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Abstract

Requirements for higher data rates and wider bandwidth are increasing day by day with

the rise and number of digital devices. Modern digital devices and systems such as

IoT, autonomous vehicles, smart phones, entertainment systems require a good data

rate and quality of service. LTE was presented as a successor of 4G to fulfill this re-

quirement, but it is getting more and more congested with a rapid rise in number of

connected devices and bandwidth requirement. To address these challenges, 3GPP

announced the specification of a 5G network that will overcome all these issues and

provide higher data rates and wider bandwidth by using higher frequencies. This ar-

chitecture uses millimeter waves instead of the 0.8-2GHz frequencies used up to 4G.

The frequency range for millimeter waves is from 30 to 300GHz. The problem with

millimeter waves is that they are absorbed and dispersed easily by obstacles and thus

can travel less distance. To overcome this issue, base stations need to be spaced closely.

This results in a higher number of antennas spaced closely to each other.

When using higher data rates and large number of antennas, parameter tracking

becomes computationally more and more complex. These parameters include angle

of arrival(AoA), angle of departure(AoD),Zenith Angles of Arrival(ZOA), Zenith Angles

of Departure(ZOD),user speed,user direction, antenna correlation. Each time these

parameters change, the channel needs to reconfigure its parameters. The case is even

more complex for an object moving with a high speed. This results in simulation per-

formance degradation due to this bottleneck.

This work focuses on optimization and acceleration of parameter tracking, calcula-

tion and reconfiguration for a 5G channel model. Parameter tracking and re-calculation

requires high computation time and large amount of memory. Conventionally, FPGAs

are programmed using HDL-based design methodology to accelerate computationally

intense applications. FPGAs are frequently used in many real-world applications to



speed up the performance alongside lower power consumption as compared to GPUs

and multi-core CPUs. The OpenCL Synthesis tools for Xilinx and Intel FPGAs enable us

to accelerate applications that were originally modeled in C/C++ with short develop-

ment time. This thesis presents an optimized implementation of a 5G NR(New-Radio)

link layer simulation model using OpenCL. Performance and power consumption for

CPU and FPGA platforms are compared for various channel model configurations.
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Chapter 1

Introduction

With the evolution of always connected systems such as Internet-of-Things, autonomous

vehicles, and other digital systems, there was a need of new networking infrastructure

that can provide service to all these devices. With a huge rise in number of these de-

vices, the available spectrum is becoming more and more congested. Currently avail-

able network infrastructure cannot always meet the demand for data. In highly con-

gested areas or in periods with high usage, consumers may face drop in service quality,

unstable connections,slower speeds or even loss of service. Demand of data is rapidly

increasing with a high rise in number of connected devices[2]. Long-term evolution

(LTE) system which was an incremental improvement to 4G has already reached its

maturity. According to visual network index (VNI) reports released by Cisco [3], it can

be concluded that wireless data explosion is real and will even continue further. All

these makes plain the forecast that an incremental approach to this issue will not be

able to meet consumers requirements in near future[4].

There is a need of new network infrastructure that can uninterrupted service to

all these devices. The infrastructure will provide stable connections, increased band-

width and minimal lag. All this requirements set a base for fifth generation of wireless

network called 5G. This new standard uses higher frequencies for communication. The

usage of higher frequencies enable us to communicate at higher data rates but at lesser
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1 – Introduction

distance. This means that they need to implement multiple antennas to boost its ca-

pacity and signal quality. 5G will also enable operators to divide a physical network

into multiple virtual networks depending on its usage.

1.1 5G NR

5G uses frequency spectrum above 6GHz which was not usable by cellular services

before. The new network uses the currently deployed LTE architecture to support non-

standalone (NSA) 5G network which will be then evolved to full scale standalone 5G.

The difference between two is in interface to core network and higher layers;the basic

radio technology used is same[5].

The Third Generation Partnership Project (3GPP) has specified a new radio inter-

face for 5G which is referred as New Radio(NR) [6]. This new model reuses some of fea-

tures and structures from LTE. However, this new technology is not required to main-

tain backward compatibility like LTE. It Use of much higher-frequencies which gives us

more spectra for wide bandwidth and higher data-rates. However, communication at

higher frequencies is also affected by higher radio-channel attenuation which results

in limiting network coverage. This problem is tackled by using multiple antennas for

communication which also favors the beam-centric design of NR.

