POLYTECHNIC UNIVERSITY OF TURIN
DEPARTMENT OF CONTROL AND COMPUTER ENGINEERING

IMPERIAL COLLEGE LONDON
MECHATRONICS IN MEDICINE

Kinematic Calibration of a Seven Revolute
Joints Serial Manipulator

Supervisor:
Author: Prof. Marcello Chiaberge
Jennifer Chimento Co-Superuvisor:

Dr. Riccardo Secoli

A Thesis submitted for the Master Degree in
Mechatronic Engineering

October 2019

Abstract

The kinematic calibration is a process that computes a realistic mathematical represen-
tation of a robot by calculating the appropriate estimates of the model parameters. This
method aims to increase the accuracy of the robot manipulator. Therefore, the calibration
process allows the robot to perform more accurate positioning tasks without physically
modifying the manipulator. In this thesis, a method is developed to compensate inaccura-
cies due to imprecise manufacturing of robot’s parts, by using the tracking system Atracsys
fusionTrack 500. In particular, the robot to be calibrated is the KUKA iiwa LBR 7R 800, a
serial-link arm manipulator with seven revolute joints, mostly used in both manufacturing
and biomedical sectors. This thesis was developed under the supervision of both Polytech-
nic University of Turin and Imperial College London. Moreover, all the experiments were
carried out in the Mechatronics in Medicine Laboratory at Imperial College London.

La calibrazione cinematica ¢ un processo che permette di ottenere un adeguato modello
matematico di un robot, attraverso il calcolo dei suoi parametri. Il suo scopo é quello di
migliorare 'accuratezza del robot. Quindi, permette di aumentare la precisione di un ma-
nipolatore durante l’esecuzione di attivita di posizionamento, senza modificare struttural-
mente e fisicamente il robot. In questa tesi é stato elaborato un metodo per compensare
gli errori di fabbricazione del robot utilizzando il sistema di tracking Atracsys fusionTrack
500. In particolare, il robot da calibrare é il KUKA iiwa LBR 7R 800, un manipolatore con
sette accoppiamenti rotoidali utilizzato maggiormente nel settore industriale e biomedico.
Questa tesi ¢ stata elaborata sotto la supervisione del Politecnico di Torino e dell’Imperial
College London. Inoltre, tutti gli esperimenti sono stati condotti all’interno del Laboratorio
Mechatronics in Medicine dell’Imperial College London.

Contents

[1__Introductionl 7
.1 Motivationsl e 7
[1.2 Objectives| 8
(L3 Contributions 8
1.4 Thesis Overviewl e 8

|2 Theory and Literature Review| 9
2.1 Kinematic Chaingl. 9

[2.1.1 Types of Kinematic Chains| 10
RI12 Direct Kinematicd 12
2.1.3 Denavit—Hartenberg Convention| 13
[2.1.4 Denavit—Hartenberg Parameters| 15
2.1.5 Difference between DH classical and modified conventions| 17
2.2 Calibrationl 17
[2.2.1 Geometric and Nongeometric Errors] 18
222 Tevelsof Calibrationl 18
223 The Calibration Process| 19
224 Measurementlo 19
2.2.5 Identificationl o 21

I3 The System| 25
B1 KUKA#nwa LBRIo oo 25
[3.2 Atracsys fusionTrack 500[. oL 28
3.3 ROS: Robot Operating System| 29

I A KUKATR BR Call on Method 32
4.1 ROS Packages|. 32

4.1.1 ROS-integrated API for the KUKA LBR iiwa collaborative robot by
[Sheffield Robotics. L 32
4.1.2 The Atracsys ROS Package| 36
4.2 The KUKA siwa LBR Modell 37
4.3 movingKuka Algorithm|. 00 L. 39
4.4 robotCalibration Algorithm|. 47

[Experiments and Results| 48
b.1 Expermments|. 48
B2 Resulls. . . . o oo 49

6 Conclusion| 52
6.1 Conclusions 52
6.2 Recommendations| 52

|A First Appendix: How to Install ROS|
IA.1 Getting Started with the Installation|
[A.2 Installing ROS|
[A.3 Gettingrosinstall] o
[A.4 Setting ROS Workspace| oo
[A.5 Creating a ROS Package| 0.

IB Second Appendix: Installation of the Atracsys fusionTrack 500

|C Third Appendix: Poses Trends|
IE:ll I iliit Ig::ill

53
93
53
54
54
95

57
o7
o8
59

60
60
61
62

62

List of Figures

[2.1 The kinematic chain of a manipulator] 9
[2.2 Different types of joints used in arobot| 10
2.3 Task space vs. Joint space [I]| 11
24 The KUKA KR-16robotl.o oo oo o .. 11
2.0 The Delta Wittenstein robotl o000 12
2.6 The coordinate trasformation from frame 0 to frame n [2f 12
2.7 Modified DH convention [3]] 14
[2.8 'The Puma 560 robot with assigned modified DH parameters|. 15
2.9 Classical DH convention [2]] 17
[2.10 Wire potentiometer fixtures [4] oL 20
211 Atheodolite [B| 20
[2.12 Identification process lowchart| 24
BI The KUKATiwa LBRI 25
[3.27 Main assemblies and robot axes. Axes are enumerated from AT to A7 [6]] 26
[3.3 Dimensions, media flange electrical. The media flange is represented with |
| axis 7 in the zero position. The symbol Xm depicts the position of the |
| locating element in the zero position |7]| 27
3.4 The Atracsys fusionTrack 00|, 28
;3.5 The fusionTrack tracking volume |8 28
.6 The coordinates system, front view (modified image from [8])] 29
3.7 Communication between ROS nodes using topics [9]] 31
[4.1 Overview of robot system [6]. 1 is the connecting cable to the smartPAD, |
| 2 1s the KUKA smartPAD control panel, 3 is the manipulator, 4 is the |
| connecting cable to KUKA Sunrise Cabinet robot controller, and 5 is the |
L KUKA Sunrise Cabinet robot controllerf 33
4.2 Components of the KUKA ROS interface architecture [I0]] 33
4.3 'The designed markers for the KUKA iwa LBR| 38
4.4 Base markers] 39
4.5 FEnd-effector markerl oo 40
.6 KUKA working envelope [6]| 0oL 41
4.7 Positions of the right base support| 42
4.8 Representation of the unit vector v in the base frame coordinates system|. . 42
4.9 Needed rotations to compute the end-eflector orientation. In red the rotated |
| reference framel 43
4.10 Position and orientation definition process. RF stands for reference frame |
[and EF stands for end-effector]. 0L, 44
[4.11 Safety process| 45
[4.12 Measurement process| 46
b.1 Executed poses| 49

[A.1 The turtlesim mode |9]| oo 54
|C.1 Trends of nominal and measured poses in the first test| 57
|C.2 Irends of nominal and measured poses in the second test|. 98
|C.3 Trends of nominal and measured poses in the third test| 59
ID.1 First test root-mean-square and average errors|. 60
[D.2 Second test root-mean-square and average errors| 61
ID.3 Third test root-mean-square and average errors| 62

List of Tables

3.1 KUKA motion range table| 26
13.2 The nominal DH parameters of the KUKA nwa LBR YR 800 27
4.1 Kuka LBR iiwa data available through ROS topics| 34
4.2 Main Commands for KUKA TLBR robotl 35
4.3 The Craig parameters tor the KUKA kinematic chain|. 39
b.1 Updated parameters for the the first test|. 50
b.2 Updated parameters for the second test| 50
b.3 Updated parameters for the third test| 50
[B.1 Default network settings [8]| 56

Chapter 1

Introduction

1.1 Motivations

The kinematic calibration of a robot is a method that evaluates appropriate estimates
of parameters, which represent the mathematical model of the manipulator, in order to in-
crease the robot’s accuracy. Therefore the calibration allows the robot to perform accurate
positioning tasks without physically modifying the manipulator.

Accuracy is an important robot’s characteristic and it is useful in some robotic applica-
tions. For example, a robot could be used to insert precisely in the brain a biopsy needle to
pick up some tissue [I1]: in this case, accuracy plays a fundamental role since the surgeon
dexterity is not enough to complete this type of operation.

When robots were first introduced in the manufacturing field, they were capable to
perform pick-and-place operations that did not require accuracy. In particular, this type
of action was taught manually by the engineers: an operator would specify the exact motion
that the robot would perform and that motion would be performed repeatedly. This was
possible because the number of tasks that the robots had to perform was small [5]. As the
years went by, manipulators were used for other applications that involved large numbers
of taught actions. Thus new electronic components were added to the robots to avoid the
time consuming manual teaching phase [5]: the mathematical model of the manipulator,
known as kinematic model, was used to insert new positions that a robot had to reach. The
engineers immediately noticed that there were substantial differences between where the
robot was supposed to go and the desired position: they came to a realization that even
small errors in the kinematic model could produce great mistakes in the robot’s positioning.

Therefore simple actions taught by manual training can be accomplished without cal-
ibration because they rely on repeatability, i.e the capability of the robot to return to a
previously achieved pose [5]. When adding new tasks, never manually taught by the user,
the robot depends on accuracy, the robot’s ability to achieve a position that is not previ-
ously reached [5]. When a user moves manually the robot to a specific point, the robot’s
joint angles are measured by the robot’s controller and then stored, hence the manipulator
can return to that location. For a new position, the joint angles must be computed and
this calculation depends on the kinematic model of the robot, i.e parameters of the robot’s
geometry. The errors in these values cause inaccuracy when moving to a new location [12].
That is where calibration comes in: it computes the proper values of the kinematic model
parameters to compensate the error between the theoretical parameters values, thus the
ideal robot geometry, and the actual physical dimension of the manipulator.

The aim of this thesis is to offer a strong calibration method to cope with geometric
errors of a serial-link manipulator with seven revolute joints. For this thesis purpose, the
KUKA iiwa LBR 7R 800 (KUKA) is employed: it is a robot used for both manufacturing
and medical purposes. The tracking system Atracsys fusionTrack 500 (Atracsys) is em-

ployed to record the manipulator positions.

In the following chapters the calibration process is presented and robot modeling and
parameter identification are fully described. Later, the used robot is presented and the
functionalities of the Atracsys are illustrated in detail. Besides, the main principles of
Robotic Operating System (ROS) framework are highlighted to explain the complexity of
the system during the recording process needed for the calibration. Then the algorithm
used for the calibration procedure is explained step by step and finally, the results are
discussed.

This project was developed under the supervision of both Polytechnic University of
Turin and Imperial College London. In particular, all the experiments were conducted in
the Mechatronics in Medicine Laboratory at the Mechanical Engineering department of
Imperial College London.

1.2 Objectives

There are three main objectives in this thesis:

e Development of an algorithm that moves automatically the robot inside a specific
workspace and stores the robot’s positions recorded by the Atracsys in Excel files.

e Development of an algorithm that minimizes the error between the recorded real
poses and the outputs of the theoretical model.

e Comparison between the robot’s positions obtained from the new calibrated param-
eters and the recorded ones.

1.3 Contributions

The following contributions are presented in this thesis are original ideas and presented
herein for the first time:

e Design of three platforms needed to position reflective spheres necessary for the
measurement phase.

e Contribution of a ROS package development for the Atracsys fusionTrack 500.

e Development of an algorithm that allows the robot to follow dinamically the camera.

1.4 Thesis Overview

e In Chapter [2] the theory behind the robotic manipulator movement and kinematic
calibration are discussed. In particular, different methods for performing the calibra-
tion are presented.

e In Chapter [3] the system used to perform the calibration process is described. More-
over, an introduction to Robot Operating System (ROS) framework is illustrated.

e In Chapter] an open-loop calibration method is presented. In particular, the algo-
rithms developed for this purpose are described step by step.

e In Chapter 5| the experiments performed to verify the validity of the developed algo-
rithms are depicted. A discussion of the results is provided.

e Finally, in Chapter [f] conclusions are presented.

Chapter 2

Theory and Literature Review

This chapter consists in describing the existing theory necessary to understand the
kinematic calibration of the KUKA iiwa LBR. Moreover an overview of different methods
of calibration is described.

2.1 Kinematic Chains

Kinematics is the science of motion that allows to represent positions, velocities and
accelerations of specified points of a multi-body structure, without taking into account the
forces or torques that cause the motion. To study the kinematics of a manipulator, the
concept of kinematic chain must be investigated.

