
POLITECNICO DI TORINO

Department of Control and Computer Engineering

Master of Science in Mechatronic Engineering

IMPLEMENTATION OF AUTOSAR

COMMUNICATION STACK MODULES

Academic Supervisor

Prof. Massimo Violante

Student

Benedetta De Bernardo

252050

October 2019

I

II

Acknowledgments

I would like to thank my Academic Tutor, Professor Massimo Violante, for the support

and valuable advices. My Company Tutor, Roberto Pozzo, for patience and for guiding

me in this thesis activity.

I would like to express my greatest gratitude to my mother who taught me not to be

afraid; to my father, he approached me to the world of engineering from an early age

in the small things.

They gave me the opportunity to try a new experience that would forever change my

life.

Thanks to my sisters and my grandfather, they make me feel at home despite being far

away.

Thanks to my boyfriend for helping me overcome my insecurities.

Finally, thanks to my friends of the Politecnico, their presence made the university less

heavy.

I would not have achieved this goal without you all.

Thank you.

III

1

 Abstract

The following paper is the result of a six-month project at the Belgian company

Multronic s.r.l in Carmagnola (TO); it designs, manufactures and supplies diesel

engine emission aftertreatment systems.

The objective of the thesis activity is to implement a communication network for

automotive application with the main reference to the basic elements of AUTOSAR

architecture and features.

The idea is to have a code independent of the hardware, easy to reuse and with a good

level of abstraction.

This paper shows the implementation of a firmware that can meet the need to have a

code as modular as possible, satisfying the functional requirements in a single

platform.

The project was characterized by a training phase through the study of the most

commonly used automotive communication protocols and by an analysis of the

characteristics of the fundamental standards.

In particular, the focus is on development of the Serial network and CAN network.

The fundamental points of the project are followed gradually: in primis there is a brief

introduction that anticipates the characteristics of the developed SW, the main aspects

of the testing phase and the requirements in terms of quality.

1.1
Software

2

Afterwards, there is a presentation of the technical features of the HW used, followed

by chapters that show the topics studied to be able to address this thesis activity.

The Chapters 5 and 6 represent the core of the project: the SW is described with its

main characteristics and test activity.

The paper ends with a conclusive analysis of the activity proposing possible future

developments.

1.1
Software

3

Contents

ACKNOWLEDGMENTS ... II

 ABSTRACT .. 1

CONTENTS... 3

LIST OF FIGURES ... 5

LIST OF TABLES.. 9

LIST OF ABBREVIATIONS .. 11

CHAPTER 1 INTRODUCTION ... 13

1.1 SOFTWARE ... 14

1.2 QUALITY .. 15

1.3 TEST .. 16

CHAPTER 2 TECHNICAL SPECIFICATIONS .. 17

2.1 DE-TRONIC V3 ECU ... 17

2.1.1 MC9S12XET256 µC .. 20

2.2 NETWORK AND IDE ... 21

CHAPTER 3 BACKGROUND .. 23

3.1 AUTOSAR LIGHT ... 23

3.1.1 Layered Software Architecture .. 25

3.1.2 Software Component .. 27

3.1.3 SW-C Communication .. 28

3.2 ISO 26262 ... 28

3.2.1 ISO 26262 Structure .. 29

3.2.2 V-Model ... 32

CHAPTER 4 COMMUNICATION PROTOCOLS .. 37

4.1 PROTOCOLS IN EMBEDDED SYSTEMS ... 37

4.2 SERIAL COMMUNICATION INTERFACE (SCI) .. 39

4.3 CONTROLLER AREA NETWORK (CAN) .. 40

1.1
Software

4

4.3.1 CAN Architecture ... 41

4.3.2 CAN Software Configuration ... 44

CHAPTER 5 IMPLEMENTATION ... 45

5.1 SERIAL INTERFACE .. 45

5.1.1 FW structure .. 45

5.1.2 Communication Drivers, SCI ... 47

5.1.3 Messages Structure .. 52

5.1.4 Communication Hardware Abstraction, SCI ... 54

5.2 CAN INTERFACE.. 63

5.2.1 FW structure .. 63

5.2.2 Communication Drivers, CAN ... 64

5.2.3 Communication Hardware Abstraction, CAN ... 73

5.2.4 Complex Device Driver .. 75

5.2.5 EGR Valve.. 76

5.2.6 SAE J1939 .. 78

5.2.7 Implementation .. 84

5.2.8 Other units ... 91

CHAPTER 6 DEBUG AND TESTING .. 93

6.1 TESTING ... 93

6.2 SERIAL NETWORK TEST ... 94

6.3 CAN NETWORK TEST ... 96

6.3.1 Test EGR Valve .. 97

6.3.2 Test J1939 .. 98

CHAPTER 7 CONCLUSION .. 101

7.1 FUTURE WORK, LIN INTERFACE... 101

7.2 CONCLUSION ... 104

REFERENCES ... 107

1.1
Software

5

List of figures

Figure 1.1 Role of AUTOSAR 1

Figure 1.2 SW Layers Overview 2

Figure 1.3 Testing

Figure 2.1 DE-TRONIC V3 ECU External Box

Figure 2.2 DE-TRONIC V3 Block Diagram

Figure 2.3 DE-TRONIC V3 Functionality

Figure 2.4 S12XE Microcontroller Block Diagram

Figure 2.5 ECU, PEMicro Probe, Instrumentation (on the left), EGR valve (on the

right)

Figure 3.1 Core Partners and Partners

Figure 3.2 SW comparison yesterday and today

Figure 3.3 Overview of Layered Software Architecture

Figure 3.4 Detailed overview of Layered Software Architecture

Figure 3.5 Software Components and Communication

Figure 3.6 ISO 26262 Structure

Figure 3.7 ASIL determination

Figure 3.8 SW development flow, V-model

Figure 4.1 Inter-System Protocol

Figure 4.2 Intra-System Protocol

Figure 4.3 SCI, Frame

Figure 4.4 Simple example of connection of devices through CAN Protocol

Figure 4.5 ISO/OSI Reference Model

Figure 4.6 CAN Signals

Figure 4.7 CAN Frame Structure

Figure 4.8 Example Transceiver

1.1
Software

6

Figure 5.1 Serial Interface - Communication Stack

Figure 5.2 Communication Drivers Structure

Figure 5.3 sci_cfg.h (MCAL_cfg)

Figure 5.4 sci.c (MCAL_S12XET256)

Figure 5.5 sci_if.h (MCAL_S12XET256) definitions

Figure 5.6 sci.c (MCAL_S12XET256) SCI_InitSCI1

Figure 5.7 sci.c (MCAL_S12XET256) SCI_InitSchedulerSCI1

Figure 5.8 sci.c (MCAL_S12XET256) Disable RX

Figure 5.9 sci.c (MCAL_S12XET256) Enable TX

Figure 5.10 Communication HW Abstraction Structure, SCI

Figure 5.11 Element position in a message frame

Figure 5.12 Example of #define in MULcom_cfg.h

Figure 5.13 Example of variables in MULcom.h

Figure 5.14 Change-name in MULcom.h

Figure 5.15 SWC Outputs Assignment, MULcom.h

Figure 5.16 Message Frame Scan

Figure 5.17 Mulcom_answer(void)

Figure 5.18 Mulcom_AnswerActiveMess()

Figure 5.19 Mulcom_AnswerErr(byte errorCode)

Figure 5.20 Mulcom_AnswerErr(byte errorCode)

Figure 5.21 Mulcom_Reading_Internal_Flash(void)

Figure 5.22 CAN – Communication Stack

Figure 5.23 CAN- Layered Structure Example

Figure 5.24 can_cfg.h (CFG)

Figure 5.25 CAN structure (can_if)

Figure 5.26a Variables and constants (can_if)

Figure 5.26b Functions (can_if)

Figure 5.27 CAN RX/ CAN TX Interrupt (intc.h)

Figure 5.28 Int_CAN_0_TX (void) (intc.c)

Figure 5.29 Cascade of calls for the Interrupt

associated to CAN0 communication

1.1
Software

7

Figure 5.29 Communication HW Abstraction Structure, CAN

Figure 5.30 Variables and buffer (can.c)

Figure 5.31 CAN0 Init (can.c)

Figure 5.32 CAN_ReceiveFrameCAN0 (can.c)

Figure 5.32 CAN_SendFrameCAN0 (can.c)

Figure 5.35 Communication Hardware Abstraction, CAN

Figure 5.36 MULcan_QueueLoadCAN0 (MUlcan.c)

Figure 5.37 Circular Buffer for CAN Load

Figure 5.38 CAN_TrasmissionCAN0 (MULcan.c)

Figure 5.39 Complex Drivers Layer

Figure 5.40 Complex Drivers Structure

Figure 5.41 EGR Valve

Figure 5.42 CAN_EGR_PositionCAN0 (EGR_APE35EL3.c)

Figure 5.43 CAN_EGR_Read_Position_CAN0 (EGR_APE35EL3.c)

Figure 5.44 Typical J1939 Vehicle Network

Figure 5.45 SAE J1939 Message

Figure 5.46 Example CAN Message

Figure 5.47 J1939 Code Structure

Figure 5.48 J1939 Lamp Struct

Figure 5.49 Part of DM1 Table

Figure 5.50 MULj1939.c, Part 1

Figure 5.51 MULj1939.c, NoFault

Figure 5.52 MULj1939.c, Fault

Figure 5.53 MULj1939.c, BAM message

Figure 5.54 MULj1939.c, Case 0: First Message

Figure 5.55 MULj1939.c, TrovaDM1Errori function

Figure 5.56 MULj1939.c, DM3

Figure 6.1 Hercules SETUP

Figure 6.2 Debug Mode Interface

Figure 6.3 PCAN-View

Figure 6.4 Sending data on CAN

1.1
Software

8

Figure 6.5 Set position EGR valve

Figure 6.6 Timers, Interrupts.c

Figure 6.7 PowerView 101

Figure 6.8 Fano_E[192]

