = 0 it is all OF =~
if (StatoDH1[i] == 1) % hnomaly sst *x/
{
indice = i;
io= 192; /% hnomaly found -
¥
}
(indice); s% I compose the message */
ContTaskCANODHL = 0; s% Relaunch the task timer *~
¥
clse
{
% Calculate how many messages I have to send
1 byte messsgs number
2 byte status lights
2 bytes SEW
1 FMI byte
1 byte Occurrance
conmen pazts 2 bytes (lights state)
parts per messags § bytes (messenger numbsr, SPH, FMI, Occurrance)
xS
if (TzDML == 0) /% First lap in the state machine for DML multi frame ®-
{
FumMessaggi = (byte) (({(uint)StatusDdl = 4) + 2) ~ 7);
if ((((StatusDEL * 4) + 2) % 7) > 0)
HunMessaggi = NumMessaggi + 1;
ContTaskCANODHL = 0; /% Relaunch the multi frams task timer */
StDML = 0; % Clear the state machine s
PosizStatoDH1 /% Reset error positicn on StatoDHL [] %/
PosizMessDH1 = 1;
¥
TxDHL = 1; % Active nmulti frame transmission -
% 1 send an opening message *

Figure 5.50
MUL;j1939.c, Part 1

Here the DM1 message is composed in relation to the value of the variable

StatusDM 1, based on its value the functions No-Fault or Fault are called.

void (void)

CANIDT= = Dxl8FECAOD | ({ulong)Sourceiddress E};
~# Load ID per nessage
Friority & (lower) 1%
FGH Cé
Source Address Si =7

CANEREET=[0] = 0=00; % Lamp status: all off =/
CANERfiTx[1] = D=EF:
CANBRf:T=[2] = D=00:
CANBufT=[3] = D=00:
CANBuf:T=[4] = D=00:
CANBfT=[5] = D=00:
CANBufiT=[6] = D=FF:
CANBufiT=[7] = 0=FF:

if (FlagCANBrosdOUT_E == 0)
! (CANIDT=, CANBuffTx);
;lse if (FlagCANBroadOUT_E -- 1}

! (CANIDT=, CANBuffTx),

Figure 5.51
MUL;j1939.c, NoFault

87

5.2
CAN Interface

void
{

(byte indice)

byte appoggio = 0:

CANIDTx = 0x18FECADD | ((ulong)Sourcehddress E);
7% Load 1D per message

Priority 6 (lover) 18

G

Source Address Sh x
sppoggic = (byte) (MULi1939 TabincDMi[indice]. Lamp.Indicatorlanp) << 6;
appoggio = appoggic + ((byte)(MUL{1339 TabhnoDH1[indice] Lanp.Redlamp) << 4):
appoggio = appoggio + {(byte)(MUL)1939_TabinoDi1[indice]. Lanp Warninglamp) << 2):
appoggio - appoggio + (byte)(HULi1939 TabAncDi1[indics] Lanp. Protectianp)

CANEuETx[0]

= appoggio: s% Lanp status: all off =/

CANBuffTx[1] = O=FF:

appoggio =
CANBufTx[2]
appoggio =

CANBuf£Tx[3]
< #CANBuf
CANEufiTx[4]

CANBufiTx[5] = 1
CANEufiTx[6] =
CANEuEiTx[7] = OxFF,

if
{

(byte) (HULi1939_TabinoDii[indice] SEN):

= appoggio: % SPN low hyte %/

(byte) (HULi1939_TabAnoDii[indice] SEN >> 8);

= appoggio; ~% SPN high byte =/
£Ts[4] = TabAncDM1[indice] FMI; % FMI -
- (indice):
/% oocurence valus nob present %
~* not used
% not used x/

0=EF;

(FlagCANBroadOUT_E == 0)

(CANIDTx, CANBuffT=):

i3
else if (FlagCANBroadOUT_E == 1)
{

¥

(CANIDTx, CANBuffT=):

Figure 5.52
MULj1939.c, Fault

At this point, a timer and switch-case (5 cases), that regulates the execution based

on the value of StDM, 1 manage the multiframe transmission.