A kinematic chain consists of a set of ideal rigid links connected by ideal rigid joints:
it represents the mechanical or kinematic structure of a robot manipulator. Furthermore,
a kinematic chain is considered as a geometric entity, therefore frictions, masses, and
elasticities of the kinematic chain are not considered [I]. One end of the kinematic chain
is constrained to a rigid surface, called base, while the other one is connected to a specific
surface on which a gripper or a tool could be mounted, referred to as end-effector (EF).
The tool-center-point (TCP) is a point, generally located in the middle of the end-effector,
that a manipulator moves to a specific position or along a specified path: it is the point
to refer to when the robot is moving the end-effector, hence it represents the end-effector
itself. The representation of the kinematic chain is shown in Figure [2.1

TCP

o

Kinematic chain \

End-effector

Fixed base

N

Figure 2.1: The kinematic chain of a manipulator

Since the end-effector is usually a rigid body that moves in three-dimensional space, the
TCP has a position as well as an orientation with respect to a fixed reference frame located
on the robot base, called the world frame or base frame. The combination of position and
orientation of the TCP with respect to the base frame is referred to as a pose. When the
end-effector is defined in this manner, the TCP is described in the task space: the task
space, or workspace, is the subset of the cartesian space that can be reached by the TCP
[1]. Hence, the end-effector pose could be represented in the task space without knowledge
of the manipulator geometry.

Joints are components of the kinematic chain that allow the relative motion between
two attached links. The two most commons joints are revolute and prismatic joints, each
with a single degree of freedom (DOF'). The revolute joint allows a rotation about a single
axis, while the prismatic joint provides a translation along a specific axis. There are also
other types of joints, as shown in Figure 2:2] but they are not discussed in this thesis. The
robot used for the kinematic calibration, as said in Subsection [1.1] contains seven revolute
joints and so it has seven DOFs. Since the end-effector is positioned and oriented in a three-
dimensional space, just six DOFs are required to define its pose (three for positioning and
three for orienting the end-effector). If more DOFs than task variables are available, the
manipulator is referred to as a redundant robot [2]. Therefore, the KUKA iiwa LBR 7R
800 is a redundant manipulator.

/% == =%

Revolute Prismatic Hooke's Spherical
Joint Joint Joint Joint

Figure 2.2: Different types of joints used in a robot

Forward kinematics describes the pose of the end-effector with respect to the world
frame, depending on the robot’s geometry and either the offsets or angles of the robot’s
joints (offset for prismatic joint and angle for revolute joint). Therefore the end-effector
pose can be defined by specifying the manipulator’s geometry and joint displacements
necessary to achieve the pose [5]. When the pose is defined in this manner, the TCP is
described in the joint space: the joint space is a mathematical structure whose elements are
joint values, i.e the joint displacements. Hence a joint motion in the joint space produces
a motion of the end-effector in the task space. The representation of the joint and task
spaces is shown in Figure |2.3]

Inverse kinematics is the opposite process. Given the TCP pose with respect to the
world frame, the necessary joint values to reach that pose are computed. The inverse
kinematics of the KUKA is mathematically complex and it will not be discussed in this
thesis.

2.1.1 Types of Kinematic Chains

There are two types of kinematic chains: serial or open kinematic chains and closed
kinematic chains.

An open kinematic chain is a chain in which every joint connects only two links. There-
fore there is only one sequence of links connecting the two ends of the chain [2]. Open
kinematic chains usually resemble a human arm. An example of a manipulator with an
open kinematic chain is represented in Figure 2.4} Its structure contains a shoulder, an

10

<~ Actuators

1
|
1
1
1
1
1
1
|
|
I '
1
1
1
1
1
1
1
1
1
1
1

Task space

Joint space

Figure 2.3: Task space vs. Joint space [I]

arm, a forearm, and a wrist. This type of robot provides dexterity but is not accurate
inside the task space [1].

A close kinematic chain is a chain where there are more than one link between two
joints [I]. The kinematic chain has a cycle-like structure. An example can be provided in
Figure[2.5] In this case, the robot’s base is mounted above the workspace and three jointed
arms extend from the base. The ends of these arms are connected to a small platform. It
has high accuracy, but also a small workspace, so the portion of space reachable by the
end-effector is limited. Besides, it has a complex kinematic chain.

Figure 2.4: The KUKA KR-15 robot

11

Figure 2.5: The Delta Wittenstein robot

2.1.2 Direct Kinematics

As described in Section the goal of the direct kinematics is to compute the pose
of the TCP as a function of the joint variables and robot’s geometry with respect to the
world frame. To reach this aim, the kinematic chain of a manipulator must be calculated.

Consider an open-chain manipulator composed of n links connected to n+1 joints. To
study the robot’s open kinematic chain, it is reasonable to consider first the description of
the kinematic relationship between two adjacent links and then obtain the overall kinematic
chain [2]. To reach this purpose a reference frame for each link must be defined, from link
0 to link n. In order to pass from a link reference frame to another, a transformation
of coordinates is done. Then, the coordinate transformation, describing the position and
orientation of the frame n with respect to the frame 0, is given by:

T0 = AY(q1)Ab(g) .. AL (gn) (2.1)

n

where Azzfl(qi) (for i = 1,2,...,n) represent homogeneous trasformation matrices to pass
from one reference frame to the other, dependent on ¢;, which are the joint variables.
Figure represents the process explained in Equation .

The computation of the direct kinematics function is obtained by the product between

T, ()

Figure 2.6: The coordinate trasformation from frame 0 to frame n [2]

12

homogeneous transformation matrices describing the position and orientation of each ref-
erence frame. As a consequence, if the frame 0 represents the world frame and the frame
n represents the end-effector reference frame, the TCP frame can be calculated with re-
spect to the base frame. The method to attach a reference frame on a link is given by the
Denavit-Hartenberg convention, described in Subsection [2.1.3]

2.1.3 Denavit—Hartenberg Convention

The most commonly used notation for selecting reference frames is the Denavit- Harten-
berg (DH) convention. This method allows to attach a reference frame to each link of the
robot and it uses certain parameters to describe the position and orientation of each refer-
ence frame. In particular, it defines the relative position and orientation of two consecutive
links. Normally the parameters used to describe the position and orientation of a frame
are six. This convention reduces the number of parameters to four. They will be discussed
in Subsection 2.1.4]

The first step is to delineate some rules to allocate the reference frames on the robot’s
links.

The modified version of the DH convention, proposed by Craig [3] is used for this thesis
purpose and explained in this Subsection. In Subsection the difference between the
original method and the modified one will be described.

The rules for assigning a rigid reference frame for a given link i of a manipulator is reported
below:

e Z; axis of the reference frame i coincides with the joint axis between link i-1 and link
i.

e The origin of the reference frame i is located at the intersection of the axis Z; with
the common normal to axis Z; and the joint axis between link i and link i41 (axis
i+1).

A~

e X, axis goes along the common normal to Z; and i+1 axes.
e V; axes is placed following the right-hand rule, once X, and Z; have been located.

Frame 0 is the frame attached to the robot base and does not move. Its Z-axis, ZO, lays
along axis 1 such that when the joint variable 1 is zero, frame 0 coincides with frame 1.

The end-effector frame is attached in a way that the end-effector X-axis (X,,) aligns with

X,—1 when the last joint angle is zero.
The representation of the frame arrangement is represented in Figure 2.7]

13

Axisi—1 Axis i

Figure 2.7: Modified DH convention [3]

14

Figure 2.8: The Puma 560 robot with assigned modified DH parameters

2.1.4 Denavit—Hartenberg Parameters

Once the link reference frames have been established, the position and orientation of
each frame are defined through a set of parameters known as Denavit—Hartenberg param-
eters. There are 28 parameters for a serial-robot of seven revolute joints like the KUKA
iiwa LBR.

The definition of the parameters for the frame i, discussed in Subsection 2.1.3] is given
below [3].

e a;: the link lenght is the distance from ZAZ to Zi+1 measured along Xl

e «;: the twist angle is the angle between Zi to Zi+1 measured about)A(l
e d;: the offset lenght is the distance from Xi,l to XZ measured along Zl
e 0;: the joint angle is the angle between X,_1 to X; measured about Z;.

Two of the four parameters («; and a;) depend only on the geometric connection of link
i with the consecutive one (link i+1). One of the other two remaining parameters varies
depending on the type of joint (joint i), that connects the previous link (link i-1) with the
considered one. In particular:

e [f the joint i is a revolute joint, 6; is the joint variable and so its value changes
depending on the relative motion between link i-1 and link i. d; remains constant
and dependent on the geometry of the two links.

e If the joint i is a prismatic joint, the joint variable is d;. Therefore 8; depends only
on the geometric connection between links i-1 and i.

The representation of these variables for the link i can be seen in Figure 2.7 These
parameters applied for a robotic manipulator Puma 560 are shown in Figure [2.8

At this point, it is possible to express the coordinate transformation between link i-1
and link i following the next steps:

e Choose a frame aligned with frame i-1.

15

Translate the chosen frame by a;_1 along)A(i,l, SO:

1 00 A;—1
; 010 O
i—1 _
A = 001 0 (2.2)
00 0 1
e Rotate the translated frame by «;_1 about Xi,l, hence:
1 0 0 ;1
v 0 coy_1 —so;—q 0
i) 7
Agr = 0 saj—1 coi 0 (2:3)
0 0 0 1
e Translate the reference frame by d; along Z;. Then the matrix becomes:
1 0 0 a; 1
11 0 caj_1 —saj_1 —sa;_1d;
3 _ 7 7 (]
Ai/” o 0 SO —1 CO;—1 cai_ldi (2'4)
0 0 0 1

Rotate the reference frame by 6; along Z;. The homogeneous transformation matrix
for passing from the frame i-1 to the frame i thereby becomes:

A;il = ’I‘ransl(ai_l, Xi_l)ROt(Oéi_l, Xi_l)Transl(di, Zi)Rot(Qi, ZAl) =

Cei *591' 0 a;—1
s&icai_l c&icai_l —S0; 1 —sai_ldi (2'5)
| slisai—1 cBisoi_1 coi—i coi_1d;
0 0 0 1

Now to compute the forward kinematics, as shown in Equation , the transformation
matrices of the Equation type must be multiplied to each other. Hence the end-
effector position and orientation with respect to the base frame can be derived. The final
homogeneous transformation matrix contains a rotation matrix (3x3) and a translation
vector (1x3), in the form shown below:

Ryr thr
T, = (2.6)
ol 1

The position of the TCP with respect to the world frame is described by the translation
vector t%F, while the three angles, i.e the end-effector orientation, are derived from the
rotation matrix R% r- In fact R%F can be seen as the result matrix of the product of
three elementary rotations around certain axes. Finally, the TCP pose is presented in this
mathematical form:

Xe =

(2.7)

ST e B

where x, y and z represent the position of the end-effector with respect to the base frame,
while u, r and w the orientation.

16

— — |
\\._,_,‘)./ E\‘*-_L ‘L_Di;/
\) vew |47
N I{. g e
\ Y N 7 Lo, ;
) ‘Oi. ~—_ /% ,
\ | T e—
\ dl
— T g
\ 0 it /

Figure 2.9: Classical DH convention [2]

2.1.5 Difference between DH classical and modified conventions

There are two different forms of the Denavit—-Hartenberg method used to calculate the
kinematics of a serial-link manipulator [13]:

e The classical convention proposed by Denavit-Hartenberg in [14], used in textbooks
such as by Siciliano [2], initially developed for single-close loop kinematic chains and
then extended to open-loop chains, such as robotic manipulators [15].

e The modified convention introduced by Craig [3] in his textbook and used in this
thesis for calculating the direct kinematics of the KUKA. According to Lipkin [15],
it is the most suitable notation for the kinematic analysis of serial manipulators.

The two approaches provide different methods to attach the reference frames to the
robot’s links. Moreover, both of them use four parameters, two translations (a and d) and
two rotations (6 and «), but they calculate them differently.

Given an open-chain manipulator composed of n links connected to n+1 joints, the
classical DH convention places the reference frame i on the distal end of link i, i.e where
link i and link i+1 meet (Figure[2.9). On the other hand, the modified method locates the
i reference frame on the proximal end of link i (where link i-1 meets link i), as shown in
Figure 2.7

The advantage of the modified convention is that the parameters are computed along
the frame i axes, therefore this method is transparent and easy to apply. In the classical
method, some parameters, in particular 6; and d;, are calculated along the z; 1 axis.

The disadvantage of the variant method is that it uses multiple indices to switch from a
frame to the next one. In fact, the modified convention uses the parameters 6;, d;, a;_1
and a;_1. The classical one relies on 6;, d;, o;; and a;.