Figure 7.1 LIN Network – Physical Layer

Figure 7.2 LIN Stack Structure

Figure 7.3 LIN Configuration

1.1
Software

9

List of tables

Table 5.1 Request from PC to ECU Structure

Table 5.2 Positive reply message from ECU to PC Structure

Table 5.3 Negative reply message from ECU to PC Structure

Table 5.4 Control of EGR valve position
Table 5.5 PGN 64981 Electronic Engine Controller 5 EEC5

1.1
Software

10

1.1
Software

11

List of abbreviations

µC – Microcontroller

ADC – Analog-to-Digital Converter

ASIL – Automotive Safety Integrity Level

AUTOSAR – AUTomotive Open System ARchitecture

BSW – Basic Software

BSWL – Basic Software Layer

CAN – Controller Area Network

CD – Collision Detection

CM – SPN Conversion Method

CMD – Command

CSMA – Carrier-Sense Multiple Access

DM – Diagnostic Message

DPF – Diesel Particulate Filter

EAL – ECU Abstraction Layer

ECT – Enhanced capture Timer

ECU – Electronic Control Unit

E/E – Electric/Electronic

EGR – Exhaust Gas Recirculation

FBC – Fuel Borne Catalyst

FMI – Failure Mode Indictor

FW – Firmware

HIS – Hardware Software Interaction

HW – Hardware

IDE – Integrated Development Environment

1.1
Software

12

IIC – Inter-Integrated Circuit

ISO – International Organization for Standardization

LIN – Local Interconnected Network

MCAL – Microcontroller Abstraction Layer

MISO – Master-In/Slave-Out

MOSI – Master-Out/Slave-In

NOx – Nitrogen Oxides

NRZ – Non- Return to Zero

OC – Occurrence Count

OEM – Original equipment manufacturer

OS – Operating System

OSI – Open System Interconnection

P2P – Peer-to-Peer

PIT – Period Interrupt Timer

PWM – Pulse Width Modulation

RAM – Random-Access Memory

RX – Receive

SAE – Society of Automotive Engineers

SCI – Serial Communications Interface

SCK – Serial Clock

SCMD – Subcommand

SCR – Selective Catalytic Reduction

SDLC – Software Development Life Cycle

SOF – Start Of Frame

SPN – Suspect Parameter Number

SW – Software

SW-C – Software Component

TX – Transmit

VFB – Virtual Functional Bus

1.1
Software

13

CHAPTER 1

INTRODUCTION

The modern era market poses new challenges in the automotive industry every day.

In particular, manufacturers are investing in obtaining integrated systems in vehicles

that can be reused and standardized, trying to obtain new platforms that can follow the

needs of the OEMs.

Companies require new, easily scalable features at low cost in a short time: naturally,

this means increasing the complexity of the code.

Software is often not adaptable to any hardware, for this reason SW developers need

to modify the code to overcome the dependency on OEMs and suppliers.

In this scenario, a new generation of software is born thanks to the spread of

AUTOSAR standard.

Figure 1.1
Role of AUTOSAR

1.1
Software

14

1.1 Software

In the following chapters, the AUTOSAR architecture will be discussed in more detail,

but from the following figure it is already possible to notice the layered structure to

which reference has been made to have an independent SW with a good level of

abstraction.

We have:

 Basic Software (BSW)

 Runtime Environment Layer (RTE)

 Application Layer

Figure 1.2
SW Layers Overview

In order to provide a uniform interface for the development of communication

protocols, it is necessary to start from the levels closer to the microcontroller, and then

to continue with those higher ones.

As will be more evident later on, this approach allows the implementation of an easily

scalable FW and it gives the possibility to integrate different modules. In particular,

this also guarantees a significant simplification in terms of maintenance.

1.2
Quality

15

1.2 Quality

The evolution of embedded systems imposes challenges in terms of security: when

new features are added to meet the demands of the automotive market, software

security must not be neglected. If an update or modification of the code is required, it

is necessary to ask what kind of impact it has on the security mechanisms.

Understanding if there are improvements or not in these mechanisms guarantee good

code quality.

To guarantee the SW quality, it is fundamental to have a measures against faults in

order to have a program that is robust (and it does not break) both in working condition

and not.

There are several possible countermeasures, i.e. Unit Test, Integration Test, System

Test…

In general, SW faults must be taking into account during the SW development process.

Figure 1.3
Testing

1.3
Test

16

A fundamental standard reference is the ISO 26262, which gives guidelines to measure

if it is done a sufficient testing on a single unit.

1.3 Test

The last step in the development of the SW involves a test phase.

Testing makes it possible to evaluate the correct functioning of the code and

compliance with the specifications; in the case of this thesis, it allows to validate the

interaction of levels within a network.

Nowadays tests are carried out following automated procedures, with the use of

specific tools that allow to speed up the validation process.

In the following chapters, the tests performed will be shown on the developed code

and the relative results.

2.1
DE-TRONIC V3 ECU

17

CHAPTER 2

TECHNICAL SPECIFICATIONS

The scope of this chapter is to propose a functional description and technical

specifications of the hardware used during the thesis activity: it is presented the

ECU, its features and the main characteristics of the Microcontroller

MC9S12XET256.

In the end, there is an overview of the network.

2.1 DE-TRONIC V3 ECU

The DE-TRONIC V3 ECU is designed for both 12V and 24V automotive

applications and it is used in combination with Selective Catalytic Reduction

(SCR), Diesel Particulate Filter (DPF), Exhaust gas recirculation (EGR) and Fuel

Borne Catalyst (FBC) system.

Figure 2.1
DE-TRONIC V3 ECU External Box

2.1
DE-TRONIC V3 ECU

18

It is able to drive all the loads connected to these modules with a maximum

temperature of 85°C.

Figure 2.2

DE-TRONIC V3 Block Diagram

In the Figure 2.2 is shown the internal block diagram, the main section are the

following:

 Microcontroller MC9S12XET256

 External connector

 Power Supply

 Analog Inputs

 Digital Inputs

 Frequency Inputs

 Low-Side Digital Outputs

 Low-Side Frequency Outputs

 Peak & Hold Outputs

 Communications

 External power supply (sensor, loads)

2.1
DE-TRONIC V3 ECU

19

The general functions with their block diagram are listed below:

Figure 2.3
DE-TRONIC V3 Functionality

 Functional connections (Power Supply, GND)
 External power supply (5V for sensors)
 Analog Inputs
 Diagnostic analog reading
 Vch (Key contact input)
 Digital Input
 Frequency Input
 Actuator Low Side (Urea Heating, Urea Pressure Pump…)
 Peak and Hold Output (Urea injector, Diesel Injector)
 External Communications (CAN0,CAN1…)
 DAC output
 Internal clock with backup battery power supply
 Internal 125 Mbit flash memory

Inj 1

Inj 2

Low

Side 1

to 8

Low

Side

Freq

CAN0

CAN1

PC

tool

serial

Analog

Input

1 to 13

Diag

Input 1

and 2

Digital

Input 1

Freq

Input

1, 2

K Line

Vch

Analog
Output

2.1
DE-TRONIC V3 ECU

20

As regards the communication section, the ECU is equipped with a CAN0 line,

CAN1 line, PC tool serial line, serial line and K line.

2.1.1 MC9S12XET256 µC

The microcontroller used for this thesis activity is the MC9S12XET256 produced

by Freescale Semiconductor Inc.

It belongs to the MC9S12XE-Family of microcontrollers that are characterized by

standard on-chip peripherals1, including:

Figure 2.4
S12XE Microcontroller Block Diagram

 up to 64Kbytes of RAM

 8 asynchronous SCIs

 3 SPI

 8-channel IC/OC ECT

 Two 16-channels

 12-bit ADC

 8 Channel PWM

 5 CAN 2.0A

1 MC9S12XEP100RMV1 – NXP , Datasheet

2.2
Network and IDE

21

 software compatible modules (MSCAN12)

 2 inter-IC bus blocks (IIC)

 8-channel 24-bit periodic interrupt timer (PIT)

 8-channel 16-bit standard timer module (TIM)

2.2 Network and IDE

The ECU described above is powered at 12V through a Programmable DC

Laboratory Power Supply. To enable the communication between the PC and the

device is used a PEMicro USB Multilink Debugger.

Figure 2.5
ECU, PEMicro Probe, Instrumentation (on the left),

EGR valve (on the right)

In addition, an EGR valve and a PowerView 101 display have been associated to

verify the correct operation of the CAN communication networks.

This type of display offers the possibility to check engine parameters and more

than 50 SAE J1939 parameters, giving a text description of fault condition.

The SW has been developed in C using CodeWarrior® IDE by NXP

Semiconductors for editing, compiling and debugging.

In order to proceed with the test of the serial communication, it was used Hercules

2.2
Network and IDE

22

Setup Utility (to send messages and verify the correctness of the reply); in the CAN

case, P-CAN view allowed to view, transmit and record CAN data traffic.

3.1
AUTOSAR light

23

CHAPTER 3

BACKGROUND

This section of the paper is dedicated to the description of the fundamental concepts

on which the thesis activity is based.

The description of the AUTOSAR standard, the features of the ISO26262 standard

are shown.

As it can be noticed, in the following paragraph is about "AUTOSAR light”: during

the development of the thesis activity, the goal was to obtain a code as independent

as possible from the hardware, therefore close to the idea of the standard without

going into its details.

The fundamental concepts studied during the in-company training phase will be

presented.

