
POLITECNICO DI TORINO

Master degree course in Computer Engineering

Master Degree Thesis

Model Based Design of
Automotive Embedded System

Supervisor
prof. Massimo Violante

Candidate
Pietro Scandale

Internship Tutor
Ideas & Motion s.r.l.

ing. Marco Novaro

October 2019



This work is subject to the Creative Commons Licence



Summary
In the last years the number of Embedded Systems used in the Automotive
Sector is increased drastically. Even if all car producers have worked on
improvements in the area of mechanics, the main differentiation factor be-
tween brands is the electronics area. In fact, today’s trend is to replace the
traditional mechanical systems with modern embedded systems that allow
to develop more advanced control strategies, providing added values for the
customer and making vehicles smarter.

This leads software development to face challenges like shortened develop-
ment times, high safety requirements and especially the growing complexity
of the code because of the increasing number of functionalities. To master
these challenges car producers and suppliers conduct a paradigm change in
the software development from hand-coded to model-based development.

A model-based development process is specifically attractive in embedded
domains like Automotive Software due to the fact that allows a platform-
independent development reducing the reengineering process caused by fast
changing hardware generation, allows to easily integrate new functions into
previous versions of the software and accelerates the software development
process.

One of the most used tool for Model Based Software Design is Simulink.
It is a software integrated with Matlab and it is used principally for modeling
and simulating of dynamic systems. By using Embedded Coder (that is an
extension of Simulink and Matlab coder) it is possible to generate high quality
C,C++,VHDL code preserving the same behavior as the model created in
Simulink. This avoids the introduction of bugs due to human errors.

The aim of this Thesis is to introduce the reader to the Model Based
Software Design focusing on the developing of Custom Simulink Library and
to explain how to create a Simulink model and how to use Embedded Coder
to generate C code, with the help of some examples.

The target board is the Aurix/Arduino-like board developed by Ideas &
Motion S.r.l. It is equipped with an Aurix Tricore TC277 that with its

3



embedded safety and security features is the ideal platform for a wide range
of automotive and industrial applications.

4



Acknowledgements
I would first like to thank my thesis advisor Massimo Violante for his support
and for his valuable advices.

I would also like to thank Marco Novaro for giving me the possibility to
enter in the Ideas & Motion family and Andrea Pastore for his support during
the Thesis work.

Finally, I must express my very profound gratitude to my parents and to
my friends for providing me unfailing support and continuous encouragement
during my years of study and also during the researching and writing process
of this thesis. This accomplishment would not have been possible without
them. Thank you.

5



Contents

List of Figures 8

1 Model Based Software Design 11
1.1 What is Model Based Software Design . . . . . . . . . . . . . 12
1.2 Model Based Design tool: Simulink . . . . . . . . . . . . . . . 13

1.2.1 S-function . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.2 Code Generation process . . . . . . . . . . . . . . . . . 14

2 Aurix/Arduino-like 17
2.1 Aurix™ Infineon TC277 . . . . . . . . . . . . . . . . . . . . . 19
2.2 Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 CCU6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.3 CAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.4 GPIO Ports . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Real Time Operating System . . . . . . . . . . . . . . . . . . 27
2.3.1 OSEK/VDX Standards . . . . . . . . . . . . . . . . . . 28
2.3.2 Erika Enterprise RTOS . . . . . . . . . . . . . . . . . . 30

3 Getting Started 33
3.1 Software resources . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Cygwin . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.2 Ninja Genie . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.3 Java Runtime Environment . . . . . . . . . . . . . . . 35
3.1.4 FT_Prog . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.5 HighTec Free TriCore™ Entry Tool Chain . . . . . . . 36

3.2 Configuration and Build process . . . . . . . . . . . . . . . . . 37
3.2.1 FTDI programming . . . . . . . . . . . . . . . . . . . . 37
3.2.2 Import Existing Code . . . . . . . . . . . . . . . . . . 39

6



3.2.3 Build ERIKA RTOS . . . . . . . . . . . . . . . . . . . 40
3.2.4 Build the Project . . . . . . . . . . . . . . . . . . . . . 41
3.2.5 Debug . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Custom Simulink Library 47
4.1 Software resources . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Simulink Library Creation . . . . . . . . . . . . . . . . . . . . 48
4.3 Simulink Block Generation . . . . . . . . . . . . . . . . . . . . 48
4.4 Add Libraries to the Library Browser . . . . . . . . . . . . . . 54
4.5 Aurix/Arduino-like Simulink Library Description . . . . . . . 55

4.5.1 GPIO Ports . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5.2 ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5.3 CAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5.4 PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Code Generation 69
5.1 Software Resources . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2 First Example: Blinking Led . . . . . . . . . . . . . . . . . . . 70
5.3 Second Example: 3-phase PWM generation . . . . . . . . . . . 77
5.4 Integrate the Generated File in the Project . . . . . . . . . . . 86

Bibliography 89

7



List of Figures
1.1 Embedded Systems in a vehicle . . . . . . . . . . . . . . . . . . 11
1.2 Target Language Compiler Process, [5] . . . . . . . . . . . . . 15
2.1 Aurix/Arduino-like board and Ideas & Motion S.r.l logo . . . . 18
2.2 ADC structure overview, [8] . . . . . . . . . . . . . . . . . . . 20
2.3 CCU6 block diagram, [8] . . . . . . . . . . . . . . . . . . . . . 21
2.4 T12 Operation in Edge-Aligned Mode, [8] . . . . . . . . . . . 22
2.5 T12 Operation in Center-Aligned Mode, [8] . . . . . . . . . . . 23
2.6 Dead-Tme Generation Waveforms, [8] . . . . . . . . . . . . . . 24
3.1 Aurix/Arduino-like board right connection . . . . . . . . . . . 37
3.2 FT_Prog: Scan and Parse . . . . . . . . . . . . . . . . . . . . 38
3.3 FT_Prog: Apply Template . . . . . . . . . . . . . . . . . . . . 38
3.4 FT_Prog: Program Device . . . . . . . . . . . . . . . . . . . . 39
3.5 Eclipse: Select a wizard . . . . . . . . . . . . . . . . . . . . . 39
3.6 Eclipse: Project Configuration . . . . . . . . . . . . . . . . . . 40
3.7 pathcfg.mk makefile . . . . . . . . . . . . . . . . . . . . . . . . 41
3.8 Eclipse: Builder Configuration . . . . . . . . . . . . . . . . . . 42
3.9 Eclipse: Console Message . . . . . . . . . . . . . . . . . . . . 42
3.10 Eclipse: Debug Configuration . . . . . . . . . . . . . . . . . . 43
3.11 Eclipse: Universal Debug Engine Main Congifuration . . . . . 44
3.12 Eclipse: Universal Debug Engine Main Congifuration . . . . . 45
3.13 Eclipse: Universal Debug Engine Memory Programming Tool . 45
3.14 Eclipse: Programming Success . . . . . . . . . . . . . . . . . 46
4.1 Blank Library . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Diagram showing the correct use of Legacy Code Tool, [4] . . . 49
4.3 CCU6_PWM_Setup block . . . . . . . . . . . . . . . . . . . . 52
4.4 PARAMETERS & DIALOG pane window . . . . . . . . . . . 53
4.5 Block Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.6 Aurix/Arduino-like Simulink library . . . . . . . . . . . . . . . 55
4.7 PORT_00_34_CONF block mask . . . . . . . . . . . . . . . . 56
4.8 PORT_40_CONF block mask . . . . . . . . . . . . . . . . . . 57

8



4.9 Dio_READ_Channel block mask . . . . . . . . . . . . . . . . 57
4.10 Dio_WRITE_Channel block mask . . . . . . . . . . . . . . . 58
4.11 Adc_StartBackgroundConvertion block mask . . . . . . . . . . 59
4.12 Adc_Read block mask . . . . . . . . . . . . . . . . . . . . . . . 59
4.13 Can_Msg_Static block mask . . . . . . . . . . . . . . . . . . . 60
4.14 Can_Msg_Dynamic block mask . . . . . . . . . . . . . . . . . 61
4.15 Can_Msg_unpacked block mask . . . . . . . . . . . . . . . . . 61
4.16 Packed_Can_8bytes_array block mask . . . . . . . . . . . . . 62
4.17 UnPacked_Can_8bytes_array block mask . . . . . . . . . . . 62
4.18 Can_Send block mask . . . . . . . . . . . . . . . . . . . . . . 62
4.19 Can_Receive block mask . . . . . . . . . . . . . . . . . . . . . 63
4.20 Atom_PWM_Channel_Config block mask . . . . . . . . . . . 64
4.21 Atom_PWM_SetDutyCycle block mask . . . . . . . . . . . . . 65
4.22 CCU6_PWM_Setup block mask . . . . . . . . . . . . . . . . . 66
4.23 CCU6_PWM_SetDutyCycle block mask . . . . . . . . . . . . 67
5.1 Subsystem Block . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2 Subsystem Block Parameters: Main pane . . . . . . . . . . . . 71
5.3 Subsystem Block Parameters: Code generation pane . . . . . 71
5.4 Initialize Function block . . . . . . . . . . . . . . . . . . . . . 72
5.5 Initialize Function: Port configuration . . . . . . . . . . . . . 72
5.6 Model Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.7 Set parameters for the Code Generation . . . . . . . . . . . . . 74
5.8 Oil file: Task configuration . . . . . . . . . . . . . . . . . . . . 75
5.9 Oil file: ALARM configuration . . . . . . . . . . . . . . . . . . 75
5.10 Extended task implementaion . . . . . . . . . . . . . . . . . . 76
5.11 Init Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.12 Step Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.13 Subsystem Block . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.14 Subsystem Block Parameters: Main pane . . . . . . . . . . . . 78
5.15 Subsystem Block Parameters: Code generation pane . . . . . . 79
5.16 Initialize Function block . . . . . . . . . . . . . . . . . . . . . 79
5.17 Initialize Function: Port configuration . . . . . . . . . . . . . 80
5.18 Initialize Function: Start Adc Background Convertion . . . . . 80
5.19 Initialize Function: CCU6 configuration . . . . . . . . . . . . 81
5.20 Model Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.21 Set parameters for the Code Generation . . . . . . . . . . . . . 82
5.22 Oil file: Task configuration . . . . . . . . . . . . . . . . . . . . 83
5.23 Extended task implementaion . . . . . . . . . . . . . . . . . . 84
5.24 Init Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9



5.25 Step funtion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.26 CCU6.c file . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.27 cpu0_main.c file . . . . . . . . . . . . . . . . . . . . . . . . . 87

10



Chapter 1

Model Based Software
Design
In the last 20 years the value chain in the car industry has changed drasti-
cally. Even if all car producers are still working on improvements in the area
of mechanics, quality requirements and in the logistic area, the main differen-
tiation factor between brands turned out to be the electronics area. Whereas
areas such as power train and body had small product development cost in-
creases over the years, the costs for the development of electronic systems has
been tripled, [1]. In fact, today’s trend is to replace the traditional mechani-
cal systems with modern embedded systems that enables the deployment of
more advanced control strategies, providing added values for the customer
and making vehicles smarter.

