
Politecnico di Torino

Master of Science

Mechatronic Engineering

Design and implentation of a

mixed-reality robotic game

Supervisor:

Prof. Fabrizio Lamberti

Candidate:

Piero Baldo

October 2019

Torino

Contents

1 Introduction 4

2 State of art 8

2.1 Brief history of robotics . 8

2.2 First generation of toy robots 11

2.2.1 Furby . 12

2.2.2 Lego Mindstorms . 14

2.2.3 Aibo . 16

2.3 Lego Mindtorms and Furby: A comparison 17

2.4 Ethics . 18

2.5 Toy robot currently on the market 19

2.5.1 Sphero Sprk+ . 19

2.5.2 Ollie . 20

2.5.3 Vector . 21

2.6 Robogame strategy . 22

2.7 PIRGs and Phygital play . 23

2.8 Previous work . 25

2.8.1 Jedi training . 25

2.8.2 Protect the treasure 27

2.8.3 Robot ARena . 28

2.8.4 Protoman Revenge . 29

3 Technologies 31

3.1 Unity . 31

1

3.2 Python . 31

3.3 ZeroMQ . 32

3.4 OpenCV . 33

3.5 Projector . 37

3.6 Microsoft Kinect V2 . 37

3.7 Cozmo . 40

4 Design 43

4.1 Game’s rules . 43

4.2 Place version . 45

4.3 Tap version . 46

4.4 Mid-air version . 47

5 Implementation 49

5.1 General architecture . 51

5.2 Tracking . 53

5.3 Cozmo’s thread . 58

5.4 Gestures . 59

5.4.1 Place version . 59

5.4.2 Tap version . 60

5.4.3 Mid-air version . 61

5.5 Socket . 62

5.6 Game’s elements . 65

5.6.1 Socket object . 65

5.6.2 Walls . 66

2

5.6.3 Dotted-line . 67

5.6.4 Ball . 67

5.6.5 Colours zone . 71

5.6.6 Digital cube . 72

6 Experimental evaluation 73

6.1 Questionnaire . 74

6.1.1 GEQ, Game Experience Questionnaire 75

6.1.2 SUS, System Usability Scale 76

6.1.3 Scoring SUS . 78

6.2 Design of the experiments . 78

6.3 Results . 79

6.3.1 SUS results . 81

6.3.2 Tangible Interaction 81

6.3.3 Robot Interaction . 84

6.3.4 Game experience . 85

6.3.5 Open questions . 86

7 Conclusions 88

7.1 Future work . 90

8 Appendix 91

8.1 Questions . 91

3

1 Introduction

The work carried out in this thesis consists in the implementation of a mixed

reality robotic game. This thesis therefore has two objectives: the first is

the implementation of a robotic game that follows the PIRGs philosophy

(physical intective robo-games), whereas the second is to investigate how

players’ perception is influenced by the use of tangible objects. With regard

to the PIRGs philosophy, it is a guide to how to develop a robotic game. For

years, technology has allowed us to sell increasingly sophisticated robot toys

to the public, however it has been noticed that the public quickly lost interest

even for the most sophisticated robot: Indeed this technology was often

expensive, decontextualized and left to itself; ultimately, after the functions

that were already pre-programmed to the robot, it was no longer able to

provide stimuli and keep up the customer’s interest as it does in today’s

traditional video games. With the application of the PIRGs model it was

discovered that robots, even out of production, took on a new life. In fact the

PIRGs model with its guidelines aims to give a context to the robot that can

better enhance its capabilities through the use of external tools such as, e.g.

augmented reality, external tracking systems that allow to interact with the

robot in the most natural way possible or the use of physical objects that can

interact with the virtual world. This thesis deals with an implementation of

a robotic game that follows the PIRGs model; in particular a Cozmo robot,

a Kinect V2 and a projector were used.

Cozmo small size (Cozmo’s size is a palm of hand) suggests to implement

a limited playing area, this limits the movements that players can do, for this

4

as user interface was decided to use Cozmo cubes, which can be moved by

players like in a board game. The great expressiveness of Cozmo makes its

an ideal candidate as a robot in a PIRGs game. In fact its ability to imitate

human expressions such as sadness, joy, anger etc. help to create a bond

with the player who will be led to consider the robot not a simple machine

but a real playmate, (this feature is one of the central points of the PIRGs

guideline).

The Kinect was used instead to locate the cubes on the game board by

means of its RGB camera, it was placed above the playing surface, so that

from position it can trace the cubes correctly. The localization of the cubes

has been implemented with the use of the OpenCV library using an algorithm

able to detect the colours; for this reason visual markers have been applied

to the cubes, so that the algorithm can easily extract their colour from the

background and locate the cubes.

The projector was instead used to project the virtual gaming area; players

interact with both the robot and the virtual environment through the user

interface (cubes tracked by Kinect). To create the game environment Unity

game editor was used, instead the robot logic and the tracking algorithm were

implemented using the Python programming language. The two processes

()Python module and Unity editor) were put into communication using a

socket, implemented with the ZeroMQ open-source library.

The game was designed by following a competitive multi-player scheme,

where the role of the robot is to arbitrate between the two players. At the

beginning of each round, Cozmo communicates, using its integrated loud-

5

speaker, a series of colours chosen between red green and blue; the players

must therefore hit a virtual ball by setting, with each bounce of the ball on

their own cube or that of the opponent, the right colour according to the

order of the series announced by Cozmo.

Example:

Cozmo says red green and blue; the first player to receive the ball sets his

red cube, the opponent responds instead using the green colour; finally the

first player ends in blue. If the players manage to finish the series without

losing colour, then the current round ends and Cozmo will add new colours to

the series. The players, during the round, can ask Cozmo for suggestions; in

this case Cozmo will suggest the exact colour of the sequence to the player. To

investigate how the payers’ perception regarding game system is influenced

by the use of tangible objects, three different versions of the game have been

implemented, each of which becomes the gesture that players must perform

to change colour of their cube and ask for the suggestion.

A set of experiments were carried out by involving several volunteers,

offering players a questionnaire at the end of their gaming experience. The

questionnaire evaluated the system usability of the game, user’s experience

with tangible objects and their perception of the robot in the game expe-

rience. In summary, based on results it emerged that the three versions

differ greatly in regard to SUS (System Usability Scale), the perception of

the game changes slightly with respect to the ease with which players can

change colour to their cube or ask for suggestions from the robot; finally, as

far as the perception of the robot is concerned, it seems from the results that

6

the use of different gestures by means of tangible objects does not change

the perception that the players have of the robot.

7

2 State of art

In this chapter a brief summary of the history of toy robots is presented,

going from the first generations to the robots currently on the market, then

analysing the characteristics and specifications that characterize the modern

toy robots that producers have come to develop and understand over the

years and developments in the sector.

We will then briefly analyse the evolution of the concept of robotic game

up to the most modern architectures, presenting different works carried out

by students in different universities to which this work was inspired.

2.1 Brief history of robotics

‘Robot’ is a word coined by Czech playwright Karel Capek to indicate un-

intended work. The word was introduced in his theatrical work ”R.U.R.

(Rossum’s Universal Robots) ”staged in January 1921. However, Capek’s

merit is limited to being the inventor of the word robot, since the machines he

talks about in his work are built according to alchemical / chemical processes

Indeed, we can define the robot in modern language as a reprogrammable

electromechanical system, with perception capacity and its own intelligence,

designed to perform a large number of different tasks. It is not surprising

that we can already find the word robot in the early 1900s, in fact the word

automaton and android today indicated to define robots with a shape sim-

ilar to the human one ,they derive from the Greek language, the first from

automatos, ”which acts of its own will” the second from aner, andros which

8

means man, here understood as in human form. In fact, it is told in a myth

that you belong to Greek culture, that Hephaestus created three automata

to help him in his daily work.

The idea of creating autonomous and intelligent mechanical systems is

quite ancient and represents the synthesis between the dream of imitating

Nature and the need to build machines useful for life and work.

We can find the first traces of applied robotics with scientific rigour in

the Hellenistic age of ancient Greece However, the first experiments of self-

propelled machines were intended to amaze and impress (in fact they were

mostly used for theatrical goals) instead of having really useful purposes in

everyday life. Furthermore, environmental limits were imposed because the

position of the objects with which the robots had to interact was known a pri-

ori, only later with the introduction of artificial vision and machine learning,

the robots acquired an autonomy that reduced environmental constraints .

The interaction between humans and robots begins at the beginning of the

80s with the introduction of so-called service robotics, service robots are no

longer confined to specific areas but interact directly with human beings. Ser-

vice robots are used in environments that are not easily accessible to human

beings, such as the space or submarine environment or capable of carrying

out dangerous work such as bomb robots. Robots used in domestic assis-

tance are also being studied, such as cleaning dishes served at the tables or

cooking lunch and dinner. Among the service robots that most concern this

work are certainly the social robots that have the purpose of entertaining, of

which the toy robots are part and which are gaining more and more success

9

and interest on the part of of the public.

Modern robots can be divided into three macro categories:

• Industrial robots (Figure 1 for an example), they are the first in order

of application, today have a vast use in all production sectors. They

mainly consist of mechanical manipulators capable of performing cer-

tain tasks in the field of industrial production, they are employed in

assembly control, movement inspection, etc.

