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Sommario

I movimenti fini sono ampiamente usati in psicologia e neurologia per diagno-
sticare i disordini cerebrali e le malattie neurodegenerative come il Parkinson
e l’Alzheimer [18]. Gli ultimi dieci anni di ricerca hanno prodotto una piat-
taforma solida di test digitalizzati, che permettono di registrare e analizzare
molti parametri di massa che non potrebbero essere osservati a occhio nudo.
Tuttavia l’applicabilità dei test sui movimenti fini per modellare l’avanzare
della malattia rimane una questione aperta. Una delle principali preoccupa-
zioni riguarda l’affidabilità dei risultati prodotti dai test, che per i movimenti
grossolani è stata relativamente ben studiata. Al contrario, i movimenti fini ed
in particolare gli esercizi di disegno e scrittura non hanno ricevuto il mede-
simo livello di attenzione. I risultati prodotti dalla presente tesi descrivono le
relazioni tra differenti feature che si riscontrano nei test dei movimenti fini di
soggetti sani osservati per differenti archi temporali. I modelli ricavati costi-
tuiscono le basi necessarie al fine di conferire maggiore affidabilità ai risultati
dei test.





Abstract

Fine motor tests are widely used in psychology and neurology to diagnose
brain disorders and neurodegenerative diseases like Parkinson’s andAlzheimer
[18]. The last ten years of research have produced a solid platform of digitized
tests, allowing to record and analyze many motion parameters which could
not be observed by the naked eye. Nevertheless, the applicability of the fine
motor tests to model progress of the disease remains an open question. One
of the main concerns is the reliability of the the test results. For the gross mo-
tor motions, the reliability of results is relatively well studied. At the same
time reliability of results for the fine motor motions, and especially for the
drawing and writing tests did not get the same attention. Research results
reported in the present thesis describe the relationship between different fea-
tures occurring in fine motor motions of healthy test subjects observed during
different periods of time. Constructed models constitute the basis required to
have more reliable results.
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Chapter 1

Introduction

The present thesis providing the basis required to apply corrections to the
test result in case of anomalies or cheating by the Parkinson’s disease (PD)
patients. A growing part of human population suffers from a degenerative dis-
order of the central nervous system that mainly affects the motor system (e.g.
PD). Recent studies confirm that in Italy PD affects approximately 500 people
per 100.000, which amounts to more than 320.000 people [1]. These evidences
put Parkinson’s disease on the list of the most common neurodegenerative
disorders. Parkinson’s disease is a progressive nervous system disorder that
affects movement. PD severely affects the quality of life of the patient. There
is no known cure at the moment, but early detection of the disease could
drastically change the development of the illness. Symptoms start gradually,
usually starting with a barely visible tremor in one hand. Tremors are com-
mon, but the disorder also induces rigidity or slowing of movement. The face
may show little or no expression in the early stage of PD. The speech may
become soft or slurred. Symptoms worsen with time passing. Even though
Parkinson’s disease cannot be cured, early diagnosis and proper treatment
may significantly improve the condition [2]. Recent research focuses on gross
and fine motor functions. The present thesis has its attention onto fine mo-
tor analysis. To study fine motor function, the researcher chose handwriting
exercise, because is a complex task which involves a lot of muscles, and high
precision movement. This process is gravely disrupted by PD and for this rea-
son, could be taken as a good biomarker to diagnose the illness. There are
also some results that demonstrated that fatigue, especially mental fatigue,
can affect the performance during the tests [6]. Respective literature shows
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Introduction

that “Luria’s alternating series fine motor tests” permit diagnosis of PD. Ac-
cording to Luria, an intentional movement is the outcome of the planning
process with many levels [3]. It expects a specific goal to be accomplished.
The first stage is the general planning; this level answers the question of why
and how some action should be performed. On the second level, concrete mo-
tion patterns are generated based on the general plan. These motion patterns
are referred to as motion melodies [6]. Motion melodies are the sequences
of motions, ordered in time, which should allow the accomplishment of the
goal. On the third level “orders” are generated in the direction of the spinal
cord. On this level, the melody of the motions is implemented. Digital Luria’s
alternating series test is selected for this purpose. Luria’s alternating series
tests have been used by the medical community for a long time, especially by
neurologists and psychologists. Until the present, all those tests were mainly
conducted with paper and pen. The patient was evaluated by the doctor with
no guarantee on the objectivity of the result not perfect due to human limits.
Digitization of fine motor tests is still in its infancy and needs to gain ac-
ceptance among the medical community. The slow progress may partially be
caused by the conservative nature of the medicine. Nowadays a lot of studies
have been done on the digitalization of different handwriting tests with the
use of touch-screen technology such as drawing star [7], spiral [7], circle [7],
clock [8], and various geometric figures [9]. Other studies have been done on
sentences and character sequences [10].

It is a well-known fact that results of the consequent fine motor testing
may be affected by the adaptation to the test [4]. While this fact is accepted
by the medical community there are very few results available on this sub-
ject. And there is no properly described penalization model. This research
aims to investigate the influence of adaption on the fine motor testing results
in two groups of healthy subjects. Subjects in the first group were tested once
a week and subjects in the second group were tested on a daily basis. It was
demonstrated that weekly testing produces a minor effect on the testing re-
sults whereas it was not possible to construct a penalization model. For those
tested on a daily basis, the results clearly pointed out the following: it is pos-
sible to construct penalization models. Among the subjects, it is possible to
distinguish different subgroups of individuals with respect to the adaptation
patterns. The last finding is in line with the results available in the literature
[4]. The penalization model will constitute the basis required to apply cor-
rections in motor functions caused by anomalies or cheating that can assist
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Introduction

the personnel in the diagnosis of the patient. Also, software developed in the
present research is fully functional and may be used to continue research on
this problem.

The thesis is divided into nine chapters as follows. Chapter 2 introduces all the
relative research. Chapter 3 consists of the background needed to understand
the presented work. Chapter 4 provides a high-level overview of hardware
and software. This chapter also briefly describes the mathematical methods
used in the thesis. Chapter 5 defines features. Chapter 6 formalizes the prob-
lem treated in the present research. Chapter 7 explains the methodology used.
Chapter 8 present the results. Chapters 9 discuss the results and the possible
evolutions of the presented work in the future.
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Chapter 2

Literature overview

According to the vast majority of research papers, “micrographia” is the
most common Parkinson’s disease-specific handwriting and drawing symp-
tom [11, 12].Which consists of a reduction inwriting amplitude. Some authors
[13, 14] divide micrographia into two types. “Consistent” when a uniform re-
duction in letter size is observed, compared to writing before PD was diag-
nosed. The other type is “progressive” when the subject is not able to main-
tain the initial size of characters writing consecutive letters. It is not difficult
to detect Micrographia because researchers deal with the noticeable result of
handwriting. Drawn objects and characters size are easily measured, but are
those measures significant features of PD handwriting? With touch screens
and tablets nowadays technology allows researchers to precisely measure pen
coordinates simultaneously with time, allowing distinguishing of new kine-
matic features of handwriting such as acceleration, duration, velocity, jerk,
slope. Some studies propose new term “dysgraphia” [13] (from prefix “dys” in
medical language “disordered”), to easily explain motor aspects of the condi-
tion: akinesia (absence of power in movements), trembling, rigidity and slow-
ness and their connections with kinematic features.