The case 0 is for the BAM message, necessary to allow data exceeding 8 bytes in

length to be sent.

woid

wint munByte =

nunByte = StatusDHL = 4 + 2;

(woid}
0:

#% Hunber of bytes transmitted =/

CANIDTx = 0x1BECFFO0 | {(uleng)SourceAddress E};

CANBuf £ Tx[
CANBuf £ Ta[

CANBuf £Tx[

CANBuf £Tx[4] =
CANBuf £Tx[5] =
CANBuifTz[6] =
= 0a00:

CANBuf £T=[7]

0] = 0x20:
1] = (byte)nunByte:

CANBuffTz[2] =
3]
1

#% Load ID per uessage
Eriority 6 (lower) 18
EGH FECA

Sowrce Address Sa x~
/7 Control byte

47 Wumber of low part bytes transmitted (net of message nunber)

(byte) (nunByte »> 8); ## Humber of low part bytes transmitted (net of message nunber)

= NumMessaggi;

0sFF;
0xCh:
OxFE:

if (FlagCiNBroadOUT_E -- 0)
{

i
else if
{

i

(CANIDT=., CANBuffTam):

(FlagCaNBroadOUT_E == 1)

(CANIDTx, CANBuffT=):

Figure 5.53
MULj1939.c, BAM message

The case 1 relates to sending the first message and the lamp status calculation; the

CAN TX buffer is loaded with the SPN, FMI and the values taken by the table of

the Figure 5.48.

In relation to the flag FlagCANBroadOUT E, the message is loaded on CANO or

CANI.

88

5.2
CAN Interface

caze 1: <% First nessage *-

CANIDT= = 0x18EBFF00 | ({ulong)Sourceiddress E);
Ve d
Load ID per mnessage
Priority & (lower) 18
PGN EBFF

Source Address 5S4
*®

CANBuf fT=[0] = PosizHe=s=DH1: <% Mez=zage number *-

<% Lamp status calculation *-

for(j=1l: (314192} J++) <%t starts from 1 because with 1 = 0 it i= all OK 7
if {(StatoDMI1[j] == 1) <% Anomaly set ®/
¢ if(MUI.jl‘BBB_TabAnDDMl[j].I.amp.IndlcatorI.amp == 1)

appoggio |= 0b01000000;

if (HUL71939 TabinoDH1[3].Lamp. Redlanp == 1}
i

appoggio |= 0b00010000;

if (HULj1939_TabinoDM1[j].Lamp.WarningLamp == 1)
i
appoggio |= 0b00000100;

1f{HUL7193%_TabinoDM1[j].Lamp.ProtectLanp == 1)
{
appoggio |= 0b0000000L;

b

CaNEuffT=[1] = appoggio:
CANBEuffT=[2] = 0=FF;

[N
CANBuffT=[3] = (byte)MULj1939_TabinoDMl[PosizStatolHl].SPH:
CANBuffTx[4] = {(byte){MULj1939_TabinolKi[PosizStatolM1].SPH »»> 8):
//CANBuffT=[5] = MULi1939_TabinoDN1[PosizStatoDM1] . FMI
CANBuffT=[5] = (PosizStatoDMl);
CANBufiT=[6] = 0=x01:

[N
CANBuffT=[?] = {(byte)MULj1939_TabinoDM1[PosizStatolil]. SPN:

if (FlagCANBroadOUT_E == 0)
i
(CANIDT=, CANBuffT=);
1
else if (FlagCANBroad(QUT E == 1)
{

{
K

PosizStructDHL = 2; <% HNext package to write high byte of the SPH *

(CANIDT=, CANBuffT=):

ContTaskCANODDHIHulti = 0; 7/# Relaunch the timer from the task for the next message *=-
PosizMessDHl = PosizMessDM1 + 1:
StDH1 = 3;

break:

Figure 5.54
MULj1939.c, Case 1

woid {woid)

byte stop = 0;
while (stop == 0}
if (PosizStatolMl < 192)
{ FPosizStatoDHl = PosizStatoDH1 + 1;
if (StatolMl[PosizStatoDH1] == 1)

=top = 1:

else

stop = 1:

