
POLITECNICO DI TORINO

Master degree course in Computer Engineering

Master Degree Thesis

On a Computationally Empowered
Virtual Reality System for Real

Time Intracranial Neuronavigation

Supervisors:
Prof. Francesco Paolo Andriulli

Candidate:
Alessandro Mascherin
ID: 242947

Academic year 2019-2020

Summary

Context

Physiological and electrical information about the brain can be obtained
via a wide array of techniques such as the Electroencephalography (EEG),
the Positron Emission Tomography (PET), Magnetic Resonance Imaging
(MRI) and Functional MRI (fMRI) which all have their trade-offs.

One of the most popular acquisition techniques used both for research
and for clinical application is the EEG which is an affordable and nonin-
vasive technology that measures the electric potential on the scalp of the
subject by means of a set of electrodes. The EEG is also used for EEG
Source Imaging (ESI) which aims at computing the intracranial electrical
activity from the electric potential measured on the surface of the head.
The source imaging problem can be split into two key sub-problems, the
forward problem (FP) and the inverse problem (IP). The forward problem
is a computationally complex problem, whose goal is to map the electrical
currents inside the brain to the readings acquired on the head surface with
an EEG. The IP tries performs the opposite mapping and yields the po-
sition and intensity of the electrical activity inside the human brain based
on the EEG measurements on the scalp surface. Numerical methods can
solve the FP, typically boundary or finite element methods, and its accuracy
only depends on the accuracy of the model and anatomical information of
the subject. The IP, however, is an ill-posed problem whose solution is not
unique and generally unstable.

The brain anatomical structure is commonly derived from MRIs with a
procedure called brain segmentation. This procedure can produce 2D or 3D
reconstruction of the human brain, which is essential in medical diagnoses
or surgical planning.

i

Goals

The goal of this Thesis is the design of an immersive virtual reality (VR)
system, capable of offering a real-time navigation inside the electrical ac-
tivity of the human brain, by leveraging neuroimaging and electromagnetic
source imaging techniques. This application has to display realistic brain
structures, that can be freely explored by the end user of the system. One
of the challenges tackled in this thesis is the smooth, fluid, and computa-
tionally effective integration of advanced state of the art source imaging
techniques for allowing a new virtual reality neuronavigation environment.
This has been achieved by engineering computationally empowered algo-
rithms designed to solve the inverse problem. The brain activity displayed
to the end-user of the virtual reality system is computed from a real-time
ESI-inverted EEG reading or from pre-recorded data which can be of inter-
est both in research and medical contexts.

Personal Contribution and Results

The different challenges encountered in this thesis have been addressed in
two phases: a first phase focused on developing the data-processing pipelines
used for recovering the intracranial activity from the EEG measurements
and a second phase in which a virtual reality environment has been develop
to present the reconstructed data to the end user in the most intuitive and
anatomically correct way possible.

First, a significant part of the thesis has been devoted to the design and
implementation of the software pipelines, summarized in the Figure 2.7,
and tools essential for satisfying the requirements of an immersive real-time
neuroimaging experience. One of the key problems we have tackled has
been maintaining stable performances even when dealing with high-density
research EEG, to remain compatible with real-time visualization. The 3D
meshes of the brain and the white matter fiber tracts used in the project
come from an elaboration of real human fMRIs, produced with some of the
most recent brain segmentation approaches, to ensure that the anatomical
modelling is accurate and reflects the state of the art in brain imaging.

Another main part of this thesis has been the development of several
features into the virtual reality application Neurosurf. For this develop-
ment, we used the Unity3D engine and its XR software development kit.

ii

We have designed an user experience for both a virtual reality environment
and a traditional desktop setup, capable of providing meaningful tools and
User Interface (UI). The brain structures were created by making use of
real human data adapted for the virtual reality visualization and the source
imaging pipeline. We implemented a visualization system capable of dis-
playing the potential generated by the brain activation on the meshes’ sur-
faces, through an application of specific shaders. The neuro-navigation in
the virtual environment was developed by exploiting an advanced motion
capture tracking system that has been integrated into the project.

The final application has been used in several demonstrations, using
both live-recorded data and simulations. It has been tested with various
EEG configurations and different head models. By leveraging on the mod-
ularity of the pipelines built for this thesis, the application was always able
to provide a fluid experience while maintaining a real-time elaboration of
the EEG signals.

The virtual reality environment we have obtained can be adopted for
teaching, research, or medical purposes. One of the possible applications can
be the neurofeedback which is a therapeutic procedure that allows patients
to regulate their brain activity by allowing them to visualize and navigate
it in real-time.

iii

Contents

Summary i

Acknowledgements vii

1 Introduction 1
1.1 Project Description . 1
1.2 Neurofeedback . 2
1.3 State of the art . 3

2 Technical Background 5
2.1 Brain Physiology . 5
2.2 Neuroimaging . 7

2.2.1 MRI, fMRI . 7
2.2.2 EEG . 9

2.3 EEG Source Imaging . 9
2.3.1 Forward Problem . 10
2.3.2 Inverse Problem . 12

2.4 Project organization . 13
2.4.1 Hardware setup . 13
2.4.2 Software used . 17
2.4.3 Pipelines . 21

3 Virtual Reality System 27
3.1 Neurosurf Introduction . 27
3.2 Project organization . 28

3.2.1 Camera . 28
3.2.2 Illumination . 30

iv

3.2.3 C# scripting component 30
3.2.4 3D polygonal meshes 31

3.3 Key Features . 33
3.3.1 EEG source imaging implementation 33
3.3.2 Colormap . 36
3.3.3 Interaction mode . 38

3.4 Implementation details . 42
3.4.1 Position tracking . 42
3.4.2 Shader and Rendering 43
3.4.3 Stream management 47

4 Brain segmentation 51
4.1 Brain Mesh conversion . 51
4.2 Brain Labeling and Mindboggle 54

4.2.1 Mindboggle . 54
4.2.2 Neurosurf implementation 56

5 Electrode Localization 61
5.1 Problem Introduction . 61
5.2 Implementation . 64
5.3 Results . 66

6 Conclusion 69
6.1 Results . 69
6.2 Future Works . 70

Appendices 73

Bibliography 81

Acronyms 87

v

Acknowledgements

Firstly, I would like to express my special thanks to my supervisor, Prof.
Francesco P.Andriulli, for the opportunity to work on this project and for
the support he has given to me in these months. With him, I would also
thank all the PhD students, Adrien, Davide, Maxime, Clément and all the
others, for the time they have dedicated to me.

Vorrei inoltre ringraziare tutti i miei amici, a partire da quelli storici del
mio paese, dove nonostante la distanza, mi hanno supportato e sopportato
per tutti questi anni. Un abbraccio enorme lo dedico a tutti i ragazzi della
Nobile Magistrale: affrontare questo percorso assieme a voi è stata la cosa
migliore che mi potesse capitare.

