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Abstract

Unmanned Aerial Vehicles (UAVs) represent an ideal platform for testing advanced
control techniques. In recent years, many researches based on modern control
theories and design of UAV autopilot algorithms have been completed. Most of
the modern autopilots incorporate controller algorithms to meet the always more
demanding requirements of flight maneuvers and mission accomplishment. How-
ever, due to the complexity and the computational need of the control algorithms,
most of the commercial autopilots are based on Proportional Derivative Integrative
(PID) philosophy, in which trial and error methods are used for the definition of
the control gains.

In this thesis, a PID controller system is proposed and it is compared with a
variable structure method (that is a Sliding Mode Controller (SMC)). The con-
trollers are designed and implemented for quadrotor indoor applications, facing the
main challenges of this particular application. The overall structure of the proposed
controllers is composed by two loops: (i) an outer loop related to the slow dynamics
of the UAV, i.e. position, and (ii) an inner loop related to the fast dynamics of
the system, i.e. attitude and angular velocities. Firstly, a nonlinear mathematical
model of the plant is derived, starting from the well-known equations of motions
for an aircraft. Then, the two controllers are designed and tested in a suitable sim-
ulation environment reproducing as close as possible a real-world situation so that
testing can lead to a meaningful outcome. In this regard, a model of the sensors, an
Extended Kalman Filter (EKF) and a Trajectory Planner are included in the sim-
ulation environment, which are the main elements of a quadrotor. Different types
of trajectories are tested, starting from a hover maneuver and waypoints-following
paths. Test results show better performance using the SMC, which is able to fol-
low the proposed trajectories accurately and satisfying the given time constraints,
while the PID exhibits larger position errors due to a slower inner loop resulting
in slower response times in attitude variations. Furthermore, inertial parameters
are varied within a limited range to mimic the presence of different payloads. The
quadrotor autopilot is based on the Pixhawk 2.1 Cube and it is able of flying indoor
thanks to an infrared-based motion capture sensor (the Otus Tracker), replacing
the GPS as it is highly unreliable for indoor applications. Future work includes
Software-In-The-Loop testing using code generation supported by the “Embedded
coder support package for PX4 autopilot” in Matlab, and eventually code deploy-
ment on the target hardware to carry out Processor-In-The-Loop testing.
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Chapter 1

Introduction

An Unmanned Aerial Vehicle is an aircraft able to fly without a crew. It uses rapidly
spinning propellers to push the air downwards and to perform maneuvers. There
are several types of chassis available [6] with four, six, eight or more propellers. One
of the most used ones is the quadrotor, with four equally spaced propellers, paired
two-by-two, linked to a central body by means of arms in which sensors and flight
computers are accommodated. Quadrotors – and in general multirotors – repre-
sent a complex and challenging machine when it has to be controlled. Due to the
way actuators are arranged, quadrotors are severely under-actuated. This means
that, in order to move in the three-dimensional space in all 6 Degrees of Freedom
(DoF), rotational and translational motions have to be coupled, leading to a highly
nonlinear dynamics. Furthermore, the absence of any kind of friction coming from
outside the quadrotor system except for the air itself forces the quadrotor to con-
tinuously correct its position and attitude; otherwise it would drift away.
Nonetheless, a multirotor features various advantages:

• HOVERING AND MANEUVERABILITY: a multirotor do not need constant
motion to fly, unlike a fixed-wing solution, and it can make sharper turns.

• VERTICAL TAKE-OFF AND LANDING: thanks to the particular motor
placement, a multirotor can take off and land without the need of moving in
the horizontal plane.

• CHEAP AND MECHANICALLY SIMPLE: a multirotor have a limited num-
ber of moving parts, the rest of its structure is basically a rigid chassis.

On the other hand, it has some critical drawbacks:

• LIMITED BATTERY LIFE: power consumption is generally high; usually the
battery can last up to 20min.

• DIFFICULT TO BE CONTROLLED: as stated previously, the multirotor is
an under-actuated system with a nonlinear dynamics.
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• LOW PAYLOAD CAPABILITY: multirotors are not able to lift large pay-
loads, which greatly degrade battery life.

In recent times, multirotors acquired more and more attention, due to the lower-
ing of the electronic components prices and the simultaneous increasing of computa-
tion performance, and it became widely used in both military and civil applications.
UAVs can be employed in scenarios precluded to human beings – because lethal or
dangerous environments are involved, or costs cannot be handled. For this rea-
son they are exploited for exploration, search and rescue missions, monitoring and
diagnosing, delivery services – both commercial and medical, but even for hobby
purposes such as aerial photography. Nowadays, small drones can be found off-the-
shelf in every electronic store. In academics and research, the quadrotor is an ideal
platform for testing advance control techniques.
This work is focused on a particular application: UAVs for GPS-denied environ-
ments. Thanks to their hover capability and agility, multirotors can easily navigate
through narrow spaces. This widened the array of tasks a small UAVs can ful-
fill. They can be used in purely industrial applications, e.g. inside warehouses to
monitor and inspect shelves and/or packages, or for emergency situations, such as
exploration of damaged and precarious buildings, e.g. after an earthquake or a fire,
or even for natural exploration, e.g. inside inaccessible caves. The most important
challenge for what concerns indoor usage is the multirotor localization. When the
GPS coverage is not ensured due to thick obstacles, basic on-board sensors cannot
provide an accurate and reliable position. For this reason, specific additional sen-
sors must be mounted on the UAV. According to their complexity, position sensors
can even provide obstacle avoidance.

State of the art

In literature, quadrotors are studied thoroughly in each of their aspects. This work
is focused on the control part. A great variety of controllers have been designed
and implemented in quadrotors, both linear and nonlinear, and comparisons have
been carried out. Although the quadrotor dynamics is nonlinear, several linear
controllers have been exploited due to their simplicity. [21] designs and simulates
a classical PID controller tuned using the well-known Ziegler-Nichols method in
order to stabilize the quadrotor attitude; in [8] a similar PID is also deployed
on hardware and tested using a suitable test bench constraining the translational
Degrees-of-Freedom. With this method, he showed that a complete PID controller
is needed for real world applications as the steady-state error is not negligible. Op-
timized methods based on a linear quadrotor dynamics are exploited, showing good
results: in [7] an optimized PID is used for improving disturbance rejection; or LQ-
based methods such as in [8] where two methods of solving the Riccati equation are
employed, or also [19] which design two LQR controllers managed through a Gain
Scheduling (GS) logic, the first acting when the quadrotor is far from the reference
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trajectory and the second when tracking. In general, linear methods can achieve
stability of the system around the chosen equilibrium point, but they are not able
to consider all the system behaviors due to simplifications in their design process:
as a result they tend to be slower and less reactive than nonlinear methods.
On the other hand, nonlinear controllers have been employed for the same purpose.
GS controllers are exploited to take into account the quadrotor working condition
– to monitor the hardware and tackle possible faults as in [20] – and to improve
overall performance according to the type and current state of the maneuvers [19].
Back-stepping based methods [17] have been designed too and when implemented
proved to achieve better performance compared their linear counterpart. Lastly,
more complex methods such as feedback linearization and sliding mode control [10,
14] have been successfully implemented. For example, [22] performs a feedback
linearization on the attitude dynamics of a quadrotor and drives it with a simpler
LQR, showing promising results for this configuration. In [27], the system is de-
composed into a nested structure taking into consideration both inner and outer
loop, controlling both position and attitude of the UAV by means of the feedback
linearization technique. As for Sliding Mode Controllers, it is always character-
ized by a faster response and less oscillations compared to classical approaches,
but blemished by high-frequency oscillations, called chattering. This phenomenon,
due to its negative impact, is addressed by many authors in literature, by find-
ing a suitable control law that restrain the oscillations or relying on Higher-Order
Sliding Mode Controllers (HOSMC), in which the discontinuity in the command
law is moved into higher order derivatives [11]. Usually authors when dealing with
control design, do not focus on an existing quadrotor, relying on the well-known
dynamic equations of the quadrotor. Nevertheless, others focused their work on
a particular commercial or customized to some degree quadrotors, taking care of
the deployment of the control algorithm onto the real-world prototype [28, 13]. In
particular, [13] adopts the same autopilot framework of this work, designing a PID
controller for a commercial quadrotor and eventually deploying it on the Pixhawk
1 Autopilot running the PX4 Flight Stack.
Nonetheless, multirotors can be customized at any level. Various universities and
research centers focused on different aspects of the single or the group of multiro-
tors [15], from the UAV shape and the control strategy, to the used algorithms –
involving Machine Learning or image recognition algorithms – and software archi-
tectures, e.g. Cloud Computing [16]. Cloud computing addresses a critical problem
in the management of one or more agents: it allows to move algorithms which need
high computational resources from the on-board computer to a high-performance
computer using a high-speed low-latency connection. These powerful computers
usually are in charge to execute heavy computer vision algorithms or to coordi-
nate the swarm. These last algorithms use network theory and multi-agent systems
theory to organize and govern the swarm. Furthermore, some authors introduced
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innovation on the multirotor shape, so that the drone can reconfigure itself accord-
ing to the scenario completely changing its shape, as in [12] where a foldable drone
reconfigures the position of the propellers to access narrow spaces, or relying on
additional Degrees of Freedom, as in [18], where tilt rotors has been used to allow
more agile movements and additional flight modes.

