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SUMMARY

Causality tracking among events is a fundamental challenge in distributed environments.

Most previous work on this subject has been focused on designing an efficient and scalable

protocol to represent logical time. Several implementations of logical clocks have been proposed,

most recently the Encoded Vector Clock (EVC), a protocol to encode Vector Clocks in scalar

numbers through the use of prime numbers, to improve performance and scalability.

In this thesis work we propose and formalize the concept of Resettable Encoded Vector

Clock (REVC), a new logical clock implementation, which builds on the EVC to tackle its

very high growth rate issue. We show how our REVC can be applied in both shared memory

systems and message passing systems to achieve a consistent logical clock. We show, through

practical examples, a comparison between REVC’s and EVC’s growth rates, to demonstrate

our clock’s advantages. Finally, we show a practical application of the REVC to the Dynamic

Race Detection problem in multi-threaded environments. We compare our tool to the currently

existing VC-based tool DJIT+ to show how the REVC can help in achieving higher performance

with respect to the Vector Clock.

viii



CHAPTER 1

INTRODUCTION

1.1 Background and motivation

A fundamental concept in distributed systems is that of tracking causality among events

that occur at different processes in the system. On a single-threaded process, causality can be

tracked by means of attaching a timestamp to each event, thus establishing a precedence relation

among them. However, this problem becomes much harder to solve in a multi-threaded or multi-

processor environment, as concurrency among threads and processes depends on their relative

speed and can therefore change at any different execution. Consequently, a timestamp from a

global clock is not sufficient to correctly track causality relations among events. Furthermore,

in a multi-processor system, global time is not even available unless processor’s clocks are

tightly synchronized (which is not achievable in real systems). Therefore, a different notion

of time and causality becomes necessary for such environments. One solution to the problem

is to substitute the physical time with logical time, given by a logical clock at each thread or

process, that allows to establish a causality relation among events in a distributed system.

Several implementations of logical clocks have been proposed, such as Scalar Clock [1],

Vector Clock (VC) [2] [3] and Encoded Vector Clock (EVC) [4]. The first is a lightweight,

simple and efficient system to track causality through the use of scalars, but it does not allow

to obtain the causality relation from the timestamps (no strong consistency property). The

1
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VC, on the other hand, is the commonly employed technique to implement a logical clock

which can achieve strong consistency. Its main drawback, however, is its poor scalability as it is

dependent on the number of processes for all its operations and storage requirements. Finally,

the EVC is a technique to represent a vector clock using a single scalar number, to improve

scalability of the VC while maintaining strong consistency and it is based on the use of prime

numbers to achieve such encoding. The main drawback of such representation has been shown

to be the extremely high growth rate which quickly causes an overflow at the locations that are

storing the EVC values [5].

1.2 Contributions

In this thesis work, we propose and formalize the concept of Resettable Encoded Vector

Clock (REVC), a new logical clock implementation, which builds on the EVC to reduce its

growth rate and, under certain conditions, place an upper bound on its storage requirements,

while maintaining the scalability and performance properties of the EVC. We show how our

REVC can be applied in both shared memory systems and message passing systems to achieve

a consistent logical clock. We show, through practical examples, a comparison between REVC’s

and EVC’s growth rates, to demonstrate our clock’s advantages.

Finally, we show a practical application of the REVC to the Dynamic Race Condition

Detection problem in multi-threaded environments using the RoadRunner [6] dynamic analysis

framework. We compare our tool to the currently existing VC-based tool DJIT+ [7] to show

how the REVC can help in achieving higher performance with respect to the VC.
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1.3 Document’s structure

The next chapter, Chapter 2, details previous and related work that has been carried out

on logical clocks and on dynamic race detection. Chapter 3 presents the models for the shared

memory systems and message passing systems on which we apply our Resettable Encoded

Vector Clock, which is detailed in Chapter 4. Chapter 5 shows a practical application of the

REVC to the Dynamic Race Detection problem and its results. Finally, Chapter 6 concludes

our work and presents ideas for future developments.



CHAPTER 2

RELATED WORK

In this thesis work we present the Resettable Encoded Vector Clock, which is a logical clock

implementation built on top of the Encoded Vector Clock [4]. The EVC itself is an encoding of

the traditional Vector Clock [2] [3] using prime numbers.

We also present an application of the REVC to Dynamic Race Detection, which we imple-

ment using the dynamic analysis framework RoadRunner [6]. Finally, we compare our REVC

tool for Dynamic Race Detection to a VC-based protocol, DJIT+ [7], and to FastTrack [8], an

adaptive tool that can dynamically switch between a scalar clock and a vector clock.

2.1 Vector Clock

The Vector Clock is a logical clock developed independently by Fidge [2] and Mattern [3].

Differently from the Scalar Clock presented by Lamport [1], the VC achieves the property of

strong consistency, at the expense of scalability and performance. The Vector Clock is based

on keeping at each process an array of size n, where n is the number of processes in the system.

The ith component of such array at process x denotes the value of the scalar clock of process i

as known by process x at that time.

The Vector Clock defines an implementation of the three basic operations of a logical clock,

the local tick operation, the merge operation and the comparison operation.

4
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When performing a local tick operation, process x will execute the following instruction (as-

suming V is x ’s VC):

V [x] = V [x] + 1 (2.1)

When merging Vector Clock V1 into Vector Clock V2, the process executes:

∀i : V2[i] = max(V1[i], V2[i]) (2.2)

Finally, the purpose of any logical clock is that of inducing a partial order on the set of events

labeled with a timestamp according to Lamport’s happens-before relation [1] (represented with

the operator →). To be able to test any two events a and b according to such relation, the

comparison operation is defined:

a→ b ⇐⇒ (∀i : Va[i] ≤ Vb[i]) ∧ (∃i : Va[i] < Vb[i]) (2.3)

The main drawback of the Vector Clock is its impact on scalability and performance. Given

that both the merge operation and the comparison operation are dependent on n, along with

the data structure used to store the VC, as the number of processes increases, the overhead

increases with it.

2.2 Encoded Vector Clock

Kshemkalyani et al. proposed the use of prime numbers to encode the values of the Vector

Clock in one single scalar number [4], which allows for higher scalability while maintaining
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strong consistency. The EVC is based on assigning each process a unique prime number p,

which is the initialization value of its local clock. The three basic operation are then modified

as follows.

When process x, which has been assigned prime number p, performs a local tick operation, it

executes (assuming E is x ’s EVC):

E = E ∗ p (2.4)

In order to merge EVC E1 into EVC E2, the following is executed:

E2 = lcm(E1, E2) (2.5)

Finally, to establish the relationship between two events a and b labeled with EVCs Ea and

Eb, the comparison operation is defined:

a→ b ⇐⇒ Ea < Eb ∧ Eb mod Ea == 0 (2.6)

The Encoded Vector Clock achieves a higher scalability than the Vector Clock as it is not

dependent on the number of processes and all its operations have a theoretical complexity of

O(1). The main drawback of the EVC is its extremely high growth rate [5]. By relying on

multiplications and least common multiple operations, EVC values grow with an exponential

rate, which can quickly require a very large number of bits in order to be able to represent it,

and therefore store it.
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Despite this drawback, the EVC has found practical applications, such as detecting memory

consistency errors in MPI one-sided applications [9], due to the use of resets at global barrier

synchronizations.

2.3 Dynamic Race Detection

One of the most common types of errors that is found in parallel shared-memory environ-

ments is the so called race condition. A race condition is present when two or more threads

try to make use of the same resource without properly synchronizing among themselves, and

are therefore in a race to access the resource. Clearly, if at least one of the threads is trying to

modify the resource, errors can arise depending on the relative speed among the threads, and

therefore depending on who wins the race at any given execution.

Several protocols for race condition detection have been studied, which aim at reporting

such bugs to the developer to allow for an easier debugging. There are static tools (examples

include [10], [11], [12]) which perform source code analysis or dynamic tools (examples include

[13], [7], [14]) which track a given execution to determine the presence of races. Those tools

can be further divided in tools that report probable races (and can include false positives) and

tools that report only actual races that are present in the software. DJIT+ [7] is a dynamic

race condition detection protocol that exploits vector clocks to track causality among accesses

to memory locations and therefore precisely analyze a program execution and report actual

races. Given that it is a dynamic protocol, it runs during the actual program execution and as

such it provides some overhead to the execution itself. In order for such protocol to be usable
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in practice, the overhead should be reduced as much as possible, and therefore performance is

key.

2.3.1 The RoadRunner Framework

Dynamic race condition detection protocols execute alongside the application that is being

tested for race conditions, and track the interesting events (memory accesses, synchronization

instructions, thread creation and termination instructions) in order to store and retrieve infor-

mation related to such events that can be useful to identify races. In order to achieve such

results, a framework needs to be deployed that is capable of interacting to some extent with

the running program and implement the dynamic protocol.

In our evaluation, we exploited the Java framework RoadRunner, developed by Flanagan

and Freund [6]. RoadRunner is a dynamic analysis framework which is designed to help in

the implementation of tools that perform dynamic analysis of concurrent Java programs. It

is composed of two main parts: a Java bytecode instrumenter and a backend which can be

extended to implement any dynamic analysis tool.

The first component’s task, as the name suggests, is to instrument the Java bytecode of the

application which is being analyzed. Upon class loading, the system dynamically modifies the

bytecode to include callbacks and extra variables that are used to produce an event stream that

will then be intercepted and processed by one or more backend tools. In practice, every time

the application under scrutiny executes an action which is considered an interesting event by

the framework, a callback is issued to notify the backend tool of the execution of such event. A

payload of information regarding the event is also attached to the callback, to allow the backend
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to correctly understand the context of the event and the actors that are participating. Among

the set of interesting events that are tracked by the system are the synchronization operations

provided by the Java programming language, acquire and release of lock objects, fork, start,

join, wait, sleep, notify and access events to class methods, class fields, static fields, arrays

and volatile variables. For a subset of such events, two callbacks are available, one firing before

the event is executed and one after the event is executed, to allow the backend tool maximum

flexibility on the management of such events.

The second component, as mentioned, is the backend tool which implements the dynamic

analysis protocol that is being deployed. RoadRunner defines a basic abstract class that contains

all the possible callbacks to handle the event stream and the implementation of a backend tool

starts with the creation of a new class that extends the basic abstract class and implements all,

or a subset, of the callbacks to handle the events that are of interest to the protocol. Once the

events are fired, the callbacks defined by the tool are called and complete flexibility is given to

the tool to implement any behaviour that is required.