Figure 1.1. Embedded Systems in a vehicle

11



Model Based Software Design

This leads software development to face challenges like shortened develop-
ment times, high safety requirements and especially the growing complexity
of the code because of the increasing number of functionalities. To master
these challenges car producers and suppliers conduct a paradigm change in
the software development from hand-coded to model-based development.

A model-based development process is specifically attractive in embedded
domains like Automotive Software due to the fact that the development in
these domains is driven by two strong forces: on the one side the evolu-
tionary development of automotive systems, dealing with the iterated inte-
gration of new functions into a substantial amount of existing functionality
from previous system versions; and on the other side platform-independent
development, substantially reducing the amount of reengineering/ mainte-
nance caused by fast changing hardware generations, [1]. As a result, a
model-based approach is pursued to enable a shift of focus of the develop-
ment process on the early phases, supporting a function based rather than a
code-based engineering of automotive systems.

1.1 What is Model Based Software Design
Model-Based Design provides a mathematical and visual approach to develop
complex control and signal processing systems. It centers on the use of system
models throughout the development process for design, analysis, simulation,
automatic code generation and verification, [2]. So with Model-Based Design
the design phase is moved from the lab and field to the desktop.

Model Based Software Design (MBSD) is a software development pro-
cess that aims to tackle increasing software development complexity by us-
ing abstraction and automation. Abstraction is achieved by employing suit-
able models of a software system while automation systematically transforms
these models into executable source code, [3]. Engineers create a model to
specify the behavior of an embedded system; the model, which consists of
block diagrams, textual programs, and other graphical elements, is an ex-
ecutable specification that lets engineers run simulations to test ideas and
verify designs throughout the development process, [2]. The benefits are the
following:
• Improvement of the product quality: test activities during the design

and development phase improve the quality of the product;

• Development of functions with high complexity: classical software de-
velopment is difficult to use to design functions with high complexity.

12



1.2 – Model Based Design tool: Simulink

Model-based development helps to develop high complex functions with
viewer iterations and consequently less development effort;

• Better communication: the models provide great support in the commu-
nication with other colleagues because of the graphical design. It’s also
possible to involve people that are not familiar with software develop-
ment thanks to the use of models. This helps to include extra know-how
in the software development;

• Rapid Control Prototyping decreases development time by allowing cor-
rections to be made early in the product process. So mistakes can be
corrected and changes can be made while they are still inexpensive;

• Software bugs reduction: code can be automatically generated for em-
bedded deployment, saving time and avoiding the introduction of manual
error in the code.

1.2 Model Based Design tool: Simulink
One of the most used tool for MBSD is Simulink. It is a software for model-
ing, simulation and analysis of dynamic systems, developed by MathWorks
company. It is integrated with MATLAB.

Instead of writing manually thousands of lines of code, Embedded Coder
gives the possibility to automatically generate high quality C, C++,VHDL
code, which has the same behavior as the model created in Simulink. It ex-
tends MATLAB Coder™ and Simulink Coder™ with advanced optimizations
for precise control of the generated functions, files, and data.

1.2.1 S-function
S-functions (system-functions) are very useful in order to extend the capa-
bilities of the Simulink environment. An S-function is a computer language
description of a Simulink block written in MATLAB, C, C++, or Fortran,
[4]. C, C++, and Fortran S-functions are compiled as MEX files using the
mex utility. S-functions define how a Simulink block works and for this rea-
son they are principally used to create custom Simulink blocks that can be
used many times in a model. S-Function Block Parameters window allows
to specify values to pass to the corresponding S-function; so it is necessary
to read the S-function’s documentation to understand which paramaters the
block requires.

13



Model Based Software Design

The S-Function Builder generates the following source files in the current
folder:

• sfun.c, contains the C source code representation of the standard por-
tions of the generated S-function, [4]. "sfun" is the name of the S-function
specified in the S-function name field;

• sfun.tlc, permits the generated S-function to run in Simulink Rapid Ac-
celerator mode and allows for inlining the S-function during code gener-
ation, [4].

Matlab Legacy Code Tool provides to transforms existing functions into C
MEX S-functions that can be included in Simulink models. When Embedded
Coder is invoked for code generation, an appropriate call to the created
function is inserted into the generated code.

1.2.2 Code Generation process
When generating code from the Simulink model, Real-Time Workshop (or
Simulink coder) is invoked: its task is the generation of the model.rtw file.
This file contains informations about the model that is then used to generate
code: is a database whose content provide a description of the individual
blocks within the Simulink model, [5]. The code is generated through calls
to a utility called Target Language Compiler. It works like a text processor:
after reading the model.rtw file, it generates code into the desired language
(e.g. C) based on target files (.tlc), which specify particular code for each
block, and model-wide files, which specify the overall code style.

After the creation of the model, it is possible to call the Code Generation
by simply clicking the Build Model button in the Simulink Model window;
this action automatically calls Real-Time Workshop and TLC. Figure 1.2
shows how the Target Language Compiler works with its target files and
Real-Time Workshop output in order to generate code.

All the generated files are placed in the build directory and include:

• The body for the generated C source code (model.c) that contains three
main functions: model_step, model_initialize, model_terminate;

• The header file model.h that declares model data structures and a public
interface to the model entry points and data structures, [6]. It is included
by subsystem .c files in the model. The generated code can be included
in another existing file by simply include model.h;

14



1.2 – Model Based Design tool: Simulink

• The header file model_types.h that provides forward declarations for
the real-time model data structure and the parameters data structure.
These may be needed by function declarations of reusable functions, [6] .
model_types.h is included by all the generated header files in the model;

• The header file model_private.h that defines parameters and private
data structures of the generated code.

Figure 1.2. Target Language Compiler Process, [5]

15



16



Chapter 2

Aurix/Arduino-like

The Aurix/Arduino-like board (figure 2.1) was designed and developed by
Ideas & Motion S.r.l. principally for the HYPER_SDF project.

Among the different applications currently under development in the au-
tomotive, the “automated vehicle” is the one which has constantly gained
importance. In particular the Advanced Driver Assistance System (ADAS)
is projected to be the most relevant growing market segment over the next
years. The ultimate goal of the automated vehicle is to drastically improve
the road safety through a precise real-time description of the scenario sur-
rounding the vehicle.

Sensor data fusion between front and rear smart sensors is key for the
development and implementation of complex algorithms supporting the au-
tonomous driving. The HYPER_SDF project introduces an open powerful
automotive development platform based on the proper combination of two
diverse high-performance multi-core processors providing outstanding pro-
cessing capabilities while featuring a state-of-the-art safety architecture. It
was decided to use two processor beacause no processors with high perfor-
mance that ensure ASIL D were avaliable. It was decided to use the Aurix
Tricore because it guarantees high safety requirements and i.MX8 QM eval-
uation board for the high performance. The latter is used to execute the
operations which require considerable processing power (i.e. sensor fusion
etc.) while the first one has to monitor and validate all the fusion processor
validation, using them to drive the vehicle.

The design of Aurix/Arduino-like was also driven by the aim to develop
an easily usable board (e.g. to be used in the University) and eventually
expandable: for this reason it was decided to follow the Arduino model,
beacuse in this way all the existing modules are compatible and interfaceable

17



Aurix/Arduino-like

with the board.

Figure 2.1. Aurix/Arduino-like board and Ideas & Motion S.r.l logo

18



2.1 – Aurix™ Infineon TC277

2.1 Aurix™ Infineon TC277
AURIX™ is Infineon’s brand new family of microcontrollers. It’s based on an
innovative multicore architecture and has been designed to meet the highest
safety standards, while simultaneously increasing performance significantly.
It is equipped with a triple TriCore with 200 MHz, 4MB of Flash memory
and a Powerful Generic Timer Module (GTM). The TC27xT series aim for
a reduced complexity, best-in-class power consumption and significant cost
savings.

2.2 Peripherals
2.2.1 ADC
The TC277 provides a series of analog input channels connected to a cluster
of Analog/Digital Converters using the Successive Approximation Register
(SAR) principle to convert analog input values (voltages) to discrete digital
values. The TC277 is based on individual SAR converters with dedicated
Sample&Hold units, [8]. Each converter of the ADC cluster can operate
independent of the others, controlled by a dedicated set of registers and
triggered by a dedicated group request source. The results of each channel
can be stored in a dedicated channel-specific result register or in a group-
specific result register. A background request source can access all analog
input channels that are not assigned to any group request source. These
conversions are executed with low priority. The background request source
can, therefore, be regarded as an additional background converter.

19



Aurix/Arduino-like

Figure 2.2. ADC structure overview, [8]

2.2.2 CCU6
The CCU6 is a high-resolution 16-bit capture and compare unit with appli-
cation specific modes, mainly for AC drive control. It is made up of a Timer
T12 Block with three capture/compare channels and a Timer T13 Block with
one compare channel. The T12 channels can independently generate PWM
signals or accept capture triggers, or they can jointly generate control signal
patterns to drive AC-motors or inverters, [8]. The timer T12 block is the
main unit to generate the 3-phase PWM signals. A 16-bit counter is con-
nected to 3 channel registers via comparators, that generate a signal when
the counter contents match one of the channel register contents. The T12
block also offers options for individual compare and capture functions, as
well as dead-time control and hysteresis-like compare mode.