2.2 Calibration

According to Mooring [5], accuracy is the capability of the robot to move the TCP to a
defined pose that has not been taught before. To reach that pose, the robot has to move its
joints in a manner that the desired location is obtained. This can be calculated using the
mathematical model illustrated in Subsections[2.1.2] 2.1.3]and [2.1.4l This model represents
an ideal robot: links and joints are manufactured exactly to specifications and the robot
is unaffected by any errors in movement [I12]. However, the model, used to represent the

17

manipulator motion, diverges from the actual robot geometry: hence the parameters of
the model, that define the end-effector pose, are not accurate [5].

The kinematic calibration copes with all robot inaccuracies that may be arisen after
construction, final installation, maintenance or replacements. As a result, the calibration
reduces substantially the inaccuracies without making changes to the physical robot but
its kinematic model.

2.2.1 Geometric and Nongeometric Errors

A manipulator is subject to many sources of errors that bring to inaccuracies. There
are two types of error: geometric and nongeometric errors.

Geometric errors are the result of imprecise manufacturing of robot’s part [16]. They
depend on the geometric relationship between the links of the manipulator [5]. Further-
more, this type of errors is not connected to the load carried by the robot or to the motion
of the end-effector, but, as mentioned before, it includes errors in the joint angle offsets or
link lengths due to the impossibility of the perfect robot’s part fabrication and matching.

Nongeometric errors are errors that result from external factors. They could be caused
by mechanical deflections, due to link and joint flexibility under gravity loading, and ther-
mal errors. These last errors could have a substantial effect on the robot accuracy. The
temperature increase could bring to an expansion or contraction of the robot’s links, caus-
ing a change in the overall structure of the manipulator.

The kinematic calibration method proposed in this thesis copes only with geometric
error, while the nongeometric ones are not considered.

2.2.2 Levels of Calibration

According to Mooring [5], three levels of calibration must be distinguished depending
on the robot’s elements and the target errors of the calibration:

e Level 1 of calibration is defined as joint level calibration. It is also known as master-
ing. The aim is to correctly relate the signals from the joint displacements transducers
to the actual joint displacements [5]. This process is usually performed during the
robot building process and repeated only if necessary, such as maintenance or robot’s
parts substitution. In case the robot contains incremental position transducers or
non-absolute transducers [2], this type of calibration has to be executed every time
the robot is powered on, to guarantee that the position encoders readings are con-
sistent with the attained manipulator posture [2].

The relationship between the transducers signals and joint displacements is repre-
sented in the following form:

0 = hi(ni, i) (2.8)
where 6; is the displacement of the joint i, n; is the signal of the transducer i and ~;
is the vector of the parameters in the function h;().

In this thesis, level 1 calibration method is not implemented, as the existing rela-
tionship between the joint displacements tranduscers and real joint displacements is
accurate.

e Level 2 of calibration defines the real robot kinematic model necessary for reaching
accuracy. Initially, the ideal mathematical model is taken into consideration, there-
fore links and joints are considered rigid. In order to model the robot, the modified
DH convention is used, as presented in Subsection [2.1.3] and [2.1.4] The modified
method describes the robot kinematics using a finite number of parameters. The
result of this mathematical model is:

Xe = k(nu’va) (29)

18

where x, is the end-effector pose vector, represented in the (2.7) Equation form, and
K is the vector of the model parameters (a, «, d and). Then the parameters are
updated with suitable values in order to describe the real geometry of the robot.
The method proposed in this thesis concentrates on this level of calibration.

e Level 3 of calibration is defined as nongeometric or nonkinematic calibration. This
type of calibration takes into account nongeometric errors due to effects such as joint
compliance, friction, and clearance, as well as link compliance [5]. As a consequence,
there are no generalized formulations to comprehend these effects. For this thesis
purpose, due to the complexity of this level, this type of calibration is not performed:
the proposed kinematic method deals with only geometric errors, as mentioned in

Subsection 2211

2.2.3 The Calibration Process

All levels of calibration explained in Subsection [2.2.2] consist of four steps: modeling,
measurement, identification, and implementation. Modeling refers to the suitable math-
ematical model that represents the robot provided by the modified DH convention: it is
described in Subsection [2.1.3]and and is no longer discussed in this Subsection; in the
measurement phase, the end-effector pose of the robot is accurately measured in order to
compare it with the model outputs; during the identification, the data recorded from the
previous step are used to compute good estimates of the kinematic model parameters; fi-
nally, through the implementation step, the nominal model is modified and the corrections
are implemented in the position control software of the robot.

2.2.4 Measurement

The goal of this step is to measure either the end-effector pose or some subset of the
pose, for a set of joint displacements [5]. Later, the measurement data are necessary to
reduce the error between the nominal and real geometries of the robot. An high number
of poses must be recorded in order to find more accurate values of the robot’s parameters.

The measurement process can be split into two types: open and closed-loop methods.

Open-loop methods measure accurately the end-effector pose through external measure-
ment instrumentation: the robot is moved into a position, the joint robot values are read
and the TCP pose is fully or partially recorded.
In closed-loop methods, the robot cannot move freely: the end-effector is constrained as
if an additional joint were included between the end-effector and the ground [12]. In this
case, the robot is moved to a set of given poses that satisfies some constraint. Moreover,
joint displacements are recorded at each pose.

Open-Loop Methods

There are different measurement systems for estimating the robot’s end-effector pose,
depending on the number of the pose components they measure:

e One component: the distance between a precise point on the table and a fixed
point on the tool is measured through a bar ball, a laser displacement meter or a
wire potentiometer. Wire potentiometers (Figure are commonly used because
they can be automated and quickly used by inexpert users. Generally, the system
consists of a potentiometer with a flexible cable that is connected to the robot’s tool
[4]. The wire is placed so that it does not twist as the arm moves in space. This
method is very precise, but it requires a large number of data measurements because
only one pose component is obtained.

19

Figure 2.10: Wire potentiometer fixtures [4]

e Two components: to measure two orientations of a pose, a theodolite can be used
(Figure . The theodolite is telescope manufactured so that its line of sight is
precisely known [5]. It is constituted by three parts: the base, the alidade, and the
telescope. The base is usually installed on a tripod: it is adjusted until it is nearly
horizontal, as indicated by some bubble levels attached to it. The vertical axis is
the one perpendicular to the base. The alidade rotates about the vertical axis and
is built so that the rotation is precisely known. The first angle, that the theodolite
computes, is the angle between the line of sight and the plane defined by the base.
The second one is the angle between an arbitrary chosen horizontal line and the plane
formed by the vertical axis and the line of sight [5].

To use the theodolite, the device is located in a fixed position and the vertical axis is
established. Then the operator sees through the telescope until the target is aligned
to the telescope viewfinder. Finally, the two angles can be read.

The theodolite does not provide distance reading, which is very important for the
calibration process. Therefore, it is not usually used for the measurement procedure.

Vertical
Axis

— Alidade
/

iire of _—— Telescope

Sight -~

Horizontal
Axis

Figure 2.11: A theodolite [5]

20

e Three components: these types of measurement systems can track a fixed point
of the robot’s tool. An example of these types of equipment is laser interferometers.
A laser produces a beam of light that passes through a mirror to direct the beam to
a reflective surface mounted on the end-effector. The returning beam is directed to
an interferometer to compute the distance between the interferometer and the laser.
Photodetectors, on which part of the returning light is pointed to, guide the mirror
rotation to follow the robot movements and different poses. This process is usually
an automated procedure.

The resolution of this system is very high, but its accuracy can be influenced by air
pressure, humidity, and temperature because they can alter the wavelength of the
light. Since these effects are quite small, they are ignored in many cases [5].

e Six components: these systems can compute the full pose of the robot’s end-effector
from the 3D position evaluation of multiple points. This can be done either through
stereo camera systems or motion capture equipment. Using the Atracsys, a rigid
body can be fixed on the KUKA end-effector so that the position and orientation of
the TCP can be evaluated.

The systems presented in this Subsection are the most empolyed and can be used individ-
ually or even combined, depending on the desired application.

Closed-loop Methods

Closed-loop methods constraint the manipulator’s end-effector movement so that its
pose is computed by measuring the joint sensor readings. These approaches limit the cost
of the calibration process because it does not require the expensive measuring equipment
used in the open-loop method.

The simplest closed-loop method is the manual joint mastering with indicators [12]. In
this approach, the joint angles of the robot are constrained. It is assumed that a robot
position is known: in this pose, some parts of a link are aligned with other parts of the
successive link at a given joint angle. The operator of the robot moves physically the robot
until these indicators are aligned: then the joint angle is recorded. The measure alignment
can depend on the robot link geometry or can be measured through some indicator mark-
ings applied on the link [5]. The result of this approach is very inaccurate because it relies
on the user, who judges the position of the robot only by looking at it. Moreover, it is
done by using a single pose. It is a calibration that is done when an high accuracy is not
required.

Another method is the manual joint mastering with precise measurement [12]. This
approach makes use of a built jig with dial gauges to increase the robot’s accuracy. The
jig must be manufactured and attached to the manipulator’s arm. Dial gauges on the jig
allow measuring small differences in angles so that an operator can adjust the robot pose
until it matches with the desired one.

This process reaches a better accuracy with respect to the method explained before, because
it does not rely on the user sight, but it depends on the manufacturing precision of the jig
itself. Also this method makes use of one single pose.

2.2.5 Identification

Identification allows finding accurate estimates of the DH parameters from a series
of measurements on the manipulator’s end-effector pose, obtained from the measurement
process [2]. Therefore, the identification step aims to reduce the error between the output
of the robot nominal model and the measured pose.

21

As mentioned in Subsection the end-effector pose is dependant on many factors,
in particular on the theoretical DH parameters:

xe = k(a,a,d, 0) (2.10)

where a = [a1as ... a,]T, a=[a1as ...)T, d =[dids ... dy]", and @ = [01 05 ... 6,,]
denote the vectors of nominal DH paramenters of a n-links robot.

Let x,,, be the measured pose, obtained from the measurement step, and x,, the nominal
pose, computed via Equation and Equation (2.1)) with the nominal values of the
parameters a, a, d, and 8. The two poses are represented in the form given by Equation
. The deviation Ax = x,,, — X, represents the robot’s accuracy at the given position.
Assuming that the deviation is small, at first approximation, the error Ax is derived by
using the following equation [2]:

_Oxy oxy, oxy, oxy,

where Aa, Aa, Ad, and A@ are the devations between the real parameters of the robot
and the nominal parameters of the theoretical model. Moreover, %7 %’ZL, 88%, and 85‘9"
represent the (6 x n) matrices which contain the partial derivatives of the x, components
with respect to the single parameters. In particular, these matrices are the Jacobians of
the transformations between the joint space and the task space. For any given parameters

(for example, the link lenghts) the Jacobian is calculated using Equation (2.12]):

[E—-T Oz]

Jaq das " dan

Sy Iy Oy

daq das e dan

bz bz Oz

ox Jaq das " dan

J,=—"= (2.12)

da Su Su Su
da; dag " dan

or or or

daq das " dan

dw Sw Sw.
| day dag " day |

Grouping the parameters in the vector ¢ = [a” a’ dT 87, defining the deviation between
the real parameters and nominal ones as A{ = {,,—¢(,, and grouping the partial derivatives
matrices in the (6 x 4n) matrix ® = [‘98’%: % %% agfg"], Equation 1) can be compactly
rewritten as:

Ax = DAL (2.13)

To perform the identification process, it is desired to compute A(starting from the knowl-
edge of Ax, x,, and X, measurements [2]. Equation is a system of six equations
with 4n unknowns, therefore enough measurements have to be acquired to obtain a system
of at least 4n equations [2]. If [poses are recorded, Equation yields:

AX1 <I>1
Ax=| : | =] | A(=dACL (2.14)
AXZ <I>l

As regards the nominal values needed for the computation of the matrices ®;, the geometric
parameters are always constant, while the joint values depend on the configuration of the
robot at the pose i.

22

To avoid ill-conditioning of the matrix @, it must be chosen [poses such that lm >> 4n.
Then the Equation ([2.14) can be solved using an ordinary least-square technique: the

solution of (2.14)) is:
AC = (3 3)'3 A% (2.15)

where (ETE)_IET is the pseudo-inverse of the matrix ®. The DH parameters are updated
by using the following equation:
¢ =G+ AC (2.16)

The explained procedure should be iterated until A converges to within an arbitrary
threshold.