Recent studies [16, 15] used Apple Pencil stylus with an iPad touch screen
and prove it more than capable of capturing precisely handwriting data. Also,
iPad technology introduces two new measures, altitude and azimuth angles
[16] of the Apple Pencil that may provide more useful features describing PD
handwriting. Even a common smartphone touchscreen has been utilized by
Aghanavesi et al. [17] for spiral drawing tests and successfully obtain kine-
matic features, which contain important symptom information for detecting
and assessing PD coordination. Furthermore, traditional “pen and paper” tests
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Literature overview

should be covered. The vast majority of the studies done in the past were car-
ried out with such a method well. In recent studies, Raudmann et al. [18] uses
pencil and paper tests for writing simple and more complex sentences to un-
derstand how PD handwriting changes from healthy controls (HCs). Research
confirms that the writing of PD patients differs clearly from HCs. Principally
micrographia and slowness in the movements were observed. A diversity of
drawing tasks can be noted in the test methodology. Smits et al. [7] presented
a collection of standardized tasks, which include drawing of spiral, star, circle
and writing of sentence and letters sequence “elelel”. Drotàr et al. [19] con-
ducted several studies [21, 20, 22] adopting a set of handwriting tasks, which
consists of single characters, bi-grams, tri-grams, single words, sentence, and
Archimedean spiral. Letanneux et al. [13] also suggests taking into consid-
eration some aspects while choosing methodology. The scope of the drawing
tests is to focus on a real low level of motor functions so tests were the subject
has to write complex sentences and uncommon terms or also drawing elabo-
rate shapes should be avoided because it implies the cognitive process. Nõmm
et al. [9] proposes digitalized version of “Poppelreuter’s overlapping figures
test”, which is used in psychology and neurology to assess visual perceptual
cortex function [23]. Nackaerts et al. [24] created the “Systematic Screening
of Handwriting Difficulties” test (SOS-test), where subjects were examined
two different times within month period. The patients were invited to copy
as much as possible of a text within 5 minutes with the instruction to write as
neatly and quickly as in daily life. Korner et al. [25], Souillard-Mandar et al.
[25], Brodaty, and Moore [8] examined “Clock Drawing Test” or CDT, where
participants are required to draw the face of a clock, mark in the hours and
then draw the hands to show a defined time. This method had proved its med-
ical efficacy as a screening tool for cognitive disorders, such as Alzheimer’s
and Parkinson’s disease or dementia. In Denmark, CDT is recommended [25]
as a screening method to evaluate renew request of driving license made by
aged people, after their 70th birthday. Abstract shapes and geometric [9], in-
cluding spiral [26] and Luria’s patterns [3], are an immeasurable source of
kinematic features, which help to assess tremor, bradykinesia, and overall dys-
graphia. With sentence and letter sequence writing, features related to micro-
graphia can surely be created [7, 24]. Pinto and Velay [14], Letanneux et al.
[13] validate, that the preponderance of present research identifies the most
significant features for PD handwriting as size, duration, velocity and writing
fluency (variations in velocity, acceleration, and jerk). The features that are
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not associated with micrographia are frequently named kinematic features.
Nonetheless, other feature types can be found in different studies. Drotàr et
al. [21] suggest pressure amounts of the Wacom tablet as good features to be
utilized, whichwere investigated alongwith kinematic features, such as veloc-
ity, acceleration, and duration and manifested notable discrimination power.
Drotàr et al. [20] also successfully used in-air measurements of the Wacom
tablet pen that is able of recording up to 10mm height, analyzing the sub-
ject’s movements linking singular strokes. Moreover, modern research [16]
gets the advantage of new azimuth and latitude angles of iPad pencil for the
CDT test. “Composite Index of Speed and Pen Pressure” or CISP was intro-
duced by Zham et al. [27] and investigate its correlation with UPDRS (The
Unified Parkinson’s Disease rating scale) and pointed out, that CISP of spiral
drawing indeed strongly correlates with UPDRS. The present thesis is related
to a bigger research series at Tallinn University of Technology, which exam-
ines human handwriting and drawing. Previous works involve: “Quantitative
analysis of the kinematic features for the Luria’s alternating series test” [3, 28]
and “Digital Clock Drawing Test Implementation and Analysis” [16].
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Chapter 3

Background

Recent studies determine that PD affects the amount and smoothness of
the human motions [30]. The changes in amount and smoothness of the mo-
tion are reflected by the values of features introduced in section 5.2. Luria’s
alternating series tests is a known technique [3, 29] designed especially to
expose changes caused by neurological disorders on every phase of motion,
execution and planning during handwriting exercise.

3.1 Luria’s tests
According to Luria’s research [29], human motor function, is the result of a

complex multilevel procedure. Each complex motion requires several phases:

1. Motion Planning Phase: on this level, decision to take certain ac-
tion is made.

2. Motion Pattern Generation: on the second level detailed motion
pattern is generated. Motion pattern can also be described as a series of
actions ordered in time. These motion patterns are referred to as motion
melodies [3].

3. Motion Execution Phase: motion melody is being implemented
when melodies are translated in signals to the spinal cord.
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Background

3.1.1 Test types
Luria studies lead a battery of different alternating series tests, which in-

volve the repetition of a pattern. Luria’s alternating series have different draw-
ing patterns. In this research, the ‘PL’ pattern was selected. The explanation
behind such naming is in the pattern which resembles the Greek letters Pi (Π)
and Lambda (Λ).
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Figure 3.1. Pattern PL

For the scope of the present thesis the following tests were chosen:

• Lines Test: require tested subject to draw three straight lines on the
screen. Test is needed purely to have a reference on the amount of pres-
sure used by the tested individual. The test was kept to preserve con-
sistency with other studies and give the possibility for others to use the
datasets collected.

• Spiral Test: there are multiples way to conduct this test. The one
chosen require tested subject to draw a spiral from outside to the inner
part, staying between the border of a displayed pattern reference image.
This test was kept because it is very popular in this field of research [7]
and is helpful for comparison with the other results available in the lit-
erature.

• ΠΛ Alternating Series Tests:

1. Continue Exercise: requires the tested subject to continue draw-
ing a pattern from a few visible segments. This is the most difficult
task both motion execution and complex planning processes are re-
quired. This may cause difficulties for healthy subjects, since refer-
ence drawing is not fully shown, possible borders of the required pat-
tern are not obvious. This exercise requires the subject to switch be-
tween two different activities. Difficulties in the shifting of cognitive

18



3.1 – Luria’s tests

sets and perseverative behaviour have been shown to be part of the
neuropsychology of Parkinson’s disease.

25 50 75 100 125 150 175 200
x

75

70

65
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Tested subject

Figure 3.2. PL Continue example

2. Trace Exercise: requires the tested subject to trace the drawing
pattern of the reference image with the stylus. This is the task that
requires only the motion execution phase without complex planning.
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Figure 3.3. PL Trace example
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Chapter 4

Experimental settings

4.1 Hardware
Apple iPad Pro 9.7 (2016 model) and Apple Pencil used for drawing data

acquisition. The iPad Pro sample rate with the Apple Pencil is 240 points per
second.