Figure 5.55
MUL;1939.c , TrovaDM1Errori function

89

5.2

CAN Interface
case 2: < PosizStructDMl = 1
CANIDT= = 0x18EBFFO0 | ((ulong)Sourceiddress E):
<% Load ID per message
Priority &6 {lower) 18
PGH EEFF
Source Address 5S4 %~
CANBufiT=[0] = PosizMes=DM1; <% We=szage numnber *
[
if (PozizStatoDHl I= 1923 <% Ho more errors, put 0=FF *-
CANEuffT=[1] = (byte)HMULj1939_TabinoDHl[PosizStatolDil].SPH:
CANEuffT=[2] = (byte)(HULj1939_TabinoDMl[PosizStatoDH1].SPN »>» 8):
SCANEuf£T=[3] = TabinoDHl[PosizStatoDM1l] . FMI:
CANBuffT=[3] = (PosizStatoDHl);
CAHBuffT=[4] = 0=01;/ provalHl
+
else
CaNBufiT=[1] = O0=FF;
CANEufiT=[2] = 0=FF:
CANBufiT=[3] = 0=FF;
CANEufiT=[4] = O0=FF:
¥
[
if (PozizStatoDHl I= 1923 <% Ho more errors, put 0=FF *-
CANEuffT=[5] = (byte)HMULj1939_TabinoDHl[PosizStatolDil].SPH:
CANEuffT=[6] = (byte)(HULj1939_TabinoDMl[PosizStatoDH1].SPN »>» 8):
SACANBuffT=[7] = HULj1939_TabinoDMl[PosizStatoDH1] . FHI:
CANBuffT=[7] = (PosizStatoDHl);
else
CANBufiT=[5] = O=FF:
CaNEufiT=[6] = O=xFF:
CANBEuffT=[7?] = 0=FF:
+
if (FlagCaNBroadOUT_E == 0)
{
(CANIDT=, CANBuffT=):
+
el=ze if (FlagCANBroadOQOUT_E == 1)
{
(CANIDT=, CANBuffT=):
+
PosizStructDl = 4;
ContTaskCANODHIMulti = 0; <% REelaunch the timer from the task for the next message %7

StDM1 = 5
PosizMessDH1 = PosizMessDM1 + 1:

<+ change state

if (PosizMes=DM1 > Humlessaggi) S% 411 messzsges s=ent ®
T=DH1 = 0; <% Stop =/
break;
+
Figure 5.56

MUL;1939.c, Case 2

In the previous Figure the case 2 is shown as a further example.

The DM3 has the task of making a clear of the diagnostic data and possibly a reset
of the previous DTCs, this can be easily done putting at O the buffer
FAnoDM E[192].

90

5.2

CAN Interface
woid (woid)
if (DM3Enable E == 1)
if {Regque=tDH3I == 1)
{
byte 1 = 0;
for (i = 0; i ¢ 192; i++)
FinoDM_E[1] = 0O;
ACK positive response
if (TypeDM3 == GLOBAL REQ)
CANIDT=z = D=18EBFF3D.;
#% Load ID per message
Priority 6 (lower) 18
PGH ESFF
Source Address S4 =~
else
CANIDT= = {({0=18E80000) | ({ulonglSendDM3 << 8313 | ((ulong)Sourcedddress_E)
<% Load ID per message
Priority 6 (lower) 18
PGH EBFF
Source Address 5S4
*/
}
CANBuffT=[0] = D: ## control byte ACK positiwe
CANBuffT=[1] = 0
CANBuffT=[2] = O0=FF:
CANBuffT=[3] = 0=FF
CANBuf fT=[4] = 0=FF:
CANBuffT=[5] = 0=CC:
CANBuffT=[6] = 0=FE:
CANBuffT=[7] = 0=00

if (FlagCANBroadOUT_E == 0)
{
(CANIDT=., CANBuffT=):
1
else if (FlagCANBroadOUT_E == 1)
{

(CANIDT=, CANBuffT=):
H

RequestDH3 = 0:

Figure 5.57
MULj1939.c , DM3

5.2.8 Other units

In addition to the units presented in this section of the paper, the SW has a block

of header files, inclusion files, libraries and, of course, a main file.

The module Headers contains
e DefDefines.h
Definition of all the ECU address, mostly related to the EEPROM
and the FLASH, and initialization of peripheral (PORT A, PORT
B..)

91

5.2
CAN Interface

e DefPrototypes.h
Definition of function prototypes related to Init, peripheral,
routines, interrupt functions.

e VariablesEEPROM.h

e VariablesFLASH.h

o VariablesRAM.h

The module Includes contains
o MCISI2XET256.h

This header implements the mapping of I/O devices.

The module Libs contains

o MCISI2XET256.c

The interrupts are managed in the module MCAL SI12XET256.

92

6.1
Testing

CHAPTER 6
DEBUG AND TESTING

The last step of the code development process involves a testing phase. With regard
to this paper, the focus was on verifying the correct functioning of the individual
SW units and the correct interoperability between the modules.