At the first iteration, {, corresponds to the nominal values of the kinematic model
parameters. As the iteration progresses, the calibration matrix @ has to be updated with
the parameters obtained via Equation at the previous iteration: therefore (, is
equal to ¢’ of the previous iteration and ¢, is used to compute the ®; matrices. Similarly,
Ax has to be calculated as a difference between the measured values for the [end-effector
positions and the corresponding poses computed by the direct kinematics function with the
values of the parameters at the previous iteration [2]. As a result, more accurate estimates
of the real robot geometric parameters, as well as possible corrections to make on the joint
transducers measurements, are found. The flowchart of the identification process is shown
in Figure [2.12

As mentioned in Subsection the calibration in the KUKA joint values is not
performed, because the joint sensors’ readings are considered precise so that the matrices
®,; do not contain the Jacobian regarding the 6 values.

23

T

Set nominal parameters and measurement data /

Compute direct kinematics

Compute Jacobian matrix

Compute observation errors

Calculate parameter deviations

Check parameter errors

|

Parameter errors within the threshold Update parameters

Real robot parameters obtained /

e

Figure 2.12: Identification process flowchart

24

Chapter 3

The System

The approaches and techniques described in Chapter 2] can be applied to a great variety of
serial-robots to increase their accuracy. For this thesis purpose, an open-loop calibration
method is performed to guarantee a precision positioning performance of a seven revolute
joints serial-manipulator KUKA iiwa LBR 7R 800 (KUKA). The measurement system
employed is the tracking system Atracsys fusionTrack 500 (Atracsys), which is needed
to record the manipulator tool’s pose. In particular, using the Robot Operating System
(ROS) framework, the robot is programmed to move from one position to another, to
record the joint angles readings and the end-effector information, once the pose is reached.
In the following chapters, the algorithms developed to move the robot and perform the
calibration are explained, as well as the results obtained from the algorithms.

In this chapter, the manipulator and tracking system characteristics are illustrated and
an overview of the ROS framework is described, to have a better understanding of the next
chapters’ contents.

3.1 KUKA iiwa LBR

The KUKA iiwa LBR 7 R800 is a robotic arm with seven revolute joints, currently
employed for manufacturing applications and research projects. It is a sensitive and
Human-Robot Collaboration (HRC) compatible manipulator. In particular, LBR stands
for lightweight robot and iiwa for intelligent industrial work assistant [I7]. It is designed
to work together with humans in close cooperation (Figure .

(a) The robot [18] (b) Human and robot collaboration [177]

Figure 3.1: The KUKA iiwa LBR

25

KUKA Motion Range
Joint | Range [deg]
Al [-170, +170]
A2 [-120, +120]
A3 [-170, +170]
A4 [-120, +120]
A5 [-170, +170]
A6 [-120, +120]
A7 [-175, +175]

Table 3.1: KUKA motion range table

Every robot’s axis has multiple sensors that provide signals for robot control, such
as position, velocity, impedance and torque controls, and they are used as a protective
function of the robot. The sensors that the axis contains are:

e Axis range sensors: they ensure that the axis range is adhered to. The range of
motion of each axis is shown in Table [3.1]

e Torque sensors: they ensure that axis loads are not exceeded. In particular, this
type of sensors makes the KUKA sensible and quick reacting. Thanks to the torque
sensors, the LBR iiwa can detect contact immediately and consequently reduce its
level of force and speed instantly.

e Temperature sensors: they monitor the thermal limit values of the electronics. When
the thermal limit values are exceeded, the KUKA immediately shuts down.

The kinematic system of the KUKA is of redundant design due to its seven axes and
consists of the following principal components as shown in Figure [3.2

e 1 indicates the two-axis in-line wrist with two motors located in the last two-axis,
A6 and AT.

e 2 represents the joint modules. They consist of an aluminum structure. Moreover,
they contain and link the drive units to one another.

e 3 is the base frame, which is the base of the robot.

<« A7

Figure 3.2: Main assemblies and robot axes. Axes are enumerated from Al to A7 [6].

26

KUKA Nominal Modified DH Parameters
Link | theta [deg] | d [m] a [m] | alpha [deg]
1 0 0.340 0 0

2 0 0 0 -90

3 0 0.400 0 90

4 0 0 0 90

5 0 0.400 0 -90

6 0 0 0 -90

7 0 0.126+0.035 | O 90

Table 3.2: The nominal DH parameters of the KUKA iiwa LBR 7R 800

In particular, the redundant design guarantees great flexibility of the manipulator’s
use, since it allows the robot to reach inaccessible places by selecting the most favorable
configuration, given the position and orientation of the end effector.

The kinematic model of the KUKA is based on the mathematical model described in
Subsection [2.1.3] and makes use of the parameters illustrated in Subsection The
theoretical values of the variables are presented in Table [3:2] where 0.035 m indicates the
offset length between the KUKA last flange and the electrical end-effector mounted on the
top of the robot (Figure : this height is included in link 7.

Dimensions: mm

250
31,5 H7 m
B} <
|
L ! 1 o
| S (O BOTIAD
X b Fx 0 © 0,02[A[B]
| [{s)
@) 3 @) & =\ i]
° CNE
[o - gy M
i
| @
®
I 7S
RS-
EIGIWEE Ix MS 16

Figure 3.3: Dimensions, media flange electrical. The media flange is represented with axis
7 in the zero position. The symbol Xm depicts the position of the locating element in the
zero position [7]

27

o
e .:.) o
° @
a
-3
.“ o

- @ - avatsys (o
(] (-]

Figure 3.4: The Atracsys fusionTrack 500

3.2 Atracsys fusionTrack 500

The fusionTrack 500 is a passive and active, real-time optical pose-tracking system
specially designed to detect and track reflective spheres, disks and IR-LEDs in real-time
within a specified volume [8]. In particular, the reflective spheres or disk are called active
fiducials, while the IR-LEDs are referred to as passive fiducials. The Atracsys system is
represented in Figure [3:4]

The device is composed of two cameras that can observe passive or/and active fiducials
simultaneously and it uses triangulation to calculate their positions with high precision (90
pm RMS at distances up to 2 m, as shown in Figure . Since the Atracsys can detect
more fiducials at the same time, it can also track fiducials placed in a specific geometry.
These fiducials are attached to a marker: therefore the system can determine the marker’s
position and orientation. A marker is an object on which geometry of fiducials is affixed.
However, the fiducials on the marker must have an asymmetrical arrangement, because
the fusionTrack recognizes the fiducials only if the distances between them are different
from one another. Hence, each distance between two fiducials is unique and can be easily
recognized by the two-cameras device, thus the marker pose based on this geometry is
determined. The Atracsys can detect simultaneously up to sixteen markers, each marker
containing 4 fiducials.

01
.| § 5 mm g
o 3| 3 "”'"mnus >
§ 3’ 08 mm
3 Ras i

W 7He
—

Figure 3.5: The fusionTrack tracking volume [§]

28

O L .. J©

Figure 3.6: The coordinates system, front view (modified image from [g])

O
O

The next lines explain how the fusionTrack tracks the fiducials [§]:
e The Atracsys illuminators emit infrared (IR) light.

e The IR light reflects on passive markers or triggers active markers which then emit
IR light.

e The fusionTrack tracks the reflected or emitted IR light and transmits the information
to the host computer to which is connected and on which the Atracsys Software
Development Kit (SDK) is installed or the libraries of the SDK are used.

e The host computer extracts the position of each detected spot, computes the 3D po-
sition of each detected source, then tries to match them to known marker geometries.

e The information is displayed to the user, with status information on each piece of
data, allowing the user to do additional processing (display, filtering, collection, etc.).

Pose data of the markers are reported with respect to the Atracsys right-handed co-
ordinates system, placed by default in the optical center of the left camera, as shown in
Figure Moreover, in order to be tracked by the fusionTrack device, the markers must
lie inside the working volume illustrated in Figure 3.5

Furthermore, the SDK provides libraries and applications for tracking the markers
according to the needs of the tasks it has to perform. Then, these libraries and applications
are used to develop a ROS package in order to make possible the exchange of pose data
between the Atracsys and the algorithm that processes the data. This will be explained in
the following chapter (Chapter .

3.3 ROS: Robot Operating System

The Robot Operating System (ROS) is an open-source and flexible software framework
for writing complex robot applications. ROS provides a hardware abstraction layer, where
developers can build robotics programs without worrying about the underlying hardware
[9]. Moreover, it offers tools and libraries for obtaining, building, writing and running
codes, as well as visualizing and processing robot data, across different robotics platforms
and multiple computers, to encourage collaborative program development [19].

ROS philosophy can be summarized in three main principles:

e ROS is a peer-to-peer framework: it allows the individual programs to communicate
with each other in different ways, synchronously or asynchronously, according to the
needs.

e [t is multi-language: ROS can be implemented in different programming languages,
such as C, C++, Python, and Matlab.

e Program sharing: one of ROS goals is to make the coding part as easy as possible
by sharing fundamental codes.

29

The core of the ROS framework is a message-passing middleware in which processes,
called nodes, can communicate and exchange data with each other even when running from
different machines [9]. Nodes are capable of sending and receiving messages from every
node. To understand how the communication between nodes takes place, some definitions
have to be described:

¢ ROS Master: ROS Master manages the communication between nodes. Every
node registers at startup with the master.

e ROS Node: a ROS node is a process that performs computation. It can be indi-
vidually computed, managed and executed. Moreover, it is organized in packages.

e Topic: nodes are combined into a graph and communicate with one another using
streaming of topics. Topics are streams of messages which the nodes send to each
other. In particular, nodes can publish and subscribe to a topic. Normally there is
one node that operates as a publisher and multiple nodes that act as subscribers.
The publisher sends a message on the topic by publishing the message, while the
subscriber receives the message published on the topic by listening to this topic. All
nodes could work as both publishers and subscribers at once.

e ROS Package: The software in ROS is mainly organized in ROS packages. A
package consists of ROS nodes, datasets, and configuration files, organized in a single
module [9].

An example of how the communication works on ROS can be seen in Figure[3.7] There
are two nodes, one named talker and the other listener. The talker node publishes a
string message containing "Hello World" into a topic called /talker, and the listener node
subscribes to this topic. The communication is divided into stages, that are marked as (1),
(2) and (3).

(1) Before running any codes, the ROS master must be started. After it has been
initialized, it waits for nodes. When the talker node starts running, it first connects
to the master and then it begins to exchange the publishing topic details, such as
topic name and message type, with the master. The master maintains tables of the
publisher connected to it. Whenever a publisher’s details change, the table updates
automatically [9].

(2) When the listener node is started, it connects to the master and exchanges the details
of the node, such as the topic it subscribes to and its message type. The master also
maintains a table of subscribers, similar to the publisher.

(3) When there are a publisher and a subscriber that employ the same specific topic,
the master node exchanges the publisher details with the subscriber. This helps
nodes to connect and exchange data. After they have connected, there is no role
for the master. The data is not flowing through the master; instead, the nodes are
interconnected and exchange messages [9].

In conclusion, this framework is a powerful tool for robotics applications and allows
the management of different systems, such as the one used for the kinematic calibration.
During the measurement phase, the robot and the Atracsys must be used simultaneously
and ROS creates a perfect environment where each node controls a specific piece of the
equipment. For this thesis purpose, ROS must be installed and some packages creation
and use are required. The procedure to install ROS Kinetic on Ubuntu 16.04 is described
in Appendix [A]

30

ROS Master

listener

talker
node

node

/talker

[—— “Hello World” [R——————

(3)

Figure 3.7: Communication between ROS nodes using topics [9]

31

Chapter 4

A KUKA 11iwa LBR Calibration
Method

In this chapter, a method to calibrate the KUKA iiwa LBR is described in detail, based
on the techniques explained in Chapter [2 To understand the developed algorithms, the
first step aims to illustrate the ROS packages used to control the KUKA and to register
the robot’s data. Then the modeling process for the KUKA is presented and the DH
parameters used to build the kinematic model of the robot are shown. Afterward, the two
codes are depicted: the first algorithm allows the KUKA to move to a random position,
with the end-effector always turned toward the tracking system. Furthermore, it registers
the robot’s joint angles and the position of the end-effector with respect to the base frame.
The second algorithm computes the calibrated DH parameters based on the data acquired
from the measurement phase, according to the process described in Section [2.2.5 Finally,
to verify the results, a test is performed: a comparison between the data obtained from the
Atracsys and the outputs of the kinematic model with the updated parameters is done.