Figure 1: Industrial robot

• In the medical field, the use of robotics is revolutionizing both the sur-

gical practice (Computer Aided Surgery) and that of the clinic (physio-

therapy, technological assistance). In recent years robots are being de-

veloped that can help doctors during surgical operations using devices

non-invasive. The Da Vinci system shown in Figure 2 is noteworthy as

it allows the surgeon to operate through a dedicated workstation as if

his hands were the pincers of a complex robotic system.

10

Figure 2: Example of Da Vinci system

• Social robots (see Figure 3) identify a new application of robotics

destined to be a tool for social interaction in the future. Once the

safety barrier has been eliminated, robots can become part of social

life through an accurate set of standards and certifications. They are

mostly in the experimental phase, the tasks of these robots range in

different areas, from entertainment to assistance for the elderly or sick.

Figure 3: Example of social robot

2.2 First generation of toy robots

In this section, three different commercial robots have been chosen which,

according to the candidate’s opinion, represent significantly the first real

11

attempt to insert toy robots in the market, products intended for sale to the

general public. These robots, although still rough in their trait,they have the

features we can find in the most modern products. Robots must therefore

intelligently combine different technologies to interact with the real world

in the most natural way possible, especially if they are toy robots because

they have to maintain the illusion of being somehow alive and are intended

for an audience that may not be experts in the field. In the history of toy

robots, only now technologies have come to the reserve point of selling robots

to the general public at guaranteed low costs, in this chapter we will focus

on three robots in particular because they are the first to have features that

may be interesting for the work done in this thesis. Lego MindStorms robot

construction sets and Furby interactive robotic pet by Tiger Toys, and Sony

Aibo robot dog [?].

2.2.1 Furby

Figure 4: Furby robot

12

Furby is a robot released in 1998 by electronic robotic (see figure 4), is a

stand alone, interactive robot, has several sensors and actuators:

• light sensor;

• IR sensor;

• IR transmitter;

• microphone;

• speaker;

• belly touch sensor;

• tongue touch sensor;

Through the use of engines it can move ears, mouth and eyes; Furby is part

of the category of pre-programmed games, ie the user is not expected to

implement new functions. Furby has the shape of a fancy animal, a kind

of cross between a hamster and an owl, obviously designed for a public of

children, it obtained a huge success with more than 12 million copies sold.

It therefore represents one of the first experiments of social robots with a

playful aim widely sold on the market, in fact it is among the first products

able to surprise customers because it is able to surprise them with unexpected

behaviors and reacting to certain external or environmental stimuli or by the

user himself. Surprisingly Sherry Turkle has found that children categorize

their Furbys in a new way: ”Children describe these new toys as they are

emotionally connected to the Furby might be emotionally attached to them

13

” (Turkle 2000) [?]. This consideration puts the toy robots in an unexpected

context, in fact they are half way between the animated and the inanimate,

suggesting that future developments of these types of products could pose

complex problems regarding ethics.

2.2.2 Lego Mindstorms

Figure 5: Lego Mindstorms robot

14

Lego Mindstorms, shown in Figure 5, is a line of Lego products with pro-

grammable bricks to allow the user to exploit the potential of the lego product

by combining it with the automation provided by the electronic components

such as sensors and other interactive gears. It can be programmed using

a computer to create virtually all existing electromechanical devices such

as elevators or mechanical arms. The first generation of Lego Mindstorms

was built around a programmable morning called RCX which can be pro-

grammed using different programming languages, including some created ad

hoc by Lego like RCX code or ROBOLAB based on the Labview language,

otherwise it supports more common languages like C , C++ or Java. Lego

Mindstorms, unlike Furby, was born as a programmable robot, that is, the

customer had the incentive to write his own program or assemble his own

robot with the limitation only of his imagination and the pieces supplied by

the product. Despite the rather high cost it has had an immediate success

both among adults and children, but not only, lego Mindstorm is in fact also

used in schools and universities in laboratories and as an aid to teaching.

15

2.2.3 Aibo

Figure 6: Sony’s Aibo robotic dog

The third example, Sony’s Aibo robotic dog in Figure 6. Aibo is one of the

many robotic animals developed by Sony, with this name several models have

been developed since 1999. Aibo is the evolution of the Furby robot, in fact

the Aibo was used by the Sony as the basis for artificial intelligence programs,

in fact it represents a platform comprising camera sensors and a functioning

mechanical movement system. Indeed, Aibo can react to vocal commands

by recognizing the external environment through the SIFT machine vision

algorithm, and what is more interesting is the Aiboware algorithm which is

able to make the robot grow starting from the puppy phase up to the adult

phase by modifying the personality based on the interaction with the owner.

Aibo was developed in Japan, the culture of Japan is in fact characteristic

16

for its respect for the robots, so Aibo deepens the ethical problems already

encountered with Furby, since unlike Furby, who is not a real animal and is

still too raw in its functionalities to consider it alive, Aibo instead imitates

in everything and for everything a living creature like the dog, which has

already for some time a strong interaction with the human being.

2.3 Lego Mindtorms and Furby: A comparison

These two different types of toy robots were both introduced in 1998, and

had a great impact though in two completely different ways. Lego Mind-

storms presents itself as a programmable robot with aspects geared towards

education, in fact it is a product that combines well with a philosophy of

continuous expansion and support from users, in fact it is possible to pur-

chase different versions to combine the pieces together. On the contrary,

Furby presents itself as a stand alone product with its functions already im-

plemented and not expandable, its purpose is that of entertainment even if

perhaps involuntarily Furby much more than Lego Mindstorms underlined

the ethical problems that can be found introducing robots in everyday life

and in children’s recreational activities. Another contrast regards the trans-

parency and the opening of the software, initially Lego Mindstorms was born

as a closed system, the users could program their pieces but always following

the rules of the manufacturer, only later the Lego authorized the users access

to the ’RCX’s rom, allowing you to create a community and a platform that

supports a large number of languages and operating systems. On the con-

trary, Furby has remained a closed system, its functions have never been fully

17

documented, in fact not allowing the community to reprogram the robot.

2.4 Ethics

It should come as no surprise that with the introduction of toy robots we

began to talk seriously about Ethics. In fact These robots are capable of

unexpected actions by the public, as it was written before the children con-

sidered Furby not only as a robot, but as something more, in fact an emo-

tional relationship was established between the child and the toy, they must

also be sure as they interact continuously with the real world but physical

security alone is not enough, in fact in recent years the ”Roboetic” neologism

has been coined, that is that part of ethics that deals with the study of the

interaction between humans and robots.

”The ethics of robotics must try to give an answer to a series of new

questions. Is it right that you build robots that perfectly replicate a human

being? Is it right that in the future sexual relations between humans and

humanoid robots become the rule? Is it right for children to be cared for and

educated by a robot? ” The situation will become even more complicated

with the development of ever more complex artificial intelligences to hypoth-

esize that can develop an awareness of itself, at that point we could consider

robots with the same perception as today? For the time being roboethics

roughly follows the universal principles of man, so robots that follow the rules

of roboethics will not have to discriminate individuals, respect their rights

such as privacy, social responsibility, etc.

18

2.5 Toy robot currently on the market

In the following, a review of several toy robots currently on the market is

provided.

2.5.1 Sphero Sprk+

Figure 7: Sphero Sprk+

Sphero Sprk+ (Figure 7) is a programmable polycarbonate robot ball that

can reach seven kilometers per hour. It is possible control and program

Sphero with a smartphone or a tablet, connecting them using Bluetooth

devices, Sphero can also customized with a great number of accessories .

Sprk is an acronym: the letters that compose it are the initials of School,

Parents, Robots, Kids. The acronym means the different uses for the robot,

indeed it could be used in school or robotic courses, it is a toy robot it can be

played in your home and it is provided with a SDK so it is full programmable

and it could be used in great number of applications like learning maths

19

science and writing program

.

2.5.2 Ollie

Figure 8: Ollie

Ollie (Figure 8) is a cylindrical robot capable of reaching speeds of 20 km/h,

controlled with an application on both Android and IOS operating systems

with a range of over 30 meters. The application gives the possibility to control

20

everything about the robot from the speed to the acceleration, moreover it is

possible through dedicated commands to perform tricks with the robot. Even

Ollie is customizable and it is possible to replace the tires with some more

performing ones, thus allowing the robot to be able to run also on ramps,

moreover it is provided with different coloured LEDs. The robot is totally

reprogrammable making it suitable also for educational purposes, in fact it

can be used both in school courses but also in university courses.

2.5.3 Vector

Figure 9: Vector

Vector (Figure 9) represents in some ways the evolution of Cozmo the robot

used in the development of this thesis. Users will no longer need to rely

on an external application to interact with the robot but can interact using

voice commands to provide information such as weather forecasts or any

data available online. It moves independently, identifying any obstacles, to

21

get around them whenever possible. In addition, different expressions appear

on his hi-tech face depending on mood.

2.6 Robogame strategy

In recent times the explosion of computing power in microprocessors, the

development of new artificial intelligence algorithms and, more generally, the

miniaturization of technology, has led to a significant development in the

toy robot industry and in entertainment. From these factors several video

game companies have developed a new paradigm with which to sell new

products, in the new way of developing video games, the limit of the screen

is eliminated, so that the player can interact more naturally with the gaming

environment, moving taking objects around you or using your voice in some

cases. Obviously this leads to disadvantages such as a different setup for each

game by increasing the price of the product.