20



2.2 – Peripherals

Figure 2.3. CCU6 block diagram, [8]

Timer T12 has been configured in order to receive its input clock (f T12)
from the module clock f CC6 (100 MHz) via a programmable prescaler and
an optional 1/256 divider. The bit fields T12CLK and T12PRE are used to
control these options. T12 can count up or down, depending on the selected
operation mode. CDIR is a direction flag that indicates the current counting
direction. T12 counter register is connected to a Period Register T12PR
via a comparator: this register determines the maximum count value for
T12. It’s possible to select among two operations mode: Edge-Aligned and
Center-Aligned mode according to the value of the CTM flag.

In Edge-Aligned Mode (CTM = 0), timer T12 is always counting upwards
(CDIR = 0). When the value given by the period register (period-match
T12_PM) is reached, the value of T12 is cleared with the next counting step

21



Aurix/Arduino-like

(saw tooth shape).

Figure 2.4. T12 Operation in Edge-Aligned Mode, [8]

In Center-Aligned Mode (CTM = 1), timer T12 is counting upwards or
downwards (triangular shape). When reaching the value given by the pe-
riod register (period-match T12_PM) while counting upwards (CDIR = 0),
the counting direction control bit CDIR is changed to downwards (CDIR
= 1) with the next counting step. When reaching the value 0001H (one-
match T12_OM) while counting downwards, the counting direction control
bit CDIR is changed to upwards with the next counting step (figure 2.5).

This operating mode is prefered in motor control applications because the
current sampling is synchronized with the PWM period. So CCU6 has been
configured to work in this way: in correspondance of the Period Match, the
current sampling task is executed while in correspondance of the One Match,
the computed duty cycles for the following period are updated.

22



2.2 – Peripherals

Figure 2.5. T12 Operation in Center-Aligned Mode, [8]

The Period Register receives a new period value from its Shadow Period
Register: is controlled via the ‘T12 Shadow Transfer’ control signal, T12_ST.
Providing a shadow register for the period value as well as for other values
related to the generation of the PWM signal allows a concurrent update
by software for all relevant parameters. It’s possible to enable the Shadow
transfer by setting the bit STE12 only in correspondence of the T12_PM or
T12_OM, otherwise the upload has no effect

There are three individual capture/compare channels associated with Timer
T12; they have been configured to work in Compare Mode: the three indi-
vidual compare channels CC60 CC61, and CC62 can generate a three-phase
PWM pattern. Each compare channel has its own equal comparator con-
nected to the T12 counter register. A match signal is generated when the
content of the counter matches the contents of the associated compare reg-
ister (CC60R, CC61R, CC62R). Foreach compare register is associated a
shadow register CC6xSR, that is preloaded by software and transferred into
the compare register when signal T12 shadow transfer, T12_ST, is set.

The shadow registers are fundamental because they facilitate a concur-
rent update by software for all relevant parameters of a three-phase PWM;
not only for the compare value but also for the other values related to the

23



Aurix/Arduino-like

generation of the PWM signal facilitates.
The generation of (complementary) signals for the high-side and the low-

side switches of one power inverter phase is based on the same compare
channel, [8]. For example, if the high-side switch should be active while the
T12 counter value is above the compare value (State Bit = 1), then the low-
side switch should be active while the counter value is below the compare
value (State Bit = 0). In most cases, the switching behavior of the connected
power switches is not symmetrical due to switch-on and switch-off times. A
problem arises if the time for switch-on is smaller than the time for switch-
off of the power device: a short-circuit can occur in the inverter bridge leg,
which damage the complete system. It’s possible to solve this problem by
HW, by using the programmable Dead-Time Generation Block of the CCU6
unit: it inserts a programmable time that delays the passive to active edge
of the switching signals.

Figure 2.6. Dead-Tme Generation Waveforms, [8]

2.2.3 CAN
Controller Area Network, better known as CAN-bus, it is a robust vehicle bus
standard designed to allow microcontrollers and devices to communicate each
other withouth a host computer. It is a message-based protocol and has been

24



2.2 – Peripherals

designed to work without problems even in environments that are strongly
disturbed by the presence of electromagnetic waves. Although initially it was
applied only in the automotive sector, it is currently used in many embedded
industrial applications, where it is required a high level of noise immunity.

A CAN bus consists of two or more nodes. The bus logic corresponds to
a “wired-AND” mechanism. Recessive bits (equivalent to the logic 1 level)
are overwritten by dominant bits (logic 0 level). As long as no bus node
is sending a dominant bit, the bus is in the recessive state. In this state,
a dominant bit from any bus node generates a dominant bus state. The
maximum CAN bus speed is, by definition, 1 Mbit/s. This speed limits the
CAN bus to a length of up to 40 m. For bus lengths longer than 40 m, the
bus speed must be reduced, [8].

The binary data of a CAN frame is coded in NRZ code (Non-Return-to-
Zero). To ensure re-synchronization of all bus nodes, bit stuffing is used.
This means that during the transmission of a message, a maximum of five
consecutive bits can have the same polarity. Whenever five consecutive bits
of the same polarity have been transmitted, the transmitter will insert one
additional bit (stuff bit) of the opposite polarity into the bit stream before
transmitting further bits. The receiver also checks the number of bits with the
same polarity and removes the stuff bits from the bit stream (= destuffing).
In CAN FD format frames, the CAN bit stuffing method is changed for the
CRC Sequence. The stuff bits will be inserted at fixed positions

In the CAN protocol, address information is defined in the identifier field
of a message. The identifier indicates the contents of the message and its pri-
ority. The lower the binary value of the identifier, the higher is the priority of
the message. For bus arbitration, CSMA/CD with NDA (Carrier Sense Mul-
tiple Access/Collision Detection with Non-Destructive Arbitration) is used.

Standard message identifier has a length of 11 bits. CAN specification
2.0B extends the message identifier lengths to 29 bits, i.e. the extended
identifier. Four different data frame formats are supported which differ in
the length of the Arbitration Field and Control Field:
• Classical CAN Base format: 11-bit long identifier, constant bit rate

• Classical CAN Extended format: 29-bit long identifier, constant bit rate

• CAN FD Base format: 11-bit long identifier, dual bit rate

• CAN FD Extended format: 29-bit long identifier, dual bit rate
In addition for Classical CAN remote frames exist, for 11-bit and 29bit iden-
tifiers.

25



Aurix/Arduino-like

There are three types of CAN frames:

• Data Frames

• Remote Frames

• Error Frames

A Data Frame contains a Data Field of 0 to 8 bytes in length. A Remote
Frame contains no Data Field and is typically generated as a request for data
(e.g. from a sensor). Data and Remote Frames can use an 11-bit “Standard”
identifier or a 29-bit “Extended” identifier. An Error Frame can be generated
by any node that detects a CAN bus error.

2.2.4 GPIO Ports
The TC27x has digital General Purpose Input/Output (GPIO) port lines
which are connected to the on-chip peripheral units, [8]. Each port line has a
number of control and data bits, enabling very flexible usage of the line. Each
port pin can be configured for input or output operation. In input mode,
the output driver is switched off (high-impedance). The actual voltage level
present at the port pin is translated into a logical 0 or 1 via a Schmitt-Trigger
device and can be read via the read-only register Pn_IN. Input signals are
connected directly to the various inputs of the peripheral units (AltDataIn).

The level of the pin can be read by software via Pn_IN or a peripheral
can use the pin level as an input. In output mode, the output driver is
activated and drives the value supplied through the multiplexer to the port
pin. Switching between input and output mode is accomplished through
the Pn_IOCR register, which enables or disables the output driver. If a
peripheral unit uses a GPIO port line as a bi-directional I/O line, register
Pn_IOCR has to be written for input or output selection. The Pn_IOCR
register further controls the driver type of the output driver, and determines
whether an internal weak pull-up, pull- down, or without input pull device
is alternatively connected to the pin when used as an input. This offers
additional advantages in an application.

The output multiplexer in front of the output driver selects the signal
source for the GPIO line when used as output. If the pin is used as general-
purpose output, the multiplexer is switched by software (Pn_IOCR register)
to the Output Data Register Pn_OUT. Software can set or clear the bit in
Pn_OUT through separate Pn_OMSR or Pn_OMCR registers. The set or
clear operations for the bits in Pn_OUT can also be done for up to four bits

26



2.3 – Real Time Operating System

per register in Pn_OMSRx and Pn_OMCRx (x=0,4,8,12). Alternatively,
the set, clear or toggle function can be achieved through Pn_OMR, where
adjacent pins within the same port can be set, cleared or toggled within one
write operation. The manipulation of the control bits in these registers can
directly influence the state of the port pin. If the on-chip peripheral units
use the pin for output signals, the alternate output lines ALT1 to ALT7 can
be switched via the multiplexer to the output driver. The data written into
the output register Pn_OUT by software can be used as input data to an
on-chip peripheral.

When selected as general-purpose output line, the logic state of each port
pin can be changed individually by programming the pin-related bits in
the Output Modification Set Register Pn_OMSR, Output Modification Set
Register x Pn_OMSRx (x=0,4,8,12), Output Modification Clear Register
Pn_OMCR, Output Modification Clear Register x Pn_OMCRx (x=0,4,8,12)
or Output Modification Register, OMR. The bits in Pn_OMSR/Pn_OMSRx
and Pn_OMCR/Pn_OMCRx make it possible to set and clear the bits in the
Pn_OUT register. While the bits in Pn_OMR allows the bits in Pn_OUT
to be set, cleared, toggled or remain unchanged.

2.3 Real Time Operating System
In Real-Time System the correctness of the system behavior depends not only
on the logical results of the computations, but also on the physical instant
at which these results are produced.