1.2 Channel simulation in network planning

Wireless channel model is the most important part in channel planning. It needs to

cover a variety of frequency bands, a huge number of design parameters and heteroge-

neous deployment options. Modeling and simulating the impact of a physical channel

in real environment is very important. For wireless systems it is even more crucial
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1.3 – Thesis workflow

because of high variations in propagation medium with respect to space, time and fre-

quency. Channel simulation is important for evaluating performance of communica-

tion systems. Some of the main factors

• Channel simulation is essential in wireless network planning. The results of the

simulations are used as input by planning tool (every network operator use these

tools) in order determine the network infrastructure (network nodes) and its

configuration

• Channel simulation allows to create a theoretical model which can be used to

assess the performance of real devices. Many network operators develop these

models by running simulations and the test commercial devices in lab and in the

field in order to verify that nominal performances are achieved

• 3GPP and other standardization bodies use channel simulator in order to de-

velop theoretical model of communication system and then use them in order to

derive technological requirements or event to choose among multiple solutions,

architectures, and systems.

1.3 Thesis workflow

In this thesis, this work has been depicted by designing hardware accelerators for sim-

ulating channel model of the 5G NR using OpenCL based implementation. The tools

used are Vivado and SDAccel from Xilinx [7][8]. Chapter 2 explains about FPGA archi-

tecture and flow when design for an FPGA. Chapter 3 will present a brief summery of

OpenCL platform and its implementation on FPGA platforms.
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Chapter 2

Background

2.1 Field-Programmable Gate Arrays (FPGAs)

FPGAs are a type of programmable semiconductor devices that based on configurable

logic blocks(CLBs). These CLBs are organized into a matrix form and are intercon-

nected through programmable connections. As FPGAs are field programmable, they

can be configured and programmed according to required functionality after manu-

facturing. There is present another class of semiconductor devices called Application

Specific Integrated Circuits (ASICs). They differ from FPGAs in terms that they are de-

signed for some specific functionality. This makes ASICs best optimized for that spe-

cific application but are then limited to that specific functionality. On the other hand

we have general-purpose processors that can run almost every application but unopti-

mized performance. As FPGAs are re-configurable according to required functionality,

they are considered more flexible than ASICs but at the cost of power and area. Also

they are more efficient than general-purpose processors but the cost to pay is more

complex programming and lower flexibility.

When seen at lower level, most of the FPGAs have a fixed architecture. Although there

are available in market one-time programmable FPGAs, most of currently used FPGAs
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2 – Background

are SRAM based. They are composed of a large number of SRAM cells that form Look-

Up Tables(LUTs), a bunch of registers and interconnections in term of programmable

routes. This enables the designers to adopt certain design to a different application

just by updating contents of LUTs and setting routing configuration accordingly.

Figure 2.1: Typical FPGA Floorplan

To connect these individual CLBs with each other and external world, some re-

configurable interconnection is needed. A matrix of programmable interconnects is

used to connect these CLBs with each others and to IO blocks. Besides the LUTs as

soft-logic, there is also some hard-logic components. These components include large

memory blocks in form of Block RAM, Digital Signal Processor and a variety of mem-

ory controllers. These components are used for implementing some specialized logic

functions that will take too much space if LUTs implementation was used.

Fig.2.2 show a top view of Intel Arria 10 FPGA architecture[9].
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2.1 – Field-Programmable Gate Arrays (FPGAs)

Figure 2.2: Intel Arria 10 FPGA architecture

The components on this FPGA are soft-logic called Adaptive Logic Modules (ALM)

and there are hard-logic components that include DSPs,controllers, block RAMs, Phase-

Locked Loops (PLL) and some Transceivers. The logic block on Intel Arria 1- FPGAs

consist of multi-input LUTs, registers(Flip-Flops) and some adders and carry logic.

Each LUT inside ALM can implement a combination of different functions. Fig.2.3

shows internal architecture of Arria10 ALM.

Figure 2.3: Intel Arria10 ALM architecture
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2 – Background

Arria 10 FPGA also hosts some DSPs which are used to implement special logic

functions. Fig2.4 shows a block diagram architecture for a typical DSP on Arria10 de-

vice [10]. These DSPs can perform IEEE-754-complaint single-precision floating-point

addition(FADD), Fused Multiply and Add operation (FMA) or floating-point multipli-

cation(FMUL). To implement a further complex operation, these DSPs can be chained

together.

Figure 2.4: Intel Arria10 DSP Architecture

Another component included on Arria10 FPGAs is block RAM called M20K. each of

these blocks is capable of storing up to 20 Kb of data. Each block has dual ports and

can perform one read and one write operation at same time. Maximum data width for

each block is 40 bits and 9 bits are used for address in this case. These memory blocks

can also implement FIFO buffers or shift registers. These RAM blocks can be chained

together in case a larger buffer is required.