In this thesis, a prototype quadrotor is built and taken as reference for the
modeling, design and simulation of the entire system. Data used in simulation is
experimentally evaluated from the prototype. The controller block is designed such
that it can undergo the code generation process without any substantial modifica-
tions in its structure. The simulation environment is created taking as reference
the software structure running on the used PX4 Flight Stack (Figure 1.1). This is
a novel approach when designing and tuning a controller that has to be deployed
on a Pixhawk-based hardware running PX4 Flight Stack. The advantage given by
this choice is that the simulation environment replicates more accurately the frame-
work in which the controller will work, allowing to take into account the effects of
the on-board sensors and the on-board Extended Kalman Filter (EKF) directly in
Model-In-The-Loop (MIL) simulation. Two solutions are compared: the first one
features a SMC in the inner loop driving both the quadrotor attitude and altitude,
whereas in the outer loop a simple PD controller is present to control the North-East
position; the second one uses a PID controller for the attitude and altitude control
and a customized PDD controller – a PD with a derivative action on the derivative
channel. Both controllers are characterized by novel features: the SMC makes use
of quaternions to describe the quadrotor attitude, while the PID solution needed
a customization to enhance its nominal performance to make it comparable to the
SMC solution. Furthermore, the influence of an additional payload is analyzed,
testing both controllers in non-nominal scenarios. Lastly, an experimental test is
carried out to characterize the employed propellers thrust in function of the duty
cycle of the square wave generated by the autopilot to drive the brushless motors.

Sensors

A critical part when designing multirotors and in general machines that have to or
need to interact with the surrounding or with their peers or humans, is the sensors
choice and integration. Due to their intrinsic dynamical complexity, multirotors
need different sensors to navigate effectively. UAVs are equipped with MEMS sen-
sors to save weight and power consumption; usually accelerometres are used to
measure the body acceleration, gyroscopes for body angular velocity, magnetome-
tres for the heading, barometres for the altitude and a Global Positioning System
(GPS) for the position. The critical datum among those listed is the position. In
the case of indoor applications – or more in general for GPS-denied applications –
the challenge is to determine the position of the UAV accurately. Both on-board
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Figure 1.1: Default PX4 High-Level software architecture

and external sensor are exploited. On-board sensors include web-cams, stereoscopic
cameras, lidars and Time-of-Flight (ToF) cameras paired with a suitable Simultane-
ous Localization and Mapping (SLAM) algorithm; conversely external sensors rely
on an external infrastructure that interacts with an on-board device. A widely-used
system is the Optitrack [1], which tracks the movement of passive spherical compo-
nents mounted on the multirotor using several high-performance infra-red cameras.

11



Introduction

In this work, the cheaper Otus Tracker is exploited (section 2.5), an active on-board
sensor, intercepting by means of photo-diode the infra-red beam generated by two
external base stations.

1.1 Outline
This work is organized as follows:

• Chapter 2 shows the working principle of a quadrotor, addressing the prob-
lem of an under-actuated system. Then, it introduces the basic mathematical
notions for the derivation of the quadrotor dynamical model and for the con-
trollers design, considering both Euler angles and quaternions to describe the
angular quantities. Lastly, a brief description of the prototype quadrotor is
present, focusing on its inertial properties, the on-board autopilot (the Pix-
hawk 2.1 Cube) and companion computer (the Raspberry Pi 3B) and on the
sensors used in this particular indoor application.

• Chapter 3 treats the theory and the design of the two controller architectures.
First, the typical overall control structure of a quadrotor is presented, then the
PID solution is described showing the inner loop and outer loop controllers
structures. Lastly, SMC controller theory is introduced and the command law
is derived for the attitude control (in the inner loop) and the structure of the
outer loop is presented. This chapter describes what is inside the “Controller”
block in the simulation model described in the following chapter, addressing
the controllers design problem.

• Chapter 4 describes the ad hoc simulation environment analyzing each block
and providing the basic theoretical notions when needed. The Trajectory
Planner, the controller, the plant, its sensors and the Extended Kalman Filter
block are described and the numerical value of their main parameters used
during simulations are reported. The problem of a too slow outer loop in
the PID solution is addressed, justifying the exploited final outer loop PDD
structure. Then, a section about evaluation of the thrust curve is included,
useful to describe the actuation part included in the plant block. Eventually,
simulation results are reported and commented for different patterns. Lastly,
the influence of an additional payload is investigated. This chapter highlights
the differences between the linear solution and the SMC controller, showing
again how PID is limited in the response speed.

• Chapter 5 summarizes the main points and results of this thesis and a proposal
about future works is presented, related to the deployment and to the coding
aspect.
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Chapter 2

Mathematical model

In this section, preliminary mathematical notions and basic notions of the quadro-
tor are presented. First, theoretical notions about reference frames and spatial
transformations are recalled, then the mathematical model of the quadrotor is de-
rived and described in State-Space representation. Lastly, the prototype of the
quadrotor used in this work is briefly described.

2.1 Quadrotor working principle
In this section, the conventions and the reference frames used in this work are
presented with explicit reference to the quadrotor.

Reference frames

In this work, the North-East-Down (NED) reference frame is used. To describe
the motion of the quadrotor, two reference frame are exploited (Figure 2.1): one is
fixed, called inertial or NED in which the “Down” arrow points toward the center
of the Earth; the other is centered in the quadrotor Center of Gravity (CoG), called
body reference frame.

Quadrotor flight mechanisms

Two configurations are available for a quadrotor: an X (cross) configuration, which
maximizes the moments generated by the motor thrust, and a + (plus) configura-
tions (Figure 2.2). In this work, the X configuration is used, and the propellers are
numbered as in Figure 2.2b. Propeller 1 and 2 spin counter clockwise while 3 and
4 spin clockwise. The spin direction is critical since it counter balances the torque
produced by the spinning propellers, preventing the drone from rotating around its
Down (z) axis.
As previously stated, the quadrotor is under-actuated, so translational motion is
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Mathematical model

Figure 2.1: The used reference frames

(a) + configuration (b) X configuration

Figure 2.2: Different types of configuration

strictly coupled with rotational motion. This means that for the quadrotor to
move forward, it has to tilt forward, counterbalancing the gravity effect. The same
happens for lateral movements. In particular:

• to move forward a rotation around negative East axis is needed (Figure 2.3a);

• to move sideways a rotation around positive North axis is needed (Fig-
ure 2.3b);

• to move upwards the four propellers spin such that the attitude remains null
(Figure 2.3c);

• to move around its vertical axis the propellers moving in the same direction
vary the speed simultaneously (Figure 2.3d).

14



2.2 – Kinematics

(a) Forward movement (b) Lateral movement

(c) Upward movement
(d) Yaw movement

Figure 2.3: The 4 basic maneuvers of a quadrotor

2.2 Kinematics
In the following, basic notions of change representation and reference frame rota-
tion are presented.

Reference frame transformation

In this work, both Euler angles and quaternions are used to describe the orienta-
tion of the UAV in the three-dimensional space. The former method uses three
parameters – namely the angles φ,θ and ψ; the latter uses four parameters, the

15



Mathematical model

quaternion.

