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Summary

Abstract
In the last 2 years the state of NLP research has made a huge step forward.
Since the release of ELMo [1], a new race for the leading scoreboards of
all the main linguistic tasks has begun. Several models came out every 2
months achieving promising results in all the major NLP applications, from
QA to text classification, passing through NER. These great research dis-
coveries coincide with an increasing trend for voice and textual technologies
in the customer care market. One of the next biggest challenges in this
scenario will be the handling of multi-turn conversations, a type of con-
versations that differs from single-turn by the presence of the concept of
session. A session is a set of related QA between the user and the agent to
fulfill a single user request. A conversational agent has to be aware about
the session to effectively carry on the conversation and understand when
the goal can be achieved.
The proposed work focused on three main parts: i) the study of the state
of the art deep learning techniques for NLP ii) the presentation of a model,
MTSI-BERT (Multi Turn Single Intent BERT), using one of such NLP
milestones in a multi-turn conversation scenario iii) The study of a real case
scenario.
The work takes in consideration both Recurrent Neural Networks and atten-
tion based models, as well as word embedding such as Word2Vec and Glove.
The proposed model, based on BERT and biLSTM, achieves promising re-
sults in conversation intent classification, knowledge base action prediction
and end of dialogue session detection, to determine the right moment to
fulfill the user request. The study about the realization of PuffBot, an in-
telligent chatbot to support and monitor asthmatics children, shows how
this type of technique could be an important piece in the development of
future chatbots.
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Chapter 1

Introduction

This chapter acts as an introduction for the proposed work. The first part
describes the cultural and folkloric vision of conversational AI in the cur-
rent and past century. The second part presents the major milestones in
the history of conversational AI of the last 70 years and an important philo-
sophical premise for the following work, in the first half.
The third and last parts contain the description of the task proposed in this
work.

1.1 Popular expectations in conversational AI

Since the creation of computational systems one of the biggest desire of hu-
mankind is to replicate human intelligence. Many novels and films imagine a
future where humans are side by side with robots able to accomplish various
tasks and to interact in a natural and fluent way with humans. Isaac Asimov
was an American writer and professor of biochemistry at Boston Univer-
sity, he wrote several futuristic books about the coexistence of humans and
artificial agents that replace computers with an increased efficiency and fa-
cilitation of interaction. Asimov described very accurately this futuristic
society and has introduced, maybe for the first time, the possible dangers
and ethical problems that a technology like that could bring to human race.
In 1942, in a short story called Runaround, Asimov introduced the so called
Three Laws of Robotics that are basically the fundamental rules that an in-
telligent agent created by humans has to always respect in order to preserve
the human safety. The three rules are:

1. A robot may not injure a human being or, through inaction, allow a
human being to come to harm.

2. A robot must obey orders given it by human beings except where such
orders would conflict with the First Law.
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1 – Introduction

3. A robot must protect its own existence as long as such protection does
not conflict with the First or Second Law.

These three rules inspire a lot of other novels and films. Blade Run-
ner of 1982 by Riddley Scott, set in a dark and dusty Los Angeles of a
dystopian future in the year 2019, tells about the story of a set of replicants
that rebel against humans. The film introduces a series of ethical concerns
about how thin is the separation between a real human intelligence and a
bioengineered replicant enslaved to work all its life on a inhospitable planet
at the edge of the galaxy. While different novels have gone so far thinking
about bioengineering or complete robots that can move, see, talk, under-
stand and think also in a more abstract way, other ones simply limit the
scenario to the presence of an intelligent assistant able to see, talk and
understand humans. 2001: A Space Odyssey is a 1968 film by Stanley
Kubrick which imagines a space mission having on board 5 humans and
a sentient computer called HAL 9000 (Heuristically Programmed ALgo-
rithmic Computer). HAL can help the astronauts with the control of the
spaceship and all the technical stuff related to the mission. It is capable
of speech, understand and other many human like capabilities. It even has
a configurable sarcasm level to allow empathy with the astronauts group.
All the mentioned films and novels describe an intelligent agent able to
compete with humans and accomplish several difficult tasks even in a more
efficient way compared to a human being. This kind of agents are artificial
general intelligent (AGI) systems which nowadays are strongly desired by
many philanthropists and AI pioneers. Even though AI research achieved
incredible results in the last 20 years, the so called AGI is still light years
away from the current state of the art. The last decade was characterized
by a rebirth of neural networks thanks to the available computational power
needed to train them. This type of technology is inspired by human brains
where different units fire together to make signals flow when a particular
stimulus arrived. The field ofMachine Learning is born and promises a great
margin of applicability and research for new intelligent technologies. It has
revolutionized all the digital fields that were stuck because of the presence of
complicated rules that regulate the environment. Machine Learning aims to
exploit the large amount of available digital data to overcome hand-coded
rules and allow machines to autonomously understand the patterns that
regulate a specific phenomenon. A great success of deep learning (a variant
of machine learning exploiting deep neural networks) is for sure Computer
Vision that is capable today of distinguish faces, animals, detect anomalies
in cellular tissues as well as analyze real-time recording to discover obstacles
in the way. All of this applications bring us now to test several prototypes
of self-driving cars that promises to have a great impact on the habits of
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tomorrow. The vision is one of the fundamental tasks to achieve the AGI
and machines now prove they can distinguish several patterns in images to
detect high level features starting from basic shape like line, circles, corners.
A huge amount of animal species have the ability to see and elaborate the
information inside their brain to understand what surrounds them. The
gazelle needs to recognize the lion hidden in the grass to have a chance of
survival. Anyway, while the vision is a type of ability shared among differ-
ent intelligent life forms, only humans seem to have the power of communi-
cate through a formal defined language, composed of thousand of different
words, to express both thoughts and sentiments. Maybe the language is
what gives us the competitive advantage over the thousand of species that
used to hunt and kill us. The language is for sure what allow us to create
societies based on the exchange of favors and lead by a group of persons
that organizes through laws the right and duties to survive as a commu-
nity. It is so important and so present in our lives that influences also our
thoughts, which are often expressed by meaning of words. Unfortunately
programming machines able to understand and produce human language
it is a very difficult problem that still today is far from being solved. One
of the great difficulties, for a machine, in understanding human languages
derived from the existence of two levels of interpretations: the syntactic
and semantic level. The syntax is the field of linguistic which studies the
relations between the elements of an expression. The semantic considers
instead the relations between the expression and the extra-linguistic world.
While we are quite good today in analyzing sentences in a syntactic way,
we can not say the same for the semantic. To correctly implement the se-
mantic level into a machine we need first to define the concept of meaning.
The field in charge of studying the language in order to make machines
able to use it is called Natural Language Processing (NLP). NLP achieves
great results in extracting syntactical information from sentences like ex-
isting relationships among words. In the last decade researchers has tried
first attempts to extract semantic information from words by using ma-
chine learning techniques. The main idea is that words that often co-occurs
are similar. Following this, the algorithm learns a N-dimensional vector
representation for each of the word, keeping close in that space all the
co-occurring words. Today we are capable of building technologies that un-
derstand human languages in a very limited context and provide limited
interaction.
The following work is an attempt to list the current state of the art for NLP,
to better understand which is the way the AI researcher are following to
reach such expectations, and to propose a new model for multi-turn session
identification.

3



1 – Introduction

1.2 History of conversational AI

1.2.1 ’50 - Turing test and the born of philosophical AI

The first attempt to theorize the feasibility of such a project was made by
Alan Turing in a 1950 seminal paper entitled "Computing Machinery and
Intelligence"[13]. The paper main idea is trying to interpret and answer
to the question "Can machines think?". That sort of pretty philosophical
question requires to define the act of "think" as a property in order to un-
derstand if a "machine" could have this type of property (properly given by
its programmer). Such a task is not trivial and still today has not a formal
solution. Due to this, Turing changed the question into "Can machines
do what we (as thinking entities) can do?", making easily to test without
incurring in philosophical issues. As any scientific work, Turing also formu-
lates a way to test this ability of a machines that quickly became known
as Turing test. The test Turing proposed was the "Imitation game" that
involves three players A, B and C. Player A is a machine while player B
and C are humans. Player A and B are not in the same room of C and
interact with him only through pairs of written notes. Both A and B try
to convince C that they are humans. The computer wins the game if the
judge cannot tell which is which. What Turing want to focus on is: by
providing enough memory, enough computational speed, and an appropri-
ate program, can the C machine imitate a human being in such a game?
The paper proposed by Turing receives a lot of criticism among religious
man who see intelligence as a god’s gift, among philosopher which Turing
responses with the Problem of other minds but also among mathematicians.
The latter quoted the Gödel’s incompleteness theorem to assert that there
are some limits to what a computer system based on logic can answer. An-
other interesting objection was made approximately 100 years before by the
mathematician Ada Lovelace which states that computers are incapable of
originality because they can only do what we tell it. The last part of the
paper is of crucial importance because Turing introduces for the first time
the concept of learning machine. He said how difficult could be to build
a machine that mimic human intelligence at once, and so propose to build
a machine that has the basic ability of child and then simulate the human
growth by making machine able to learn itself, through a mechanism of
penalties and rewards, what is important and what is not. He proposes to
mimic the natural selection for the learning phase, giving birth to genetic
algorithms.

In 1980 the philosopher John Searle proposes a thought experiment
known as Chinese room [14]. In this experiment he imagines that exists a

4
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Figure 1.1: The Turing test. C has to understand the real nature of A and
B interacting with them only through written notes

machine able to pass the Turing test in Chinese language. This machine has
got a set of rules, do not matter how complicated, that allow it to pass the
test against a Chinese speaker on the other side. Searle imagines to take
the part of the machine and "enroll" its set of rules in order to execute it
manually by itself. Each time Searle receives a bunch of Chinese characters
it follows the instruction code of the machine and produces a Chinese re-
sponse. With this experiment he proves how the Turing test can be passed
even without truly understand, since neither Searle understands Chinese
but he was able to communicate with the other side by simply using a set
of hard coded rules. This experiment was a milestone for philosophical AI
because it outlines the difference between simulate an intelligence versus be
intelligent. The crucial element that a machines misses is the consciousness
which is a concept for which the current philosophy still does not have found
an explanation. The concept of consciousness is even better exposed in the
1978 thought experiment made by the philosopher Ned J. Block known as
China Brain. The author imagines to take all the population of China and
make each single person to act like a single neuron of human brain. Accord-
ing to functionalism this system should have a mind, but is quite intuitive
to show how this system could create a mind capable of thoughts and feel-
ings.

What is evident to anyone today is that there is a difference between
what we called brain and what we call mind. When we talk about brain
we usually refer to the biological organ able to react to input by means
of complex signal flow. Mind is instead something more abstract that we
still do not understand and it is the one responsible for thoughts, feelings
and the part in which consciousness resides. In order to build intelligent
machine as the one we have described, only when we will understand how
mind works, we will be able to answer to the question Can machines think?.
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Figure 1.2: The China Brain. Can an entity composed by several different
working units act like a mind?

For what belongs to us we just leave aside all the philosophical and ethical
issues and we follow the opinion of Peter Norvig observing that most AI
researchers "don’t care about the strong AI hypothesis—as long as the pro-
gram works, they don’t care whether you call it a simulation of intelligence
or real intelligence." [15]
What we are trying today is not to recreate human intelligence but simply
to create useful systems that act intelligently.

1.2.2 ’66 - ELIZA and first attempts to pass the test

In 1966 Joseph Weizenbaum created at MIT Artificial Intelligence Labora-
tory a program called ELIZA[16]. ELIZA whose name was inspired by the
ingenue in George Bernard Shaw’s Pygmalion, is a computer program that
simulates conversations between humans. It is based on pattern matching
and substitution methodology through a series of custom scripts which can
be added to personalize the agent. Each script defines a set of keywords and
associate to them a rank and a set of rules for transformation. The script
searches for keywords inside the user input and put them in a queue sorted
by keyword’s rank, then the rule associated with the keyword having the
highest rank is applied and the transformation is performed. For instance
the person keyword such as "I", "You" could be transformed in "You", "I" in
order to redirect the sentence to the user.The most famous script was the
DOCTOR, a script that simulates a Rogerian psychotherapist by simply
answered back to the user what they have just said.
Despite the very rude mechanism that empowers the chatbot, a lot of people
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attributed to it the ability to think and understand what they told. A lot
of experts said how this type of chatbot could help many people suffering
from psychological disorder in daily life. In reality the real purpose of this
experiment was to show the superficiality of conversations between humans
and programmable machines. ELIZA was probably also the first chatbot
that has ever attended (then failed) a Turing test and today is seen as one
of the earliest realizations of Turing’s idea.

Figure 1.3: ELIZA just only create the illusion of understanding what user
said, it does not have any contextual mechanism to be aware on current
conversation.

In 1972 the psychiatrist Kenneth Colby implemented PARRY a chatbot
that simulates a person affected by paranoid schizophrenia. It was subject
to a variation of the Turing test where a group of psychiatrists have to
distinguish which are transcripts of a real patients and which are made by
PARRY. The psychiatrists were able to correctly identify the patient only
48% of the time. Even if the results were promising for the time, the test was
limited to a fixed domain with non real time interaction (the transcript were
already written by other psychiatrists). Researchers also connect PARRY
and ELIZA together to make them talk to each other, an artificial patient
with an artificial doctor.

1.2.3 ’95 - Jabberwacky and A.L.I.C.E heuristic based chat-
bots

A.L.I.C.E (Artificial Linguistic Internet Computer Entity) is a chatbot
implemented by Richard Wallace in 1995. Differently from ELIZA and
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PARRY it exploits heuristic pattern matching rules that make it more ro-
bust. Even if it was not able to pass the Turing test, A.L.I.C.E. wons the
Loebner Prizer three times (2000, 2001 and 2004), an annual competition
that awards computer programs considered more human-like by the judges.
It was developed in Java and it uses AIML (Artificial Intelligence Markup
Language) as XML Schema, the code is now open sourced.
In 1997 Jaberwacky came out developed by Rollo Carpenter, a British AI
scientist. It participates to several Loebner Prize by collecting a third and
a second place. In October 2008 Jaberwacky evolves in CleverBot, a bot
that have held more than 150 million conversations. CleverBot is constantly
learning, it extracts important keywords from the user text and seeks for
matching keyword in previous conversations, when the keyword matches
then the bot replies how a human responded to that input when it was
asked. It was judged to be 59.3% human in a 2011 formal Turing test.

1.2.4 2011 - IBM Watson and Jeopardy! champions defeat

Starting from 2005 the IBM launched the DeepQA project whose aim was
to develop a machine that can compete with humans in Jeopardy!, an Amer-
ican quiz show where participants are presented with general clues in the
form of answers and they have to respond in the form of questions. The
name of the machine was choosen as the first IBM CEO Thomas J. Watson
and in 2010 was ready to compete with human players. The first official
game on television was made in February 2011 against the champions Ken
Jennings and Brad Rutter. After 3 games IBM Watson won the contest
with $1 million dollar prize then given to charity. The IBM Watson has a
natural language interface and a rude text-to-speech system that enabled it
to reply with a mechanical voice. It was written in almost 4 years by 25
IBM researchers with different contributions from universities among which
the University of Trento. Its hardware is composed by a cluster of ninety
IBM power 750 servers, each of which uses a 3.5 GHz POWER7 eight-core
processor plus 16 terabytes of RAM. Watson has different encyclopedias in
RAM to make them accessible faster than the disk. Each time it receives
an input it extracts the main keywords and searches for related answers
in memory running in parallel hundreds of language analysis algorithm ex-
ploiting the Apache Hadoop framework for distributed computations. The
main innovation of Watson was not the introduction of new sophisticated
algorithm but its possibility to run them very quick and simultaneously.
IBM is trying today to move Watson from a pure AI experiment to a com-
mercial product able to help in different domains like business, healthcare
and education through specific functionality offered via API.
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Figure 1.4: Jeopardy! game in February 2011. Jennings conscious ofWatson
victory wrote the emblematic phrase.

1.2.5 2014 - Siri, Google Assistant and the rise of voice based
virtual assistants

In October 2011 Apple integrated Siri on the Iphone 4S, a voice virtual
assistant able to answer general knowledge questions and to facilitate the
interaction with the smartphone. When Siri receives a voice input it trans-
forms it to text via a speech-to-text system developed by Nuance, analyzes
the query and then performs the response action based on the intent de-
tected in the query. Siri can answer simple questions by simply search on
the web and it can handle some tasks via underlying OS like scheduling ap-
pointment or reminders. The presence on the market of a virtual assistant
like that brings the major smartphone company to develop in house alter-
natives to remain competitive. One notorious effort was made by Google
which introduces, in 2016, the assistant on its Android OS. Google Assistant
provides a natural voice interface and a sophisticated text-to-speech system
using WaveNet [17], a deep generative model able to mimic any human
voice with incredible accuracy. Google Assistant is probably the most ad-
vanced virtual assistant since now also thanks to the knowledge base that
it can exploit. Google has developed a knowledge graph which aims is to
represent knowledge in a structured way by linking together related enti-
ties. Traversing this graph means to extract knowledge then used to shape
the query’s response. The Google graph has an enormous size covering 570
million entities and 18 billion facts and is continue expanding [18].
According to the report of Canalys the smart speaker shipments grew by
187% and home assistant devices are by now present in different homes.
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Smart assistants exploit the IOT technologies to interface with different
devices in the room like lamps, to make easier to turn them on by simply
pronounce a little command for the assistant. Market analysts confirm how
voice will be the predominant way for web search in 2020, this to underline
the importance of developing intelligent technologies to overcome actual
machine understanding limits.