The use of actuators has made it possible to verify the effective correctness of the

communication network.

6.1 Testing

In section 3.2.2 of this paper, the different types of tests associated with the V-
Model steps have been described.

In both networks an analysis was carried out in the debug phase, with direct control
of the registers and verification of the execution flow; the goal is to obtain a SW
that respects the project requirements and does not contain errors that could

compromise the code.

As a first strategy it was used the unit test to validate the units of the code working
properly, so it is checked the correct behaviour of function, methods, loops and so
on.
Possible tests are:

o [Interface test

Verification that unit sends/receives data correctly

93

6.2
Serial Network Test

e Local data structure test
Verification that local data structure are stored correctly.
e Boundary condition test
Verification that boundary conditions are correctly handled.
o Fault Injection Test
A fault is inserted into the system to analyse the consequent

behaviour; it can be emulated by SW.

6.2 Serial Network Test

To verify the correctness of the serial network, a first debug was performed to
correct any anomalies through the use of breakpoints and the check of the memory

and registers value in the debug mode of the IDE.

The structure of the serial communication network is made in such a way that,
having received a certain input message, the ECU must respond with a
corresponding message.

The protocol specifies the structure of all the messages that the ECU can interpret,

with relative positive or negative response (specific for each type of message).

The test was carried out by creating a set of messages, each corresponding to a
request, sent via the Hercules SW.

In this way, it is possible to send data and see the relative answer, and also verify
the correct operation with different baud rates and parity bits.

Voluntarily send incorrect messages or that communicate an anomaly it can be very
useful to understand how the SW manages situations of malfunctioning and
unforeseen events: the actual operation of the network is evaluated from the

corresponding response.

94

6.2
Serial Network Test

%

UDPSetup Seial | TCP Chent | TCP Server | UDP | Test Mode | About |
Received/Sent data

Hercules SETUP utility by HW-group.com — O n

Narme:
Screen of ;‘::7 =
Sent Data/Received Data T
Data size
=l
Parity
Settings Tt
g OFF -
Mode
Free -
Send Message
& Open
Modem lines
@ @R @osh @crs [N [R ‘ Hiwa Py updats
~ Send

[Sefial

02 0E 50F122130F CO 01020204 50 03

[0z 0850 F1 FF B0 CE 03

‘UZ 0850 F1 FF80CB03

FHE‘X end
[¥ HEX Send

[# HEX Cend |

HWsrows

wviv.HW-groupcom
Hercules SETUP atiliey
Version 3.2.8

Figure 6.1

Hercules SETUP

True-Time Simulator & Real-Time Debugger CAL D p Multronic\Tesi 31-07-2019\P&E_Multilink CyclonePro.ini - olEEE
File View Run HC12MuntilinkCycionePro Component Command Window Help
Dlaa] jje] 2] x| dlal)] 2
Source [=TET&] Assembly [SlEEs
HC1z MuliroescyTesi Line 83
/ B 10
oxpc00
17594
#pragua cone_sea wow_manken o ;ana = oxmrza
Pt
mainfvei 55 saba = OxE180
1
ey
0x2000
Flashrrogo = 1; 14 20U progras: #2ss
A @} v
A elee
] —
Plashpragon = 0 = |[EIEs
4 @ e
if (FColloR_E &
PR 1
Erp— alcChacksunwAssl () /# Cuncheum saleuletion v spslication -
4 1PL
o i ((uine “far) (0x7Fo008) == Chkawpplcalc) cksun sw applicarion is o B el sl
0
ChhswApplcE = 1; e
< - >
Data [ER el =] Memory o |[@ R
=8 Pamodc | Daz | Giobal o Toaesl
® _startupdata A | [so00sa+r o 2r oo 20 05 00 00 00 a0 o0 00 80
B e ek <mot 00 00 00 00 00 00 00 00
00 0 a0 00 00 0D 0

0 unsigned char
0 unaigned char

06 00 60
06 00 00
oo

oo
o0 ¢
o0

Figure 6.2

Debug Mode Interface

When a message is sent over serial, it can be checked what was actually received

using the debug interface. Similarly, the verification can be done for the

transmission using the registers u8SCI BuffRxSCII and u8SCI BuffTxSCI]I.

95

6.3
Can Network Test

6.3 Can Network Test

As regards the CAN network, the test is carried out in two steps: the first one is
done by checking the registers, verifying the messages sent/received and the
correct behaviour of the timers via P-CAN View; the second one checks the correct
operation of the actuator controlled on can.