Euler angles Euler angles can describe any three-dimensional rotation whith
a sequence of elementary rotation around three axes (consecutive rotation must
be around two different axes). For a better readability, the following notation is
introduced:

cos(·) = c(·) sin(·) = s(·) tan(·) = t(·)

The elementary rotations around x,y and z can be described as:

Rx =

1 0 0
0 cφ −sφ
0 sφ cφ

 Ry =

 cθ 0 sθ
0 1 0
−sθ 0 cθ

 Rz =

cψ −sψ 0
sψ cψ 0
0 0 1

 (2.1)

Multiplying them, one can obtain a certain rotation around the desired combination
of axes. In this case, to describe the orientation of the UAV a ZYX rotation is
exploited:

Rφ,θ,ψ = RNED
body =

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ + cφcψ
−sθ sφcθ cφcθ

 (2.2)

Furthermore, it is necessary to find a relationship between the Euler angles charac-
terizing the quadrotor attitude w.r.t. the inertial frame and the angular velocities
p,q and r in the body reference frame. It results that:φ̇θ̇

ψ̇

 =

1 sφtθ cφtθ
0 cφ −sφ
0 sφ

cθ

cφ
cθ


pq
r

 (2.3)

Quaternions The quaternion is an effective method to describe three-dimension
rotation with the advantage over Euler angles method of not suffering from singu-
larity, yet needing low computational power to be handled. The quaternion in this
thesis is defined as follows:

q = q0 + q1i + q2j + q3k with ijk = 1

A convenient representation is the vector representation:

q =
[
q0
q

]
(2.4)

where q =

q1
q2
q3

.
To express rotation from a certain attitude of a certain angle, the Hamilton product
is used.
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2.3 – Forces and Moments

Definition 2.2.1 (Hamilton product)
Let q and p be quaternions describing rotations. The Hamilton product ⊗
between q and p is equal to:

q⊗ p = q0p0 − q · p + q0p + p0q + q × p (2.5)

Thanks to this definition, it is possible to define an error quaternion, i.e. the
distance between the reference quaternion and the actual (estimated) quaternion:

q̃ = q̂−1 ⊗ qref (2.6)

where q̂ is the current estimated quaternion and qref is the provided reference.
Lastly, the quaternion time-derivative must be defined:

q̇ = 1
2Ωq =


0 −p −q −r
p 0 r −q
q r 0 p
r q −p 0


[
q0
q

]
(2.7)

2.3 Forces and Moments
In this sections, the mathematical model of the quadrotor is derived. In this process,
some assumptions are made in order to simplify the model and force it to a second
order ordinary differential equation (ODE). The assumptions are the following:

1. The quadrotor and all its components (i.e. propellers, motors...) are consid-
ered as rigid bodies;

2. The quadrotor center of gravity (CoG) is the origin of the body reference frame

3. The actuators are not modeled;

4. The aerodynamic forces are not considered, since they are negligible in indoor
applications;

5. The Earth is considered as flat and its rotation is negligible w.r.t. body angular
speeds.

The procedure is similar to what is done in [24].
For Newton’s second law,

FB + RB
NEDmg = m

[
dvB
dt

+ ωB × vB
]

(2.8)
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where vB is the relative velocity of the multirotor CoM w.r.t. air mass. Performing
the differentiation, one obtains:

FB

m
+ RB

NEDg = [v̇B + ωB × vB] (2.9)

where vB is defined as follows and the term ωB× can be thought as:

ωB× =

 0 −r q
r 0 −p
−q p 0

 vB =

uv
w


For Newton’s second law applied to rotating bodies:

τ =
(
dH
dt

+ ωB ×H
)

(2.10)

in which:

H = JωB =

 Jx Jxy Jxz
−Jxy Jy −Jyz
−Jxz −Jyz −Jz


pq
r

 (2.11)

Rewriting Equation 2.10 using Equation 2.11 and isolating ω̇B:

ω̇B = −J−1(ωB × (JωB)) + J−1τ (2.12)

2.4 State-Space Model

Starting from the equations presented in the previous section the quadrotor math-
ematical model can be written as a nonlinear differential equation of the form:

ẋ = f(x) + g · u (2.13)

This is convenient when dealing with control theory, and in particular when dealing
with controllers requiring the knowledge of the model (or plant) to be controlled.
As detailed in section 3.2, Equation 2.13 is exactly the specific form required to the
model by the Sliding Mode Control theory, one of the two solutions implemented
in this work.
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Let x be the vector state and u defined as:

x =



pN
pE
h
φ
θ
ψ
u
v
w
p
q
r



u =



Fx
Fy
Fz
τx
τy
τz


(2.14)

To describe the first three states, it is sufficient a conversion from the linear veloci-
ties in the body reference frame to the inertial reference frame. Using Equation 2.2
to rotate vB, one obtains: ṗNṗE

ḣ

 = RNED
body

uv
w

 (2.15)

The attitude variation in the inertial reference frame can be described starting
from the body angular velocity of the quadrotor. With reference to Equation 2.3,
it results that: φ̇θ̇

ψ̇

 =


p+ tan θ(q sinφ+ r cosφ)

q cosφ− r sinφ
1

cos θ (q sinφ+ r cosφ)

 (2.16)

Body reference frame linear acceleration is well described by Equation 2.9, which
can be rewritten isolating v̇B, solving the vector product and multiplying RNED

body

by the gravity vector:

v̇B =

 u̇v̇
ẇ

 =

 rv − qw − g sin θ + FN
m

−ru+ pw + g sinφ cos θ + FE
m

qu− pv + g cosφ cos θ + FD
m

 (2.17)

Lastly, solving Equation 2.12 introducing convenient constants ci describing inertia
properties, one obtains: ṗq̇

ṙ

 =

q(c1r + c2p) + c3τx + c4τz
prc5 − (p2 − r2)c6 + c7τy
q(c8p− c2r) + c4τx + c9τz

 (2.18)
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where:

c1 = (Jy − Jz)Jz − J2
xz

JxJz − J2
xz

c2 = (Jx − Jy + Jz)Jxz
JxJz − J2

xz

c3 = Jz
JxJz − J2

xz

c4 = Jxz
JxJz − J2

xz

c5 = Jz − Jx
Jy

c6 = Jxz
Jy

c7 = 1
Jy

c8 = (Jx − Jy)Jx + J2
xz

JxJz − J2
xz

c9 = Jx
JxJz − J2

xz

Grouping Equation 2.15, Equation 2.16, Equation 2.17 and Equation 2.18 and
rewriting them following Equation 2.13 it is possible to express the dynamical
model in state-space form, in which:

f(x) =



RNED
body

uv
w


p+ tan θ(q sinφ+ r cosφ)

q cosφ− r sinφ
1

cos θ (q sinφ+ r cosφ)
rv − qw − g sin θ

−ru+ pw + g sinφ cos θ
qu− pv + g cosφ cos θ

q(c1r + c2p)
prc5 − (p2 − r2)c6
q(c8p− c2r)



g =



0 · · · · · · · · · · · · 0
0 . . . ...
0 . . . ...
0 . . . ...
0 . . . ...
0 · · · · · · · · · · · · 0
1
m

0 · · · · · · · · · 0

0 1
m

0 · · · · · · 0

0 0 1
m

0 · · · 0
0 0 0 c3 0 c4
0 0 0 0 c7 0
0 0 0 c4 0 c9



(2.19)

2.5 DR0N3 Quadrotor
The real-world multirotor prototype whose main features and technical character-
istics are used in this work is a quadrotor based on the Pixhawk Autopilot. The
quadrotor chassis is made of four aluminum-alloy arms and a carbon fiber central
body in which hardware is located. The brushless motors are paired with 10′′ inch
carbon-fiber propellers. Also, carbon-fiber propeller protections are mounted for
safety reasons. The chassis is manufactured by MAVTech [2] (Figure 2.4). The
inertia properties are computed from the CAD model and are summarized in Ta-
ble 2.1. The Li-Po battery can guarantee up to 15min of flight time. For what
concerns the on-board equipment, DR0N3 is provided with the Pixhawk 2.1 Cube
Autopilot (Figure 2.5a) and a Raspberry Pi 3B (Figure 2.5b).
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2.5 – DR0N3 Quadrotor

Dimension Value
Mass m 1.5kg

Inerta moment Jx 0.0170kgm2

Inerta moment Jy 0.0173kgm2

Inerta moment Jz 0.0308kgm2

Propellers diameter 10′′

Table 2.1: Main characteristics of the prototype quadrotor

Figure 2.4: The real-world prototype

(a) The on-board autopilot
(b) The Raspberry Pi

Pixhawk Autopilot

The Pixhawk 2.1 is versatile autopilot, part of the Pixhawk project [3]. It is based
on the FMUv3 open hardware design and it features an ARM-based Cortex M4
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microprocessor and ST Microelectronics® components. It comes with the necessary
sensors and interfaces to fly a drone. The main characteristics (as taken from [4])
are listed here:

• PROCESSOR

– 32-bit ARM Cortex M4 core with FPU
– 168 Mhz/256 KB RAM/2 MB Flash
– 32-bit failsafe co-processor

• SENSORS

– Three redundant IMUs (accels, gyros and compass)
– InvenSense MPU9250, ICM20948 and/or ICM20648 as first and third IMU
(accel and gyro)

– ST Micro L3GD20+LSM303D or InvenSense ICM2076xx as backup IMU
(accel and gyro)

– Two redundant MS5611 barometers

• INTERFACES

– 14x PWM servo outputs (8 from IO, 6 from FMU)
– S.Bus servo output
– R/C inputs for CPPM, Spektrum / DSM and S.Bus
– Analogue / PWM RSSI input
– 5x general purpose serial ports, 2 with full flow control
– 2x I2C ports
– SPI port (un-buffered, for short cables only not recommended for use)
– 2x CAN Bus interface
– 3x Analogue inputs (3.3V and 6.6V)
– High-powered piezo buzzer driver (on expansion board)
– High-power RGB LED (I2C driver compatible connected externally only)
– Safety switch / LED
– Optional carrier board for Intel Edison

The Pixhawk Cube can support multiple flying stacks, the most used are Ardupilot
and PX4. For this particular application, PX4 is the employed firmware. The main
features of this flight stack are:
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2.5 – DR0N3 Quadrotor

• Controls many different vehicle frames/types, including aircraft (multicopters,
fixed wing aircraft and VTOLs), ground vehicles and underwater vehicles.

• Great choice of hardware for vehicle controller, sensors and other peripherals.

• Flexible and powerful flight modes and safety features.

• Runs on NuttX Real-Time OS.

• Can be freely modified and can work with generated code.

The PX4 comes with Software-In-The-Loop and Processor-In-The-Loop modules,
very useful when debugging a customized flight stack. Furthermore, it is available
a MATLAB®/Simulink® Add-on that allows to build and deploy a Simulink model
on the target hardware.

Otus Tracker

Usually, multirotors use sensors able to locate the machine w.r.t. some reference
frame. For outdoor applications, a Global Positioning System (GPS) is exploited
which can track the drone on the Earth surface. However, this solution is not
suitable for indoor application as obstacle between the GPS antenna and the satel-
lite critically degrade the tracking performance, resulting in an unreliable method.
Inside buildings, or in general in GPS-denied environments, vision-based, sound-
based and Motion Capture (MoCap) systems are exploited. The Otus Tracker
(Figure 2.6a) is a MoCap sensor mounted on the prototype quadrotor. It features
good accuracy and precision, a high-bandwidth communication and a lightweight
chassis.The Otus Tracker needs two base stations to work, part of the HTC Vive
product series (Figure 2.6b). It provides the UAV its position as well as its attitude
w.r.t. the inertial reference frame.

(a) The MoCap sensor –
the Otus Tracker (b) Base emitters for the

Otus Tracker
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Chapter 3

Design of control techniques

In this chapter the description of the control framework and the design of differ-
ent controllers is addressed. The overall structure used in this application is a
cascade controller as in Figure 3.1, in which the inner loop is related to the fast
dynamics, and produces the signals regulating the attitude and the angular veloc-
ities of the multirotor, while the outer loop is related to the slow dynamics of the
system, and tracks the desired NED position in the X-Y plane. In this work, a

Position

Controller

Attitude

Controller

Altitude

Controller

M
o
t
o
r
 
M
i
x
e
r

Pitch

Roll

Yaw

Thrust

Physical

System

Outer Loop Inner Loop

Figure 3.1: Overall control architecture

classical controller, based on a linear model of the system, and a variable structure
controller, based on the nonlinear equations of motion, are designed. The former
is a Proportional-Integral-Derivative (PID) controller in which the parameters are
found by trial and error, the latter is a First-Order Sliding Mode Controller (SMC).
Both controllers are implemented in the Inner Loop only, and they are compared in
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terms of performance and robustness against uncertainties. The initial outer loop
structure is the same for both solutions.

3.1 PID controller
The PID controller is a widely-used linear controller in which the command action
is generated taking into account the difference between a given setpoint or reference
signal and the measured output of the system, that is the error e. A complete PID
controller uses information about the error at a certain time (Proportional action
– P), its derivative (Derivative action – D) and its integral (Integral action – I) to
provide a linear feedback action to the controlled system. The general form of a
PID controller is:

u(t) = KP e(t) +KI

∫ t

0
e(t)dt+KD

de(t)

dt
(3.1)

where e(t) = r(t)−y(t). The main advantage of this type of controller is its simplicity
in design and tuning. However, when dealing with nonlinear systems as in this work,
the PID controller can show degraded performance in function of the current system
operating point, and cannot achieve optimal control. Nevertheless, in literature
various authors adopt a cascade PID controller for quadrotors.
Several approaches to PID design are exploited in literature; the main ones are
summarized in [25]. In this work, the structure shown in Figure 3.2 is exploited,
which is suitable for practical implementations. The adopted scheme differs from

Figure 3.2: Implemented PID architecture

the classical PID controller in the derivative action, which uses directly the output
of the system y in place of the error e.

3.1.1 Inner Loop
The inner loop is related to the attitude and altitude control of the quadrotor. It
generates torque commands having as input a desired attitude and a thrust having
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3.1 – PID controller

as input the desired altitude and vertical velocity. The structure of the attitude
channel is shown in Figure 3.3a, while the altitude channel is shown in Figure 3.3b.
The loop is tuned such that the output values have a physical unit of measurement:
the thrust command is in Newton [N ] and the torque command is in Newton-meters
[Nm]. In this way, the design and the tuning are more intuitive.
In order to avoid too large command values, a saturation block is included in the
controller to limit the computed force/torque. The upper and lower values are
chosen after the propellers are characterized, and they are listed in section 4.

(a) Attitude channel

(b) Altitude channel

Figure 3.3: Implemented inner loop architecture
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3.1.2 Outer Loop
The outer loop acts as a position controller. The proposed structure is presented
in Figure 3.4. The loop receives as inputs the desired xref and yref and provides
the needed attitude angles φdes and θdes to perform the maneuver and their time
derivatives φ̇des and θ̇des. However, this solution proves to be too slow in simu-

Figure 3.4: Preliminary outer loop PD architecture

lation. When tracking the velocity reference, the PD controller produces a high
overshoot and settling time and generates output signals (i.e. φdes and θdes) with
large oscillations which affect the inner loop. Thus, the controller is modified to
overcome this problem. Since the velocity channel exhibits too large oscillation, a
Derivative controller D is applied acting on the velocity error as a damper. This
solution considerably reduces the oscillations on the velocity channel (Figure 3.5).

Figure 3.5: Implemented outer loop PD architecture
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3.2 – First-Order Sliding Mode Controller

3.2 First-Order Sliding Mode Controller
Sliding Mode Control (SMC) is a class/type of Variable Structure Control (VSC)
in which states are enforced to lie on a suitable sliding surface, which satisfies the
attractiveness condition.
Definition 3.2.1

Let the (SISO) system in the affine form be:

ẋ(t) = f(x,t) + g(x,t)u(x,t) (3.2)

and consider a time-varying surface

S(t) = {s(x,t) ∈ R(n) | s(x,t) = 0} (3.3)

If the input u presents a discontinuity in s(x,t) = 0 such that:

u(x,t) =

u
+ if s(x,t) > 0
u− if s(x,t) < 0

and satisfies the attractiveness condition:

s(x,t)ṡ(x,t) < 0 (3.4)

then the control is said to be in sliding mode.

The sliding surface can be arbitrarily chosen, in general it can be a linear combi-
nation of the state variables. In this work the sliding surface proposed by [23] is
exploited:

s(x) =
(
d

dt
+ λ

)n−1
x̃ (3.5)

in which x̃ = xdes − x is the tracking error of the state x. The following conditions
must be satisfied in order to have an first-order sliding mode controller:

Condition 3.1. ṡ = 0 to enforce the system on the sliding surface s – the surface
is said to be invariant

Condition 3.2. sṡ < 0 to guide the system towards the sliding surface – the surface
is said to be attractive.