It can be decomposed into a set of subsystems, i.e. the controlled object
and the real-time computer system. A real-time computer system must react
to stimuli from the controlled object within time intervals dictated by its
environment. The instant at which a result is produced is called a deadline.
If the result has utility even after the deadline has passed, the deadline is
classified as soft; if missing its deadline makes the result useless, but missing
does not cause serious damage, the deadline is classified as firm while if a
catastrophe could happen if a deadline is missed, the deadline is hard, [9].
Commands and Control systems, Air traffic control systems are examples
for hard real-time systems. On-line transaction systems, airline reservation
systems are soft real-time systems.

An operating system is a system software that manages the hardware and
software resources of the machine, providing basic services to the application
software.

27



Aurix/Arduino-like

Most operating systems allow multiple programs to execute at the same
time. This is called multi-tasking. In reality there is no parallel management
of processes but they are executed in sequence: the times are so short that
the user seems that the programs go simultaneously. A part of the operating
system called scheduler is responsible for deciding which program to run
and when, and provides the illusion of simultaneous execution by rapidly
switching between each program.

The type of an operating system is defined by how the scheduler decides
which program to run when. The scheduler in a Real Time Operating System
(RTOS) is designed to provide a predictable (normally described as deter-
ministic) execution pattern. This is particularly of interest to embedded
systems as embedded systems often have real time requirements. A real time
requirements is one that specifies that the embedded system must respond to
a certain event within a strictly defined time. A guarantee to meet real time
requirements can only be made if the behaviour of the operating system’s
scheduler can be predicted (and is therefore deterministic).

Traditional real time schedulers achieve determinism by allowing the user
to assign a priority to each thread of execution. The scheduler then uses
the priority to know which thread of execution to run next. A thread of
execution is called task.

2.3.1 OSEK/VDX Standards
OSEK (in english: "Open Systems and their Interfaces for the Electronics
in Motor Vehicles") is a standards body that has produced specifications
for an embedded operating system, a communications stack, and a network
management protocol for automotive embedded systems. It was designed to
provide a standard software architecture for the various electronic control
units (ECUs) in a car.

OSEK was founded in 1993 by a German automotive company consor-
tium (BMW, Robert Bosch GmbH, DaimlerChrysler, Opel, Siemens, and
Volkswagen Group) and the University of Karlsruhe. In 1994, the French
cars manufacturers Renault and PSA Peugeot Citroën, which had a similar
project called VDX (Vehicle Distributed eXecutive), joined the consortium.
Therefore, the official name is OSEK/VDX.

The OSEK operating system serves as a basis for application programs
which are independent of each other, and provides their environment on a
processor, [11]. The OSEK operating system enables a controlled real-time
execution of several processes which appear to run in parallel. The OSEK

28



2.3 – Real Time Operating System

operating system provides a defined set of interfaces for the user. These
interfaces are used by entities which are competing for the CPU. There are
two types of entities:

• Interrupt service routines managed by the operating system

• Tasks (basic tasks and extended tasks)

The hardware resources of a control unit can be managed by operating system
services. These operating system services are called by a unique interface,
either by the application program or internally within the operating system.
OSEK defines three processing levels:

• Interrupt level

• Logical level for scheduler

• Task level

Within the task level tasks are scheduled (non, full or mixed preemptive
scheduling) according to their user assigned priority. The run time context
is occupied at the beginning of execution time and is released again once the
task is finished. The following priority rules have been established:

• Interrupts have precedence over tasks

• The interrupt processing level consists of one or more interrupt priority
levels

• Interrupt service routines have a statically assigned interrupt priority
level

• Assignment of interrupt service routines to interrupt priority levels is
dependent on implementation and hardware architecture

• For task priorities and resource ceiling-priorities bigger numbers refer to
higher priorities.

• The task’s priority is statically assigned by the user

The main purpose of the OSEK operating system (OS) specification is to
achieve portability between application software from different electronic
control units (ECU). Because the specification ends with defining an API
on C-language level together with the declaration of the relevant datatypes,

29



Aurix/Arduino-like

applications still are not portable between OS-implementations of different
vendors. A new language is so defined to achieve portability. The OSEK
implementation language (OIL) specifies means to declare and define all rel-
evant OS-objects, [12]. Currently it is intended to specify all OS-objects for
an application in a centralized OIL-file. OIL-files have to be parsed to collect
the specified informations and translated into C data structures and proba-
bly some code. This task will be typically handled by a system generation
which will be delivered by the operating system vendor.

2.3.2 Erika Enterprise RTOS
ERIKA Enterprise is an innovative RTOS developed for microcontrollers.
Its kernel is a complete OSEK/VDX environment, which can be used to
implement multithreading applications. The Erika Enterprise API provides
support for thread activation, mutual exclusion, alarms, events and count-
ing semaphores. The ERIKA Enterprise kernel implements innovative algo-
rithms such as Fixed Priority with supremacy threshold, Stack Resource Pol-
icy (SRP), and Earliest Deadline First (EDF), which can be used to program
tasks with real-time requirements. Erika Enterprise offers the availability of
a real-time scheduler and resource managers allowing the full exploitation
of the power of new generation micro-controllers and mul- ticore platforms
while guaranteeing predictable real-time performance and retaining the pro-
gramming model of conventional single processor architectures, [10]. The
advanced features provided by Erika Enterprise are:

• Support for four conformance classes to match different application re-
quirements;

• Support for preemptive and non-preemptive multitasking;

• Support for fixed priority scheduling;

• Support for stack sharing techniques, and one-shot task model to reduce
the overall stack usage;

• Support for shared resources;

• Support for periodic activations using Alarms;

• Support for centralized Error Handling;

• Support for hook functions before and after each context switch;

30



2.3 – Real Time Operating System

Erika Enterprise is supported by RT-Druid, a tool suite based on Eclipse
Framework for the automatic configuration and deployment of embedded
applications which enables to easily exploit multi-processor architectures and
achieve the desired performance without modifying the application source
code.

It is an OIL language compiler, which is able to generate the ERIKA En-
terprise configuration from an OIL specification. It generates all the files
needed, such as the makefiles and the ERIKA Enterprise internal data struc-
ture initializations.

31



32



Chapter 3

Getting Started

The best way to load the executable and debug the Aurix/Arduino-like board
is with the use of TRACE32: it allows to test embedded hardware and
software by using the on-chip debug interface (the most common is JTAG).
TRACE32 tools connect to this one to control the core, so the access to
the data being processed by the core is guaranteed. It is possible to have
start, stop, step control; to read and write memory and registers; to set
breakpoints; to track values of variables and so on.

Since is not so easy to obtain this instrument (for cost reason), another
solution has been founded in order to avoid to use it. This has been possible
thanks to the presence of the FTDI (FT2232HL) module on the target boad.
This module contains a small EEPROM configuration memory and convert
the USB in JTAG + serial.

In this chapter will be explained how to set the environment before interfacing
with the Aurix/Arduino-like board. In particular the first part is dedicated
to the Software resources (section 3.1) with a short description about each
needed software and some hints on where to download and how to install
them correctly. The second part is dedicated to explain how to program the
FTDI module (section 3.1.4), import the project in Eclipse (section 3.2.2),
compile ERIKA RTOS (section 3.2.3), build the project (section 3.2.4) and
in the end how to program and debug the board (section 3.2.5).

3.1 Software resources
The following software are needed:

33



Getting Started

• Cygwin package

• Ninja Genie

• FT_Prog

• Java jre1.8.0_171 version

• HighTec Free TriCore™ Entry Tool Chain

3.1.1 Cygwin
Description
Cygwin is a large collection of GNU and Open Source tools which provide
functionality similar to a Linux distribution on Windows.

How to get it
Installing and Updating Cygwin Packages from https://cygwin.com/install.
html

Installation hints
The cygwin installation folder must be C:\cygwin (or C:\cygwin64 depend-
ing on the Operating System configuration). The following packages shall be
download during the installation:

• Category: Devel

– binutils: GNU assembler, linker and similar utilities
– gcc-core: GNU Compiler Collection (C, OpenMP)
– make: The GNU version of the “make” utility

• Category: Basic

– sed: the GNU sed stream editor

The path C:\cygwin\bin (or C:\cygwin64\bin) must be added to the
Environment variables of Windows to the Path (inside System variables)
and then moved up to the second position.

34

https://cygwin.com/install.html
https://cygwin.com/install.html


3.1 – Software resources

3.1.2 Ninja Genie

Description
Ninja is a small build system with a focus on speed. It differs from other build
systems in two major respects: it is designed to have its input files generated
by a higher-level build system and to run builds as fast as possible.

How to get it
The two executables ninja.exe and genie.exe can be found in the Getting_
Started\Ninja_Genie folder and must NOT be installed.

Installation hints
The Ninja_Genie folder must be copied in C: and the path C:\Ninja_Genie
must be added to the Environment variables of Windows to the Path (inside
System variables) and then moved up to the first position.

3.1.3 Java Runtime Environment

Description
Java Runtime Environment must be present for using RT-Druid in order to
write and compile application based on ERIKA Enterprise.

How to get it
The executable jdk-8u171-windows-x64.exe can be found in the Getting_
Started folder.

Installation hints
Double click on the executable and simply follow the instructions.

WARNING: Only with this version of Java everything works so it’s im-
portant to install it.

35



Getting Started

3.1.4 FT_Prog

Description
FT_Prog is a free EEPROM programming utility for use with FTDI devices.
It is used for modifying EEPROM contents that store the FTDI device de-
scriptors to customize designs, [13].

How to get it
FT_Prog is available as a free download from https://www.ftdichip.com/
Support/Utilities.htm#FT_PROG

Installation hints
Download and simply follow the instructions.

3.1.5 HighTec Free TriCore™ Entry Tool Chain

Description
The tool chain consists of a compiler based on the proven high performance
GNU compiler for TriCore™ from HighTec and the Universal Debug Engine
limited to level1 functionality. The HighTec Free TriCore™ Entry Tool Chain
provides all required features to develop and test software for TriCore™ and
AURIX™.

How to get it
HighTec Free TriCore™ Entry Tool Chain is available as a free download from
https://free-entry-toolchain.hightec-rt.com/ and follow the instruc-
tions in order to correctly generate the License File and obtain the program.