2.1.1 FPGA Design Flow

The FPGA based design flow comprises of different phases including design entry, de-

sign synthesis, implementation, and finally programming the device. These phases are

8



2.1 – Field-Programmable Gate Arrays (FPGAs)

explained below in details.

Design Entry

There are several techniques for design entry. It can be done starting from schematic

or through some Hardware Description Language or a combination of both. For a sys-

tem with high complexity, it is recommended to start with HDL instead of working with

schematics at lower level. HDL based approach for design are fast and easy to imple-

ment and are most commonly used today for FPGA based design.

Design Synthesis

Design synthesis is the phase where the code is translated into actual circuit with lower

level implementation such as gates, flip flops, adders. The input design is converted

into net-list which describes components used and interconnections among them.

The process of design synthesis starts with syntax check once it is provided with HDL

based design as input. The logic is then optimized by using different optimization tech-

niques such as redundant logic elimination, logic reduction, size reduction and simul-

taneously making its implementation faster. After possible optimization is carried-out,

the design is mapped on the technology and information for timing and area is ex-

tracted.

Implementation

This step determines the layout of final design. It is composed of three different steps;

translate, mapping and finally place and route. The tool gathers all the design con-

straints together with the design net-lists. The tool then maps the resources available

on FPGA according to requirements specified in the design. After the mapping, the

next step is to route the signals and connection of IOs.
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2 – Background

Programming FPGA Device

The output of implementation step is bit-stream file that contains the footprint of final

design on device. This file is then uploaded to FPGA to finally implement the design

on actual FPGA.

10



Chapter 3

OpenCL Overview

Open Computing Language which is commonly referred as OpenCL is one of the very

first industry standard framework for heterogeneous computing systems[11]. It is a

royalty-free open-source standard. OpenCL is also compatible with High Level Syn-

thesis(HLS). It is updated and maintained by Khronos Group in collaboration with

major hardware design companies[12]. Normally heterogeneous platforms include

CPUs, DSPs and GPUs. HLS supports also adds FPGAs into heterogeneous platforms

list. OpenCL is based on C99 programming standard. It also provides Application Pro-

gramming Interface(API) for controlling the accelerator and its communication with

host processor. An OpenCL-based application is mainly composed of two separate

parts. The part which is not computational intensive and usually contains algorithm

implementation and executes on CPU is called host code. It is independent of pro-

gramming language as long as there is compatible compiler. The other part contains

C-based code called device code. It implements the kernel. As for OpenCL framework,

it can be divided into four different models to understand its way of work.

1. Platform Model

2. Execution Model

3. Memory Model

11



3 – OpenCL Overview

4. Programming Model

Figure 3.1: OpenCL Platform Model

3.0.1 Platform Model

A brief overview of OpenCL platform model is presented in Fig.3.1. An OpenCL based

application executes on the host system and mostly implements the control part of

application. There can be any number of devices connected to the host. Type of con-

nectivity of supported device with the host is not specified by OpenCL standard. The

OpenCL implementation specific to that device is considered responsible to perform

the communication and is usually hidden for application developer. OpenCL devices

contain one or more Compute Units(CU) which further contains one or more Process-

ing Elements(PE). Inside an OpenCL device, the actual computation is performed by

PEs.

12



3 – OpenCL Overview

Figure 3.2: OpenCL Execution Model

3.0.2 Execution Model

An OpenCL application is composed of host code and device code. Host code is written

with API to manage program objects, memory objects and command queues. Kernel

code mainly implements the computationally intensive part of the application and is

executed on OpenCL device. The following set of parameters is required to setup and

OpenCL execution environment.

Context

As there can be more than one OpenCL supported platforms, we need to specify which

of these we want to be used for execution. The context consists of all necessary infor-

mation to setup one or more devices for execution by using OpenCL API.

Kernel

Kernel is the device code that implements the actual computation part. The same ker-

nel can be executed by all the PEs inside a CU.
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3 – OpenCL Overview

Work-Items and Work-Groups

For execution of kernel, a virtual N-dimensional space is defined. For each of these

points, an instance of kernel is executed. These kernel instances are called work-items.

The execute the same code but on different set of data. Each of these work-items is be-

ing assigned a unique ID and can be identified across the whole N-dimensional space.

work-items are then grouped together in a work-group. All work-groups have the same

dimensions. Work-items within a work-group has access to shared local memory.