It seems a natural evolution to eliminate the screens to give the player the

opportunity to physically interact with the game system. This new paradigm

is called PIRGs Physically Interactive RoboGames, and its goal is to bring

the game into the real world by inserting, in the context of playing, a robot

either as an opponent or as a player team. The main aspect of the PIRGs is

to offer a new type of entertainment to the public.

One of the fundamental things of the PIRgs is that the environment reacts

in a rational manner to the player’s actions and that the robot is a completely

autonomous agent capable also of unexpected behaviors of the player’s point

of view.

22

It has been observed that it is very important to program the artificial

intelligence that controls the robot so that it is as close as possible to the

player. Too much artificial intelligence will lead the player to tire of the

game early, not offering them enough stimulus and a challenge, while on the

other hand, too aggressive artificial intelligence could generate a sense of

frustration in the player that could abandon the game prematurely. . It is

therefore important to balance these two characteristics as much as possible

so that the robot is as equal as possible to the player, especially in the case

of the robot playing as an antagonist.

2.7 PIRGs and Phygital play

As said, PIRGs represent category of games built around a robot, which is

put in a context peer to the human player,with an autonomous and rational

behaviour, so that the player perceives the robot as an intelligent part of the

system.

Phygital play in turn, is a contamination of physical and digital elements

in games that could contribute at increasing the level of entertainment,by

bringing gaming back to its primordial roots and fostering healthy and social

behaviours (e.g., by reducing time players spend in front of a screen) [14]. It

has been demonstrated that the combination of these two principles provides

a new vitality to the gaming experience, in particular robots born with a

specific role find new life in this game context. In conclusion,the tendency to

bring the game back to a real environment, combining digital tools and real

objects can be ascribed to the term phygital. IS’ It is possible to assume some

23

basic characteristics in the creation of a ”phygital” scenario. In this work

a projected environment was used to transform a table into a game surface

with which players can interact through the user interface an example is

shown in Figure 10.

Figure 10: Example of setup of the game implemented in this thesis

”In the frame of robotic gaming, PIRGs are games in which autonomous

agents (either digital or physical, including at least one robot and one hu-

man player) interact in a possibly unpredictable environment according to

determined rules, with the ultimate goal of letting players have fun” [14].

Several guidelines have been set for suggesting game designers how to create

effective PIRGs:

• consider environment’s characteristics and agents’ capabilities;

24

• define a story;

• reduce, reuse and recycle existing software and hardware components;

• foster safety and simplicity;

• make the robot appear as a rational agent;

• exploit senses.

2.8 Previous work

In this section,previous works will that inspired this thesis will be presented.

These works show an architecture similar to that used in this work, will have

the same paradigm of play, the PIRGs even if the objectives and the robots

used may differ.

2.8.1 Jedi training

Figure 11: Jedi training

One of the first game that follows PIRGs paradigm is Jedy Training (figure

11). Indeed, to define the guidelines for the robotic game, the work also

25

illustrates one solution and strategies to use a drone equipped with a camera

and a physical interface. The game incorporates all the guidelines defined by

the PIRGs:

The game wants to recreate the training of Luke Skywalker at the edge of

the Millennium Falcon as in Episode 4 of the famous Star Wars saga,: In the

movie Luke was training to parry the laser beams with his own lightsaber

with the difficulty of being blindfolded, this to refine his bond with the Force,

a mystical element that belongs to the Star Wars saga.

In the designed game instead a drone flies around the player while shoot-

ing laser beams that he will have to avoid or parry with the sword laser. If

the beam hits the player, the drone gains a point, vice versa it will be the

user to earn a point. In a scenario of higher difficulty, it should be possible

play, as in the film, without using eye contact but his own hearing. The

game’s requirement is a fairly free space to allow the drone to move around

the player at a distance unreachable with the lightsaber that is the physical

interface in the game system.

26

2.8.2 Protect the treasure

Figure 12: Protect treasure

The concept of Protect the treasure is based on an attack and defence game.

The playing area is projected onto the ground, Figure 12). The robot in

the role of attacker will try to collect the treasures, virtual objects projected

in the playing field, passing over it, the player in the role of defender will

have to prevent the robot from collecting all the treasures by placing his

body between the robot and the treasure, the body is represented by a red

circle that acts as a virtual counterpart, if the robot manages to collect all

the treasures it wins. This represents a mixed reality game where the user

interface is the player’s own body.

27

2.8.3 Robot ARena

Figure 13: Robot ARena

Robot ARena proposes an augmented reality platform for game development

robots. The architecture of system is composed of a projector with a 45

inclined mirror, a table of projection, a camera and a robot (Figure 13). The

software infrastructure is divided into four subsystems, each responsible for

a specific part: visualization, tracking, real elements, communication. The

robot is also in this case a commercial model, assembled using Lego NXT.

The system offers two game prototypes, FootBot ARena and TankSpace. In

the first, two robots, one virtual and one real, play a football game with

a virtual ball. Some collectible items are added to help the player (bomb,

beam, shield), other obstacles can obstruct both the robot and the ball.

The robot is completely in this case autonomous, as the game in question

is designed to explore interaction between real and virtual. In the second

28

game, the main objective is instead to explore the use of tangible interfaces,

with the possibility of controlling objects that interact and interact with

the projected content. The game is set in space and the player controls a

spaceship that must destroy enemy ships. To do this, the player can control

the aim of the cannon by moving a physical object in the arena of play. The

item it must be aligned with the corresponding projected shape to achieve

success. There spaceship in the prototype is also virtual, although a possible

conversion is expected in a robotic element; therefore, at the moment the

game considers the interaction between player and virtual environment, but

still lacks interaction with the robot.

2.8.4 Protoman Revenge

Figure 14: Protoman Revenge

29

The designed game proposed a duel between a human player and a flying

drone,(Figure 14) Both have the ability to shoot a laser beam. Moreover

the player has the ability yo defend himself/herself with an equipped shield.

The player must hit the drone with is gun without getting hit in turn. If the

player remains with no lives he loses the game.

30

3 Technologies

During the development of the thesis, different technologies are used both

hardware and software, following they will be presented all the technologies

used, to give an overview of the work done.

3.1 Unity

The game filed and the physics of environment are developed in Unity edi-

tor. Unity is a cross-platform game engine developed by Unity Technologies.

Developed for the first time in 2005, Unity was continuously expanded year

after year until it came to a very versatile video game design editor. In unity,

in fact, there is already a graphic and physical engine that allows rapid proto-

typing of projects, and an easy to use implementation. Unity allows creating

both 3D and 2D layouts for game development.

In this project was chosen 2D layout to developed game engine.

3.2 Python

Python is powerful... and fast; plays well with others; runs everywhere; is

friendly and easy to learn; is Open. [1].

The robot logic and tracking were developed in Python. Python is an

high-level, general-purpose programming language, it is created in 1991 by

Guido van Rossum, it is though to be a simple but complete language pro-

gram,indeed it is often described as ”batteries included” language due to a

great number of library that could be implemented in your code.

31

Specifically, the libraries imported into the Python environment are:

• Cozmo’s library, necessary to use SDK in python environment;

• Time library, used to handle time-related tasks;

• Zmq library, used to implemnt socket,it will be discussed in more detail

later;

• Random library, used to generate random numbers,it is needed to gen-

erate random sequence of colours;

• Threading library,it is needed to implement threads, in this kind of

work it is fundamental works with parallel tasks;

• OpenCV library, a powerful computer vision library,used to perform

collour detection algorithm,it will discussed more in detail later;

• Ntkinect library,a wrapper that allows to import rgb frame from kinect

in Python environment.

3.3 ZeroMQ

ZeroMQ (also spelled ØMQ, 0MQ or ZMQ) t is a synchronous messaging

library created with the purpose of communicating different processes, with

the APIs provided it is possible to create sockets quickly and easily. It is

used to established the communication between the two process in python

and in unity, the API provides different patterns of communication; in this

thesis is used reply request pattern, were the process in unity, as client, asks

32

information from python process, as server,like the position of cubes, the

game status and so on.

3.4 OpenCV

OpenCV (Open Source Computer Vision Library: http://opencv.org) is an

open-source BSD-licensed library that includes several hundreds of computer

vision algorithms [3]. It is used to implement the tracking algorithm using

colour detection and contours analysis.

The principal integrated functions that have been implemented in the

thesis are:

• cv2.cvtColor(inputimage, flag),a function that allows to change the

colour space, ()Figure 15),where flag determines the type of conversion.

Figure 15: Change of colorspace from rgb to hsv

• cv2.getPerspectiveTransform(),cv2.warpPerspective():These two func-

tions integrated in OpenCV are used respectively to calculate a 3x3

transformation matrix and to apply this matrix to an input image to

obtain a prospectively transformed an output image, an example is

shown in Figure 16.

33

These functions have been used to eliminate the error of perspective due

to the inclination of the camera with respect to the game plan, it was

essential to correct this error for a correct reading of the coordinates

provided by the tracking algorithm [8].

Figure 16: An example of perspective transformation

• cv2.inRange, a function the allows to perform a threshold of image in

a chosen range, an example is shown in Figure 17

Figure 17: An example of how to extract blue object alone

• cv2.erode(), cv2.dilate(), cv2.morphologyEx(): These functions have

been used to eliminate the error of perspective due to the inclination

of the camera with respect to the game plan, it was essential to cor-

rect this error for a correct reading of the coordinates provided by the

tracking algorithm.