Installation hints
Read the manual https://free-entry-toolchain.hightec-rt.com/getting_
started.pdf?d=20180608 and follow the instructions of the Installing the
Free TriCore Entry Tool Chain and First Starting of Eclipse chapter.

36

 https://www.ftdichip.com/Support/Utilities.htm#FT_PROG
 https://www.ftdichip.com/Support/Utilities.htm#FT_PROG
https://free-entry-toolchain.hightec-rt.com/
https://free-entry-toolchain.hightec-rt.com/getting_started.pdf?d=20180608
https://free-entry-toolchain.hightec-rt.com/getting_started.pdf?d=20180608


3.2 – Configuration and Build process

3.2 Configuration and Build process
First of all make sure that the board is connected to the PC in the right way
(figure 3.1).

Figure 3.1. Aurix/Arduino-like board right connection

3.2.1 FTDI programming
Hereby is listed a step-by-step guide in order to correctly program the FTDI:

1. Launch FT_Prog.

2. Scan for Device: click on the Scan and Parse button on the toolbar to
scan the USB bus for available connected FTDI devices (figure 3.2).

37



Getting Started

Figure 3.2. FT_Prog: Scan and Parse

3. Use an Existing EEPROM Template: right-click the required device
within the Device Tree; select Apply Template from the menu and then
select From File to apply these one to the target device. Find and select
the TC277_ IFX_ EVB. XML file located in the Getting_Started folder.

Figure 3.3. FT_Prog: Apply Template

4. Program Device: right-click the required device within the Device Tree
and then select Program Devices (figure 3.4).

38



3.2 – Configuration and Build process

Figure 3.4. FT_Prog: Program Device

3.2.2 Import Existing Code
Some steps has to be followed in order to correctly import existing code in
Eclipse:
1. Launch Eclipse for TriCore.

2. From File menu select New → Project. . . and then New Project wizard
appears.

3. Select C/C++ → Makefile Project with Existing Code and then click
Next.

Figure 3.5. Eclipse: Select a wizard

39



Getting Started

4. The next wizard page allows to choose a Project Name (e.g. test) and
the location of the existing project (e.g. C: \Users\ Pietro\ Desktop\
Getting_ Started\ TricoreBswl ). Select Cygwin GCC in the Toolchain
for Indexer Settings.

Figure 3.6. Eclipse: Project Configuration

5. Click Finish to close the wizard and to import the project.

3.2.3 Build ERIKA RTOS
TricoreBswl project contains pathcfg.mk makefile used to set all the con-
figurations paths (figure 3.7). Only the values saved in the following two
variables must be modified:

− JAVA_JRE_DIR contains the path of Java Runtime Environment
binaries;

− TRICORE_GNUDIR contains the file system location of HIGH-
TECH TriCore compiler.

40



3.2 – Configuration and Build process

Figure 3.7. pathcfg.mk makefile

The configuration of ERIKA Enterprise system is defined inside oscfg.oil
file. The following command must be run on Cygwin command line each
time oscfg.oil is modified. So first of all open Cygwin and move inside the
TricoreBswl project where a make.bat file is present. Run the following
commands in the same order:

1. ./make.bat oscfg to generate ERIKA RTOS configuration file;

2. ./make.bat os to build ERIKA RTOS.
An help command can be also invoked to have the list of all accepted
commands (./make.bat help).

In case of no errors, the outputs files are located in TricoreBswl\PrjOutput\
ErikaOs_out folder.

3.2.4 Build the Project
Before building the project, the builder settings must be changed:

1. Right click on the top level directory of the project and then click on
Properties.

2. The Properties dialog appears. Click on C/C++ Build and remove the
tick from Use default build command. Now write on Build command
the following instruction: C:\cygwin\bin\mintty.exe -e C:\Users\

41



Getting Started

Pietro\Desktop\Getting_started\TricoreBswl\make.bat > file.txt
Where the first path is the location of mintty.exe in your PC, -e in order
to treat remaining arguments as the command to execute, the second
path is the location of the make.bat file while file.txt contains the output
message of the building process. Then click on Apply → Ok.

Figure 3.8. Eclipse: Builder Configuration

3. Right click on the top level directory of the project → Build Project. If
all is done correctly the building starts and a message like below appears.

Figure 3.9. Eclipse: Console Message

42



3.2 – Configuration and Build process

4. Open file.txt and read the building report in order to understand if the
compilation successful or if there are some errors or warnings.

In case of no errors, the outputs files are located in TricoreBswl\PrjOutput\
bswl_out folder.

3.2.5 Debug
In order to start a debug session:

1. Right click on the top level directory of the project → Debus As →
Debug configuration....

2. The Debug Configurations dialog appears. Right click on Universal De-
bug Engine as debug type → New to create a new debug launch config-
uration for Universal Debug Engine.

Figure 3.10. Eclipse: Debug Configuration

3. A new debug configuration test Default is created. Fill all inputs field
with the appropriate values. In C/C++ Applications click on Browse. . .

43



Getting Started

and select the .elf file generated after the building (Tricore_Bswl_cpu0.elf
is located in Getting_Started\TricoreBswl\PrjOutput\bswl_out). In
Project write the name of the current project.

Figure 3.11. Eclipse: Universal Debug Engine Main Congifuration

4. Click on Ude Startup. The field Select UDE Workspace File is usu-
ally filled automatically otherwise find manually the right file in the
workspace. In Select UDE Target Configuration File click on Browse
configuration and select the AppKit_TC277C_singlecore.cfg file located
in the Getting_Started folder.
Push Debug to start UDE perspective

44



3.2 – Configuration and Build process

Figure 3.12. Eclipse: Universal Debug Engine Main Congifuration

5. The UDE Memory Programming Tool will appear after launching the
UDE perspective.

Figure 3.13. Eclipse: Universal Debug Engine Memory Programming Tool

45



Getting Started

6. Start flashing with the Program button. A progress dialog appears.
After successful programming close both dialogs.

Figure 3.14. Eclipse: Programming Success

7. From the Debug menu, select Step over subroutine. At this moment
your application is executing but stopped on the function main(). This
means the C startup code has been executed completely. The Editor
view shows the C source files of your application and a yellow arrow
shows the line where the execution has stopped. To run your application,
select Start Program Execution from the Debug menu and to restart your
application, select Restart Program Execution, [14].

46



Chapter 4

Custom Simulink Library
A Simulink library is a collection of blocks that can be used to create in-
stances of those blocks in a Simulink model. It’s possible to create instances
of blocks from existing Simulink libraries, or to create custom libraries in
order to group and maintain instances of the own blocks in models. The
installed libraries can be accessed from the Simulink Library Browser and
it’s not possible to modify them. Instead, if customized blocks want to be
created, the user can create custom library with custom blocks and add it to
the Library Browser.

In this chapter will be explained how to create a new Simulink Library (sec-
tion 4.2) and fill it with custom block (section 4.3), with the help of some
example. A script is also provided (section 4.4) to deploy the Library in order
to find it in the Library Browser. The last paragraph (section 4.5) contains
a description of all the basic blocks of the Aurix/Arduino-like BSP library.

4.1 Software resources
The following tools are needed:

• Matlab

• Simulink

47



Custom Simulink Library

4.2 Simulink Library Creation
1. Start Simulink.

2. C lick on New pane → Blank Library.
Now Simulink displays a new window, labeled as Library: untitled.

Figure 4.1. Blank Library

A blank library is now available and so it’s possible to drag basic block.
The new library can appear in the Simulink Library Browser only if the

model property EnableLBRepository is on when the library is saved. Run
the following command in the MATLAB command prompt:

set_param(gcs,’EnableLBRepository’,’on’);
Now the Library can be saved and named (e.g. Tricore_tc277c.slx).

4.3 Simulink Block Generation
Matlab Legacy Code Tool is used in order to create Simulink blocks: the tool
transforms existing C (or C++) functions into C MEX S-functions that can
be included in Simulink models.

48



4.3 – Simulink Block Generation

The following diagram illustrates a general procedure for using the Legacy
Code Tool:

Figure 4.2. Diagram showing the correct use of Legacy Code Tool, [4]

An example is provided in order to better explain how to integrate an
existing C function into a Simulink model using Legacy Code Tool. It’s
possible to create a MATLAB script containing the following commands
in the same order or to run the commands one by one on the MATLAB
command line:

1. def=legacy_code(’initialize’); initialize a Matlab struct def with
fields that represent Legacy Code Tool properties;

49



Custom Simulink Library

2. def.HeaderFiles = {’header_file.h’}; the header file that contains
the function declaration;

3. def.SFunctionName = ’function_name’; specifies a name for the
S-function;

4. def.OutputFcnSpec = ’return-spec = function-name(argument-
spec)’; defines the function that the S-function calls at each time step,
where

• return-spec defines the data type and variable name for the return
value of the existing C function. If the function does not return a
value, the return specification can be omitted or defined as as void.
Otherwise the data type (i.e. uint8, uint16 ect) must be followed by
a token of the form y1, y2, ..., yn, where n is the total number of
output arguments, [4];

• function-name is the function name and must be the same of the
existing C function name;

• argument-spec defines one or more data type (i.e. uint8, uint16 etc)
and token pairs that represent the input, output, parameter, and
work vector arguments of the existing C function. The function
input and output arguments map to block input and output ports
and parameters map to workspace parameters, [4]. Token can have
the following forms:
– Input — u1, u2, ..., un, where n is the total number of input
arguments;

50



4.3 – Simulink Block Generation

– Output — y1, y2, ..., yn, where n is the total number of output
arguments;

– Parameter — p1, p2, ..., pn, where n is the total number of
parameter arguments;

– Work vectors (persistent memory) — work1, work2, ..., workn,
where n is the total number of work vector arguments.

An example is the following:
def.OutputFcnSpec = ’uint8 y1 Dio_READ_Channel(uint32 p1),
that returns as output one uint8 value and receives as input one
uint32 parameter.

5. legacy_code(’sfcn_cmex_generate’, def); generate an S-function
source file from the existing C function.

6. legacy_code(’sfcn_tlc_generate’, def) generates the TLC file, needed
to recognize the blocks of the created S-function from Embedded Coder
during the Code Generation Process.