Each event, when fired, carries with it a payload of information, which are specialized based on

the event type. For example, among the information conveyed to the tool for a fork event, are

the identifiers of both the thread that executes the fork operation and the new thread that is

created, while for an acquire operation, the identifier of the executing thread and the identifier

of the lock object being acquired are reported.

Furthermore, RoadRunner associates special data structures to each thread that is created, lock

object that is used and memory location that is accessed. Such data structures have the goal
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of storing additional information that can be retrieved every time an event is fired concering

such objects, by accessing special methods from the callbacks. Those data structures can be

further customized by the backend tool to store any additional information that it requires in

order to achieve the desired results.

Finally, given that memory access operations constitute the majority of operations among

the tracked events, RoadRunner offers the possibility of creating specialized fast path implemen-

tations of read and write operations, by defining two special methods in the tool class. Such

fast implementations are optimized with respect to the usual memory access event, because

they are inlined by the instrumenter directly inside the application’s bytecode, thus skipping

the overhead of event creation and dispatch.

2.3.2 DJIT+

DJIT+ is a dynamic race condition detection protocol developed by Pozniansky and Schuster

[7], which employs vector clocks to track causality relations among access operations performed

on a shared memory location, to identify races among threads during the program execution

and report them.

Each thread maintains a vector clock from the beginning of the execution, and uses it to label

each access to a memory location. Each synchronization object (for simplicity we consider here

only simple locks, with no loss of generality as any other form of more complex synchronization

can be implemented on top of such basic primitives) is also attached a vector clock. Each clock

is advanced and modified following the basic operations of a multi-threaded environment on a

shared memory model as briefly described by the following rules:
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• Lock acquisition: when a thread acquires a lock object, it merges the vector clock of

the lock into its own vector clock

• Lock release: when a thread releases a lock object, it merges its own clock into the

lock’s vector clock. Then, the thread performs a local tick operation to create a new

fresh timestamp value to be used for following memory accesses

• Fork operation: when a new thread t2 is created by thread t1, t1 sets the vector clock

of t2 equal to its own vector clock, and then it performs a local tick operation

• Join operation: when thread t2 terminates and joins with thread t1, t1 merges t2’s

clock into its own

When the program performs an access to a memory location, the previous vector clock times-

tamp that was stored at that memory location is checked against the current thread’s vector

clock and, based on the two operations and their relationship according to the happened-before

operator, a possible race condition might be detected and reported.

More precisely, each memory location actually stores two vector clocks vr and vw which repre-

sent the latest read and write operations. Supposing that t is the current thread’s vector clock,

upon a memory access, races can be detected by the following rules:

• Read-Write race: if the current operation is a write operation at the accessed memory

location and it is not true that vr → t, then a Read-Write race is detected and reported,

as the current write operation is concurrent with the previous read operation
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• Write-Read race: if the current operation is a read operation at the accessed memory

location and it is not true that vw → t, then a Write-Read race is detected and reported,

as the current read operation is concurrent with the previous write operation

• Write-Write race: if the current operation is a write operation at the accessed memory

location and it is not true that vw → t, then a Write-Write race is detected and reported,

as the current write operation is concurrent with the previous write operation

Clearly Read-Read races do not need to be reported as they don’t really constitute a race

condition, as multiple concurrent reads are allowed at any given memory location without the

risk of returning inconsistent values.

The authors of the DJIT+ protocol show proof that this system is precise to the point of

never reporting false positives and being able to detect any race condition that happens during

a given program execution. However, given that DJIT+ is a dynamic race condition detection

system, it is possible that not all races that are present are reported as some race condition

might happen only due to a specific relative speed among threads which doesn’t happen in the

actual program executions in which the protocol is employed.

2.3.3 FastTrack

FastTrack [8] is the state-of-the-art Dynamic Race Detection protocol. It builds on DJIT+

employing several optimization techniques that allow it to reduce the information that is stored

for each memory location from a Vector Clock to a Scalar Clock for most operations. Only

when the timestamp that is generated by using the Scalar Clock is not sufficient to correctly

characterize the accesses, it dynamically switches to the traditional Vector Clock representation.
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These optimization techniques allow FastTrack to achieve a very high speedup over DJIT+.

Furthermore, the storage requirements for the application are consistently reduced, as most

instances do not require the storage of a full Vector Clock.



CHAPTER 3

SYSTEM MODEL

Distributed systems are usually divided into two categories: shared memory systems and

message passing systems [15]. As the names suggest, this division is based on the type of

communication that the different components of the distributed system use to synchronize. We

will now briefly analyze each of the two models along with the types of events that make it up

and the rules that ensure a consistent relationship among such events.

3.1 Shared Memory System

A shared memory system is composed of several threads that execute concurrently and

communicate via shared memory. The execution is assumed to be asynchronous, therefore the

relative speed among the threads is not fixed. The threads can synchronize using the operating

system provided operations lock, unlock, fork and join. Other more complicated means of

synchronization are not analyzed here, but the model can be easily extended to include them

by building on these basic primitives.

The execution of each thread consists in a series of events that can be either one of the

operations previously presented or what here is called an internal event. Internal events can be

any type of action that is performed by a thread, which does not require any synchronization

with other threads, and can therefore be seen as an event local to the thread itself. These

14
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actions may include (but are not limited to) read and write operations to arbitrary memory

locations, function calls or compound statements composed of several operations.

A partial order on this set of actions can be induced by Lamport’s happened-before rela-

tion [1], which can characterize causality among such events. In this context, such relation is

characterized by the following rules:

• Program order: if a and b are two events that are executed by the same thread, and a

is executed before b, then a → b

• Lock synchronization: if u is an unlock operation and l is a lock operation on the same

lock object, then u → l

• Thread creation: if f is a fork operation and e is an event executed by the thread that

is created by f, then f → e

• Thread termination: if j is a join operation and e is an event executed by the thread

that will terminate at j, then e → j

• Transitive property: if a→ b and b→ c, then a→ c

If ¬(a → b) ∧ ¬(b → a) then a and b are said to be concurrent events. It can be intuitively

understood that if a→ b then in any execution of the program, a will always be executed before

b as b is causally dependent on a. On the other hand, if a and b are concurrent, they can be

executed in any order on a given execution of the program.
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3.2 Message Passing System

A message passing system is composed of several processes that execute concurrently and

communicate via message passing. We assume the presence of a logical communication channel

among each pair of processes. We do not require that such channels be physically present in the

system, nor do we make any assumption on the nature of such channels, such as requiring them

to be FIFO. The execution is again assumed to be asynchronous, therefore no fixed relative

speed among the processes exists. Each process can synchronize with the others by means of

the communication primitives send and receive. The fence operation is also available, which

allows to create barrier synchronizations among multiple processes.

The execution can again be characterized as a sequence of events. In message passing

systems, four types of events can be distinguished: send events, receive events, fence events

and internal events. The first three correspond to the execution of the basic communication

primitives that have just been described, while an internal event can be any other operation,

or compound statement composed of multiple operations, which does not require any synchro-

nization with other processes.

Lamport’s happened-before relation [1] can be used to induce a partial order on this set of

events to characterize causality among them. In message passing systems the following rules

apply:

• Program order: if a and b are two events that are executed by the same process, and

a is executed before b, then a → b
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• Message synchronization: if s is a send operation for message m and r is the receive

operation for the same message m, then s→ r

• Barrier synchronization: if fi and fj are two corresponding fence operations executed

by two processes and e is an event executed by any of the two processes before reaching

the barrier, then e → fi ∧ e → fj . Also if e0 is an event executed by any of the two

processes after executing the fence operation, then fi → e0 ∧ fj → e0

• Transitive property: if a→ b and b→ c, then a→ c

Finally, concurrent events can be characterized following the same definition that was used for

shared memory systems, i.e. events a and b are said to be concurrent if and only if ¬(a →

b) ∧ ¬(b→ a).



CHAPTER 4

THE RESETTABLE ENCODED VECTOR CLOCK

The first contribution of this thesis work, as previously described, is to detail the components

and rules that make up the Resettable Encoded Vector Clock, and analyze its applicability both

in shared memory systems and message passing systems. Finally, we also compare the REVC

protocol with the EVC protocol to study the benefits in terms of growth rate and storage

requirements that it is able to obtain.

The Resettable Encoded Vector Clock is a logical clock implementation which builds on

top of the Encoded Vector Clock with the aim of tackling its high growth issue. The idea that

the protocol is built on is that of performing a reset operation at the EVC location every time

such value overflows a predefined number of bits n. The reset operation brings the EVC value

back to the initialization value, allowing the system to restart its operations until the following

overflow event.

One possible approach to such reset is to require that, when the first process overflows the

available number of bits for storing the EVC, the system is paused and all processes synchronize

to execute a local reset of their EVC. A practical way to achieve such result is to use a modi-

fied version of Lamport’s global snapshot algorithm [16], which requires processes to exchange

control messages to achieve a global synchronization point. Such technique has been studied

and implemented as a protocol for resetting Vector Clocks by Yen and Huang [17].

However, an important consideration is that, for the REVC to be usable in place of the EVC, it

18
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should be equivalent to the EVC, and thus return the same results as the EVC would. There-

fore, any solution that proposes to reset the EVC value by means of a global synchronization

point, not only introduces a high overhead into the system caused by the added synchroniza-

tion, but also breaks the equivalence among EVC and REVC. We can in fact show that, if

a synchronization event e is added to the system to perform a global reset, the underlying

causal order is changed. Let’s take two concurrent events a and b and let’s suppose that, in the

current execution of the program, after executing a but before executing b, an overflow occurs

and therefore a reset is required. Event e is now executed, as the global synchronization event

in which all processes perform the local reset. Given that e is a global synchronization event

executed by all processes, the intrinsic program ordering states that a → e. After the reset,

the system can restore normal operations and event b is now executed. Again, given that e is

a global synchronization event, it follows that e → b. But because of the transitive property

of Lamport’s happened-before relation, if a → e and e → b, we can state that a → b which

is in contrast with the result that would be obtained by the EVC, in which a and b are two

concurrent events.