4.2 Software
To collect the testing data, a special application previously developed in our

research group was used, which is named MeDiag Medical Diagnosis. This
custom iOS application was developed with the Swift programming language
and Xcode IDE (integrated development environment). The application saves
acquired data in JSON format and sends them to a remote back-end service.
MeDiag provides the practitioner with the possibility to choose from a battery
of different tests, and test the subject affected by PD.

4.2.1 Data description
The data format is JSON. Each JSON file has a specific name and collection

of fields, filled with meta-information about corresponding drawing, such as
{patientId, session, time, type} and drawing data, which is a list
of points. Every point is a vector of {x, y, t, p, a, l}, where:

• x, y - coordinates,
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• t - time stamp,

• p - pressure,

• a, l - angles of altitude and latitude.

A sample of a JSON file of analysed data is represented below:

{
”data”:[

[
{

”p”:0.333333,
”l”:1.096309,
”y”:174.293,
”x”:155.9844,
”a”:1.112797,
”t”:577968966.922705

},
{

...
}

]
],
”hand”:”M”,
”time”:”2019-04-15 10:56:06 +0000”,
”patientId”:”subject_XX”,
”type”:”lines”

}

22



4.3 – Research and development

4.2.2 Data acquisition
The data had been collected on a weekly and daily basis. The weekly col-

lection counts ≈ 20 subjects between 18 and 30 years old and covers 8 weeks.
The daily collection counts ≈ 10 subjects between 18 and 40 years old and
covers 5 days. Every session the subject was requested to sit in a comfortable
position and to complete four exercises. The following table shows how the
values of every test were stored in matrix form:

Table 4.1. Test values table

t x y p a l
577968966.922705 155.9844 174.293 0.333333 1.112797 1.096309

… … … … … …

4.3 Research and development
Research, analysis and the algorithm was performed using the Python pro-

gramming language and Spyder IDE, both included in the Anaconda Suite that
is a free and open-source distribution of Python, that aims to simplify pack-
age management and deployment [32]. The following open-source Python
libraries were used to perform this research:

• Json, NumPy and Pandas: for data reading, storage and manipulation

• Matplotlib: for figure plotting

• SciPy: for feature generation and statistical analysis

• Descartes: for feature generation

• Scikit-learn: for training and validation of linear regression models

• Statistics: to compute the standard deviation

• Shapely: for feature generation

• Statsmodels: for models building
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The special software developed to process the acquired data for the present
research is capable of:

• Data extraction from JSON files

The extracted data are encapsulated in a Pandas DataFrame

• Features Extraction

From the collected data a sequence of operations are made to obtain
numeric features, for more details refer to section 5.1

• Statistical analysis on features

Different statistical tests are made on the extracted features, for more
details refer to sections 4.4.1 and 6.1

• Feature filtering

On the base of statistical tests results a ranking of the features is done

• Model building

Backward feature elimination to build the model is applied, for more
details refer to sections 4.4.2 and 6.2

• Plotting of all the obtained results

To favourite a wide view of the results plots are produced, for more
details refer to chapter 7

4.4 Mathematical method
This section provides a brief overview of the knowledge required to un-

derstand the workflow of the thesis. It is not intended to provide a complete
summary of the used mathematical methods. To fully understand these con-
cepts please refer to the cited books.

4.4.1 Statistical one population sample test
The one-sample t-test or one sample population test is used to compare a

single sample mean to a specified constant hypothesized to be the population
mean [35]. In the present research, the value used for the constant is zero
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4.4 – Mathematical method

which will indicate whether any change occurred between the two instant of
time points for the original measured features, or else the population at the
beginning and the end of the experiment. The one-sample t-test is a para-
metric test that should be used when you have a small sample of the whole
population. If the mean change score is not significantly different from zero,
no significant change occurred. The smaller is the p-value more significant is
the change occurred.

The following analysis were conduced using the package
scipy.stats.ttest_1samp() [34].

4.4.2 Linear regression
Linear regression is a linear method to modelling the relationship between

dependent variable and one or more independent variables (explanatory vari-
ables). In linear regression, the relationships are modelled using linear predic-
tor functions whose unknown model parameters are estimated from the data.
Such models are called linear models. The case of one explanatory variable is
called simple linear regression. [36].

The model of linear regression is represented by the following equation:

𝑦𝑖 = 𝛽0 + 𝛽𝑖,1𝑥𝑖,1 + 𝛽𝑖,2𝑥𝑖,2 + ... + 𝛽𝑖,𝑛𝑥𝑖,𝑛 + 𝜖

Where:

• 𝑦𝑖 variable called the regressand, endogenous variable, response variable,
measured variable, criterion variable, or dependent variable.

• 𝛽0 is the intercept term.

• 𝑥𝑖 are fixed values chosen prior to observing the dependent variable.

• 𝜖 is called the error term, disturbance term, or sometimes noise (in con-
trast with the ”signal” provided by the rest of the model).

To reduce the error 𝜖 linear regression models are often fitted using the least
squares approach. The equation that we want to minimize is:

∑𝑛
𝑖=1(𝑦𝑖 − 𝑦̂𝑖)2

Where:

• 𝑦𝑖 is the true value of the observation i.
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• ̂𝑦𝑖 is the estimated value of the observation i.

So we should minimize the following term:

∑𝑛
𝑖=1(𝑦𝑖 − (𝛽0 + 𝛽𝑖,1𝑥𝑖,1 + ... + 𝛽𝑖,𝑛𝑥𝑖,𝑛 + 𝜖))2

solving the system to find 𝛽0, ..., 𝛽𝑛, called regression coefficients.

Figure 4.1. Least squares error approach

The following analysis were conduced using the package statsmodels [37].

4.4.3 Cross-validation
Cross-validation is one of many model validation techniques for assessing

how the results of a statistical analysis will generalize to an independent data
set. It is mainly used in settings where the goal is prediction, and one wants
to estimate how accurately a predictive model will perform in practice. In
a prediction problem, a model is usually given a dataset of known data on
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which training is run (training dataset), and a dataset of unknown data (or
first seen data) against which the model is tested (called the validation dataset
or testing set). The goal of cross-validation is to test the model’s ability to
predict new data that was not used in estimating it, in order to flag problems
like overfitting or selection bias and to give an insight on how the model will
generalize to an independent dataset (i.e., an unknown dataset, for instance
from a real problem).

One round of cross-validation involves partitioning a sample of data into
complementary subsets, performing the analysis on one subset (called the
training set), and validating the analysis on the other subset (called the valida-
tion set or testing set). To reduce variability, in most methods multiple rounds
of cross-validation are performed using different partitions, and the valida-
tion results are combined (e.g. averaged) over the rounds to give an estimate
of the model’s predictive performance.

In summary, cross-validation combines (averages) measures of fitness in
prediction to derive a more accurate estimate of model prediction perfor-
mance [39].

Figure 4.2. Diagram of k-fold cross-validation with k=4.

The following analysis were conduced using the package sklearn.model_se-
lection.cross_val_score [38].
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Chapter 5

Features

5.1 Feature extraction
Feature extraction starts from an initial set of measured data and builds, by

the application of functions, derived values (features) intended to be informa-
tive and non-redundant. Methods can be divided into three categories:

1. Unary functions: methods, with one argument as input, generate a
single feature from a single feature. Sample unary functions would be
trigonometric, square, root, exponentiation, etc...