4.1 ROS Packages

The following two ROS packages are used to perform the measurement phase of the
calibration process.
One package is available on https://github.com/jonaitken/KUKA-IIWA-API, and allows
to move the robot’s end-effector to a specific location, and it can also read the manipulator’s
joint angles. The other package is needed to acquire the robot’s data from the Atracsys.
In particular, it is based on the Atracsys SDK program that observes a particular marker
and computes its position and orientation.

4.1.1 ROS-integrated API for the KUKA LBR iiwa collaborative robot
by Sheffield Robotics

Sheffield Robotics presents an Application Programming Interface (API) for the KUKA
ilwa LBR. The API is designed to be simple and to interface to ROS to provide an easy
platform development [10].

The KUKA iiwa LBR is provided in an industrial robot system, that consists of the
following components (Figure :

e Manipulator;
e KUKA Sunrise Cabinet robot controller;

e KUKA smartPAD control panel;

32

https://github.com/jonaitken/KUKA-IIWA-API

Figure 4.1: Overview of robot system [6]. 1 is the connecting cable to the smartPAD,

2 is the KUKA smartPAD control panel, 3 is the manipulator, 4 is the connecting cable
to KUKA Sunrise Cabinet robot controller, and 5 is the KUKA Sunrise Cabinet robot

controller

e Connecting cables;

o Software;
e Options and acessories, such as the media electric flange.

The API architecture focuses on breaking out the functionality that would normally be
available within the KUKA Sunrise controller run on the Smartpad [10]. It aims to extend

the capability of the KUKA, using the structure shown in Figure [£.2]

The KUKA daemon is a program in Java, included in the Sunrise operating system
of the KUKA Sunrise Cabinet robot controller, that handles some generic and controlling
tasks, such as collision detection. This program is necessary to move the KUKA safely
while using the library developed by Sheffield Robotics. It is provided by the GitHub

—
T TCP Connection <(=-===: »
ROS Messages <=-===-3

KUKA Sunrise Cabinet
Sunrise OS

Figure 4.2: Components of the KUKA ROS interface architecture [10]

-
"h.

e mim——

33

Topic Data Structure
JOINT POSITION Joint Position [A1, A2, A3, A4, A5, A6, A7, AS]

time-stamp

TOOL POSITION Tool Position [x, y, z, A, B, C| time-stamp

TOOL FORCE ToolForce |Fy, F,, F.| time-stamp

TOOL TORQUE ToolTorque |73, T, 7| time-stamp

JOINT ACCELERATION JointAcceleration [a1,as, as, ag,a5,a6, a7| time-
stamp

JOINT VELOCITY JointVelocity [v1, va, v3, vy, v5, Vg, v7| time-stamp

IS COMPLIANCE isCompliance bool time-stamp

IS JOINT COMPLIANCE isCompliance bool time-stamp

IS COLLISION isCollision bool time-stamp

IS JOINT OUT OF RANGE | isJointOutOfRange bool time-stamp

OPERATION MODE OperationMode type time-stamp

Table 4.1: Kuka LBR iiwa data available through ROS topics

repository on which the package can be found. A ROS KUKA node is also implemented in
the Python language: it is a ROS node that plays as an intermediate between the KUKA
daemon and the ROS master. It subscribes to the topics containing commands published
by other ROS nodes and passes them to the KUKA daemon. In the same way, it receives
status information of the KUKA from the Java application and publishes it on specific
topics.

By running the ROS node on an external pc, rather than KUKA Sunrise OS, it is
possible to preserve robot’s safety protocols, because no modification of the KUKA Sunrise
Cabinet is required. Essentially more features are enhanced and added instead of altered.

The main topics and data structure of ROS messages are shown in Table

The "Joint Position" topic is a string array, containing the joint positions expressed in
degrees. It is also possible to obtain the tool position through the "Tool position" topic: it
gives a string array in which z, y and z are the end-effector cartesian positions expressed in
millimeters, and A, B and C are the values of the orientation angles in degrees. Moreover,
the torque and force values measured at the robot’s tool are available. The former is
expressed in Newton and the latter in Newton meter. Axis-specif joint acceleration and
velocity are published in ”Joint acceleration” and ”Joint Velocity” topics respectively.

In addition to the standard position control mode, it is possible to use either the

Cartesian Impedance or Joint Impedance control modes. In the "Is Compliance" topic a
boolean variable is published. When the value is true, the robot is in Cartesian Impedance
control mode. Similarly, in the "Is Joint Compliance" topic, a string array containing a
boolean value is published. Also in this case, if the value is true, the robot is operating in
Joint Impedance control mode.
Boolean values are also published in both "Is Collision" and "Is Joint Out of Range" topics.
The first one contains a true value if a collision is detected, the second one publishes a true
value when any joint is out of range. Finally, in the "Operation Mode" topic, it is possible
to read in which mode the robot is working. The possible operating modes are manual
reduced velocity or T1 mode, manual high velocity or T2 mode and automatic mode or
AUT.

As described before, nodes can send several commands to the robot through the ROS
KUKA node. Hence, from the nodes side, the command string must be published in the
"Kuka Command" topic. The string array is sent to the robot with a specific codification
for each command that can be found in Table [4.21

34

Command Description Command Structure

SET JOINT VELOCITY setJointVelocity v

SET JOINT ACCELERATION setJointAcceleration a

SET JOINT JERK setJointJerk j

SET CARTESIAN VELOCITY setCartesianVelocity v

SET JOINT POSITION setPosition A1 A2 A3 A4 A5 A6 A7

SET CARTESIAN POSITION setPositionXYZABC x y z A B C ptp/lin
MOVE END EFFECTOR WITH

POINT TO POINT MOTION MoveXYZABC xyz A B C
MOVE END-EFFECTOR WITH
CIRCULAR MOTION
BETWEEN TWO POINTS

MoveCirc 1 y1 21 A1 B1 C4
T2 Y2 22 AQ BQ Cz

SET COMPLIANCE setCompliance x y z A B C

RESET COMPLIANCE resetCompliance

RESET COLLISION resetCollision

FORCE STOP forceStop

SET WORKSPACE setWorkspace Tmin Ymin Zmin Tmaz Ymaz Zmaz

Table 4.2: Main Commands for KUKA LBR robot

The interface allows setting the joint velocity, as well as the acceleration, and the tool’s
velocity. It can also set the robot position by defining the target position in both joint
and cartesian space. In particular, for the cartesian space, the end-effector can be moved
from one point to another using either linear, point-to-point or circular motions. In the
linear movement, the end-effector is moved linearly, while in the point-to-point one, the
tool follows the fastest path to reach the new position.

The KUKA robot can be operated in two different control types: Position Control
mode and Compliance Control mode. The first mode aims to execute the programmed
path with maximum position accuracy and without path deviation. In the second one,
the controller is modeled on a virtual spring-damper system. With the "Set Compliance"
command, the robot compliance mode with a particular stiffness in each x, y, z, A, B, C is
activated. To deactivate the robot compliance mode, the "Reset Compliance" command
must be sent.

The "Reset Collision" command resets a collision if any collision has been detected,
while the "Force Stop" command acts as an emergency stop, hence it stops the robot and
removes all the robot motion queue waiting to be executed. Finally, the "Set Workspace"
command defines a cubic end-effector workspace boundaries.

For this thesis purpose, the KUKA is operated in automatic mode and makes use of
the position control mode. The KUKA is moved to random positions inside a predefined
workspace: then, each position is recorded by the Atracsys. To use the commands and top-
ics explained above, a package is built inside the ROS workspace according to Appendix
[A] with the name kuka. Inside its src folder, a folder with the name python is gener-
ated. This folder contains the ROS KUKA node and the library provided by the Sheffield
Robotics. Moreover, the KUKA daemon program must be uploaded to the KUKA Sunrise
operating system and selected on the smartPAD so that the communication between the
ROS KUKA node and the KUKA can take place.

35

ot

10

15

20

4.1.2 The Atracsys ROS Package

The Atracsys package aims to define a ROS node for the Atracsys fusionTrack 500. As
mentioned in Section the Atracsys is a tracking system able to define the positions and
orientations of multiple markers with respect to its coordinates frame. The node, based on
the libraries and a simple program provided by the Atracsys SDK, detects a marker and
publishes its pose on a topic, which has the same marker name and geometry ID, a unique
number that labels this marker. As a result, if more markers need to be tracked, more
topics with the markers’ names and IDs can be seen: in particular, each topic contains the
cartesian positions and quaternion of the respective marker.

In order to use the Atracsys, the device must be installed on the computer (see Ap-
pendix and the geometry of the desired marker to be tracked has to be defined. The
marker geometry must be uploaded in the geometry folder of the package. It is a .ini file
and it comes in the following form:

; Example of geometry file

count=3
id=3

x=0.000000
y=26.870000
z=3.000000

x=-23.690000
=-22.770000
z=3.000000

x=26.120000
y=-27.140000
z=3.000000

=0.000000
=0.000000
0.

X
y
z=0.000000

The name of the .ini file is the name of the geometry. The [geometry] section contains
count and id. Count defines the number of fiducials used on the marker (at least 3, at most
6). Id is the unique number arbitrary given to the geometry. Then the cartesian position
of each fiducial with respect to an arbitrary pivot must be determined. The Atracsys
computes the position and orientation of the marker reference frame centered on the pivot,
in accordance with the fiducials’ positions.

The Atracsys node is written in C++ and uses the libraries provided by the Atrac-
sys SDK. Moreover, it makes use of some functionalities defined in the sample program
"stereo2 AcquisitionBasic" provided by the SKD such as initializing the fusionTrack, up-
loading the geometry, tracking the geometry and closing the driver connection.

First the ROS node is initialized: its name is "AtracsysTrackingNode". Then the name
of the publisher is defined in the following line:

std::vector<ros::Publisher> Atrapublisher_;

Atrapublisher_ publishes a vector of messages.
Afterward, the device is initialized and the geometry is loaded. In particular, the loading
geometry process provides a string, which contains the name of the geometry and its id, as
an output. In the case of multiple markers to detect, the loading process outputs a vector of
strings, containing the names and the IDs of the markers. The vector of strings is associated

36

with the publisher, so that Atrapublisher_ publishes a geometry_msgs: :PoseStamped
message-type on topics that have the same names and IDs of the markers to be tracked.
This procedure can be seen in the following code:

std::vector<string> topics_ = tmp->loadGeometries();

for(auto i=0;i<topics_.size();i++){
Atrapublisher_.push_back(n.advertise<geometry_msgs::PoseStamped>
(topics_[i],1));

X

Then the tracking phase is started. In this phase, the attributes of the marker are de-
rived, such as position, orientation, and the ID. Then, the PoseStamped geometry message
is defined. In particular, the message presents the x, y and z coordinates of the marker,
as well as its orientation, expressed by the quaternion. Later, the algorithm checks the ID
of the tracked marker and publishes the message in the topic that contains this ID. This
is an important step: in case more than one marker needs to be tracked, the algorithm
guarantees that the acquired data is published in the right topic.

Moreover, the node stops publishing on the generated topic if the marker is not seen by
the camera. When the node is shut down, the algorithm allows to stop the tracking phase
and end the connection with the device.

This package is fundamental for the measurement phase in the calibration process. It
allows tracking markers that can be fixed on the robot, in order to acquire data for the
error minimization between the outputs of the theoretical kinematic model and the real
robot positions.

4.2 The KUKA iiwa LBR Model

Since the measurement process aims to track the end-effector poses, and since the
Atracsys can track multiple geometries of fiducials, it is needed to design markers to be
attached to the robot. Three markers are created: two for the robot base and one for the
KUKA'’s end-effector. The platforms can be seen in Figure 4.3

The two base markers are used to track the base frame of the robot, while the third
marker is used to track the robot end-effector. The base markers are placed on the base
screws as shown in Figure [£.4] The end-effector is positioned on the top of the media
electric flange and fixed through M6 screws (Figure . Reflective spheres are attached
to the markers through designed supports available on the platforms.

As stated in Subsection [£.1.2] the geometries of the markers have to be uploaded in the
package’s geometry folder in the .ini files form, such that the Atracsys can track them.
In particular, the .ini files contain the positions and orientations of the markers reference
frames to be detected. These frames of reference are computed from the CAD drawings of
the markers.