Infine un grande e sentito ringraziamento alla mia famiglia, senza il loro
supporto non sarei mai potuto arrivare fino a qui: grazie per aver sempre
creduto in me e avermi aiutato a diventare quello che sono oggi, sono fiero
di voi.

vii

Chapter 1

Introduction

This chapter provides a brief introduction to the background knowledge
and notation used the in this work. It presents a brief description of the
project in the context of existing neuronavigation technologies and their
application.

1.1 Project Description

The human mind structure and functioning mechanisms have always been a
fascinating topic for everybody, from scientists and doctors to non-experts.
In recent years, the advancement in neuroscience and neuroimaging tech-
nologies has opened new frontiers in the visualization and analysis of the
human brain, some of which will be presented in this thesis. Since the be-
ginning of the 20th century, innovative techniques to investigate the brain
function and its electrical activity has begun to emerge. In 1924, the first
human Electroencephalography (EEG) was recorded, giving birth to a new
way to study the human mind activity [19]. Just a few years later, in 1936,
the EEG began to be adopted for clinical use, and today it is still one of
the most common instruments used in research and medical environments.

In the last decades, other technologies have joined the EEG in the field
of the exploration of the human brain. The technological progress allowed
neuroscientists to explore even further the operations of the human brain,
leveraging on modern instruments like the Positron Emission Tomography

1

1 – Introduction

(PET) or Magnetic Resonance Imaging (MRI). The increased available com-
putational power has also moved the scientist a step further: identifying the
sources that generate EEG signals with a technique called EEG source lo-
calization. Nowadays, the information related to how the human brain
works are vast, ranging from the chemical structure of the neuronal cells to
the global electromagnetic model of the head. However, a lot of the inner
mechanism are still shrouded in mystery and are still actively researched.

The idea at the root of this thesis project is to use of the most advanced
virtual reality or augmented reality technologies that have spread in recent
years, to display the result of modern neuroscience techniques. By making
use of an immersive environment, it is possible to provide new alternatives
in the brain exploration and diagnostic. Leveraging on state-of-art EEG
source imaging technique it is possible to display, in real-time, the electrical
activity of the human brain in a way that can be exploited for example
from therapist to monitor the patient brain activity. This scenario can also
provide additional insight on the inner mechanism of the brain activity to
scientists and researchers.

1.2 Neurofeedback

One of the possible target for a new Virtual Reality application for an in-
tracranial navigation of the brain activity is the neurofeedback [35]. The
neurofeedback is a branch of the biofeedback, the fields that aims to teach
the control of the body function by giving the patient a direct feedback on
the body’s information. EEG neurofeedback consists of the methodology
used to teach a patient to self-regulate its brain function by showing the
electrical activity recorded through an EEG headset with video and sound
feedback. The three main areas of application for the neurofeedback are:
(i) as a therapeutic tool (ii) as peak-performance trainer (iii) as experimen-
tal method.

All of these applications rely on the same basic project structure. The
data are acquired through an EEG headset, or with tools such as Magne-
toencephalography (MEG) or Near-infrared spectroscopy (NIRS). The data
are then processed and adapted to provide direct feedback to the user, based
on the intended goal of the neurofeedback session. A 2004 study [8] showed
that the application of an immersive VR environment in a neurofeedback

2

1.3 – State of the art

session tends to obtain better results than the traditional neurofeedback
techniques. The current VR technology, combined the state-of-the-art EEG
source imaging techniques, can provide an immersive and realistic simula-
tion of the human brain activities that can be effective in neurofeedback
applications.

The application developed in this thesis focus on offering the most ac-
curate information that can be extracted from an EEG, to provide precise
feedback to the user. A direct access to the human brain with a real-time
visualization of the intracranial activity can be used effectively by therapists
to employ modern neurofeedback techniques.

1.3 State of the art

The adoption of modern XR technologies in neuroscience research is already
underway with several different proposed integration. The availability and
the power of the modern VR device allow a broader range of application,
that can be combined with some of the more recent discoveries in the field.
The adoption of virtual reality in Brain-Computer Interfaces (BCI), with
games and ad-hoc peripherals is a promising field with several studies that
supports its diffusion [34, 52, 9]. These researches often focus on adopting
the XR technologies to facilitate communication with the BCI by providing
direct feedback or other useful visualization to the user. For example, aug-
mented reality was also studied for the adoption in BCI application [5], for
the intuitive interaction and the possibility of having a "hand-free" experi-
ence. The visualization of the brain structure in a modern VR environment
was also an object of study for different projects.

In 2002 a collaborative team composed of neurosurgeons from the Mas-
sachusetts General Hospital, researcher from Brown University and the Na-
tional Institutes of Health, tried to develop an immersive environment for
the exploration of Diffusion Tensor Imaging (DTI) images [48]. By making
use of an immersive virtual reality environment like the CAVE 1 they de-
veloped a visualization system of some geometries derived from DTI MRI
acquisition. The hardware limitation of a virtual reality system of almost

1http://www.visbox.com

3

http://www.visbox.com

1 – Introduction

20 years ago, however, generated serious visualization issues in the frame
rate and the latency of the system.

The advancement in the VR technologies allowed years later, in 2016,
a research group of the Seoul Korea University to import the results of a
DTI and a conventional brain MRI in a Unity VR-based application [29].
The application they propose, shows a static representation of the human
brain structure, and the navigation is exclusively done with the mouse. This
project occurred in some limitation in the computational power needed to
manipulate the DTI data correctly, and it was missing the motion capture
functionality needed for a complete VR experience.

In 2014 the GlassBrain project offered the first immersive experience
for intracranial navigation while displaying a real-time estimation of the
source-localized brain electrical activity[47, 40]. By implementing advanced
source imaging techniques, combined with a careful optimization of the
GPU pipeline, they were able to display in real-time the electrical activity
of the brain on a Unity application, with data coming from a high-quality
EEG. GlassBrain project was used as a reference for this project for how to
visualize the brain structures activity and how to provide valuable naviga-
tion information to the user.

4

Chapter 2

Technical Background

This chapter is dedicated to the explanation of some of the technical con-
cepts needed for understanding the implementation of this project. The
first section presents some fundamental brain physiology concepts, for then
deal briefly with the neuroimaging and source imaging problem. At the
end of the chapter, there is a section used to explain the tools used in this
thesis, and some of the pipelines and algorithms adopted in the preliminary
project phases.

2.1 Brain Physiology

©
U

se
r:D

hp
10

80
[C

C
BY

-S
A

3.
0

(h
tt

p:
//

cr
ea

tiv
ec

om
m

on
s.o

rg
/

lic
en

se
s/

by
-s

a/
3.