2. Binary functions:methods, with two arguments as input, generate
a single feature from two features. Sample binary functions would be all
arithmetic functions addition, multiplication, etc...

3. Array functions: methods, with multiple arguments as input, gen-
erate a single feature from an array of features. For example statistical
functions max, min, median, etc...

In the present research each data point, itself was an array of {x, y, t, p, l,
a} scalar values. Any array-like feature of the Drawing object is the result of
a set of points converted into a feature by using statistical functions such as
{mean, median, min, max, standard deviation, …}. From {x, y} coordinates of
data points and time t was possible to produce arrays of kinematic features
and geometric, such as length, duration, velocity, acceleration, jerk, slope and
similarly apply statistical functions to them to generate unique higher-order
features.
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An example can help understanding the process. Starting from the collected
data points:

𝑋 = [𝑥1, 𝑥2, ..., 𝑥𝑛]

𝑌 = [𝑦1, 𝑦2, ..., 𝑦𝑛]

𝑇 = [𝑡1, 𝑡2, ..., 𝑡𝑛]

An array is fulfilled with velocity between each data point:

𝑣 = lim
Δ𝑡,0

Δ𝑟
Δ𝑡

𝑣𝑛 =
√(𝑥𝑛 − 𝑥𝑛−1)2 + (𝑦𝑛 − 𝑦𝑛−1)2

𝑡𝑛 − 𝑡𝑛−1

𝑉 = [𝑣1, 𝑣2, ..., 𝑣𝑛]

The feature velocity_mass is computed as:

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦_𝑚𝑎𝑠𝑠 =
𝑛
∑
𝑖=1

|𝑣𝑖| with − ∞ < 𝑣𝑖 < +∞

and the feature velocity_mean is computed as:

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦_𝑚𝑒𝑎𝑛 =
1
𝑛

𝑛
∑
𝑖=1

|𝑣𝑖| with − ∞ < 𝑣𝑖 < +∞

5.2 Feature categories
In Drotar et al. (2016) [31] a large variety of features describing movements

of the pen tip is suggested. These features include kinematic parameters and
parameters describing contact of the pen tip with the screen. Among kine-
matic parameters are average values of velocities, accelerations, jerks etc. Also
parameters describing directional changes and their number are included.
Contact of the pen with the screen is described by applied pressure, num-
ber and temporal characteristics of the strokes. In addition to the parameters
available from the literature, motionmass parameters adopted for the finemo-
tor case in Nõmm et al. [3, 5] is evaluated in this thesis. The formal definition
of the parameters used in this research is presented below.
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5.2.1 Pressure, geometric and kinematic features
Kinematic and pressure characteristics of handwriting are used in various

recent research papers of Nõmm et al. [3], Zham et al. [27], San Luciano et al.
[26]. Those characteristics have proven a high level of discrimination power
in the analysis of PD subjects. Kinematic and pressure feature are vectors of
points [p1, p2, …, pn]. Velocity, acceleration, jerk, slope and pressure higher-
order features are generated through the application of statistical functions.
Along with standard [median, mean, mass] features, two higher-order fea-
tures are proposed:

• Number of changes – of a specific pressure or kinematic feature.
Standard function argrelextrema() of Scipy library was applied to eval-
uate the number of changes. argrelextrema() is a sliding-window based
method and calculate local extrema of the arbitrary array. In this study,
the number of extrema points are used as the number of changes of a
particular kinematic or pressure feature.

• Penalized parameters – Many subjects slowed down their mo-
tions intentionally to gain more precision in tracing the lines. In order
to “punish” such activity corresponding value of the motion mass pa-
rameters per second will be used.

5.2.2 Drawing features
Drawing-related features are defined and evaluated in the context of the

corresponding Drawing entity. In our case, Drawing is the whole Luria pat-
tern or Spiral, represented by a vector of points [p1, p2, …, pn] where [p1, pn]
are starting and ending points of the drawing. Along with standard [trajec-
tory_length, duration] features, one higher-order feature was proposed only
for PL Trace exercise:

• Area difference – between the reference image and the subject
drown, see Figure 5.1.
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Figure 5.1. Area Difference between PLtrace and reference_PLtrace

5.3 Feature naming
Identification name of the feature is generated by concatenating at least two

out of threemain components, as explained in the following table showing the
possible combinations of functions to produce different features:

Table 5.1. Feature naming table

Prefix Feature Suffix High-order feature
velocity _mass _mean

diff_ acceleration _diff _nc (number of changes)
pressure _penalized
slope _std
jerk
azimuth
altitude

Every element of the feature column must join at least a component of the
suffix column. When a high-order feature is generated from a motion mass
feature _mass sometimes is omitted to keep the name short, e.g. velocity_mean
instead of velocity_mass_mean. The outcome of the previous step can join one
high-order feature and, optionally, the prefix.

Notice that _penalized can not apply to azimuth and altitude and can be ap-
plied only to motion mass features, e.g. velocity_mass_penalized. Is not pos-
sible to generate a feature only with a prefix and an element of the feature
column, e.g. diff_velocity.

Some examples are given for better comprehension: velocity_mean, which
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means the mean computed across all the velocity computed between each
adjacent point, diff_velocity_mean, which means the difference between each
adjacent value of the feature velocity_mean, or velocity_mass, which means
the absolute value of the summation of all velocity, etc...

5.3.1 Feature details
Starting from the collected data points, motionmass features are computed:

• velocity_mass velocities for each collected points and sum of their abso-
lute value is computed

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦_𝑚𝑎𝑠𝑠 =
𝑛
∑
𝑖=1

|𝑣𝑖| with − ∞ < 𝑣𝑖 < +∞

• acceleration_mass accelerations for each collected points and sum of their
absolute value is computed

𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑚𝑎𝑠𝑠 =
𝑛
∑
𝑖=1

|𝑎𝑖| with − ∞ < 𝑎𝑖 < +∞

• pressure_mass the sum of the absolute value of each collected point is
computed

𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒_𝑚𝑎𝑠𝑠 =
𝑛
∑
𝑖=1

|𝑝𝑖| with − ∞ < 𝑝𝑖 < +∞

• slope_mass slopes for each collected points and sum of their absolute
value is computed

𝑠𝑙𝑜𝑝𝑒_𝑚𝑎𝑠𝑠 =
𝑛
∑
𝑖=1

|𝑠𝑖| with − ∞ < 𝑠𝑖 < +∞

• jerk_mass jerks for each collected points and sum of their absolute value
is computed

𝑗𝑒𝑟𝑘_𝑚𝑎𝑠𝑠 =
𝑛
∑
𝑖=1

|𝑗𝑖| with − ∞ < 𝑗𝑖 < +∞
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• azimuth_mass the sum of the absolute value of each collected point is
computed

𝑎𝑧𝑖𝑚𝑢𝑡ℎ_𝑚𝑎𝑠𝑠 =
𝑛
∑
𝑖=1

|𝑎𝑖| with − ∞ < 𝑎𝑖 < +∞

• altitude_mass the sum of the absolute value of each collected point is
computed

𝑎𝑙𝑡 𝑖𝑡𝑢𝑑𝑒_𝑚𝑎𝑠𝑠 =
𝑛
∑
𝑖=1

|𝑎𝑖| with − ∞ < 𝑎𝑖 < +∞

It is possible to do all the previous calculation on the differences between each
adjacent points, this is noted with _diff instead of _mass.