3.1 AUTOSAR light

The AUTomotive Open System ARchitecture (AUTOSAR) consortium was

founded in 2003 by an agreement among the largest protagonists of the automotive

scenario, i.e. Bosch, BMW, Continental, Chrysler, Daimler, Siemens VDO and

Volkswagen that represent the “Core Partners”.

Over time, the consortium has more than 100 members contributing to the growth

of a new automotive programming paradigm.

3.1
AUTOSAR light

24

The proposed architecture is one of the milestones of modern automotive

programming. The idea with which AUTOSAR was born is to have a standardized

methodology of development that allows to have software modules independent

from the hardware. This is possible by having unified interfaces, which allow the

integration of new software components over the lifetime of the vehicle with great

simplicity (as long as they conform to the standard).

Figure 3.1
Core Partners and Partners

The advent of AUTOSAR has produced a great improvement in terms of software

quality, costs and time.

The top-goal of the consortium are:

 Improve portability

 Standardize of basic SW features of ECUs

 Keeping an open architecture

 Composability

3.1
AUTOSAR light

25

Figure 3.2

SW comparison yesterday and today

3.1.1 Layered Software Architecture

What characterizes AUTOSAR is its modular and layered structure, which

involves the use of standardized interfaces in such a way as to allow

communication between the various components (the Figure 2.3 gives a coarse

view of the layered architecture). As anticipated in the introduction, the main layers

are Application Layer, Runtime Environment (RTE), Basic Software (BSW) and

then the Microcontroller.

The BSW is in turn divided in

 Services Layer

 ECU Abstraction Layer

 Complex Drivers

 Microcontroller Abstraction Layer

The Microcontroller Abstraction Layer is identified as MCAL and represents the

lowest level with the task of mapping the ECU peripherals; it contains all the

services and modules with direct access to the µC, i.e. Microcontroller Drivers(e.g.

MCU), Memory Drivers(e.g. RAM Test), Communication Drivers (e.g. CAN

Driver) and I/O Drivers.

3.1
AUTOSAR light

26

Figure 3.3

Overview of Layered Software Architecture

The ECU Abstraction Layer is identified as EAL and it gives independence to the

upper layers of ECU hardware structure; it contains all the services and interfaces

for the external devices, i.e. On-board Device Abstraction(e.g. External Watchdog

Driver), Memory Hardware Abstraction (e.g. Memory Interface), Communication

Hardware Abstraction (e.g. CAN Interface) and I/O Hardware Abstraction.

Figure 3.4

Detailed overview of Layered Software Architecture

The highest level is the Services Layer; it gives a direct access to the OS, diagnostic

functionalities and the management of vehicle network communication.

3.1
AUTOSAR light

27

The Complex Drivers covers all the layers, from the HW to the RTE; it gives the

possibility to include special drivers for devices, for timing constrains or because

they are not defined in AUTOSAR architecture.

The RTE works like an interface and it is a Middleware Layer: it allows the

communication between applications and connect them to OS and HW. The

Runtime Environment isolates the application layer and so Software Components

can be independent from the ECU layout and the environment.

3.1.2 Software Component

The system functionalities of an application are developed in Software

Components (SW-Cs) than can include a large set of functions; it needs to have a

well-defined and standardized interface for a successful interaction over the ECU

(or several ECUs is the system is complex).

It is important to underline that SW-Cs are atomic (they are distributed over one

ECU) and AUTOSAR does not give information about their implementation, it

provides specification for a successful interaction between them.

All the data, resources and interfaces needed by the SW-C (e.g. client, server,

ports…) are contained in the SW-C Description, which also give information about

their specific implementation.

Figure 3.5

Software Components and Communication

3.2
ISO 26262

28

3.1.3 SW-C Communication

SW-C Communication is possible only with a specific standardized interface that

is identified as Port Interface: it consists on ports that provide or require data

according to a certain agreement.

The port must provide both Client and Server implementation; the client is the one

that always starts the communication to request a service by the server.

If the port

 provides the element is identified as PPort

 requires the element is identified as RPort.

The communication mechanism and interface between SW-Cs is provided by the

RTE; the sum of RTEs on different ECUs implements the Virtual Functional Bus

(VFB) that gives the possibility to different software components to establish an

exchange of data, without caring about which ECU is running: it implements all

the necessary for the communication. Moreover, it allows the relocation on other

ECUs of the software components.

The set of instructions that can be executed by the RTE is identified as Runnable,

that can be seen as a task running on an ECU.

3.2 ISO 26262

Safety is an essential concept for automotive industry, carmakers aim to security

as a key selling point to take advantage of the competition. It is important to have

an absence of risk and good measures to manage them.

Comes into play here the ISO 26262, an international standard for E/E systems that

defines the safety-related requirements covering the entire vehicle life cycle

process:

 Requirements specification

 Design

 Implementation

3.2
ISO 26262

29

 Integration

 Verification

 Validation

 Configuration

The standard indicates all the steps to follow in every phase in order to ensure the

avoid of control systematic failures.

The most important aspect of the standard is the concept of Functional Safety that

is defined as “the part of the overall safety of a system that depends on the system

operating correctly in response to its inputs, including the safe management of

likely operator errors, hardware failures and environmental changes”2.

It should be emphasized that functional safety does not implies the total absence of

risks of incorrect operation, but it implies the absence of risks that cannot be

accepted due to the malfunctioning of E/E systems.

3.2.1 ISO 26262 Structure

The standard ISO 26262 is divided in 10 parts:

1. Vocabulary

2. Management of functional safety

3. Concept phase

4. Product development at the system level

5. Product development, hardware level

6. Product development, software level

7. Production and operation

8. Supporting processes

9. ASIL-oriented and safety-oriented analysis

10. Guideline on the safety standard

2 ISO, Road vehicles - Functional Safety - 26262-6. ISO, 2011.

3.2
ISO 26262

30

The thesis activity is focused on SW development, addressed in section 6 of the

standard.

In fact, the part 6 is related to the production development in terms of software, it

describes the phases and the methods in order to have compliance with the

standard.

The following steps compose this section of the standard:

 Initiation:

Establishment of guidelines, plan of functional safety activities.

Figure 3.6

ISO 26262 Structure

 Specification of software safety requirements:

Specification of safety requirements and HIS. Here there is the addressing

of function module able to detect and handle faults, in order to maintain a

safe state.

3.2
ISO 26262

31

 Software architectural design:

Design of SW architecture, representation of SW components in terms of

Static Aspects (interfaces and data path) and Dynamic Aspects (timing).

Feasibility and testability are taken into account, in particular it is checked

that SW safety requirements are respected.

 Software unit design and implementation:

Code development according to coding guidelines and design specification.

 Software unit testing:

Test phase, here it is checked that the single module works correctly

without undesired functionality.

 Software integration and testing

All the SW entities are integrated. The SW must be compatible with SW

architectural design; the test phase shows that the SW is robust through

interface test, fault-injection test, back-to-back comparison (if possible)…

 Verification of software safety requirement:

Demonstration that the system reflects the expected results and works

correctly.

The standard gives provision about the methods and measures for each phase with

specific table; in this way, the methods can be applied according to ASIL level in

relation to specific the safety goal.

The ASIL represents the measure of a risk of failure in a system component. There

are four level of risk A – B – C – D, from the least to the most important; when

there is no safety requirement there is the option QM (quality management).

It is possible to define the ASIL level for each hazardous event by

 Severity:

Measures the severity of the damage in case of a system failure (damage in

3.2
ISO 26262

32

terms of people and property).

Classes: S0 (No injuries) – S1 – S2 – S3 (Fatal injuries)

 Exposure:

Probability that a fault could be a safety hazard.

Classes: E0 (Low probability) – E1 – E2 – E3 (High probability)

 Controllability:

It measures the probability that a dangerous situation can be avoided.

The danger may be due to the driver or external factors.

Classes: C0 (Easily Controllable) – C1 – C2 – C3 (Uncontrollable)

Combining Severity, Exposure and Controllability it is possible to determinate the

ASIL with the help of the table proposed by ISO 26262 Part3 (Figure 2.7).

Figure 3.7

ASIL determination

3.2.2 V-Model

The automotive industry is constantly evolving and the complexity of the systems

is increasing thanks to new technologies. For programmers it is therefore necessary

3.2
ISO 26262

33

to follow a very precise coding and testing scheme, in order to have a correctly

functioning product that meets market needs and user requirements.

It is possible to refer to different SDLCs (Waterfall Model, V-shaped Model,

Iterative Model…); in the case of this thesis, it was considered the V-shaped model.

The V-Model, known as Verification and Validation Model, represent the

development phases of a SW where the process are performed according to a V

scheme (Figure 2.7).

Figure 3.8

SW development flow,
V-model

The main characteristic of this model is that each step is associated to a

corresponding testing activity.

From the Figure 2.7 is evident that the model is composed by a Verification and a

Validation phase.

 Verification Phase

Requirement Analysis:

This first step is related to the requirement analysis, in particular it is

generated a document with all the requirements and specification in terms

of data, performance and functions. In this phase, it is define what is the

expected behaviour and not the design of the SW.

3.2
ISO 26262

34

Functional Specification:

Here there is the study of the requirement document and it is possible to

figure out what could be a feasible implementation of the SW. This is phase

is also called System Design.

High Level Design:

Also known as Architecture Design, here there is the SW architecture

design that consists in the definition of interphases, architecture diagram

and list of modules; it is a high-level design.

Detailed Design/Program Specification:

This phase can be identified as low-level design (LLD) step. Programmers

split the system in modules and they start to work on a pseudocode (design

of databases, API interfaces, error…).

 Here and in the Code phase there is the real coding process development.

 Validation Phase

Unit Testing:

In this phase a program module is tested individually; in particular here it

is checked that this entity works correctly regardless of the rest of the code.