0/
)]

Figure 2.1: Structure of a neuronal cell

5

2 – Technical Background

The human brain is one of the most sophisticated structures in nature.
It has been estimated that it is composed of 1010 to 1011 individual neuronal
cells [46]. Each cell is capable of creating a connection with thousands of
other neurons, generating up to 1014 synaptic connection. The role of the
neurons is to rapidly process and transmit information.

Figure 2.1 represent the main components of the neuron. The essential
parts that are of interest in the study of the electrical activity of the neu-
ronal cells are the axon terminal and the dendrites. The dendrites represent
an extension of the cell body used to amplify the receptive surface of the
cells. The dendrite’s surface is covered with synapses, the point of func-
tional contact between the neurons with other neuronal cells. The synapses
connect with the axon of other cells, and they are responsible for trans-
mitting signals received through the axons with an electrochemical process.
The ability of neurons to generate impulses is based on a chemical opera-
tion based on the movement of ions of sodium (Na+), potassium (K+), and
chloride (Cl-). At rest, the neurons possess a negative resting potential of
-70 mV. The signal is generated by a chemical substance called neurotrans-
mitter, which, at a synaptic level, generates a depolarization and a potential
difference. This depolarization is called EPSP: excitatory postsynaptic
potential. The diffusion of the signal is stopped by another type of neu-
rotransmitter, responsible for hyperpolarizing the inter-neuronal volumes.
This phenomenon also generates a potential difference, called inhibitory
postsynaptic potential (IPSP). At the cell body, the contribution of the
ESPS and IPSP received by the dendrites are summed together. When the
EPSP potential sum generates a depolarization under the -55mV thresh-
old, an impulse is generated by the cell and propagated along the axon
to other neurons. These impulses are called "action potential" or "spikes."
They usually have a voltage change size of about 90-100 mV, and they have
a duration of few milliseconds.

The electrical activity that can be detected on the head surface cannot
represent one of a single neuron since the activity of the neighboring cells
covers it. The EEG signals are then extracted when a considerable num-
ber of cells activates simultaneously. These cells will generate an electrical
activity that can be modeled as a current dipole.

6

2.2 – Neuroimaging

2.2 Neuroimaging

Neuroimaging is a discipline dedicated to the acquisition and reconstruc-
tion of the human brain anatomy and function [1]. What characterized the
neuroimaging from the techniques used in the past, is the commitment of
techniques that allows an "in vivo" imaging, meaning an acquisition made
on a living organism. This discipline can be classified in two main imaging
categories: structural imaging and functional imaging [12]. The struc-
tural imaging goal is the brain structure and anatomy reconstruction. The
conventional structural imaging techniques consist of magnetic resonance
(MRI) and tomography (CT). This approach is applied to brain damage
or abnormality diagnosis. Moreover, it can be used to obtain geometric
properties of the brain structure.

The functional imaging, instead, focus on the activity analysis in the
various brain area. Its role is the extraction of information related to brain
function and connectivity. The activity is typically obtained through func-
tional MRI (fMRI), positron emission tomography (PET), near-infrared
spectroscopy (NIRS), and others. Also EEG is often used to scan the elec-
trical activity of the brain. In this section, the technologies adopted for
the head model creation and the brain activity measurement will be briefly
introduced.

2.2.1 MRI, fMRI

The magnetic resonance imaging consist in a technique that makes use of
magnetic fields and radio waves to generate images of the organs in the body
[17, 22]. Its first clinical introduction was back in 1980 in Nottingham and
Aberdeen and has rapidly evolved as one of the most powerful structural
neuroimaging techniques. The MRI is based on the application of two strong
perpendicular magnetic fields. The spacial resolution of an MRI is directly
connected to the intensity of the magnetic field applied. The first static
field −→

B0 is used to align the hydrogen nucleus existing inside the body. The
rotation along the field happens with a specific frequency called Larmor
Frequency [51], proportional to the static field applied. To measure the
magnetization generated by the magnetic moment of the hydrogen nuclei
a second field −→

B1, perpendicular to the first one is applied. This second
field is usually applied with short pulses of few microseconds and causes

7

2 – Technical Background

Figure 2.2: On the left: T1 weighted MRI.
On the right: T2 weighted MRI.

MRI taken from the NIST ICBM database.

an energy absorption by the nuclei. This energy is then emitted with a
relaxation process and can be detected and measured. The relaxation can
be longitudinal and transverse, given form to two different time relaxations
constant, T1 and T2.

The magnetic image generated can be weighted for the different con-
stant, to identify specific area. For example, water has a high T1 value and
tends to appear dark in T1-weighted images. At the same time, fat has
a short T1 time, looking brighter on the same T1-weighted MRI. This ef-
fect can be easily observed in fig. 2.2, where the Cerebrospinal Fluid (CSF)
identified by an "X" shape in the center of the MRI, is almost black in the
T1-weighted image while resulting bright on the same MRI T2-weighted.

The functional MRI (fMRI) is an imaging method, derived from the
MRI, that aims to detect the brain activity based on the change in the blood
flow. Seiji Ogawa discovered that the blood has different magnetic prop-
erties based on the oxygenation level, in a method called BOLD (Blood
Oxygenation Level Dependent) [41]. By acquiring the MRI images at a
higher frequency than the BOLD signal, it is possible to obtain a functional
image of the activity of the brain based on the oxygen use of the neurons
[25]. Images obtained with T1 and T2 MRI, and fMRI were extensively
used in this project for the generation of the meshes and the tractography

8

2.3 – EEG Source Imaging

used in the virtual reality environment. T1-weighted MRI were also used to
obtain a labeled version of the human brain, as it is described in the section
4.2.

2.2.2 EEG

Electroencephalography is the most common method used to acquire the
electrical activity of the brain. It consists of a set of electrodes placed on the
scalp of a subject, with dry or wet connection. The wet-EEG makes use of
an electrolyte placed between the skin to reduce the acquisition impedance
level. Due to the low cost of the setup and the fact that is usually a non-
invasive technique, EEG is commonly used in diagnostic (epilepsy, sleep
analysis, brain death detection and others) and research (neuroscience, psy-
chology).

The signals detected by each electrode consist of the sum of the voltage
contribution of several neurons groups the activate simultaneously. This
voltage measured on the surface has a low magnitude, usually ranging from
5 to 200 µV, and a low-frequency band (0.5 - 50 Hz). Moreover, the surface
EEG has a high amount of noise due to the high resistance of the skill
and several artifacts that affect the measurements. To overcome the noise
problem, an invasive EEG methodology is also available, the intracranial
EEG (iEEG). This methodology is not considered in this project.