To obtain any other high-order feature is sufficient to apply one of the
previously mentioned functions (see section 5.1) to motion mass features de-
scribed, such as:

• mean

𝑓 𝑒𝑎𝑡𝑢𝑟𝑒_𝑚𝑒𝑎𝑛 =
1
𝑛

𝑛
∑
𝑖=1

|𝑓𝑖| with − ∞ < 𝑓𝑖 < +∞

• standard deviation

𝑓 𝑒𝑎𝑡𝑢𝑟𝑒_𝑠𝑡𝑑 =
√

1
𝑛

𝑛
∑
𝑖=1

(𝑓𝑖 − 𝑓)2

• number of changes
𝑎𝑟𝑔𝑟𝑒𝑙𝑒𝑥𝑡𝑟𝑒𝑚𝑎(𝐹)

• penalization

𝑓 𝑒𝑎𝑡𝑢𝑟𝑒_𝑚𝑎𝑠𝑠_𝑝𝑒𝑛𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑓 𝑒𝑎𝑡𝑢𝑟𝑒_𝑚𝑎𝑠𝑠

𝑡

• difference

diff_feature = 𝑓𝑖 − 𝑓𝑖−1 where i is a test session
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5.4 Feature List
For PL Trace a total of 47 numeric feature are computed:

trajectory_length
duration
velocity_mass
acceleration_mass
pressure_mass
slope_mass
jerk_mass
diff_pressure_mass
diff_slope_mass
diff_jerk_mass
velocity_mean
acceleration_mean
slope_mean
slope_diff_mean
pressure_mean
pressure_diff_mean
jerk_mean
jerk_diff_mean
pressure_nc
velocity_nc
acceleration_nc
jerk_nc
velocity_mass_penalized
acceleration_mass_penalized

pressure_mass_penalized
slope_mass_penalized
jerk_mass_penalized
velocity_std
acceleration_std
pressure_std
slope_std
jerk_std
diff_pressure_std
diff_slope_std
azimuth_mass
altitude_mass
azimuth_mean
altitude_mean
azimuth_nc
altitude_nc
azimuth_std
altitude_std
diff_azimuth_nc
diff_altitude_nc
azimuth_diff_mean
altitude_diff_mean
area_difference

For PL Continue all the previous feature except area_difference are com-
puted, 46 in total.
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Chapter 6

Formal problem statement
and Methodology

Recent studies determine that Luria’s alternating series is capable of high-
lighting the change in motion and smoothness features of neurology disease
affected subjects [3]. However adaptation to those exercises has not been
properly studied. The research goal is to determine the presence, if any, of
adaptation. In order to achieve this goal, the relations between the categories
of the features will be explored. Where it is intended to investigate only rela-
tions between the categories of the features that are not linked in an obvious
way as an e.g. Area difference and velocity.

The research questions are:

1. Are the proposed experimental settings sensitive enough to study adap-
tation on fine motor motions?

2. “Filter” features.

• Find the features, if any, that changes the most.

3. Find models, if any, that explain the relationship between features.
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In order to answer the research questions, the following was done:

1. Question number one:

Statistical hypothesis testing.

2. Question number two:

Statistical hypothesis testing to see which features changes signifi-
cantly.

3. Question number three:

On the base of the previous steps model building with Back Feature
Elimination technique is applied.

6.1 Statistical analysis
To answer question one statistical hypothesis testing was used. The main

goals were:

• Discriminate between the beginning and the ending part of the same test.

• Discriminate between non-trained and trained subject repeating the same
test.

6.1.1 Statistical analysis on test exercise performed in
different sessions

In order to verify if a significant change occurred in the whole sample for
every feature, the difference between the value of the selected feature and
the value of the same feature in the next session was computed. Those differ-
ences (one for each subject S) were put in an array on which one population
t-test was performed. The p-value highlights which ones are the features that
changed the most between the two sessions of the test. Refer to section 4.4.1
for more details. The difference can be computed in two different ways:

1. Between the first and the second value of the feature, the second and the
third value of the feature etc.

2. Between the first value of the feature and all the others
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1 2 3 4

1 2 3 4

Session (n)
Feature (x)

Session (n)
Feature (x)

Method 1

Method 2

Figure 6.1. Method to compute differences between features

The data collected on a weekly and daily basis were used separately to
run one population t-test. The test is performed on the differences between
two values of a single feature in two different sessions. To compute those
differences the first or last two sessions are used:

Δ(1,2) = 𝐹𝑥(1) − 𝐹𝑥(2) first two sessions

Δ(𝑛 − 1, 𝑛) = 𝐹𝑥(𝑛 − 1) − 𝐹𝑥(𝑛) last two sessions

The comparison between the differences of the first two sessions highlights a
significant change, if any, between two consecutive tests. Instead in the com-
parison of differences of the first session with the last one will describe a sig-
nificant change in two non-consecutive tests, which means that the change
occurs across or after a certain number of tests.

Choosing one possibility between Δ(1,2) and Δ(𝑛 − 1, 𝑛), the differences
computed for every subject Δ𝑆𝑖 are stored in array form:

Δ⃗ = [Δ𝑆1,Δ𝑆2,Δ𝑆3, ...,Δ𝑆𝑛] where e.g. Δ𝑆1 = Δ(1,2) for subject S1

Then p-value is computed:
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p-value = ttest(Δ⃗)

If the research settings are sensitive enough for our research scope, appli-
cation of statistical analysis is expected to provide the following:

• p-values that will describe the discrimination power of features

• Ranking of features

The following numerical example go trough the main parts of the process, the
total number of tests collected for each subject is equal to five:

• choosing the subject S1, one feature was selected (e.g acceleration_nc) and
computed for each test,

acceleration_nc = [64, 60, 53, 65, 54]

• the first method in the Figure 6.1 was applied and the differences com-
puted,

acceleration_nc_diff_between_tests = [4, 7, -12, 11]

• supposed that difference between first and second session was preferred
Δ(1,2),

Δ𝑆1 = 64 − 60 = 4

• the previous steps are repeated for each subjects. At the end Δ⃗ will be
fulfilled of differences computed on every subject:

Δ⃗ = [4, 7, 8, 15, 16,−24, 0,−1]

• then, p-value is computed:

p-value = ttest(Δ⃗) = 0.505

In this specific case the p-value, with a significance level of α = 0.05, means
that there was no significant change in the feature acceleration_nc for the
population sample between the first and second sessions.
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6.1.2 Statistical analysis on individual test exercise
The next step was searching for adaptation within the same test. To answer

this question the following procedure was implemented. The new procedure
consists of the splitting of the PL exercise into n intervals:

0 25 50 75 100 125 150 175
x

78

76

74

72

70

68

66

y

Figure 6.2. PL series divided in n intervals, n=6

In this case, the difference between the values of a feature is computed sep-
arately for each interval. One population test is performed for every interval
and the computed p-values are used to plot graphs describing the evolution
of the significance level of a feature in different intervals. In the case of inter-
vals, choosing one possibility between Δ(1,2) and Δ(𝑛 − 1, 𝑛), the differences
computed can be also cumulative:

Δ𝑐𝑢𝑚1 = Δ1 where Δ1 means the difference in the first interval

Δ𝑐𝑢𝑚2 = Δ𝑐𝑢𝑚1 + Δ2

Δ𝑐𝑢𝑚3 = Δ𝑐𝑢𝑚2 + Δ3

…

Δ𝑐𝑢𝑚(𝑛) = Δ𝑐𝑢𝑚(𝑛−1) + Δ𝑛

The cumulative differences computed for every subject are stored in differ-
ent arrays, one for each interval:

⃗Δ𝑖𝑛𝑡1 = [Δ𝑐𝑢𝑚𝑆1,Δ𝑐𝑢𝑚𝑆2, ...,Δ𝑐𝑢𝑚𝑆𝑛]

where e.g. Δ𝑐𝑢𝑚𝑆1 = Δ𝑐𝑢𝑚(𝑛) for the subject S1 in the first interval

Then p-value is computed:

p-value𝑖𝑛𝑡1 = ttest( ⃗Δ𝑖𝑛𝑡1)
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the process is iterated for every subject and the various p-values are used to
plot graphs describing the evolution of the significance level of a feature in
different intervals.

Application of statistical analyse is expected to provide the following:

• p-values that will describe the discrimination power of features for each
interval

• Ranking of features for each interval

The following numerical example go trough the main parts of the process
with number of intervals setted to two, the total number of tests collected for
each subject is equal to five:

• choosing the subject S1, one feature was selected (e.g acceleration_nc) and
computed for each test,

acceleration_nc = [47, 49, 48, 39, 43] for the 1st interval

acceleration_nc = [43, 42, 40, 46, 42] for the 2nd interval

• the first method in the Figure 6.1 was applied and the differences com-
puted,

acceleration_nc_diff_between_tests = [-2, 1, 9, -4] for the 1st interval

acceleration_nc_diff_between_tests = [1, 2, -6, 4] for the 2nd interval

• supposed that difference between the last two sessions was preferred
Δ(𝑛 − 1, 𝑛),

Δ𝑐𝑢𝑚1 = Δ(𝑛 − 1, 𝑛)𝑖𝑛𝑡1 = 39 − 43 = −4 for the 1st interval

Δ𝑐𝑢𝑚2 = Δ𝑐𝑢𝑚1+Δ(𝑛−1, 𝑛)𝑖𝑛𝑡2 = −4+(46−42) = 0 for the 2nd interval

• At the end ⃗Δ𝑖𝑛𝑡1 and ⃗Δ𝑖𝑛𝑡2 will be fulfilled of differences:

⃗Δ𝑖𝑛𝑡1 = [Δ𝑐𝑢𝑚𝑆1,Δ𝑐𝑢𝑚𝑆2, ...,Δ𝑐𝑢𝑚𝑆𝑛]

where e.g. Δ𝑐𝑢𝑚𝑆1 = Δ𝑐𝑢𝑚(𝑛) = −4 for the subject S1 in the 1st interval

end,
⃗Δ𝑖𝑛𝑡2 = [Δ𝑐𝑢𝑚𝑆1,Δ𝑐𝑢𝑚𝑆2, ...,Δ𝑐𝑢𝑚𝑆𝑛]

where e.g. Δ𝑐𝑢𝑚𝑆1 = Δ𝑐𝑢𝑚(𝑛) = 0 for the subject S1 in the 2nd interval
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• the previous steps are repeated for each subjects and interval:

⃗Δ𝑖𝑛𝑡2 = [−4,−7, 1,−3, 7, 9,−5, 1]
⃗Δ𝑖𝑛𝑡2 = [0,−10, 3,−5, 4, 10,−10, 8]

• then, p-value is computed for each interval:

p-value𝑖𝑛𝑡1 = ttest( ⃗Δ𝑖𝑛𝑡1) = 0.952

p-value𝑖𝑛𝑡2 = ttest( ⃗Δ𝑖𝑛𝑡2) = 0.952

In this specific case the p-values, with a significance level of α = 0.05, means
that there was no significant change in the feature acceleration_nc for the
population sample in the two intervals.

6.2 Model building
The next step was to analyse all the data searching for a suitable linear

regression model. The procedure consists of different phases:Linear model building 5

Begin

Initialize hyperparameters
Investigate multicollinearity

Apply chosen technique to 
find model coefficients

Model is 
significant?

Model quality 
above threshold?

Return to the previous 
model and add/remove 
another set of variables

Adding / deleting 
variables justified?

End

Choose variables to be 
added / removed 

No Different 
variable set?

Return model or 
report.

No

No

No

Different 
variable set?

Yes

Yes

Yes

Yes

Yes No

S. Nõmm ( CS TUT) Machine Learning 07.03.2019 6 / 18
Figure 6.3. Linear model building process [33]
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1. Hyper-parameters are chosen or determined

e.g. Forward feature selection/Backward feature elimination/Bidirec-
tional feature elimination, correlation threshold and level of significance

2. Apply one technique to build the model

3. Evaluate the quality (error, e.g. mean square) and significance (F-test, t-
test) of the model

4. If criteria are not met return to the previous model and choose another
set of variables to add/delete

From the 2nd iterate use F-test to prove if model was improved or not
by adding/deleting variables

5. If model does not improve return to the previousmodel and select another
variable to add/delete

6. If criteria are met return the built model

7. Iterate until criteria are met
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6.2.1 Data preparation
All the data were represented in a matrix form. The columns represent the

features and the rows the observation points for every subject.

Figure 6.4. Matrix rapresentation of the observation used for LM building

Before starting to build the models the data set is divided into train_set and
test_set respectively 70% and 30%. The linear regression models computed are
static, no different instant of time are considered:

𝑦𝑖 = 𝛽0 + 𝛽𝑖,1𝑥𝑖,1 + 𝛽𝑖,2𝑥𝑖,2 + ... + 𝛽𝑖,𝑛𝑥𝑖,𝑛 + 𝜖

Refer to section 4.4.2 for more details.

6.2.2 Backward feature elimination
There are three widely used techniques for linear model building:

• Forward feature selection - build the model by adding features as predic-
tors and evaluating the accuracy of the model at each step.
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• Backward feature elimination - build the model with all features as pre-
dictors and at each step remove the features that not improve the accu-
racy of the model.

• Bidirectional feature elimination - a combination of the above, testing at
each step for variables to be included or excluded.

The one chosen for this research is Backward feature elimination:

Removing all the a
priori derivate

features from the set
of possible predictors

Removing the feature
to predict from the

set of possible
predictors 

Compute a model on
the train set 

R2 > threshold 

End

No

Remove from
predictors the
features with

p-value > p-threshold

Compute the
correlation matrix
between possible

predictors 

Remove predictors if
corr > corr-threshold

Compute a new
model with the

remaining predictors

R2 > threshold 

End

No

Save the model

End

Figure 6.5. Backward feature elimination process

1. Removing all the a priori derivate features from the set of possible pre-
dictors

e.g. If the current feature is acceleration_mean all features related to
the same measurement will be removed, like acceleration_mass.
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6.2 – Model building

2. Removing the feature to predict from the set of possible predictors

3. Compute a model on the training set

4. Evaluate model 𝑅2 Adjusted against a threshold

𝑅2 Adjusted explain how much of the total variation of the data can
be explained by the model.