Having CANO and CANI1 available, the tests are performed on both lines.

- oEN

= PCAN-View

File CAN Edit Transmit View Trace Window Help

FeHl & B ee 102 % K (2]

8 CAN-ID ’ Type Length Data Cycle Time Count
18FD3422h 8 00 00 FF FF FF FF FF FF 100,3 36
18FCCB22h 8 5F 46 00 FF FF FF 00 FF 100,2 36

Q

=

Q

o

w4

O CAN-ID Type Length Data Cycle Time Count Trigger Comment
18EA002Bh 3 CB FE 00 Wait 0 I
18EAFFO0h 3 CB FE 00 Wait 0

=

=

0

c

E

% Connected to hardware PCAN-USB & | Bit rate: 250 kBit/s

Status: OK Overruns: 0 | QXmtFull: 0

Figure 6.3
PCAN-View

The check made on the exchange of messages on the network follows the same
principle as the serial network. To verify the correct transmission and reception, it
is possible to take advantage of both the registers relating to the CAN-ID, date,
length of the message, etc. and the tool PCAN-view, which gives the possibility to
verify the correct functioning of the timers by checking the count section.

To speed up the test and verify the correct data exchange through the tool, in the

mail there is a counter that updates the data sent on CAN. The counting is started

96

6.3
Can Network Test

via the set of the TestRXCANQ variable.

<% CAND AWND CAN1 WITHOUT PRIORITY *~
if (TestRXCanl == 1)

if (ContTestCaH>=TinsrTestCaN)

{

ContTestCAN=0;
ContCaNTest ++;

Main_ CANOBuf £ Ts[

0] (byte)ContCaNTest
Main CANOBuffT=[1]

2]

3]

(byte){ContCANTe=st »2 B).
Main CANOBuffT=[{byte){ContCAHTe=t »» 16);

Main_CANOBuffT=[

(byte) (ContCANTest 3> 24):
(ContCANTest Hain CANOBufi{T=):
}
H

if (TestR¥{Canl == 1}

if (ContTestCaH>=TinerTestCaN)
{

ContTestCAN=0;
ContCaNTest ++;

Main CANIBuffTs([
Main CANIBuffTs[
Hain CAN1BuffT=x[
Main CANIBuffT=[

(byte)ContCANTest
(byte){ContCilTest »» 83,
(byte){ContCiNTest s> 168);
(byte)(ContCiNTest > 24);
(ContCANTest Hain CANIEufi{T=):

Figure 6.4
Sending data on CAN

6.3.1 Test EGR Valve

The correct functioning of the CAN network is guaranteed by tests carried out on

the EGR valve; the function that allows the set of the desired value is managed by

7 s
o TEST CAN ON EGE VALVE *
A A

if (ContTestCAH»=TinsrTestCAN)

ContTestCAN=0;
{desired_walusCAN0};

if (ContTestCAH»=TimserTestCAN)

ContTestCAN=0;
{desired_walusCAN1};

Figure 6.5
Set position EGR valve

97

6.3
Can Network Test

a timer at 1.024 ms and is called in main.c as shown in Figure 6.5. The

desired valueCANx is set in the debug interface.

s
s TIMEE BASE
S

void interrupt {void)

uint AppCalc = 0;
byte AppGPAGE:
byte AppRPAGE:
byte AppEPAGE;

AppGPAGE = GPAGE: #+ IMPORTANT -» save GPAGE because the INT dossn't save it
AppRPAGE = RFACE; #< IHPORTANT -> save RPAGE because the INT dossn't save it
AppEFAGE = EFAGE; ## IMPORTANT -3 save EPAGE because the INT doesn't save it
CRGFLG |= 0=80; << ACKE interrupt

< TIMER FONDAMENTALE 1.024 ns

< Timer for message reception timeout on SCIL
if (ContRExSCIL1 < TimRE=SCIL1)

ContRxSCT1++:

if (ContTestSeriale <« TimerTestSerials)

ContTestSerialet+;

()

if (ContTestCAN ¢ TimerTestCAN)

ContTestCaN++;
()
0
0
GPAGE = AppGPAGE: #/ IMPORTANT -» restore GPAGE because the INT dossn't do it
RFAGE = AppRPAGE: #7 IHPORTANT -> restore RPAGE because the INT doesn't do it
EFPAGE = AppEPAGE; ## IHPORTANT -3 restore EPAGE because the INT doesn't do it

Figure 6.6

Timers, Interrupts.c

6.3.2 Test J1939

As regards the J1993 messages, the control can be performed in a simple way using
the PowerView 101 able to interpret the parameters of the data sent, showing the

SPN and the IMF (Figure 6.7).