We have showed with this example how a solution that exploits added synchronization

among the processes introduces external events in the normal program execution, which change

the causality relation in the set of all events. Furthermore, let it be noted that such an approach

would in practice introduce a considerable overhead into the system as each overflow event would

require a global pause of the system to execute the reset protocol.
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Therefore, the solution that is proposed in the Resettable Encoded Vector Clock exploits

asynchronous local resets at each process, an idea that was previously explored in the context

of Vector Clocks by Arora et al. [18]. Thus, we avoid both introducing the overhead of a global

synchronization event with the corresponding loss of performance, and breaking the equivalence

among EVC and REVC. Clearly, however, this approach presents a number of challenges. As

an example, let us consider a scenario in which, during an execution, given processes p1 and

p2, p1 has performed a local reset as a consequence of an overflow while p2 is still able to fit its

EVC value in n bits. Furthermore, let us assume that, before resetting, p1 had executed event

e1 and p2 had executed event e2 in such a way as to establish the relationship e2 → e1. Because

of the local reset happened at p1, p1 will now label a new event x that it executes, with a new

fresh timestamp, which therefore does not reflect the relationship e2 → x. However, because of

the intrinsic program order, we can state that e1 → x, as x is executed after e1. Furthermore,

because of the transitive property, given that e2 → e1 and e1 → x, we can state that e2 → x,

which is in contrast with the result that is obtained by comparing the REVC timestamps of

the two events.

Therefore, the local asynchronous reset is not enough to guarantee the equivalence between

REVC and EVC. The Resettable Encoded Vector Clock will need additional components and

rules to ensure that a timestamp that is produced by such protocol can account for the scenario

that has been presented, returning a consistent result when investigating the relationship among

events. The following sections will detail all the components that are needed to achieve such
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result, along with the rules that guarantee the REVC consistency when applied to a shared

memory system or a message passing system.
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4.1 Components of the REVC

The Resettable Encoded Vector Clock is built on top of the Encoded Vector Clock, adding

the necessary rules to allow for resets that avoid unbounded growth of the EVC itself. We have

however showed how adding an asynchronous local reset protocol is not sufficient to achieve

a consistent logical clock that can substitute the EVC. The REVC is therefore composed of

additional components.

Firstly, we introduce the concept of frame. The frame is a counter that keeps track of the

number of local resets that have been performed at that process. Each REVC instance contains

an integer variable, which defines the current frame of such REVC. By using the frame, a

more precise comparison among two REVC timestamps is possible. In fact, it is now easy to

understand whether one of the two is directly comparable with the other with the standard

EVC comparison operation, by checking whether they are part of the same execution frame.

The second component that we introduce is the frame history. Each REVC instance needs

to be comparable with any other REVC instance, irrespectively of whether the other instance

is in the same execution frame or not. In order to achieve that, each REVC instance needs

to keep track of the EVC values of previous frames before the local resets. The frame history

component, therefore, achieves this objective by storing a structure that can map a given frame

to a given EVC value.
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Based on the components that we have detailed, we can represent an instance of the Reset-

table Encoded Vector Clock as the following tuple:

(f, e,m) (4.1)

where f is the current frame, e is the current EVC value and m the map containing the frame

history.

Finally, given that the REVC is built on the Encoded Vector Clock, each process needs to

be assigned a unique prime number that is used by the EVC to encode the timestamp of the

process itself.

We have detailed in section 2.2 the three basic operations characterizing the EVC: the local

tick operation, the merge operation and the comparison operation. In the following sections,

we analyze and detail the three corresponding operations for the Resettable Encoded Vector

Clock.

4.1.1 Local tick operation

The first operation that is analyzed is the local tick operation. This operation is used to

increment the local clock of a process to create a new fresh timestamp value that can be assigned

to label any new event. This operation, performed on the standard EVC, requires to multiply

its value by the process’ unique prime number. If a certain threshold of n bits has been defined

to represent the EVC value, clearly such operation can cause the current value to overflow the

given threshold.
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In the Resettable Encoded Vector Clock, the overflow event constitutes the trigger that

requires a thread to perform a local reset and therefore perform a transition to the following

frame. The frame counter is updated and the value of the EVC is reset to the process’ unique

prime number. However, the old value of the EVC before the overflow event is not lost, but

is rather saved in the history map, along with the previous frame value. Supposing that the

current REVC of the process can be represented as the tuple (f, e,m), supposing that p is the

process’ unique prime number and supposing the presence of the T operation which performs

the local tick operation on an EVC, as detailed in Section 2.2, and returns the new EVC value,

Algorithm 1 contains the local tick operation that updates the REVC instance and Algorithm

2 shows the reset function.

Algorithm 1: Local tick operation

Input : An REVC instance (f, e, m) and a prime number p
Output: The updated REVC instance

1 temp = T (e);
2 if overflow(temp) then
3 (f, e, m) = reset(f, e, m, p);
4 else
5 e = temp;
6 end

7 return ( f, e, m);



25

Algorithm 2: reset function

Input : An REVC instance (f, e, m) and a prime number p
Output: The reset REVC instance

1 m.put(f, e);
2 f = f + 1;
3 e = p;

4 return ( f, e, m);

4.1.2 Merge operation

The second operation that makes up a logical clock is the merge operation. It is used

to generate a new clock value starting from the two values that need to be merged together.

Just like the local tick operation, this operation performed on two EVC values can lead to

overflow as it requires to find their least common multiple, which can be a bigger number than

the two inputs. Furthermore, new complications arise when performing such operation on a

Resettable Encoded Vector Clock. Clearly, it only makes sense to perform the EVC merge

operation between two EVCs that belong to the same execution frame. Furthermore, given

that the REVC also contains a history of previous frames, it is not sufficient to merge the

current frame’s EVCs, but it is also necessary to merge the corresponding previous EVCs.

Therefore, two different scenarios can arise. If the two REVCs to be merged are on the same

current frame, the two current EVCs can be merged and, in case of overflow, a local reset

can be performed following the same rules detailed in the local tick operation. Then, the two

history maps need to be merged by merging the EVCs of corresponding frames. If instead the
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two REVC instances are not on the same current frame, the newer frame is kept untouched

along with its EVC value, while the older is merged in the history map of the newer REVC.

Finally the two history maps can be merged as previously explained. It should be noted that,

while merging the history maps’ EVCs, overflow could occurr again. However, we suppose that

the data structures for the history maps allow for a sufficiently high number of bits such that

these overflows can never happen. Given that all values in the history maps before any merge

cannot be bigger than n bits by definition (as this is the threshold that causes overflow of the

current EVC value), it is in fact possible to place an upper bound on the maximum number of

bits required to store any possible result of all the merge operations. Let it be noted that when

multiplying two numbers that are representable on n bits, the result is representable on 2n bits

in the worst case scenario. Furthermore, when calculating the least common multiple of two

numbers, in the worst case scenario the result will be the multiplication of the two numbers.

Therefore, when performing a merge operation between two EVC values represented on n bits

each, in the worst case the result will be representable on 2n bits. Finally, in a system with k

processes, in the worst case scenario a process will merge with all other processes for a given

frame in the history map. Therefore, we can state that the upper bound in terms of bits of

each entry in the history map of the REVC for the worst case scenario is:

maximum number of bits to represent an EVC ∗ number of processes in the system = n ∗ k

(4.2)
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Supposing that (f2, e2,m2) is the REVC that needs to be merged into (f1, e1,m1), that p

represents the prime number of the current thread and M represents the merge operation for

EVCs, Algorithm 3 contains the merge operation that updates the REVC (f1, e1,m1) while

Algorithm 4 shows the function that performs the merge of the two history maps.

Algorithm 3: Merge operation

Input : Two REVC instances (f1, e1, m1) and (f2, e2, m2), and a prime number p
Output: The updated REVC instance

1 if f1 > f2 then
2 m1.put(f2, M(m1.get(f2), e2));
3 m1 = historyMerge(m1, m2);

4 else if f2 > f1 then
5 m1.put(f1, e1);
6 f1 = f2;
7 e1 = e2;
8 m1 = historyMerge(m1, m2);

9 else
10 temp = M(e1, e2);

11 if overflow(temp) then
12 (f1, e1, m1) = reset(f1, temp, m1, p);
13 else
14 e1 = temp;
15 end

16 m1 = historyMerge(m1, m2);

17 end

18 return ( f1, e1, m1);
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Algorithm 4: historyMerge function

Input : Two history maps m1 and m2

Output: The merged history map

1 foreach ( f, e) in m2 do
2 if m1.contains(f) then
3 m1.put(f, M(m1.get(f), e));
4 else
5 m1.put(f, e);
6 end

7 end

8 return m1;

4.1.3 Comparison operation

Given two timestamped events, the main purpose of a logical clock is to be able to determine

their relationship according to the Lamport’s happened-before relation. This is the aim of the

third and last operation that is analyzed, the comparison operation. Given any two events a1

and a2, with their respective REVC timestamps (f1, e1,m1) and (f2, e2,m2), we again distin-

guish two scenarios. If the two frames f1 and f2 are equal, it is possible to test whether a1 → a2

by performing the usual EVC comparison operation between e1 and e2. However, if the two

frames are not equal, the causality relation can be tested by performing the EVC comparison

operation between e1 and the value of the EVC stored in the history map of a2 for frame value

f1. This latter operation is equivalent to investigating whether, during frame f1, the process

that has produced the timestamp for a2 had acknowledged the existence of event a1 before

producing such timestamp. Clearly, if this is true, then a1 → a2. Let it be noted that it could
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also be true that f1 is greater than f2, in which case no comparison is necessary to conclude

that a1 → a2 is false as the process executing a2 cannot have acknowledged a1 as it is not even

reached the same execution frame yet.

Supposing the two events for which the causality relation needs to be established are a1 and

a2 and their REVCs are respectively (f1, e1,m1) and (f2, e2,m2), and supposing that C is the

EVC comparison operation returning true if the event passed as first parameter happens before

the event passed as second parameter or false otherwise, Algorithm 5 contains the comparison

operation that tests whether the relation a1 → a2 is true or false:

Algorithm 5: Comparison operation

Input : Two REVC instances (f1, e1, m1) and (f2, e2, m2)
Output: true if (f1, e1, m1) → (f2, e2, m2), false otherwise

1 if f1 > f2 then
2 return false
3 else if f2 > f1 then
4 return C(e1, m2.get(f1))
5 else
6 return C(e1, e2)
7 end
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4.2 REVC for Shared Memory Systems

In section 3.1 we described the system model for a shared memory environment in which

several threads run in parallel and synchronize by means of a set of operations. This section

aims at showing how the three basic operations of the Resettable Encoded Vector Clock, which

have been previously presented, can be applied to the system’s events to obtain the causality

relations that describe the system model.