Figure 1.5: AI timeline taken from SYZYGY international survey Public
Perceptions of Artificial Intelligence: What Marketers Need to Know

1.3 Natural Language Understanding and Human
Computer Interaction

Natural Language Understanding (NLU) is a sub-task of NLP that deals
with the comprehension of human written text. NLP is typical considered
as a pre-processing for NLU, for instance Automatic-Speech-Recognition
(ASR) can be used before NLU algorithms. NLU is considered to be an
AI-hard problem for which solution have not yet been found. The task
of comprehension is everything except trivial, it involves human-language
comprehension together with reasoning processes to achieve a desired final
action. During the computer science history, different attempts to create
a NLU system have been made. A famous example is the SHRDLU [19], a
system for English language understanding developed by Terry Winograd
at MIT in 1971. SHRDLU is able to understand and reply to human writ-
ten questions related to a small world it knows, composed by colored boxes
an pyramid. The questions are related to the color, shape, size of objects
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in this world for which SHRDLU was able to reason on having some pre-
defined rules. A more recent study of 2012 [20] proposed a way to build
a NLU system for robots, in order to make more natural interactions with
them, for ease of use. The so called Human Computer Interaction (HCI)
is the final aim for which NLU is studied for, it consists in make easier the
interaction with machines using only natural language. While the above
examples are all based on a limited knowledge world, consisting in a small
environment, today challenges have a wider perspective. NLU is at the
base of all the modern voice search technologies, it has to correctly retrieve
the requested information from an enormous data source which is the web.
An usual task is the semantic parsing, that is the technique to transform
a natural language request to machine comprehensible code, like an SQL
query. Having so much data introduces the needs, for the algorithms, to
solve also other different problems related to words ambiguity. Other uses
of today NLU interfaces are sentiment analysis or automated trading, both
of crucial importance for the future business companies.
The next section defines the main task of this work which belongs to Nat-
ural Language Understanding field. Also different understanding tasks like
intents classification and conversations are better explored.

Figure 1.6: NLU is a subset of NLP. Source [3]

1.4 Task description

The majority of conversational agents are today based on single-turn inter-
action. This type of implementation allows the user to request something to
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the agent by pronouncing a simple natural language command. The com-
mand has to be clear, in order to allow the agent to comprehend it correctly,
and complete, meaning that it has to contain all the information, needed to
the agent, to achieve the desired goal. A real case example is a user asking
to a smart assistant for the nearest restaurant. The assistant will likely
query Google Maps, retrieves a list of restaurants in the area, generates a
syntactically valid response and then deliver it to the user. If the user tries
to continue the interaction about one of the listed restaurants, the assistant
will not be able to correlate the new interaction with the previous response.
This happens because a single-turn agent simply relies on a single-utterance
context, each time a new command is expressed the agent will likely forget
what has been said before.
Today the rise of smart speakers on the market pushes AI companies to
produce more natural paradigms of conversations, which can improve user
experience and satisfaction. The Holy Grail of modern conversational AI
is the multi-turn paradigm. Such paradigm relies on conversations having
multiple pairs of related QA belonging to the same session, thus allowing
more fluent and natural interactions between user and agent. A session is
a set of utterances between the two parties which are related to a single
topic or intent. Thinking about the previous example, would be better if,
after the response with the list of restaurants, the agent would answer with
"Do you need more information?" and then carries on the conversation to
provide a final answer as satisfying as possible. Only at the end of conver-
sation the agent will have all the information to proceed with the final goal,
which could be, for instance, the restaurant reservation. Another possible
scenario is the possibility to carry on tasks having missing information at
the beginning. When the user asks for a web search, today agents need to
know also, since the first interaction, the content to search on the Web. A
multi-turn conversational agent should be able in practice to ask the user
for missing information needed to complete the task, without surrender im-
mediately with an "I don’t understand". In such a way more human like
interaction are possible with the result in facilitation of usage which could
lead to a greater pervasiveness of this technology.
This paradigm is still today pretty far to be solved because the difficulty
for the assistant to keep the context and correctly references it whenever
is needed. A work in this way is contained in a paper by Yun-Nung Chen
et al. [21] which propose and end-to-end memory network with knowledge
carryover for multi-turn understanding. Even if the promising results, the
cited work seems to be not aware of the presence of session, thus not im-
plement any kind of context flush when the session expires.
The proposed work consists in the classification of three main components
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which could be useful in a multi-turn scenario: intent, knowledge base ac-
tion and end-of-session. The proposed method is described in chapter 3
while the results are presented in chapter 5. In chapter 6 an interesting use
case is shown and final conclusions are reported in chapter 7. The three
aspects are instead better described in the following subsections.

1.4.1 Intent classification

Today voice agents are always intent based. An intent represents the will of
the user, expressed in natural language. Typically a conversational agent is
domain specific and can handle only a certain number of different intents.
Some common examples of intents are "weather", "booking", "scheduling" or
something else like "write email". A multi-turn session can be identified by
a single or a multiple number of intents. While a real natural interaction
could be achieved with a multi-intent session, this paradigm seems today
to be still too complex to be handled and for this reason is out of the scope
of this work. For what concerns this work, only single intent session are
studied.
The intent is the feature that triggers the session and identify it from the
beginning to the end. Such classification should be done with the first
user interaction and will influences all the intra-session utterances. The
type of detected intent will bring the agent to satisfy a different goal. More
pragmatically, an intent can be seen as a different API to be called. A today
agent has a different set of APIs which identify all the different tasks it can
handle. Each API is invoked when the correspondent intent is identified in
the user request. When the user asks for the weather, the Natural Language
Understanding interface will detect the "weather" intent and will deliver
it to the interpreter, which is the module responsible for "interpret" the
NLU interface and transform the request from natural language to machine
language. Finally the service manager calls the correspondent API that
returns a result that has then to be formulated as natural language (and
maybe passed to a Text-To-Speech module).
The intent is of crucial importance, if an agent misses it, the user experience
will be very poor.

1.4.2 POS Tagging and Name Entity Recognition

If the intent can be seen as the "conceptual API", what misses now from
the picture are the parameters to sent with this API. POS (Part of Speech)
Tagging is the task of giving a grammatical tag to each word in a sentence.
This technique is widely used to analyze better the meaning of the sentence
and to perform words disambiguation (distinguish "book" as a verb and as a
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noun). The next step after POS Tagging is the so called NER (Name Entity
Recognition). NER is the technique to associate each word or set of words to
a concept in the conversational domain. The NER module is of fundamental
importance for an agent since it allows it to understand which entities the
user is referring to. Retrieving the example of weather intent, an important
parameter to fulfill the request is the city to search for the weather. Entities
are part of the speech that commonly refers to existing concepts in the
conversational domain world, such as cities, football teams, days of the
week, months. The entities are the parameters the API receives. The
final API to fulfill the "weather" intent will then have the following shape:

fetch_weather(city = ”New Y ork”, day = ”Tomorrow”)

Figure 1.7: Common structure of today smart speakers. The NLU module
is the one responsible for transforming the intent from natural language
to machine code. The diagram was inspired by the slides of cs224U-2019,
Stanford
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1.4.3 Knowledge base action prediction

A next generation conversational agent should be developed together with a
knowledge base, a structure containing all the needed information to carry
on conversations and achieve tasks. Knowledge graphs are ones of the most
used knowledge bases in today smart assistants. For instance Google Assis-
tant exploits the Google knowledge graph, containing more than 500 million
different entities and facts extracted from Wikipedia. A knowledge graph is
a structure for linking related concepts, in such a way reasoning technique
can be applied by traversing the graph. If the user asks for the city where
George Washington was born, the Google graph not only replies with the
name of the city, but also with population and location, since the concept of
city is related to George Washington but also with other different concepts
(state, population, foundation year etc.). While the previous example is
about a world knowledge, a real knowledge base has to contain different
levels of knowledge. The domain knowledge represents all the information
needed for the agent to understand and carry on information about the
particular domain it was created to work on. PuffBot, for instance, con-
tains domain knowledge about different pains and emotional status related
to the asthma, these information were given by domain experts of Trento
and are useful to deploy PuffBot in such scenario. While world and domain
knowledge are typically "hardcoded" inside a conversational agent, a today
research hot-topic is to find a way to make neural networks able to exploit
such ground knowledge.
The last level of knowledge an assistant needs in a multi-turn paradigm is
the discourse knowledge. This knowledge is of extreme importance and al-
lows the agent to better understand what is the user desired goal to achieve.
A discourse knowledge should contain all the information extracted from
the current session, in this way the agent can understand the current status
of conversation and predict the next step. Thinking about the restaurant
reservation, the agent can store all the information given by the user inside
a suitable data structure and understand when all the needed information
to ask for the reservation are already present.
In this work a step towards these knowledge bases is done. Two different
actions were distinguished: fetch and insert. A fetch is the action of "read-
ing" information from the knowledge base and is needed whenever the user
requests something that it does not know like "What’s the weather like in
NYC?" or "Remind me of tomorrow appointment". An insert instead is an
action to be performed when the user gives a new item or an additional
information, for instance when he want to schedule a new event. In such
scenario the agent has to insert the new scheduling in the knowledge base
to be able to fetch it in future questions.
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Figure 1.8: The Google knowledge graph links together related entities to
form a net of knowledge.

1.4.4 End of session detection

Another issue of multi-turn conversations is to understand the moment in
which a session expires and a new one starts. When this happens the
assistant has to discard the context of the previous session and start a new
one. For instance, if after the restaurant reservation the user needs to know
about the weather for that night, the assistant has to understand that this
question is not related with the previous restaurant session. The agent has
so to be aware of the existence of a conversation session. In the case of the
proposed PuffBot, the agent must know when the current diagnostic session
is finished, in order to make a little resume of the patient conditions. The
resume will use all the information detected inside the session by fetching
the knowledge base.
Multiple solutions could be adopted. A timer can be set to wait for a new
user request, if the request arrives after the timer expires then the agent
can discard the previous context. Another possibility is the one proposed
by Mensio et al. [22], they predict the sequence of intents in a multi-turn
QA, in this way is possible to understand when a new session starts by
looking the change of intent. This last method is however weak against
consecutive session with the same intent. The proposed work starts from
this consideration to try to predict the end of session. Instead of focusing on
intents succession, the base is to try to catch discontinuities inside a QAQ
triplet. Each time a new user utterance is available, the model uses the
BERT self-attention layers between the previous command and the current
one. If discontinuities are observed, then the end of session is predicted and
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the context is flushed.
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Chapter 2

Deep Learning for NLP

This chapter presents all the major NLP deep learning architectures and
techniques widely used in the last 20 years. The first part contains a de-
scription of the word embedding technique empowering the first "era" of
transfer learning in NLP. In the second section the main focus will be on
Recurrent Neural Networks, an architecture that is still today crucial for
the development of the field, along with the two main cell variants. The
third part presents the concept of attention and motivate its cumbersome
presence in the today NLP revolution. Finally the last section shows the
new NLP great discovery, the transfer learning, and it will lists some of the
today most used models.

2.1 Word embedding

The technique of word embedding has its root back in 1960. The underly-
ing idea is that the meaning of a word is related with the words that often
co-occurs with it.

"a word is characterized by the company it keeps" (J.R. Firth)

This technique aims to represent the semantic level of words by means
of N-dimensional vectors. These vectors contain a statistical representation
of their features, related to all the other words in the considered vocabulary.
Words that often co-occur together will have close vector representations
by means of euclidean, cosine ore other distance measures. The used of
these embeddings has empowered NLP models of the last 20 years, mak-
ing faster the training and more accurate predictions. This first level of
transfer learning is today often surpassed by modern contextual word em-
bedding models. The main problem of word embedding is the presence of a
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single representation for each word, without caring about the current con-
text. Such problem is evident dealing with polysemy (words with different
meanings) like "book", this word will have the same fixed representation
both in sentences where it is a noun and sentences where it is a verb.
In literature exists two types of word embedding:

• Count based
• Predictive methods

The count based methods applies directly statistic exploiting the count of
co-occurences, typically followed by a dimensionality reduction technique
such as SVD. The predictive methods instead use machine learning models
and train them to produce the embedding for each words. While the count
based are considerably faster to train, the predictive has proved to be able
to capture more complex patterns beyond word similarity, which leads to
improved performance on different tasks.
In the following sections two algorithm are shown: i)Word2Vec, a predictive
method ii) Glove, a hybrid approach.

2.1.1 Word2Vec

Word2Vec is a set of machine learning models whose aim to produce a vector
representation for words. It was proposed by a group of researchers lead by
Thomas Mikolov[23] at Google in 2013. The technique is based on Neural
Probabilistic Language Model, a task in which a machine learning model is
trained to predict the next word wt given the history h = {w1, w2, ..., wt−1}.
Such a model learns the conditional probability of the next word, given all
the previous ones.

P (wt|h) = softmax(score(wt, h)) = exp(score(wt, h))q
wÍin vocab exp(score(wÍ, h)) (2.1)

The score(wt, h) computes the compatibility of target word and the context
h, dot product is commonly used. The model is trained to maximize the
log-likelihood of such conditional probability.

J = log P (wt|h) = score(wt, h) = score(wt, h)−log
Ø

wÍin vocab

exp(score(wÍ, h))

(2.2)

Since the model is trained on an entire corpus, the final goal is to find the
right parameters θ that maximizes the average of (2.2).

arg max
θ

1
T

TØ
t=1

Ø
jÔc,j /=0

log P (wt+j |wt; θ) (2.3)
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The equation (2.3) expresses in a compact form the necessity to maximize
the probability of seeing a particular word within a window having size c of
the current word wt.
The algorithm came up in 2 different flavours:

• Skip-Gram
• CBOW (Continuous bag of words)

While both variants work with a size c window, the objective function is
different. The CBOW is trained to predict the center word of the win-
dow, given the surrounding context (the so called "bag of words"). The
Skip-Gram is instead trained to predict the context, given the center word.
CBOW relies on the "Bag of words" assumption, where the order of con-
text words does not influence the prediction of the center word. Skip-Gram
instead has a mechanism to weight nearby words more than distant ones.
While CBOW is pretty much faster, the Skip-Gram handles better infre-
quent words.
In this section only the Skip-Gram algorithm is taken into consideration.

Skip-Gram

The Skip-Gram algorithm defines the conditional probability through the
softmax function. In equation (2.4) wi represents a context word (outside
word) and wt the target one (also referred as central word), both one-hot
encoded. N and k are respectively the number of words in the vocabulary
and the embedding dimension. θ will represent the trained lookup matrix
after the learning phase.

P (wi|wt, θ) = exp(θwi)q
t exp(θwt)

, θÔIRNxK , wiÔIRN (2.4)

The architecture for the Skip-Gram is a shallow 3-layer neural network. It
has one input layer, one hidden layer and one output layer. The hidden layer
presents a lookup matrix for the center word, from there the embedding for
the input word can be retrieved by means of a simple matrix multiplication.
Because wt is one-hot encoded, the result of this operation will be the i− th
column of the embedding matrix, where i is the index of the entry of wt

containing the one. The output layer contains the lookup matrix for all the
context words. The embeddings for the context and center word are dot
product, the results are then followed by a softmax and an argmax, in or-
der to predict each context words. The backpropagation is then performed
in order to correct the network weights, which are the lookup matrices for
center and context words. Optimizing such structure means to tune the
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embeddings for words that often co-occur, trying to make them as similar
as possible, in this way the dot product will have a higher result.
After the training the embedding for each word can be obtained by sim-
ply removing the output layer and feeding a valid index for the vocabulary
word. The reader could have notice that during training, Skip-Gram, tunes

Figure 2.1: Skip-Gram architecture in an original diagram from Mikolov et
al., 2013

two different lookup matrices, even if at the end only one will be used. The
reason why the proposed model does not have a unique matrix is merely
mathematical. If the model had one single lookup matrix, then each time
dot product is performed, the highest score will be assigned to the center
word, considering that it is equal to itself. This is a typical problem of lan-
guage models that must be avoided, a model that predicts the input word
as the next word of itself has no predictive power.
During the development of Word2Vec there were two main problems to
solve. The first problem was related to the presence of a very large corpus,
using batch Gradient Descent the weights would be updated every epoch,
and so too seldom. To solve this problem, Word2Vec uses Stochastic Gradi-
ent Descent that, differently from batch Gradient Descent, updates weights
at each sample. The error is typically noisier but the model converges
faster and is robust against local minimums. The second problem was in-
stead more tricky to solve, it is related to the computation of denominator
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in the conditional probability. Since words of vocabulary are a huge num-
ber, iterate over them each time is not feasible. Additionally it would be
useless to compute the gradient for all the words in the vocabulary if we
only have fixed size windows, the vector of gradients will be full of zeros.
To overcome this problem, Word2Vec uses negative sampling. Instead of
iterating over the entire vocabulary each time, just going to train a binary
logistic regression for a true pair (center word and a word in its window)
against several noise pairs (center word paired with random word), which
is the so called negative sample.