7. legacy_code(’compile’, def); compile and link the S-function source
file into a dynamically loadable executable for Simulink.

8. legacy_code(’slblock_generate’, def); generate masked S-function
blocks that call the S-functions. The software places the blocks in a new
model. From there you can copy them to an existing model.

The following script is an example used in order to generate the CCU6_PWM_Setup
block (figure 4.3):

Look at the def.HeaderFiles: in the creation of the basic blocks forAurix/Arduino-
like board, it was necessary to add also the header file aswl_if.h containing
the basic type declaration in order to avoid compilation error and so "manual"
intervention after the code generation.

51



Custom Simulink Library

Figure 4.3. CCU6_PWM_Setup block

Now it’s possible to create/edit a block mask. A mask is a custom user
interface for a block that hides the block’s contents, making it appear to the
user as a block with its own icon and parameter dialog box.

The following example is provided in order to better explain how to design
a mask:

1. Right click on the created block and go to Mask-Edit Mask...
The Mask Editor appears: it’s a dialog box that helps to create and
customizes the block mask. It contains a set of dialog box, [4]:

• Icon & Ports pane helps you to create a block icon that contains
descriptive text, state equations, image, and graphics;

• Parameters & Dialog pane enables you to design mask dialog boxes
using the dialog controls in the Parameters, Display, and Action
palettes;

• Initialization pane allows you to add MATLAB commands that ini-
tialize the masked block;

• Documentation pane enables you to define or modify the type, de-
scription, and help text for a masked block;

52



4.3 – Simulink Block Generation

2. Click on Parameters & dialog tab to design mask dialog boxes

Figure 4.4. PARAMETERS & DIALOG pane window

It’s possible to add a mask name (e.g. CCU6_PWM_Setup), a mask
description ( e.g. "This block allows to configure..."), and set the param-
eters (i.e. user inputs that take part in simulation) configuration. In
the example the SParameter1 (i.e. Operating Mode) is defined as popup
type that allows to select a parameter value from a list of possible values.
SParameter1 and SParameter2 (i.e. Period and Dead Time Period) are
defined as edit type because have no fixed assumable values. It’s also
possible to add constraints in order to avoid the insertion of unreason-
able value for the specified parameters (go on Constraint and select Add
New Constraint). At the end click on Apply and then Ok. The mask is
ready to be used.

3. Double click on the block and the new mask appear (figure 4.5).

53



Custom Simulink Library

Figure 4.5. Block Mask

4.4 Add Libraries to the Library Browser
When the Custom Library is filled with all the needed Simulink blocks, it’s
time to add the new Library to the Library Browser. This process is useful
in order to find easily the new blocks. In order to do so, the following script
named as slblocks.m, must be run:

Open the Library Browser and refresh to see the new library. Right-click
the library list and select Refresh Library Browser.

Custom library can be used in an identical way of any other Simulink
library: blocks are dragged from a library and placed into a model in the
usual way.

54



4.5 – Aurix/Arduino-like Simulink Library Description

4.5 Aurix/Arduino-like Simulink Library De-
scription

The Simulink Library for Aurix/Arduino-like board contains the basic blocks
for the configuration and use of GPIO Ports, ADC, CAN and PWM. The
following subsections are introduced by a brief description of the modules
and followed by the description of all the basic blocks.

Figure 4.6. Aurix/Arduino-like Simulink library

4.5.1 GPIO Ports
Aurix TriCore TC277 has digital General Purpose Input/Output (GPIO)
port lines which are connected to the on-chip peripheral units.

• PORT_00_34_Conf : This block allows to set the right pin config-
uration of PORT 00 - 34 (figure 4.7).

55



Custom Simulink Library

Figure 4.7. PORT_00_34_CONF block mask

Parameters:

− PORTxx_PINxx allows to select the desired port pin;
− Port Control Mode determines the port line functionality. When a

port line is configured as input, its hysteresis function can be ac-
tivated/inactivated. When a port line is configured as output, its
speed grade can be configured;

− Port Pin speed/Hysteresis allows to choose the speed grade when
port lines are configured as output, and determines if hysteresis is
active or inactive when port lines are configured as input;

− Port Pin Pad Level Select allows to select the pad level;
− Port Pin initial level determines the port pin initial level.

• PORT_40_Conf : This block allows to set the right pin configuration
of PORT40. PORT40 is an input port only (figure 4.8).

56



4.5 – Aurix/Arduino-like Simulink Library Description

Figure 4.8. PORT_40_CONF block mask

Parameters:

− PORT40_PINxx allows to select the desired PORT40 pin;
− Port Control Mode determines the port line functionality;
− Port Pin Analog or Digital allows to choose Analog or Digital input.

• Dio_READ_Channel: This block returns as output the digital value
(unsigned 8 bits value) of the selected port pin.

Figure 4.9. Dio_READ_Channel block mask

57



Custom Simulink Library

Parameters:

− DIO_CH_xx_xx allows to select the desired digital channel.

• Dio_WRITE_Channel: This block receives as input the digital
value (unsigned 8 bits value) to be written on the port pin.

Figure 4.10. Dio_WRITE_Channel block mask

Parameter :

− DIO_CH_xx_xx allows to select the desired digital channel.

4.5.2 ADC
Aurix TriCore TC277 provides a series of analog input channels connected to
a cluster of Analog/Digital Converters using the Successive Approximation
Register (SAR) principle to convert analog input values (voltages) to discrete
digital values.

Now only 5 ADCs channels have been configured: 2 channels of ADC group
2 and 3 channels of ADC group 7 are available. The Port Pins configured
to work as ADCs inputs are: AnalogInA4 (ADC2.0), AnalogInA5 (ADC2.1),
PORT00_PIN04 (ADC7.2), PORT00_PIN03 (ADC7.3) and PORT00_PIN02
(ADC7.4). The Port Control Mode of the last three Port Pins must be con-
figured as PORT_IN_TRISTATE. ADCs resolution is 12 bit.

• Adc_StartBackgroundConvertion: This block starts or stops the
background conversions on all channels of all groups of the ADC module
(figure 4.11).

58



4.5 – Aurix/Arduino-like Simulink Library Description

Figure 4.11. Adc_StartBackgroundConvertion block mask

Parameter :

− FALSE or TRUE in order to disable or enable the background con-
version, respectively;

• Adc_Read: This block returns as output the converted value in bit
(unsigned 12 bits) of the selected ADC group channel.

Figure 4.12. Adc_Read block mask

Parameter :

− ADC_IF_Group_Channel allows to select the desired ADC group
channel.

59



Custom Simulink Library

4.5.3 CAN
CAN is an asynchronous serial bus system with one logical bus line. It has
an open, linear bus structure with equal bus participants called nodes. A
CAN bus consists of two or more nodes.

WARNING: Before using CAN blocks the following command must be
written in the Matlab console in order to import Can_tMsg type:

Simulink.importExternalCTypes(’aswl_if.h’)
"aswl_if.h" file is located in theGetting_Started folder and it contains Can_tMsg
type definition.

An example of CAN message structure is the following:

Can_tMsg CanMsg= {
.u8Node = 1,
.u8Length = 8,
.u8Data = {12,0,0,0,0,0,0,0,},
.u8Standard_Extended = 0,
.u32ID = 0x1800D0C0,
};

• Can_Msg_Static: This block allows to create a Static Can_tMsg,
i.e. a structure that cannot be modified runtime.

Figure 4.13. Can_Msg_Static block mask

60



4.5 – Aurix/Arduino-like Simulink Library Description

Parameters:

− 1st param indicates the node in which the MO has to Tx/Rx (WARNING:
only MCAN_MO_NODE1 is configured);

− 2nd param represents the number of bytes to send (in the range of
[1,8]);

− 3rd param is an array containing 8 data of 8 bits each to be Tx/Rx;
− 4th param indicates if the ID is Standard or Extended;
− 5th param indicates the ID of the MO (WARNING: the value must

be written in DECIMAL);

• Can_Msg_Dynamic: This block returns as output a Can_tMsg
struct according to the input values, so it’s possible to modify the mes-
sage structure runtime. The order of the inputs values is the same used
for Can_Msg_Static.

Figure 4.14. Can_Msg_Dynamic block mask

• Can_Msg_unpacked: This block allows to unpack a Can_tMsg. The
outputs are respectively the number of useful bytes and a pointer to the
array of data.

Figure 4.15. Can_Msg_unpacked block mask

61



Custom Simulink Library

• Packed_Can_8bytes_array: This block receives as inputs 8 values
of 8 bits each and returns as output a pointer to an array containing
those values.

Figure 4.16. Packed_Can_8bytes_array block mask

• UnPacked_Can_8bytes_array: This block receives as input a pointer
to an 8 byte array and returns as outputs the values of each single byte.

Figure 4.17. UnPacked_Can_8bytes_array block mask

• Can_Send: This block allows to send a Can_tMsg received as input.

Figure 4.18. Can_Send block mask

• Can_Receive: This block receives as input a Can_Msg_Static and re-
turns as output a Can_tMsg filled with the received values (figure 4.19).

62



4.5 – Aurix/Arduino-like Simulink Library Description

Figure 4.19. Can_Receive block mask

4.5.4 PWM
PWM (i.e. Pulse-width modulation) is a type of digital modulation that
allows obtaining a variable average voltage depending on the ratio between
the duration of the positive and the negative pulse (duty cycle).

It’s possible to generate PWM using two different modules: ATOM and
CCU6. The first one has to be used when single PWM has to be generated
while the second one when 3-phase PWM has to be generated.

ATOM

The ARU-connected Timer Output Module (ATOM) is able to generate
complex output signals without CPU interaction due to its connectivity to
the ARU. In ATOM Signal Output Mode PWM (SOMP) configuration, the
ATOM submodule channel is able to generate complex PWM signals with
different duty cycles and periods, [8].