5. Remove from the set of possible predictors all the features that have a
p-value greater than a given p-threshold

6. Compute the correlation matrix between the set of possible predictors

7. Remove Highly Correlated predictors from the set of possible predictors

Predictors are Highly Correlated if greater then a given
corr-threshold

8. Compute a new model with the remaining features in the set of possible
predictors

9. Evaluate model 𝑅2 Adjusted against a threshold

10. Save the model

The whole process is repeated two times to recompute p-value and check
if the significance of the model is still acceptable with the remained set of
possible predictors.

6.2.3 Model validation
After the model is built it has to be validated. K-fold cross-validation was

used with k=10. Refer to section 4.4.3 for more details. If the model reaches
the validation criteria is saved.

Application of model building technique is expected to provide a model, if
any, that describes the changing occurred on all the sessions.
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Formal problem statement and Methodology

6.2.4 Modelling individual test exercise
The samemethod used to build themodel for thewhole test is usedwith the

technique that consists in the subdivision of the whole test in a given number
of intervals. For each part, all the feature extraction is performed in the same
way. Each interval is treated as a separate observation of a subject, thanks to
this approach the absolute value of the accumulated error is reduced and the
number of observation to compute the model grows:

𝑛_𝑜𝑏𝑠 = 𝑛_𝑠𝑢𝑏𝑗𝑒𝑐𝑡 ∗ 𝑛_𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝑠 ∗ 𝑛_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠
e.g. on the weekly collection 13.600 = 17 * 8 * 100

To establish the proper amount of intervals the sequent approachwas used:

1. Compute R2 adj. for the model on the given amount of intervals

2. Increment the number of intervals

𝑛_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 = 𝑛_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 + 10 (or 5)

3. Iterate

Application of model building technique is expected to provide a model, if
any, that describe the relationships between features of each interval for all
sessions.
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Chapter 7

Result

In the following pages, the results obtained with the previously explained
methodologies will be discussed and explained. Only the most valuable re-
sults will be included in this chapter. All research questions will be answered
tracing the same structure of the previous chapter.

Notice that from this chapter the termsweekly and daily collection will refer
to the set of features computed for each test on initial data, refer to sections
5.1 and 5.4, and not any more to the initial collected data, refer to section 4.2.2.
To avoid misunderstandings, this difference is emphasized with the two terms
bolded.

7.1 Statistical analysis

7.1.1 Statistical analysis on test exercise performed in
different sessions

One population test results on the weekly based collection, with a signifi-
cance level of α = 0.05, has demonstrated that:

1. For the Trace exercise described by 47 numeric features

The following 3 (see Table 7.1) differ significantly between the first
and the second session. The result mean that there is a change for the
whole sample of subjects in those 3 features between the first and second
session.
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Result

Table 7.1. Features — STATISTICAL ANALYSIS — PLtrace — Weekly
— first and second session

Feature t-statistic p-value
diff_pressure_mass 3.9179 0.0012
pressure_diff_mean 3.4871 0.0030
altitude_diff_mean 2.1869 0.0439

The following 3 (see Table 7.2) differ significantly between the first
and the last session. The result mean that there is a change for the whole
sample of subjects in those 3 features between the first and last session.

Table 7.2. Features — STATISTICAL ANALYSIS — PLtrace —Weekly
— first and last session

Feature t-statistic p-value
slope_mean -2.528 0.0223
slope_mass_penalized -2.479 0.0246
slope_std -2.960 0.0092

2. For the Continue exercise described by 46 numeric features

The following 1 (see Table 7.3) differ significantly between the first
and the second session. The result mean that there is a change for the
whole sample of subjects in this feature between the first and second
session.

Table 7.3. Features — STATISTICAL ANALYSIS — PLcontinue —
Weekly — first and second session

Feature t-statistic p-value
diff_jerk_mass 2.1568 0.0465

The following 1 (see Table 7.4) differ significantly between the first
and the last session. The result mean that there is a change for the whole
sample of subjects in this feature between the first and last session.
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7.1 – Statistical analysis

Table 7.4. Features — STATISTICAL ANALYSIS — PLcontinue —
Weekly — first and last session

Feature t-statistic p-value
azimuth_diff_mean 2.392 0.0293

One population test results on the daily based collection, with a signifi-
cance level of α = 0.05, has demonstrated that:

1. For the Trace exercise described by 47 numeric features

No significant change was observed. The result mean that there is no
change for the whole sample of subjects between the first and second or
last session.

2. For the Continue exercise described by 46 numeric features

the following 5 differ significantly between the first and the second
session. The result mean that there is a change for the whole sample of
subjects in those 5 features between the first and second session.

Table 7.5. Features — STATISTICAL ANALYSIS — PLtrace — Daily —
first and second session

Feature t-statistic p-value
acceleration_std 2.7778 0.0273
jerk_std 2.6866 0.0312
azimuth_mass -6.117 0.0004
azimuth_mean -3.754 0.0071
diff_azimuth_nc 2.5541 0.0378

the following 2 differ significantly between the first and the last ses-
sion. The result mean that there is a change for the whole sample of sub-
jects in those 2 features between the first and last session.
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Result

Table 7.6. Features — STATISTICAL ANALYSIS — PLtrace — Daily
— first and last session

Feature t-statistic p-value
altitude_nc 3.0924 0.0175
diff_altitude_nc 2.9407 0.0216

All the results previously reported show that our research settings are sen-
sible to data collection periodicity (weekly or daily) and time. However, the
lack of a common set of features changing between each session for the same
test makes, at least on the bases of the collected data, not possible to model
this process as a function of time.

7.1.2 Statistical analysis on individual test exercise
Notice the sequent graphs represent the evolutions of p-values (y-axis) ob-

tained for each interval with one population test technique across intervals
(x-axis), for more details refer to section 6.1.2. The computed p-values are used
to plot graphs describing the evolution of the significance level of a feature at
different intervals. The red-line represents the significance level of α = 0.05.
Every line under the red-line indicates that the p-value of the corresponding
feature is changed significantly between the two adjacent intervals.