Word2Vec embeddings are still used today because the built multi dimen-
sional space, in which those vectors live, owns very interesting properties.
Such space allows the use of mathematical and logical operators on word
vectors. A now multi-cited example is the one involving the following oper-
ation:

eking − eman + ewoman ≈ equeen

Logical operations can also be performed:

eRome : eItaly = ex : eF rance, x ≈ Paris

Such dreamy results are possible because of the rich geometry on which
that space was built. Related words are close to each other and this brings
a lot of benefits to the final representation. Even if Word2Vec can capture

Figure 2.2: Some example tho show the rich geometry of Word2Vec space
after a PCA, for dimensionality reduction.

very complex patterns in data, it not scales with corpus size and has a very
slow training time. For this reason Glove was proposed.
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2.1.2 Glove

Glove is a word embedding technique published by Pennington et al.[24]
at Stanford in 2014. The idea of Glove is to take the pros from both
count based and predictive models and put them together into a single
algorithm. The crucial concept underlying this technique is that the ratio
of co-occurrence probabilities can encode the meaning of words better than
the raw co-occurrence probability matrix, the one typically built in a count
based algorithm. The ratio probability of co-occurrence is defined in equa-
tion (2.5) where Xij represents the number of times word j occurs in the
context of word i and k is instead a probe word.

P (j|i) = Xij

Xi
= Xijq

k Xik
(2.5)

To capture ratios of co-occurrence probabilities the equation (2.6) has to be
satisfied, which means that the dot product of the two embedding must be
higher as possible in order to maximize the log likelihood.

wi · wj = logP (i|j) (2.6)

The loss function for Glove was identified in the formula (2.7).

J =
VØ

i,j=1
F (Xij)(wT

i w̃j + bi + b̃j − logXij)2 (2.7)

Glove is often preferred to Word2Vec especially when a little retraining is
needed. The algorithm is much faster to train, it is scalable to huge corpora
and it can achieve very good performance even with little amount of data
and small vectors.

2.2 Recurrent Neural Networks
Recurrent Neural Networks also identified with the acronym RNNs are a
family of neural network architectures designed specifically for time se-
quence analysis, based on the work of David Rumelhart in 1986. The main
difference with a simple FFNN (Feed-Forward Neural Network) is the pres-
ence of a recurrent link which allows sharing of information between con-
secutive inputs belonging to the same sequence. Each hidden unit of RNN
produces a hidden state which is passed to itself in the future timestep (and
to the next layer in case of multi-layer RNN). A RNN receives the current
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input and the previous hidden state, which contains information about the
previous processed input. Each unit has two weight matrices, one for the
input and one for the hidden state, which are shared for any element of
the sequence. The core idea is that, to correctly analyze time sequences,
the prediction on input xt should depend on what was seen previously.
Thanks to this sort of "statistical memory", RNN are used in different do-
mains involving time sequence analysis, such as speech recognition, natural
language understanding, natural language generation, bio-informatic and
several others. One of the main task for which RNN are used for is lan-
guage modeling. Language modeling is the task of predicting the next word
wt+1 given the set of previous ones w1, w2, . . . , wt, it was proved how RNN
are quite effective there with the respect to other techniques such n-grams.
The recurrent weights matrix will learn the peculiarity of the language, like
the syntactic and semantic level, the input weights instead will learn how
to correctly handle the current word. Another great peculiarity of RNNs

Figure 2.3: RNN are widely used for language modeling.

are their being general purpose encoders. To encode a sentence of length N
inside a fixed length vector we can feed the entire sentence once and then
use the last hidden state of the network as sentence digest.
RNNs allow having variable length input and output. Thanks to this struc-
tural property they can be used in different configurations such the ones
listed in figure (2.4) Despite all this great things a RNN can do, they have
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Figure 2.4: RNN are very versatile, they can have variable length input and
output, then allowing different architectures.

some major limitations that have lead today to prefer attention based mod-
els for NLP tasks.

• Since each hidden unit needs the output of the previous one, they
cannot be parallelized. This lead to long training time.

• They suffer from both exploding and vanishing gradient
While for the first issue does not seem to exist a solution, the second can
be in part mitigated. Exploding gradient can be avoid by using gradi-
ent clipping, which consists in cutting the gradient above a certain defined
threshold. Vanishing gradient is instead not trivial to solve and represents
the main problem of such architecture.
The following section describes deeper the internal structure of a RNN
vanilla unit. Other two section are then dedicated to the presentation of the
two main cell variants designed trying to overcome the limits of the vanilla:
LSTM and GRU.

2.2.1 Vanilla RNN

The vanilla RNN hidden unit consists of a layer receiving two vectors, the
input Xt (at timestep t) and the hidden-state Ht−1 produced by the unit
itself at the previous timestep (t − 1). The hidden-state is a vector that
should represents the history of all the input elaborated by this unit during
time. A unit can be potentially composed by many neurons, like FFNN,
allowing the layer to produce a more complex output. A single unit in the
vanilla RNN has two different weights matrices, one to process hidden-state
and another to process input. The novelty with respect to FFNN is the
hidden-state matrix. This matrix is the one responsible for information to
flow across timestep, for this reason is also called recurrent weights matrix.
The vanilla RNN cell uses a tanh non linearity to produce the hidden state.
Each unit can also produce an output by feeding the new hidden-state into
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an additional linear layer. When working with NLP, the real input for the

Figure 2.5: vanilla RNN cell structure. Each cell can have an output, thus
allowing multiple output.

RNN cell of the first layer is typically the embedding of the word. More
formally the equations that control the behaviour of a RNN are expressed
in (2.8). X is one-hot encoded, E represents the lookup matrix, Wh and
We are respectively the recurrent and input (embedding) weights.

h(t) = tanh(Wh · h(t−1) + We · e(t) + b1)
e(t) = E · x(t) , x(t)ÔIR

(2.8)

As other Neural Networks architectures, also the RNN were influenced by
deep learning at the beginning of the XXI century. In a 2013 paper, Razvan
Pascanu illustrates different ways to make deep RNNs, anyway this work
will always refer to the ones having multiple hidden-layers between input
and output. A deep RNN can be created by stacking together different
recurrent units, thus each unit receives the hidden-state from the previous
layer and the hidden-state produced by itself at previous timestep. Anyway,
due to the vanishing problem that will be described later, the number of
layer hardly exceeds 3 or 4. If the number of layers is greater than 8 it
is a good rule to insert residual connection (also called highways) between
hidden-layer to make gradient flows better. Another interesting aspect of
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Figure 2.6: Deep Recurrent Neural Networks unfolded in time

this family of architectures is the fact that RNNs can approximate any algo-
rithms. The work proposed by Siegelmann and Sondag[25] proves that it is
possible to use RNNs to simulate a pushdown automaton with two stacks,
given that every Turing machine can be simulated by such type of automa-
ton and, for definition, a Turing machine can compute every computational
function, then a RNN can compute every computable function.

BPTT

To train a Recurrent Neural Network a particular type of backpropagation
algorithm is used, the so called Back Propagation Through Time (BPTT).
The basic idea is to unfold RNN in time to make the gradient flows. Such
algorithm is similar to the traditional backpropagation by taking in consid-
eration two aspects:

• The loss can be computed at each timestep (because we have one
output for timestep)

• Information travel through time in RNN thus the output at timestep
t depends on the information elaborated in t− 1, t− 2 etc...

The network is fed by an instance of itself of the past sharing the same
parameters. Figure (2.7) shows effectively the dependency of the current
prediction on all the previous timesteps. The final loss value is the average
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Figure 2.7: A single layer RNN unfolded in time.

of all the output losses.

J(θ) = 1
T

TØ
t=1

J (t)(θ) (2.9)

By defining a learning rate η the standard equation for weights update,
using gradient descent, ca be written.

Wi = Wi − η ∗ ∂J

∂Wi
(2.10)

Limits of the vanilla architecture

Vanilla RNNs present two main issues related to their structure: exploding
and vanishing gradient. A paper by Pascanu of 2013[26], has shown possible
problem during BPTT that could bring to computational errors or impos-
sibility to learn patterns in long sequences. An intuition of such problem
could be found in (2.11), supposing a backpropagation over t = 4 timesteps,
the value of the current loss with the respect to distant hidden-states could
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vanish, as each single term is very small.

∂J (4)

∂h(1) = ∂J (4)

∂h(4) ·
∂J (4)

∂h(3) ·
∂J (4)

∂h(2) ·
∂J (4)

∂h(1) (2.11)

A formal definition of the problem is shown in equation (2.14) by putting
together (2.12) and (2.13). Equation (2.12) is computed applying the chain
rule for partial derivatives. Equation (2.14) shows the derivative of the loss
computed by two timestep i and j, with the constraint i ≥ j. The core of
the problem is in the presence of the term W

(i−j)
h , representing the recurrent

weights matrix raised to the distance between timestep i and j. If Wh is
small, then vanishing gradient issue appears as the distance between the two
timestep increases. If Wh is big, then we could have exploding gradient.

∂h(t)

∂h(t−1) = diag(tanhÍ(Whh(t−1) + Wxx(t) + b1))Wh (2.12)

∂J (i)

∂h(j) = ∂J (i)

∂h(i)

Ù
j<t≤i

∂h(t)

∂h(t−1) (2.13)

∂J (i)

∂h(j) = ∂J (i)

∂h(i) ·W
(i−j)
h ·

Ù
j<t≤i

diag(tanhÍ(Whh(t−1) + Wxx(t) + b1))

(2.14)

Exploding gradient can cause the raise of error in computations, for this
reason is good habit to always perform gradient clipping when working
with RNNs. Vanishing gradient instead prevents the model to learn long-
term dependencies in the input sequence. This is evident since the loss at
timestep t depends too little from far input. A real case issue with RNN
is the difficult to handle syntactic recency versus sequential recency. An
example is the sentence "The writer of these stories _" where the underscore
indicate something missing that has to be predicted. Syntactic recency
means to relate the prediction with the singular noun "writer" by predicting
"is". Sequential recency means to relate the prediction with the plural noun
"stories" by predicting "are". To properly handle syntactic recency vanilla
RNNs are not the most suitable choice.
In order to allow RNN to handle longer sequences, many cells variant were
proposed. The next sections will focus on the two most famous, LSTM and
GRU.
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2.2.2 LSTM

Long Short-Term Memory (LSTM) is a type of recurrent cell proposed
firstly by Sepp Hochreiter in 1997 [27] to overcome the short-term mem-
ory of the vanilla RNN. A LSTM unit, differently from the vanilla RNN,
has two different memory mechanisms: the hidden-state and the cell-state.
The hidden state is responsible for storing short-term information, while
the cell-state long-term ones. Both vectors have the same dimension. The
crucial aspect of LSTM cell is the ability to read/write/erase information
contained in the cell-state. The three operations are done using three dif-
ferent gates, each of them part of the training phase. At each timestep each
element of the gates can be open (1), closed (0) or in an intermediary state
between the two. The gates computation is dynamic, it relies on the value
of the current hidden-state.
Three gates are present in the LSTM cell: forget, input and output gate.
The forget gate is responsible of what is kept and what is forgotten from
the previous cell-state c(t−1). The input gate instead decides which parts of
the new cell will be written into the new cell c(t). Finally the output gate
controls which parts of the cell will be part of the new hidden-state h(t).
The equations that control the behaviour of the LSTM gates are reported
in (2.15), where f(t), i(t) and o(t) are respectively forget, input and output
gates.

f(t) = σ(Wfhh(t−1) + Wfx · x(t) + bf )
i(t) = σ(Wihh(t−1) + Wix · x(t) + bi)
o(t) = σ(Wohh(t−1) + Wox · x(t) + bo)

(2.15)

The results of such gates are then combined to produce the output of the
cell. The equation controlling the produced output are the ones in (2.16),
there c̃(t) is the new content to be written in the cell-state.

c̃(t) = tanh(Wchh(t−1) + Wcx · x(t) + bc)
c(t) = f (t) · c(t−1) + i(t) · c̃(t)
h(t) = o(t) · tanh c(t)

(2.16)

Finally figure (2.8) shows the entire structure of a LSTM cell. LSTM can
handle longer sequences respect to the vanilla cell, for this reason they are
one of the most used RNN still today. The main reason is the memory cell,
which can improve the ability of the network to remember things over time.
An intuitive example is to set the forget gate to 1 (remember everything), in
this configuration the info in the cell is preserved indefinitely, this behaviour
is not possible with a vanilla RNN. However LSTM does not guarantee
the total absence of vanishing gradient but it reduces it by putting these
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Figure 2.8: A diagram showing the internal structure of a LSTM cell.

shortcuts between distant input, which help gradient to flow better climbing
over the intermediary timestep gradients.
Different LSTM cells can be stacked together to form a deep neural network
and they are typically used in a bidirectional fashion. Bidirectional LSTM
is composed by two LSTM, one reading the input from right to left, the
other reading the input from left to right. LSTM networks need a lot of
computational power to be trained, for this reason in last 5 years a simplified
version called GRU was introduced.

2.2.3 GRU

Gated Recurrent Unit (GRU) is a type of recurrent cell proposed in 2014
by Cho et al.[28] to overcome LSTM long training time. A GRU cell has,
at each timestep, input and hidden-state only, the cell-state of LSTM was
removed. Similar to LSTM, it presents two gates (versus 3 of the LSTM):
update and reset gate. The update gate controls which parts of the hidden-
state have to be updated versus which parts have to be preserved. This
gate plays the role of both the forget and the input gate of LSTM. The
reset gate instead controls which parts of the previous hidden-state will be
used to compute the new content. Basically the mechanism that regulates
the GRU is to insert new contents only when forget. The equations for the
gates behaviour are presented in (2.17)

u(t) = σ(Wuhh(t−1) + Wux · x(t) + bu)
r(t) = σ(Wrhh(t−1) + Wrx · x(t) + br)

(2.17)
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As in LSTM, the gates are used to produced an output. Equations in (2.18)
represents the mechanism to produce the next hidden-state. h̃(t) is the new
hidden state content selected from the previous hidden-state by the reset
gate.

h̃(t) = tanh(Whh(r(t) · h(t−1)) + Whx · x(t) + bh)
h(t) = (1− u(t)) · h(t−1) + u(t) · h̃(t) (2.18)

Figure 2.9: A diagram showing the internal structure of a GRU cell. Source
[4]

GRU has proved to be faster to compute respect to LSTM and, even
with less parameters, has the same performance.

2.3 Attention
Attention is a today widely adopted technique initially introduced for Neu-
ral Machine Translation. The underlying concept is to allow the network to
focus on the most important pieces of input information at each timestep.
It was inspired by the mechanism of human attention. When looking at one
image, humans always focus on small portions (the ones containing informa-
tion) instead of focusing on the entire pixels. Attention is today replacing
all the recurrent neural networks based models for NLP and is at the base
of new transfer learning era. In the following sections, the main aspects of
the attention are reported.
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2.3.1 RNN with attention mechanisms

The first use of Attention was on translation tasks. Neural Machine Transla-
tion (NMT) typically exploits an encoder-decoder architecture for sequence-
to-sequence (seq2seq). The encoder receives all the words from source lan-
guage and produces a sentence encoding as last hidden state. This vector is
then passed as initial hidden state for the decoder that is trained to produce
a sequence of words as output. The idea is that the encoder encodes the
input sentence at higher level, while the decoder extract one word at time
from this vector in the target language.
In a paper by Bahdanau et al. [29] has been shown how encoding the

Figure 2.10: A traditional encoder-decoder based on RNNs. Source [5]

entire input sentence in a fixed length vector is a great bottleneck for such
architecture. The paper then proposes an alternative method that enables
the encoder to focus each time only on relevant pieces of the input sequence.
This mechanism took the name of attention (also called soft-alignment in
NMT). The new encoder-decoder architecture integrates a way to directly
connect the decoder to the source sequence. Each time a new input is pro-
cessed, the decoder receives a weighted average of the encoder hidden states,
where the weights for the average are the attention scores for each input
word. These weights are computed by an attention layer which performs
a dot product between the current decoder hidden-state and each encoder
hidden-states. The final results are then summed into a single attention
vector which put higher importance to the hidden-states that mostly match
the current decoder hidden-state. In the original architecture, the decoder
receives, at each timestep, the previous decoder hidden-state concatenated
with the attention vector and the previous predicted token as input (a sim-
plified diagram is shown in figure 2.11). In a more formal way the attention
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Figure 2.11: 2-layer encoder-decoder for NMT with attention mechanisms.
Source [6]

score e(t) is computed as in 2.19, where st is the decoder hidden-state at
timestep t. The dot product computes the similarity between each encoder
state and the current decoder one.

e(t) = [st · h1, . . . , st · hN ] (2.19)

The softmax is then applied to the attention score e(t), to retrieve values
between [0, 1] for each encoder state. The final sum will be equal to one as
an ordinary probability function. The αt are the weights for each encoder
states (2.20).