The events that are present in the shared memory system have been shown to be either

internal events or one of the following synchronization operations: lock, unlock, fork, join. In

the following, we will detail the behavior of the REVC for each of those operations, to ensure

that the causality relation that is obtained is consistent with the one that has been described.

If such behavior is implemented correctly, taken any two events a and b that have been labeled

with a timestamp produced by one of the processes, it will be possible to apply the comparison

operation on their REVCs to establish their relationship.

The initialization of the system provides each thread with a unique prime number p and

each Resettable Encoded Vector Clock is initialized so that f = 1, e = p and m is an empty

map.

4.2.1 Internal events

Internal events happen locally at a single thread. For the purposes of this analysis, it is

supposed that each internal event requires a fresh new timestamp that can uniquely identify

it. Let it be noted that this assumption comes with no loss of generality, as an internal event

has been defined also as a compound statement composed of several operations. In this latter
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case, multiple operations end up being labeled with the same timestamp as long as they are

part of the same event. Given that no restrictions have been placed on how these compound

statements are defined, any implementation is free to choose which operations to label with a

new fresh timestamp and which to label with the same previous timestamp.

When a thread executes an internal event, it labels it with the current value of its REVC before

performing a local tick operation to update its local clock.

It is easy to show how, by following such behaviour, all timestamps of events that happen

locally at a thread are consistent with the program order rule, such that for any two events a

and b, a → b is true if and only if a has been executed before b. In fact, by definition, the

local tick operation applied on REVC value r1 creates a new REVC value r2 that satisfies the

property r1 → r2 when tested using the comparison operation.

4.2.2 Unlock events

Unlock operations are executed when a thread needs to release a given lock object that it

has previously acquired. The lock-unlock pattern is one of the basic patterns to allow syn-

chronization among threads, and therefore it introduces a causal relationship among events

executed at different threads before and after the synchronization event. In order to correctly

represent such relations using the Resettable Encoded Vector Clock, the thread performing the

unlock operation needs to label the lock object with its current clock value. The information

stored in the lock object can be used by the thread performing the following lock operation to

acknowledge the causality, as presented in the following section. Finally, the thread performing

the unlock operation should also execute a local tick operation to update its current REVC
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with a fresh new value for future events, thus ensuring that no other event executed by the

same thread following the synchronization point will mistakenly show a causality relationship

with the following acquisition event of the lock object.

Clearly, given that all lock objects need to be able to store a REVC value, they should also be

initialized with an initial value at the beginning of the program execution. The REVC that can

be used for such initialization has f = 1, e = 1 and m initialized as an empty map.

4.2.3 Lock events

We showed what the behaviour of the Resettable Encoded Vector Clock should be when the

thread performs an unlock operation on a lock object. Clearly, whenever no thread is holding

the lock of a specific lock object, any thread can perform a lock operation to acquire such lock.

The property that needs to be satisfied with this pattern from a causality point of view is the

one described by the lock synchronization rule from Section 3.1. In practice, the lock event,

and any local event that follows in the locking thread, must happen after the previous unlock

event. This property can be realized by ensuring that the thread performing the lock operation

merges the REVC value, that has been stored on the lock object during the previous unlock

operation, into its own current REVC instance. By executing this operation, if l is the lock

event and u is the unlock event, the relationship u → l is enforced, thus satisfying the lock

synchronization rule.

4.2.4 Fork events

Fork events are executed when a thread starts a new thread during the execution of the

program. The fork-join pattern, similarly to the lock-unlock pattern, introduces synchronization
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events among the threads that are running asynchronously in parallel and therefore it also

introduces causality relations. In particular, a fork event should satisfy the property detailed

in the thread creation rule from Section 3.1. In order to enforce such rule, when the new thread

is created, a new unique prime number p should be assigned to it and a new temporary REVC

instance should be created and set to (f 0, e0,m0). Supposing that the thread executing the

fork operation has current timestamp (f, e,m), the new temporary REVC can be initialized as

f 0 = f , e0 = p and m as an empty map. Finally, the REVC of the new thread (f 00, e00,m00)

should be set as the result of the merge operation between (f, e,m) and (f 0, e0,m0).

The reason for this set of operations is that, by definition of the merge operation, the new

REVC instance associated with the created thread will have acknowledged both the creation

event of such thread, given by the new unique prime number, and the fork event itself, given

by the timestamp of the thread executing the fork operation.

Clearly, if the new REVC is set as detailed, any new event a executed by the new thread

generated by the fork event f will satisfy the relation f → a, therefore being consistent with

the thread creation rule.

4.2.5 Join events

The last type of events that we analyze for shared memory systems are join events. When-

ever a thread needs to wait for the termination of another thread before resuming its execution,

it can do so by executing a join operation. Just as explained in the previous section, this is

a synchronization event that introduces a causality relation which should satisfy the thread

termination rule detailed in Section 3.1. To enforce this, when a join operation terminates,
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the thread issuing it should set its own REVC as the result of performing a merge operation

between its own old REVC value and the terminating thread’s REVC value.

This operation clearly advances the thread’s clock to acknowledge the termination of the joining

thread. Therefore, by performing it, any event a that was executed by the terminating thread

before termination will necessarely satisfy the relation a → j, where j is the join event, thus

remaining consistent with the thread termination rule.
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4.3 REVC for Message Passing Systems

In Section 3.2 we described the system model for a message passing environment in which

several processes run concurrently and asynchronously and communicate by means of exchang-

ing messages. This section aims at showing how the three basic operations that have been

presented for a Resettable Encoded Vector Clock can be applied at any of the events that can

be executed in such environment, in order to implement the causality relations of this model.

Four types of events have been presented in relation to a message passing environment:

internal events, send events, receive events and fence events. In the following we will detail the

behavior of the REVC for each of those events, similarly to what we have done for a shared

memory environment. The objective is that, by following the presented rules, the causality

relation that is obtained through the application of the comparison operation of the REVC to

two timestamped events is consistent with the one that has been described for this model.

The initialization of the system provides each process with a unique prime number p and

each Resettable Encoded Vector Clock is initialized so that f = 1, e = p and m is an empty

map.

4.3.1 Internal events

Internal events, similarly to what happens in shared memory environments, are events that

are executed locally at the process without any need for synchronization with other processes.

Once again we notice that not all events that are executed might need to be labeled with a new

fresh timestamp, but this is easily achievable, with no loss of generality, as we defined internal

event also as a compound statement made up of several operations.
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In order to satisfy the program order rule detailed in Section 3.2, it is sufficient for the process

to execute a local tick operation after labeling the current internal event e1, with the current

REVC timestamp. The new value of the REVC will be used to label the following event e2,

which will execute after e1. By definition of local tick operation, the predicate e1 → e2 will be

true, thus remaining consistent with the rule of the model.

4.3.2 Send events

Send events are executed when a process needs to send a message to another process. Similar

to the lock-unlock pattern for shared memory systems, the send-receive pattern is a common

pattern that is used by processes to synchronize, and thus it introduces causality relations

among the events that happen before and after such operations.

In order to consistently represent this relationship with the Resettable Encoded Vector Clock,

when a process sends a message to another process it needs to attach to such message its

own current REVC timestamp, which will be used by the receiving process to acknowledge the

execution of previous events.

Finally a local tick operation is also performed by the process executing the send event. This

is necessary to avoid that subsequent events at that process will be labeled with the same

timestamp that has been used for the send event, thus showing the same causality relationship

with the corresponding receive event even though they have been executed afterwards.

4.3.3 Receive events

Receive events are executed when a process is expecting to receive a message from another

process. The reception of such message, as previously explained, creates a causal chain among
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the two processes that is used as a synchronization point and needs to be acknowledged by the

Resettable Encoded Vector Clock.

When the process receives the message, it will extract the REVC timestamp that has been

attached to it as explained in the previous section. Such timestamp will then be merged into

the process’ current REVC instance. By executing this, by definition of merge operation, if r

is the receive event and s is the corresponding send event, the relationship s → r is enforced,

thus maintaining consistency with the message synchronization rule detailed in Section 3.2.

4.3.4 Fence events

Fence events are executed when a process needs to synchronize with several other processes

at a barrier, to pause the execution until all participating processes have reached the same

barrier. Since it is a synchronization operation, it introduces causality relations among the

events happening before and after reaching the barrier at the various participating processes.

In order to consistently acknowledge such relations using the Resettable Encoded Vector Clock,

each process participating to the barrier synchronization needs to merge into its own REVC

instance all the REVC timestamps of the other participants. By executing such operations, the

clocks of all processes at the barrier are aligned to the same timestamp, thus acknowledging all

the events previously executed at each process. Therefore, the barrier synchronization rule of

the model is enforced.
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4.4 Analysis and evaluation

In the previous sections we have presented the components and characteristics of the Re-

settable Encoded Vector Clock along with the rules that define its applicability in both shared

memory and message passing environments. The aim of the REVC was to create a valid alter-

native to the EVC, that would be able to address its very high growth rate and its unbounded

growth issue. The solution that has been presented up to this section, however, is able to prop-

erly achieve only the first of the results. Furthermore, in achieving such result it introduces

a tradeoff in terms of performances which is not compatible with our aim of maintaining the

scalability properties of the EVC.

In the following we will analyze and evaluate both objectives, introducing some further

considerations where needed, to understand if the Resettable Encoded Vector Clock can be

enhanced to achieve both results and what are the tradeoffs needed to do so. We will also

present some experimental results to show the practical implications of our reasoning.

4.4.1 Growth rate

The first objective of our Resettable Encoded Vector Clock was to tackle the high growth

rate drawback of the EVC. The REVC is built on the EVC and internally makes use of EVC

values and operations to implement the logical clock. The EVC has been shown to have expo-

nential growth, due to its use of multiplication and least common multiple operations [5]. The

exponential behavior of the EVC derives from the fact that the exponents of the prime numbers,

used to encode the traditional vector clock values, are monotonically increasing. However, the

REVC introduces the use of a reset operation that does not allow the EVC value to grow past
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a certain number of bits. In practice, this operation allows the REVC to periodically reset

the exponents of the prime numbers, therefore avoiding the exponential explosion of the EVC

value. The consequence of the application of the reset technique on the number of bits used by

the EVC value is that such number fluctuates between a minimum given by the number of bits

required to represent the process’ prime number, and a maximum of n bits, where n represents

the threshold that has been chosen as the overflow value that triggers the reset operation.