The typical EEG setup consists of 20 to 30 electrodes, usually placed
according to the standard ‘10-20 system’ that defines the position and the
nomenclature of a set of 21 electrodes on the patient scalp [18]. For research
purpose, and for increasing the EEG spatial resolution, high-density version
of EEG setup are used. With these systems, it is possible to have up to 256
electrodes on the scalp surface.

2.3 EEG Source Imaging
Trying to understand which brain region is active in response to certain
specific mental tasks, is research of particular interest in the diagnostic
and Brain-Computer Interfaces (BCI) fields. The neuroimaging techniques
previously covered, try to extract this information with the best resolution
possible. However, techniques such as the MRI, the fMRI, and the Positron-
Emission Tomography (PET), despite having an excellent spatial resolution,

9

2 – Technical Background

are not able to identify the temporal dynamic of the brain activity. To
acquire information related to the neurons activation, it is necessary to have
instruments with excellent temporal resolution, with a sub-second scale.

The EEG is one of the most common tools adopted to acquire the data
with the required temporal resolution. The most significant limitation in
the localization of the activation is given by the poor spatial resolution
of the EEG [7]. In human patients, the EEG is usually recorded through
electrodes placed on the scalp surface. This cause a resolution reduction
due to the different resistive layer that the electrical signal generated by
the brain activity has to cross.

These limitations, combined with the increased available computation
power, led the scientist to the creation of a new research field called EEG
source imaging (ESI) [37, 36].

The ESI research field focus in the solution of two main problems:

• forward problem (FP): the goal of the forward problem is to es-
tablish the potential at the electrodes starting from a current density
inside the brain;

• inverse problem (FP): as the name suggests, this problem tries to
solve the opposite of the FP, finding the source activation in the brain
based on the potential read by an electrode.

Modern ESI techniques were used in this thesis to allow a real-time
mapping of the EEG potential to the brain structure visualized in the VR
application. The rest of this section will focus on a general FP and IP
formulation while presenting some of the state-of-the-art solutions available.

2.3.1 Forward Problem

As mentioned, the forward problem focus on the resolution of the potential
on the scalp surface based on an electrical activation in a specific brain area
[36, 21]. The brain activity is usually modeled as a current dipole, defined
by its moment

d =∥d∥ · n̂d (2.1)

where d =∥d∥ is the dipole magnitude and n̂d is the dipole orientation.
Assuming the dipole is located in a homogeneous isotropic material with

conductivity σ, the potential field measured at generic point placed at a

10

2.3 – EEG Source Imaging

distance r from a dipole placed at rdip is given by the equation

g(r, rdip, d) = d · r − rdip

4πσ
r − rdip

3 . (2.2)

If the dipole is located at the origin of the Cartesian coordinate system,
aligned along the z-axis, the equation 2.2 became

g(r,0, dez) = d cos θ

4πσr2 , (2.3)

where σ represent the angle between the vector r and the z-axis. This
formulation exposes that a quadratic factor attenuates the dipole field.

The potential on each electrode position can be computed with a super-
position effect, by summing the contribution of each dipole

V (r) =
∑

i

g(r, rdip,i, di). (2.4)

This leads to a generic algebraic formulation of the forward problem,
that, for N electrodes, p dipoles and T time samples, can be expressed as
follows:

V =

⎡⎢⎢⎣
V (r1,1) . . . V (r1, T)

...
V (rN ,1) . . . V (rN , T)

⎤⎥⎥⎦ = G(rj , rdip,i, ˆnd,i)

⎡⎢⎢⎣
d1,1 . . . d1,T

...
dp,1 . . . dp,T

⎤⎥⎥⎦ = GD

(2.5)
V is the matrix of potential measured for every time instant at every

electrode position. G is the gain matrix and D models the dipole magnitude
at every time instant.

The gain matrix G is also known as the Leadfield Matrix, and it is
used to model the physical properties of the head. By also considering the
presence of noise in the EEG reading we should include a noise compo-
nent in the equation. This is done summing a Gaussian noise component
represented by the matrix n, leading the equation

V = GD + n. (2.6)

11

2 – Technical Background

Numerical solution: FEM and BEM

The presented formulation is based on the consideration that the head is
a homogeneous and isotropic sphere. Recent studies have shown that by
employing a realistic model of the human head, the result obtained by the
forward model are greatly influenced. The classical solution used to solve
the FP are Boundary Element Method (BEM) and Finite Element
Method (FEM). The both are numerical methods that solve respectively
integral equations and differential equations and can mode the brain elec-
trical behavior. Details on the formulations for the BEM and FEM theory
will not be discussed in this project since they are out of the scope for this
thesis. For more details a good reference is [20]. The goal of both methods
exploit segmented mesh of the brain elements to discretize the equation.
Both FEM and BEM are also used to generate a leadfield matrix G used in
the formulation of the IP. For this thesis, we implemented a BEM solution
for the leadfield matrix generation and the creation of the head model.

2.3.2 Inverse Problem

The Inverse Problem is the logical opposite of the Forward Problems. Given
the electrode potential, it aims to identify the dipoles that have generated
such potential inside the brain. The IP is, however, a ill-posed problem:
the number of electrodes used range from 21 to 256 sources, while the
dipole sources are several order of magnitude more numerous since possibly
every neuron can be modeled as a dipole source. Moreover, the number of
unknown values (3 coordinates for the position and 3 for the orientation of
each dipole) is bigger than the available system equations; for this reason,
the solution is not unique, and it is unstable, presenting high variations in
response to little input change.

There are two main solution for the Inverse Problem [16], based on
non-parametric and parametric approaches:

• Distributed Inverse Solutions (DIS): is a non-parametric solu-
tion, based on choosing several dipoles along the whole cortical, while
imposing a fixed location and, possibly, orientation. For every chosen
dipole, the FP is solved to build the correspondent Leadfield Matrix;
By applying an inverse operation on the obtained matrix, with the
addition of some constraint used to overcome the ill-posed nature of

12

2.4 – Project organization

the problem, it is possible to find a solution to the IP. This solution
is based on the constraint applied and the FP model used in the lead-
field generation. Common state-of-the-art DIS solution includes the
Minimum Norm (MN) solution, the Weighted Minimum Norm
(WMN), LORETA [43] and LAURA [15];

• Equivalent dipole methods: set of parametric solutions that aim
to find the best dipole position and orientation that lead to the best
configuration compared to the EEG potential. The techniques have
various range of complexity, with single or multiple dipoles and with
spherical or realistic head models.

The DIS are the solution best suited for a real-time elaboration since
the problem can be solved with a linear complexity solution. To obtain
the required real-time visualization on a complex virtual reality system, we
developed the model and the pipeline based on a distributed solution.