Program Objects

Program object is mainly composed of source code and binary implementation of ker-

nel code. The binary implementation of kernel can be either generated from source

code, or it may be available pre-compiled. It can be considered as a dynamic library of

kernels because there can be multiple kernels inside a program object.

Memory Object

Memory objects are used for data exchange between host and devices. They are visible

to both the kernel and the host. They work as input and output objects for kernels.

Command Queue

It is used by host to manage command execution on kernel. It can be either a memory

command to data transfer, or a kernel command to launch kernel or synchronization

command to create points of synchronization.

3.0.3 Memory Model

Based on the access pattern, the OpenCL memory model is divided into four categories.Fig.3.3

shows the division of memory model for OpenCL[13].

14



3 – OpenCL Overview

Figure 3.3: OpenCL Memory Model

Global Memory

This memory area is accessible to all work-items and they can perform read-write op-

erations on this region. In OpenCL-based applications, usually host writes input data

for work-items in this region. After computation is complete, results are written back

in this memory area by kernel for the host.

Constant Memory

This part of memory is also accessible globally to all work-items but Read-only access.

This memory is allocated and initialized by host.

Local Memory

This part of memory is local to each work-group. It is accessible to all work-items inside

that work-group. work-items use this memory to communicate within a work-group.

15



3 – OpenCL Overview

Private Memory

In this memory resides the local variables for a kernel instance. Each work-item has its

own private memory area and it only visible to that work-item.

3.0.4 Programming Model

OpenCL mainly benefits from two types of parallelism; data parallelism and task par-

allelism. In data parallelism, each work-items inside a work-group performs the same

operation but on different data. It falls under the category of Single Instruction Mul-

tiple Data(SIMD) and Single Program Multiple Data(SPMD) streams. Task parallelism

is where multiple large kernel instances contain a single work-item that are executed

concurrently. GPUs are mostly considered suitable for data parallelism, however due

to its architecture FPGA can take benefit from both types of parallelism.

OpenCL platforms usually support four types of memory systems. Memory models

can be described as following based on where they are located.

Global Memory

It is the external memory for FPGA. It can be either one of Double Data Rate (DDR)

Synchronous Dynamic Random Access Memories or a Quad Data Rate (QDR) Static

Random Access Memory (SRAM). It usually has large capacity but also long latency.

Constant Memory

It is also considered as global memory but it contains part of data that does not change

during application execution.

Local Memory

It resides inside FPGA and has lower capacity but higher bandwidth and less latency.

subsubsectionPrivate Memory It is assigned to the on-chip registers on FPGA and has

16



3.1 – Modeling Software workflow

lowest latency but very high bandwidth.

3.1 Modeling Software workflow

As the goal of this work is hardware generation to accelerate execution, the OpenCL

code is translated into Register-Transfer-Level (RTL) hardware. High level synthesis(HLS)

tools enables us to perform direct translation of a design modeled in some high level

language into RTL design. The translation of OpenCL kernels into RTL design to exe-

cute on FPGA devices is performed through HLS tools. RTL version is obtained either

in Verilog or VHDL language. The HLS tools used here are from Xilinx.

3.1.1 Xilinx Vivado HLS

It is an HLS tool provided by Xilinx for synthesis of C++/OpenCL/C and SystemsC

based designs into RTL designs[7]. The transformation is performed through auto-

mated tools which consists or three major stages;

• Operation Scheduling: This stage performs scheduling of operation performed

each clock cycle. It takes into account clock frequency and also latency of each

operation to be performed. Depending on the target frequency, the tool may

schedule more then one operations per clock cycle if it meets the design con-

straints.

• Resource binding: This stage is about assignment of resources to each scheduled

operation. Knowing the target platform, Vivado HLS tool performs this operation

in an optimized way.

• Control logic: Control logic is generated for the implemented as a finite state

machine to take care of scheduling and binding.

17



3 – OpenCL Overview

After these stages has been done, Vivado HLS then creates an optimal implemen-

tation based on the input design constraints. The performance metrics reports give

information about the timing and area estimation of implemented design. User can

then adjust the input constraints accordingly to reach the best optimized implemen-

tation. After possible optimization has been done, the design can be exported into a

synthesized block implementing the kernel functionality. This step is followed by a

logic synthesis step which transforms the RTL design into a netlist. Implementation

phase performs the place and route for the target device. After this stage, the design

is converted into a bitstream which represents the the resources used and intercon-

nection among them in binary format. This bitstream file is then combined with other

platform files to form Hardware Platform Specification File (*.hdf) which is used to

program the FPGA fabric.