This test is useful to eliminate any bugs.

Integration Testing:

This test checks the interoperability and correct communication of the

entities. The whole system can be tested.

System Testing:

At this stage of the model, it is checked that the functional and non-

functional requirements are correctly met through stress and regression

testing.

3.2
ISO 26262

35

User Acceptance Testing:

This represents the last step and the business users perform it. It is checked

that the systems respects the requirements using realistic data and it is

possible to define if the system is ready for the real world or not.

The thesis activity was a good opportunity to better understand the phases of the

V-model.

In particular, the work focused on the requirements analysis and SW development

phase; the modules were individually tested in the debug phase, and were

subsequently integrated to check the correct connection of the network during the

Validation Phases.

3.2
ISO 26262

36

4.1
Protocols in Embedded Systems

37

CHAPTER 4

COMMUNICATION PROTOCOLS

An Embedded System is a microprocessor-based electronic system that integrates

HW and SW, generally has a custom-designed HW platform and is identified as

"special purpose" controller (it is designed for a specific use and it is not

programmable by the user).

It receives inputs (for example from connected sensors) and produces outputs, so

it is necessary that a communication take place between the devices: this is possible

by resorting to communication systems that can be both HW and SW.

This section briefly shows the characteristics of communication protocols in

embedded systems with particular attention to serial and CAN communication,

developed and studied during the thesis activity.

4.1 Protocols in Embedded Systems

The set of rules and characteristics of the communication are contained in the

Protocol, which defines the guidelines on how the exchange of information must

occur among devices.

Protocols can be classifies as

 Inter-System

 Intra-System

In the first case, the communication is between two different devices and takes

place via a bus system (Figure 4.1); an example could be the case of a PC-

4.1
Protocols in Embedded Systems

38

development board communication.

They can be classified in:

 USB

 UART

 USART

Figure 4.1

Inter-System Protocol

In the second case, the communication is between two components that belongs to

the same circuit (Figure 4.2); an example could be an accelerometer connected to

the controller.

Figure 4.2

Intra-System Protocol

They can be classified in:

 I2C

 SPI

 CAN

In this thesis, the attention is focused on the SCI protocol and CAN protocol; in the

following subparagraphs there is a brief description of both.

CPU µC

CPU Component

4.2
Serial Communication Interface (SCI)

39

4.2 Serial Communication Interface (SCI)

The Serial Communication Interface (SCI), also known as Universal

Asynchronous Receiver / Transmitter (UART), allows bit-to-bit communication

that enables data exchange between a µC and a peripheral device, or between µCs.

The SCI can operate in half-duplex mode (one TX, one RX) or in full-duplex mode

(TX and RX is simultaneous).

It also has these following features3:

 Standard mark/space non-return-to-zero (NRZ) format

 13-bit baud rate selection

 Programmable 8-bit or 9-bit data format

 Separately enabled transmitter and receiver

 Programmable polarity for transmitter and receiver

 Programmable transmitter output parity

 Interrupt-driven operation with eight flags (Noise error, Parity error…)

 Receiver framing error detection

 Hardware parity checking

 1/16 bit-time noise detection

Figure 4.3

SCI, Frame

3 MC9S12XEP100RMV1 – NXP Datasheet, Chapter.20

4.3
Controller Area Network (CAN)

40

It is important to underline that the term “asynchronous” means that the

communication is not managed by a clock signal, but the transmission is regulated

by Start and Stop bits. TX and RX must work under the same baud rate.

The communication mechanism is the following: it is enabled the TX through the

Transmit Enable, the data is loaded in a data register, when it is full the data is

transferred, by the HW, to a shift register and then outputted to the RX.

When the Receive Enable is set, the RX receive the data and it reads it at a specific

baud rate.

4.3 Controller Area Network (CAN)

The Controller Area Network (CAN) is a communication protocol designed by

Robert Bosch GmbH in the early 1980s.

The birth of this protocol derives from the need to have a communication between

electronic components that became more and more complex, in order to improve

automotive performance.

Given the difficulty in creating robust communication between these new devices,

the CAN network was proposed by offering a flexible solution with a single cable

that connects all electronic devices.

Figure 4.4

Simple example of connection

of devices through CAN Protocol

4.3
Controller Area Network (CAN)

41

Before the introduction of the CAN Network, the connection was point-to-point

and it was fine just in case of limited functions, but linking the ECU with all the

many electronic devices ensuring a real time exchange of data requires a more

complete and complex solution like the CAN.

The CAN Protocol is used not only in the automotive application, but also in

medical industries, aircraft and so on, because of its many positive aspects:

 It is low cost, in terms of price/performance ratio

 Reliability, good errors detection and handling

 Flexibility, no limitation in number of nodes

 Capability of broadcast communication

 Data rate up to 1 MBit/s for a bus of 40 m (see Data-Link Layer).

4.3.1 CAN Architecture

To transfer data, the CAN Protocol uses the ISO/OSI Reference model:

Figure 4.5

ISO/OSI Reference Model

This protocol uses only the Physical Layer, the Data-Link Layer and the

Application Layer.

4.3
Controller Area Network (CAN)

42

 Physical Layer

The CAN Protocol is a 2-wire bus (CAN High, CAN Low) terminated by

a resistance of 120Ω; having two wires means being immune to the noise

because by means of Common Mode Rejection. Without the twisted pair

cable the signal can be disturbed.

Figure 4.6

CAN Signals

The bus can have a dominant (0) or recessive value (1); the dominant bit

always overwrite the recessive one.

In order to do not cause errors during the transmission of data, it is

necessary to that all the nodes involved in the network must work at the

same nominal bit rate (number of bits per seconds).

Synchronization is possible with the first transition recessive-dominant bit

after a period SOF and a resynchronization is done every time there is this

transition, in this way it is possible to reduce of noise and guarantee a

correct arbitration. To be sure, about the synchronization, NRZ is used.

 Data-Link Layer

This layer guarantees a reliable transmission, without errors: after sending

a data, it waits for a confirmation ACK.

4.3
Controller Area Network (CAN)

43

The CAN Protocol has four different type of frame:

o Data Frame: a node transmits a data to any other node of the

network (Figure 4.7);

o Remote Frame: a node request a specific data to another node

o Error Frame: the node in TX or in RX detect an error, so it sends six

dominant bit and an error flag delimiter of eight recessive bits.

o Overload Frame: the node is not ready for reception; to avoid

overload.

In the following Figure is shown the Data Frame structure:

Figure 4.7

CAN Frame structure

A frame can be Standard or Extended:

 Standard Frame: 11 bits of ID, frame of 44 bits to 108 bits, data from 0 to

64 bits.

 Extended Frame: 29 bits of ID, frame of 62 bits to 129, data from 0 to 64

bits.

The CAN Protocol is characterized by a mechanism of arbitration to avoid

conflicts when more than one node tries to transmit data over the network.

4.3
Controller Area Network (CAN)

44

Every transmitter node compares the value that it sends with the value that is on

the bus: if the bit is the same, the node can go on with the transmission, if not it

must stop to transmit.

The arbitration is done by message priority considering the ID bits of the frame

over the network: smaller is the value, higher is the priority.

CAN is CSMA/CD protocol, it verifies the absence of traffic on the bus before

starting the transmission (regulated in relation to the frame priority): the node waits

for a specific time then it start sending data. If more than one node start to transmit,

they detect this collision (collision detection, CD) and stop the transmission.

 Application Layer

It defines the CAN configuration, for example the ID format and the main

function is the network management.

4.3.2 CAN Software Configuration

The CAN SW is structured three layers: HW, Basic Software and Application.

The Basic Software implements the:

 Communication Services

In order to use driver services it define appropriate API.

 Protocol Controller Driver

Related to the management of the operation of the protocol

 Transceiver driver

Related to the physical aspects of the CAN Protocol

Figure 4.8

Example Transceiver

5.1
Serial Interface

45

CHAPTER 5

IMPLEMENTATION

This chapter shows the details of the thesis, based on the knowledge presented in

the previous paragraphs acquired in the first period of activity.

The first interface presented is the serial one: the structure, the main features and

the common thread of this FW structure will be shown.

The same analysis scheme is used for the implementation of the CAN network.

5.1 Serial Interface

The task of the first software module is to provide a uniform interface to the Serial

Interface used for custom connection between ECU and PC tool interface.

5.1.1 FW structure

The Figure 5.1 shows the structure of the FW relating to the serial interface. The

approach is to start implementing the "lower" levels and then go up and forward

with abstraction layers.

5.1
Serial Interface

46

Figure 5.1

Serial Interface - Communication Stack

The Figure 5.1 shows the modules developed in the following order:

 Communication Drivers

MCAL, in Pink.

This is the module with a direct access on-chip, external devices are

mapped.

Dependent on µC.

 Communication Hardware Abstraction

ECAL, in Green.

It provides a mechanism of access to devices regardless if they are on-chip

or on-board.

Independent of µC, dependent on ECU HW.

 Communication Services,

In Blue.

It provides management of vehicle network, ECU state. Basic SW modules

for applications.

Independent of a µC and ECU.

5.1
Serial Interface

47

5.1.2 Communication Drivers, SCI

This layer is structured in two macro-modules: MCAL_cfg and

MCAL_S12XET256.

Figure 5.2

Communication Drivers Structure

sci_cfg.h
The first one is related to the SCI Layer Configuration, using the MCU datasheet

it is possible to set the register with standard values at start-up.

In the Figure 5.2 is shown a portion of the file sci_cfg.h. The main characteristic

of these definitions is that all the register are dependent on the micro so as to be

easily adaptable if there were changes in the HW (and therefore different settings).

This is possible simply using the #define: if there were any changes, it will not be

necessary to modify the entire code, but it will be sufficient to replace the new

values and consequently the SW will adapt to this change.