For the measurement phase, only one of the base supports is used, depending on the
position of the camera and one particular base support the camera can track. Atracsys can
detect the reference frames with respect to its coordinate system, but the pose of the end-
effector marker needs to be measured with respect to the coordinate system of one of the
base platforms. Therefore, the data of the reference frames acquired by the Atracsys are
processed in order to obtain the relative position of the end-effector marker with respect to
the base supports, as explained in the following sections. As a result, the acquired robot
data represents the position and orientation of the end-effector marker with respect to the
base platform. In order to compare the pose of the end-effector support with the outputs of
the direct kinematics, the manipulator’s theoretical model must contain the two additional
reference frames given by the base and the end-effector markers. The reference frames of

37

(a) Left base marker (b) Right base marker

(c) End-effector marker

Figure 4.3: The designed markers for the KUKA iiwa LBR

38

Figure 4.4: Base markers

the base supports are made coincident with the robot base frame, while the origin of the
end-effector platform coordinate system is translated of bmm with respect to the flange
reference frame. Therefore, to make the comparison between data and model consistent,
the only modification in the nominal model is made on link 7, on which 5mm are added
to represent the end-effector support reference frame. The used kinematic model for the
KUKA calibration method is represented in Table

4.3 movingKuka Algorithm

movingKuka is a Matlab algorithm that allows the implementation of the open-loop
measurement phase. In this program, the robot is randomly moved inside a predefined
workspace: then, each end-effector pose is tracked by the camera and saved in an Excel
file. Later, these measures are used to update the parameter estimates using the least-

KUKA Nominal Modified DH Parameters

Link | theta [deg] | d [m] a [m] | alpha [deg]
0 0 0.340 0 0

1 0 0 0 -90

2 0 0.400 0 90

3 0 0 0 90

4 0 0.400 0 -90

5 0 0 0 -90

6 0 0.126+0.035+0.005 | 0 90

Table 4.3: The Craig parameters for the KUKA kinematic chain

39

Figure 4.5: End-effector marker

square identification technique described in Subsection 2.2.5]
The algorithm consists of four parts:

o Initialization;

e Definition of end-effector position and orientation;
o Safety features;

e Measurement process;

The first step is to initialize ROS inside the algorithm. As explained in Section [4.1]
the algorithm makes use of two ROS packages to complete the measurement process. In
particular, the publisher to send the commands to the robot, the subscribers to listen to
the base and end-effector supports topics, and the subscriber to read the robot joint angles
are set. Then the variable n is specified: it represents the desired number of poses the
robot will execute. Afterward, the robot is moved into a chosen starting position, to easily
allow the robot reaching the first pose. The joint angles of the starting position are 0 0 0
—90 0 0 0 degrees.

The second step is to generate a random position of the end-effector inside a defined
cubic volume. The tool position has to respect the limits of the KUKA working envelope,
which is represented in the surface between the two circles in Figure Then, the end-
effector orientation must be computed. In particular, the orientation is set such that the
KUKA always faces the camera. If the camera is moved while the code is running, the
algorithm is able to determine the position of the camera and to compute the orientation
of the end-effector: the KUKA can dynamically follow the Atracsys. Therefore, the KUKA
is always turned towards the tracking system, allowing the Atracsys to have a clear view
of the marker attached to the end-effector. To reach this purpose, the base support topic

40

840 Dimension: mm
T8
=
o
=]
<
=3
Q
(32] @ [
- — N
-~ ~
o
<
©
o
©
%)
/
o}
Tel
N

Figure 4.6: KUKA working envelope [6]

must be subscribed to. The platform used in this experiment is the right one, that can be
positioned on the KUKA base screws in two ways: either on the side of the robot base,
which is the position is designed for, or on the front of the robot. The two positions can
be seen in Figure [4.7]

In the nominal position, the reference frame of the base support is coincident with the
robot’s base one; in the second case, the reference frame is rotated of —90 degrees with
respect to the robot base coordinates system. The base topic is subscribed ten times. If
the messages published on the base marker topic are empty, i.e the Atracsys cannot track
the base marker, the robot moves to the starting position. The same happens if the ten
checked messages are equal to each other, hence the marker is not visible.

So the algorithm waits until the base marker is visible, such that it can compute the orien-
tation of the end-effector. If the data carried by the messages are different to each other,
they are saved in two matrices: one containing ten positions of the base support with re-
spect to the Atracsys coordinates system, and the other containing ten quaternion vectors.
Then, the mean values of the positions and the quaternions are computed. The resulting
quaternion is transformed into a rotation matrix through the Matlab function quat2rotm,
and it is put together with the mean position: the outcome is a transformation matrix T}, ,
that expresses the homogeneous transformation between the Atracsys reference frame and
the base platform one.

To compute the end-effector orientation, it is desired to know the position and orientation
of the Atracsys with respect to the base marker, whose coordinates frame must be coin-
cident with the robot’s reference system. If the marker is positioned on the robot’s base
side, T, represents also the transformation matrix from the Atracsys to the robot’s base
frame, therefore T, = T{. In case the marker is located on the front of the KUKA, an
additional rotation of 90 degrees around the Z axis of the marker base reference frame must
be post-multiplied to T¢ , in order to represent the transformation between the Atracsys
and KUKA’s base frame, hence T{ = T? Rot(90, Z).

To represent the Atracsys with respect to the robot’s base frame, the inverse of the trans-
formation matrix from the Atracsys frame to the robot base one must be calculated, as

expressed in Equation (4.1)):
RYT (Rt
T = (T9)! = (4.1)
o” 1

41

(a) Marker on side or nominal position (b) Marker in front or moved position

Figure 4.7: Positions of the right base support

where —(Rg)Tt‘g represents the position of the Atracsys with respect to the base frame.
Since the end-effector and the Atracsys positions are known with respect to the robot’s
base coordinates system, it is possible to compute the distance of the camera with respect
the tool in the base reference frame using the following subtraction (Equation :

p." =t.—tor (4.2)

The unit vector v is calculated from pZ¥. The representation of v in the base reference
frame is shown in Figure [4.§
v is described by two angles: beta that represents the angle that the vector creates with
the Z axis, and alpha, the angle between the vector projection on the XY plane (vxy) and
the X axis, in particular (Equation (4.3])):
v

beta = arccos(T%:\/zﬁ) and alpha = arctan(;*) (4.3)
where v,, v, and v, are the components of the vector respectively along X, Y and Z axes.
To position the end-effector towards the camera, the Z axis must be coincident with the

0.7 —] EF-CAMERA (v)

0.6

Figure 4.8: Representation of the unit vector v in the base frame coordinates system

42

03| EF-CAMERA (v)

(a) Flirst rotation

(b) Second rotation

Figure 4.9: Needed rotations to compute the end-effector orientation. In red the rotated
reference frame

unit vector v. So first a rotation around the Z axis is computed, such that the X axis
lies along the vector projection vyy (Figure 4.9(a)). Then, a rotation around the Y axis
of the rotated reference frame is performed. As a result, the Z axis is positioned along the

v direction (Figure 4.9(b)|). Equation (4.4) shows the computed rotation process:
R = Rot(alpha, Z)Rot(beta,Y) (4.4)

If the randomly generated position of the end-effector is out of the limits established
by the KUKA working envelope, a new end-effector pose is generated. Otherwise, the
transformation matrix T; containing the R rotation matrix, obtained by Equation ,
and the end-effector position can be computed. T; is used to calculate the joint angles
to locate the end-effector in the desired position and orientation. In order to reach this
purpose, the inverse kinematics function gen_InverseKinematics offered by Safeea and
Pedro Neto in their KUKA Sunrise Toolbox is used. The position and orientation definition
process is illustrated by the flowchart presented in Figure

43

Wait until
base is
visible

Start

Initialization

Generate random

tool position |«
(x.y.z)
¥
Subscribe to the
base marker topic

Is the base
visible?

Compute trasformation matrix from
camera RF to the base marker RF and
its inverse

i

Compute the distance between camera
and tool position

¥

Compute unit vector of the distance
and its angles

]

Compute the rotation matrix R such
that Z axis = unit vector

v

ool position
within the KUKA
workspace?
yes

no

Obtain trasformation matrix T,
containing (x,y,z) and R

/

1

Compute inverse kinematics and obtain joint angles

¥
Stop and go to
safety process

44

Figure 4.10: Position and orientation definition process. RF stands for reference frame
and EF stands for end-effector

The third step aims to add safety features to the algorithm. In particular:

e It checks if the joint angles obtained from the inverse kinematics function are within
the robot’s joint limits (Table [3.1). If not so, a new random position is generated;

It checks if the direct kinematics, based on the robot nominal model and using
the joint angles obtained from the inverse kinematics, coincides with the randomly
generated position. If the difference between the translation vector, obtained from
the direct kinematics, and the random position vector is greater than a given error
tolerance of 1mm, a new position is randomly generated;

It computes the direct kinematics for links 3 and 4 and checks their z positions, such
that the robot does not hit the table it is fixed to while moving. If their heights are
less than 100mm, a new random position is generated.

If these conditions are fulfilled, the joint angles resulted from the inverse kinematics are
used to move the robot. The flowchart representing this third step is shown in Figure[4.11

Joint angles obtained
from the inverse
kinematics

Joint angles
within the
motion range?

Back to position
and orientation
definition

A

Compute direct
kinematics (DK)

DK - random
position vectors
within the threshold?

no

Compute DK for links
3 and 4

Are both
heights >
100mm?

/ Keep joint angles /

Stop and go to

measurement
process

Figure 4.11: Safety process

The fourth and final step allows the robot to move to the desired joint angles and to
record the end-effector pose. First, the joint angles are sent to the KUKA through the
command "setPosition". Then the algorithm waits five seconds to allow the robot to move
to the desired position. After this break, a condition is inserted to check whether the robot
has reached the desired joint angles or not. To do it, a subscriber to read the robot’s
joint angles is used. If the joints are not in the desired position, the algorithm waits five
seconds.

Later, the subscriber to the end-effector marker is employed. As said in Section
the Atracsys node stops publishing on the markers topics if the platforms are not visible.
Therefore the algorithm checks the last fifteen messages published on the end-effector
marker topic. If the last messages are empty so that the marker is not visible, or the data
are the same, hence the last fifteen messages refer to a previous recording, a new pose is
generated.

In case the end-effector marker is visible, the data are processed in the same way are
processed the base marker data: hence, the transformation matrix from the Atracsys
reference frame to the end-effector marker one is obtained. This matrix is named T%.
Then the position and orientation of the end-effector marker frame with respect to the

45

base platform coordinates system are computed (Equation (4.5)):
T%F = TZTaEF (4.5)

The transformation matrix T% r is saved inside an Excel file. Finally, the robot joint angles
are again read by the subscriber and saved inside a Text file. Later, these angles are used
for the identification algorithm. The measurement process flowchart is shown in Figure
412

Checked
joint angles

Send angles to the
robot and wait 5
seconds

Subscribe to robot
joint angles

Wait 5 seconds

Subscribe to EF
marker topic

¥ yes

Back to position
and orientation
definition

s EF marker
seen by the
camera?

no

Obtain trasformation matrix between
base and EF and save it in a Excel file

Subscribe to robot joint
angles and save the robot
angles in a text file

!

Figure 4.12: Measurement process

The last three steps of the algorithm are repeated for n poses. In the end, the program
will give as outputs n Excel files, each containing the transformation matrix of the recorded
pose, and a Text file, that includes a matrix of n rows and 7 columns, where 7 represents
the joints of the robot.

46

4.4 robotCalibration Algorithm

robotCalibration is an algorithm developed in Matlab used to minimize the error be-
tween the real pose of the end-effector and the theoretical one, computed from the nominal
kinematic model. As a result, better estimates of the robot parameters are obtained. This
algorithm is based on the identification process described in Subsection [2.2.5]

First, the symbolic parameters that will be used in the algorithm are initialized. Then,
a matrix containing all the nominal parameters of the robot, as shown in Table is
defined. This matrix is reshaped into a (28 x 1) vector called DHpar. After, the vector
of the parameters that have to be calibrated is set: it contains all the offset lengths, link
lengths and twist angles of the robot. The joint angles are not included because the joint
sensors’ readings are considered precise. In the same way, a symbolic matrix containing all
the symbolic parameters of the robot is defined and reshaped into a vector. Also, in this
case, a vector of the symbolic parameters that will be iterated is set. Afterward, the direct
kinematics is performed based on the symbolic matrix and the symbolic end-effector pose
vector is derived. To perform the calibration, the data obtained from the measurement
process must be included in the algorithm. Therefore the joint angles are imported and
saved into a (n X 7) matrix, where n represents the number of executed poses. The same is
done to the transformation matrices whose poses are saved in a matrix named X,,,¢5. After
defining a threshold of 1-107% and a Aerr greater than the threshold, the calibration
algorithm can start. As long as Aerr is greater than the threshold the following steps
have to be performed:

e For the number of executed poses n, the first seven elements of the DHpar vector
must be equal to the n-row of the matrix containing the imported joint angles. Then
the symbolic values of the DH parameters are substitued with the values of DHpar
in the end-effector symbolic vector. The numeric end-effector is saved into a matrix
called X,,o;n. Moreover, the Jacobian matrix is computed and saved in a matrix
referred to as phi.

e The error between the matrix containing the measured poses and the matrix con-
taining the theoretical poses is computed: AX = X,pes — Xnom

e The Aerr is calculated through the line of code:

dCP = pinv(phi)*deltaX

where dCP is Aerr and pinv is the Matlab function for calculating the pseudo-inverse
of a matrix.

e Then the new DH parameters are updated through the lines:

prevCP = DHpar(a);
CP=prevCP+dCP;
DHpar (a) = CP;

where DHpar(a) with a = [8:28] represents the vector of parameters that needed
to be iterated.