34

These three functions were used to implement some morphological

transformations on the frames acquired by the RGB camera. Mor-

phological transformations are particular transformations that act on

the shape of the image, usually they are used on binary images, so in

this thesis they are applied after using the treshold function, an exam-

ple of erosion e dilatation is shown in Figure 18. The idea at the base

is to eliminate all the noises due to the ambient light conditions, both

artificial (lamps and the light emitted by the projector) and the natu-

ral ones (mainly due to the sun), these could generate blobs, these are

nothing more than agglomerates of pixels that could distort or disturb

the tracking algorithm.

To achieve this, a special technique called erosion followed by dilation is

used. The basic idea is very simple, all the blobs perceived by the image

treshold are eroded, including the blob that could be the object one

would like to trace, in this way all the smaller blobs simply disappear

leaving only the spot of pixels larger than corresponds to our object,

then obviously the expansion has reduced the size of our object to be

traced, the dilation function is applied which is the opposite of the

erosion function to return the object traced to its original dimensions,

example in Figure 19.

35

Figure 18: An example of erosion and dilatation

Figure 19: An example of how to use morphological transformations to elim-
inate noise [11]

36

3.5 Projector

Figure 20: Optoma GT760 projector

The projector used is Optoma GT760, Figure 20, The projector uses the

Digital Light Processing (DLP) technologies to project a high quality imag-

ines necessary to implement a robotic game. It have also an incorporate

loud-speaker but is not used in this work.

In this works it is used only a part of projection area, that is put in

evidence by a black cardboard with dimensions 100x70 cm put on a table,

since the small dimension of the robot suggests a little scale game.

3.6 Microsoft Kinect V2

Figure 21: Kinect V2

37

The Kinect (Figure 21) allows to interact with the game using the body, based

on the use of gesture and voice. The Kinect is involved in a lot of different

fields from computer vision robotic and biomedical applications. After the

launch of SDK on June 2016, a large community is formed, permitting to use

Kinect not only as game devices but also a measurement system. Kinect,

using a RGB camera, an IR emitter and an IR camera, can acquire a depth

and visual imagines extending these technologies to low cost project.

However The Kinect used in this thesis is Kinect for Windows 2.0 (hence

the code, V2) especially developed for Windows operating system. The SDK

are available from summer 2014,enables developers to create applications that

support gesture and voice recognition, using Kinect V2 sensor technology on

computers running Windows 8,The Kinect for Windows Software Develop-

ment Kit (SDK) 2.0 Windows 8.1, and Windows Embedded Standard 8. In

this work it is only used RGB camera, employed to perform cubes tracking by

colour, without support from official SDK but using OpenCV library. Kinect

V2 can acquire RGB frames at resolutions of 1920x1080 and GBRA format

at a speed of 30 fps in case of good visibility conditions, otherwise it drops

15 fps to give more exposure time to the camera.

Since the place and resolution of each sensor is different, the data is

obtained as a value expressed in the coordinate system of each sensor. When

using data obtained from different sensors at the same time, it is necessary

to convert the coordinates to match.

Kinect V2 has 3 coordinate systems, ColorSpace, DepthSpace, and Cam-

eraSpace, (Figure 22). There are 3 data types ColorSpacePoint, DepthSpace-

38

Point, and CameraSpacePoint representing coordinates in each coordinate

system [12].

Figure 22: Kinect V2, different coordinates spaces [12]

39

3.7 Cozmo

Figure 23: Cozmo robot

As said, Cozmo is a palm-sized robot developed by Anki with personality

inspired by animation film wall-E [6](shown in Figure 23), is a smartphone

controlled robot, that means to interact with robot or launch SDK model

you need a smartphone with installed the official application still created by

Anki .

Cozmo was designed to interact with both the external environment and

the people around him through a display that shows two large blue eyes and

through sounds. Thanks to these two instruments, Cozmo is capable of great

expressiveness making it look more like a pet than a toy robot. Anki has

in fact hired a Pixar animator to participate in the creation of Cozmo, the

result is a robot with an extraordinarily similar personality to the WALL-E

robot from the famous animated film [7].

40

Cozmo’s built-in camera also lets it remember faces and recite names.

It comes with three cubes that carry sensors and lighting that are used in

various games and also let Cozmo plan paths. Cozmo has several sensors:

• camera;

• cliff sensor;

• gyro;

• accelerometer.

Each of these sensors can be accessed through the dedicated SDK. Cozmo also

has an advanced location system based on visual markers and the odometry

of the robot, where the origin is initial Place of the robot and is reset every

time the robot is moved or shaken.

Included with the robot are also sold three cubes, each including an ac-

celerometer, Cozmo is able to recognize them through the integrated camera

(each cube has a unique identifier), and to save their Place in an integrated

map.

The user can either interact directly or with the robot or through its

three cubes, Cozmo connects to its cubes through radio waves and is able to

understand if and which cube is tapped or shaken. This type of interaction

already offers multiple possibilities to create games only with the hardware

present in Cozmo; Anki through the application already gives the possibility

to challenge Cozmo in pre-integrated games(like in Figure 24), ranging from

races of reactivity, memory or quizzes to prizes.

41

Figure 24: Cozmo plays against a human player

There is also the possibility of creating your own games and downloading

the games created by the user community through the application, in this

way a considerable longevity of the product is guaranteed both for users who

do not wish to program and for those who want to try to program a robot

already having many tools available.

42

4 Design

In this work the difficulty encountered in devising the game was to combine

the characteristics of a robotic game with a projected environment, that is

to integrate well the possibilities offered by the virtual environment, putting

the robot as protagonist of the action.

The original idea was based on the famous game Pong. Players using

the cubes as physical objects must hit a virtual ball, but unlike the original

game players do not get points by scoring on the opposing side of the field,

but they must hit the robot, that it moves to the centre of the game’s field

randomly, in a specific area, for example its back.

In this version the condition of interaction between physical and digital

was respected, but after a few tests it was immediately noticed that the role

of the robot was not predominant in the game since the players were too

concentrated on the ball and did not perceive the robot as a fundamental

part of the game. It was therefore decided to change the paradigm of the

game: instead of putting the robot as physical goal of the game, it was put

in the role of active arbiter, after which the rules of the game implemented

in the thesis will be explained in detail.

4.1 Game’s rules

At the beginning of the game the robot is placed in the upper part in the

center of the field, while the two players take their seats at both ends, each

of the two players holding a cube, this will be used as a racket to hit the

43

virtual ball.

The game is divided into rounds; at the beginning of each round the robot

moves to the center of the field and speaks a series of two colours, randomly

choosing between green, red and blue.

Once the series is said the robot returns to the end of the playing field

and will start the challenge, at this point a virtual ball materializes in the

center of the field and it will start to move randomly or towards the player

on the right or towards the player to the left.

Players must intercept the ball by appropriately setting the LEDs of the

cubes following the series of colours enunciated by Cozmo; for example if

Cozmo says red and blue, the first player to receive the ball must set his

red cube and intercept the ball, while the second player must instead hit the

ball with the blue cube. The fact that ball can move both to the right and

to the left at beginning of each round, forces players to memorize the entire

sequence of colours instead of only half. To increase the robot’s participation

even during the game, the players are given the opportunity to ask for a

suggestion from the robot, when a player asks for help the ball stops, the

robot indicates to the player the exact colour of the sequence, player sets the

right colour and the ball moves again, each player during the game has five

hints that he can spend at will.

44

Figure 25: The players are listening to colours sequence pronounced by the
robot

The objective of the game is to test how the interaction with tangible

objects modifies the perception of the game and the robot. For this reason

three different versions of the same game have been developed, in which it

changes how the players choose colours for their cubes and as how one asks for

the help of the robot; a different playing field was designed for each version,

each functional for the version implemented.

4.2 Place version

In this version, specific areas for each player have been designed on the

playing field (Figure 26). The player to ask for help or change the colour

45

must simply move the cube to the correct playing area.

In the case of a suggestion request, the robot moves in front of the correct

colour area, says the colour and returns to its place.

Figure 26: Place version

4.3 Tap version

In this version the player to change the stage colour on the cube once and

to ask for the suggestion stop twice consecutively, the playfield is shown in

Figure 27 .

In the case of a request for help, the robot turns to the specially designed

virtual cube, says the correct colour and simulates tapping the virtual cube,

the cube lights up with the correct colour to indicate to the player the exact

colour to be set.

46

Figure 27: Tap version

4.4 Mid-air version

In this version the player to change the colour brings the cube in mid-air

always inside the playing area shown in Figure 28, reverses the top of the

cube with a rotation of at least ninety degrees and then brings it back to the

original Place, the cube in this way change colour; to ask for help the player

instead vigorously shakes the cube along its vertical axis.

In the case of a request for help, the robot turns to the player and simply

tells the player the right colour.

47

Figure 28: Mid-air version

48

5 Implementation

In the implementation of the game a computer was therefore used to manage

both the unity environment and the logic of the robot. A mobile phone with

Android operating system connected to the computer via USB and to the

Robot via Wifi; the smartphone serves as a bridge between the robot and

the Python code that runs on the computer which uses the robot’s SDKs.

The projection and the tracking are performed from above with respect

to the playing area, and therefore it is necessary to Place the projector and

the Kinect in an elevated place with respect to the playing surface, at the

centre of the projection area was placed a table with above it a black card

measuring one meter by seventy to better define the playing field. After-

wards, the playing area is projected onto the black cardboard so that they

are overlapped.

As already mentioned, a projector, a Kinect and the Cozmo robot were

also used. As already mentioned, the game was developed in three different

versions, each of these has its own Python code and scene in Unity.