With this small detail, it is possible to have a leaner and faster setting.

In this header file SCI Control Register 1, SCI Control Register 2, SCI Baud Rate

and SCI Parity bit are set according standard values.

Constant definitions such as BAUD_RATE_115200, are set in sci_if.h contained

in the other module.

5.1
Serial Interface

48

 Figure 5.3
sci_cfg.h (MCAL_cfg)

MCAL_S12XET256

Inside MCAL_S12XET256, there are the sci_if (it contains sci_if.h) and sci (it

contains sci.c and sci.h) modules.

Sci_if.c contains all the definition and typedefs (Figure 5.4), variables and

constants, functions and stubs used in the sci.c file.

5.1
Serial Interface

49

Figure 5.4

sci_if.h (MCAL_S12XET256) definitions

The use of symbols in the typedef enum (such as STANDARD, EVEN_P, ODD_P

...) facilitates code modification and makes the debugging phase more intuitive and

fast.

Figure 5.5

sci.c (MCAL_S12XET256) functions

5.1
Serial Interface

50

As shown in the last figure, the sci.c file implements the “lower level functions”

such as the setup of the parity bit, the timer or the choice of the baud rate value for

the serial communication.

Important functions to pay attention to are those of “Init”.

The function void SCI_InitSCI1(void)is necessary in order to have a setup and

initialisation of the SCI control registers .

Figure 5.6

 sci.c (MCAL_S12XET256) SCI_InitSCI1

Figure 5.7

sci.c (MCAL_S12XET256) SCI_InitSchedulerSCI1

5.1
Serial Interface

51

The second Init function, void SCI_IntSchedulerSCI1(void), is related to the

scheduler. In particular, it enables the reception and checks the RX status. In the

debug phase, it is easily possible to see that a reception is happening or is finished

thanks to the symbolic messages “MESSAGE_RX_INCOMING”,

“MESSAGE_TX_END_SEND” and so on.

The functions implemented in this module are called in the main.c, together with

the ones that enable reception and transmission as shown in the Figure 5.8 and

Figure 5.9.

Figure 5.8

Sci.c (MCAL_S12XET256) Disable RX

Figure 5.9

sci.c (MCAL_S12XET256) Enable TX

The use of #pragma directive is necessary for each function because it specifies

where its segment is allocated. CODE_SEG ensures that all definitions and

function declarations are in the same segment, in this case

SCI_PLACEMENT_CODE (that is OTHER_ROM).

5.1
Serial Interface

52

Before proceeding with the description of the code related to Communication

Hardware Abstraction (section 5.1.4), the structure of the messages exchanged

between PC and ECU is presented below.

5.1.3 Messages Structure

Each message has a precise structure, stand out in:

 Request from PC to ECU

STX START byte message

LEN Total message length

RX Receiver Code

TX Transmitter Code

CMD Command Code

SCMD Subcommand Code

DATA N bytes of data

CHK Checksum: Sum without reporting from LUNG

to last DATA BYTE

ETX Message STOP Byte

Table 5.1

Request from PC to ECU Structure

 Positive reply message from ECU to PC

STX START byte message

LEN Total message length

RX Receiver Code

TX Transmitter Code

ACK Acknowledge Command Code (CMD received +

0x20)

SCMD Subcommand Code

DATA N bytes of data

5.1
Serial Interface

53

CHK Checksum: Sum without reporting from LUNG

to last DATA BYTE

ETX Message STOP Byte

Table 5.2

Positive reply message from ECU to PC

Structure

 Negative reply message from ECU to PC

STX START byte message

LEN Total message length

RX Receiver Code

TX Transmitter Code

KO KO (“k” in ASCII)

ERR Error Code

DATA N bytes of data (if any)

CHK Checksum: Sum without reporting from LUNG

to last DATA BYTE

ETX Message STOP Byte

Table 5.3

Negative reply message from ECU to PC

Each byte of the message takes on a very precise value and refers to the Multronic

S.r.l. DOCUMENT (updated during the thesis activity) N°: 001-19 ELECTRONIC

CODIFICATION of the ECU.

For privacy reasons, these values cannot be shown explicitly.

The requests from PC to ECU are to characterize a command byte (CMD) which

can assume 8 different values in hexadecimal depending on the type of request.

Each type of CMD, in turn, has a set of subcommands SCMD (characterized by a

certain value as well).

5.1
Serial Interface

54

The possible CMDs and some examples of possible SCMDs are shown in the

following set of requests:

 CMD: Read request

SCMD: Reading of N-byte from RAM, 2-byte address, reading of N data

from ECU….

 CMD: Write request

SCMD: Writing of N-byte on RAM, 2-byte address, writing of data and

time of ECU internal clock…

 CMD: Start - Stop writing, programming and downloading

SCMD: Start programming file s19 ECU, Stop programming file s19 ECU.

 CMD: Lock-unlock flash

SCMD: Unlock Internal Flash, Lock Internal Flash.

 CMD: Hook and Test present

SCMD: Test Present ECU

 CMD: Memory cleaning

SCMD: Clear n-th External Flash…

 CMD: General Messages

SCMD: ECU Reset, Subcommand saving EEPROM Memory…

 CMD: Testing

SCMD: External Flash Test, Request activation digital output...

5.1.4 Communication Hardware Abstraction, SCI

At this point, it is possible to level up and start a first level of abstraction.

5.1
Serial Interface

55

In order to describe the structure of this macro module, it is useful to refer to the

following figure:

Figure 5.10

Communication HW Abstraction Structure, SCI

The prefix "MUL" is used in order to resume the company name (MULtronic).

MULcom_cfg.h

This branch of the software structure is related to the COM Component

Configuration, are defined:

 ECU Addresses

 Read/Write EEPROM

 Answer Read

 Answer Write

 Answer Lock/Unlock

 Answer Hook Test

 Answer Memory

5.1
Serial Interface

56

 Answer General Message

 Answer Testing

 Position of byte in Message Frame

The MULcom layer configuration is done through the use #define. In the case of

the ECU Addresses, all the registers in hexadecimal are defined.

Figure 5.11

Element position in a message frame

The other set of definition have the structure shown in the figure below:

Figure 5.12

Example of #define in MULcom_cfg.h

For each type of SCMD of all possible CMD, there is a corresponding #define

PRESENCE_SCMD_... In following pages, it will be shown how these will be

necessary for handling messages in the MULcom.c file.

MULcom.h
The file related to the MULcom Component Header, is dedicated to the definition

and declaration of variables, arrays and so on.

5.1
Serial Interface

57

 Figure 5.13

Example of variables in MULcom.h

To be consistent in the names used, a name-change is done in the same file for each

element in this way:

Figure 5.14

Change-name in MULcom.h

In MULcom.h, there are SWC Outputs Assignments such as

Figure 5.15

SWC Outputs Assignment, MULcom.h

This is done to avoid problems in terms of interoperability between SW modules.

These two element shown in the Figure 5.12, together with

MULcom_GetSCI1(value) and MULcom_GetSCI1State(), are used in the file

5.1
Serial Interface

58

MULcom.c to manage the answer (see next section MULcom.c).

MULcom.c

This file contains the core of the management of request messages from PC to ECU

and transmits the corresponding response or an error message if something goes

wrong.

The code has a “waterfall” structure, i.e. the execution of a function triggers the

call to another one and so on. To better understand the dynamics of the SW it is

useful to refer to the graphs shown in this section.

The first function performed (called in the Main Loop in main.c) is

MULcom_Answer ().

The scans the message that is received and checks step by step if the data is actually

a valid request:

1. Check if a message has been received;

2. Checksum Check (comparison of sent and calculated checksum value);

3. Start Byte Check ;

4. Length and end of the frame Check;

5. RX Code Check;

6. TX Code Check.

If the message does not comply with the expected format, an error frame

corresponding to the anomaly detected is sent.

5.1
Serial Interface

59

Figure 5.16

Message Frame Scan

5.1
Serial Interface

60

Figure 5.17

Mulcom_Answer(void)

If everything is correct, the void MULcom_AnswerActiveMess(void) function is

executed:

5.1
Serial Interface

61

Figure 5.18

Mulcom_AnswerActiveMess()

At this point in the execution flow the type of command is checked, depending on

the CMD the corresponding function is called.

Whenever there is any problem, an error function is launched (this applies to all

steps):

Figure 5.19

Mulcom_AnswerErr(byte errorCode)

Once the type of CMD is identified, there is the check of the SCMD byte to identify

the type of subcommand and finally recalls the function that generates the correct

answer.

For example in Figure 5.19, there is the function relative to the CMD of reading

and some of its calls to the SCMD functions.

5.1
Serial Interface

62

Figure 5.20

Mulcom_AnswerRead(void)

As an example, the internal flash reading function is chosen to show how the frame

is structured.

Figure 5.21

Mulcom_Reading_Internal_Flash(void)

5.2
CAN Interface

63

Through MULcom_PutSCI1(… , …) is possible to structure each element of the

response frame plus the checksum calculation, depending on the type of CMD and

SCMD.

In every function, it is always considered that there may be an anomaly. In

particular, it is possible to find and report the following errors:

∙ Wrong checksum

∙ Message code received non-existent

∙ Incorrect TX identification code

∙ Message queue not received

∙ Writing failed

∙ Incorrect writing address

∙ So on…

5.2 CAN Interface

The task of the module is to provide a uniform interface to the CAN network.

The CAN Communication Stack supports classic CAN 2.0.

5.2.1 FW structure

Figure 5.22

CAN – Communication Stack

5.2
CAN Interface

64

For the CAN network the same approach was taken into account, in fact even the

structure of the FW is very similar to that of serial communication.