3.1.2 SDAccel Development Environment

It is a software tool from Xilinx to analyze the host code and cross-compiler kernel

management for FPGAs[8]. Is performs the standard compilation and linking for host

and device(kernel) codes. Build process of SDAccel environment is visualized in Fig.3.4

Figure 3.4: SDAccel Host/Device code building process[1]

The host code compilation is performed using xccp which is a varient of GCC from

Xilinx. The host code compilation results into a host executable application. The FPGA

18



3.1 – Modeling Software workflow

specific code called kernel (C/C++ or OpenCL based) is compiled using Xilinx "xocc"

compiler. The compiler generated object files are then combines with FPGA platform

files producing *.xclbin binary file.

SDAccel provides three different types of build targets; Software Emulation, Hardware

Emulation and System. The code functionality verification and source-level debugging

can be performed in a much faster way using software emulation. Hardware emulation

gives more accurate view of RTL implementation behaviour.
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Chapter 4

Link Layer Simulator Design

The main part of this thesis work is to optimization and accelerate NR channel model

used for System Link Simulation. The channel model used in this design is a Space

Channel Model (SCM) described and calibrated in[6].Tapped Delay Line(TDL) and

Cluster Delay Line(CDL) description of SCM are used for Link Simulator. There are

certain requirements which characterises this channel model.

• Mobility/Spatial consistency: All channel characteristics for this model geome-

try specific and they change continuously as the UT moves. With the traditional

channel model, it is very difficult to achieve full consistency because cluster lo-

cations and visibility regions are not defined.

• Path-losses and diffusion: This may lead to a totally different channel charac-

teristics for propagation[14]. SCM channel model introduces sub-paths around

the dominant component which can be used to model diffuse tail of propagation

paths.

• Large antenna arrays: When using a large number of antenna arrays, an accu-

rate model is required to track the directional characteristics. They are subject

to large scale variations in propagation parameters. This model uses 20 differ-

ent sub-paths which when resolved in angular domain can provide information
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4 – Link Layer Simulator Design

about change in parameters.

4.1 summarises different steps involved in this channel model.[6]

Figure 4.1: Channel Model for 5G

The steps mentioned in the above figure are explained in details in the following

sections.

4.1 Environment,antenna array parameters and network

layout

As this design supports different scenarios for setting the environment, we have to

choose one while setting it. Each of these layouts has its own parameters to set for

these scenarios. These parameters include Cell layout, height of BS antenna,user ter-

minal(UT) location, UT mobility, minimum UT distance and its distribution.
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4.1.1 Urban Micro(UMi)-street canyon and Urban Macro(UMa)

This scenario is for Urban Micro and Urban Macro environment. UMi is focused on

densely populated areas e.g. city center where most of the UT are probably smart

phones. The different parameter settings for these environment are listed below;

Urban Micro(UMi)-street canyon

• Cell layout:Hexagonal with 19 micro sites and 3 sectors per site 200m apart

• BS antenna height: 10m

• UT Location: Outdoor and indoor,LOS and NLOS

• Indoor UT ratio: 80%

• UT mobility: 3km/h

• Minimum UT distance: 10m

• Distribution UT: Uniform

The above environment settings will be used when Urban Micro(UMi)-street scenario

is selected. The same is the case for UMa but with different values of environment

parameters.

Urban Macro(UMa)

UMa scenario is also focused on urban area but less populated. In these areas, they

user terminals may be moving vehicles mostly. For this scenario of environment, the

parameter values are changed in some cases. The values considered for this case are;

• Cell layout:Same as in UMi scenario but 500m apart

• BS antenna height: 25m
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• UT Location: Same as in UMi scenario

• Indoor UT ratio: 80%

• UT mobility: 3km/h

• Minimum UT distance: 35m

• Distribution UT: Uniform

Rural Macro(RMa)

This scenario focuses on rural areas for larger and continuous coverage. In rural ar-

eas, UE elements are not spaced closely as those in urban areas, and hence more

area will be covered by the same BS element. The key highlighting feature of this sce-

nario is continuous wide area coverage and thus supports UT moving at high speeds.