We have however showed that keeping only the EVC value along with the reset operation

is not enough to ensure a consistent logical clock implementation. Therefore, the REVC also

stores a history map containing old EVC values for past execution frames. Every time a

reset operation is performed, the old EVC value is added to the history map. The practical

implication of this operation on the number of bits needed to represent an REVC instance is

the following: when the fluctuation of the current EVC value reaches its peak, the reset brings

it back to the minimum number of bits, moving the old value to the history, thus linearly

incrementing the total number of bits that are needed. Therefore, intuitively, the growth rate

of an REVC instance will present a linear behavior rather than the exponential behavior of the

traditional EVC.

The experimental data that we collected confirm our claim. In Section 5.4 we present the

benchmark suites that we have used for evaluation of the Dynamic Race Detection application.

We have exploited this practical application of the Resettable Encoded Vector Clock to track

its growth in an actual real-world scenario rather than using a less realistic random simulation.
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Figure 1. Growth rate for the Resettable Encoded Vector Clock

Figure 1 shows the results of the experiments performed using an REVC-based application

run on several benchmark programs. The behavior of the growth rate is linear as predicted,

confirming how the use of a reset operation can consistently reduce the exponential explosion

of the EVC values.

The varying behavior of the different benchmark programs that have been used is clearly visible

in the different lines. A subset of such applications, such as avrora, fop, h2 and luindex,

shows a high utilization of synchronization operations, therefore executing a high number of
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events, which surpasses our analysis window of 5000 system events. On the other hand, the

other applications require a smaller number of events to be executed before the program is

terminated. This can be linked to a lower utilization of synchronization operations, therefore

higher parallelization of the workload, and it results in the lines terminating after less than 500

events have been executed in the system.

Let it be noted that lines for different benchmark programs show varying slopes. The exper-

imental data shows how such slopes can be related to the number of threads that are present in

the system. A bigger number of threads is related to a higher slope in the linear growth, while

a lower number of threads is connected to a less steep line. This behavior can be explained as

each thread is assigned a unique prime number in an increasing order. Multiplication opera-

tions produce numbers that grow faster as the base prime numbers are bigger. Furthermore, as

the number of threads increases, merge operations, which are characterized by least common

multiple operations, produce numbers that on average are composed by a higher number of

factors.

Table I details the number of threads that are created by each of the benchmark programs

used in our evaluations.

The linear growth rate achievement of the Resettable Encoded Vector Clock guarantees a

much more scalable solution that can be concretely used in practical applications requiring a

non-trivial number of events to be executed and labeled in the system. However, such achieve-

ment is obtained at the expense of performance, introducing a tradeoff among the two. It

is easy to notice, in fact, how, while the local tick operation and the comparison operation
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Application Number of threads

avrora 7

crypt 4

fop 2

h2 3

lufact 4

luindex 3

lusearch 4

moldyn 4

montecarlo 4

raytracer 4

series 4

sor 4

sparsematmult 4

TABLE I: NUMBER OF PARALLEL THREADS EXECUTED BY EACH BENCHMARK
APPLICATION

maintain a time complexity O(1), the merge operation does not, as it requires to execute the

EVC merge operation for f times, where f is the current number of frames, which can grow

unboundedly. This is not acceptable in practical applications that require a high number of

events to be executed, as the performance of the merge operations consistently degrades as the

number of execution frames stored in the history map increases. Therefore, further optimization

is needed to ensure that the scalability properties that characterized the EVC are not lost. The

next section performs a more detailed analysis of the unbounded growth problem, proposing



43

scenarios to adapt the Resettable Encoded Vector Clock to a bounded solution both in time

and space requirements. Furthermore, Section 5.2.2 details our proposal for an optimization

technique that was developed in our practical implementation of the REVC and that is able to

concretely reduce the average complexity of the merge operation in practical cases.

4.4.2 Bounded growth

The second focus point of the analysis of the Resettable Encoded Vector Clock is its un-

bounded growth. As was discussed in the previous section, the REVC has achieved a reduction

of the growth rate with respect to the EVC, from an exponential one to a linear one. However,

the issue of unbounded growth has not been resolved as the solution that has been presented,

without adding any further components, is not sufficient to achieve a time and space bounded

logical clock implementation. It is immediate to see that the current EVC value inside the

REVC has been correctly set up in such a way that it will never overflow a given threshold of n

bits, however the problem has been moved to the history map, as the structure can now grow

unboundedly. Furthermore, this solution has also introduced a new tradeoff with performance,

given by the new merge operation, whose time requirements are now dependent on the number

of frames stored in the history map.

Therefore, being able to enhance the REVC to achieve a bounded solution is of paramount

importance to ensure realistically acceptable time and space requirements.

We note that the current formulation, which is not space and time bounded, is necessary

because the general use case of the REVC requires to be able to perform the comparison

operation between any two events of a given program execution. We claim, however, that
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this requirement can be safely relaxed in many real world applications, where constraints can

be added to reduce the required comparisons, without changing at all the semantics of the

applications.

It can be found that many real world applications of logical clocks, require to perform

causality analysis only on a subset of all events, for example just the ones that have been

recently executed. If this constraint can be expressed as a maximum number of frames F in

the REVC framework, the presented solution is immediately transformed into a bounded one

both in time and in space. Each instance of an REVC (f, e,m), in fact, does not need to

store any information about frames that are older than f − F . Therefore, an upper bound

can be placed on the size of the m data structure, and the merge operations only need to

merge F EVCs in the worst case scenario. This solution would still allow any pair of events

along the whole program execution to be compared to study their causality relationship, as

long as they do not happen more than F frames apart. Given that F can be arbitrarily chosen,

based on the performance requirements of the REVC implementation, this constraint is likely

easily satisfiable by most real world applications. We can therefore stipulate a contract with

the application that exploits the Resettable Encoded Vector Clock, under which the Bounded

REVC has an equivalent behavior to the Unbounded REVC. This contract can be formalized

and expressed as a predicate that establishes whether two timestamped events, a1 and a2, with

respective timestamps (f1, e1,m1) and (f2, e2,m2), can be compared under the Bounded REVC,

given a maximum amount of stored frames F :
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a1 comparable a2 ⇐⇒ |f1 − f2| ≤ F (4.3)

Following the same procedures that have been detailed in the previous section, we have gathered

experimental data to support our claim that this formulation leads to a bounded implementation

of the REVC. We will here show the results that demonstrate the bounded growth in terms of

space of the REVC. Furthermore, Section 5.2.1 will present an optimization technique built on

this bounded formulation of the REVC that we have developed in our practical implementation,

which will be evaluated in terms of time performance in Section 5.4.

Figure 2 and Figure 3 show the same benchmark programs that have been evaluated in the

previous section, run using the new REVC formulation with respectively F = 30 and F = 5.

The bounded growth is clearly visible as the linear increase in size of the REVC instance

reaches a plateau when the maximum number of stored frames reaches F. The growth rate is

then reduced to an average of 0, as the actual size of the REVC instance fluctuates around the

plateau. This fluctuation is caused by the EVC value of the current execution frame, whose

size in bits oscillates between a minimum given by the number of bits needed to represent its

prime number, and a maximum given by the chosen threshold of n bits which triggers the reset

operation. When the execution reaches the plateau, however, at each reset operation a new

value is added to the history map, as an old one is removed, therefore maintaining a constant

total size.

We note again that the plateaus of different applications differ in the size in bits. We can

again conclude that the number of threads that are present in the given application is directly
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Figure 2. Growth rate for the Bounded REVC with F = 30

proportional to the size of the plateau. This is a direct consequence of the formula that we

have defined in section 4.1.2 to calculate the upper bound for an entry in the history map of

the REVC. Clearly, the total upper bound of the size of the history map when the plateau is

reached will be:

upper bound for one entry ∗ F (4.4)

Since the upper bound for one entry is dependent on the number of threads, it follows that the

position of the plateau in the graph must also depend directly on the number of threads.
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Figure 3. Growth rate for the Bounded REVC with F = 5

We have showed how the formulation of the REVC allows to easily achieve a bounded so-

lution both in time and space requirements, which can also be easily configured to meet the

performance requirements of the application. This is of paramount importance to present the

Resettable Encoded Vector Clock as a practically usable and scalable logical clock implementa-

tion in real-world applications. This achievement has been obtained at the expenses of precision

in the general case, as not all events are comparable under a Bounded REVC implementation.

However, as we will show in our practical application detailed in the following chapter, there are
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real-world scenarios in which the implementation can be tuned to eliminate the loss in precision

while maintaining a high scalability.



CHAPTER 5

REVC FOR DYNAMIC RACE DETECTION

We have presented the Resettable Encoded Vector Clock as an alternative logical clock

implementation to track causality relations among events. We have shown its advantages with

respect to the Encoded Vector Clock and we have discussed possible variants that allow to tune

and improve performance.

In this chapter we explore a practical application of logical clocks, Dynamic Race Detection,

with the objective of showing an application of our REVC and evaluating its performance

against traditional logical clock implementations.

Section 2.3 presented the Dynamic Race Detection problem and the DJIT+ protocol, which

exploits traditional Vector Clocks to achieve its results. We will present a modified version of

the DJIT+ protocol that exploits the REVC in place of the VC to track causality relations

among events. Finally, we will propose two optimization techniques for the REVC that can

achieve significant performance gain, as will be presented in the analysis of the results.

5.1 DJIT+ exploiting the REVC

Section 2.3.2 presented the DJIT+ protocol for Dynamic Race Detection. Our modified

version of this protocol exploits the Resettable Encoded Vector Clock with the objective of

obtaining a more performant solution. We have previously presented rules to apply the REVC

both on message passing systems and on shared memory systems. Our work on Dynamic Race

49
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Detection will be carried out on a shared memory system, therefore the assumption in the

following, unless otherwise noted, will be that of a multi-threaded parallel environment on a

shared memory system.