Figure 5.23

CAN – Layered Structure Example

Considering the Figure 5.22, it is possible to refer to the description of page 37.

The difference is that in this case, at the communication drivers level, there are the

drivers also for the I/O.

5.2.2 Communication Drivers, CAN

In the Figure 5.24 is shown a flowchart of the code related to the CAN

communication drivers, again here, a first macro module related to the CAN

configuration and another one to the Kernel composes the structure.

5.2
CAN Interface

65

Figure 5.23

Communication Drivers, CAN

In the next sections the most important part of the code related to the CAN Network

will be shown.

It must be underlined that the ECU provides two CAN connection (CAN0 and

CAN1) and both of them have been developed and configured. The test was done

on both lines as well.

can_cfg.h
This header file is related to the configuration of the CAN parameters such as

Control Register 0 and 1, Bus Timing Register for CAN0 and CAN1.

Here there are several declarations related to the data rate and characteristics of the

CAN message (info like standard/extended ID…).

Thanks to these #defines the setting of the parameters is facilitated. Here too, if

there were variations in the HW, there would be no problem as the configuration

file would be the only one to be modified: the rest of the code adapts to the different

pinout.

5.2
CAN Interface

66

Figure 5.24

can_cfg.h (CFG)

can_if.c

The can_if.c file is used to define the structure of a CAN message in terms of

Priority, Flag, Length, Data and ID, Pointer to the entry and exit of a circular buffer.

5.2
CAN Interface

67

Figure 5.25

CAN structure (can_if)

After the definition of variables and constant as shown in the next Figure, the

Figure 5.26a

Variables and constants (can_if)

5.2
CAN Interface

68

function with their prototypes are defined here (Figure 5.26 b).

Figure 5.26b

Functions (can_if)

Each function must have the keyword extern, in this way it is available globally

throughout the function execution.

The functions CAN_Intc_Int_TX_CAN0, CAN_Intc_Int_RX_CAN0 (in this case

CAN0 is taken as an example, but also applies to CAN1) are Interrupt Function

related to the transmission and the reception of CAN messages.

They are defined in can.c file and they contain a call to another function defined in

a higher level of abstraction (MULcan.c), which handles the buffer initialisation,

the pointer and so on.

Every time there is a transmission or reception of a CAN message, a proper

Interrupt comes in play.

The Figure 5.27 shows a portion of code where it is done a change-name, it is

necessary in order to use the function in orange (defined in can.c) inside the

interrupt function in the intc.h file.

5.2
CAN Interface

69

Figure 5.27

CAN RX/ CAN TX Interrupt (intc.h)

Figure 5.28

Int_CAN_0_TX (void) (intc.c)

Figure 5.29

Cascade of calls for

the interrupt associated to CAN0 communication

5.2
CAN Interface

70

can.c

The CAN Component kernel has the definition of all the variables buffers, used in

the sub-modules related to the MCAL_S12XET256, necessary for the

communication handled in the MULcan SW group.

Figure 5.30

Variables and buffer (can.c)

After that, the initialization function is defined for the CAN0 and CAN1 in a very

similar way: the fundamental registers necessary for the activation mode request

are set, together with the configuration of baud rate and, filters, bus timing

register.

5.2
CAN Interface

71

Figure 5.31

CAN0 Init (can.c)

In the Figure 5.31 it is shown as an example the configuration of CAN0, in the case

of CAN1 the structure is the same but the only difference is obviously related to

the configuration of the communication channel.

When the setting is complete, it is time to manage the real communication: for both

CAN lines, there are two function in order to manage the reception and

transmission of data.

In the Figure 5.32 it is shown the function related to the frame reception both for

Remote/Data and Standard/Extended frame.

It receives:

 Message IDRx

Pointer to message received ID

 FrameTypeRx

Pointer to the frame type: DATA Frame or REMOTE Frame

5.2
CAN Interface

72

 LenghtRx

Pointer to the data length in byte (REMOTE DATA Frame: 0)

 DataRx

Pointer to the received buffer

Figure 5.32

CAN_ReceiveFrameCAN0 (can.c)

The preparation of the message to be sent is done with a proper function in the

same SW module; all the details and information can be set. If it is necessary it is

possible to set the priority of the message as well.

Figure 5.33

CAN_SendFrameCAN0 (can.c)

5.2
CAN Interface

73

As mentioned in the page 59, the can.c file contains the definition of the function

that enables the interrupt for the beginning of the communication (i.e. Figure 5.34).

Figure 5.34

CAN_EnableInterruptCAN0 (can.c)

CAN0TXBusy is a Semaphore to manage the transmission,

∙ 0 Transmission ok

∙ 1 Wait

The CAN0TIER register is held in the reset state when the initialization mode

is active. Putting 0x01 in this register is an event that causes a interrupt request that

starts TX.

5.2.3 Communication Hardware Abstraction, CAN

This section of the paragraph is reserved to the Communication Hardware

Abstraction.

Figure 5.35

Communication Hardware Abstraction, CAN

5.2
CAN Interface

74

MULcan.c
The load of data on the CAN network is carried out using a queue with circular

buffer of length CAN0_QUEUE_LENGHT (in this case 8); the variable advancing

in the array is identified with "b".

Figure 5.36

MULcan_QueueLoadCAN0 (MULcan.c)

Figure 5.37

Circular Buffer for CAN Load

It is developed a version of the queue with the possibility to set the priority.

5.2
CAN Interface

75

Figure 5.38

CAN_TrasmissionCAN0 (MULcan.c)

The transmission on CAN0/1 is handled by the function shown in the Figure 5.38.

5.2.4 Complex Device Driver

The Complex Device Driver accesses directly to the MCU (strong dependency)

and reaches the RTE. It is used when there are functions that must be implemented

Figure 5.39

Complex Drivers Layer

5.2
CAN Interface

76

and it is not possible to find them in other layers; in particular meets the need to

operate with complex actuators and sensors.

Figure 5.40

Complex Drivers Code Structure

This layer was used to develop the code for the EGR valve APE35EL2: this was

used as an actuator to verify the correct operation of the CAN0 and CAN1 network.

The valve opening percentage (the operational range is 0 to 100%) is sent on the

CAN network, the reply message is interpreted to assess whether the correct value

has been received.

5.2.5 EGR Valve

The valve used as an actuator for the network is a control system to manage the

NOx emission generated during the combustion process in the engine cylinders.

The EGR reduces the combustion temperature bringing back part of the exhausted

gas to the intake manifold, in this way the air is diluted.

Opening and closing is carried out via a computer in relation, generally, to the

temperature detected by sensors.

5.2
CAN Interface

77

-

Figure 5.41

EGR Valve

The position control message is structured on 8 bytes and has a specific ID; the

idea is therefore to replicate this frame.

ID Byte
1

Byte
2

Byte
3

Byte
4

Byte 5 Byte 6 Byte
7

Byte
8

18FDD500 h FF FF FF FF Valve
Control

Valve
Control

FF FF

Table 5.4

Control of EGR valve position

All the code is structured in the file EGR_APE35EL3.c with all the variables and

the implementation of reading and sending function.

Figure 5.42

CAN_EGR_PositionCAN0 (EGR_APE35EL3.c)

In position 4 and 5 the hexadecimal (inverted) value of the valve opening

percentage is entered.

5.2
CAN Interface

78

The value is set in the debug phase and the variable is calculated as the

multiplication of the entered value by 400.

This is done considering the examples on the actuator's datasheet: 100% open

corresponds to the message with

 ID : 18FDD500 h

 Bytes:

Hex: 9C40 Dec: 40000
40000

0.0025
= 100

Therefore, the desired value must be multiplied by 400 (1

0.0025
).

The valve communication occurs through J1939 message; the details are presented

in the following section.

Figure 5.43

CAN_EGR_Read_Position_CAN0 (EGR_APE35EL3.c)

5.2.6 SAE J1939

The thesis path included the study of the SAE J1939 standard and the

implementation of the relative SW module to be able to manage the EGR valve.

SAE J1939 is a standard used in the communication and diagnosis of components

in commercial (heavy-duty) vehicles such as trucks, buses but it involves also

agriculture and maritime domains.

FF FF FF FF 40 9C FF FF

5.2
CAN Interface

79

Thanks to J1939 it is offered the possibility to have a standard way to communicate

across ECUs giving a manufacturer interoperability, in contrast with passenger cars

that are strictly related to specific protocols (different for every manufacturer).

The standard uses the CAN technology: if the CAN is the tool, J1939 is the

“language”.

It is characterized by:

 29-bit extended ID (CAN 2.0B)

 Baud Rate typically of 250 kbits/s, but it supports 500 kbits/s

 PGN: Parameter Group Number, 18 of 29 bit of ID

 SPN: Suspect Parameter Number, 19 bit number used for diagnostic

purpose

 Broadcast or P2P Messages

Figure 5.44

Typical J1939 Vehicle Network4

CAN Protocol provides to the standard the physical and data link layer of the

ISO/OSI model, this means that on the bus there are small packets but a complex

exchange of data is possible with a multi-packet messages, more than 8 bytes can

be transferred.

The protocol specifies how to have a human-readable data by the conversion of

starting data; to understand a J1939 message it is necessary to interpret its

parameters.

The document J1939-71 gives all the information for the conversion of a large set

of standardized J1939 message into readable data.

4 https://www.vector.com/

5.2
CAN Interface

80

PGN
Each frame it is characterized by a PGN that contains 8 bytes of data, divided into

parameters (SPN).

The PGN is the ID of a J1939 message, it is unique and describes the function of

the message and for looking up the SPN.