The parameters updating is repeated until all the elements of dCP are lower than the
threshold.

In the next chapter, three tests are computed and three different sets of parameters
are obtained. The first test is performed with the base marker in the nominal position and
makes use of an high number of poses. The second and third tests are executed using the
base marker on the front of the KUKA: the first two tests make use of an high numbers of
poses, while the second employs a low number of poses.

47

10

Chapter 5

Experiments and Results

5.1 Experiments

The calibration method illustrated in Chapter [is applied to the KUKA iiwa LBR to
improve its positioning accuracy. Three tests are performed to verify the validity of this
process.

The first test consists of locating the right base marker on its nominal position, i.e. on
the right side of the robot’s base, and moving the end-effector of 100 poses inside a cubic
volume defined as the following lines of code:

oo

Random x y z values
Random x value [mm]
-100; %lower x limit
= 800; Supper x limit
(b_1-a_1).*rand(1,1) + a_1;
Random y value [mm]

= -400; 2%lower y limit

= 800; Supper y limit
(b_2-a_2).*xrand(1,1) + a_2;
andom z value [mm]

= 200; $lower z 1imit

= 800; Supper z limit
(b_3-a_3).*xrand(1,1) + a_3;

oo ol

o M T o
N = =

NN

N o p o< T W
X

|
nh w w

The second test is performed positioning the right base marker on the front of the robot
and allows to move the manipulator of 100 poses inside the same workspace of the first
test.

The last and third test is executed using the base marker in front of the robot and
aims to move the robot’s tool of 50 poses inside a smaller volume, defined as z = [20, 550],
y = [—260, 300] and z = [500, 800], all expressed in millimeters.

The sets of poses executed by the robot in these three tests are shown in Figure [5.1
the points in yellow are the completed positions in the first test, the ones in blue represent
the poses executed in the second test and the ones in red describe the poses performed
in the third test. Moreover, as stated in Section [£.3] in these tests the KUKA is always
directed towards the Atracsys camera, such that the tracking system has a clear view of
the marker attached to the end-effector, as shown in Figure [5.2]

The reason the base marker is positioned in two different ways is that it is hard to find
an Atracsys’ location in which the camera can easily track the base marker in the nominal
setting. As a consequence, the marker positioned on the front of the robot can slightly
move, due to manufacturing reasons: the base marker was designed to be fixed on the side
of the KUKA’s base.

48

Executed Poses

o
o
o o 00 o
o
0.7 — o b ol
o
o o % o
2 o,
o
o
58 e o ferte)
7 o o o
o = o
o
o o 9
o 8 ° o
) 2]
0.5 — o
o o o
o
o o % 5
N o o
e o
o
0.4 —] ° o
o Q %
o
o o
o %
9o
03— 9 o
o} o
o
o o o 00
o
02 — o
o ©
o
o
01 =L~ o — 04
e / 0.3
01 — e 02
0 e /< 0.1
02 e s = 0
B3 4 i e :
04 A s = 08

Figure 5.1: Executed poses

M

Figure 5.2: KUKA’s end-effector towards the camera

5.2 Results

The sets of data that are acquired from the three experiments are used to find the real
DH parameters of the robot.

For the first test, the obtained DH parameters are shown in Table The nominal
poses obtained from the updated parameters (in red) and the measured poses tracked
by the Atracsys (in blue) trends are shown in Appendix [C| in Figure To verify the
accuracy of the coefficients, the root-mean-square errors between the poses measured by
the camera and the outputs of the updated model are computed. The average value of

49

these errors is 0.0018 m. The trends of the root-mean-square errors and the average value

are shown in Figure in Appendix D]

First test: updated DH parameters

Link | theta [rad] | d [m] | a [m] | alpha [rad]
1 0 0.3374 | 0.0221 | 0.0009

2 0 0.0007 | -0.0003 | -1.5698

3 0 0.4005 | 0.0009 | 1.5708

4 0 0.0030 | 0.0066 | 1.5670

5 0 0.3967 | 0.0024 | -1.5779

6 0 0.0005 | 0.0031 | -1.5658

7 0 0.1227 | -0.0034 | 1.5707

Table 5.1: Updated parameters for the the first test

The updated DH parameters of the second test are shown in Table 5.2l The trends
of the poses with updated DH parameters and measured poses are presented in Appendix
[C]in Figure while the trends of the root-mean-square errors between measured poses
and nominal ones are illustrated in Appendix [D]in Figure The average value of these

errors is 0.0023 m.

Second test: updated DH parameters

Link | theta [rad] | d [m] | a [m] | alpha [rad]
1 0 0.3360 | 0.0196 | 0.0061

2 0 0.0005 | -0.0009 | -1.5653

3 0 0.4018 | 0.0035 | 1.5665

4 0 0.0041 | 0.0059 | 1.5812

5 0 0.3977 | 0.0050 | -1.5808

6 0 -0.0033 | 0.0038 | -1.5965

7 0 0.1269 | -0.0019 | 1.5713

Table 5.2: Updated parameters for the second test

Finally, the updated DH parameters for the last test are shown in Table[5.3] The trends
of the measured and nominal poses are shown in Figure in Appendix [C| The average

error is 0.0032 m and the trends of the root-mean-square errors are shown in Figure [D.3
included in Appendix [D]

Third test: updated DH parameters

Link | theta [rad] | d [m] | a [m] alpha [rad]
1 0 0.3257 | -0.0123 | 0.0217

2 0 0.0006 | 0.0014 | -1.5690

3 0 0.4008 | -0.0004 | 1.5732

4 0 0.0324 | 0.0030 | 1.5913

5 0 0.4037 | -0.0053 | -1.6346

6 0 0.0042 | 0.0045 | -1.5385

7 0 0.1502 | -0.0059 | 1.5701

Table 5.3: Updated parameters for the third test

A comparison between the first and second tests should be considered. The DH param-
eters of the second experiment are slightly different from the coefficients obtained in the
first one, although the selected workspaces, as well as the executed poses, are the same.

50

This is due to the marker base position, as stated in Section [5.1} The base marker is
designed to be placed on the side of the robot, in such a way that the base is still when
the robot is operated. When the base is positioned on the front, it can slightly move while
the robot is running. Therefore, errors occur during the measurement phase and the DH
parameters computation is consequently affected. Moreover, also the noise presented on
the measured data, joint compliance and link deflections, that depend on the position of
the robot, can lead to different parameter values.

A difference between the second test coefficients and the third ones can be observed.
The number of poses that the robot executes is different in the two experiments. The result
is that the average error of the second test is lower than the one in the third test. Therefore,
the larger is the number of poses executed by the robot, the higher is the accuracy of the
kinematic algorithm: the error between the real pose and the nominal one using calibrated
DH parameters is reduced.

A final remark can be made regarding the volume used to generate random positions.
The higher is the space investigated by the robot, the higher is the accuracy. This depends
not only on the definition of the workspace boundaries, in which the random positions are
generated, but also on the tracking volume of the Atracsys: the farther the position of
the camera, the higher is its tracking volume. Increasing the robot workspace improves
the precision of the kinematic calibration. The best way to reach accuracy is to make the
robot move in a big workspace with a large amount of poses.

The described kinematic method is developed for any tool attached to the robot’s
flange: the tool must have at least three markers on the top and its height has to be
included in the last link. Anytime the tool is changed, the kinematic process should be
repeated to keep a high level of accuracy.

o1

Chapter 6

Conclusion

6.1 Conclusions

In this work, a strong calibration procedure is presented and discussed, in order to
increase the positioning accuracy of a seven-revolute joints manipulator KUKA iiwa LBR
7R 800. First, a theoretical background needed to have a better understanding of the
kinematic calibration is described. The general mathematical model used to represent a
manipulator is reported, along with the Denavit-Hartemberg conventions and parameters
used in this thesis. Several methods for a level 2 calibration are investigated and discussed.
On the basis of this study, an open-loop measurement method is adopted to obtain the
end-effector pose data that, thereafter, are elaborated with an ordinary least-square tech-
nique. In order to obtain an higher accuracy, ROS packages are developed and used to
manage the KUKA robot and the Atracsys tracking system on the ROS framework. In
specific, the movingKuka algorithm defines a node that coordinates the arm manipulator
and the camera in the measurement phase, while the robotCalibration program provides
the identication process to obtain a realistic representative model of the KUKA. Both al-
gorithms are developed in Matlab. The acquired results are considered positive, therefore
the proposed calibration method is valid.

6.2 Recommendations

In this section, some recommendations are described to perform the measurement pro-
cess:

1. It is better to position the base marker on its nominal position to reduce the move-
ment of the marker while the KUKA is running. This ensures more accurate com-
putation of the DH parameters.

2. The experiment should be performed in an environment with minimum light intensity
and reflection. Light and its reflection can affect the tracking markers phase, making
it difficult to measure the position and orientation of the markers.

3. The KUKA can run autonomously, and therefore run overnight without oversight.
This allow a very long measurement phase to run, hence higher number of poses can
be saved to make more precise the calibration method. However, it is recommended
to always check the system for safety reasons.

92

Appendix A

First Appendix: How to Install ROS

To install ROS on Ubuntu 16.04, it is needed to navigate on the ROS website (http:
//www.ros.org/) and install the desired ROS distribution, that is, for this thesis purpouse,
ROS Kinetic.

A.1 Getting Started with the Installation

ROS is going to be installed on Ubuntu from the ROS package repository. In order to
use ROS package repository, the Ubuntu one’s options have to be configured. The first step
is to go to the "Software & Updates" folder and enable all the Ubuntu repositories. Then,
ROS packages have to be allowed from the ROS repository server called packages.ros.org
through the following command:

$ sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu
$(1sb_release-sc main" > /etc/apt/sources.list.d/ros-latest.list'

When a new repository is added to Ubuntu, the keys should be added to validate the
origin of the packages, so the next command has to be typed:

$ sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80 --
recv-key 0xBO1FA116

After these steps ROS is ready to be installed.

A.2 Installing ROS

The ROS packages should be installed on Ubuntu. First of all, the list of packages on
Ubuntu has to be updated. In order to do this, the following command is written in the
terminal:

$ sudo apt-get update

After updating the list, the entire ROS package is installed using the following com-
mand:

$ sudo apt-get install ros-kinetic-desktop-full

This line allows installing ROS Kinetic on Ubuntu. To conclude the installation rosdep
tool has to be initialized: it allows to install dependencies of packages that will be compiled.
These commands must be run on the terminal:

$ sudo rosdep init
$ rosdep update

93

http://www.ros.org/
http://www.ros.org/

A.3 Getting rosinstall

The source trees for particular ROS packages have to be installed through a ROS
command-line tool, called rosinstall. The tool is based on Python and can be installed
through the command line:

$ sudo apt-get install python-rosinstall

Since ROS is completely installed, it is needed to check if the installation was successful.
Open a terminal and type the roscore command:

$ roscore
Then open another terminal and run the turtlesim command:
$ rosrun turtlesim turtlesim_node

If the installation is proper, the turtle is displayed, as shown in Figure

Figure A.1: The turtlesim mode [9]

A.4 Setting ROS Workspace

The last step is to create a ROS workspace, which is a place where ROS packages are
kept. To build the ROS workspace the next instructions must be followed.

e Open a terminal and type:
$ mkdir -p ~/catkin_ws/src

This command allows to create an empty workspace folder named catkin_ws, and
another one called src, that will contain the ROS packages.

e Open a terminal in the src folder, or go inside the folder through this line:

$ cd ~/catkin_ws/src

54

e Initialize the catkin workspace in the src folder by:
$ catkin_init_workspace

e After the initialization, the packages can be built inside the workspace using the
following commands:

$ cd ~/catkin_ws/
$ catkin_make

The workspace can be built even without any packages.

e Three folders can be found inside catkin_ws: build, devel and src.