The first problem to be solved is the integration of the different technolo-

gies used, in fact the robot SDKs are written in Python language, while the

Kinect and unity have C# as their main language. It was therefore decided

to create two different scripts, one in Python code that manages the logic

of the robot and tracking using the Kinect (with the help of the Opencv

library) and the second script in the Unity environment that manages the

game engine and the graphic part.

For the communication between the two processes it was decided to use a

49

socket. The library used is ZeroMQ. To start the application it is necessary

to manually start the Unity and the Python processes.

starts, the following steps are executed:

• The socket is created on the Python side, which is bound in a certain

channel,the socket waits until it receives the order from Unity.

• When the application starts in Unity another socket is created, that

communicates with the Python process, when the connection is suc-

cessful established, Unity sends the start command to Python, after

which it opens two threads, a secondary thread management socket,

and a main one that takes care of all the integrated functions in Unity

and the game code.

• When the process written in Python receives the start command from

Unity, it opens three threads each with a specific role, the first deals

with the logic of the robot itself, the second manages tracking through

the Kinect while the last one is the thread that handles communication

with Unity via the socket.

• During the course of the game all the threads run independently of one

another, the communication between the threads was managed through

the global variables both in Unity and in Python.

• When the game ends, the event is recorded from the Unity environment,

which before terminating the process and closing the threads sends a

notification to Python, which in turn will close all the threads and

terminate the application correctly.

50

5.1 General architecture

Figure 29: Architecture of the gaming system

The setup included Cozmo, two cubes, a RGB camera, a projector, an An-

droid smartphone and a PC running Windows 10.The projector was mounted

near the ceiling in order to project the image on the table from the top. To

improve the quality of the projected image, the table was covered using a

black cardboard of size 100 x 65cm, which is also the size of the play surface.

In the immediate nearby of the projector it was mounted a Microsoft Kinect

with the same orientation.

The setup of the game system is shown in Figure 30.

From the game architecture observed in the Figure 29 we can note three

51

main elements:

The first is the Android operating system which, connected to the com-

puter; it has the task of receiving and executing data commands to the

Robot. In fact the SDK protocol that allows the robot to be controlled is

implemented in the application developed by Anki. The cubes are connected

through radio waves to Cozmo itself.

In the Python block, the program that controls the robot and the program

that manages the control of the cubes is written, such as the colour and all

the events that affect the activity of the cubes in the system. In the Python

module, the TUI, Tracking User Interface is also implemented. , which is the

algorithm that deals with the tracking and location of the cubes in the game

field.

All the sub-modules converge in the IPC Inter Process Communication,

implemented with the use of a socket. The IPC is used to connect the Python

module with the game engine implemented in Unity. The game engine takes

care of all the virtual elements and of the physics and management of the

game logic.

52

Figure 30: Setup of the gaming system

5.2 Tracking

The tracking algorithm was implemented in Python with the help of the

OpenCV library. To extract data from the Kinect in Python environment

it is used the NtKinect wrapper. Each frame acquired by Kinect (Figure

31) is transformed into a numpy array, a data structure compatible with

the OpenCV library. The following operations are performed for each frame

acquired.

53

Figure 31: Frame acquired by Kinect

• A perspective transformation is applied to select the playing field and

eliminate any errors of perspective due to the not exactly perpendicular

placeing of the Kinect with respect to the playing surface, to carry out

the transformation it is necessary to select 4 points corresponding to

the corners of the playing field in the image of inputs, of which 3 must

not be collinear. The output frame is shown in Figure 32.

• At this stage a transformation matrix is calculated and it is applied to

each point of the game surface. The output image that represents the

playing field is then processed.

54

Figure 32: Perspective transformation

• The playground is obtained, divided in two ROI (region of interest)

which correspond to the two portions of the field destined to the players.

In each portion of the field the tracking algorithm is applied.

• A change of colorspace from RGB to HSV is performed, recommended

to find the correct range of values more easily.

• A treshold of the HSV image is performed in the green range.

• A morphological transformation of erosion is carried out followed by

dilation to eliminate any noise. The result is shown in Figure 33.

55

Figure 33: Final mask

• The object is extracted and the countour is traced (Figure 34). Among

the possible countours, the one with the largest area is chosen. The

center of countour that corresponds to the center of traced cube is then

found. Each coordinate of the cube must be scaled so that it can be

transferred correctly into the coordinate space in Unity.

Figure 34: The cubes are tracked

• To do this during the setup phase the projection of the playing field

was made to coincide with the black card, which represents our physical

play area. The unity of origin placed in the corner was made to coincide

56

physically lower left with the corner of the black card always placed in

the left corner, which also represents the origin of the coordinates in the

space of the frame. Once the two origins have coincided, it is sufficient

to specifically scale the coordinates obtained from the tracing according

to the equation:

Xu = Ximg ∗Xf (1)

Yu = Yimg ∗ Yf (2)

In the above equations, Xf and Yf are the scale factors obtained:

Xf = Widthu/Widthimg (3)

Yf = Heightu/Heightimg (4)

Then the ratio of the quantities in Unity and in the frame is calculated.

At this point the coordinates are sent to Unity through the socket,

which are used to move two virtual objects (the counterparts of the

cubes) in relation to the displacements of the real cubes.

It was decided not to trace the robot because it has a sufficiently precise

autonomous localization system. In fact the robot sets its origin at the

starting point and sets its own Cartesian plane; the robot will therefore move

57

coherently with its own reference system, for this reason it is important to

place the robot correctly in its origin point.

5.3 Cozmo’s thread

The intelligence of the robot is implemented in a new thread using dedicated

SDKs. The program performs the following actions.

• Cozmo acquires the cubes through the appropriate command provided

by the SDK, Cozmo and the cubes communicate via radio waves, reads

the identifiers of each cube and sets the event handlers with their re-

spective callback functions

• Cozmo enters a cycle that has exit condition the end of the game.

Always through the functions provided by the SDK Cozmo instructs

the players that a new game has started, with a function implemented

in Python, it randomly generates two colours between red blue and

green and then it communicates to players the chosen colours.

• Cozmo enters a further nested cycle that has as its exit condition the

end of each round, in this cycle Cozmo cross-checks the information

shared with Unity.

• In this cycle Cozmo checks each bounce of the ball on the cube (infor-

mation that comes from unity) and checks that the cube is setted with

the correct colour. It also checks the event ”Suggestion” required by

the players”.

58

• Depending on how the round ends, that means if the players have

successfully completed the entire colour sequence or a player has made a

mistake, Cozmo gives different feedback to players: it could be cheerful

/ happy if the players have completed the round correctly, or sad /

angry if the players have made a mistake.

• At this moment Cozmo checks the lives of the players: in case one of

the two players has ended the lives, Cozmo announces the winner and

the game ends, otherwise Cozmo will start another round adding two

more colours.

5.4 Gestures

As already stated, three different versions have been implemented. Each

version differs from the other mainly in how the player changes colour to his

cube and how the robot provides hints.

5.4.1 Place version

In this version the player changes colour and asks for help placing the cube

in a specific play area. For each area designated in Unity, a box collider

was created. When the virtual cube enters the collider box, Unity calls a

function that sends information through the socket to Python code. When

that changes the designated cube to the correct colour. An example is shown

in Figure 35.

59

Figure 35: An example how to change colour in Place version

5.4.2 Tap version

In the Tap version, the Python code when a cube is tapped, it calls a function

that triggers a delay of three tenths of a second ; if during this time another

tap event is received, it is perceived as a suggestion request, otherwise the

cube will simply change colour. An example is shown in Figure 36. One

more condition has been added to prevent false positive, the condition is

that the cube is stopped. The information are provided by the values of

accelerometers present in the cubes.

Figure 36: An example how to change colour in Tap version

60

5.4.3 Mid-air version

For the Mid-air version, it was decided to assign the colour change to the

Kinect tracking. It measured the area variation of each cube, if the area of

a given cube drops below a certain value (here set empirically to 50) is per-

ceived as an attempt to change colour, once the area of the cube has returned

to the standard value (> 200 also empirically measured) the code will change

colour, furthermore it is necessary that the cube is in motion to avoid false

positives. The example of gesture is shown in Figure 37. For the call of the

suggestion, it was refereed to the internal values of the accelerometers of the

cube; if the acceleration on the z axis is greater than 100 and the acceleration

on the x and y axes are minor than 70, then the suggestion is called (these

values have also been found empirically).

Figure 37: An example how to change colour in Mid-air version

61

5.5 Socket

Figure 38: Reply-Request Socket

The socket has been implemented with a reply-request structure as shown

in the Figure 38, where the Unity client asks for the status of the robot

and tracking to the Python server. The communication protocol was im-

plemented in a way that the processes could exchange strings with variable

number of characters, Every Unity request expects a precise type of response.

The socket runs in a dedicated thread because it is a self-blocking system,

which is why it was important to implement a threads structure so that

other processes could continue to run even when the socket is waiting for the

response. The reply-request pattern was chosen because it allowed the im-

plementation of a single socket, since it allows a bidirectional communication

between the two processes.

In general the socket has the tasks reported belows.

• It must send the coordinates of the cubes from the tracking system to

the Python environment.

62

• It must send to the Python environment the collision events between

the cubes and the ball. they are fundamental for the correct progress of

the game,but they are also necessary to permit the system to block the

request of suggestion for the last player to hit the ball, thus avoiding

further false positives.