Consider the EGR valve and the PGN of the control message for the position as an

example:

Figure 5.45

SAE J1939 Message

Control of EGR valve position (PGN 64981 Electronic Engine Controller 5

EEC5)

Transmission Repetition Rate: On request

Data Length: 8

Extended Data Page: 0

Data Page: 0

PDU Format: 253

PDU Specific: 213 PGN Supporting Information:

Default Priority: 6

Parameter Group Number: 64981 (0x00FDD5)

 Start Position Length SPN SPN Name

1-2 2 bytes 2789 Engine Turbocharger 1 Calculated Turbine
Intake Temperature

3-4 2 bytes 2790 Engine Turbocharger 1 Calculated Turbine
Outlet Temperature

5.2
CAN Interface

81

5-6 2 bytes 2791 Engine Exhaust Gas Recirculation 1 Valve 1
Control 1

7.1 2 bytes 2792

Engine Variable Geometry Turbocharger
(VGT) Air Control Shutoff Valve

7.3 2 bytes 5323

Engine Fuel Control Mode

7.5 2 bytes 5457

Engine Variable Geometry Turbocharger 1
Control Mode

8 1 bytes 2795

Engine Variable Geometry Turbocharger
(VGT) 1
Engine Variable Geometry Turbocharger
(VGT) 1 Actuator Position

Table 5.5

PGN 64981 Electronic Engine Controller 5 EEC5

The ID is 0x00FDD5, the PGN starts bit 9 with length 18, so in this case is

0x0FDD5, 64981 in decimal; looking for this value on the document SAE J1939-

71 there will be Electronic Engine Controller 5. The documentation shows that

there are seven SPNs related to this message.

Consider so that the PGN (64981, ID: 0x00FDD5) is identified; then the SPN 2791

is taken into account:

SPN 2791 - Engine Exhaust Gas Recirculation 1 Valve 1 Control 1
Desired percentage of maximum Exhaust Gas Recirculation (EGR) valve 1 opening. 0%

means valve is closed. 100% means maximum valve opening (full gas flow).

Data Length: 8

Data Range: 0 to 100%

Data Page: 0

Type: Status

SPN: 2791

5.2
CAN Interface

82

Parameter Group Number: 64981

The message received shown in the next Figure is used as an example of

interpretation.

The document tells that the relevant data is in byte 5 (0x40) and 6 (0x1F):

Hex: 0x1F40 Dec: 8000

In percentage, 8000
400

= 20% opening.

Figure 5.46

Example CAN Message

The standard J1939 allows messages longer than 8 bytes even if the CAN can

support only eight byte of data transfers. A solution is to have a multiple packet

communication: the J1939-21 defines all the guidelines to send and assemble the

messages.

There are two types of possible transport:

 Broadcast Announce Message (BAM)

It is a broadcast communication, the message by a sender is sent to

all the other nodes. If something goes wrong, the receiver cannot

reply or signal it.

The sender is the only one that manage the data flow.

 Peer-to-Peer

This protocol establish a sender-receiver communication. Here the

receiver has the opportunity to influence the data flow and have the

control on its data packets.

5.2
CAN Interface

83

To send a multipacket data the sender first transmits a BAM, it is a sort of warning

message for the entire network. The BAM contains the PGN, the size, number of

packets and information to allocate the resources necessary for a correct message

reassemble.

The SAE J1939 has specific parameters intended for diagnostic messages called

DM. They give information about the state of the system, in terms of health, and

about malfunctions that have occurred in the automotive system.

There are several DM in J1939, but during the thesis activity the attention was

focused on DM1, DM2 and DM3.

 DM1- Active Diagnostic Trouble Codes

Provides lamp status and DTC information, together report

diagnostic condition of the electronic component.

DM1 is transmitted, usually, every second and on change of the

state.

Given a = lamp status

 b = SPN

 c = FMI

 d = CM and OC

 The message format is : a,b,c,d,b,c,d,b,c,d,b,c,d…

 DM2- Previously Active Diagnostic Trouble Codes

Provides a list of previously active diagnostic codes.

 DM3 – Diagnostic Data Clear/Reset of Previously Active DTCs

When it is supported, it indicates that all the diagnostic information

related to the previously active trouble codes should be cleared or

reset in the case of non-active trouble codes.

5.2
CAN Interface

84

5.2.7 Implementation

Figure 5.47

J1939 Code Structure

For the implementation of J1939 messages, it has been used the same code scheme

as the previous modules: one part is linked to the configuration and one to the

BSWL.

MULj1939_if.h
This module is dedicated to the definitions and typedef. In particular, the structs

necessary for the lamp status definition (DM1) is shown below.

Figure 5.48

J1939 Lamp Struct

5.2
CAN Interface

85

The components of lamp status are

 Malfunction Indicator Lamp

Used for emission-related information

 Red Stop Lamp

Used in a problematic scenario sever enough as to have the vehicle

stop

 Amber Warning Lamp

Used to report a vehicle problem but does not require a stop

 Protect Lamp

Used to report a problem most probably not related to an electronic

system.

Their role is to reflect the current state of the electronic component that is in TX.

The second struct deals with the second part of the message form of DM1, SPN

and FMI.

MULj1939.c
This file is reserved for the implementation of the DM1/2/3 messages with their

relative timers and request functions, i.e.:
∙ void CAN0DM1(void);

∙ void MULj1939_MessaggioDM1NoFault(void);

∙ void MULj1939_MessaggioDM1Fault(byte);

∙ void MULj1939_MessaggioDM1BAM(void);

∙ void MULj1939_TrovaDM1Error(void);

∙ byte MULj1939_SPNFMI(byte);

∙ void MULj1939_Fault_Test(void);

∙ void J1939_Timer1ms(void);

∙ void J1939_Multi_Timer1ms(void);

∙ void CAN0DM2(void);

∙ void J1939_Multi_Timer1ms_DM2(void);

∙ void MULj1939_MessaggioDM2NoFault(void);

∙ void MULj1939_MessaggioDM2Fault(byte);

5.2
CAN Interface

86

∙ void MULj1939_MessaggioDM2BAM(void);

∙ void MULj1939_TrovaDM2Error(void);

∙ void CAN0DM3(void);

∙ void DM3PCReset(void);

∙ void MULj1939_Request_CAN0(void);

∙ void MULj1939_Request_CAN1(void);

In the next figure is shown the array related to DM1 for every warning or fault, for

the states in which one of them is not available the SPN is 65535 (0xFFFF).

Figure 5.49

Part of DM1 Table

The function related to the DM1 implementation (void CAN0DM1(void)), first

checks the variables that depend on the situation in which the vehicle is located, to

then read the anomalies taking care that !((MULj1939_TabAnoDM1[i].SPN ==

65535) because not supported.

5.2
CAN Interface

87

Figure 5.50

MULj1939.c, Part 1

Here the DM1 message is composed in relation to the value of the variable

StatusDM1, based on its value the functions No-Fault or Fault are called.

Figure 5.51

MULj1939.c, NoFault

5.2
CAN Interface

88

Figure 5.52

MULj1939.c, Fault

At this point, a timer and switch-case (5 cases), that regulates the execution based

on the value of StDM,1 manage the multiframe transmission.

The case 0 is for the BAM message, necessary to allow data exceeding 8 bytes in

length to be sent.

Figure 5.53

MULj1939.c, BAM message

The case 1 relates to sending the first message and the lamp status calculation; the

CAN TX buffer is loaded with the SPN, FMI and the values taken by the table of

the Figure 5.48.

In relation to the flag FlagCANBroadOUT_E, the message is loaded on CAN0 or

CAN1.

5.2
CAN Interface

89

Figure 5.54

MULj1939.c , Case 1

Figure 5.55

MULj1939.c , TrovaDM1Errori function

5.2
CAN Interface

90

Figure 5.56

MULj1939.c , Case 2

In the previous Figure the case 2 is shown as a further example.

The DM3 has the task of making a clear of the diagnostic data and possibly a reset

of the previous DTCs, this can be easily done putting at 0 the buffer

FAnoDM_E[192].

5.2
CAN Interface

91

Figure 5.57

MULj1939.c , DM3

5.2.8 Other units

In addition to the units presented in this section of the paper, the SW has a block

of header files, inclusion files, libraries and, of course, a main file.

The module Headers contains

 DefDefines.h

Definition of all the ECU address, mostly related to the EEPROM

and the FLASH, and initialization of peripheral (PORT A, PORT

B…)

5.2
CAN Interface

92

 DefPrototypes.h

Definition of function prototypes related to Init, peripheral,

routines, interrupt functions.

 VariablesEEPROM.h

 VariablesFLASH.h

 VariablesRAM.h

The module Includes contains

 MC9S12XET256.h

This header implements the mapping of I/O devices.

The module Libs contains

 MC9S12XET256.c

The interrupts are managed in the module MCAL_S12XET256.

6.1
Testing

93

CHAPTER 6

DEBUG AND TESTING

The last step of the code development process involves a testing phase. With regard

to this paper, the focus was on verifying the correct functioning of the individual

SW units and the correct interoperability between the modules.

The use of actuators has made it possible to verify the effective correctness of the

communication network.

6.1 Testing

In section 3.2.2 of this paper, the different types of tests associated with the V-

Model steps have been described.

In both networks an analysis was carried out in the debug phase, with direct control

of the registers and verification of the execution flow; the goal is to obtain a SW

that respects the project requirements and does not contain errors that could

compromise the code.

As a first strategy it was used the unit test to validate the units of the code working

properly, so it is checked the correct behaviour of function, methods, loops and so

on.

Possible tests are:

 Interface test

Verification that unit sends/receives data correctly

6.2
Serial Network Test

94

 Local data structure test

Verification that local data structure are stored correctly.

 Boundary condition test

Verification that boundary conditions are correctly handled.

 Fault Injection Test

A fault is inserted into the system to analyse the consequent

behaviour; it can be emulated by SW.