With the intervals technique one population test results on theweekly based
collection, with a significance level of α = 0.05, has demonstrated that:

1. For the Trace exercise described by 47 numeric features, the results re-
ported in Figure 7.1 are relative to the differences between the first and
second session computed with the cumulative method, for more details
refer to section 6.1.2. A subset of features {diff_pressure_mass, altitude_std,
pressure_std, altitude_diff_mean, altitude_mean, pressure_diff_mean, alti-
tude_mass} changed significantly for at least 7 intervals out of 10 was
found. The result mean that there are changes for the whole sample of
subjects in this set of features in 7 intervals out of 10.
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7.1 – Statistical analysis

Figure 7.1. PLtrace - Weekly - Differences between sessions 1-2 Cumulative True

2. For the Continue exercise described by 46 numeric features, the results
reported in Figure 7.2 are relative to the differences between the penulti-
mate and last session computedwith the cumulativemethod, formore de-
tails refer to section 6.1.2. A subset of features {altitude_mean, azimuth_std,
azimuth_diff_mean} changed significantly for at least 9 intervals out of 10
was found. The result mean that there are changes for the whole sample
of subjects in this set of features in 9 intervals out of 10.
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Result

Figure 7.2. PLcontinue -Weekly - Differences between sessions 7-8
Cumulative True

With the intervals technique one population test results on the daily based
collection, with a significance level of α = 0.05, has demonstrated that:

1. For the Trace exercise described by 47 numeric features, the results re-
ported in Figure 7.3 are relative to the differences between the penulti-
mate and last session computed with the cumulative method, for more
details refer to section 6.1.2. A subset of features {pressure_mean, pres-
sure_mass_penalized} changed significantly for at least 3 intervals out of
10 was found. The result mean that there are changes for the whole sam-
ple of subjects in this set of features in 3 intervals out of 10.
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7.1 – Statistical analysis

Figure 7.3. PLtrace - Daily - Differences between sessions 4-5 Cumulative False

2. For the Continue exercise described by 46 numeric features, the results
reported in Figure 7.4 are relative to the differences between the penul-
timate and last session computed with the cumulative method, for more
details refer to section 6.1.2. A subset of features {trajectory_length, alti-
tude_mass, altitude_nc} changed significantly for at least 3 intervals out
of 10 was found. The result mean that there are changes for the whole
sample of subjects in this set of features in 3 intervals out of 10.
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Result

Figure 7.4. PLcontinue - Daily - Differences between sessions 4-5
Cumulative False

All the results previously reported show that changes are occurring within
the same test for the whole sample. This means that the subjects are changing
during the execution of the task. However, at least on the bases of the col-
lected data, it is not possible to model this process as a function of time. Plus,
these results can help to determinate the optimal length of the test needed to
evaluate subjects. The length of the test can be adjusted accordingly to the
number of intervals where features have a significant change. E.g. if a signifi-
cant change is observed only in the first three intervals out of ten, there is no
need to keep the remaining seven intervals.

7.2 Model building

7.2.1 Modelling test exercise performed in different
sessions

The experimental findings to determine the proper amount of intervals re-
vealing 30 as an acceptable compromise between the performance and the
value of 𝑅2 adj, for more details refer to section 6.2.4. The graph in Figure
7.5 show the evolution of the 𝑅2 adj. value y-axis changing the number of
intervals (x-axis).
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7.2 – Model building
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Figure 7.5. 𝑅2 adj. over number of intervals

Tring to model any of the 47 numerical features computed was ineffective.
The results, at least on the bases of the collected data, show that no models
are capable of explaining adaptation to the tests. The Figure 7.6 shows for
every subject the value of the same feature (y-axis) over different tests (x-axis).
The graph clearly shows that some subjects share commons paths highlighted
with the same colour. However, there is not a general trend.
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Result

Figure 7.6. Common patterns between subgroup of subjects on the
daily collection

These findings show that sub-group of subject share the same pattern.
However, no common pattern is found this lead to the necessity of a larger
sample in order to find out if sub-groups of the entire population share similar
patterns.

7.2.2 Modelling individual test exercise
The results, at least on the bases of the collected data, show that there are

models capable of explaining the relationship between different features. In
particular, the models put in correlation pressure features (P) with the amount
of mass (AM), geometric (G), drawing (D) and smoothness features (S). The
relationships between pressure features and all the others are investigated
because sometimes subjects may unconsciously apply more pressure to gain
more support for their hand that may end in terms of performance in better
results. The found models can be used as penalization models to mitigate such
effects.

The following part show some of the interesting models found for PL Con-
tinue on the weekly collection. The first model can predict the number of
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7.2 – Model building

changes in acceleration using, as predictors, the number of changes in pres-
sure and the differences between pressuremass. And could be used to penalize
subjects that may unconsciously apply more pressure to gain more support
for their hand.

Dep. variable: acceleration_nc
Predictors: diff_pressure_mass, pressure_nc
Accuracy (K-fold cross-validation): 0.93 (+/- 0.17)
Prediction:

Table 7.7. OLS Regression Results with acceleration_nc as dependent variable

Dep. Variable: acceleration_nc R-squared: 0.970
Model: OLS Adj. R-squared: 0.970
Method: Least Squares F-statistic: 4.602e+04
Date: Fri, 16 Aug 2019 Prob (F-statistic): 0.00
Time: 15:37:01 Log-Likelihood: -5293.1
No. Observations: 2856 AIC: 1.059e+04
Df Residuals: 2853 BIC: 1.061e+04
Df Model: 2

coef std err t P>|t| [0.025 0.975]

const 0.2047 0.031 6.529 0.000 0.143 0.266
diff_pressure_mass 0.1928 0.020 9.733 0.000 0.154 0.232
pressure_nc 0.8030 0.004 188.501 0.000 0.795 0.811
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Result
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Figure 7.7. Prediction of acceleration_nc based on pressure features

The second model can predict the number of changes in azimuth angle
using, as predictors, the differences between pressure mass, the differences
between pressure mean and the number of changes in pressure. And could be
used to penalize subjects that may unconsciously apply more pressure to gain
more support for their hand.

Dep. variable: azimuth_nc
Predictors: diff_pressure_mass, pressure_diff_mean, pressure_nc
Accuracy (K-fold cross-validation): 0.89 (+/- 0.19)
Prediction:
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7.2 – Model building

Table 7.8. OLS Regression Results with azimuth_nc as dependent variable

Dep. Variable: azimuth_nc R-squared: 0.938
Model: OLS Adj. R-squared: 0.938
Method: Least Squares F-statistic: 1.437e+04
Date: Fri, 16 Aug 2019 Prob (F-statistic): 0.00
Time: 14:24:01 Log-Likelihood: -12102.
No. Observations: 2856 AIC: 2.421e+04
Df Residuals: 2852 BIC: 2.424e+04
Df Model: 3

coef std err t P>|t| [0.025 0.975]

const -0.5320 0.435 -1.224 0.221 -1.385 0.321
diff_pressure_mass 3.8766 0.288 13.445 0.000 3.311 4.442
pressure_diff_mean -79.3954 16.804 -4.725 0.000 -112.344 -46.446
pressure_nc 5.3298 0.051 105.273 0.000 5.231 5.429
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Figure 7.8. Prediction of azimuth_nc based on pressure features
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Chapter 8

Conclusion

The main results of the present thesis describe the models computed on the
kinematic, geometric, drawing and pressure features allowing to apply correc-
tions to the test result in case of anomalies or cheating by the PD patients. The
obtained concept could also be applied in other research fields. The main out-
come of the analysis was the linear regression model, capable of explaining
the relationships between features, providing average prediction performance
around 90%. The proposed model could be included in the decision support
framework for Parkinson’s disease screening can be potentially adopted by
clinicians in medical facilities. Presented methodology can certainly help to
obtain more reliable results. The results presented in the present thesis show,
that main aims were successfully fulfilled.

The present study can grow in different directions. The most obvious re-
search direction - discover out if sub-groups of the entire population share
similar patterns. Without a doubt, it will require a reasonably large group of
people.
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