• The socket sends the information if the ball starts to move either to

the right player or to the left player, this information is necessary as

the system must know which of the two players has the permission to

request the suggestion.

• The communication protocol foresees a special command that allows

to invert the communication: instead of Unity sending a command or

request to the Python environment, Unity sends an instruction to the

Python environment that requires a state, in this way it is Python

which sends a command to the Unity environment.

• Python sends Unity the command to instantiate the ball, it is placed

by Unity in the centre of the field, then, when Cozmo has played the

”go ball” animation, the socket sends the command to move the ball.

• Python sends the end-of-round status, that is, if the players have suc-

cessfully completed the entire color sequence or an error has occurred

by one of the two players. When Unity received the message it destroys

the ball and set up a different animation depending on the positive or

negative end of the round.

63

• Python sends the command to start the suggestion and the end sug-

gestion, activated when a player makes the gesture of requesting help

from the robot. When Unity receives the command start suggestion,

it blocks the ball, to restart it once the command end suggestion was

sent.

• Only for the tap version: Python version, when a suggestion is required

from one of the two players, it sends Unity the colour information

suggested, Unity instantiate the virtual cube of the exact colour as

required by the rules of the game.

• Only for the Place version: This is the only version where the colour

information chosen for the cubes does not come from the Python Envi-

ronment but from Unity, since, as already specified in the rules,different

zones have been created in the virtual environment , these are provided

with a collider box that when triggered Unity sends the command to

Pyton through the socket, which will light the cube with the chosen

colour.

• The last command that Unity receives from Python is the end game

command. It is called when the lives of one of the two players reach

zero, Unity before ending each process send the end command to Python,

which once received , it closes all threads opened using a flag variable.

64

5.6 Game’s elements

The elements of the game are all those elements that have been created or

used to implement the thesis work, as the ”Phygital” paradigm teaches, they

are both virtual and physical, they must interact intelligently with each other

to create the sense of control that the player has over the digital environment.

Figure 39: Unity editor interface

The physical objects in the game are the cubes and the robot, the digital

objects are all the objects that were created in the Unity environment as

shown in the Figure 39.

5.6.1 Socket object

The socket in Unity object was created to receive informations from the

python environment and to sort theme to all other objects in the unity en-

vironment, it is not perceived as a ”tangible” object. In fact, among its

65

properties it only has the C# script that defines the socket. The script has a

method that instantiated a new thread using the awake function integrated

in Unity, and when the application starts it launches a method that starts

the thread, when the object is destroyed, that happens at the end of the

game, the program sends to python the exit command and correctly closes

the thread.

5.6.2 Walls

Figure 40: Wall sprite

The walls (Figure 40) are the simplest elements of the game but not for

this reason less fundamental. In fact they allow to delimit the playing field

imposing to the ball to exit from the designed area. The attributes that they

possess are the Sprite renderer that allows the object to be visible in the

field of play, and a non-triggered box collider, which means, according to the

Unity logic, that it acts as a physical object.It follows the laws of physics

already implemented in the unity graphics engine.

66

5.6.3 Dotted-line

Figure 41: Dotted-line sprite

The dotted (Figure 41) line has a simple sprite renderer. Indeed its role is

simply to provide a visual aid to the players to divide the field, it is simply

an image and does not interact in any way with the other objects.

5.6.4 Ball

Figure 42: Ball sprite

The ball in unity is defined as prefab (Figure 42). Which according to the

unity logic is an object that is instated on demand, is therefore not present

at the start of the application but is created when called and subsequently

destroyed when it has terminated its task. A cube shape was chosen to follow

the idea of the original 80s pong game. The attributes of the ball are:

• The sprite renderer has the function to make the ball visible in the

playing field.

67

• The box collider that allows the ball to react with the other objects in

the game. The box collider also has a material that has been called

for simplicity ”ball material” useful for controlling the bounce factor of

the ball.

• The rigid body allows to simulated a real rigid body subjected to

physic’s law. The gravity factor was set equal to zero, which means

that the ball is not subject to gravity, also the friction has been set

to zero, otherwise the ball would have been pruned and stopped after

having covered a certain space, and the rotation with respect to the z

axis is blocked.

• The script as previously mentioned has a very important role for the

logic of the game. When the ball is instantiated, the start function is

called, in which the ball is tied with the high game elements, which are

the advisory zones and the socket. This operation is necessary to allow

the scripts to share variables within the editor.

– the ”goball” method throws the ball to the right or to the left

at the chosen speed which will remain constant throughout the

game.

– The OnCollisionEnter2D function is a function integrated in Unity

that is triggered every time a collision occurs, depending on the

object hit the ball calls a different function, and sends the infor-

mation to the socket.

– The ball can instantiate two types of explosions, a positive one,

68

shown in Figure 43, that represents the end of the round without

errors while the second negative (Figure 44) that is instantiate

when an error is made by one of the two players (or the back wall

was hit, or it was wrong colour in the sequence)

Figure 43: Fireworks explosion, in case of positive end

Figure 44: Red explosion, in case of negative end

– The hitfactor function influences the bounce of the ball depending

on how it hits the racket (Figure 45), following the rules of the

original pong; that are: if the racket hits the ball at the top corner,

then it should bounce off towards our top border. If the racket

hits the ball at the center, then it should bounce off towards the

right, and not up or down at all. If the racket hits the ball at

the bottom corner, then it should bounce off towards the bottom

border.

69

Figure 45: Hit factor on the racket

– The ball must also change state when a player calls the hint, the

sprite is shown in Figure 46. The ball is stopped to allow the robot

to have enough time to suggest to the player.Since the ball remains

immobile, it is important that the player has visual feedback on

the ball to inform him that his request for suggestion has been

successful.

Figure 46: The ball stopped

The code, then when the suggestion request event is recorded,

saves in a vector the direction and the speed of the ball. In this

way, the ball can resume at the same speed and direction as when

it was stopped.

70

5.6.5 Colours zone

The Colours zones, (Figures 47,48,49) are present only in the Place version,

they must send the information to the Python code through the socket. To

do this, they have been equipped with a triggered collider box, which means

that when they come into contact with a racket of a player, the function

OnTriggerEnter2D sends the message to the socket.

Figure 47: Red zone

Figure 48: Blue zone

Figure 49: Green zone

71

5.6.6 Digital cube

The digital cube (Figure 50) was designed as an aid during the suggestion.

In the tap version, its role is to illuminate the right colour when Cozmo hits

it, thus simulating the behavior of real cubes in the players’ possession.

Figure 50: Digital cube

72

6 Experimental evaluation

In the previous chapters it was discussed the design and implementation of

the thesis. In this chapter it is explained the methodology used to test the

game and the interpretation of the results obtained.

Questionnaires are one of the most common used and simplest tools for

measuring the quality of a system.

Once the game has been implemented, particular attention has been taken

in choosing the questions to ask the players since wrong questions lead to

wrong results.

The questionnaire was then compiled keeping in mind that a game should

be fun, and therefore some of the questions were included to verify the player’s

satisfaction. The remaining questions were developed by keeping in mind the

objective of demonstrating the three hypotheses made before starting the

design steps:

• the use of alternative gestures for interacting with game elements makes

the users feel different levels of control over the game;

• the use of alternative gestures influences the user’s perception of the

game experience;

• the use of alternative gestures does not influence how the player per-

ceives the presence of the robot and its role in the game.

The first hypothesis concerns the usability of the general system. To

test this hypothesis the SUS questionnaire was used. The second and third

73

hypotheses concern respectively how the interaction with tangible objects a

affects the player’s perception and how the use of tangible objects affects the

perception of the robot in the game system. To evaluate these hypotheses

the GEQ (Game Experience Questionnaire) is used.

6.1 Questionnaire

The questionnaire was divided into five parts.

• A cognitive part where is evaluated the player’s previous experiences

regarding the use of both domestic and toy robots,their experience with

augmented reality environments and their experience with video games;

• A part where the player can evaluate the performance of the system

through the SUS (System Usabilty Scale);

• A part where the player is required to evaluate the use of tangible

objects in the game and how the different interacting method in the

different versions has changed their perception of the game system;

• A part that regards the perception that the players had of the robot in

the game system and if their perception of the robot changes according

to the version played;

• At the end, two open questions have been proposed, so that the player

could express his opinion on the game more freely and suggest some

features that could improve the gaming experience or possibly correct

defects found in the system.

74

6.1.1 GEQ, Game Experience Questionnaire

The Game Experience Questionnaire has been developed by Eindhoven uni-

versity of technology. It has a modular structure and consists of:

• the core questionnaire.

• the Social Presence Module.

• the Post-game module.

The GEQ was chosen to evaluate players’ experiences with tangible objects

and with the robot. The first part wants to measure flow, immersion, com-

petence, tension and challenge components. Each of these components is

measured for each version of the game, especially in the part of interaction

with tangible objects. Following are some questions, adapted to the experi-

ence taken into consideration, presented by the questionnaire taken by the

GEQ:

• I felt skilful;

• I enjoyed it;

• I found the game as difficult;

• I found the game challenging;

• I felt bored.

The second part evaluates the psychological aspects of the players’ experience

and the behaviours towards other entities, both virtual and real (such as the

human opponent):

75

• I forgot everything around me;

• I felt frustrated;

• I felt completely absorbed;

• I felt challenged;

• I had to put a lot of effort into it.