αt = softmax(et) (2.20)

The attention weights αi are then used to compute the weighted average
corresponding with the final attention output at (2.21).

at =
NØ

i=1
αi · hi , at Ô IRNxK (2.21)

The final attention output at is then concatenated with the current de-
coder hidden-state st and fed, together with the previous predicted word,
to decoder RNN.

[at; st] Ô IRNxK (2.22)
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One important aspect of this mechanism is that it does not introduce any
other parameters to be learned, but it simply forces the encoder and de-
coder interpretation for a word (or a bunch of words) to be similar (high dot
product) if the concept is the same, this mechanism is called soft-alignment.
The attention does this by introducing some direct connections between en-
coder and decoder, thus making the gradient flows better and towards the
right input states.
While the above example takes in consideration an NLP problem, attention
is a general Deep Learning technique used in different domains like Com-
puter Vision. A more general definition of attention involves the concepts
of query and values that will be then mentioned again in the next section.
Given a query vector and a set of vectors called values, the attention is a
mechanism to compute a weighted sum of values, dependent on the query.
Based on the value of the query, this technique will pay higher attention
on different values. This concept is similar to the one seen with LSTM and
GRU, the architecture should have the possibility to decide what informa-
tion has to flow.
Even if the concept remains the same, there are different variants of atten-
tion which simply exchanges the way the attention score e(t) is computed.
Some of them are listed here below.

• Basic dot product e
(t)
i = st · hi , (d1 = d2)

• Additive attention ei = vt · tanh(W1 · hi + W2 · st)
• Multiplicative attention e

(t)
i = st ·W · hi

Another important peculiarity of attention is the interpretability it gives by
inspecting the attention scores gave to each state. This aspect is crucial in
a neural network architecture which is commonly has a very poor level of
interpretation.
In the next section self attention mechanism, which is at the base of Trans-
former, will be analyzed.

2.3.2 Self-attention and Transformers

The Transformer is an encoder-decoder architecture introduced by Vaswani
et al. [7] in 2017 at Google Brain team, originally used for NMT. The main
novelty introduced is the total absence of any recurrent unit, totally replaced
with attention mechanisms. This new architecture overcomes the two main
problems with LSTM, as well as bringing new state-of-the-art results:

• Difficulty to learn long-term dependencies when sentences are too
long. The probability of keeping the context from a word decreases
exponentially with the distance from it.

• Hard to parallelize given the recurrence, which translates in a very
slow training time.
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The basic idea is to overcome the LSTM problems by simply putting at-
tention connections between different words. The original Transformer is
composed by 6 encoders and 6 decoders. Each block contains a Multi-Head
unit to allow each word to attend to all of the others in the input sequence.
The model exploits the self-attention technique to discover intra-sentence
relations. It also includes a positional embedding system to embed, in-
side each word, the information about its position in the sequence. In the
next sections all the main components of a Transformer are explained. A
complete image of Transformer is reported in (2.12).

Figure 2.12: The transformer proposed by Vaswani [7]

Encoder

The encoder learns the dependencies between any pair of input words (or
subwords as in BERT) through a self-attention mechanism. Self-attention
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consists of three main components:
• Query Q
• Key K
• Values V

The attention score for a pair of input Xi and Xj is the weighted sum of
the Values, where the weight are computed as a normalized dot product
between Query and Key as in (2.23) (dk is the dimension of the key).

Attention(Q, K, V ) = softmax(Q ·KT

√
dk

)V (2.23)

Q, K and V are projections of the original input along three different
matrices: W q, W k and W v. These matrices are the ones that the Trans-
former has to learn and they are used to represent the three components in
different flavours. Equations (2.24) represent the creation of Q, K and V
for the computation of the attendance score of input Xi with Xj (attention
is computed also between a word and itself, so when Xi = Xj).

Q = Xi ×Wq

K = Xj ×Wk

V = Xj ×Wv

(2.24)

For an entire sentence of length N the output vector Zi (corresponding
to query of Xi) contains a number of entries equal to the length of input
sequence, each of them weighted based on the attention score between Xi

and Xj (2.25).

Zi =
NØ

j=1
[softmax(

Qi ·KT
j√

dk
)]× Vj (2.25)

One of the great idea of Transformer is not to limit the attention score
to only one "point of view". The Multi-Head Attention module performs
several attention computations in parallel, each head has it own W q, W k

and W v. Each head produces a different Zi that are then concatenated,
multiplied by a learned matrix W o, and sent to a 2-layer FFNN to squeeze
them and produce a single output for each pair (Xi, Xj). The basic idea of
multi-head is that there are different ways a word can attend to another, for
instance the heads can represents the questions "To whom?", "For what?"
etc. Equation (2.26) describes the computations for the headi , while (2.13)
shows the final Multi-Head attention block.

headi = Attention(X1 ×W q
i , X2 ×W k

i , X2 ×W v
i ) (2.26)

The final encoder block contains also a layer for normalization and dropout,
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Figure 2.13: The multi-head attention block from the paper of Vaswani et
al. [7]

in order to avoid overfitting. After multi-head and FFNN a residual con-
nection is present to make gradient flow better (because of this deep archi-
tecture) and carry on position information given by positional encoding.

Positional embedding

Even if they are slow, RNNs give a positional information about input words
due to their sequential structure. For this reason, Transformer needs to im-
plement a way for introduce positions for each embedding, in order to affect
the score between two words with their distance. Vaswani et al. includes
a positional embedding mechanism by adding, to the original embedding,
a sinusoidal function dependent on the position of the word inside the sen-
tence. The positional encoding to be added to embedding is shown in (2.27)
, where dmodel is equal to 512 in the paper and i Ô [0, 255] is the position of
the word. In this way, the repetition of a word in the sentence will lead to
different embedding, dependent on the position.

PE(pos, 2i) = sin( pos

10000
2i

dmodel

)

PE(pos, 2i + 1) = cos( pos

10000
2i

dmodel

)
(2.27)

Decoder

The decoder is the module responsible for generating a sequence, condi-
tioned by the encoder output, which minimizes a given loss function. The
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Figure 2.14: Positional encoding spectre for Transformer. The values of the
left half are generated by one function (which uses sine), and the right half
is generated by another function (which uses cosine). Source [8].

Transformer decoder is similar to the encoder block. The Masked Multi-
Head Attention is the module responsible for applying attention on the
decoder generated sequence. Additionally to the encoder, it integrates a
way for masking out some words. This functionality is needed during the
training, where the Transformer has access to the entire target sequence,
in order to compute the loss at each step. To avoid the decoder to look at
the future, before attention computation, a mask is applied on the future
words. In order to do so, the Masked Multi-Head Attention, before com-
puting the softmax, put the attention score (the normalized dot product
between query and keys) to −inf . In this way the softmax output for fu-
ture words is approximately 0 and only earlier words are considered.
Another difference respect to the encoder is the presence of encoder-decoder
Multi-Head Attention. This module works as the Multi-Head Attention of
the encoder with the difference that the query is composed starting from
the decoder sequence, while keys and values are composed starting from
the last encoder output. The aim is to allow each word of the decoder to
attend to the ones of the input, so learning the alignment. After finishing
the encoder phase, the decoder one begins. At each decoder step, the last
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decoder block is a vector which depends on the entire encoder output (by fo-
cusing more on important features) and on previous generated words. This
vector is sent to a linear layer and then to a softmax one, to produce the
probability distribution of this vector over the entire vocabulary set. The
softmax will produce a vector having dimensionality vocab_size, where the
highest probability is assigned to a certain word.

Figure 2.15: Transformer decoder architecture. Source [9]

Architecture details

The Transformer can be finally decomposed in various fundamental blocks,
each of them composed by two different sublayers: the self-attention and the
FFNN. The self-attention sublayer has to learn 3 different matrices W q, W k

and W v, for each head, plus an additional matrix W o used to compact dif-
ferent heads output together. The matrix dimensions are W q Ô IRdmodelxdk ,
W k Ô IRdmodelxdk , W v Ô IRdmodelxdv , W o Ô IRhdvxdmodel , where dmodel is set to
512, h is the number of heads equal to 8, and dv and dk are the dimensions
of keys and values, both set to 64. The FFNN receives one input for each
element in the sequence, each of one having dimension dmodel. The FFNN
hidden layer has dimension 2048. The final output for a decoder block is
one vector for each decoding step, each of them having dimension dmodel.
Additionally the embedding layer has to be learned, it produces embedding
having size dmodel, which are shared between encoder and decoder. The
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total number of blocks for both encoder and decoder was choose to be 6.
By reducing the size of each vector inside the self-attention sublayer, it is
possible to compute different attention heads simultaneously with the same
complexity of computing only one with the original dimension.
Each encoder receives as input the output vectors of the previous one, ex-
cept for the first one, receiving the embedding (the same for the decoder).

Figure 2.16: Transformer self attention can be easily exploited for corefer-
ence resolution. The word "it" has an high attention score for the words
"The animal". Source [8]

2.4 Transfer learning

Transfer learning is a technique born with the necessity, in modern Deep
Learning, of having a huge size labelled data and computational resources
for the training of a neural network classifier. Transfer learning consists in
re-using already huge trained model by adapt (fine-tuning) them on differ-
ent, but similar, tasks. The basic idea is that a deep neural network learns
representations, at different level of abstraction, for each hidden layer. In
the literature this representation was often referred to the concept latent
space (or hidden space), which is the space in which this representations of
features live. The first hidden layers could learn representations which can
be re-used for other similar tasks. An example could be computer vision
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tasks. The first layer of a CNN will learn to distinguish the basic shape
like angles, round etc. These features are "context independent" and are
useful for any computer vision tasks. Since today, the predominant way to
do transfer learning was on computer vision. ResNet[30] is one of the most
famous pre-trained models, it was trained on a huge image corpus and it
is widely exploited for fine tuning tasks. In this way researchers can use
a pre-trained model and avoid long training time, only few epochs for fine
tuning should be enough. While for computer vision transfer learning has
been available for some years, NLP struggled since 2018 to publish the first
real transfer learning model. Before that date the only available transfer
learning technique was the use of pre-trained word embedding. The first
real breakthrough in this direction was ELMo [1], a contextual embedding
model, based on neural language model, for fine tuning tasks. Despite the
today countless new model, this work will describe BERT [10] which rep-
resents for sure the major breakthrough in this new NLP era.

2.4.1 Contextual embedding

The original word embedding were characterized by the presence of a single
fixed vector for each word. Such vector include a statistical distribution
for the word by means of its co-occurrences with other ones. These vectors
are easy to load in a model, since only word-vector mapping is needed, and
produces good results compared with other encoding techniques like one-
hot. Even if these aspects, some problems remain still open. One of the
them is the word disambiguation. Very often the language presents some
word which can have multiple meaning based on the context of use. A pos-
sible example is the word "bank" that can have a different meanings when
is nearby the word "river" or the word "money". Both the concepts are ex-
pressed with a single word but they have a total different aim. The first is
referring to the bank of the river, while the second one with the bank as an
institution for money deposit. This language peculiarity is called polysemy.
To handle this, the modern tools have to take care of the context in which
the word appears. Contextual embedding are a powerful tool to do that,
they can create an embedding of the word based on "original embedding"
and on current contextual information. By doing so, the embedding are
unique for each context, even if they are similar for similar context. Thus
the embedding of the word bank will have a different shape when is referring
to the bank of the river and when is referring to the bank as the institu-
tion. This tools are today widely used in NLP because they achieve great
results and have replaced the leaderboards in all the major tasks. Even
this promising introduction, contextual word embedding words requires to
download the whole pre-trained model, which is typically very huge. This
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lead the today NLP research to exploit very large computational resources
which put a cost boundary for several research projects.

2.4.2 BERT

BERT (Bidirectional Encoder Representations from Transformer)[10] is a
deep model for contextual embedding extraction from text, proposed by
Jacob Devlin at Google AI in 2018. The model uses a stack of 12 (or 24)
transformer encoders to produce an embedding for each input word, by
performing self attention among them. The main novelty BERT introduces
is the bidirectionality. Until then, language modelling did not use a real deep
bidirectionality, this is due to the fact that, in a deep RNNs, bidirectionality
allow the word to see itself in the second layer. This phenomenon can be
easily proved thinking of a language modelling task with a bidirectional
LSTM. The final hidden state will consists in the concatenation of the last
backward state and the last forward state. Passing this hidden-state to
a second layer means to allow the forward LSTM so see also the future
(already encoded in the vector), and so the language modelling task deviate
to a simple "copy" of a word read from the hidden-state. BERT overcomes
this problem by avoid the standard language modelling task and proposing
a Masked Language Model (MLM). A masked language model is the task to
predict a masked word that could be in any position inside a given sequence
of words. The probability distribution is slightly different from the one of
a language model, but in this way BERT can exploit both left and right
context for the word prediction. This intuition is one of the most important
because gives to BERT the possibility to include, inside the embedding,
the information from the entire context simultaneously. Other models like
ELMo train two LSTM (forward and backward) independently and then
concatenate them.
BERT implements a slightly modified version of the original transformer
encoder, in order to make possible to mask out some token, it uses the
masked multi-head attention, which is typically used in the transformer
decoder. By exploiting several multi-head attention layer, BERT builds
a contextual embedding for each word and then compute the loss for the
masked one.
To allow BERT to be versatile on different tasks, J. Devlin proposes to train
BERT jointly also on another task, the next sentence prediction. The BERT
model can handle a pair of sequences separated by a special token, the [SEP].
The second learning task consists in predicting if the second sequence could
be an acceptable continuation of the next one. This binary classification
task gives to BERT the ability to work also at sentence level and not only
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with words, thus allowing it to be exploited also on QA tasks. The token
used for this task is the [CLS], which will represents a digest of the entire
input sequence. BERT embedding is learned from scratch, it consists in

Figure 2.17: BERT uses bidirectionality to predict the masked words. Other
model uses only left-directional transformers or bidirectional LSTM trained
independently. Source [10]

three main pieces then summed up together. Like the original transformer,
there is positional embedding. This information is of crucial importance in
this type of tasks, the transformer has to know the relative position of the
masked word in the sequence. In order to work with a pair of sequences,
BERT needs to include also an information of "position at sentence level".
Two segment embedding are learned, one for the sentence A and one for the
sentence B. The last embedding is the one related to the single token. BERT
has a huge vocabulary of 30 thousand English words, each of them should be
mapped to a given embedding. In reality BERT works with subwords, for
instance it will tokenize the word "playing" in "play" and "##ing", this trick
is used to decrease the vocabulary size by learn the most used part of words.
These three embedding, the positional, the segment and the subword, are
then summed together to create the final embedding that is fed to BERT.
BERT came out in two different variants, the base and the large. The base

Figure 2.18: BERT embedding computation is the sum of three different
components. Source [10]

is composed by 12 encoders, 768 dimensional contextual embedding and
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12 attention heads for a total of 110M parameters. The large is composed
by 24 encoders, 1024 dimensional embedding and 16 attention heads for a
total of 340M parameters. The base version is much less expensive and was
trained to be compared to other models of the same size such OpenAI-GPT.
The large is instead much more expensive and it typically beats the base
version scores.
BERT was built for fine-tuning tasks and today is the most used pre-trained
model for NLP tasks. It was the first breakthrough in this new NLP era and
it was of inspiration of tons of new contextual embedding models, and more
have to come. BERT can be easily fine-tuned of different tasks like QA,
sentence classification, NER etc. In the following chapter a way to exploit
BERT for multi-turn session detection and classification will be presented.

Figure 2.19: BERT can be used for several NLP tasks by exploiting its
flexible input sequence. Source [11]
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Chapter 3

Methodology

In this chapter the core part of the proposed work is reported. MTSI-
BERT, which stands for Multi-Turn Single-Intent BERT, is a BERT based
model for session classification in a multi-turn conversational scenario. De-
veloped in Python programming language, it exploits the PyTorch frame-
work, together with the PyTorch-Transformer, a package containing the
BERT implementation for PyTorch. In the following section a deep overview
of MTSI-BERT, together with the architecture structure, is done. The re-
sults of the model will then be presented in the next chapter 5.