2.4 Project organization
A general overview of the hardware and software setup adopted on this
work will now be presented. At first, in the section 2.4.1 the tools adopted
are going to be described, followed by the software used and the adopted
pipeline, in the sections 2.4.2 and 2.4.3 respectively.

2.4.1 Hardware setup

This section describes the hardware component used for the project, fo-
cusing on the workstation required to make it work and the virtual reality
setup used.

Main Workstation

The main computer used for this thesis was a Windows 10 workstation
with the following hardware specification: an Intel Core I7-8700 CPU @
3,20GHz, 16GB ram and an NVIDIA GeForce GTX 1070 GPU.

Most of the computational power required from this project comes from
two main elements: the Neurosurf Virtual Reality application and the ESI
conversion pipeline that extracts the data from an electroencephalography

13

2 – Technical Background

(EEG), elaborates it and sends it to the VR program. The EEG data can be
simulated or can be acquired from a real-time EEG reading. In the case of
simple simulated data or an EEG setup with a low number of electrodes, this
workstation was powerful enough to run both the virtual reality application
and the computational pipeline that sends the brain activity data to the
Neurosurf scene. However, with more complex simulation or with a higher
density of electrodes, a bottleneck was found in the system CPU, requiring
a different workstation to elaborate the EEG signals. The EEG conversion
pipeline used most of the CPU power. When dealing with a simulation with
14 electrodes, the pipelines uses around 40% of the CPU time used after the
initial setup. The image 2.3 displays a brief recorded power usage snapshot
for the script with said configuration. After an initial usage spike due to
the setup phase of the program, the CPU stabilizes around the 50-55%
threshold, resulting in a 40% net usage increase. Also, in prolonged usage
of the program, the computation power required has shown to be constant.

Figure 2.3: CPU Usage for the EEG conversion, 14 electrodes

When using more complex EEG system, the presented workstation was
not able to run the VR application and the conversion pipeline simultane-
ously. For this reason, we have built the pipeline in a modular way, while
focusing on advancing and optimizing the algorithms used. More details
on this pipeline are going to be presented in the section 2.4.3. The virtual
reality application, instead, relies mostly on the GPU of the workstation.
On a normal execution, the Neurosurf application utilizes between 30 to

14

2.4 – Project organization

50% of the GPU power and from 10 to 25% of the CPU.

Virtual Reality Headset

Figure 2.4: HTC Vive Components, courtesy of HTC Corporation

The Virtual Reality visualization was done through an HTC VIVE VR
system. The HTC VIVE is a consumer virtual reality headset, officially
released on the market on the 7t June 2016. The VIVE VR setup in-
cludes a Virtual Reality Headset with a refresh rate if 90Hz and 110° of
Field Of View. The user can interact with the system with two propri-
etary controllers, and the tracking is done with a "room-scale" technology
called "VIVE Lighthouse." To enable this positional tracking Technology,
HTC has developed the Base Stations, small black boxes that should be
placed at the edge of the tracked environment. The tracking is done with
an "inside-out" method. Each base station acts as an infra-red beacon, with
two additional laser emitters. The headset recognizes and uses the signal
sent from the stations to determine its position in the space with 6DOF, in
relation to the location of the base stations. However, for this project, not
all the provided hardware was used, since the tracking system was replaced
by the OptiTrack tracking technology, that will be described in the following
section. The VIVE controllers were replaced with a couple of customized
PlayStation Move VR controllers, provided by OptiTrack. Only one of the
provided Base Station was installed since the VIVE Lighthouse technology

15

2 – Technical Background

was not used in this project. This base station is necessary since, if the
headset does not detect at least one base station, it will cut off the video
feed.

OptiTrack position tracking

Figure 2.5: Our OptiTrack camera setup, at Politecnico di Torino

All the positional information required for the virtual reality applica-
tion presented in this thesis were acquired using OptiTrack. OptiTrack
is a 3D motion data capture system that offers a high precision tracking,
sub-millimeter with the right condition and calibration, and low system
latency. The OptiTrack system works with multiple active 2D Infra-Red
camera, installed around a target volume where the capture will take place.
The cameras are synchronized by a control application that calculates the
3D position of the marker recognized in the recorded environment via tri-
angulation. The marker can be both passive, simple retro-reflecting spheres
or bands, or active, with LED markers that should emit in the 850nm wave-
length. For this project, the headset and the controller were tracked using
a configuration of several passive markers. The cameras consist of 8 Opti-
Track PRIME 13W camera, installed on a metal cage that measures 5m x
5m with the cameras installed at 3m high. Each camera has a resolution
of 1.3MP with a vertical Field of View of 58° and horizontal of 70°. The
cameras can also acquire the environment using a grey-scale acquisition
with a 750nm light wavelength filter. The maximum frame-rate possible

16

2.4 – Project organization

for each camera is 240 FPS, which is almost 3 times the frame rate of the
VR headset used (90 fps for the HTC VIVE). This high frame-rate allows
Motive to precisely calculate the position of the tracked object, even with
fast movement, providing an accurate flux of information to the Neuro-
surf application. The maximum theoretical precision of the system, stated
by the company is sub-millimeter. After the calibration phase of the sys-
tem, our setup reached a mean error of 0.8618 mm in the position of each
sphere. This value is subject to change over time, since every few months
a new calibration needs to be made again and also depends on the room
illumination.

gTec EEG Research headset

For the EEG signal acquisition we adopted a set of high precision research
EEG headset provided by G.Tec medical engineering.1 Most of the acqui-
sition was done with the gNautilus, a wireless external wet-EEG with 32
electrodes. More sophisticated devices were also used, like a 256-electrodes
passive headset, shown in figure 2.6 or a 64 active electrodes wet-EEG sys-
tem. The signal recorded through this devices can be directly analyzed or
stored in matrices by using the software suite provided by gTec. For the
integration of these systems with the pipeline developed for this thesis, we
implemented a small C++ interface used to stream the data acquired from
the headset with the Lab Streaming Layer (LSL). The LSL protocol will be
described in detail in the section 3.4.3.

2.4.2 Software used

This section will describe the key programs used for the realization of this
thesis.

Unity Engine

Unity is an editor used to develop 2D and 3D application, offering a com-
plete tool-set to programmers and artists. Its first release was back in 2005,
announced as a MAC OS-X exclusive game engine. Nowadays, Unity has

1http://www.gtec.at

17

http://www.gtec.at

2 – Technical Background

Figure 2.6: gTec 256 electrodes EEG cap used by our laboratory

evolved into a complex multi-platform engine widely used in the creation of
games, films and animation, automotive and manufacturing applications or
3D engineering software.