The control law structure adopted here [26] is:

u(x,t) = ueq + udis = ueq − k sign (s(x)) (3.6)

where ueq is the equivalent control when ṡ(x) = 0 and udis is the discontinuous part
of the control action.
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When the SMC is acting on the system, the state trajectory evolves in time
throughout two stages:

1. Reaching phase: the system gets closer to the sliding surface until the in-
tersection occurs;

2. Sliding phase: the system “slides” on the sliding surface.

The SMC is in general able to deliver high control performance thanks to the a
priori information about the controlled system dynamics. Furthermore, the SMC
is robust against model uncertainties and noise. Nevertheless, the design of such
a controller requires the system to be affine in the input u. Also, the command
activity of this kind of control is in general high and high frequency oscillations are
present in the command action that lead to higher power consumption and higher
actuators solicitations. This phenomenon is called chattering. Figure 3.6 shows the
evolution of the state trajectory for a two-states system highlighting the chattering
phenomenon.

Figure 3.6: Phase portrait of a Sliding Mode controlled system. Note that once
the state trajectory approaches the sliding surface (defined in 3.3), high-frequency

oscillations appear.

Lyapunov stability

To prove the stability of a candidate controller, the Lyapunov’s Direct Method is
exploited.
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Theorem 1 (Lyapunov’s Stability)
Let V(x,t) be a scalar function of the state x with continuous first order derivative.
If:

• V(x,t) is positive definite;

• V̇(x,t) is negative definite;

• V(x,t) →∞ as ‖x‖ → ∞,

then the equilibrium at the origin is globally asymptotically stable.

−20 −10 0 10 20−20

0

20
0

500

Figure 3.7: Lyapunov function

3.2.1 Inner Loop

Preliminaries

The synthesis of the controller is carried out exploiting the equations of the quadro-
tor referred to the NED fixed frame. This is done to simplify the control laws and to
match the signals the quadrotor generates. The vertical dynamics can be described
as:

ḧNED = g − cos θ cosφFz
m

(3.7)
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while the rotational dynamics around the three axis is:

φ̈ = Jy − Jz
Jx

θ̇ψ̇ + τx
Jx

θ̈ = Jz − Jx
Jy

φ̇ψ̇ + τy
Jy

ψ̈ = Jx − Jy
Jz

θ̇φ̇+ τz
Jz

(3.8)

Altitude control

Let h̃ be the tracking error of the state h, defined as:

h̃ = hdes − ĥNED (3.9)

where hdes is the desired altitude in NED fixed frame coordinates and ĥNED is the
estimated altitude. Remebering 3.5, a candidate sliding surface could be:

s(h) = ˙̃h− λalth̃ (3.10)

and its time derivative is equal to:

ṡ(h) = ¨̃h− λalt ˙̃h (3.11)

Using 3.9 and substituting 3.7 in 3.11, one obtains:

ṡ(h) = ḧdes − g + cos θ cosφFz
m

+ λ(ḣdes − ˙̂
hNED) (3.12)

For convenience ḧdes is set to zero.
Applying Condition 3.1 and Condition 3.2 by adding the discontinuous term and

solving for Fz, the resulting control law is:

Fz = m

cos θ cosφ(g − λalth̃)−Ksign(s(h)) (3.13)

where ˙̃h and h̃ are the errors on the vertical position and velocity in the inertial
frame, m the mass of the quadrotor, g the gravitational acceleration and λalt and
K positive parameters to be tuned. Note that the structure 3.6 is respected.

Stability analysis

The candidate Lyapunov function is:

V(s) = 1
2s

2
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3.2 – First-Order Sliding Mode Controller

The time derivative of the Lyapunov function is equal to:
V̇(s) = sṡ

It is easy to note that V(s) � 0 and V̇(s) ≺ 0 since
ṡ(z) = −k sign(s(z))

The discontinuous term ensures the Lyapunov stabilty.

Attitude control

Let ˙̃φ, ˙̃θ and ˙̃ψ be the tracking error of the angular velocities in the NED fixed
reference frame φ̇, θ̇ and ψ̇ respectively, defined as:

˙̃φ = φ̇des − ˙̂
φ

˙̃θ = θ̇des − ˙̂
θ

˙̃ψ = ψ̇des − ˙̂
ψ

(3.14)

where α̇des, α =

φθ
ψ

 is the desired angular speed and ˙̂α is the estimated angular

speed – in this application those signals come from the Extended Kalman Filter
(EKF) of the autopilot. Also, let q̃ be the error quaternion as defined in Equa-
tion 2.6:

q̃ =
[
q̃0
q̃

]
(3.15)

Recalling the chosen structure 3.6, the candidate sliding surface for attitude control
is:

s(φ,θ,ψ,q) =


˙̃φ
˙̃θ
˙̃ψ

+ Λq̃ =


˙̃φ
˙̃θ
˙̃ψ

+

λroll 0 0
0 λpitch 0
0 0 λyaw

 q̃ (3.16)

and its time derivative is equal to:

ṡ(φ,θ,ψ,q) =


¨̃φ
¨̃θ
¨̃ψ

+ Λ˙̃q (3.17)

where ˙̃q can be found using Equation 2.7. Using 3.14 and substituting 3.8 in 3.17,
one obtains:

ṡ =


φ̈des −

Jy − Jz
Jx

ψ̇θ̇ − τx
Jx

θ̈des −
Jz − Jx
Jy

ψ̇φ̇− τy
Jy

ψ̈des −
Jx − Jy
Jz

θ̇φ̇− τz
Jz

+ Λ(q̇des − ˙̂q) (3.18)
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Similarly as before, solving for τi and applying Condition 3.1 and Condition 3.2,
the resulting control law is:

τxτy
τz

 = −

(Jy − Jz)ψ̇θ̇
(Jz − Jx)ψ̇φ̇
(Jx − Jy)θ̇φ̇

+ Λ

Jx 0 0
0 Jy 0
0 0 Jz

 q̃ −K sign(s) (3.19)

where ˙̃φ, ˙̃θ and ˙̃ψ are the derivative of the error on the euler angles, Λ and K
positive-definite matrices of the parameters to be tuned and q̃ is the imaginary
part of the error quaternion q̃

Stability analysis

The analysis is similar to the one performed for the altitude control. The candidate
Lyapunov function is:

V(s) = 1
2sᵀ · s

The time derivative of the Lyapunov function is equal to:

V̇(s) = ṡᵀs

3.2.2 Outer Loop
The outer loop of the SMC solution is a PD controller following the architecture of
Figure 3.2. The structure is shown in Figure 3.8. It is worth noting the presence
of an another output the loop provides, that is φ̂des and θ̂des. This is needed due to
the fact that the SMC is designed so that it can accept reference values of the body
angular speed. φ̂des and θ̂des are determined simply multiplying the euler angles
and then saturating the output, as if it was a Proportional controller with gain K.

Figure 3.8: SMC outer loop PD architecture
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3.3 Motor Mixer
The motor mixer block transforms the physical values (thrust and moments) gener-
ated by the controller into the Power-Width Modulation (PWM) Duty Cycle (DC),
so that the controller can communicate with the Electronic Speed Controllers (ESC)
of the motors. The values ν of the DC used by the autopilot ranges between 1000
(minimum when armed) and 2000 (maximum). The equations relating the inputs
and the outputs are those used as default in the PX4 Firmware.
Calling R, P and Y respectively the required roll, pitch and yaw moment to track
the given reference and T the required thrust, the equations are:

ν(1) =
(−R + P − Y

2 T + T
)

1000 + idle

ν(2) =
(
R− P − Y

2 T + T
)

1000 + idle

ν(3) =
(
R + P + Y

2 T + T
)

1000 + idle

ν(4) =
(−R− P + Y

2 T + T
)

1000 + idle

where ν(i) is the DC of the ith motor and idle is the DC set when armed (usually is
equal to 1000). This type of motor mixer shows better performance than a simple
motor mixer in which the output DC is a linear combination of the required forces
and moments.
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Chapter 4

Simulation results

In this chapter, the complete model used in simulation is presented and test out-
comes are reported and analyzed. In particular, in the first part the Simulink model
is broken down and each block is commented and characterized with its most im-
portant values. Then an evaluation of the thrust curve is carried out. The second
part deals with simulation results.
Simulation are performed to tune, validate and compare the synthesized controllers
without the need to act directly on the quadrotor, leading to a significant saving
on time and material. The software used is MATLAB®/Simulink® R2019a.