6.2 Serial Network Test

To verify the correctness of the serial network, a first debug was performed to

correct any anomalies through the use of breakpoints and the check of the memory

and registers value in the debug mode of the IDE.

The structure of the serial communication network is made in such a way that,

having received a certain input message, the ECU must respond with a

corresponding message.

The protocol specifies the structure of all the messages that the ECU can interpret,

with relative positive or negative response (specific for each type of message).

The test was carried out by creating a set of messages, each corresponding to a

request, sent via the Hercules SW.

In this way, it is possible to send data and see the relative answer, and also verify

the correct operation with different baud rates and parity bits.

Voluntarily send incorrect messages or that communicate an anomaly it can be very

useful to understand how the SW manages situations of malfunctioning and

unforeseen events: the actual operation of the network is evaluated from the

corresponding response.

6.2
Serial Network Test

95

Figure 6.1

Hercules SETUP

Figure 6.2

Debug Mode Interface

When a message is sent over serial, it can be checked what was actually received

using the debug interface. Similarly, the verification can be done for the

transmission using the registers u8SCI_BuffRxSCI1 and u8SCI_BuffTxSCI1.

6.3
Can Network Test

96

6.3 Can Network Test

As regards the CAN network, the test is carried out in two steps: the first one is

done by checking the registers, verifying the messages sent/received and the

correct behaviour of the timers via P-CAN View; the second one checks the correct

operation of the actuator controlled on can.

Having CAN0 and CAN1 available, the tests are performed on both lines.

Figure 6.3

PCAN-View

The check made on the exchange of messages on the network follows the same

principle as the serial network. To verify the correct transmission and reception, it

is possible to take advantage of both the registers relating to the CAN-ID, date,

length of the message, etc. and the tool PCAN-view, which gives the possibility to

verify the correct functioning of the timers by checking the count section.

To speed up the test and verify the correct data exchange through the tool, in the

mail there is a counter that updates the data sent on CAN. The counting is started

6.3
Can Network Test

97

via the set of the TestRXCAN0 variable.

Figure 6.4

Sending data on CAN

6.3.1 Test EGR Valve

The correct functioning of the CAN network is guaranteed by tests carried out on

the EGR valve; the function that allows the set of the desired value is managed by

Figure 6.5

Set position EGR valve

6.3
Can Network Test

98

a timer at 1.024 ms and is called in main.c as shown in Figure 6.5. The

desired_valueCANx is set in the debug interface.

Figure 6.6

Timers, Interrupts.c

6.3.2 Test J1939

As regards the J1993 messages, the control can be performed in a simple way using

the PowerView 101 able to interpret the parameters of the data sent, showing the

SPN and the IMF (Figure 6.7).

Figure 6.7

PowerView 101

6.3
Can Network Test

99

The messages are sent using the debug interface, setting the FanoE array [192] in

correspondence with the anomaly that one intends to test.

Figure 6.8

Fano_E[192]

For example in this case are set maintenance warning, maintenance alarm and

bypass mode; the numbers indicate the priority of the message.

6.3
Can Network Test

100

7.1
Future work, LIN interface

101

CHAPTER 7

CONCLUSION

This section of the paper briefly shows how it is possible to expand the network

developed during the thesis activity; the goal is to have a more complete

communication system for automotive application by implementing a LIN

network.

Finally, the conclusions of this project are shown.

7.1 Future work, LIN interface

The Local Interconnected Network (LIN) is a serial communication protocol

usually used for the components where a possible fault does not represent a critical

scenario, in terms of safety (air conditioning, seat controls…).

It is composed by 16 nodes (1 master and up to 15 slaves), the communication is

broadcast and is always initiated by the master that passes a token to the slaves:

when one of them receives the token, they can send data over the network.

A LIN network is composed by a physical and data-link layer, in the next Figure it

is shown a typical LIN communication:

7.1
Future work, LIN interface

102

Figure 7.1

LIN Network – Physical Layer

A LIN message is characterized by a header (transmitted by the master) and a

response (it can be transmitted by a slave or the master).

System Architecture

The LIN bus setup for the MC9S12XET256 µC requires a particular structure

characterized by the interaction between the LIN Core and the application.

Figure 7.2

LIN Stack Structure

The LIN source code and the API must be integrated with the files inside the LIN

Stack package: those files are the .h and the .c generated by a Node Configuration

Tool on the basis of the Node Private Description File and LIN Configuration

Description File.

 Node Private Description File

It has the information about nodes (name, communication channel,

7.1
Future work, LIN interface

103

clock frequency…)

 LIN Configuration Description File

LIN Cluster information.

Figure 7.3

LIN Configuration

This package is provided by NXP Semiconductors and it is composed by six layers:

 BSP

 Low Level

 Core API

 Transport Layer

 Diagnostic services

 Application Layer

The LIN bus interface represent a very important low cost improvement for the

network. Even if protocols such as automotive Ethernet or CAN FD are

increasingly appreciated, LIN remains vital for the new and complex features

required by the manufacturers.

The development of this type of interface represents a possibility to expand this

thesis project by obtaining a communication system that is more ample and

adaptable to different needs.

7.2
Conclusion

104

7.2 Conclusion

This paper shows the phases of the project developed as last step of the Master’s

Degree of the Politecnico di Torino in Mechatronic Engineering, from the

documentation to the actual development of the code.

The thesis activity is based on the experience at the Belgian company Multronic

s.r.l in Carmagnola (TO).

The idea is to implement communication interfaces based on the main features of

the standard AUTOSAR, with the aim of creating a communication network

between ECU of vehicles that is simple, easily adaptable and modifiable. The focus

is on the Serial and CAN bus communication.

The first part of the thesis proposes a scenario of the work goal and briefly shows

the studied topics necessary to have a clear vision on how to structure and

implement the firmware: it is performed an overview of the fundamental concepts

of AUTOSAR and the standard ISO 26262, in addition the V-shape model is

presented.

A description of the network is also included, with the technical characteristics of

the microcontroller.

Then, the main features of the communication protocols that are the object of the

activity are included.

Going ahead with the paper, there is the core of the project that is the

implementation of the communication protocols. The scheme of analysis is the

same: first of all it is presented the FW structure, then the description start with the

lowest layer of the stack module (the one closer to the HW), to get to

communication drivers and communication hardware abstraction.

Within the CAN interface, the attention is also placed on the SAE J1939 and its

implementation in order to be able to carry out the control of the EGR valve, used

to verify the correct functioning of the network.

7.2
Conclusion

105

10935 lines of code have been developed, without considering the use of external

libraries.

The tests carried out in the last period of activity have confirmed the validity of the

product intended for the production of the control unit for the automotive market.

In particular, network tests were performed using both SW and HW systems: in the

case of the serial network, the correct operation of the information exchange was

carried out by exploiting a serial communication via the PC-ECU. As far as the

CAN network is concerned, the test was particularly interesting as it was possible

to test using HW components in addition to the SW.

The FW obtained was implemented in relation to the time available, but has the

potential to be expanded and made more effective in terms of tests: an example

could be the automation of the process of sending messages, to have immediate

results and a faster SW release.

7.2
Conclusion

106

7.2
Conclusion

107

References

AUTOSAR, Document number 664 - Overview of Functional Safety Measures in

AUTOSAR, AUTOSAR CP Release 4.3.0

Briciu, Catalin-Virgil & Filip, Ioan & Heininger, Franz. (2013). A new

trend in automotive software: AUTOSAR concept. 251-256.

CAN Specification 2.0 , Part A, Part B – Bosch, 1995

CAN Texas Instruments - Application Report, 2016

C. Virgil Briciu, I.Filip, F. Heininger. “A new trend in automotive software:
AUTOSAR concept. Politehnica” University of Timisoara/ Faculty of

Automation
and Computer Science, Timisoara, Romania. Continental Automotive
Germany/Interior Body and Security, Regensburg, Germany. May 2013

Gade S, Kanase A, Shendge S, Uplane M. SERIAL COMMUNICATION

PROTOCOL FOR EMBEDDED APPLICATION. International Journal of

Information Technology and Knowledge Management

July-December 2010, Volume 2, No. 2, pp. 461-463

H.Martorell, J. Fabre, M. Lauer, M. Roy, R. Valentin. Partial Updates

of AUTOSAR Embedded Applications - To What Extent?. 11th

European Dependable Computing Conference (EDCC 2015), Sep

2015, Paris, France

ISO-11898: 2003

ISO, Road vehicles - Functional Safety - 26262-6. ISO, 2011.

7.2
Conclusion

108

M.Violante’s Lecture – Model-Based Software Design Course a.y.

2017/2018, Network Technologies for Mechatronic Systems

Course a.y. 2018/2019. Mechatronic Engineering, Politecnico

di Torino.

MC9S12XEP100RMV1 – NXP, Datasheet (Rev 1.25)

National Instruments, J1939 Transport Protocol Reference Example,

http://www.ni.com/example/31215/en/#toc4, March 2019

Niklas Amberntsson. La progettazione di reti secondo Autosar,

https://www.elettronicanews.it/la-progettazione-di-reti-secondo-autosar/

Renesas - AUTOSAR Layered Architecture,

https://www.renesas.com/us/en/solutions/automotive/technology/autosar/a

utosar-layered-architecture.html

Richard Bellairs. What Is ISO 26262? An Overview, SECURITY &

COMPLIANCE, STATIC ANALYSIS, January 2019,

https://www.perforce.com/blog/qac/what-iso-26262-overview

S12(X)Build Tools - Reference Manual

Samarins.com. How Exhaust Gas Recirculation (EGR) system works,

https://www.samarins.com/glossary/egr-system.html, December 2018

Vector- Transport Protocol – https://www.vector.com/it/it/know-

how/technologies /protocols/sae-j1939/#c26590