Unity is built on a C++ core, with a cross-platform native structure.
The scripting is offered through a C# API, which is then converted in the
native C++ core with IL2CPP. IL2CPP (Intermediate Language To C++)
is a scripting backend, developed by Unity, that converts the C# in C++
assemblies for the creation of the binary files. IL2CPP allows the final
program to take advantage of the native C++ core, increasing the overall
performance. Some of the core element of the game engine are:

• The rendering pipeline The Unity built-in render pipeline is called
High-Definition Render Pipeline (HDPR). It is a pipeline developed
for high-performance workstations and consoles, designed to produce
realistic lighting and visual effect. It is based con Computer Shader
technology and requires a Graphic Process Unit (GPU) able to pro-
cess it to perform the rendering. The developers can optimize the
pipeline for specific platform and hardware. With Unity 2018.1, the
Lightweight Render Pipeline was also introduced. This pipeline has
the goal of obtaining real-time render by making some trade-off in the
lighting and the shading. It is a single pass forward-render pipeline,
that is exposed through a C# API to the programmer, allowing direct

18

2.4 – Project organization

control of each render step;

• The User Interface System The engine provides tools to build User
Interfaces for both the run-time application and the Unity Editor. The
Interfaces for the editor are used to create a tool for the developers
when building the application; The run-time UI is based on the Game-
Object systems, the base entity used to build all the Unity scenes.

• The Physics engines The physics engine is used to handle collision,
acceleration, and physical simulated interaction between the object in
the scene. It supports the NVIDIA PhysX engine and Data-Oriented
Technology Stack (DOTS) based on Havok.

Unity is the market leader for the production of Virtual Reality and Aug-
mented Reality content. In 2017, Unity announced a unified API to develop
all XR content. XR is a term referring to all the applications that can be
classified as Augmented Reality (AR), Virtual Reality (VR) or Mixed Real-
ity (MR). It also implements a common single-pass stereo render pipeline,
that can be adapted for multiple XR application. Unity Engine and the
XR API were extensively used in the realization of the Neurosurf Virtual
Reality application presented in this thesis.

Motive

Motive is a software platform provided by OptiTrack to record and manage
motion capture data for different tracking application. Interacting with the
OptiTrack Prime cameras, Motive can perform motion capture, in real-time,
for objects with up to 6 DoF. Motive offers a complete suite of features and
controls to achieve precise and complex tracking that can be recorded or live-
streamed to other applications. It provides complete access to the tracking
camera, allowing full control of the acquired images and accurate frame
synchronization. It is possible to use one of the many preset to quickly
setup a tracking environment or, if needed, further adapt and calibrate
the system. The calibration phase is essential, like in many other motion
capture systems. This phase is used to identify and build a 3D tracking
volume, taking into account each camera position and image distortion. The
calibration is done by moving a unique calibration wand in the tracked area
until the system has acquired a sufficient number of samples. Motive than

19

2 – Technical Background

elaborates the data and provides a report on the quality of the calibration,
containing important information such as the overall error values and the
suggested maximum tracking distance for each camera. Once the camera
calibration is completed, Motive needs to setup the system origin and the
position of the ground plane. This operation is done by using a convention
of three markers, shaped in an L form. This marker must be placed on the
ground at the center of the room and are used by Motive to complete the
creation of the 3D tracked space.

With a calibrated system, Motive is able to recognize up to 2000 mark-
ers simultaneously. These markers can be grouped in Rigid Bodies. A Rigid
Body is a data structure used by Motive to track an object with 6 DoF. To
correctly identify the object, at least 3 visible markers are needed, up to a
maximum of 20 markers per rigid body. The marker can be a passive reflec-
tive element or active sensor. If the markers are placed in unique positions,
while avoiding geometrical congruency, Motive provides stable and precise
information regarding its location and position in the 3D tracked space.
This setup can also be used to record human body movement accurately.
By placing markers on precise anatomical location, Motive can perform a
full-body tracking and accurate movement analysis.

In the contest of this project, Motive and OptiTrack were extensively
used to track the position and the orientation of all the real objects visu-
alized in the virtual reality environment. It was also used to measure the
position of the EEG electrodes on the patient head, as will be described in
the chapter 5.

Paraview

ParaView is an open-source scientific visualization application. It is avail-
able for the most common desktop operating system, Windows, Linux, and
macOS. It also offers several other framework and programming language
APIs. For web or remote visualization, there are ParaView Python and
ParaViewWeb, a complete Java-Script library. It can also be used in High-
Performance Computing, in custom C++ application or streamed for im-
mersive application with VRPN (Virtual-Reality Peripheral Network) in-
terface. The user interfaces are written with the Qt open-source widget
toolkit, while the data manipulation and rendering are done with Visual-
ization Toolkit (VTK). The desktop applications are the most frequently

20

2.4 – Project organization

used interfaces. ParaView allows showing a wide variety of scientific data
with various degrees of complexity, ranging from small data-set to more
complex scientific information. This data can be loaded from a wide variety
of file formats, and are then converted by the application in the versatile
VTK format. VTK can effectively represent scientific data and meshes, al-
lowing the users to visualize it in one of the several view-ports offered by
ParaView. This data can be manipulated, filtered, and queried, using the
tool provided by ParaView or from additional plugins that can be integrated
with the application.

In the context of this thesis, ParaView was used to acquire the medical
imaging used to build the neuro-navigation system and to convert some of
the meshes in formats usable by the later stage of the established pipelines.

2.4.3 Pipelines

In this section some of the key preliminary pipeline will be introduced. To
be specific, the pipelines used to generate the meshes for the brain and the
white matter fiber are introduced. The pipeline used to transmit the EEG
data to the neurosurfer application will also be presented.

EEG to Unity data transmission Pipeline

Figure 2.7: EEG data elaboration pipeline

The figure 2.7 outline the general pipeline developed to acquire the data
from an electroencephalography or a simulation and the subsequent step
implemented to stream the data into the Unity Virtual Reality scene. When
acquiring a real brain electrical activity, the first operation that has to be
done, it is the application of a prepossessing stage. This phase needs to
clean the data, applying a band-pass filter to remove frequencies that are
not useful in the later elaboration stage. It also scales the EEG values for
the later stages of the pipeline. Then, the same data stream is processed by

21

2 – Technical Background

three other stages. Each stage elaborates the data for a specific portion of
the human brain: the scalp, the brain cortex surface, and the brain fibers.

The scalp and the brain source imaging stages take the potential mea-
sured by the EEG electrodes and elaborate it for the final visualization.
The pipeline has to output an intensity value for each vertex of the meshes
displayed in Unity. The details of these implementations will be presented
in the section 3.3.1 The fiber localization step has to identify which fibers
are activated based on the recording received. The brain fibers displayed
in the Neurosurf application are a simplification, done for a visualization
purpose, of the whole white matter tracts existing in the brain. For this
reason, the algorithm identifies the group of fibers in the Neurosurf applica-
tion that correspond to the real brain element that has generated the signal.
The input of this pipeline stage is the potential values found on the surface
of the brain mesh by the previous source imaging step.