In order to apply the REVC to the DJIT+ protocol, instead of using vector clocks, each

thread maintains an instance of the Resettable EVC, characterized by the tuple (f, e,m) where

f is the current frame, e is the current EVC value and m is the history map of past EVC

values for past frames. Each thread is also assigned a unique prime number that will be used

for operations on the REVC.

Furthermore, each lock object is assigned an instance of the REVC as well, which is initialized

to what we call the basic REVC, defined as (f0, e0,m0) where f0 = 1, e0 = 1 and m0 is an

empty map.

The rules for updating and propagating the values of the Resettable Encoded Vector Clock in

a multi-threaded environment on a shared memory model are the ones that have been presented

in Section 3.1, which are very similar to the rules that are used by the original DJIT+ protocol

to propagate and update the Vector Clock.

Our system differs, however, in the information that are stored regarding memory location

accesses and in the way that races are detected making use of the REVC.

Each memory location is labeled with a status which can be either READ, WRITE or

READ-SHARED. As we have previously stated, all write operations to a specific memory

location need to happen-after any other read or write operation to that same memory location

that has happened up to that moment in the execution. No write operation can be concurrent
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with any other operation on the same memory location without generating a race condition.

However, as we have pointed out, multiple read operations can be concurrent without generating

races, therefore we need to address the possibility of memory locations which are in read-shared

mode.

The status of the memory location traces the latest access operation which has been per-

formed on it. The difference between the READ and the READ-SHARED modes is essentially

that when a memory location is in READ mode, the latest operation has been a read which

has surely happened-after all the operations that have preceded it. On the other hand, when

the status is READ-SHARED, multiple concurrent read operations have been performed on

the memory location, and as such they are all being tracked to ensure that no subsequent write

operation can happen concurrently to any of those read operations.

Along with the described status, each memory location is labeled with the information of

the REVC that are necessary to detect race conditions, as follows:

• READ or WRITE status: when the status of a memory location is labeled with either

READ or WRITE, the latest operation performed on that memory location has been

found to have happened-after all other previous operations, therefore only the current

frame and EVC value of the REVC of the thread that has performed such operation are

needed in order to be able to detect a possible concurrent operation and consequently a

possible race condition

• READ-SHARED status: when the status of a memory location is labeled with READ-

SHARED, multiple concurrent read operations have been performed, therefore a structure
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needs to be saved containing for each read operation the current frame and evc value from

the REVC of the thread performing it. Clearly, EVC values pertaining to the same frames

can be merged together to reduce the amount of information that needs to be stored.

The first representation that has been described can be actually defined as a special instance

of a Resettable EVC. Given the REVC representation as the tuple (f, e,m), the structure that

needs to be attached to a READ or WRITE status is simply an REVC that has f and e

respectively set as the current frame and EVC value of the thread, while m is set as an empty

map. The structure that needs to be attached to a READ-SHARED status, on the other hand,

is a slightly modified instance of an REVC that contains the result of merging several REVCs

of the previously described type. Therefore, the frame f and EVC value e of the result will

contain the newest frame with the corresponding result of merging all the EVC values of that

frame. The history map, on the other hand, will contain all previous frames that have been

merged, with the corresponding EVC values that derive from merging all the EVC values of

corresponding frames.

We also define a slightly different behavior for the comparison operation when applied to this

latter structure. In such a case, in fact, it is necessary to apply the usual REVC comparison

operation to all the frames contained in the defined structure, rather than just to one of them.

This ensures that all the operations that are being tracked by the REVC instance have happened

before the timestamp that is being checked.

We will now show how races can be identified using the Resettable Encoded Vector Clock.

Let’s suppose that thread t performing operation o with REVC (f, e,m) accesses a memory
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location which is labeled with status s and REVC (f1, e1,m1). The following rules to detect

race conditions apply:

• Read-Write race: if s is set as READ or READ-SHARED and the current operation

being performed by t is a write operation, a Read-Write race is detected if it is not true

that (f, e,m)→ (f1, e1,m1). Formally

R-W race ⇐⇒ (s == READ ∨ s == READ-SHARED)∧

o == WRITE ∧ ¬((f, e,m)→ (f1, e1,m1))

(5.1)

• Write-Read race: similarly, if s is set as WRITE and the current operation being

performed by t is a read operation, a Write-Read race is detected if it is not true that

(f, e,m)→ (f1, e1,m1). Formally

W-R race ⇐⇒ s == WRITE ∧ o == READ ∧ ¬((f, e,m)→ (f1, e1,m1)) (5.2)

• Write-Write race: finally, if s is set as WRITE and the current operation being per-

formed by t is a write operation, a Write-Write race is detected if it is not true that

(f, e,m)→ (f1, e1,m1). Formally

W-W race ⇐⇒ s == WRITE ∧ o == WRITE ∧ ¬((f, e,m)→ (f1, e1,m1)) (5.3)
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Finally, after the thread performing an access to the memory location has tested the operation

for possible races, it can update the information that are stored for that memory location. The

update operations that are performed depend on the current status of the memory location and

the type of access. Three different scenarios can be distinguished with different update rules,

and they are detailed in the following.

• READ or WRITE status with following READ access: if the access type is READ

and the operation that is being performed happens-after the previous operation stored at

that memory location, a new REVC (f1, e1,m1) can be created with f1 and e1 set as the

thread’s current frame and EVC values and m1 set as an empty map. The status of the

memory location can then be set as READ and the new REVC can be stored in place of

the previous one.

• READ, READ-SHARED or WRITE status with following WRITE access:

similarly, if the access type is WRITE and the operation that is being performed happens-

after the previous operation stored at that memory location, the same process can be

followed. The new REVC is created as previously explained, but the status of the memory

location is now set to WRITE.

• READ or READ-SHARED status with concurrent READ access: A slightly

different update needs to be performed when the current status of the memory location

is READ or READ-SHARED and the current access is a READ operation which is

concurrent with the previous operation stored at the memory location. As we have stated

previously, concurrent read operations are allowed and do not constitute a race condition,
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however they all need to be tracked in order to be able to correctly identify future races

in case a subsequent WRITE access is performed. This can be easily achieved using the

merge operation of the REVC. A new Resettable EVC can be created with the same

rules described for the other two scenarios and it can then be merged into the current

REVC that is stored for that memory location. The merge operation will create a new

REVC which will contain all the information needed to be able to track both the accesses.

Finally, the memory location status is set to READ-SHARED
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5.2 REVC optimization techniques

The Resettable Encoded Vector Clock has been defined as a bounded solution, both in

time and space requirements, only if its implementation can satisfy a contract that sets an

upper bound on the maximum amount of information that is stored per REVC instance. In the

previous section we presented the rules that allow the REVC to be used in place of a traditional

vector clock in the DJIT+algorithm, but we made no assumptions on any constraint that needs

to be enforced. Therefore, without adding any further modification to the protocol, the size

of the REVC instances is allowed to grow unboundedly and possibly overflow the maximum

amount of memory that is allocated for the application or incur significant overhead for merge

operations, which, as it has been previously stated, is the only operation that depends on the

size of the history map.

In practical cases, this might still be acceptable, especially for applications that exhibit a

behaviour in which the REVCs have a very low growth rate, for example applications that have

few synchronization points among the threads, and concentrate mainly on parallel work. Given

the rules presented in the previous section, it can easily be seen that only synchronization

instructions contribute to the growth of the clocks, while all other operations, particularly

memory accesses, simply execute comparison operations, without modifying the values of the

REVCs.

However, in general, the application of the protocol as it has been described in the previous

sections carries with it the risk of incurring high memory growth and high overhead which

can lead to poor performances. Therefore, two optimization techniques are proposed that
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aim at reducing both space and time overheads and improving overall performance of the

implementation. Both techniques can be employed by themselves or in conjunction with each

other and present a tradeoff that needs to be carefully evaluated to achieve the desired results.

5.2.1 Fixed Size Frame Window

The first optimization that is presented to the REVC protocol is the Fixed Size Frame

Window (FSFW). This optimization derives directly from the contract that has been outlined

in section 4.4.2 and allows to place an upper bound on the maximum number of frames that

are stored in the history map of REVCs. This technique allows to reduce both time and space

requirements. It is intuitive to see how, by storing only a limited amount of frames, the space

requirement becomes bounded and can be arbitrarily reduced by choosing a smaller window

value. Time requirements, on the other hand, are improved because the merge operation of

REVCs is dependent on the number of frames that are present in the history map, and therefore,

by ensuring that such number never grows past a given threshold, an upper bound can be placed

also on the amount of instructions required to perform such operation.

The contract outlined by the REVC also claims that the results of using a Fixed Size Frame

Window REVC with window size F are equivalent to those of an Unbounded REVC, as long as

all pairs of timestamped events that need to be analyzed to establish causality relations, happen

at most F frames apart one from the other. This has been formalized with Equation 4.3, which

provides a boolean predicate that can establish whether any pair of events is comparable under

a Fixed Size Frame Window REVC.
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The practical consequences of such a constraint on our utilization of the REVC in the

Dynamic Race Detection protocol, are that, given a certain frame window size F, the protocol

will only be able to detect races that happen within the last F frames. This is derived easily

from the rules that have been previously presented. The comparison operation of the REVC

is used in our modified version of the DJIT+ protocol only for race detection purposes, and

any comparison operation always uses as one of the operands a thread’s current clock value.

Therefore, only when the two access events under investigation are comparable, as given by

the defined predicate, a possible race condition can be analyzed. This means that races can

be detected only if the previous access to the memory location has happened within the last F

frames from the thread’s current frame.

This optimization technique, therefore, clearly presents a tradeoff between performance and

precision. If a lower the value of F is chosen, a lower number of frames needs to be stored and

therefore a lower overhead is imposed on the merge operation. However, on the other hand, a

lower window is available to detect races, and therefore races happening outside of such window

cannot be detected. Viceversa, a higher value of F will incur higher penalties performance-wise

but will allow a higher precision when detecting race conditions.

The intuition that stands behind the adoption of such an optimization, however, is the fact

that a race condition, by definition, is a tentative access to a memory location by two threads

which are accessing it concurrently, and is therefore highly probable that the two operations

will happen within a low number of instructions one from the other, and most likely within a low

number of synchronization points, which we have shown to be the operations that increment
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the REVC timestamps. By selecting a fairly low value of F, we still allow a relatively high

number of synchronizations to happen between the two accesses, and therefore we should still

maintain a relatively high precision.