3.1 Approach
MTSI-BERT (Multi-Turn Single-Intent BERT) is a joint model for intent
classification, action extraction and end-of-session prediction on multi-turn
conversational sessions. It was created with the idea to test if BERT could
be useful in conversational scenario, where multiple utterances are presents,
each one with strictly relationships with the others. The model development
followed the flow of a natural dialogue between an user and an agent by
modeling the input accordingly. In the following subsections all the aspects
of MTSI-BERT will be explained. In the fist part the explanation of the
input shape and the dialogue management is given. In the second instead
a focus on the neural architecture is done.

3.1.1 Model input

Input shape

MTSI-BERT was trained to make it consistent with a conversational sce-
nario. Such scenario requires the agent to wait for the first user interaction,
understand the intent, the action and extract the useful entities. Then it
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has to formulate a coherent answer to reply to him and then come back
to wait for the new user interaction. While the answer generation was not
part of this work, the main focus remains on the session classification. The
new user interaction could be related to the previous question-answer pair
or not. In the first case a dialogue continuation is happening, which is the
aspect characterizing a multi-turn conversation. If, instead, the new user
interaction is not related with the previous exchanged utterances, then a
new session begins, with a new intent and a new action. The agent needs
to detect such change in order to flush the "statistical history" and trigger
the intent and action classification modules.
In order to allow the agent to work in this scenario, the input has to be
shaped to simulate a conversation. MTSI-BERT was trained with a QAQ
triplet as input. Such triplet consists in the concatenation of the last three
exchanged utterances, where Q represents the user question and A the agent
answer. A more formal and complete representation is possible by defining
a conversation as an ordered sequence of QA, where eventually the A can be
optional (for instance when the user ends the conversation). Formula (3.1)
tries to give a formal description of the conversation. CONV represents
the sequence of QA pairs, where each answer is identified by the related
source question. Such sequence must contain at least one pair of QA to be
considered a conversation, the "+" sign is the regex symbol to indicate "at
least one". A definition of Q and A is proposed by using regex expression.
The regex [a − z, .?!] represents the set of alphabetic characters and the
most important punctuation symbols (not exhaustive), while the symbols
+ and ∗ respectively mean "at least one" and "zero or more repetitions",
thus indicates the optional answer.

CONV = [(Q(i), A(i))+], ∀i ∈ [0, N ]
Q(i) = [a− z, .?!]+ and A(i) = [a− z, .?!]∗

(3.1)

The session is instead identified as a sub-sequence of CONV. A single CONV
sequence can contain several non-overlapping sessions. All the QA in a sin-
gle session are related each other and aim at satisfying a single intent with
a single knowledge-base action. Thus in order to identify sessions, discon-
tinuities in the CONV sequence have to be found. To do so, MTSI-BERT
receives a series of utterances with the following shape: if the question is
the first of this session, than it will be analyzed individually (the answer
is not yet formulated), otherwise the user question is compared with the
previous QA pair. MTSI-BERT analyzes the first question of the session
and extract intent, entities and action, then, for the rest of the session, it
analyzes a triplet of QAQ to extract the entities from the last question and
catch the dependencies between the last question and the previous QA pair.
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The input is formatted to be fed to BERT and so with [CLS] and [SEP]
tokens. The triplet is characterized by the presence of the [SEP] token
between the previous QA pair and the new user question. In this way is
possible to take advantage of the next sentence prediction original training
task of BERT. An input example through time is available at (3.1). The
figure shows an end-of-session at t = 3, thus the input is flushed and the
new session utterance is analyzed individually.

Figure 3.1: MTSI-BERT input. The blue boxes corresponds to user ut-
terances, the red boxes to agent utterances and the yellow boxes to BERT
tokens. When a new session is detected, the input is flushed and the first
utterance is analyzed individually.

Dialogue granularity

To create the CONV sequence, all the sessions are concatenated to form
a single macro-dialogue. In terms of input shape, the dimensions will be
DIALOGUES_NUM x DIALOGUE_LEN x SENTENCE_LEN, thus the
batch size correspond to the number of dialogues. Unfortunately an issue
arises with BERT implementation. BERT actually accepts an input of
dimension BATCH_SIZE x SEQ_LEN which has one dimension less than
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the desired one. A possible way is to loop, for each dialogue, on BERT
by feeding it with a new dialogue each time. While this way seems to be
trivial, it has two main drawbacks. The first one is that loops are inefficient
on GPUs, thus the input should always be vectorized since GPUs are faster
to do matrices multiplications instead of iterations. The second and most
important issue is related to how PyTorch library works. The dynamic
graph of PyTorch implies that the computational graph is instantiated each
time the forward pass is called. This means that a number of computational
graphs equal to the number of dialogues in one batch are created. Since the
BERT graph is computational expensive, a batch size of 3 already occupies
more than 10 GB of GPU vram. For these reasons the number of dialogue
processed each time was set to be 1 and, in order to allow the end-of-session
task, the current session is concatenated with the first sentence of another
randomly chosen session. The input shape will then be equal to figure (3.2).

Figure 3.2: MTSI-BERT real input consists in a single session concatenated
with the first sentence of another session randomly chosen. In this way is
possible to train the model on the end-of-session detection task even with
BERT input limitations.

3.1.2 Architecture

Joint model

A joint model is a particular model which was trained to perform more than
one single prediction task. It is based on the same idea of transfer learning,
the latent space representation can be used for similar tasks. Joint NLP
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models were often used to do intent classification and NER, by exploiting the
same initial layers of the model. Even BERT was trained as a joint model, it
aimed to predict both the masked words and the next sentence flag. MTSI-
BERT reuses the same idea to perform the three different tasks jointly:
intent and action classification, end-of-session prediction. The model has
a common basis composed by pre-trained BERT encoders then followed
by different branches, one for each task. BERT produces the contextual
embeddings for each input token, which are then used to fed the upper
neural networks.
Since the model can be trained to optimize a single objective function, the
loss must be unique. Thus the three different tasks must produce, at the
end, one single loss to minimize. In order to do so, the final loss could be
created by combining the three original losses in different ways. In this work
the most basic was used, consisting in gives the same importance to all the
three losses. Equation 3.2 shows the final loss of MTSI-BERT, consisting
in the sum of the three single-task losses.

Ljoint = Li + La + Leos (3.2)

To minimize (3.2), all the individual losses have to be minimized, in such a
way is possible to train the model on the three tasks.
During the training some conflicts between tasks came out, which have lead
to the adoption of different architectures. The best three architectures are
presented in the following subsections of this work.

MTSI-BERT Basic

The first and most simple architecture was the one which exploits only the
[CLS] token contextual embedding. Such token is the first in the sequence
and was used, in BERT training, for the next sentence prediction task. Such
embedding contains semantic information about the whole input sequence
and so it can be used for sentence classification tasks. The most basic archi-
tecture for sentence classification is the one involving only that contextual
embedding. MTSI-BERT basic does exactly this thing by feeding the single
[CLS] embedding to three different classification layers (also called output
layers), one for end-of-sentence and the other two for intent and action clas-
sification. The three classifiers are then followed by a softmax function that
outputs the probability distribution for that particular prediction.
Even if simple and relatively fast compared to the others, such architecture
presents a main drawback. By looking at the training loss, it was noticed
that the three single losses decreases in the fist epochs and then, after 4-5
epochs, the two losses corresponding to intent and action continue to de-
crease, while the one corresponding to the end-of-sentence stops decreasing.
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Such behaviour have lead to think that the end-of-sentence task is less com-
patible with the other two, while intent and action goes well together. The
reason of that could be found in the fact that, with this architecture, BERT
is forced to collect information regarding end-of-session, intent and action
on the same contextual embedding. If two of them are incompatible, then
the model adjust its weights to decrease only one, trying to minimize the
final loss. So, since the final loss is the sum of the three single losses, the
model prefers to minimize two of them compatible together and discard the
incompatible one. A figure of such architecture is proposed in (3.3).

MTSI-BERT BiLSTM

Since the [CLS] contains information about next sentence prediction and
intent classification, there is a better way to optimize the end-of-sentence
without pulling down the other two losses. In order to do so the end-of-
sentence must be "separated" from the other two tasks, even by still sharing
the same BERT infrastructure. The end-of-sentence branch keeps the same
infrastructure, considering that the [CLS] contextual embedding was trained
on a very similar task. The intent and action classifications instead have
to follow another way to correctly capture the semantic information of the
sentence. A possible way is to encode the sentence inside a single hidden
vector through a RNN. Such method performs quite well with reasonably
short sentences, which is typically the case of a smart speaker dealing with
the first user utterance. To improve such representation a biLSTM can be
used. The biLSTM encodes the information in two ways, one in forward
direction and one in backward direction. Finally the two final hidden states
are concatenated together to form a resulting encoding vector having twice
the size of the original one, thus containing more information. This vector is
called sentence encoding and is then fed to two different linear layers, one for
the intent and one for the action. These are then followed by a softmax that
produces the probability distributions for the predictions. The illustrated
architecture is depicted in figure (3.4).

MTSI-BERT BiLSTM + Residual

In order to make larger the separation between end-of-sentence and intent,
action tasks, different layers can be added. In this way the gradient will
affect mainly the last specific layers and less the layers in common. A
problem that must be avoided in this case is to increase too much the depth
of the network. The reason why this could be a problem is related with
the vanishing gradient effect. When the network is too deep, the gradient
will affect mainly the superficial layers and less the first ones. To make
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the gradient flows better, residual connections (also known as highways)
can be used. The last proposed architecture for MTSI-BERT follows these
specifics and consists in the MTSI-BERT BiLSTM with the addition of three
task-specific layers, each of them followed by a ReLU non-linear activation
function. The three layers do not squeeze the input but simply represent it
at high level, in this way is also possible to apply residual connection to sum
the produced output with the input given to the network. The three Feed
Forward Neural Networks are task-specific, they have the additional aim of
helping the branches to improve the learning of the task by differentiating
more the computations for each of them. In this way each branch has
more parameters to specialize on the given task. Additionally the FFNNs
are quite small (only 3 layers) and so the training time overhead is not
relevant.

NER

In this work, the Name Entity Recognition task had not the same impor-
tance of the other three. The reason is the presence of different papers
made by many researchers in the past year which uses a joint architecture
to perform the NER. What instead was not addressed so much is a system
for session classification like the one here proposed. This is the main reason
why the NER was kept aside in favor of the other tasks. A little model for
NER was anyway developed by using the spaCy open-source library for ad-
vanced NLP applications. The model extracts the main entities from each
utterance of the session, in order to allow possible future storage of informa-
tion, or better, to allow the extraction of information of crucial importance
for eventual reasoning processes. Despite this, a future improvements of
MTSI-BERT could be to integrate the NER also, trying to understand if it
can be compatible with the end-of-sentence, intent and action classification.
Different experiments using BERT are already available on the web. They
fed to a linear layer the BERT contextual embedding of each token and
output a BIO tag (Beginning, Inside, Outside) for entities classification.
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Figure 3.3: MTSI-BERT Basic.
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Figure 3.4: MTSI-BERT BiLSTM.
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Figure 3.5: MTSI-BERT BiLSTM + Residual.
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Chapter 4

Experimental setup

This chapter reports all the aspects related to the experimental setup made
for MTSI-BERT, which includes the dataset, the various used frameworks
and the running environment used for model training.

4.1 Dataset

A great problem of today Natural Language Processing is the small avail-
ability of labeled data. The proposed work needed a dataset containing a
relevant number of conversations between an user and an agent. Further-
more the tasks of action and intent classification require additional labels
for them. The KVRET dataset (Key-Value Retrieval dataset) [31] is the
one finally chosen. The dataset was presented by Stanford student Mihail
Eric in 2017. Collected in a Wizard-Of-Oz fashion using 241 Amazon Turk
workers, it simulates conversations between a driver and a car-integrated
personal assistant. The dataset is formatted as a JSON file, where each
object corresponds to a single conversation and is divided in two sections:
dialogue and scenario. The dialogue is a set of interactions between the
driver and the agent. Each interaction is composed of the turn, which
could be "driver" or "assistant", and the data, containing the utterance and
the end of dialogue flag (True if this is the last interaction of the dialogue).
If the interaction is made by the assistant, the data will also contain infor-
mation about the user request and the detected slot of the previous ques-
tion. The second section instead contains the information about the whole
dialogue. The knowledge base is a fictitious database enriched with infor-
mation needed to the assistant to reply to user questions. Each item in the
knowledge base is represented by a key-value pair. The dialogues which do
not require a knowledge base have no items inside it. The knowledge base
has also a name to identify the data category for that particular dialogue.
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The scenario section also contains the task entry, this in turn contains the
intent of the dialogue. The KVRET dataset contains dialogues belonging
to three different domains (or intents): weather, navigate and scheduling.
The weather intent is associated to all the dialogues consisting in the user
questions about the weather in a particular city and in a particular day of
the week. The knowledge base will then contain the weather information for
a set of cities and for all the days of the week. The navigate intent is associ-
ated to all the dialogues dealing with directions. The user typically requests
indications to reach a particular point of interest, which could be referring
to a specific entity (San Francisco) or a generic one (the nearest gas sta-
tion). The knowledge base contains various points of interest, together with
the street name, the distance and other information about the traffic. The
scheduling intent corresponds to the dialogues involving an appointments
scheduling or a simply reminder. In the case the user requests to schedule a
new event, the knowledge base will be empty, while it will contains various
appointment during the week otherwise. Finally a dialogues ID is presents,
helping to uniquely identify a certain dialogue.

Turn Utterance
ASSISTANT send me to the nearest gas station

DRIVER The nearest gas station is Valero at 200 Alester Ave,
7 miles away. Setting directions now.

ASSISTANT Where is Valero and is there any
traffic on the way?

DRIVER Valero is at 200 Alester Ave and
moderate traffic is being noted.

ASSISTANT Thank you
DRIVER You’re welcome!

Table 4.1: An example of dialogue in the KVRET dataset.

The real task for which the dataset was created for is the key-value
retrieval using Natural Language Understanding techniques. The agent has
to correctly identify the intent and the entities of a dialogue in order to
correctly fetch the knowledge base and provide the requested information.
Despite this, the proposed work has a different aim. The detection of intent,
knowledge base action and end of session is still possible with some small
tricks. By carefully analyze the dataset, it can be noticed that the intent is
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always clearly expressed in the first user utterance, for each dialogue. The
first user interaction defines the task of the dialogue. For what concerns
the action, as already explained, it refers to an insert or a fetch on the
knowledge base. While this information is not directly reported, it can
be extracted by looking at the entries of the knowledge base. When the
knowledge base has some entries, it means that the task is about retrieving
something from that. When instead the knowledge base contains no item,
the dialogue corresponds to an insertion of a new item. Finally the concept
of session can be adopted by concatenating together different dialogues, to
form a bigger dialogue where each session is single-intent. In this way is
possible to predict the end of session by concatenating a session with the
first utterance of a random one, which expresses a new user request and so
a new intent.
The dataset is already divided in three files, one for the training, one for
the validation and one for the testing. They contain respectively 2425, 302
and 304 dialogues (sessions).

Dialogue type # Dialogues
Training dialogues 2425
Validation dialogues 302
Test dialogues 304
Intent type # Intents
Calendar Scheduling 1034
Navigation 1000
Weather 997
Slots # Slots
# Slots type 15
Scheduling slots 79
Weather slots 65
POI slots 140

Table 4.2: KVRET statistics about dialogues and labels type. Source [2]

The number of intents is almost balanced as shown in table (4.2) and
so they do not need particular attention during the training. A totally dif-
ferent discourse should be done for the slots. The NER, done with spaCy,
encountered some problems with the slot labelling, since a lot of them are
missing or wrongly reported. This was another reason why spaCy was cho-
sen, instead of integrating the NER into the MTSI-BERT model.
Other task specific statistics have been made, especially regarding more
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practical aspects needed to understand if the proposed model could have
worked on this dataset. A technical limitation of BERT is the maximum
length of input set to 512 tokens per time. A QAQ triplet is fed to BERT
each time. Its length is variable also because the second question can be
randomly chosen from the entire dataset. The maximum QAQ triplet length
found is 125 tokens for the training set and 129, 78 for validation and test
set ([CLS] and [SEP] included). These numbers are noticeably smaller the
512 tokens of BERT and gives a flexibility of application. If instead the
sentences are taken individually, the max number of tokens reach 113 for
training set and 111, 50 for test set. Another interesting statistic is the max-
imum number of sentences per each dialogues, this number was found to be
equal to 12 for all the three dataset partitions. The dataset also contains
some examples of subsequent utterances made by the same actor. These
cases are intended to simulate a situation in which the assistant does not
seem to work and so the user has to repeat, more than once, the utterance
(table 4.3). In order to make the QAQ triplet construction always feasible,
these cases are avoided and only the last user utterance is taken.