Brain mesh Generation Pipeline

The human head mesh was obtained by making use of publicly available
human MRI and fMRI. Some of the datasets used in this project were the
ICMB-NY2 and atlases provided by the NeuroImaging & Surgical Technolo-
gies (NIST) Lab. The first step of the pipeline adopted was the segmenta-
tion of the MRI to obtain a 3D geometric mesh. This operation was done
with Freesurfer 3.

FreeSurfer is a public platform that provides a set of tools for process-
ing and the analysis of human brain MRI and fMRI images. By using
the FreeSurfer tool-set, we were able to generate a mesh for the scalp, the
skull, and different brain models. The brain models were then processed by
Brainstorm [45], an open-source application dedicated to the elaboration
of magnetoencephalography (MEG) and electroencephalography (EEG).
Brainstorm allows an integration of the EEG source imaging map, needed in
the context of an ESI pipeline, with the result of the FreeSurfer elaboration.
Brainstorm allows an alignment of all the data in the same coordinate sys-
tem, based on the subject physical characteristic. The Electrodes can then

2https://www.parralab.org/nyhead/
3http://surfer.nmr.mgh.harvard.edu

22

https://www.parralab.org/nyhead/
http://surfer.nmr.mgh.harvard.edu

2.4 – Project organization

be placed on the reconstructed head geometry, for then process these pieces
of information to generate the leadfield matrices needed for the Forward
and Inverse Problem.

The import in Unity was done through Paraview. The output of Freesurfer
was converted in a VTK format and subsequently converted in a format
compatible with Unity.

Fiber Generation Pipeline

(a) medInria tractography (b) Blender conversion

Figure 2.8: Comparison between the initial tractography and the fiber
pipeline result.

The brain fibers, also called association fibers, consist of axons that
connect specific cortical areas inside the brain. Obtaining the whole con-
nectome of the human brain is a challenging operation, of particular interest
in neuroscience applications. The creation of a white matter tract map is
usually done by a process called tractography. The tractography is a DTI
(Diffusion Tensor Imaging) 3D modeling technique that aims to estimate
the brain connectome starting from diffusion magnetic resonance imaging
(dMRI) [26, 27].

A tractography consist in a large dataset of streamlines, sequence of
point located in the 3D space, that can be presented using 2D or 3D vi-
sualization. However, a tractography can be made of a high number of
streamlines, with an order of magnitude of about 106 elements, making the

23

2 – Technical Background

interpretation and the elaboration of the connectome a problematic task.
Since the final goal of this pipeline is the generation of a set of meshes that
will be used in a complex Virtual Reality environment, a clustering algo-
rithm was implemented to reduce the number of images obtained from a
tractography. Starting from a set of dMRI, a tractography can be extracted
and visualized with medical image processing software such as medInria.

The obtained tractography has then been processed with the Quick-
Bundles algorithm [13], an unsupervised learning algorithm able to extract
centroid streamlines with a complexity that is linear in respect of the num-
ber of input streamlines. With QuickBundle, we were able to extract about
400 centroids from the starting tractography generated by medInria. The
obtained centroid and streamlines were used to generate a Leadfield matrix
for the fiber weaving, to apply the EEG source imaging techniques from an
EEG recording.

To create a mesh that can be imported and visualized in Unity, we have
established a python based pipeline for the elaboration of the centroids. The
first step of the pipeline consists of a recentering operation of the points,
to match the reference system with the one used by Unity. Then, by using
the Blender python engine, the mesh of the fiber were generated, by using
the algorithm wich pseudo-code is presented in the algorithm 1. Blender is
an accessible free and open-source 3D creation suite. Its core is written in
Python and can be used to generate 3D geometries algorithmically. This
algorithm presents the operations done on the data obtained by QuickBun-
dle to create a mesh compatible with Unity for every fiber. Each fiber is
then exported in the .fbx format. This set of meshes is then imported in
Unity together with the file listing the centroids position, used to identify
each fiber in the final scene.

24

2.4 – Project organization

Data: list of centroid and fiber lines extracted from QuickBundles
Result: A 3D mesh for every input centroid and lines
for every centroid do

Extract the termination point for the centroids;
for every line do

if lines belongs to centroid group then
Add it to a centroidvertexlist;

end
end

end
for every element in centroidvertexlist do

Create a Spline curve that passes through the vertex in the list;
Add a Bevel modifier;
Fill the generated curve;

end
Algorithm 1: Fiber creation algorithm

25

26

Chapter 3

Virtual Reality System

This chapter describes the proposed implementation for the virtual reality
system used for real-time neuronavigation. First, the project organization
will be covered before focusing on some of the most important features de-
veloped and how they impact the overall application. Some implementation
details are presented at the end of this chapter.

3.1 Neurosurf Introduction

The goal of this project is the creation of a new virtual reality intracra-
nial neuronavigation system able to provide a real-time visualization of the
human brain electrical activity. This environment offers a navigable and re-
alistic 3D representation of the human head, displaying its main structures
such as the scalp, the brain and a visualization of the brain fibers. These
structures have to correctly represent the real-time activation of the vari-
ous brain areas deduced from either recorded or simulated EEG recordings.
State of the art EEG source imaging techniques has been implemented to
map, in real-time, the electric potential read by the sensors on the surface
of the scalp to the brain structure visualized in the proposed application.

Several constraints must be satisfied to achieve the proposed objective.
The EEG source imaging problem should be solved in real-time, to obtain
a correct visual representation of the electrical signals object of study. This
problem requires computationally expensive operations. For this reason, we
have developed advanced algorithms capable of solving the source imaging

27

3 – Virtual Reality System

problem with a minimum delay, allowing a real-time visualization of the
recorded electrical activity. In addition to the source imaging problem,
a virtual reality environment demands a high amount of computational
resources. Every frame should be rendered at least two times, three in case
of a simultaneous desktop visualization. The integration of a VR application
with the presented source imaging algorithms is a delicate task that has
required a careful optimization since a fluid navigation is a fundamental
component of a virtual reality experience. The motion sickness that can
be caused by a virtual environment is a known issue [23], that is still a
challenge with the modern VR technologies, especially when dealing with
computationally heavy setups. To solve these challenges we have designed
and implemented several solutions that are presented in this chapter.

The application was developed using the Unity Engine, with most of the
programming elements written in C#.

3.2 Project organization

Unity organizes all the objects, environments, and menus needed for an
application in a structure called a scene. As a comparison with a traditional
computer game, the scene can be seen as a container for all the elements
needed for a single level. Unity defines every object present in the scene as
a GameObject. The GameObject is an entity that can model any element
of the application such as meshes, lights, or event scripting logic. The
properties of a GameObject are called components, which can be specific
property provided by the engine (like the transform component for the
position) or scripting component created via C#. In the proposed work, we
have organized the virtual reality application in a single scene containing
all the main elements (Figure 3.1).