The last part regards the post game, and the impressions that the players

had immediately after having finished the game. Then, it evaluates the

immersion of the players in the experience and their general impressions.

Some examples of questions are listed below:

• My actions depended on the other(s) actions;

• I felt revengeful;

• I felt schadenfreude (malicious delight);

• I influenced the mood of the other(s);

• I felt jealous about the other(s).

6.1.2 SUS, System Usability Scale

The definition of ”usability” is the quality of the user experience when using

a product. To measure the usability it is necessary to adopt a standard

method that acts as a unit of measurement for the usability of each tested

system. It is important that the proposed questionnaire covers the following

areas [16]:

76

• effectiveness (the ability of users to complete tasks using the system,

and the quality of the output of those tasks);

• efficiency (the level of resource consumed in performing tasks);

• satisfaction (users’ subjective reactions to using the system).

The SUS was created by John Brooke in 1986 through an experimental

method, the questionnaire consists of 10 questions, the minimum necessary

to cover the 3 areas mentioned above. Ideed a questionnaire too long could

irritate or stress the tester, giving invalid results.The SUS is a likert scale of

10 questions. The questions are:

1. I think that I would like to use this gaming system frequently;

2. I found the gaming system unnecessarily complex;

3. I thought the gaming system was easy to use;

4. I think that I would need the support of a technical person to be able

to use this gaming system;

5. I found the various functions in this gaming system were well inte-

grated;

6. I thought there was too much inconsistency in this gaming system;

7. I would imagine that most people would learn to use this gaming system

very quickly;

8. I found the gaming system very cumbersome to use;

77

9. I needed to learn a lot of things before I could get going with this

gaming system.

The advantages of using the SUS system are many, in fact the system is very

simple to administer and it gives valid result also using few testers.

6.1.3 Scoring SUS

To calculate the SUS score there is a precise mathematical method. The

score goes from 0 to 100 and the average is considered the value of 68. Each

questions’ score contribution will range from 0 to 4. For items 1,3,5,7,and 9

the score contribution is the scale place minus 1. For question 2,4,6,8 and

10, the contribution is 5 minus the scale place. The sum of the scores needs

to be multipled by 2.5 to obtain the overall value of SUS.

6.2 Design of the experiments

In addition to the care taken in drawing up the questionnaire, attention was

also paid to the conduct of the experiments themselves.

It was decided to conduct the experiments in the following method.

• The players were divided into pairs, both players were asked to fill in

the first part of the questionnaire, the one concerning the evaluation of

their previous experiences.

• Both players were explained the rules of the game verbally, no demo

was used.

78

• Players were invited to complete at least one game for each version, in

addition the correct evaluation by the participants of the questionnaire

both players had to ask for the help of the Robot at least once per

game. Otherwise the game was repeated.

• At the end of each game the players were asked to change sides of

playfield.

• Between each test the order in which the players played the different

versions of the game was changed every time. It is logical to assume

that the first version played has an lower average scores than the others,

this is due to the fact that the players still have to get used to the game

system.

6.3 Results

Results were analysed for statistical significance. To this aim, the Kolmogorov-

Smirnov test was first applied to verify whether the distribution of the ele-

ments is a normal distribution and therefore subject to a hypothetical law.

A Pearson correlation analysis was than carried out and the Pearson index

P calculated. The Pearson index is always between 1 and -1:

• if P > 0 the variables are said to be directly related, or positively

correlated;

• if P = 0 the variables are said uncorrelated

79

• if P < 0 the variables are said inversely related, or negatively corre-

lated.

Twenty volunteers participated in the tests with an age between 20 and

29 years, (with an average of 23.35 years). All the volunteers were selected

from university students.

The first part of the questionnaire was used to investigate the previous

experiences of players regarding similar technologies tested in the game. The

results obtained are:

• 63.2% said to play video-games regularly;

• 26.3% said to play video-games few times;

• 84.2% said to have never used these other toy robots;

• 63.2% said to have never used other kinds of service robots;

• 52.6% said to have used hand and body gesture-based control few times;

• 5.3% said to have used hand and body gesture-based control every day;

• 26.3% said to have never used hand and body gesture-based control.

The volunteers proved to be rather expert as regards the use of videogames,

they are inexperienced regarding the use of toy robots, the experience im-

proves regarding to the technologies of hand and body gesture-based control.

80

6.3.1 SUS results

Figure 51: SUS results,variants are reported abbreviated as P (Place),
T(Tap) and MA (Mid-Air)

The score given by the SUS (shown in Figure 51) is quite high for all three

version. The best Place version scores are not surprising: in fact a greater

usability was hypothesized since the Place version allows to change colour

more quickly and there is no way of confusing the gesture to change colours

with the gesture to ask the suggestion.

The disadvantage is that part of the gaming area must be dedicated to

the control zones, thus limiting the game space for the players.

In the last there is the Mid-air version, penalized by the fact that some

players had difficulty in executing the gesture in a correct way, especially in

the first exchanges and in the most agitated phases of the game.

6.3.2 Tangible Interaction

In this section are analysed the results obtained form tangible interaction

part.

81

The results, obtained regarding the opinion of the players if it was easy to

confuse the action of changing colour with that of asking for the suggestion,

are interesting (Figure 52).

Figure 52: variants are reported abbreviated as P (Place), T(Tap) and MA
(Mid-Air)

All the scores are satisfactory, but the results obtained indicate that in the

case of multiple actions to be used with the same object it is not preferable

to use the same repeated gesture (such as double tap) but replace it with a

more natural action and possibly coherent with the action to be taken.

Results reported in Figure 53 show instead the ease with which players

believe they can change colour, as evidenced by the SUS the score of the

Place is the best.

82

Figure 53: variants are reported abbreviated as P (Place), T(Tap) and MA
(Mid-Air)

that are obtained similar results with the action of requesting suggestions

to the robot (Figure 54).

83

Figure 54: variants are reported abbreviated as P (Place), T(Tap) and MA
(Mid-Air)

6.3.3 Robot Interaction

In this part of the questionnaire the interaction with the robot was evaluated.

The results obtained are the same for all three versions, so it is possible to

assume that the perception of the robot does not change depending on the

version played. Anyway, the most significant results were as follows:

• µ = 3.55 is the valuation about the perception of the robot as an

intelligent part of the gaming system;

• µ = 2,9 is the score about the central role of the robot in the game;

• µ = 2,55 is the valuation about the lifelike being of the robot;

• µ = 2,8 is the valuation about the personality of the robot;

84

• µ = 3,8 is the score about the fact that they were able to hit the ball

as they expected;

• µ = 3,7 is the score regarding players’ appreciation of the robot’s move-

ments during the game.

In all versions the robot has been indicated as an intelligent part of the

system, this is a fundamental requirement of a robotic game and it has been

satisfied, furthermore the robot has been evaluated as a central part of the

system and therefore also the goal of making the robot a protagonist of the

game has been reached. In conclusion it can be deduced that the robot was

perceived as a fundamental part of the game in all three versions regardless

of the gesture used to interact with it.

6.3.4 Game experience

About the game experience, the game was judged as satisfactory at stimu-

lating the interest of players.

In all three versions the players found game challenging (µ=3,05) but not

difficult (µ=1,5). This means that despite the simplicity of the rules, the

game is able to provide a motivating challenge that kept the interest of the

players high.

On the other hand,the game having been thought of as a competitive

multiplayer, the game fails to bring out the competitive spirit of the players.

In fact, to the question ”What I did affected what the other(s) did” the

response rate is µ = 2,4 which indicates that the players did not pay much

attention to the opponent. Also the question ”I felt schadenfreude (malicious

85

delight)” which is the feeling that player feels when in a competition, the score

is on average low: µ = 1.2. However, the game was liked by the players in

all three versions with a 3.5 rating.

Players were asked to give their opinion on which version they preferred

most and the winner was the Place version:

• Place version: 55%;

• Tap version: 20%,

• Mid-Air version: 25%.

.

6.3.5 Open questions

At the end of the questionnaire, open questions were proposed to the players

to highlight the aspects they liked in the gaming experience and those still

to be improved. The questions asked were:

• Describe two things you liked the most about the game system/experience;

• Describe two things you would suggest to improve about the game

system/experience.

From the answers to the first question it can be assumed that most of the

players appreciated the role of the robot in the system, so the basic require-

ment regarding the centrality of the robot in the gaming system is confirmed.

86

It was also appreciative of the expressiveness of the robot and the gaming sys-

tem, especially the fact of using physical objects to interact with the system

instead of more traditional control systems like a joystick

Regarding the aspects to be improved the players suggested to increase

the speed of the ball, for example by increasing it at each bounce, or to further

expand the game system, i.e., give a way to recover lives or suggestions.

Moreover they suggested to introduce a more direct physical interaction with

it (e.g., “by giving high five for winning feedback”).

The learned results show a solid and versatile gaming system suitable for

developing new robotic games.

87

7 Conclusions

The designed game was evaluated in a positive way, so the requirements

to implement a game that follows the PIRGs philosophy can be considered

satisfied.

Players expressed appreciation for using tangible objects instead of a more

traditional joystick, and the role of the robot in the gaming system, both

fundamental requirements for the PIRGs paradigm.

Several experiments were carried out to verify the hypotheses conceived

during the design of the game, later they will be repeated for greater clarity

of exposition.

• the use of alternative gestures for interacting with game elements makes

the users feel different levels of control over the game;

• the use of alternative gestures influences the user’s perception of the

game experience;

• the use of alternative gestures does not influence how the player per-

ceives the presence of the robot and its role in the game.