This intuition is confirmed by the data that we collected during our practical experimenta-

tion. In Section 5.4 we will present the results of our analysis and we will show that, despite

choosing very low values of F, our system is still capable of detecting races with 100% precision

over the suite of applications that we used for evaluation.

5.2.2 Differential Merge Technique

The second optimization that is presented to the Resettable Encoded Vector Clock is the

Differential Merge Technique (DMT). This optimization aims at reducing the impact that

a high number of stored frames has on the merge operation. It derives from the observation

that, based on the standard definition of the merge operation for the REVC, each time an

instance of the Resettable EVC is merged into another, all the frames that are stored in the

first timestamp’s history map need to be merged with the corresponding frames in the second

timestamp’s history map. Merging such frames practically translates to performing the EVC

merge operation, which is nothing more than finding the least common multiple among the

two numbers. However, if the two values to be merged are e1 and e2, and e2 is already a

multiple of e1, then merging e1 into e2 will not actually change the value of e2, as the result of

lcm(e1, e2) = e2.

Let us now analyze the following scenario: suppose that REVC (f1, e1,m1) is merged into

REVC (f2, e2,m2), then a number of instructions are executed and finally (f1, e1,m1) needs
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to be merged again into (f2, e2,m2). When the merge operation addresses the history maps,

most likely only a subset of the frames of m1 actually needs to be considered for merging.

This is because, as stated, only the frames of m1 for which the EVC values have changed since

the previous merge will produce a new result. For all other frames, however, the EVC values

contained in m2 are already multiples of the corresponding values contained in m1.

Building from this observation, we can also intuitively state that, as an execution progresses,

older frames tend to not get updated anymore and therefore performing the least common

multiple operation at every merge for all frames introduces an unnecessary overhead. A smarter

merge operation can be defined, to reduce such overhead. We can also state, based on such

observations, that its time complexity would become dependent on the number of stored frames

only in the worst case scenario, while on average only a subset of such frames would need to be

merged.

Clearly, however, to define such a smarter merge operation, each thread would also need to keep

track of what frames inside its history map have been modified since the last merge operation

with each other thread, which would result in a higher storage requirement. Furthermore, a

new data structure would need to be defined, capable of tracking such information.

Once again, this optimization technique presents a tradeoff between space and performance.

Let it be noted, however, that this optimization does not affect the precision of the protocol, as

no assumptions are made on the events that can be compared, and therefore we claim that the

results of using a REVC with Differential Merge are always equivalent to those of a traditional

Resettable Encoded Vector Clock.
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We now define an enhanced version of the REVC, ready to be employed with the Differential

Merge Technique. This extended REVC is defined as the tuple (f, e,m, d) where f is the current

frame, e is the current EVC value, m is the history map of past frames and corresponding EVC

values and finally d is a difference map, containing for each other thread a list of frames

whose EVC value contained in m has been modified since the last merge into the REVC of

such thread. Supposing that REVC (f2, e2,m2, d2) is to be merged into REVC (f1, e1,m1, d1),

p represents the prime number of the current thread and its unique identifier, and M represents

the merge operation for EVCs, Algorithms 6 and 7 define the new merge operation. The reset

function remains unchanged and is defined in Algorithm 2.

Finally, to complete the formulation of the Differential Merge Technique, the rules to update

the difference maps need to be detailed. In practice, to maintain such maps consistent, it is

sufficient that at each update of an entry in the history map of a thread’s REVC, that thread

adds that frame to all lists that are present in the difference map. In such way, the thread is

marking that frame as an updated one since the last merge operation with all other threads.

Therefore, that frame will be picked up by any subsequent merge before being cleared again in

the difference map.

It is worth noting that both the optimization techniques that have been described can be

combined into a Resettable Encoded Vector Clock which has a Fixed Size Frame Window and

also adopts only Differential Merging, so that, even if a lower number of frames is kept, they are

still updated upon a merge operation only in case they have been modified since the previous

merge operation with the same thread.
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Algorithm 6: Merge operation with Differential Merge Technique

Input : Two REVC instances (f1, e1, m1, d1) and (f2, e2, m2, d2), and a prime
number p

Output: The updated REVC instance

1 if f1 > f2 then
2 m1.put(f2, M(m1.get(f2), e2));
3 m1 = historyMerge(m1, m2, d2, p);

4 else if f2 > f1 then
5 m1.put(f1, e1);
6 f1 = f2;
7 e1 = e2;
8 m1 = historyMerge(m1, m2, d2, p);

9 else
10 temp = M(e1, e2);

11 if overflow(temp) then
12 (f1, e1, m1) = reset(f1, temp, m1, p);
13 else
14 e1 = temp;
15 end

16 m1 = historyMerge(m1, m2, d2, p);

17 end

18 return ( f1, e1, m1, d1);

5.3 Implementation

In Section 2.3.1 we presented the RoadRunner framework for dynamic analysis of Java

programs. We showed how such framework is capable of instrumenting Java bytecode upon

class loading, to enable the generation of an event stream during program execution that can

be processed by an arbitrary backend tool to implement any dynamic analysis behavior.



63

Algorithm 7: historyMerge function with Differential Merge Technique

Input : Two history maps m1 and m2, a difference map d and a unique id p
Output: The merged history map

1 foreach f in d.get(p) do
2 if m1.contains(f) then
3 m1.put(f, M(m1.get(f), m2.get(f)));
4 else
5 m1.put(f, m2.get(f));
6 end

7 end

8 d.get(p).empty();

9 return m1;

Our implementation of the modified DJIT+ protocol using the Resettable Encoded Vector

Clock was built on top of the RoadRunner framework. We extended the software to build a

new backend tool capable of processing the event stream to exercise the behaviour that was

described in Section 5.1.

The tool defines callbacks for all the events that need to be monitored for the protocol to work

correctly. In particular, synchronization operations that exploit lock objects are processed,

to allow the tool to update the information contained in the REVC instance connected with

such objects as previously explained. The synchronization primitives provided by the Java

programming language that make use of lock objects are acquire and release of locks, wait and

notify operations which are used by threads to implement condition variables. Furthermore,

fork, start and join operations are used to create new threads or wait for their termination.
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Finally, access operations to all types of memory locations clearly need to be tracked, as they

represent the events that are under scrutiny by the tool to identify race conditions.

RoadRunner provides each thread object, lock object and memory location with a data

structure to store tool-specific information. Our tool customizes such data structures to include

the possibility of storing an REVC instance. In particular, for threads, a complete instance of

the REVC is necessary, along with a unique prime number that allows the thread to perform all

needed operations on the REVC, while the program is executing. Lock objects need a complete

instance of the REVC as well, but they don’t need to be assigned a unique prime number as

they only need to store specific timestamps, but never need to perform local tick operations on

the REVCs that they are storing. Finally, memory locations need to store a timestamp as well,

like lock objects, but they also need to track the current status of that memory location, either

READ, WRITE or READ-SHARED, as it has been detailed in previous sections. As a further

optimization, when the status is either READ or WRITE, the identifier of the thread performing

the latest operation is also stored. This information allows for a slightly faster processing, as,

when an access operation performed by thread t is under scrutiny, if the previous operation had

also been performed by thread t, no further checks on the values of the REVCs are necessary

as the operation necessarily happens-after the previous one, because of the intrinsic program

order.

A class defining the REVC and its operations has been created, and instances of such class

are attached to each data structure that needs to be enabled to manage REVCs. We defined

the EVC value e contained in each REVC instance to be representable as an integer over 32
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bits. Therefore, the threshold of n bits, whose overflow triggers the reset operation, is set as 32

bits. When a callback is invoked, the payload containing information on the event is accessed

and the data structures attached to the actors of the event are retrieved. Finally, the callback

performs the requested operations to implement the behavior of the modified DJIT+ protocol.

Algorithms 8 and 9 detail simplified versions of the acquire and release operations, to present

an example of such callbacks.

Finally, simplified code for the management of the memory access operation is presented

by Algorithm 10 to show how the tool can analyze and detect race conditions.

Algorithm 8: The callback for the acquire event

Input : An event object event

1 function acquire(event)
2 threadREVC = getREVCForThread(event.getThreadId());
3 lockREVC = getREVCForLock(event.getLock());

4 threadREVC.merge(lockREVC);

5 end
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Algorithm 9: The callback for the release event

Input : An event object event

1 function release(event)
2 threadREVC = getREVCForThread(event.getThreadId());
3 lockREVC = getREVCForLock(event.getLock());

4 lockREVC.merge(threadREVC);
5 threadREVC.localTick();

6 end

5.4 Evaluation

In this section we aim at analyzing and evaluating our solution in terms of performance, by

comparing it to the other tools that have already been developed for Dynamic Race Detection.

In order to be able to provide a fair evaluation of our system with respect to the traditional

DJIT+ protocol, we also developed an implementation of DJIT+ on the RoadRunner framework.

FastTrack, on the other hand, was already implemented on top of RoadRunner, as it has been

studied and developed by Flanagan and Freund as well.

The applications that were chosen for evaluation are a subset of the applications that are

found in the DaCapo Benchmarking Suite [19] and the Java Grande Benchmarking Suite [20].

Those two suites are composed of Java programs that have been designed to emulate non-

trivial loads and be representative of intensive calculations. The applications that have been

chosen exhibit multi-threaded behaviour and very diverse semantics, in order to be able to

test the system on a relatively complete set of programs ranging from a very high usage of

synchronization to a high parallelization of the workload.
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Algorithm 10: The callback for the access event

Input : An event object event

1 function access(event)
2 threadREVC = getREVCForThread(event.getThreadId());
3 memInfo = getDataStructureForMemoryLocation(event.getMemoryLocation());

4 if event.isWrite() then
5 eType = Type.WRITE;
6 else
7 eType = Type.READ;
8 end

9 if memInfo.tId == event.funcGetThreadId then
10 memInfo.type = eType;
11 memInfo.revc = threadREVC.copyCurrentFrame();
12 return;

13 end

14 if eType == Type.WRITE then
15 if threadREVC.happensAfter(memInfo.revc) then
16 memInfo.type = eType;
17 memInfo.revc = threadREVC.copyCurrentFrame();
18 memInfo.tId = event.funcGetThreadId;

19 else
20 reportRace(memInfo.type + ” - WRITE race”);
21 end

22 else
23 if threadREVC.happensAfter(memInfo.revc) then
24 memInfo.type = eType;
25 memInfo.revc = threadREVC.copyCurrentFrame();
26 memInfo.tId = event.funcGetThreadId;

27 else if memInfo.type == Type.READ or memInfo.type ==
Type.READ-SHARED then

28 memInfo.type = Type.READ-SHARED;
29 memInfo.revc.merge(threadREVC.copyCurrentFrame());
30 memInfo.tId = -1;

31 else
32 reportRace(”WRITE - READ race”);
33 end

34 end

35 end
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All experiments have been carried out on a system with a Dual-Core Intel i7 2.8 GHz

processor and 12 GB of RAM running Linux Ubuntu 18.04 and Java 8.