Now only the 7 channels of the ATOM0 has been configured. The related
Port Pins are: PORT22_PIN01 (ATOM0_0), PORT22_PIN00 (ATOM0_1),
PORT23_PIN05 (ATOM0_2), PORT20_PIN01 (ATOM0_3), PORT22_PIN03
(ATOM0_4), PORT23_PIN00 (ATOM0_5) and PORT23_PIN01 (ATOM0_6).
The Port Control Mode of the Port Pins must be configured as
PORT_OUT_PUSHPULL_ALT_1.

• Atom_PWM_Channel_Config: This block allows to set the de-
sired configuration for the Atom Channel (figure 4.20).

63



Custom Simulink Library

Figure 4.20. Atom_PWM_Channel_Config block mask

Parameters:

− ATOM0_Channel: Represents the ATOM0 channel that has to be
configured;

− Period (us): Sets the PWM period. The value must be written in
microseconds;

− Reset Type: Allows to select the reset source of CCU0 (Counter
Compare Unit 0). It’s possible to reset counter register CN0 to 0 on
matching comparison with compare value CM0; or when signaled by
the trigger signal TRIG_[x-1] of the preceding channel [x-1];

− Trigger Output: Defines trigger output selection of module ATOM0_CHx;
− Initial Signal Level: Defines if the initial Signal Level is Low or High.

• Atom_PWM_SetDutyCycle: This block allows to set the duty cy-
cle (received as block input) of the selected PWM channel (figure 4.21).

64



4.5 – Aurix/Arduino-like Simulink Library Description

Figure 4.21. Atom_PWM_SetDutyCycle block mask

Parameter :

− ATOM0_Channel: Represents the ATOM0 channel that has to be
configured.

CCU6

The CCU6 unit is made up of a Timer T12 Block with three capture/compare
channels and a Timer T13 Block with one compare channel.

The timer T12 block is the main unit to generate the 3-phase PWM signals.
A 16-bit counter is connected to 3 channel registers via comparators, that
generate a signal when the counter contents match one of the channel register
contents. Besides the 3-phase PWM generation, the T12 block offers options
for dead-time control.

The related Port Pins are: PORT02_PIN00 (CC60), PORT34_PIN03
(COUT60), PORT34_PIN04 (CC61), PORT02_PIN03 (COUT61), PORT33_PIN14
(CC62) and PORT33_PIN15 (COUT62). The Port Control Mode of the
Port Pins must be configured as PORT_OUT_PUSHPULL_ALT_7.

• CCU6_PWM_Setup: This block allows to configure the operating
mode of Timer T12, PWM period and dead-time period (figure 4.22).

65



Custom Simulink Library

Figure 4.22. CCU6_PWM_Setup block mask

Parameters:

− Operating Mode: It’s possibile to select among Edge Aligned Mode
(timer T12 is always counting upwards) and Center Aligned Mode
(timer T12 is counting upwards or downwards in order to have a
triangular shape);

− Period (us): Sets the PWM period. The value must be written in
microseconds;

− Dead Time Period: Sets the Dead Time Period. The value must
be written in microseconds. No Dead Time insertion if the value
inserted is 0.

The CCU6 input clock is 100 MHz so the smallest value that can be
entered for both periods is 0.01 us (refers to section 2.2.2).

• CCU6_PWM_SetDutyCycle: This block allows to set run-time
the duty cycle of the 3 PWM main channels. The inputs values has to
be double data types and represent the percentage of ON time (must be
in the 0-100 range).

66



4.5 – Aurix/Arduino-like Simulink Library Description

Figure 4.23. CCU6_PWM_SetDutyCycle block mask

67



68



Chapter 5

Code Generation
Target Language Compiler works with its target files and Real-Time Work-
shop output to produce code. When generating code from a Simulink model
using Real-Time Workshop, the first step in the automated process is to gen-
erate a model.rtw file. This file includes all of the model-specific information
required for generating code from the Simulink model. model.rtw is passed
to the Target Language Compiler, which uses it in combination with a set of
included system target files and block target files to generate the code.

In order to allow Simulink to find the custom System Target File used
to generate code for ERIKA RTOS, erika_rtos [15] folder (present inside
Getting_Started folder) must be placed in the MATLAB root folder in-
side \rtw\c. Moreover the Matlab folder present in the Getting_Startedl
folder must become the MATLAB working directory: it contains the S-
function source files and the TLC files needed to recognize the blocks of the
Aurix/Arduino-like BSP Simulink library from Embedded Coder during the
Code Generation Process. Without these informations, the Aurix/Arduino-
like BSP blocks will not be recognized by the tool.

In this chapter will be explained how to create a Simulink model using the
Aurix Arduino-like BSP library and how to use Embedded Coder to gener-
ate code, with the help of some examples (sections 5.2, 5.3). The generated
code will be also analyzed in order to better understand the main part. The
last section (5.4) is dedicated to the integration of the generated file in the
project.

69



Code Generation

5.1 Software Resources
The following tools are needed:

• Matlab

• Simulink

• Embedded Coder

5.2 First Example: Blinking Led
Generate a task that set ON and OFF a LED with a period of 1 s (500 ms
ON and 500 ms OFF)

1. Start Simulink.

2. C lick on New pane → Blank Model and a new window appears.

3. Open the Simulink Library Browser and found Subsystem block; name it
with the decided task name (e.g. Blinking_Led) and delete everything
inside.

Figure 5.1. Subsystem Block

4. Right click on Subsystem block → Block Parameters (Subsystem) and
then select Main pane in order to modify the Subsystem parameters:
select Treat as atomic unit and set the desired Sample time in seconds:
in this case 0.5 must be written (e.g. 500 ms)(figure 5.2).

70



5.2 – First Example: Blinking Led

Figure 5.2. Subsystem Block Parameters: Main pane

Now select the Code Generation pane and set the Function packaging
to Nonreusable function and Function name options to Use Subsystem
name.

Figure 5.3. Subsystem Block Parameters: Code generation pane

71



Code Generation

5. Drag inside the Subsystem block the Initialize Function from the Simulink
Library Browser and delete everything inside it except for the Event
Listener. This block is necessary because it’s used to "contains" all the
initialize block functions.

Figure 5.4. Initialize Function block

6. Open the Simulink Library Browser and find the Aurix Arduino-like BSP
library. Drag the PORT_00-34_Conf block in the Initialize Function
block and configure the PORT10_PIN08 to work as PORT_OUT_PUSHPULL_GPIO.
Look at the figure 5.5 to understand how to configure the other param-
eters.

Figure 5.5. Initialize Function: Port configuration

7. Inside the Subsystem block the Dio_WRITE_Channel block is instan-
tiated and configured to write a value on the desired channel, in this
case the DIO_CH_10_08. This block is connected with some Simulink
blocks: Memory block with 0 as initial condition, NOT block in order
to complement the "memory" value and Data Type Conversion block to
convert the value to the right data type (figure 5.6).

72



5.2 – First Example: Blinking Led

Figure 5.6. Model Design

8. Once the model is created, click on (i.e. Model Configuration Pa-

rameters) to configure the Solver Type and set the System Target File:

− Solver : Select Fixed-step in Solver selection;
− Hardware Implementation: Select Infineon in Device vendor and

TriCore in Device type; it’s useful only to define the correct data
type size;

− Code Generation: Set System Target File as mbd_erika_rtos.tlc,
select Generate code only and deselect Generate makefile (figure 5.7).

73



Code Generation

Figure 5.7. Set parameters for the Code Generation

9. erika_rtos folder must be added to MATLAB search path. Run the
addpath("path"); instruction on the MATLAB command line where
the arguments "path" represents the position of erika_rtos folder: for ex-
ample addpath(’C:\ProgramFiles\MATLAB\R2018b\rtw\c\erika_
rtos’) ;;

10. Save and name the model (e.g. Example) and then click on to build

the model.

If everything is done correctly, the Code Generation Report appears. The
auto-generated files will be placed in the "modelname"_task folder (in this
case Example_task folder) inside MATLAB working directory.

Have a look to the auto-generated files:

• oscfg.oil.c contains the ERIKA RTOS configuration. Blinking_Led
task is here configured (figure 5.8):

74



5.2 – First Example: Blinking Led

Figure 5.8. Oil file: Task configuration

The ALARM is configured in order to generate the EVENT Sched-
uleEvent_Blink_LED that wake up the task every CYCLETIME (in
this case 500 ms).

Figure 5.9. Oil file: ALARM configuration

• OSTasks0_ErikaOs.c contains the extented task implementation (fig-
ure 5.10). Task is waiting for the "arrive" of the event configured in the
.oil file, so in this case it is the ScheduleEvent_Blink_LED event gener-
ated by the ALARM: the step-function (i.d. Example_Blinking_LED())
is called every 500 ms.

75



Code Generation

Figure 5.10. Extended task implementaion

• The main function in Example.c are the initialize function ( that "calls"
all the function blocks inside the Initialize Function) Example_Blinking_
LED_Init() (figure 5.11) and the Example_Blinking_Led() (figure 5.12)
corresponding to the step function

Figure 5.11. Init Function

76



5.3 – Second Example: 3-phase PWM generation

Figure 5.12. Step Function

• Example.h and Example_private.h contain the declaration of all
the generated functions while rtwtypes.h and Example_types.h con-
tain the definition of the basic types. It’s not important to analyze this
file because are useful only to avoid compilation error after the integra-
tion in the Project.
Read the last section 5.4 in order to understand how to integrate the
generated files in the proect.

5.3 Second Example: 3-phase PWM genera-
tion

Generate a center-aligned 3-phase PWM with a period of 100 us and dead
time of 30 ns. The value of the duty cycle of the 3 main channels, change
according to the value returned by one of the ADCs of the target board: when-
ever the value is greater than a threshold of 2702 (i.e. 3.3 V), a 3-phase PWM
with duty cylce of 30% is generated otherwise with a duty cycle of 70%.

1. Start Simulink.

2. C lick on New pane → Blank Model and a new window appears.

3. Open the Simulink Library Browser and found Subsystem block; name

77



Code Generation

it with the decided task name (e.g. PWM_Gen) and delete everything
inside.