T pOWERY

Figure 6.7
PowerView 101

98

6.3
Can Network Test

The messages are sent using the debug interface, setting the FanoE array [192] in

correspondence with the anomaly that one intends to test.

o Data
HC12
TestRXCan0_Prio 0x0 unsigned char
CANOIDRx 0x18£d5422 unsigned long
EGR_CAN0 Convers.. 0x0 unsigned int
CAN1IDRx 0x0 unsigned long
EGR_CAN1 Convers.. 0x0 unsigned int
desired valueCANO 0x0 unsigned char
desired valueCAN1 0x0 unsigned char
Mess10J1935_F Ox1 unsigned char
= Fano_E <192> array([19%2] of unsigned char
[01 Oxff unsigned char
[1] 0x2 unsigned char
[2] 0Oxl unsigned char
[3] 0x3 unsigned char
[4] Oxff unsigned char
[5] Oxff unsigned char
[&] Oxff unsigned char
Figure 6.8

Fano E[192]

For example in this case are set maintenance warning, maintenance alarm and

bypass mode; the numbers indicate the priority of the message.

99

6.3
Can Network Test

100

7.1
Future work, LIN interface

CHAPTER 7
CONCLUSION

This section of the paper briefly shows how it is possible to expand the network
developed during the thesis activity; the goal is to have a more complete
communication system for automotive application by implementing a LIN
network.

Finally, the conclusions of this project are shown.

7.1 Future work, LIN interface

The Local Interconnected Network (LIN) is a serial communication protocol
usually used for the components where a possible fault does not represent a critical

scenario, in terms of safety (air conditioning, seat controls...).

It is composed by 16 nodes (1 master and up to 15 slaves), the communication is
broadcast and is always initiated by the master that passes a token to the slaves:

when one of them receives the token, they can send data over the network.

A LIN network is composed by a physical and data-link layer, in the next Figure it

is shown a typical LIN communication:

101

7.1
Future work, LIN interface

Application

H

i f
" Prolocol
handier

AY

c
z

L anels

3
Application Application 2 Application
E

| A | A

w
Protocol e Protocol
handler e handler
@

Protocol
handler

m Z anels

NIT
NIT

Figure 7.1
LIN Network — Physical Layer

A LIN message is characterized by a header (transmitted by the master) and a

response (it can be transmitted by a slave or the master).

System Architecture

The LIN bus setup for the MCIS12XET256 nuC requires a particular structure
characterized by the interaction between the LIN Core and the application.

LINZ.1 API

LINZ.1/J2602 API J2602 API

LIN 2.1/J2602
Low Level

MCU HW
SCI/GPIO/SLIC/
UART

Figure 7.2
LIN Stack Structure

The LIN source code and the API must be integrated with the files inside the LIN
Stack package: those files are the .h and the .c generated by a Node Configuration

Tool on the basis of the Node Private Description File and LIN Configuration
Description File.

e Node Private Description File

It has the information about nodes (name, communication channel,

102

7.1
Future work, LIN interface

clock frequency...)
e LIN Configuration Description File

LIN Cluster information.

Node Configuration

Tool

Node Configuration LIN Stack
Code (.c and .h) Code (.c and h)

3

complernier

Figure 7.3

LIN Configuration

This package is provided by NXP Semiconductors and it is composed by six layers:
e BSP
e Low Level
e Core API
e Transport Layer
e Diagnostic services

e Application Layer

The LIN bus interface represent a very important low cost improvement for the
network. Even if protocols such as automotive Ethernet or CAN FD are
increasingly appreciated, LIN remains vital for the new and complex features

required by the manufacturers.

The development of this type of interface represents a possibility to expand this
thesis project by obtaining a communication system that is more ample and

adaptable to different needs.

103

7.2
Conclusion

7.2 Conclusion

This paper shows the phases of the project developed as last step of the Master’s
Degree of the Politecnico di Torino in Mechatronic Engineering, from the
documentation to the actual development of the code.

The thesis activity is based on the experience at the Belgian company Multronic

s.r.] in Carmagnola (TO).