Partition Dialogue ids

Training set

ca4a934e-8a4e-48b6-90bd-fd9f20b07180,
23dc5ff5-807b-435d-b540-7917d9fdaff2,
024d1329-6a76-4aea-a806-222bdfd252f1,
3bb3d971-d069-4208-92f4-6ce2b055ed76,
6dc75860-9ae0-4ac3-b30d-32c2379afbbf,
a006f8e9-318e-4173-abcf-7dd58d3ecb97

Validation dialogues 120c9192-09e0-41d7-93d0-03c899e11571
Test dialogues 38e7f22d-5914-4fee-a696-c83bbd1be451

Table 4.3: Subsequent same actor utterances in dialogues.

For what concerns the other two labels, the action and end of session,
other statics have been made. The number of "fetch" against the "insert"
was found to be equal to 2012 vs 413. Validation and test set instead has
242 vs 60, 256 vs 60. This high unbalancing needed a particular care during
the loss computation as described in section 3.1. The computation of end-
of-session and intra-session was instead trivial. It can be easily deducted
that the number of end-of-session is equal to the number of dialogues, while
the intra-session to the total number of user utterances in the dataset. A
final complete report of the above statistics is shown in table (4.4).
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Max # tokens per dialogue
Training set 152
Validation set 149
Test set 120
Max # tokens per sentence
Training set 113
Validation set 111
Test set 50
Max # tokens per QAQ triplet
Training set 125
Validation set 129
Test set 78
Max # sentence per dialogue
Training set 12
Validation set 12
Test set 12
Max # user utterances per dialogue
Training set 6
Validation set 6
Test set 7 (6 after preprocessing)
FETCH vs INSERT
Training set 2012 vs 413
Validation set 242 vs 60
Test set 256 vs 48
INTRA SESSION vs EOS (after
preprocessing)
Training set 6406 vs 2415
Validation set 748 vs 301
Test set 810 vs 302

Table 4.4: Task specific statistics on KVRET dataset.

4.2 Training settings

One of the most important things to choose, after the architecture, are the
loss function and parameters for the training. By choosing the right pa-
rameters the final model will be significantly better and will achieve very
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good performance. Before deciding the parameters, the loss function has to
be chosen. In this work the Cross Entropy loss was used during training.
CrossEntropy loss is a way to compute the "distance" between two proba-
bility distributions p(x) and q(x), where q is the probability outputs from
the network and p the true one. The formula is presented in (4.1), where ŷ
is the predicted probability and y is the true one. It penalizes only the pre-
diction for the correct class without taking care how the rest of probability
(up to 1) is splitted among the others labels. Another important thing to
notice is that L(ŷ, y) /= L(y, ŷ), so particular attention has to be given to
the loss input parameters.

L(ŷ, y) = −y · log(ŷ) (4.1)

In the proposed dataset, the classes are very unbalanced and so a slightly
modification to this loss have to be done. In particular, to improve the learn-
ing phase, higher penalization should be given to the less frequent classes
like end-of-sentence. If this trick was not taken, then the model will simply
content to predict the most frequent class to decrease the loss. In order to
avoid such behaviour, the classes were weighted during the loss computa-
tion with a factor of supportx

supportC
, where x is the class taken in consideration

and C the most frequent class. This weighting was done for the action and
the end-of-sentence which are very unbalanced as shown in table (4.4).
After the choice of the loss function, one of the most import parameters to
choose is the learning rate. The learning rate tells how much you want to
move, during parameters optimization, from the current weight value. If
the learning rate is too high, then the network will not be able to reach a
good local minimum because the step is too large each time. In the case
of pretrained model, where a good local minimum was already reached, a
big learning rate will cause to go up the hill an loosing the minimum area.
When instead the learning rate is too small, the loss moves slower, this can
cause the model to not converge after long training time. In the proposed
work, different learning rate values were chosen, one for BERT and another
for the neural networks on top of BERT. The learning rate for BERT was
set to be 5e−5 as suggested in the paper, this small value ensures keeping
BERT in the local minimum found with the pretraining. The learning rate
value for the neural networks on top of BERT was choose to be higher. A
value of 1e−3 gives good results and allows the networks to learn the three
tasks without any particular problem. Another important thing to care of
is changing the value of the learning rate during epochs. In the first epochs,
the networks have typically to move faster from the random weights initial
configuration to reach a local minimum area. When the epochs increases,
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the learning rate has to decrease in order to allow the model to explore
better the local minimum area without surpassing it. This allow the model
to converge avoiding big oscillations of the loss. In this work the learning
rate was multiplied, during training, by 0.5 every 5 epochs in the 20 epochs
training.
Other important parameters to set are the ones related to regularization
techniques. Regularization techniques aim to avoid overfitting, a phenomenon
consisting in the inability of the model to abstract the prediction on un-
seen samples. Two regularization techniques were used during the training:
dropout and weight decay. The dropout is a technique that consists in shut-
ting down, with a certain probability, a given unit during the training. This
feature enables to change slightly the connections between units and forces
the network to learn sparse representation. The dropout on BERT output
was set to be 0.5. Weight decay is another regularization technique aims
to avoid the network to be too complex. The underlying idea is that lot of
parameters means lot of connections between units which this can lead to
overfitting the training data. To prevent this, the degree of freedom of the
network must be limited. Weight decay introduces a penalization for high
weights in the loss function. In this way, when gradient descent is applied,
the weight is updated in function of its norm also (squared of the weight),
thus penalizing more high weights. The network is then forced to find a
compromise between the value of weights and the distance from the predic-
tion to the ground truth. This compromise avoid the network to put all the
weights to zero, which implies to learn nothing. The rate of penalization
was set to be 0.1. In equation (4.2) the formula for loss with L2 penalization
and the relative gradient descent are shown.

Ĵ(w) = J(w) + λ

2w
2

Wi = Wi − η
∂J

∂Wi
− ηλWi

(4.2)

Finally the batch size is another crucial parameter, different values of
batch size ends up with different results since it influences the way gradi-
ent descent optimization algorithm is applied. Three variants of gradient
descent can be distinguished:

• Batch Gradient Descent
• Stochastic Gradient Descent (or SGD)
• Mini-Batch Gradient Descent

The Batch Gradient Descent consists in the computation of the error on the
whole training set (the so called batch). The errors for each single sample are
added up and the optimization step is performed at the end of each epoch. If
a lot of data are present (typical of Deep Learning application), the training
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will be computationally unfeasible. The Stochastic Gradient Descent tries
to overcome this limitation by applying the optimization step after each
sample. In this way the error will be noisier than batch gradient descent,
but the model will converge faster. TheMini-Batch Gradient Descent mixes
the two approaches by computing the error on a subset of the training
set called mini-batch. This last approach is the most used one in Deep
Learning applications because it provides a less noisier error (compared
to the SGD) and it is very well optimized for GPU computations. The
mini-batch, in fact, exploits GPU libraries for vectorization improving the
training performance on GPUs. The batch size is typically a power of 2
because of the alignment of GPU virtual processor (VP) onto physical ones
(PP). Values for batches typically range from 8 to 256 samples. In this work
SGD was initially tried (because of BERT input limitations) with very poor
results. The batch size equal to one provides too noisy errors and so bad
optimization steps. Then, even keeping the batch size equal to 1, and so
without the possibility to exploit the GPU vectorization, the adoption of
batch was made. All the three architectures of MTSI-BERT were trained
with mini-batch gradient descent, by accumulating the loss on mini-batches
of size 16, with a significantly improvement in model performances.

4.3 Frameworks and libraries

4.3.1 PyTorch

Despite an increasing availability of open source Deep Learning framework,
today research works uses TensorFlow and PyTorch libraries. These two
frameworks provide implementation for several neural networks architec-
tures like CNN, RNN, simple FFNN and recently also Transformer mod-
ules, together with different losses and optimizers. Both supports the use
of GPUs for neural networks execution and have several optimizations to
make them faster. TensorFlow (https://www.tensorflow.org/) was de-
velop by Google Brain for internal use and then released as open source
library in 2015. It allows to run the program on more than one CPU or
GPU. In the last years it also allow to run the code on Google TPU (Tensor
Processing Unit), a specific hardware chip for machine learning built ad-hoc
for TensorFlow. The framework is based on a static graph paradigm. A
static graph means that all the things related to a neural network have to
be declared before and this seems to be more unnatural and tedious most
of the times. The neural network lives inside a TensorFlow session and can
communicate with the outside world only with special mechanisms. The
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debugging with Python tools is not possible, special commands for debug-
ging are needed. Another problem is the absence of modules, which brings
to write boiler code every time a new architecture has to be implemented,
and the complex way to distribute the work on several CPUs or GPUs. Py-
Torch (https://pytorch.org/) is an open source machine learning library
based on Torch library. It is developed by a community but primarily by
Facebook AI. It has a more pythonic way of use and is based on dynamic
graph. A dynamic graph means that a graph is instantiated each time a
forward method is called. This brings the possibility to debug with na-
tive Python tools and other important improvements. PyTorch has the
concept of module, which make it more similar to a framework than to
a library. The modules help in creating new architectures without taking
care of boiler code. It supports the use of multiple CPUs and GPUs with a
simple wrapper called nn.DataParallel and TPU support is coming with
the next version. PyTorch is a new library with promising future. Today
different researchers and universities prefers it to TensorFlow for its great
improvements in flexibility and ease of use.
For all these reasons, the preferred Deep Learning library for this work was
chosen to be Pytorch.

4.3.2 PyTorch-Transformers

The BERT original model was released in TensorFlow at https://github.
com/google-research/bert. Fortunately, during the first year, some port-
ings has been done. The most famous one was done by Hugging Face avail-
able at https://github.com/huggingface/pytorch-transformers. The
library includes all the state of the art NLP models based on Transformer
architecture, together with the pretrained weights converted from Tensor-
Flow file format, for fine tuning tasks. At the time of writing, the following
models are available:

• BERT
• DistilBERT
• Transformer-XL
• XLNet
• GPT
• GPT-2
• XLM
• RoBERTa

The modules typically share a common Transformer structure and are all
documented in a pretty good way. The documentation is available at
https://huggingface.co/pytorch-transformers/.
For what concerns this work, the BERT model only was needed. The BERT
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model is well documented, with different examples, and ease of use. It is
released in different flavours, each one can use pretrained weight for down-
stream tasks. The available BERT modules are the following:

• BertModel
• BertForPreTraining
• BertForMaskedLM
• BertForNextSentencePrediction
• BertForSequenceClassification
• BertForMultipleChoice
• BertForTokenClassification
• BertForQuestionAnswering

The various models mount some layers on the top for different downstream
tasks (except for the BertModel). The pretrained models are available for
both large and base version of BERT, with cased or uncased version and in
English, Chinese, German or multilingual (which consists in a mixed words
vocabulary, including Italian). In the proposed work only the BertModel
was used, which is the one corresponding to the raw BERT model, without
additional downstream layers on top. The library also provides other tools
like the BertTokenizer, allowing to easily divide the sentence into subwords
ready to be fed to BERT. The structure was done to be as most similar to
the TensorFlow counterpart, in order to achieve equal performances.

4.3.3 spaCy

spaCy is a open source library for helping in the development of advanced
NLP applications. It was developed by Matthew Honnibal now member
of Explosion AI in Python and Cython programming languages. It pro-
vides statistical machine learning model, together with Deep Learning ones,
fully compatible with the major machine learning frameworks like Tensor-
Flow, PyTorch, Keras or Scikit-learn. It provides built in functionalities
for tokenization, word similarity measuring (through word vectors), depen-
dency parsing, sentence classification, POS, NER and many others. It does
not provide software as a service, it is instead use to build powerful NLP
pipelines for applications or Deep Learning pre-processing. It allows to
perform the training of different included model (such as BERT) for differ-
ent tasks. In this work, spaCy was used exclusively for NER. The official
website is available at https://spacy.io/.
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4.4 Running environment

In this subsection a little overview of the main tools used for the training of
the model. TheMTSI-BERT required at least 3 GB to be instantiated and
up to 5 for the effective training. The memory consumption was optimized
during the development, anyway the GPU memory resources remained out
of the possibilities of a normal machine. For this reason, the training and
the testing was done on two different platforms, described below.

HPC@POLITO

Computational resources were provided by HPC@POLITO, a project of
Academic Computing within the Department of Control and Computer En-
gineering at the Politecnico di Torino (http://www.hpc.polito.it).
TheHPC@POLITO is the high performance computing infrastructure hosted
by the DAUIN (Deparment of Control and Computer Engineering) depar-
ment at Politecnico di Torino university. The project started in 2008 with
small hardware and open source software. In 2011 the resulting system,
called CASPER, has come to life. In 2015 a new cluster, HACTAR, joins
the infrastructure. HACTAR has GPUs capabilities and for this reason was
the one chosen in this work, all the hardware specifics are shown in figure
(4.1). In summer 2019 a new cluster, called LEGION, has come. This has
a capabilities of 8x nVidia Tesla V100 SXM2 with 32 GB and 5120 cuda
cores, which will help several future Deep Learning studies.
All the clusters owns a SLURM (https://slurm.schedmd.com/overview.
html) scheduler, an open source software for Linux clusters management.
The training phase with HACTAR cluster required 25 hours on 100 epochs
and 1 hour and an half on 20 epochs.
All the information about the HPC@POLITO are available at http://hpc.
polito.it/index.php.

4.4.1 Google Colab

Google Colab (Colaboratory) is a free jupyter notebook that runs in the
cloud, offered by Google. It offers the possibility to use computational re-
sources for free, in particular a CPU, a NVIDIA TESLA K40 GPU and
a TPU. While the TPU is not yet supported by PyTorch, the GPUs has
the capability to run the MTSI-BERT model. The use of Colab was
limited to testing only, due to time limitation (12 hours of continuos train-
ing) and some performance slowdown when the cloud was full. It allows to
easily test the model, which otherwise would have to wait for the queue
on HPC@POLITO. All the basic information about the service offered
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Figure 4.1: The HACTAR hardware specifics. Image take from
HPC@POLITO website

by Google are available at the following url https://colab.research.
google.com/notebooks/welcome.ipynb.
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Chapter 5

Results

In this chapter the results of MTSI-BERT are presented. The chapter is
divided in two sections, in the first a description of the results after the
training phase, together with some considerations, are reported. The second
one instead contains the results of the testing phase.

5.1 Training results

The training phase was repeated two times, once on 20 epochs and another
one on 100 epochs, to see if the network needs more times to continue the
loss decreasing.
During training the most important result to look at is the decreasing of
the loss. Even if the loss decreasing is not always related to the final testing
scores, this is an important parameter to take care of. The loss trend tells
if the trained model is going to converge or not. The trend of the losses
for the three tasks was promising and is reported in figure (5.1). The plot
shows how the loss for the action decreases faster compared to the other
two. The action could be the easier to detect for the network, considering
that it is a binary classification task compared to the three possible classes
for the intent. The end-of-session should be instead the most difficult task
of the three and the achieved loss value confirms the good job done by the
proposed model.
Another important thing is to compare the loss on the validation set with
the one on the test set. The depth of Deep Learning models introduces
so much parameters that they are, in principle, able to just memorize the
training set. While this trend make the loss converging, it produces very
bad performance on unseen samples, because of the inability of the model
to abstract what it has seen. This phenomenon is also known as overfitting
and is characterized by an increasing trend of the validation loss versus
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a decreasing trend of the training one. MTSI-BERT avoided overfitting
thanks to dropout and weight decay regularization techniques. The plot
reporting the trends for both validation and test losses is shown in (5.1a).
The plot shows how the validation and the training losses decrease together.
Finally a table reporting the training time for the 20 and 100 epochs on
single GPU is available at (5.1). The table reflects the number of parameters
of the three MTSI-BERT variants. The Basic variant is the fastest one, the
Deep is the slowest, while BiLSTM is a compromise between the two.

Architecture 20 epochs 100 epochs
MTSI-BERT Basic 2:00h 10:19h
MTSI-BERT BiLSTM 2:17h 11:21h
MTSI-BERT Deep + Residual 2:40h 11:35h

Table 5.1: Training time for the three MTSI-BERT variants on 20 and 100
epochs training.
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Figure 5.1: (a) losses trend for MTSI-BERT basic architecture. (b) losses
trend for MTSI-BERT biLSTM architecture. (c) losses trend for MTSI-
BERT deep + residual architecture.

5.2 Testing results

5.2.1 Measures

The testing phase is the most important in machine learning, is the moment
in which the real value of a model is assessed. The way to measure the
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performance of a model is today widely discussed, anyway the MTSI-BERT
performance was tested with the traditional machine learning scores which
are:

• precision
• recall
• F1

Before understanding what the three score measures actually mean, the
confusion matrix has to be introduced. Figure (5.2) represents the confusion
matrix. It contains four different entries for a binary classification task:

• True Positive (TP)
• False Positive (FP)
• True Negative (TN)
• False Negative (FN)

Figure 5.2: The confusion matrix. Source [12].