To make the simulations as close as possible to the real world scenario, the
simulation model includes a model of the on-board sensors and an Extended Kalman
Filter as an observer. In addition to this, a trajectory planner is implemented to
generate complex trajectories and perform waypoint following. The overall scheme
is shown in Figure 4.1.

Figure 4.1: Simulation model

In the following, each block is quickly presented.
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Trajectory Planner

The trajectory planner is an algorithm that generates a time-dependent path given
a set of waypoints with their Times of Arrival (ToA). It imposes a trapezoidal linear
velocity profile on the segment linking two consecutive waypoints and it computes
by integration the quadrotor reference NED position as a function of time. The
maximum acceleration is set and it is equal to g

2, while the maximum velocity is
determined such that the maneuver can be completed respecting the assigned ToA.
The algorithm receives as input arguments the waypoints in the NED inertial frame
with their Time of Arrival (ToA) and the number of points between two consecutive
waypoints and gives as output the reference trajectory in the NED reference frame
and the reference time vector. Figure 4.2 shows the generated profiles for a takeoff
maneuver.

(a) Position profile in time (b) Trapezoidal velocity profile in time

Figure 4.2: Trajectory planner output for a take off maneuver

Plant

The plant block includes the mathematical model of the quadrotor Equation 2.13
and of the actuators used in the target quadrotor (Figure 4.3). To design the “Actu-
ator” block, experimental tests are performed using a thrust stand (RCBenchmark
Series 1520) on which the brushless motor with its Electronic Speed Controller
(ESC) and its propeller are mounted. The resulting model provides a relationship
between the Pulse-Width Modulation(PWM) signal provided to the motor ESC
and the force and moment generated. This allows to link the signal coming from
the motor mixer in the “Controller” block expressed as a PWM duty cycle to the
mathematical model of the quadrotor dynamics, which accepts as signals forces and
moments. The experimental test is treated in section 4.1.
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Figure 4.3: The plant block

Controller – PID

In the following, the controller parameters determined by the trial and error tuning
are reported. Values listed in Table 4.1 are those used in simulation. Refer to
Figure 3.3, Figure 3.4 and Figure 3.5. As described in subsection 3.1.2, the outer

Inner Loop
Channel Parameter Value

Pitch

KP 0.08
KI 0.002
KD 0.08

Saturation ±3.2Nm

Roll

KP 0.08
KI 0.002
KD 0.08

Saturation ±3.2Nm

Yaw

KP 0.15
KI 0.0001
KD 0.2

Saturation ±1Nm

Thrust

KP 60
KI 70
KD 40

Saturation 32N
(a) Inner Loop PID parameters

Outer Loop
Channel Parameter Value

Position
(North)

KP 0.02
KD 0.3
KDD 0.1

Saturation ±π
6 rad

Position
(East)

KP 0.02
KD 0.3
KDD 0.1

Saturation ±π
6 rad

(b) PID Outer Loop PDD parameters

Table 4.1: PID parameters

loop needs a modification to improve dramatically its performance. In fact, looking
at Figure 4.4 it is noticeable the high overshoot and settling time of the linear
velocity channel when not using a double Derivative action DD compared to the
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employed controller. Furthermore, the oscillations propagate into the inner loop,
as shown in Figure 4.5. This results in bad performance overall (Figure 4.6).
Saturation is imposed to avoid infeasible behavior during simulation. In the outer
loop the saturation limits how much the quadrotor can tilt around its North-East
axes, in this case π

6 , or 30◦. Instead, the inner loop the saturation limits the force or
torque required to the actuators. The maximum force provided by one actuator is
about 8N , while the torque is about 0.25Nm, as reported by experimental results
(section 4.1). Thus, the total maximum force delivered by the actuators is 32N ,
the torque is 1Nm and the torque generated around N or E is the force of two
actuators times the distance from the N or E axis, that is 3.2Nm.

(a) Velocity behavior with single D (b) Velocity behavior with double D

Figure 4.4: Velocity behavior comparison

(a) Attitude with single D (b) Attitude with double D

Figure 4.5: Attitude behavior comparison
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(a) NE plot with single D (b) NE plot with double D

Figure 4.6: Comparison of waypoint-following performance

Controller – SMC

Table 4.2 gathers the parameters of the SMC solution, with reference to Figure 3.8.
Again, the parameters are chosen through the trial and error method. In this case,
no double derivative action is needed in the outer loop, as the controller shows good
performance in this configuration.

Inner Loop
Channel Parameter Value

Pitch
λpitch 20
kpitch −0.2

Saturation ±3.2Nm

Roll
λroll 20
kroll −0.2

Saturation ±3.2Nm

Yaw
λyaw 10
kyaw −0.2

Saturation ±1Nm

Thrust
λthrust 40
kthrust 2

Saturation 32N
(a) Inner Loop SMC parameters

Outer Loop
Channel Parameter Value

Position
(North)

KP 0.15
KD 0.22
K 2

Sat. φdes, θdes ±π
6 rad

Sat. φ̇des, θ̇des ±1rad/s

Position
(East)

KP 0.15
KD 0.22
K 2

Sat. φdes, θdes ±π
6 rad

Sat. φ̇des, θ̇des ±1rad/s
(b) SMC Outer Loop PID parameters

Table 4.2: SMC parameters
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Sensors model

The sensors are modeled as a block that alter the input signal by adding to it a bias
and Gaussian noise. Also, a scale factor and a misalignment matrix are considered.
The target multicopter is equipped with an Inertial Measurement Unit (IMU) inte-
grated in the Pixhawk Autopilot, which provides acceleration and angular velocity
with respect to the body reference frame and the altitude in the inertial reference
frame. Moreover, an indoor localization system is exploited, capable of giving the
position and the attitude of the multicopter. Thus, the output to be considered in
the simulation is:

y(t) = hnoiseless(x,t) =



u̇

v̇
ẇ
pgyro
qgyro
rgyro
hbaro
pN
pE
hOtus
φ
θ
ψ



(4.1)

Therefore, the noisy output z(t) is:

z(t) = h(x,t) =



Macc


rv − qw − g sin θ

−ru+ pw + g sinφ cos θ
qu− pv + g cosφ cos θ + Fz

m

Sacc + ∆acc + vacc

Mgyro

pq
r

Sgyro + ∆gyro + vgyro

kBp0e
−
gh

RT0 + ∆baro + vbaro

Mpos
Otus

pNpE
h

SposOtus + ∆pos
Otus + vposOtus

Matt
otus

φθ
ψ

SattOtus + ∆att
Otus + vattOtus



(4.2)
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where ∆(∗) is the sensor bias, v(∗) is the sensor noise and M(∗) and S(∗) are the
misalignment and scale factor matrices defined as:

M(∗) = MT
(∗) =

 1 Mxy Mxz

Myx 1 Myz

Mzx Mzy 1

 S(∗) =

Sx 0 0
0 Sy 0
0 0 Sz



Extended Kalman Filter

The Extended Kalman Filter (EKF) is a near-optimal, nonlinear observer. In
this application, the EKF is used to filter the noise coming from the sensors, to
fuse redundant signals and as an estimator. However, the EKF works under the
assumption that v1 and v(∗) are white noises with zero mean value and variance V1
and V2:

v1 ∼ WN(0,V1) v(∗) ∼ WN(0,V2)

Consider the continuous-time nonlinear mathematical model of the quadrotor pre-
sented in Equation 2.13 with its outputs (4.1;4.2) and process noise v1

ẋ(t) = f(x,t) + g · u(t) + v1

y(t) = hnoiseless(x,t)
z(t) = h(x,t)

(4.3)

To design a discrete-time EKF the continuous-time system has to be discretized.
The method chosen for this application is “Forward Euler”, which states:

ẋ = x(k+1) − x(k)

Ts
(4.4)

where Ts is the sample time. Applying 4.4 to the state evolution 4.3, one obtains:

x(k+1) = xk + Ts(f(x(k)) + g · u(k))
x(k+1) = fDT(x(k),u(k))

leading to the discrete-time, nonlinear system:
x(k+1) = fDT(x(k),u(k)) + v1

y(k) = hnoiseless(x(k))

z(k) = h(x(k))

(4.5)