Table I details the number of threads that are run in parallel by each of the chosen applications.

Our modified version of DJIT+ that exploits the Resettable Encoded Vector Clock has been

tested with several configurations, aimed at comparing the performance of the basic version

versus the performance of the versions employing the Fixed Size Frame Window (FSFW),

the Differential Merge Technique (DMT) or a combination of the two. Furthermore, several

different sizes of the frame window have also been tested, to assert the impact on the precision

of the tool and on the performance. Table II shows the execution time in milliseconds of each

application, for each tool that has been tested.

The first column shows the execution time of the application without the overhead of a dynamic

analysis tool, while the following columns show the execution times of the same applications

when they are instrumented by RoadRunner and processed by a dynamic analysis tool. Our

modified version of DJIT+ which exploits the REVC is tested in various flavors, first without any

optimization technique, then using the sizes 30, 5 and 1 for the FSFW, in varying combinations

with and without the DMT.

As expected, when the REVC is used without any limitation to the amount of frames

that are stored as part of the history, applications that perform frequent synchronization, and

therefore produce high growth in the REVCs, use up all the available memory and return

an out-of-memory error (OOM). This is the case for avrora, h2, luindex and lusearch. It is

however interesting to notice that specific applications which make frequent use of comparison
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avrora 10235 73687 OOM OOM 74021 50290 49146 45968 43066 27514

crypt 73 5008 9148 9760 9474 9298 9343 9273 9217 1339

fop 440 6376 15988 4194 4413 4366 4117 4112 4298 3509

h2 6205 116125 OOM OOM 120144 122619 112219 111438 109302 48606

lufact 53 6266 3398 3720 3701 3617 3307 3376 3302 2162

luindex 523 23172 OOM OOM 15768 13106 12841 12719 12919 6794

lusearch 1680 87460 OOM OOM 70554 60029 65552 67312 56703 31970

moldyn 414 67798 41133 38956 41789 40443 38563 39948 39311 23392

montecarlo 928 29003 8986 8291 9988 9150 8947 8905 8706 4506

raytracer 542 83680 25129 42969 32293 47168 47201 43909 39620 17841

series 1507 1663 1663 1647 1672 1670 1654 1647 1693 1634

sor 283 19752 10116 9469 10353 9924 9925 9878 10343 7658

sparsematmult 104 29851 40090 38394 39403 40782 39052 39503 41499 18563

TABLE II: EXECUTION TIME COMPARISON

operations, but do not require high growth of the logical clocks, perform the best without any

form of optimization, because the overhead of the additional processing or maintenance of the

required data structures for the optimization techniques is higher than the performance benefit

that is obtained. This behaviour can be noticed in particular for raytracer and crypt.

However, on average, a reduced size of the frame window results in higher overall performances
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as would be reasonable to expect. Furthermore, by bounding the maximum amount of memory

that can be used, no more out-of-memory errors arise and all applications can be successfully

analyzed by the protocol. Similarly, the results show that the Differential Merge Technique,

when activated, is able to increase the overall performances by reducing the overhead of merge

operations.

Table III clearly presents the performance comparison, by showing the speedup achieved

over the DJIT+ protocol for each application and the average speedup across all benchmarks.

The configurations that caused out-of-memory errors do not present an aggregate average mea-

surement as it would not be comparable to the other configurations due to the lack of data for

such applications.

It is clear by looking at the average speedup data that our REVC-based application is able to

outperform by up to 1.6 times the traditional DJIT+ protocol, even if it is not able to achieve

performance that is comparable to the state-of-the-art FastTrack protocol that employs Scalar

Clocks.

We claim, however, that this result is a promising achievement as it allows us to show

that the REVC can have practical applications, which are competitive for scenarios in which

no alternatives to a traditional Vector Clock implementation are available. Furthermore, such

results allow us to rank the performance that can be obtained by such protocol with respect

to the most commonly used logical clock implementations, laying the ground work for future

developments that can employ our protocol to obtain new state-of-the-art tools applying it to

other problems, as suggested in Section 6.2.
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We have stated, when presenting the Fixed Size Frame Window optimization, that activating

such technique would improve performances at the theoretical expense of precision, as not

all pairs of events remain comparable, and this can lead to missed race condition. We also

intuitively stated, however, that because of the nature of the race condition detection problem,

most races would have probably derived from events that are very close (in terms of number

of instructions) rather than several frames apart. We now corroborate such intuition with

experimental data, as our results show that all configurations that we have tried, down to a

Fixed Size Frame Window of just 1 frame, are able to detect the same number of races for

all applications, which also corresponds to the same number of races found by DJIT+ and

FastTrack. We can therefore claim that the precision of our tool, in all its configurations, is not

affected by the optimization techniques that are employed.
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avrora - - 0.996 1.465 1.499 1.603 1.711 2.678

crypt 0.547 0.513 0.529 0.539 0.536 0.540 0.543 3.740

fop 0.399 1.520 1.445 1.460 1.549 1.551 1.483 1.817

h2 - - 0.967 0.947 1.035 1.042 1.062 2.389

lufact 1.844 1.684 1.693 1.732 1.895 1.856 1.898 2.898

luindex - - 1.470 1.768 1.805 1.822 1.794 3.411

lusearch - - 1.240 1.457 1.334 1.299 1.542 2.736

moldyn 1.648 1.740 1.622 1.676 1.758 1.697 1.725 2.898

montecarlo 3.228 3.498 2.904 3.170 3.242 3.257 3.331 6.437

raytracer 3.330 1.947 2.591 1.774 1.773 1.906 2.112 4.690

series 1.000 1.010 0.995 0.996 1.005 1.010 0.982 1.018

sor 1.953 2.086 1.908 1.990 1.990 2.000 1.910 2.579

sparsematmult 0.745 0.777 0.758 0.732 0.764 0.756 0.719 1.608

AVERAGE - - 1.470 1.520 1.553 1.564 1.601 2.992

TABLE III: SPEEDUP OVER TRADITIONAL DJIT+ COMPARISON



CHAPTER 6

CONCLUSION

6.1 Achievements

In this thesis work we have presented the Resettable Encoded Vector Clock, a logical clock

implementation that is built on top of the Encoded Vector Clock with the objective of tackling

its main drawbacks: high growth rate and unbounded growth.

We have defined and formalized the REVC, and showed its applicability in both shared memory

systems and message passing systems.

We have presented experimental results that show how we have been able to achieve both

objectives. In particular, the REVC presents a linear growth rate, with respect to the expo-

nential growth rate presented by the EVC. Furthermore, the REVC’s definition allows to easily

tune the implementation to place an upper bound on the storage requirements, at the theoret-

ical expense of precision. We have however claimed that practical applications rarely require

unconstrained comparability among the events, and we have showed how there exist real-world

scenarios in which the Bounded REVC can achieve no loss in precision.

Finally, we have explored a practical application of the REVC by applying it to the Dynamic

Race Detection problem, with the aim of evaluating its performance with respect to other

traditional logical clock implementations, and showing its practical applicability in real-world

scenarios.
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6.2 Future work

Our aim in this thesis work was to go beyond the theoretical presentation of the Resettable

Encoded Vector Clock as a sound logical clock implementation, by also showing practically its

applicability to a real problem. We chose the Dynamic Race Detection problem, as its literature

presented both a traditional Vector Clock approach and a state-of-the-art approach capable of

employing Scalar Clocks for most operations and dynamically adapt to Vector Clocks only if

needed.

This application allowed us to provide experimental data to better analyze and compare

the REVC with other famous logical clock implementations. Given the results of our work, we

have shown that the REVC can provide better performance than a traditional Vector Clock,

even if it is not able to achieve performance that can compete with a Scalar Clock. The logical

continuation of our work would be to identify one or more other applications that make use of

logical clocks but, however, do not present any alternative to Vector Clock implementations. It

is reasonable to believe that, if a protocol can be studied to apply the REVC in such scenarios,

better performance might be achieved, thus creating new state-of-the-art tools.

In our work, we have mainly experimented with applications that require a low number of

threads, as we have never applied the REVC on programs with more than 7, as detailed in Sec-

tion 5.4. However, one of the strengths of the REVC with respect to the EVC and the traditional

Vector Clock, is its better scalability with respect to the number of processes or threads in the

system. Therefore, another logical continuation of our work could be expanding it in scenarios
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requiring high number of parallel processes or threads, to measure and quantify its robustness

and possibly its higher performance with respect to other logical clock implementations.

Finally, the Resettable Encoded Vector Clock’s main drawback is given by the performance

hit and memory consumption generated by the necessity of storing the history map. Further

theoretical work could be carried out to understand whether a more compact representation

of such structure can be defined, or an extension of our Differential Merge Technique can be

studied to further reduce the time requirements for merge operations of the history maps. This

achievement would greatly benefit the REVC protocol, possibly allowing it to compete with

Scalar Clock implementations in real-world applications.
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6.3 Final remarks

The main result of this thesis work has been the theoretical presentation of the Resettable

Encoded Vector Clock as a valid alternative to the Encoded Vector Clock and other logical

clock implementations. However, our results have also been able to show how the REVC is not

just a theoretical concept, but it is applicable to practical problems and can compete in terms

of both space and time requirements with other known protocols.

Finally, the REVC has been designed with scalability and adaptability in mind. Its formu-

lation contains several intrinsic tradeoffs that can be easily tuned by enabling or disabling opti-

mization techniques, and choosing between Bounded and Unbounded implementations. These

configurations provide the REVC with a much higher adaptability to very different scenarios,

which cannot be found in other logical clock implementations.

These achievements are very promising and, as we have showed, can be the starting point

for a number of developments that can help introduce new theoretical and practical tools to

more efficiently tackle several problems in distributed systems, that require causality analysis

as part of their solutions.
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