Figure 5.13. Subsystem Block

4. Right click on Subsystem block → Block Parameters (Subsystem) and
then select Main pane in order to modify the Subsystem parameters:
select Treat as atomic unit and set the desired Sample time in seconds:
in this case 0 must be written because the task has to be activated by
Timer12 Period Match (section 2.2.2)

Figure 5.14. Subsystem Block Parameters: Main pane

Now select the Code Generation pane and set the Function packaging
to Nonreusable function and Function name options to Use Subsystem
name(figure 5.15)

78



5.3 – Second Example: 3-phase PWM generation

Figure 5.15. Subsystem Block Parameters: Code generation pane

5. Drag inside the Subsystem block the Initialize Function from the Simulink
Library Browser and delete everything inside it except for the Event
Listener. This block is necessary because it’s used to "contains" all the
initialize block function

Figure 5.16. Initialize Function block

6. Open the Simulink Library Browser and find the Aurix Arduino-like BSP
library. Drag six PORT_00-34_Conf blocks in the Initialize Function
block and configure the PORT02_PIN00, PORT34_PIN03, PORT34_PIN04,
PORT02_PIN03, PORT33_PIN14, PORT33_PIN15 to work as
PORT_OUT_PUSHPULL_ALT_7. In this way pin P02.00, P34.04
and P33.14 are configured to be the CC60, CC61, CC62 outputs respec-
tively (the 3-phase PWM main channel) while P34.03, P02.03, P33.15
are configured to be COUT60, COUT61, COUT62 outputs respectively
(the 3-phase PWM complementary channel). Look at the figure 5.17 to

79



Code Generation

understand how to configure the other parameters.

Figure 5.17. Initialize Function: Port configuration

Figure 5.17 shows how to configure the PORT02_PIN00 and the con-
figuration process must be repeated for the other five port pin.

Now drag Adc_StartBackgroundConvertion block and select TRUE in
order to enable the Adc background convertion (figure 5.18).

Figure 5.18. Initialize Function: Start Adc Background Convertion

In order to configure the CCU6 Operating Mode, PWM period and dead
time value, the CCU6_PWM_Setup must be instantiated (figure 5.19)

80



5.3 – Second Example: 3-phase PWM generation

Figure 5.19. Initialize Function: CCU6 configuration

7. Inside the Subsystem block the Adc_Read block is instantiated and con-
figured to reaturn the value converted by the desired Adc group channel,
in this case the ADC_IF_GR2_CH0. This block is connected with the
Switch Simulink block with a threshold set to 2072: the inputs of this
block are two Constant double value 30 and 70. The output of the
switch is used to set the Duty Cycle of the 3-phase PWM by using the
CCU6_PWM_SetDutyCycle block.

Figure 5.20. Model Design

8. Once the model is created, click on (i.e. Model Configuration Pa-

rameters) to configure the Solver Type and set the System Target File:

− Solver : Select Fixed-step in Solver selection;

81



Code Generation

− Hardware Implementation: Select Infineon in Device vendor and
TriCore in Device type; it’s useful only to define the correct data
type size;

− Code Generation: Set System Target File as mbd_erika_rtos.tlc, se-
lect Generate code only and deselect Generate makefile (figure 5.21).

Figure 5.21. Set parameters for the Code Generation

9. erika_rtos folder must be added to MATLAB search path. Run the
addpath("path"); instruction on the MATLAB command line where
the arguments "path" represents the position of erika_rtos folder: for ex-
ample addpath(’C:\ProgramFiles\MATLAB\R2018b\rtw\c\erika_
rtos’) ;;

10. Save and name the model (e.g. Example2 ) and then click on to

build the model.

If everything is done correctly, the Code Generation Report appears. The
auto-generated files will be placed in the "modelname"_task folder (in this
case Example2_task folder) inside MATLAB working directory. Have a look
to the auto-generated files:

82



5.3 – Second Example: 3-phase PWM generation

• oscfg.oil.c contains the ERIKA RTOS configuration. PWM_Gen task
is here configured:

Figure 5.22. Oil file: Task configuration

• OSTasks0_ErikaOs.c contains the extented task implementation (fig-
ure 5.23). Task is waiting for the "arrive" of the event configured in the
.oil file, so in this case it is the ScheduleEvent_Period_Match event
generated by the CCU6 Timer12 (section 2.2.2): the step-function (i.e.
Example2_PWM_Gen()) is called every period match, so in this case
every (PWM period/ 2 - 1) us because the selected CCU6 Operating
Mode is Center Aligned (section 2.2.2).

83



Code Generation

Figure 5.23. Extended task implementaion

• The main function in Example.c are the initialize function ( that "calls"
all the function blocks inside the Initialize Function)
Example2_PWM_Gen_Init() (figure 5.24) and the Example2_PWM_Gen()
(figure 5.25) corresponding to the step function.

84



5.3 – Second Example: 3-phase PWM generation

Figure 5.24. Init Function

Figure 5.25. Step funtion

• Example2.h and Example2_private.h contain the declaration of

85



Code Generation

all the generated functions while rtwtypes.h and Example2_types.h
contain the definition of the basic types. It’s not important to analyze
this file because are useful only to avoid compilation error after the
integration in the project.
Another important thing to be done before the integration of the gen-
erated files in the project, is the definition of the SetEvent function in-
side the CCU6 Interrupt handler. This function is used to generate the
ScheduleEvent_Period_Match in order to activate the generated task
each CCU6 Period Match.
Open the CCU6.c file inside TricoreBswl\BSWL\Kernel\MCAL_TC277TF\
CCU6 folder and uncomment the SetEvent function at code line 241.
Furthermore the name of the generated task must be written inside the
function. Look at the figure 5.26 to better understand.

Figure 5.26. CCU6.c file

Read the last section 5.4 in order to understand how to integrate the
generated files in the proect.

5.4 Integrate the Generated File in the Project
The auto-generated files are easily integrable in the basic software but some
manual interventions are necessary to make everything works. First of all the
Project must be "aware" that the auto-generated files will be integrated in the
basic software: a MATLAB variable must be defined in bswl_presence.h
file. This is a necessary step to adjust the values passed by Matlab to BSP
functions: mask popup type (refers to previous chapter) treats every choice
as incremental integer number starting from 1.

86



5.4 – Integrate the Generated File in the Project

The OIL file, the OS_Tasks0_ErikaOs file, the model C file and all the
header files have to be copied and pasted in the right Basic Software folder:

− oscfg.oil.c must be renamed in oscfg.oil and copied inside the TricoreBswl\
PrjCfg\ErikaOsCfg\OilFile folder

− OS_Tasks0_ErikaOs inside TricoreBswl\BSWL\OS\OsTask_ErikaOs\
cpu0 folder

− all the other files in TricoreBswl\ASWL except for ert_main.c that is
never used.

The model initialize function and the header file that contains its declaration
must be manually added in the cpu0_main.c file: the correct code location
is indicated by the comments in the file. Look at the following code (fig-
ure 5.27 refers to First Example (section 5.2) to better understand where the
header file Example.h (i.e. the header file containing the delcaration of all
the generated functions) and the initialize function Example_initialize() has
to be added.

Figure 5.27. cpu0_main.c file

Now it’s time to generate configuration files for ERIKA RTOS and to
compile the operating system (section 3.2.3). Then it’s the turn to import

87



Code Generation

the Project in Eclipse (section 3.2.2) in order to build it (section 3.2.4) and
program and debug the target board (section 3.2.5).

88



Bibliography
[1] Broy M., Kirstan S., Kremar H., Schätz B., Zimmermann J., What is the

benefit of a model-based design of embedded software systems in the car
industry?, Germany

[2] The Mathworks Inc, How Small Engineering Teams Adopt Model-Based
Design, The Mathworks

[3] Kautz O., Roth A., Rumpe B.,Achievements, Failures, and the Future of
Model-Based Software Engineering

[4] The Mathworks Inc, Simulink® Developing S-Functions, The Mathworks
[5] The Mathworks Inc, Target Language Compiler™ For Use with Real-Time

Workshop®, The Mathworks
[6] The Mathworks Inc, Real-Time Workshop® For Use with Real-Time

Workshop Embedded Coder, The Mathworks
[7] The Mathworks Inc, Embedded Coder® User’s Guide, The Mathworks
[8] Infineon Technologies AG, TC27x C-Step, Infineon Technologies
[9] Violante M., Operating Systems for Embedded Systems - Course Slides,

a.y. 2016/2017
[10] Evidence S.r.l., ERIKA Enterprise Manual Real-time made easy, version:

1.4.4, 2012
[11] OSEK, OSEK/VDX - Operating System, version: 2.2.3, 2005
[12] OSEK, OSEK/VDX - System Generation - OIL: OSEK Implementation

Language, version: 2.5, 2004
[13] Future Technology Devices International Limited, User Guide for FTDI

FT_PROG Utility, 2016
[14] HighTec, A Getting Started to Free TriCore ™ Entry Tool Chain, High-

Tec
[15] Cottone F., A Model-Based Design Embedded Software Development

Methodology for an OSEK-Compliant RTOS - Master Thesis, Politecnico
di Torino, Luglio 2019

89


	List of Figures
	Model Based Software Design
	What is Model Based Software Design
	Model Based Design tool: Simulink
	S-function
	Code Generation process


	Aurix/Arduino-like 
	Aurix™ Infineon TC277
	Peripherals
	ADC
	CCU6
	CAN
	GPIO Ports

	Real Time Operating System
	OSEK/VDX Standards
	Erika Enterprise RTOS


	Getting Started
	Software resources 
	Cygwin
	Ninja Genie
	Java Runtime Environment
	FT_Prog
	HighTec Free TriCore™ Entry Tool Chain

	Configuration and Build process
	FTDI programming
	Import Existing Code
	Build ERIKA RTOS
	Build the Project
	Debug


	Custom Simulink Library
	Software resources
	Simulink Library Creation
	Simulink Block Generation
	Add Libraries to the Library Browser
	Aurix/Arduino-like Simulink Library Description
	GPIO Ports
	ADC
	CAN
	PWM


	Code Generation
	Software Resources
	First Example: Blinking Led
	Second Example: 3-phase PWM generation
	Integrate the Generated File in the Project

	Bibliography