The EKF equations are:
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• Initialization:

x̂(0|0) ∼ N (µ0, σ0)
P(1|0) = In

• Prediction:

x̂(k|k−1) = fDT(x̂(k−1|k−1),u(k−1))

P(k|k−1) = F(k−1)P(k−1|k−1)F
T
(k−1) + V1

• Correction/Filtering:

K(k) = P(k|k−1)H
T
(k)[H(k)P(k|k−1)H

T
(k) + V2]−1

e(k) = z(k) − ŷ(k|k−1)

x̂(k|k) = x̂(k|k−1) +K(k)e(k)

P(k|k) = [In −K(k)H(k)]P(k|k−1)

where:

F(k−1) = ∂fDT

∂x

∣∣∣∣∣
x̂(k−1|k−1)

H(k) = ∂h
∂x

∣∣∣∣∣
x̂(k|k)

and V1 and V2 are the covariance matrices of the process and sensor noise respec-
tively such that:

V1 = E[v1v1] V2 = E[v(∗)v(∗)]

These quantities are crucial when tuning the EKF.While the sensor noise covariance
can be determined by looking at the sensor datasheet or through experimental tests,
the process noise covariance is found by a trial and error method. In the case of
the considered quadrotor, the noise covariance matrix is found inspecting the log
files produced by the autopilot when powered up. The standard deviation is taken
directly from plots showing raw sensor data when the quadrotor is disarmed, to
avoid the vibrations generated by the motors and the propellers. Instead, V1 is
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determined in simulation. The values of V1 and V2 are set equal to:

V1 =


10−6

10−6

. . .
10−6

 (4.6)

V2 =


diag(vacc)

diag(vgyro)
vbaro

diag(vposOtus)
diag(vattOtus)

 (4.7)

where:

vacc =

 9
12.25
4.84

(m
s2

)2
vgyro =

0.0305
0.0076
0.0049

(rad
s2

)2

vposOtus =

0.0001
0.0001
0.0001

m2 vattOtus =

0.0175
0.0175
0.0175

 rad vbaro = 0.01m2

Figure 4.7 shows the block diagram of the implemented EKF.

Figure 4.7: Extended Kalman Filter block representation
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4.1 Evaluation of the thrust curve
The aim of the thrust tests is to find an analytical relationship between the PWM
signal provided to the ESC by the Pixhawk/controller and the thrust the motors
can produce. This allows the conversion from a command input expressed as a
PWM signal to the physical input vector u defined as:

u =



Fx
Fy
Fz
τx
τy
τz


The test bench used is a RCBenchmark Series 1520 Thrust Stand [5] on which it
is possible to mount the motor with its propeller. The stand has an extensometer
connected to a board to measure the thrust generated. The board provides the
signal to the motor ESC and allows connecting the bench to a PC to collect test
data. To have a sufficient number of samples, the chosen test is a steps test in

Figure 4.8: Thrust test bench

which the motor varies its velocity between the range 1000÷1750. The behavior of
one propeller is shown in Figure 4.9. From data describing the thrust it is possible
to find a 2nd degree function fitting the collected points. The obtained data is fitted
using a 2nd function for the thrust and a 3rd order function for the power. To obtain
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4.1 – Evaluation of the thrust curve

(a) Thrust behavior (b) Power absorption

Figure 4.9: Test results

the moment behavior, one can note that:

P = τω

τ = f(ω)

⇒ P = f(ω)ω

thus, to obtain the moment behavior the power absorption data must be fitted
with a 2nd order function. Fitting is performed by means of the Matlab function
“polyfit” and as a result the thrust F and the moment τ in function of the PWM
signal ν are:

F(ν) = 1.1632 · 10−5ν2 − 0.0202ν + 8.1513 (4.8)
τ(ν) = 2.6604 · 10−7ν2 − 4.6797 · 10−4ν + 0.2046 (4.9)

Figure 4.10 shows 4.8 overlapping the experimental data and the moment curve
described by 4.9:
Lastly, the command input can be rewritten in function of the ith motor PWM
signal ν(i):

u(ν) =



0
0

−(F(ν(1)) + F(ν(2)) + F(ν(3)) + F(ν(4)))
(F(ν(2)) + F(ν(3)) − F(ν(1)) − F(ν(4)))l
(F(ν(1)) + F(ν(3)) − F(ν(2)) − F(ν(4)))l
τ(ν(3)) + τ(ν(4)) − τ(ν(1)) − τ(ν(2))


=



Fx
Fy
Fz
τx
τy
τz


(4.10)
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(a) Thrust fitting (b) Moment curve

Figure 4.10: Thrust and moment behavior

4.2 Model-In-the-Loop simulation
Model-In-the-Loop simulation is performed setting waypoints and (feasible) ToA
replicating real world maneuvers. Notice that since the quadrotor is intended for
indoor application, the paths have a size comparable to the one of a room. The
performance of the candidate controllers are tested individually and then compared.
The chosen patterns were used also in [9].

4.2.1 Step signal
The step signal represent a typical behavior of quadrotors when asked to take off
and maintain a given altitude. The quadrotor has to reach an altitude of 3m in 3s.

SMC

Figure 4.11a shows the response following the reference signal accurately: no over-
shoot nor steady-state error are present. Nevertheless, Figure 4.11b clearly shows
the main drawback of a SMC: the chattering is present throughout the maneuver,
and solicits the actuators with a high-frequency signal.

PID

Using a simpler PID, the response to a step reference signal is similar to what
happens for the SMC, even though less accurate when tracking position and ve-
locity. The maneuver is completed in the given ToA and no relevant overshoot or
steady-state error is present (Figure 4.11c). Furthermore, Figure 4.11d shows that
with PID the thrust command exhibits oscillations around the mean value of ±3N

48



4.2 – Model-In-the-Loop simulation

(a) Time response and reference signal
(SMC) (b) Thrust behavior (SMC)

(c) Time response and reference signal
(PID) (d) Thrust behavior (PID)

Figure 4.11: Step response

compared to the ±7N of the SMC due to chattering. Comparing the two solutions,
it can be seen that in steady-state the SMC exhibits high accuracy, while the PID
has a higher but still acceptable steady-state error:

eSMC
∞ = −2.620 · 10−4m ePID∞ = 0.0111m

Thus, the SMC is able to provide higher tracking performance compared to the
PID controller, yet with a higher command activity.

4.2.2 Square pattern
Table 4.3 lists the waypoints provided to the trajectory planner for the square
pattern.
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NED coordinates [m] ToA [s]
#1 (0,0,0) 0
#2 (0, 0,−2.5) 5
#3 (0, 3,−2.5) 10
#4 (3, 0,−2.5) 15
#5 (0,−3,−2.5) 20
#6 (−3, 0,−2.5) 25
#7 (0, 3,−2.5) 30

Table 4.3: Waypoint list for square pattern

SMC

The square pattern is executed within the given time limits. The SMC exhibits
good tracking performance, even if some overshoot is present in the N-E plane
(Figure 4.12a). Again, chattering is present (Figure 4.13b).

(a) North-East view (b) XYZ view

Figure 4.12: Square pattern with waypoints highlighted (SMC)

PID

As can be noticed in Figure 4.14a, the PID controller is not as accurate the SMC
and it is not capable of finishing the maneuver in the given time lapse. Figure 4.15
reveals a delay of 0.5s ÷ 1s between the reference trajectory and the simulated
maneuver in the NE plane. When inspecting how North-East velocities behave
during the maneuver, it can be noticed that PID controller has a higher rise/settling
time compared to the SMC (Figure 4.17). For what concerns the altitude control,
the PID executes the take off quite accurately and within the time constraints
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4.2 – Model-In-the-Loop simulation

(a) Time response and reference signal in
altitude (b) Thrust behavior

Figure 4.13: Altitude response for square pattern (SMC)

(a) North-East view (b) XYZ view

Figure 4.14: Square pattern with waypoints highlighted (PID)

(Figure 4.16a). No large oscillations occur during the simulation (Figure 4.16b).
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(a) Delay in the North dimension (b) Delay in the East dimension

Figure 4.15: Delay of the trajectory w.r.t. reference (PID)

(a) Time response and reference signal in
altitude (b) Thrust behavior

Figure 4.16: Altitude response for square pattern (PID)

4.2.3 Butterfly pattern

Table 4.4 lists the waypoints provided to the trajectory planner for the butterfly
pattern.