Noise and/or interference is limited in scenario by using macro Transmission Recep-

tion Points(TRPs). Parameters considered for this scenario are;

• Cell layout:Same as in UMi and UMa scenarios but at 1732-5000m

• BS antenna height: 35m

• Carrier Frequency: up to 7Ghz

• Indoor/Outdoor: 50% indoor and 50% moving UT

• Minimum UT distance: 35m

The above scenarios consider broader areas and UT at longer distances. To con-

sider the environment inside the buildings, we have to different parameters and there-

fore a separate environment is needed. The following scenario considers the indoor

environment.
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Indoor-office

This scenario considers user elements inside the buildings. They are not directly in

Line-of-Sight with the BS element and hence uses indoor antenna configuration. For

this scenario of environment, the parameter values are changed in some cases. The

values considered for this case are;

• Cell layout:Equal to room size(WxLxH) and each 20m apart

• BS antenna height: ceiling(3m)

• UT Location: LOS and NLOS with height of 1m

• UT mobility: 3km/h

• Minimum UT distance: 0m

• Distribution UT: Uniform

The Indoor-office environment can be open-office or mixed-office where the only dif-

ference is in line-of-sight(LOS) probability.

4.1.2 Antenna modelling

The next step in this channel design is antenna modeling. This part of the design cap-

tures the antenna array structures which are considered for calibration.

The base station antennas are modelled as an array of uniform rectangular panels.

They are spaced uniformly at a distance in vertical and horizontal direction. The an-

tenna panel can either be uni-polar or bipolar. Fig.4.2 visualizes the antenna configu-

ration in a 2D plan.
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Figure 4.2: Antenna configuration

4.1.3 Pathlosss and LOS probability

In this stage, The pathloss and LOS probabilities are calculated. This will help in focus-

ing the beam and setting the channel parameters accordingly. Fig. 4.3 shows distance

definitions for two different scenarios. On the left, the out-door scenario is considered

where UT and BS are in LOS. The right side of this figure visualizes the in-door scenario

where the UT and BS are not in LOS and hence NLOS conditions are applied.

Figure 4.3: Distance definition for in-door and outdoor scenarios
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4.2 – Workflow of channel model

4.2 Workflow of channel model

• Environment Parameters: The first step is selection of one the scenarios(UMi-

Street Canyon,UMa, In-Office or RMa) to set the environment accordingly. Next

step is the selection of global coordinate system. Number of Base stations and

user terminal are set. Next is determining angle of arrival(AoA), zenith angle of

arrival(ZoA),angle of departure(AoD), and zenith angle of departure(ZoD) in 3D

space. This will give information about array patters for BS in UT in global co-

ordinate system. Next step is determining the speed of UT and its direction of

motion.

• Large scale parameters: This stage is about assigning different propagation con-

ditions. These condition include LOS/NLOS and in-door/outdoor. Path-losses

are calculated for the selected propagation conditions. Large scale parameters

are then generated taking into account the correlation. These parameters in-

clude angular spread, delay spread and shadow fading.

• Small scale parameters: First step in this part is generation of cluster delays.

Delays for LOS conditions are scaled to compensate LOS peak addition effect.

This step is followed by cluster power generation. They depend on the delay

distribution for different environment scenarios. Cluster with power -25db lower

than maximum cluster power are eliminated. AoA and AoD are then generated

for elevation and azimuth. AoA and AoD angles within a cluster are then coupled

randomly. The same is done for azimuth angles. Cross polarization of power

ratios is then generated for each ray within a cluster.

• Coefficients generation: This is the part where actual coefficient generation takes

place. It computes the impulse response of the channel taking into account all

those input parameters calculated in previous steps or from external environ-

ment. Once the impulse response of the channel is known, it can be applied to
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the channel design.

The Cluster Delay Line (CDL) used in this design is similar to Space Channel Model

(SCM) model but it simulates only one link generating a CDL which represents the link

channel. The CDL model allows better representation of beam-forming as compared

to Tapped Delay Line (TDL) because the direction of signal in space is modeled. TDL

model is based on the impulse response of the channel while CDL uses description of

arrival and departure directions in space.
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Chapter 5

Implementation and Optimization

The chapter explains the steps and methodology adopted to perform optimization and

acceleration of channel design for 5G NR. The starting point of thesis was a model

developed in C environment and co-simulated with matlab. To optimize the design,

it was required to have it working in a homogeneous environment to take benefits of

High-Level-Synthesis optimizations.

5.1 Initial Design

The input design was based on co-simulated model. Co-simulation here meas that

a part of model runs in one environment and reaming in some other environment.

The two environments used in this design are matlab and a C++ based design. They

communicate with each other through MEX environment.
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Figure 5.1: MEX Matalb and C++ co-simulation concept

The channel parameters are set using matlab environment. The channel design

implements the underlying base functionalities of the channel which is implemented

in C++. The co-simulated model consists of different steps to perform the simulation.