A.5 Creating a ROS Package

The cakin packages are created in order to allow the communication between nodes.
This step is crucial for enabling the conversation between the Atracsys, the KUKA and
the algorithm that processes and saves the data. The next steps explain how to generate
a catkin package.

e Go to the src folder inside the catkin_ws one by writing:
$ cd ~/catkin_ws/
e The command catkin_create_pkg is used to make a new package:
$ catkin_create_pkg <package_name> std_msgs rospy roscpp

e Therefore the package folder with the name you given is generated inside src. It
contains two files: package.xml and CMakeLists.txt

e The new package has to be built inside the ROS workspace through the commands:

$ cd ~/catkin_ws/
$ catkin_make

e To add the workspace to the ROS environment, the generated setup file must be
sourced:

$ source devel/setup.bash

When a package is built inside a workspace, it is better to use the command catkin build
instead of catkin_make. In order to migrate from catkin_make to catkin build, the next
steps must be followed:

e Go inside catkin_ws folder and open a terminal. Then write:

$ rm -rf build/ devel/ install/ src/CMakelists.txt
$ cd src catkin_init_workspace

e Then the catkin build command can be used:
$ catkin build
e Remember to source the package every time a change is done:

$ source devel/setup.bash

95

Appendix B

Second Appendix: Installation of the
Atracsys fusionTrack 500

The fusionTrack uses a Gigabit Ethernet 1000BASE-T (IEEE 802.3ab) interface to
communicate with the computer. The fusionTrack factory setting uses 172.17.1.7 as the
static IP address. The fusionTrack must be properly powered and connected to a PC [§].

The Ethernet adapter of the host PC must be configured as indicated in Table

Address assignment

Static

IP address

172.17.1.100

Subnet mask

255.255.255.0

Jumbo frame

Enabled (at least 8500 bytes for maximal performance)

Table B.1: Default network settings [§]

o6

Appendix C

Third Appendix: Poses Trends

C.1 First Test

Figure C.1: Trends of nominal and measured poses in the first test

o7

Second Test

x value iteration

nominal
measured

y value iteration

L L L L L L L L L 1

10 20 30 40 50 60 70 80 920 100
Number of poses

50 60
Number of poses

70 80

z value iteration

920 100

L L L L L

30 40 50 60 70
Number of poses

80 90 100

Figure C.2: Trends of nominal and measured poses in the second test

o8

C.3 Third Test

x value iteration

nominal
measured

|
0 5 10 15 20 25 30 35 40 45 50
Number of poses

y value iteration 2z value iteration
03 0.8 T T T T T T T T
ool 0.75
0.7
0.1
0.65
E of £
= N
0.6
0.1
0.55
02 05k
03 L L I I L I I L L] 0.45 I L L I I L L I L
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Number of poses Number of poses

Figure C.3: Trends of nominal and measured poses in the third test

99

Appendix D

Fourth Appendix: Errors Trends

D.1 First Test

L P\
\
\\
- \
| /‘ /(\ /\ \ |
i I H /\1 \‘\M(/ \”
\\ AL T 1 I R
i / | /‘ \/’” | /\ | | |
i ‘ L N |
N i \/\f I ’o", .
ETRIEE / e AR el
L1/ R Y T A T |
I /‘ in Al w/ N \\/\‘ , \ || | ,\N\ V
ALY Wi [APA U NV | v
/ !

Figure D.1: First test root-mean-square and average errors

60

D.2 Second Test

7 x10° RMS error

AL L L
IRIA VAR R |

l

0 10 20 30 40 50 60 70 80 90 100

Number of poses

Figure D.2: Second test root-mean-square and average errors

61

D.3 Third Test

RMS error

0.025

g 0.015
|
\
|
\
|
A A
YA A
: - A ¥
5 | | I | | I | | 4/ J
0 5 0 15 20 25 30 35 40 45 50
Number of poses

Figure D.3: Third test root-mean-square and average errors

62

Bibliography

1]

2]

3]

[4]

[5]

(6]

17l

8]

19]

[10]

[11]

[12]

[13]

[14]

[15]

B. Bona, “Robotics,” published in PoliTO Robotics course, 3 2017. [Online|. Available:
http://www.ladispe.polito.it/corsi/meccatronica/01PEEQW /2016-17 /slides.html

B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Modelling, Planning and
Control, ser. Advanced Textbooks in Control and Signal Processing. Springer London,
2010. |Online|. Available: https://books.google.co.uk/books?id=jPCAFmE-logC

J. J. Craig, Introduction to Robotics: Mechanics and Control, 2nd ed. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 1989.

M. R. Driels and W. E. Swayze, “Automated partial pose measurement system for
manipulator calibration experiments,” Robotics and Automation, IEEE Transactions
on, vol. 10, pp. 430 — 440, 09 1994.

B. W. Mooring, Z. Roth, and M. R. Driels, “Fundamentals of manipulator calibration,”
pp. V-VIII, 4-5, 01 1991.

K. R. GmbH, LBR #wa, Tth ed., KUKA Laboratories GmbH, Zugspitzstrafe 140
D-86165 Augsburg Germany, 5 2016.

——, Media Flange, 7th ed., KUKA Laboratories GmbH, Zugspitzstrafe 140 D-86165
Augsburg Germany, 2 2016.

A. LLC, fusionTrack 500 User Manual, 4th ed., Atracsys LLC, Route du Verney 20
1070 Puidoux Switzerland, 4 2019.

L. Joseph, ROS Robotics Project, 1st ed. Livery Place 35 Livery Street Birmingham
B3 2PB, UK: Packt Publishing Ltd, 3 2017.

J. L. Saeid Mokaram, Jonathan M. Aitken, ROS-integrated API for the KUKA LBR
1twa collaborative robot, 1st ed., University of Sheffield, Western Bank, Sheffield S10
2TN, 3 2017.

D. Deblaise and P. Maurine, “Effective geometrical calibration of a delta parallel robot
used in neurosurgery,” in 2005 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Aug 2005, pp. 1313-1318.

K. Nancy, “Kinematic calibration of a serial robotic arm using a linear movement
constraint,” Master’s thesis, Carleton University, 8 2016.

A. Chennakesava Reddy, “Difference between denavit - hartenberg (d-h) classical and
modified conventions for forward kinematics of robots with case study,” 12 2014.

J. Denavit and R. Hartenberg, “A kinematic notation for lower-pair mechanisms,”
ASME Journal of Applied Mechanics, vol. 22, pp. 215-221, 01 1955.

H. Lipkin, “A note on denavit-hartenberg notation in robotics,” 01 2005.

63

http://www.ladispe.polito.it/corsi/meccatronica/01PEEQW/2016-17/slides.html
https://books.google.co.uk/books?id=jPCAFmE-logC

[16] J. H. Jang, S. H. Kim, and Y. K. Kwak, “Calibration of geometric and non-geometric
errors of an industrial robot,” Robotica, vol. 19, no. 3, p. 311-321, 2001.

[17] Kuka iiwa lbr official website. [Online|. Available: https://www.kuka.com/en-de/
products/robot-systems/industrial-robots /1br-iiwa

[18] Kuka iiwa lbr 7 r800 robotworx. [Online]. Available: |https://www.robots.com/
robots /1br-iiwa-7-r800

[19] Robot operating system (ros) official website. [Online|. Available: http://wiki.ros.
org/ROS /Introduction

64

https://www.kuka.com/en-de/products/robot-systems/industrial-robots/lbr-iiwa
https://www.kuka.com/en-de/products/robot-systems/industrial-robots/lbr-iiwa
https://www.robots.com/robots/lbr-iiwa-7-r800
https://www.robots.com/robots/lbr-iiwa-7-r800
http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/ROS/Introduction

Acknowledgements

Al termine di questo importante percorso, volevo ringraziare tutti coloro che mi hanno
supportato (e sopportato) in questi anni di studio.

Un generoso ringraziamento al mio relatore Prof. Marcello Chiaberge e al mio supervisor
Dott. Riccardo Secoli, che mi hanno seguito in questi mesi, offrendomi le nozioni necessarie
per portare a termine il progetto. Li ringrazio soprattutto per la loro disponibilita e
pazienza che hanno dimostrato nei miei confronti.

Ringrazio i ricercatori del MiM Lab, che hanno reso piacevoli le giornate lavorative, che
mi hanno sostenuto durante i momenti piu difficili e hanno contribuito a dare un valore
aggiunto al lavoro svolto. Un grazie in particolare ad Alex, Sukhi, Arnau, Stephen, Sam,
Marlene, Eloise, He, Xue, Tom, Silvia, Abdul, Ferdinando, Vani, Hisham e Fabio.

Grazie ai miei compagni di corso Fabio, Andrea, Filippo e Davide, che oltre ad essere
colleghi e compagni di studio, sono ottimi amici. Mi hanno regalato momenti di leggerezza
e risate, facendo scorrrere veloce le giornate di lezione e di sessione.

Grazie anche a Giacomo, Mickael, Zakaria, Laurent, Alexis, Joshua, Enni, Luca e Johana,
che hanno fatto lo stesso durante i mesi di Erasmus in Francia e mi hanno accompagnato
nella mia prima esperienza all’estero.

Un grazie alle amiche che hanno vissuto con me a Londra, Faduma, Chiara e Keyla.
Ringrazio soprattutto Faduma per le giornate post-lavorative e i weekend, il sostegno
morale che mi ha dato e per aver coltivato questa splendida amicizia con me.

Gragzie ai miei migliori amici, che per quanto lontani in questo ultimo anno, hanno sempre
fatto in modo di essere nella mia vita, venendomi a trovare, chiamandomi e facendosi
sentire. Grazie ai miei amici "simbiotici" Alma e Nick, che si fanno sempre in quattro per
starmi accanto. Grazie di cuore a Isabella che ha sempre un po’ di spazio per me. Grazie
a Marta per avermi regalato questa bellissima amicizia. Grazie ad Elena, Mattia e Irene,
i miei compagni e vicini di casa di una vita. Grazie a Stefano che mi ha dato momenti di
allegria.

Un caloroso grazie alla mia famiglia e soprattutto ai miei genitori, che oltre ad avermi
dato il sostegno economico per completare i miei studi, si sono sempre sacrificati perché io
potessi ricevere sempre il meglio. Senza di voi nulla poteva accadere. Siete e sarete sempre
il pilone portante della mia vita, e sar6 sempre grata per tutto quello che mi avete dato.
Siete tutto.

E infine, grazie a Fabio, che mi ha sempre spronato a dare il meglio di me stessa. Che
mi é stato accanto a Torino, a Limoges e a Londra. Che mi ha spinta oltre ai miei limiti.
Grazie per avermi reso una persona migliore.

Kinematic Calibration of a Seven Revolute Joints Serial Manipulator

Coordinator: Student:
Prof. Marcello Chiaberge Jennifer Chimento

	Introduction
	Motivations
	Objectives
	Contributions
	Thesis Overview

	Theory and Literature Review
	Kinematic Chains
	Types of Kinematic Chains
	Direct Kinematics
	Denavit–Hartenberg Convention
	Denavit–Hartenberg Parameters
	Difference between DH classical and modified conventions

	Calibration
	Geometric and Nongeometric Errors
	Levels of Calibration
	The Calibration Process
	Measurement
	Identification

	The System
	KUKA iiwa LBR
	Atracsys fusionTrack 500
	ROS: Robot Operating System

	A KUKA iiwa LBR Calibration Method
	ROS Packages
	ROS-integrated API for the KUKA LBR iiwa collaborative robot by Sheffield Robotics
	The Atracsys ROS Package

	The KUKA iiwa LBR Model
	movingKuka Algorithm
	robotCalibration Algorithm

	Experiments and Results
	Experiments
	Results

	Conclusion
	Conclusions
	Recommendations

	First Appendix: How to Install ROS
	Getting Started with the Installation
	Installing ROS
	Getting rosinstall
	Setting ROS Workspace
	Creating a ROS Package

	Second Appendix: Installation of the Atracsys fusionTrack 500
	Third Appendix: Poses Trends
	First Test
	Second Test
	Third Test

	Fourth Appendix: Errors Trends
	First Test
	Second Test
	Third Test

	Bibliography