SMC

As before, the SMC exhibits high tracking performance Figure 4.18a with an over-
shoot of 0.36m due to a too high required deceleration Figure 4.19d.
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4.2 – Model-In-the-Loop simulation

(a) North velocity behavior (PID) (b) East velocity behavior (PID)

(c) North velocity behavior (SMC) (d) East velocity behavior (SMC)

Figure 4.17: North-East velocities comparison for square pattern

NED coordinates [m] ToA [s]
#1 (0,0,0) 0
#2 (0, 0,−2.5) 5
#3 (3,−3,−2.5) 10
#4 (3,3,−2.5) 15
#5 (−3,−3,−2.5) 20
#6 (−3,3,−2.5) 25
#7 (3,−3,−2.5) 30

Table 4.4: Waypoint list for butterfly pattern

PID

The PID solution proves to be less accurate when tracking and due to collected
delay cannot complete the pattern within the given time constraint, being about
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0.85m far from the last waypoint. Figure 4.19 inspects the velocity channel and
the attitude behavior during the maneuver. It shows that the SMC solution is
faster during attitude changes (Figure 4.19c) and it is able to better follow the
reference velocity signal (Figure 4.19d), even though some overshoot is present,
which depends on how fast the quadrotor is going during the specific maneuver. On
the other hand, the PID controller is less accurate in tracking the reference velocity.
Moreover, in Figure 4.19a can be noticed that the inner loop is slower with high rise
times and oscillations around the zero. Also, the angle values are smaller compared
to the SMC, leading to a less stressing command activity. Figure 4.20 highlights
the four-times smaller average command activity of the PID solution compared to
the SMC.

(a) North-East view (SMC) (b) XYZ view (SMC)

(c) North-East view (PID) (d) XYZ view (PID)

Figure 4.18: Butterfly pattern
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4.2 – Model-In-the-Loop simulation

(a) Euler angles during
butterfly pattern (PID)

(b) Reference and actual body
velocity in NE plane (PID)

(c) Euler angles during
butterfly pattern (SMC)

(d) Reference and actual body
velocity in NE plane (SMC)

Figure 4.19: Comparison between SMC and PID with the butterfly pattern

(a) PID solution (b) SMC solution

Figure 4.20: Command activity for the attitude channels

4.2.4 Snake pattern

Table 4.5 lists the waypoints provided to the trajectory planner for the snake pat-
tern. Figure 4.21 shows an overall view of the snake pattern execution, comparing
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NED coordinates [m] ToA [s]
#1 (0,0,0) 0
#2 (0, 0,−2.5) 5
#3 (3,−3,−2.5) 10
#4 (3,0,−2.5) 15
#5 (−3,0,−2.5) 25
#6 (−3,3,−2.5) 30
#7 (3,3,−2.5) 40
#8 (3,6,−2.5) 45
#9 (−3,6,−2.5) 55
#10 (−3,−3,−2.5) 70
#11 (3,−3,−2.5) 80

Table 4.5: Waypoint list for snake pattern

the two solutions.

(a) North-East view (SMC) (b) XYZ view (SMC)

(c) North-East view (PID) (d) XYZ view (PID)

Figure 4.21: Snake pattern
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4.2 – Model-In-the-Loop simulation

4.2.5 Simulating a payload
In real-world applications, the quadrotor could be required to carry a payload
with different masses, without having its controller re-tuned each time it happens.
Usually, small quadrotors are not able to provide a high capacity in terms of added
mass. In the case of the considered quadrotor, a mass of 0.3kg is added is simulation
to test and compare how the two solutions react to this kind of change. The payload
is assumed to be point-wise and centered in the CoG of the quadrotor, so that inertia
moments are unaffected. The tests carried out are a simple take off maneuver to
analyze the behavior at steady-state (i.e. in hover) and a square pattern to test the
payload influence on the North-East plane.

Step response – 0.3kg payload

Figure 4.22 shows how the payload affects the performance of the SMC: the con-
troller follows less accurately the reference signal and exhibits a steady-state error
higher than the nominal configuration. Note that the SMC controller relies on a
dynamical model of the quadrotor which is not updated when the plant (or the
real-world prototype) is altered in its properties.

(SMC) epayload∞ = −0.017m e∞ = −2.620 · 10−4m

The very same considerations hold for the PID solution, where the performance is
slightly degraded by the presence of the payload. The steady-state errors are:

(PID) epayload∞ = 0.0128m e∞ = 0.0111m

Comparing the values of steady-state error, it is clear how the payload affects more
the SMC performance in steady-state.

(a) Without payload (b) With a 0.3kg payload

Figure 4.22: Step response comparison (SMC)
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(a) Without payload (b) With a 0.3kg payload

Figure 4.23: Step response comparison (PID)

sbem

58



Chapter 5

Conclusion

In this thesis, two novel control architectures are presented: a PID based controller
and a First-Order SMC based controller. Both solutions are designed and tuned
in a specific simulation environment that considers not only the well-known dy-
namical model of a quadrotor but also critical hardware and software components
of the prototype DR0N3 quadrotor, i.e. a simple trajectory planner, sensors and
EKF. Also, the controller Simulink model is such that it can be used for code gen-
eration without heavy modifications, making the entire work “prototype-oriented”,
i.e. ready for a future deployment on the target Pixhawk hardware. Simulation
results showed for different paths a comparison in terms of time-domain perfor-
mance and accuracy between the two controllers. To improve performance, the
outer loop of the PID solution is modified, adding a Derivative action to damp the
high oscillations on the velocity channel which would yield to an oscillating inner
loop reference signal leading to an overall low performance and accuracy. The SMC
solution makes use of both Euler angles and quaternions to generate the command
action.
In simulation, it can be noticed how the SMC solution exhibits high nominal per-
formance, executing all the patterns in the given Time of Arrival, showing a smaller
steady-state error. On the other hand, the PID solution is much slower and less
accurate, and it cannot finish the given maneuver respecting the ToA. Neverthe-
less, when a parametric uncertainty is introduced in the dynamical system – as a
payload or more in general as a measurement error of the inertia properties of the
prototype quadorotor – the SMC performance are degraded in terms of accuracy
and steady-state error, while the PID shows an almost negligible changing in its
behavior. The PID proves to be a slow controller w.r.t. SMC but it is not too
influenced by uncertainties. In fact, to preserve the high performance, the SMC
should be re-tuned each time the dynamical model varies. A solution could be
converting the actual SMC into an adaptive one which considers changes occurring
to the plant dynamics.
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Conclusion

This work is meant to be a preliminary study on an indoor application of a Pixhawk-
based quadrotor using the PX4 Flight Stack. Future works are aimed to improve
the simulation environment previously presented and to build a customized debug
framework to test more in depth the PX4 firmware produced by the code gen-
eration process. The first objective can be achieved by better characterizing the
quadrotor model. Inertia properties have to be experimentally determined, a model
of aerodynamic forces acting on the quadrotor and floor/ceiling effect have to be
added. Also, a more complex trajectory planner can be designed, e.g. one em-
ploying polynomials or search algorithms on graphs such as Dijkstra’s or A*. Also,
an adaptive controller can be designed, so that it takes into account critical flight
information, e.g. the battery status. The second objective is performing SIL and
PIL to test the correctness and the reliability of the generated code. This is done by
creating an environment suitable for debugging the customized PX4 as it is builded
by the MATLAB®/Simulink® Add-on “PX4 Autopilots Support from Embedded
Coder”. This would allow to recreate a solid and reliable development and testing
process of a quadrotor, or more in general a robot based on the PX4 Flight Stack
and Simulink, following the widespread “V-Model” shown in Figure 5.1. Using this

Figure 5.1: V-model used in software engineering

model, a higher integration with the target hardware and a easier issues traceability
throughout the involved processes.
Lastly, different positioning sensors can be exploited and compared with the Otus
Tracker, such as vision sensors – stereoscopic cameras, lidars and Time-of-Flight
cameras or sound based, e.g. ultrasound sensors. The usage of sensors not depend-
ing on an external infrastructure is critical as it would allow the quadrotor to fly in
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a great variety of scenarios, including non-structured and not known a priori envi-
ronments where the UAV may be required to be able to perform obstacle avoidance
maneuvers or a mapping of a unknown or unexplored areas. On the other hand, the
drawbacks represent a critical aspect of using vision-based sensors. In fact, they
require a higher computational cost that would be moved to an external machine
and usually feature a lower positioning precision.
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