Figure 5.2: Channel Model in Matlab and C++ co-simulation environment

5.1.1 Initialization

In the initial design, this part was totally performed in matlab. The main functionality

of this part is initialization of parameters. It takes as input the environment condi-

tions and sets the channel parameters accordingly. The input environment conditions
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include number of polarization, AoA,AoD, CDL type, correlation model, delay spread

model, number of transmitter and receiver antennas and other environment specific

parameters. These input conditions are then used to calculate channel parameters

such as number of fading samples in each NR slot, user element direction type, and

channel state, antenna configuration, and angular direction info. These parameters

are then passed to channel design modeled in C++ which performs the initialization of

the channel. Random variables are set and coefficients are initialized accordingly.

5.1.2 Regenerate

This steps performs the regeneration of channel for new CDL directions. Considering

the new correlation and arrival and departure angle, it determines the new location of

UT in space and sets the channel parameters accordingly.

5.1.3 Run

This step performs the actual running operation of channel. Input to this step envi-

ronment conditions, channel parameters, input symbols and current time. The design

first sets its parameters according to these input conditions. It then retrieves CDL pa-

rameters and start the computation. The new coefficients and channel parameters are

initialized for newly calculated conditions. When the parameter calculation is done, it

applies them to the channel link. After the channel application phase is completed, it

returns the output vectors which contains impulse response of the channel.

The channel keeps running and calculates channel coefficients and parameters for

each slot. When the time advances, the channel recalculates the correlation parame-

ters and calculates new coefficients and parameters for new time instance. This com-

putation is performed for each slot. The channel regeneration takes place each time

there is a change in space time correlation.
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5.1.4 Delete

It is the ending phase of a channel link. When the link is no more required, the allocated

space and other resources can be freed for use in other slots.This part of the model

is invoked with some input parameters which tells the model which slots are to be

removed. The model then finds the resources which are related to that specific link.

It clears up the coefficients calculated for that specific slot and also old coefficients

associated with it.

5.2 Isolating the simulation environment

The next step was to remove the matlab dependency from co-simulation environment.

The co-simulation model was not optimized and user a lot of resources and time. Also a

good level optimization was unable to achieve with this type of design. One of the pos-

sible solution to this problem is to identify these performance critical points and accel-

erate them via FPGA. The design required some modification in such a way where it can

get maximum benefit of hardware accelerators. The initialization function was using

some native functions from matlab which were required be implemented in C++ coun-

terpart with same functionalities. To form a native C++ simulation environment,the

channel design required some modification. The interface to the parts of the chan-

nel implementing different functionalities was changed to work best with the C++ data

structures. Different functions translated from matlab script into C++ environment

with their respective functionalities are listed below;

• Generic CDL configuration

This is initial step and setting parameters for the model. This function gets envi-

ronment conditions as input. It configures the channel parameters according to

that specific environment conditions and selected scenarios.

• Initialization function:
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This function performs the channel parameter initialization for channel from en-

vironment conditions. The input environment conditions are specified by a top

interface which also works as a test-bench. The top interface mimics the external

environment conditions. This function then initialized the channel parameters

according to that conditions.

• Channel execution: This is the counter part of matlab script responsible for

channel execution for different slots. It starts from the state set by initialization

function and then computes impulse response of the channel. This response is

then used to set the channel parameters accordingly. When the time correlation

changes, the channel need to recalculate the response. This execution continues

for each slot in each time sample.

• Deletion: This part is related to cleanup after the link has been terminated. When

I certain slot is no more required, the resources assigned to it needs to be freed.

This part of the model releases the memory occupied by structures of the slot

that we want to delete.

5.2.1 Performance critical points identification

To optimize certain model, it is required to identify performance critical points first.

By analysing the model execution in co-simulated and also isolated environment, two

main critical points were identified.

• TDL coefficients computation

• Coefficients application to channel

After the identification of these points, the next step is acceleration and optimization

of these operations.
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5.2.2 FPGA Target Platform

The FPGA platform used for profiling of this application is Kintex UltraScale KU115

form Xilinx. These high performance FPGAs based on monolithic and stacked silicon

interconnect (SSI) technology. Some of the key highlighting features of these devices

are;

Name Number
System Logic Cells 1,451,100
CLB Flip-Flops 1,326,720
CLB LUTs 663,360
Maximum Distributed RAM (Mb) 18.3
Block RAM Blocks 2,160
Block RAM (Mb) 75.9
DSP Slices 5,520

5.2.3 TDL coefficients computation

The part consists of a combination of nested for loops which computes coefficients for

filters inside the channel model. These channel needs to be recalculated each sam-

ple time. To accelerate this part of design, the computation function is converted into

an OpenCL kernel. The input data arrays are transferred into high speed global mem-

ory of FPGA device and the computation is performed in parallel using real hardware

resources.