The entries beginning with the "True" word are all the ones correctly pre-
dicted by the model. The True Positive are the correctly predicted belonging
to the positive class (label 1), the True Negative are instead the correctly
predicted belonging to the negative class (label 0). The entries beginning
with the "False" word are the mispredicted ones, the False Positive are the
mispredicted belonging to the positive class (label 1), the False Negative
are the mispredicted belonging to the negative class (label 0).
The precision is the ratio between the correctly classified samples and the
total number of classified samples. Formula (5.1) represents the precision
for the positive class. Unfortunately, the meaning of the precision score for
unbalanced classes is quite ambiguous. The precision score will be high if
the model simply predict the most frequent class without taking care of the
less frequent one. For instance let’s think about a binary classification prob-
lem where the positive class has support 99 and negative class has support
1. If the model predicts correctly only the positive ones, than it will have a
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precision of 99% but no predictive power. So, in order to give a measure of
the predictive power of a model, the recall concept has to be used.

Precision = TP

TP + FP
(5.1)

The recall measures the ability of the model to correctly predict the samples
belonging to a class, given all the other samples of that class. Then it simply
the ability of the model to "recall" such a class. Formula (5.2) shows the
recall for the positive class. These metric is used in some scenarios in which
the classes importance is not the same. For instance think about a patient
cancer detector, the system has to predict at a first stage if a patient could
have the cancer or not. If a cancer is predicted, then the patient has to be
subject to additional human visits, if not it can go home. In such scenario
a False Positive is not a great problem, since the misprediction will then be
revealed with the further human visits. A False Negative has instead to be
absolutely avoided, otherwise a patient with the cancer will be sent home
without any further visit.

Recall = TP

TP + FN
(5.2)

The F1-score is a measure defined as function of precision and recall, bal-
ancing between the two. The F1 weighs the precision of the model with its
recall. In this way is possible to give a meaningful measure with unbalanced
classes. The formula for F1-score is reported in (5.3).

F1 = 2 · Precision ·Recall

Precision + Recall
(5.3)

While these metrics are defined for binary classification problems, the exten-
sion to multi-class is trivial by considering binary problems for each class
c of the type: class c versus not class c. Once all the precision for each
class have been computed, an average of them have to be made. There are
three ways to compute the average of a measure in multi-class classification
problems:

• Macro average
• Macro average
• Weighted average

With macro average the F1-score for each class is computed first, then all
the scores are averaged. This type of average is used in case of unbalanced
class, since it penalize more errors on the minority class. Micro average
consists in computing the average by taking in consideration the total true
positive, false positive and false negative, thus not favouring any particular
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class. Weighted average is instead another option present in the sklearn
library which computes the average of all the F1, computed individually
for each label, by weighing each factor with the support of that class, thus
favouring the majority class. The equations for the listed average methods
are reported at (5.4). The scores for this work take in consideration the
macro average only for precision, recall and F1, due to presence of unbal-
anced classes.

F1macro_avg = F1class1 + F1class2 + F1class3

F1micro_avg = F1class1+class2+class3

F1weighted_avg = W1 · F1class1 + W2 · F1class2 + W3 · F1class3

(5.4)

5.2.2 Reference SOTA model

In order to have a performance comparison for MTSI-BERT, another model
was developed. This model is similar to the proposed one except for two
aspects:

• No joint tasks
• Non contextual embeddings

The model performs the tasks prediction by using three different disjoint
networks: one for the end-of-session, one for the intent and another one
for the action. The networks for the intent and action prediction are the
same, except for the output layer. They are composed by a biLSTM which
performs the sentence encoding, followed by a 3-layer feed forward neural
network to classify the sentence. The end-of-session uses the same biLSTM
architecture. The encodings for each utterance are then grouped by 3 and
concatenated to create a window. The resulting windows, having size 3
times the single utterance embedding, are then fed to another 3-layer feed
forward neural network to classify the end-of-sentence.
The embeddings for this model are the one provided in Spacy with 300-
dimensionality. The sentence embedding has instead dimension 1536 (768
times 2 for the biLSTM), to match the embedding of MTSI-BERT model.
Stop words were completely removed. A picture showing the architecture
is shown in (5.3).
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Figure 5.3: Reference SOTA architecture.
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5.2.3 Model results

Finally in this section the results achieved by MTSI-BERT are reported.
Before showing them a little premise have to be made. Since the end-of-
session (EOS in the table) is computed between the current session and the
first utterance of a random one, the final prediction will have a little ran-
domness. To capture it and have a better vision of the final accuracy, the
scores for this task were made by averaging the scores on 10 different and
independent runs. Then the mean of the scores was made and the standard
deviation computed. To better capture the stability and variability of the
end-of-sentence accuracy, this is the only class presenting three precision
digit when the standard deviation is in the order of 10−3.
In both the training experiments (20 and 100 epochs) the training param-
eters are reported. In such tables, the milestones are the epochs where the
learning rate is decreased, γ instead is the learning rate decreasing factor.
The end-of-sentence prediction is three percentage point higher in MTSI-
BERT, compared with the NO-BERT reference architecture. The action
and intent tasks can be considered solved by all the three architectures,
even if some of them shows better behaviour in some cases. The MTSI-
BERT BiLSTM and MTSI-BERT Deep + Residual are the ones with the
higher score on the EOS, anyway the second one shows the best loss trend of
the three. The loss variance is smaller and so more stable. Since the model
will be, in the future, deployed also in other scenarios, this robustness will
make the deep architecture the preferred one.

20 epochs

Parameter Value
mini-batch size 16
BERT learning rate 5e−5

NN learning rate 1e−3

weight decay 0.1
milestones 5, 10, 15, 20
γ 0.5

Table 5.2: Training settings for MTSI-BERT on 20 epochs.
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Architecture Task Precision Recall F1

MTSI-BERT
Basic

Intent
Action
EOS

1.00
0.99

0.981± 0.001

1.0
0.99
0.99

1.00
0.99

0.986± 0.001

MTSI-BERT
BiLSTM

Intent
Action
EOS

1.00
0.99
0.99

1.00
0.99

0.995± 0.001

1.00
0.99
0.99

MTSI-BERT
Deep

Intent
Action
EOS

1.00
1.00
0.98

1.00
0.99
0.99

1.00
0.99
0.99

NO-BERT
Intent
Action
EOS

1.00
1.00

0.961± 0.001

1.00
0.99

0.964± 0.001

1.00
0.99

0.962± 0.001

Table 5.3: Results for the MTSI-BERT on test set after a training of 20
epochs.

Architecture Task Precision Recall Accuracy

MTSI-BERT
Basic

Intent
Action
EOS

1.00
1.00
0.98

1.00
1.00
0.99

1.00
1.00
0.99

MTSI-BERT
BiLSTM

Intent
Action
EOS

1.00
0.99
0.99

1.00
0.99

0.992± 0.001

1.00
0.99

0.992± 0.001

MTSI-BERT
Deep

Intent
Action
EOS

0.99
1.00
0.98

1.00
1.00
0.99

0.99
1.00
0.99

NO-BERT
Intent
Action
EOS

1.00
0.99
0.96

1.00
1.00
0.96

1.00
0.99
0.96

Table 5.4: Results for the MTSI-BERT on validation set after a training of
20 epochs.
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100 epochs

Parameter Value
mini-batch size 16
BERT learning rate 5e−5

NN learning rate 1e−3

weight decay 0.1
milestones 5, 10, 15, 20, 30, 40, 50, 75
γ 0.5

Table 5.5: Training settings for MTSI-BERT on 100 epochs.

Architecture Task Precision Recall F1

MTSI-BERT
Basic

Intent
Action
EOS

1.00
1.00

0.988± 0.001

1.00
1.00
0.99

1.00
1.00

0.991± 0.001

MTSI-BERT
BiLSTM

Intent
Action
EOS

1.00
1.00
0.99

1.00
1.00

0.997± 0.001

1.00
1.00
0.99

MTSI-BERT
Deep

Intent
Action
EOS

1.00
1.00
0.99

1.00
1.00
1.00

1.00
1.00
0.99

NO-BERT
Intent
Action
EOS

1.00
1.00

0.955± 0.001

1.00
0.99
0.96

1.00
0.99
0.96

Table 5.6: Results for the MTSI-BERT on test set after a training of 100
epochs.
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Architecture Task Precision Recall Accuracy

MTSI-BERT
Basic

Intent
Action
EOS

1.00
0.99
0.99

1.00
1.00
0.99

1.00
0.99

0.991± 0.001

MTSI-BERT
BiLSTM

Intent
Action
EOS

1.00
1.00
0.99

1.00
1.00

0.994± 0.001

1.00
1.00
0.99

MTSI-BERT
Deep

Intent
Action
EOS

1.00
1.00
0.99

1.00
1.00

0.994± 0.001

1.00
1.00
0.99

NO-BERT
Intent
Action
EOS

1.00
0.99

0.961± 0.001

1.00
1.00

0.965± 0.001

1.00
0.99

0.963± 0.001

Table 5.7: Results for the MTSI-BERT on validation set after a training of
100 epochs.
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Chapter 6

Use case

In this chapter a real case scenario is studied. PuffBot is a chatbot for
asthma suffering users to support doctors in daily care of their patients.
The chatbot will rely on a multi-turn paradigm to correctly understand
user healt status while it will also exploit Convology, an ontology specific
for multi-turn conversational agent. While the project is still in the first
phase of development, a brief overview of it is given. The next sections
will present the PuffBot assistant together with a use case scenario, a first
prototype using rapid-prototyping tools and the Convology ontology.

6.1 PuffBot

PuffBot is a multi-platform chatbot born from an idea of two Italian re-
searchers belongs to LINKS Foundation and Fondazione Bruno Kessler.
The aim of PuffBot is to monitor the status of the patients through natural
conversations via text and voice. The multi-platform implementation allows
the user to interact with the bot via several devices like Telegram, Amazon
Alexa etc.
PuffBot is designed specifically for helping doctors in the support of its
asthma suffering patients by creating an empathic channel with them, es-
pecially for children. It ask periodically for the health status of the user
by monitoring its breath, how many "puffs" he has done in the last period
or for any particular emergency situation he encountered recently. The pa-
tient can also interact for first with PuffBot. It will extract all the relevant
information from the user dialogue to make a little resume of his situation.
PuffBot relies on a knowledge-base based on Convology, an ontology specific
for multi-turn interactions. With Convology, PuffBot can store all the in-
formation regarding the user status and suggest him treatments specific for
its conditions. The treatments PuffBot suggests are all defined by domain
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expert of the Trentino ASL and cover only light cases, for emergency one
the visit of the doctor is always suggested. PuffBot classifies the user sta-
tus, by means of reasoning processes on the knowledge-base, in 4 different
categories. The green zone is the one associated with the normal situation.
Events associated to this category are, for instance, related to absence of
cough or cough during sport activities. The typical PuffBot suggestion will
be to continue with the current therapy. The yellow zone is associated with
mild cases, for which doctor intervention is typically not needed. Events
falling into this category are cough with rhinitis, cough during night and
other types of coughs. In this case PuffBot suggest the user to increase the
frequency of the puffs and will monitor again the situation after a while, if
the conditions worsen then the patients will be classified in the red zone.
The orange zone is the last PuffBot can handle and is the one that needs
the most attention, together with the red zone. This zone typically consists
in persistence cough and sense of chest constriction. PuffBot will suggest to
increase the frequency of puffs and to follow a particular therapy, of course
prescribed by domain experts. PuffBot continues to monitor the patients to
see if condition improves or not, in the worst case it classifies the user with
the red zone. The red zone is the one consisting in a emergency situation
for which the doctor visit is needed. PuffBot will suggest the user to call a
doctor and will continue to monitor the status of the user after the doctor
visit.
PuffBot monitoring is triggered by particular external situations like hu-
midity changing, pollen in the air or detection of high values of pollution
in the city where the patient lives. The PuffBot conversational paradigm
is a multi-turn. Each session is designed to identify a single user intent
like the breath condition, cough, sport activities or particular allergies. All
the information extracted from each single session are then inserted in the
knowledge base together with some important parameters such as date and
hour. PuffBot interactions are divided in two main phases: on-boarding
and monitoring. The on-boarding phase starts when the user interact with
the bot for the first time, thus a set of question related to the name, the
city, sport practiced and eventual allergies are made to him in order to cre-
ate an user profile to be saved on a database. These informations are then
used by PuffBot to monitor the weather and humidity level for that city
or to take care about particular user allergies. The second phase instead is
the real monitoring discussed above. A little prototype of PuffBot has been
done using rapid prototyping techniques as DialogFlow and the Alexa SDK
released by Amazon.
In the following subsections a use case description and the a little overview
of PuffBot together with a proposed infrastructure architecture is done.
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The last section instead contains a brief description of Convology.

6.1.1 Use Case Scenario

Martin is a university student in Turin. In the last month he suffered
from cough and thoracic compression during the whole day. The doctor
prescribes him a pulmonologist visit. With the visit, Martin discovered
his asthma due to a pollen allergy. The doctor prescribes a therapy, gives
him his inhalator and suggest an application called PuffBot, an intelligent
assistant capable of supporting him with diagnostic of his situation. Martin
starts the bot on Telegram and the skill on Amazon Alexa. PuffBot begins
the conversation by presenting itself and asks some personal information
about Martin. It asks for his name, the city where he lives, sport activities
he practices and eventual allergy it has. Finally PuffBot saves all the Martin
information on the database and creates the user profile.
Martin interacts with PuffBot twice a week, by updating it with new events
related to his asthma. He interacts with him both at home, using the
Alexa smart speaker, and when he is out with friends, using the Telegram
chat. PuffBot frequently asks him about breath condition and, in case of
anomalies, suggest him to continue daily the therapy and try to increase
the puffs frequency. In the month of April, Puffbot, knowing the pollen
allergy of Martin and the pollen quantity in the air of Turin, interacts with
him to know if everything is fine, if the asthma is under control and if
he suffered from cough during the night. He warns Martin about the high
percentage of pollen in the air and suggest him to always carry the inhalator
with him and try to increase the puffs to 4-6 times per day, whenever is
needed. After a week Martin says that its situation is getting worse, he has
dry cough during all night and this make difficult for him to sleep. PuffBot
consults all the data it has about the Martin situation and understand
that this anomaly could be related with the high percentage of pollen in
the air and the great humidity in the city of Turin during the last 2 days.
It extracts from his domain knowledge, given by Trentino ASL experts, a
possible therapy consisting in increasing the puffs to 4-6 hours daily and,
if the condition improves, then reduce the puffs to 8-10 hours per day.
Martin follows the instructions for the next 3 days and the situation seems
to improve, so it decreases the puffs frequency as suggested. After 5 days
it encounters new problems not only with the cough but he also feels pain
during the breath and a sense of thoracic constriction. PuffBot catches
this new information and makes a new diagnosis, based on the previous
state of Martin and all his precedent history of the last 2 months. PuffBot
extracts a new therapy consisting in increase the puffs to 2 per hours, for
the first 2 hours, then 3 every 4-6 hours. PuffBot also notices the possible
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seriousness of the situation and invite Martin to immediately talk to it if
the situation worsens. Martin follows the instruction of PuffBot but the
situation does not seem to improve, thus he talks with PuffBot the next
day which suggests to use the puffs for time intervals smaller than 3 hours
while calling a doctor as soon as possible. Martin calls the doctor and makes
an appointment for the afternoon of the same day. After the visit, PuffBot
asks him for the doctor diagnosis and saves the new therapy in order to
continue the monitoring of Martin.
Martin is happy with the bot support during the day and refers it to the
doctor. The doctor is helped by PuffBot in the care of its patients and
continue to suggest it to all its asthma suffering patients.

6.1.2 Rapid prototyping

Rapid prototyping tools for chatbot development are tools that helps in the
creation of a conversational agent, without caring about machine learning
algorithms. The are commonly offered as web services hosted by com-
panies which allow the use of their intelligent algorithm to support the
development. DialogFlow and Alexa SDK are ones of the most famous
rapid-prototyping services freely available. In the next sub sections a little
overview of both is made.