The first hypothesis could be partially accepted, since SUS results showed

substantial differences in the usability of the three different versions. Re-

garding the control of the game, it has been observed that the players have

shown during the test phase only significant discrepancies between the action

to change the colour of the cubes and the action to request the suggestion

from the robot.

88

The second hypothesis was been rejected because the differences found

in the various versions do not justify a different perception of the game, as

the players have only highlighting the differences in the ease to obtained the

desired colour and to ask the suggestion to the robot.

The third hypothesis could be totally accepted, indeed the robot’s role be-

ing positively evaluated, as the tests clearly show that there is no correlation

between the gesture and the robot perception.

Regarding to the gaming experience, experiments showed that players

have shown a certain interest in the game system that is sufficiently engaging

and challenging but it is necessary to make a note: the game was designed

as a competitive player vs player. However the players’ approach was more

collaborative; there was no perceived competitiveness among the players,

they seemed to be more interested in making the sequence of points as long

as possible rather than beating the opponent. For the candidate’s opinion,

this fact can be attributed to the behaviour of the robot that highlighted

the failures of the players with animations that showed sadness or anger,

while the robot celebrated their successes with expressions of satisfaction or

contentment. This behaviour may have induced the players to ”satisfy” the

robot instead of beating the opponent as is expected in the game system,

leading players to collaborate rather than challenge each other.

89

7.1 Future work

The built game system turned out to be an interesting system (results high-

lighted by the SUS), so the game logic could be expanded following the

suggestions given by the players.

Future work may be focused on increasing the number of testers both to

highlight the positive results obtained and to confirm or definitively reject

the second hypothesis, given that the differences obtained were not sufficient

to confirm it.

It could be also considered the idea of increasing interaction both with

the robot (as suggested by the players) but also with the virtual environment

itself, for example by adding sound feedback for explosions or implementing

an algorithm to recognize voice command.

90

8 Appendix

8.1 Questions

Players are asked to rate each question with a score ranging from 0 to 4 (0:

strongly disagree, 4: strongly agree).

1. How often do you play video games?

2. How often do you use natural interface for hand and body gesture like

Kinect, Leap Motion, etc?

3. How often do you use/interact with toy robots (like Cozmo, Sphero,

etc.)?

4. How often do you use/interact with other kinds of social robots, such

as home robots (like Roomba, etc.).

5. I think that I would like to use this gaming system frequently.

6. I found the gaming system unnecessarily complex.

7. I thought the gaming system was easy to use.

8. I think that I would need the support of a technical person to be able

to use this gaming system.

9. I found the various functions in this gaming system were well inte-

grated.

10. I thought there was too much inconsistency in this gaming system.

91

11. I would imagine that most people would learn to use this gaming system

very quickly.

12. I found the gaming system very cumbersome to use.

13. I needed to learn a lot of things before I could get going with this

gaming system.

14. I could get the colour I wanted.

15. It was easy to get the desired colour.

16. I always get the desired colour.

17. It was easy to request the suggestion from the robot.

18. It was easy to confuse the action of changing colour with the action of

requesting the suggestion.

19. I felt frustrated by the interaction method.

20. The interaction method is pleasant to use.

21. The interaction method works the way I want it to work.

22. I was able to hit the ball as expected.

23. I was always able to determine the Place of the ball in the playing field.

24. I was able to move freely/the way i want in the respect of the play-

ground.

25. I perceived the robot as an intelligent part of the gaming system.

92

26. I perceived the robot as an enemy.

27. In general, I felt the robot presence was crucial for the game.

28. I think the way the robot was acting distracted me from the main goal

of the game.

29. I perceived the reactions of the robot as lifelike (i.e., not artificial).

30. I felt robot has a personality.

31. I felt like the robot was intentionally reacting to my actions.

32. I clearly understood the suggestion provided by the robot when needed.

33. I think the way the robot suggest me the colour was coherent with the

game version.

34. I found the presence of the robot annoying.

35. I liked the way the robot was moving.

36. I clearly understood what the robot was saying.

37. I think that the fact the robot was talking was important for the game

experience.

38. I wold have preferred a different way to provisioning the suggestion

WITH the robot.

39. I wold have preferred a different way to provisioning the suggestion

WITHOUT (instead of) the robot.

93

40. I would have preferred a more direct interaction with the robot (eg.

Touching, hitting, . . .).

41. I felt the robot and me were affectively linked (bonded) each other.

42. I felt disturbing that other players can ask help from the robot.

43. I felt challenged.

44. I found the game as difficult.

45. I enjoyed the game.

46. I felt skillful.

47. I felt bored.

48. I did not have a clear idea of how to achieve a given result.

49. The feedback was clear (lives, winning, etc.).

50. I felt completely absorbed (in the game experience).

51. I felt jealous about the other(s).

52. What the other(s) did affected what I did.

53. I felt revengeful.

54. The other(s) paid close attention to me.

55. I paid close attention to the other(s).

56. What I did affected what the other(s) did.

94

57. When the other(s) was(were) happy, I was happy.

58. I influenced the mood of the other(s).

59. I felt schadenfreude (malicious delight).

60. Overall I liked the game.

61. Overall, indicates which version of the game you preferred.

62. Describe 2 things you liked the most about the game system/experience.

63. Describe 2 things you would suggest to improve about the game sys-

tem/experience.

95

References

[1] Python official site

https://www.python.org/about/

[2] zeroMQ official documentation

http://zeromq.org/intro:read-the-manual

[3] OpenCV official documentation

https://docs.opencv.org/3.4/d1/dfb/intro.html

[4] F. Gabriele Prattico’, Alberto Cannavo’, Junchao Chen and Fabrizio

Lamberti. User Perception of Robot’s Role in Floor Projection-

based Mixed-Reality Robotic Games Dipartimento di Automatica

e Informatica, Politecnico di Torino 2018

[5] Diana Pagliari and Livio Pinto. Calibration of Kinect for Xbox One

and Comparison between the Two Generations of Microsoft

Sensors. National Center for Biotechnology Information, 30 October

2015

[6] Nick Statt. Humanizing smart robots for the masses. The Verge

14 October 2016

[7] Lee Teschler Cozmo Robot, a distant relative of Vector: Tear-

down. Microcontroller Tips, August 10, 2018

[8] OpenCv tutorials,Geometric Transformations of Images

https://docs.opencv.org/3.0-beta/doc/py_tutorials/

96

py_imgproc/py_geometric_transformations/py_geometric_

transformations.html

[9] OpenCv tutorials,Changing Colorspaces

https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_

imgproc/py_colorspaces/py_colorspaces.html

[10] OpenCv tutorials,Morphological Transformations

https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_

imgproc/py_morphological_ops/py_morphological_ops.html

[11] Fabrizio Lamberti, Filippo G. Pratticò, Davide Calandra, Giovanni Pi-

umatti,Federica Bazzano, Thiago R. K. Villani. Robotic Gaming and

User Interaction: Impact of Autonomous Behaviors and Emo-

tional Features. Dipartimento di Automatica e Informatica, Politec-

nico di Torino, Torino 2017

[12] Yoshihisa Nitta. NtKinect: Kinect V2 C++ Programming with

OpenCV on Windows10. Nitta laboratory, Tsuda college, 19 July

2016

[13] Fabrizio Lamberti,Alberto Cannavò, Paolo Pirone. Designing Interac-

tive Robotic Games based on Mixed Reality Technology. IEEE

International Conference on Consumer Electronics (ICCE), Torino Italy

2019.

97

[14] D. Martinoia, D. Calandriello, and A. Bonarini Physically interac-

tive robogames: Definition and design guidelines, Robotics and

Autonomous Systems, vol. 61, no. 8, pp. 739–748, 2013.

[15] F. Gabriele Pratticò, Piero Baldo, Alberto Cannavò, and Fabrizio Lam-

berti. Investigating Tangible User Interaction in Mixed-Reality

Robotic Games. 9th IEEE International Conference on Consumer

Electronics pp. 1-6, Berlin, 2019.

[16] John Brooke. SUS - A quick and dirty usability scale. Usability

evaluation in industry, pp. 189-194, United Kingdom, 1996.

[17] W. IJsselsteijn, Y. De Kort, and K. Poels The game experience ques-

tionnaire. Eindhoven: Technische Universiteit Eindhoven, Eindhoven,

2007.

[18] Andrea Bonarini Francesco Amigoni Tiago Nascimento EwertonLopes.

Learning behaviors and user models to optimise the player’s

experience in robogames. Artificial Intelligence and Robotics Lab-

oratory Department of Electronics, Information and Bioengineering of

Politecnico di Milano, 2018

[19] F. Gabriele Prattico, Alberto Cannavò, Junchao Chen and Fabrizio

Lamberti. User Perception of Robot’s Role in FloorProjection-

based Mixed-Reality Robotic Games. IEEE 23RD International

Symposium on Consumer Technologies, pp. 1-6 , Berlin 2019

98

[20] Fabrizio Lamberti, Davide Calandra, Federica Bazzano,Filippo G. Prat-

tico, Davide M. Destefanis. RobotQuest: A Robotic Game based

on ProjectedMixed Reality and Proximity Interaction. IEEE

Games, Entertainment, Media Conference (GEM), Torino, August

2018.

[21] Sophia Bernazzani. What’s the System Usability Scale (SUS) &

How Can You Use It? Hunspot, November 2018

99