CPU Implementation

The pure CPU implementation consists of a structure of nested for loops. The inner

most performs the computation part and updates the coefficients value in a data struc-

ture.

Average CPU execution time: 60.7ms
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5.2.4 FPGA implementation

The coefficient function was converted into an OpenCL kernel. As the initial design

was written keeping in mind only functionality, the direct translation was very un-

optimized.

Basic FPGA implementation without optimization

This part of the kernel contains 5 nested loops. In this implementation, the top 4 loops

were flattened into 1 loop excluding the inner most loop. None of these loops were

pipelined. The following results were obtained for this implementation.

Parameter Value
Clock 3.753ns
Latency(min) 6001345cc
Latency(max) 23724225cc
Pipelined No

Comparing this execution profile with the CPU version, we get the following results;

• Average kernel execution time: 55.7ms

• Speed-up : 1.088times

Implementation with all loops flattened

All the loops in kernel were flattened. The synthesis result we got for that kernel are

reported below;

Parameter Value
Clock 4.48ns
Latency(min) 6862465cc
Latency(max) 16348033cc
Iteration latency 4662 ∼11106
Pipelined No

Comparing this execution profile with the CPU version, we get the following results;
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• Execution time: 30.7ms

• Speed-up : 1.97times

Even the very unoptimized version of kernel performed better than a pure CPU centric

implementation.

Implementation with all loops flattened and pipelined

In this implementation, all the loops were flatted into one loop. The design was pipelined

by removing any dependencies. The following table shows results for this implemen-

tation.

Parameter Value
Clock 3.035ns
Latency(min) 147571cc
Latency(max) 147571cc
Iteration latency 375
Initiation Interval 5
Pipelined Yes

Comparing this execution profile with the CPU version, we get the following results;

• Execution time: 0.447ms

• Speed-up : 135.5times

At this stage, we have a very optimized version of kernel. At this stages, all the arrays

reside in global memory. This design can be even more optimized by limiting the num-

ber of global memory accesses.

Pipelined implementation with BRAM

To limit the costly accesses to global memory, some of the arrays were moved to BRAM.

This resulted to even further improvement of results. The following table shows results

for this implementation.
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Parameter Value
Clock 2.971ns
Latency 88863cc
Iteration latency 376
Initiation Interval 3
Pipelined Yes

Comparing this execution profile with the CPU version, we get the following results;

• Execution time: 0.263ms

• Speed-up : 230times

5.2.5 Channel application

This is the part of the model where the coefficients computed earlier are applied to

channel parameters. It also consists of nested for loops structure which can be best op-

timized in OpenCL kernel. This kernel is mainly responsible for applying the channel

parameters calculated in previous steps. It then computes the final output response.

To optimize this part, the same methodology was adopted as in case of coefficient

computation kernel. Arrays with small size was copied into BRAM for fast access. Some

of these arrays were even partitioned according to access pattern and are then mapped

on registers. Some of the data structures were too large to fit on BRAM of the device

considered here. To overcome this, the access pattern was modified for that data struc-

tures. Then only a part of it was moved to BRAM which is being used by the kernel. In

this way, we reduce number of global memory accesses.
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Chapter 6

Conclusion

6.1 Summary

The work of this presented thesis is to design a hardware accelerator for the channel

model simulator in order to reduce the execution time and increase the throughput of

the design. Fast and accurate simulators are required to model the exact behaviour of

the system in real- world scenario. This Hardware accelerator is being designed for .

6.2 Results and future work

During this work, as explained in Chapter 5, different optimizations were performed

for to evaluate the latency and execution time.

The design makes use of complex number operations were are not supported yet in

OpenCL. To overcome this limitation, customized data structures and functions were

implemented to perform arithmetic operations on complex numbers.

Another optimization performed was to reduced access requests to global memory.

Some of the arrays were copied into BRAM which reduced the costly accesses to global

memory and hence enhance performance.
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Performance can further be improved by increasing the number of read ports and

partitioning the arrays. An even further improvement can be mapping of small arrays

into registers.

All these operations and optimization were performed for double data type. Per-

formance can even further be improved by using fixed point operations were higher

precision is not required.
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