The idea is to implement communication interfaces based on the main features of
the standard AUTOSAR, with the aim of creating a communication network
between ECU of vehicles that is simple, easily adaptable and modifiable. The focus

is on the Serial and CAN bus communication.

The first part of the thesis proposes a scenario of the work goal and briefly shows
the studied topics necessary to have a clear vision on how to structure and
implement the firmware: it is performed an overview of the fundamental concepts
of AUTOSAR and the standard ISO 26262, in addition the V-shape model is
presented.

A description of the network is also included, with the technical characteristics of
the microcontroller.

Then, the main features of the communication protocols that are the object of the

activity are included.

Going ahead with the paper, there is the core of the project that is the
implementation of the communication protocols. The scheme of analysis is the
same: first of all it is presented the FW structure, then the description start with the
lowest layer of the stack module (the one closer to the HW), to get to

communication drivers and communication hardware abstraction.

Within the CAN interface, the attention is also placed on the SAE J1939 and its
implementation in order to be able to carry out the control of the EGR valve, used

to verify the correct functioning of the network.

104

7.2
Conclusion

10935 lines of code have been developed, without considering the use of external

libraries.

The tests carried out in the last period of activity have confirmed the validity of the
product intended for the production of the control unit for the automotive market.
In particular, network tests were performed using both SW and HW systems: in the
case of the serial network, the correct operation of the information exchange was
carried out by exploiting a serial communication via the PC-ECU. As far as the
CAN network is concerned, the test was particularly interesting as it was possible

to test using HW components in addition to the SW.

The FW obtained was implemented in relation to the time available, but has the
potential to be expanded and made more effective in terms of tests: an example
could be the automation of the process of sending messages, to have immediate

results and a faster SW release.

105

7.2
Conclusion

106

7.2
Conclusion

References

AUTOSAR, Document number 664 - Overview of Functional Safety Measures in
AUTOSAR, AUTOSAR CP Release 4.3.0

Briciu, Catalin-Virgil & Filip, loan & Heininger, Franz. (2013). 4 new
trend in automotive software: AUTOSAR concept. 251-256.

CAN Specification 2.0 , Part A, Part B — Bosch, 1995
CAN Texas Instruments - Application Report, 2016

C. Virgil Briciu, LFilip, F. Heininger. “4 new trend in automotive software:
AUTOSAR concept. Politehnica” University of Timisoara/ Faculty of
Automation
and Computer Science, Timisoara, Romania. Continental Automotive
Germany/Interior Body and Security, Regensburg, Germany. May 2013

Gade S, Kanase A, Shendge S, Uplane M. SERIAL COMMUNICATION
PROTOCOL FOR EMBEDDED APPLICATION. International Journal of
Information Technology and Knowledge Management

July-December 2010, Volume 2, No. 2, pp. 461-463

H.Martorell, J. Fabre, M. Lauer, M. Roy, R. Valentin. Partial Updates
of AUTOSAR Embedded Applications - To What Extent?. 11%
European Dependable Computing Conference (EDCC 2015), Sep
2015, Paris, France

ISO-11898: 2003

ISO, Road vehicles - Functional Safety - 26262-6. I1SO, 2011.

107

7.2
Conclusion

M.Violante’s Lecture — Model-Based Software Design Course a.y.
2017/2018, Network Technologies for Mechatronic Systems
Course a.y. 2018/2019. Mechatronic Engineering, Politecnico

di Torino.

MCI9S12XEP100RMV1 — NXP, Datasheet (Rev 1.25)

National Instruments, J1939 Transport Protocol Reference Example,

http://www.ni.com/example/31215/en/#toc4, March 2019

Niklas Amberntsson. La progettazione di reti secondo Autosar,

https://www.elettronicanews.it/la-progettazione-di-reti-secondo-autosar/

Renesas - AUTOSAR Layered Architecture,
https://www.renesas.com/us/en/solutions/automotive/technology/autosar/a

utosar-layered-architecture.html

Richard Bellairs. What Is ISO 262627 An Overview, SECURITY &
COMPLIANCE, STATIC ANALYSIS, January 2019,

https://www.perforce.com/blog/qac/what-iso-26262-overview

S12(X)Build Tools - Reference Manual

Samarins.com. How Exhaust Gas Recirculation (EGR) system works,

https://www.samarins.com/glossary/egr-system.html, December 2018

Vector- Transport Protocol — https://www.vector.com/it/it/know-

how/technologies /protocols/sae-j1939/#c26590

108