DialogFlow

DialogFlow is a web platform for make easier the chatbot development (url:
https://dialogflow.com). It consists in a dashboard where the user can
create a new project or open a existing one. DialogFlow is empowered by
the Google machine learning techniques and facilitate the design of multi-
platform chatbot. With a single click it is possible to activate the porting
of our project to different chat platform like Telegram, Messenger, Slack,
Google Assistant and Amazon Alexa. DialogFlow is based on webhooks
which are called each time a particular intent is detected. The developer
has to insert some possible user utterances for each intent by high lightning
the slots that have to be detected. Thus it has to write the webhook to
be called when that particular intent is recognized. The webhook receives
a JSON file containing all the useful information for the detected intent
(Slots, original utterance etc.). With the Blaze plan of Firebase (pay as you
go), it is possible to call an external service from the webhook, if the latter is
hosted on a server having a non-self signed certificate. This last detail allow
the use of DialogFlow Natural Language Understanding as an interface for
external applications. DialogFlow makes possible also to handle a sort of
multi-turn conversation through the mechanism of contexts. A context is a
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particular variable that can be passed from an utterance to another. The
maximum number of contexts is anyway limited to 5. DialogFlow provides
also a speech-to-text and text-to-speech systems for the deployment on a
voice assistant like Google Assistant and Alexa. Despite this, the conversion
of the project to an Alexa skill is today very poor.
The DialogFlow platform was the selected one for the development of the
first PuffBot prototype for presentation purposes.

Alexa SDK

Alexa SDK is the Software Development Kit for the development of skills
on Amazon Alexa (url: https://developer.amazon.com). A skill is a sort
of little program for the Alexa speaker to handle particular type of conver-
sations, enabling so the speaker customization. The skill can be developed
using the Amazon dashboard web service, which is very similar to the Di-
alogFlow one and easy to use. Despite the design similarity, the tools pro-
vided by Amazon Alexa seems to be very poor compared to the one offered
by the Google service. It follows the same paradigm of DialogFlow, the
developer has to insert some example of user utterances for each intent and
then develop the correspondent webhook to be called. It offers compatibility
with Amazon products like Echo Show but not with external services. The
Italian version still does not support the fallback intent. The fallback intent
is the intent triggered when a user utterance is not recognized, its absence
make useless the development of a skill considering that Alexa will detect
the closest intent even if a total random utterance was said. Nevertheless a
small prototype was done and deployed on an Alexa speaker.

6.1.3 Proposed infrastructure

The first phase of PuffBot development consisted in the feasibility study.
This study takes in consideration the possible infrastructure to host the
chatbot web-service. The working team is composed by 3 people having
skill covering NLU and knowledge representations. The development of a
multi-platform system, together with the voice system, is out of the scope of
this work. For this reason two main issues must be solved by using external
services:

1. Multi-platform integration
2. Voice systems, which includes both speech-to-text and text-to-speech

As already explained in section 6.1.2, DialogFlow provides multi-platform
support with just a few clicks together with a reliable STT and TTS sys-
tems. What has to be developed internally is the domain Natural Language

83

https://developer.amazon.com


6 – Use case

Understanding module, whose is the core part of the project. An infrastruc-
ture proposal for the described web-service consists in the use of DialogFlow
for redirection, via webhook, of the processed speech to the internal server,
containing the NLU module. By using DialogFlow as a proxy, the module
can simply work on the NLU task, while all the other pre-processing (SST)
or post-processing (TTS) are made by the DialogFlow framework. This
solution gives also the compatibility with multiple messaging applications
without the need of changing the internal logic. All the compatibility issues
are moved to DialogFlow. The drawback is the need for having a non self-
signed certificate for the server, which has to be addressed from DialogFlow
webhooks.
In the next sub-section the specific service integration with Telegram appli-
cation is described.

Telegram integration

Telegram is a messaging application available for Android, iOS, Windows
Phone, Windows, Linux and macOS. PuffBot will be hosted on the inter-
nal server and will use DialogFlow for the integration of Telegram. The
Telegram integration in DialogFlow consists in the creation of a bot for the
chat. A Telegram bot is a special chat agent programmed to accomplish a
specific task. A bot is easy to create on the Telegram platform, in a way
that everyone can use it. Each bot has its own unique client access token,
used to contact it. To start the conversation, the user has to search for the
bot, open the chat and initiate the bot session with the "/start" command.
Each time the user sends a message to the bot, this will be redirected to
DialogFlow. A Telegram message, in DialogFlow, is a JSON payload con-
taining all the information which characterize that message. The JSON file
contains the message ID, the chat ID, the timestamp and other information
as reported in figure (6.1). The chat ID is the one identifying the user. The
first time the user starts the bot, the chat ID will be stored in the internal
server database and will then be enriched with the user personal informa-
tion. By doing so, PuffBot has a way to contact the user when a particular
event occurs (doctor appointment, weather changing, pollen detected in the
air). In DialogFlow there are two main ways to trigger an intent.

1. by sending an user query (for that particular intent) to the bot
2. by linking an event to the intent and then triggering such event

while the first one is the common way to trigger an intent and can be
done also by POST request (by sending directly the query utterance in the
JSON payload), the second is the way chosen in this work for the trig-
gering. By linking an event to an intent, the latter can be triggered to
invoke the former. For instance, when the Telegram start command is sent,
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Figure 6.1: An example of DialogFlow JSON payload for a Telegram mes-
sage.

DialogFlow triggers the TELEGRAM_WELCOME event which is by de-
fault associated to that particular command. In figure (6.2) the manual

Figure 6.2: How to manually trigger an event, and so the associated intent.

triggering of the TELEGRAM_WELCOME event is reported. Where the
<CLIENT_ACCESS_TOKEN> is the one of the bot to contact (can be
retrieved through Telegram), the <API_VERSION> corresponds with the
DialogFlow API version to use (available versions can be found on the docs)
and the <EVENT> is the name of the event to trigger. When a particular
event is triggered (like the weather changing), PuffBot has then to contact
the user. To do so, the Telegram REST API can be used. Figure (6.3)
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shown the way to manually send a message, where the TELEGRAM_TO-
KEN is the token identifying the telegram bot, the CHAT_ID is the ID of
the chat on which the message has to be sent (it corresponds to the user ID
if the group is private) and the TEXT_TO_SENT is the formatted string
to be sent as message. The TELEGRAM_TOKEN can be found in the
integration tab of DialogFlow console, by clicking on the telegram icon.

Figure 6.3: How to use the Telegram REST API to send a message to a
particular user.

Finally the triggering mechanism allow PuffBot to contact the user when
a particular event occurred. By storing all the chat id at server side, it is
possible to send a message to a particular user with the Telegram REST
API. The send_message is called inside the webhook correspondent to a
particular intent. This intent is then associated to an event which is trig-
gered every time is needed.
Using DialogFlow as a proxy removes the needing for implementing a Tele-
gram interface for PuffBot service. The only thing needed is a non self-
signed certificate for the server, in order to be called via API from the
DialogFlow webhook.
A final schematic representation of the Telegram integration is available in
figure (6.4).

The prototype developed for Telegram is available and presents the two
phases of on-boarding and first diagnosis. The current list of intents im-
plemented in PuffBot is almost 40, 12 of them are part of the on-boarding
phase. All the intents were defined with the supervision of the Trentino
ASL, to better model the domain specific information. Furthermore, intents
were structured in a hierarchical fashion, in order to group together similar
intents. For instance, several sub-intents are related to the macro-intent
"cough", some of them are "cough frequency", "last cough episode" and so
on. A conversation sample is shown in figure (6.5). Unfortunately for the
English speakers, the prototype was developed in Italian only. Anyway the
project is still work in progress and English and Chinese porting are com-
ing. The picture shows the on-boarding phase, consisting in asking basic
information about the user. Here were reported questions about name, city,
weather of the city, practiced sports, smoking habit, work place information
and if the user often suffers from colds. Some important information, such
as the city weather, are in project to be retrieved through third party APIs.
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Figure 6.4: Proposed web-service infrastructure for Telegram integration.

The second phase instead consists in asking questions about the cough, for
which the user has suffered in the last period. At the end of the diagnosis,
PuffBot resumes all the symptoms in the last message, together with a little
suggestion, consisting of, in this particular case, a little walk in the park.

6.2 Convology

Convology (CONVersational OntOLOGY) is an ontology developed byMauro
Dragoni at Fondazione Bruno Kessler. Convology is a top level ontology
which aim is to model conversation for building knowledge-bases as sup-
port of multi-turn conversational agents. It was developed to be highly
reusable and is downloadable at the following url https://perkapp.fbk.
eu/convology/.
The building process of Convology followed the METHONTOLOGY [32],
which is composed by seven stages:

1. Specification
2. Knowledge acquisition
3. Conceptualization
4. Integration
5. Implementation
6. Evaluation
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Figure 6.5: A sample Italian conversation with the Telegram first prototype
of PuffBot.

7. Documentation
The process involves a total number of four knowledge engineers and two
domain experts from the Trentino ASL. Convology is a meta-model to de-
scribe the conversation from the agent point of view. By using it, is possible
to create conversational agents able to access a knowledge base through a
multi-turn conversational paradigm.
The ontology consists in five top-level concepts:

• Actor
• ConversationItem
• Dialog
• Event
• Status

The Dialog concept is instantiated each time a new multi-turn interaction,
between user and one or more Agent, is started. It is the only concept in
Convology that does not subsume any other. It has the hasId property
allowing an efficient retrieval of the dialog during reasoning time.
The Actor is the concept defines the party role inside a conversation. Two
party roles are available: User and Agent. An User role identifies the user
of the conversation. An User concept is created whenever a new user starts
the conversation with an Agent. Each User can be associated with different
instances of Dialog and Agent. The Agent role identifies the conversational
agent instead. Convology can has different instances of Agent even if the
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application is the same. This can improve the performance in the case of
PuffBot, for instance, where we can have different instances of Agent with
different user statuses.
The ConversationItem represents the entities of the conversation. Con-
vology presents four types of ConversationItem:

• Question
• Intent
• Feedback
• DialogAction

Question represents a question sent from the User to an Agent. It can also
be associated with the UserEvent through the hasTriggerQuestion property.
Intent represents the intent detected by a NLU module for a particular
Question. When the Intent is detected, a StatusItem instance is created
to allow the inference of the user status in PuffBot. Feedback represents a
simple utterance from the User to the Agent which not requires a reply and
is not associated with an Intent. The DialogAction instead is associated
with Question or Feedback and represents the next conversational action to
perform. These type of concepts are typically defined by domain experts.
Event represents an event that can occur during the conversation, in this
way reasoning processes can be triggered. Convology presents three different
kinds of events:

• EventQuestion
• EventAnswer
• UserEvent

EventQuestion notifies the submission of a Question from a particular Actor.
Instances of this type are associated with hasTimestamp property, the Actor
instance that receives the question and the one which has sent the question.
The EventAnswer represents an answer provided by a specific Actor at a
specific timestamp (hasTimestamp property). The UserEvent represents an
event related to a specific user, for instance the detection of a particular
intent.
Status represents the relevant status of the user. The possible user statuses
are defined by domain experts. A complete overview of Convology is shown
in figure (6.6).

6.2.1 Convology in PuffBot

The main goal of PuffBot is to perform a real-time inference of the UserSta-
tus through a set of Questions. Since multi-turn conversation are hard to
handle, in order to make possible to track different session simultaneously,
the concept of Dialog were exploited, each of them identified by Convology
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Figure 6.6: A hierarchical view of Convology.

with a unique identifier. In this way a fast and easy data retrieval is possi-
ble during reasoning time. When PuffBot detects a known intent, an Intent
instance is created inside the knowledge base, which triggers the reasoner
to decide the next DialogAction to perform. For example, a possible action
is to ask a further question to the user, in order to better understand, with
higher accuracy, the UserStatus. Once PuffBot classifies the status of the
user with a certain confidence, the reasoner triggers the dispatch of an ad-
vice to the user, consisting in a status summary. This advice is typically an
instance of the Feedback concept.
Figure (6.7) briefly describes an example of the reasoning process with
Convology. The red circles represents the detection of UserEvent con-
cepts triggered by the user answers. Each UserEvent is then linked to
the correspondent Intent recognized by the Natural Language Understand-
ing module (which is not part of Convology). The link (green arrows) be-
tween an UserEvent and and Intent is the hasRelevantIntent property of the
UserEvent. The tables in the right part of the image represents the User-
Status which are LowRisk, MediumRisk and HighRisk. Each UserStatus is
characterized by a series of symptomps, defined by domain experts. Each
detected Intent is related to a particular symptom through the activate ob-
ject property. Finally the SPARQL-based reasoner starts and tries to infer
the status of the user. If the information are not enough, the reasoner tries
to infer the next DialogAction to continue the conversation.
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Figure 6.7: Reasoning example in Convology.
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Chapter 7

Conclusions

In this work, it is proposed an overview of the major Deep Learning tech-
niques in modern Natural Language Processing. Recurrent Neural Net-
works are going, by now, to be replaced by attention based models like
Transformer. New models like BERT start a new era of Transfer Learn-
ing comparable to the one Computer Vision had in the past 5 years. This
new trend opens different scenarios where voice search technologies will re-
place most of today textual searches. To empowering this new technology,
a great breakthrough in the field of Natural Language Understanding has
to be done. The scenario taken into consideration in this work is the one
involving a multi-turn conversational paradigm. Such paradigm consists in
a simulation of a real conversation between humans, where different utter-
ances can be exchanged in order to fulfill a desired goal. Such paradigm
is not trivial to handle because it requires to solve a lot of open questions
for the understanding field. For instance the coreference resolution have to
be done easily, together with the carry of the dialogue context through the
conversation.
To analyze this paradigm from a more practical perspective, some approxi-
mations of the real world were done. The entire conversation was divided in
subsections called sessions. Each session is characterized by a single intent
to be fulfilled through a single action on a knowledge base, a structured
representations for data which enables dialogue tracking, fast data retrieval
and reasoning processes. Then a model to classify these sessions was pro-
posed. MTSI-BERT is a joint model, based on BERT, for intent and action
classification within a dialogue session and end-of-session detection. Such
model have reached very good results on KVRET dataset, a dataset con-
taining some dialogues between a driver and an integrated car assistant.
Thus providing a fertile soil for further studies. Finally an use case was de-
scribed. PuffBot is a chatbot for helping and monitoring asthma suffering
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children. It is based on a multi-turn scenario and it has a knowledge base
for saving all the status information about the patient, in order to infer its
emergency code and support him accordingly. A little prototype and an
architecture proposal to make it work on Telegram have been made.
This work was only the starting point for my studies in this new and exciting
area. Future studies will cover other aspects of Natural Language Under-
standing field. MTSI-BERT can be improved by integrating, together with
the other already studied tasks, the Name Entity Recognition, actually per-
formed via spaCy. Many open questions are still opened for which this work
did not have the presumption to answer. This work not focused on the way
to correctly formulate a response for the user. The session classification
was done by assuming correct agent response. Anyway wrong agent replies
will affect the way this model performs and could lead to unwanted sys-
tem behaviour. The agent reply must not only be grammatically correct,
but it needs to be also semantically coherent. A way to generate a natural
language text given some constraints (e.g. the knowledge base features ex-
tracted after the reasoning process) has already to be studied. A dialogue
tracker system has also to be implemented. Another core problem in such
scenario is to find a way, for the agent, to carry on the conversation dynam-
ically if some information is still missing. This maybe could be the most
important module to design.
A lot of work still have to be done, in order to allow Conversational AI to
handle goal-oriented multi-turn conversations, anyway, as always, the best
has yet to come.
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Glossary

Artifial Neural Networks A family of architectures consisting in several
logistic regression that works as a chain. They are inspired by human
neurons behaviours..

Artificial Intelligence A family of techniques aim to simulate human in-
telligence to produce smarter algorithm..

BERT A huge stack of Transformer encoders trained on MLM and next
sentence prediction tasks by Google AI. It produces contextual em-
bedding task and it is used for fine-tuning tasks..

Deep Learning A family of machine learning algorithm raised in the last
years. They are based on deep neural network architectures. These
architecture can reach even more than 100 layers and requires great
computational resources..

Encoder-Decoder A deep learning architecture for sequence-to-sequence
composed by two fundamental modules. The encoder encodes the
source sequence at a more abstract way. The decoder produces the
target sequence starting from the representation produced by the en-
coder..

Language Model A NLP task aiming at predicting the next word in a
sequence, given all the preceding ones..

Machine Learning A types of algorithms belonging to AI family which
aim is to allow machines to learn a task, without explicit programming
them..

Machine Neural Translation The task of translating a sentence from a
source language to a target one by exploiting neural network tech-
niques..

Masked Language Model A variant of LM whose aim is to predict a
word inside a sequence taking in consideration both the right and the
left context..

n-gram An n-gram is a contiguous and ordered sequence of n items from
a bigger sample of text..

Natural Language Understanding An NLP task whose aim is to make
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machines able to understand human language..
NLP Natural Language Processing is a field of AI aiming to give to ma-

chines the ability to work with human language..
Recurrent Neural Networks A family of neural networks architectures

aiming to model time sequences. They exploit both the current input
and the previous history..

Sequence-to-Sequence The task of associating a sequence of objects to
another sequence of objects. An example could the machine transla-
tion..

Transformer A encoder-decoder architecture based on attention mecha-
nisms, without any recurrent unit. It was originally introduced for
translation tasks..
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