3.2.1 Camera

A single stereoscopic camera, called [CameraRig], is used for both the vir-
tual reality experience and desktop visualization. We have attached to this
object the scripts responsible for the tracking management and the camera
position in the space. The camera, in the VR environment, acts as the "eyes"
of the user in the virtual world. When positional tracking is enabled the

28

3.2 – Project organization

Figure 3.1: Neurosurf’s scene hierarchy

camera position responds only to the user movement. The camera move-
ment in a virtual reality environment should appear natural to the user,
and avoid modifying the camera status without user interaction.

The camera component is responsible for the definition of the rendering
viewport dimension and the position of the clipping plane in the scenes. The
clipping planes are two imaginary planes set in front of the camera to define
the rendering frustum, the area, that should be rendered and projected on
the 2D screen. The "near" clipping plane was placed very close to the camera
position. This placement was chosen for allowing a mesh display when the
user is navigating inside the brain structure thus avoiding unpleasant visual
effects like geometries that disappear when the camera comes close to the
object. When using the application in a desktop configuration, without the
headset, only one of the two images captured by the stereoscopic camera
is displayed and rendered on screen. The camera, in this configuration, is
controlled by the user input on the keyboard.

The chosen stereo-rendering for the HTC Vive headset is the single-
pass option offered by Unity. On a traditional rendering pipeline for a
stereoscopic camera, the scene is iterated twice, and the rendering pipeline

29

3 – Virtual Reality System

is independent for the left and the right eye. This process in Unity is slightly
optimized since it requires only a single pass of the scene, and the culling
and shadow computation steps are shared for the eyes. However, to optimize
an XR application, Unity introduced the single-pass rendering. With this
mode, the rendering pipeline is executed only once per frame, by rendering
both eyes at the same time. Between each draw call the render pipeline
switch the viewport between the two eyes, alternating the object rendering
between the two eyes. This operation is faster than the multi-pass camera
since, despite the overhead introduced by the viewport swap, it allows a
single traversal of the render pipeline [2].

3.2.2 Illumination

The illumination is limited to a single directional light set to cast no shadow.
This light is primarily used to give the user a depth sensation when ob-
serving the various brain tissue and the brain fiber weaving. Most of the
illumination in the scene comes from the brain activity and the fiber activa-
tion. The activation is presented with a change on each mesh vertex color
and with light emission from the most active one. The dark background
helps making the brain activity stand out, adding a sense of immersion to
the scene. The use of a 3D virtual room in which the user can move while
immersed in the virtual reality was tested, but it resulted in being confusing
and reduced the focus of the user to the brain activity. The other lighting
and texture needed in the creation of a realistic environment reduced the
ability to observe the data displayed in the brain model. To keep the ob-
server’s attention on the neuro-navigation, no meshes other than the brain
structure are included in the scene.

3.2.3 C# scripting component

An application manager GameObject, the GameManager, was used to con-
trol the global status of the scene. We have implemented the GameManager
following the singleton pattern. Its primary role is the management of some
status variables and of the system configuration. By creating a singleton
class, we have made the important variable accessible in other sections of
the code like, for example, the transparency values that can be changed by
the user from the UI. Other parameters are exposed in the editor for quick

30

3.2 – Project organization

adjustment by the developer. In addition, the GameManager is responsible
for the connection setup with OptiTrack, with the LSL streaming used in
the source imaging pipeline and with the tool adopted for managing the
controller. The colormap manager was inserted as a child of the GameOb-
ject. The colormap manager behavior is dependent on the data received by
the streams, made available by the stream activated by the GameManager.
The Gui GameObjects manage the User Interface. This component con-
tains the design of the UI displayed in VR and desktop mode, and the C#
scripts used to control the user inputs through the UI.

3.2.4 3D polygonal meshes

All the brain-related 3D geometrical elements are organized hierarchically.
An empty parent object, BrainObjects, is used to control the global position
and orientation of the meshes in the space.

Figure 3.2: Brain meshes as shown in the Unity editor

Brain meshes and structure

The brain meshes consist of several elements, as can be seen in Figure 3.2:

• An external semi-transparent scalp. This mesh is relatively simple,
consisting of only 1082 vertexes and 2160 triangles. The scalp will
display a simple outline of a generic human face, providing positional
information such as the location of the eyes or the ears.

31

3 – Virtual Reality System

• Inside the scalp there is a mesh representing the skull. This mesh is
built with a low number of vertexes (642 vertexes and 1280 triangles),
since there are no electrical activities that will be displayed on it.

• The brain mesh, instead, is the key element of the proposed visualiza-
tion system. Various meshes were adopted for different simulations,
with different degrees of complexity. The simplest mesh used was
made with about 15,000 vertexes and 30,000 triangles. The system,
however, is capable of supporting more complex 3D structure, going
up to 1,500,000 vertex and 560,000 triangles, providing a much higher
resolution and fidelity. The exploded mesh generated with the Mind-
boggle process that will be presented in Chapter 4 consist of over
130.000 vertexes, split in 70 independent sub-meshes.

The brain activation is displayed on the scalp and the brain, while the
skull acts as an inert surface. The electrical activity recorded through the
EEG electrodes is shown on the surface of the scalp. The scalp displays the
potential on the surface of the head, based on the elaboration done by the
source imaging pipeline. Each EEG reading corresponds to the activation
of a part of the brain, displayed on the surface of the brain mesh. For each
vertex of the mesh, in each frame, a potential value is computed by the
source imaging pipeline and received by the application. This value is then
applied with a colormap on the vertexes of the brain mesh. Each mesh has
a specific shader attached used to display the information that each brain
element should suggest to the user. The shader used for the skull is the
simplest one since it does not need to show any brain activation. For this
reason, the shader is made with a gray base color with an additional fresnel
effect used to increase the sense of depth of the mesh. This shader supports
transparency because an opaque mesh would completely hide the brain and
fiber mesh underneath it. For the scalp and the brain instead, some specific
vertex shader is used. The color of each vertex is based on the electrical
intensity computed. The color is assigned according to a specific colormap,
process described in detail in Section 3.3.2.

Brain Fiber

Another critical element displayed is the representation of the brain are
the fibers contained inside the human brain. To achieve a more effective

32

3.3 – Key Features

visualization, only a condensed part of the complete geometric structure
of the human brain fiber is displayed. In the scene, there are around 400
independent meshes, each representing a bundle of fibers contained in the
brain. The creation process in the pipeline was previously described in
Section 2.4.3.

All the fibers are grouped in a single object, containing a script used to
handle all the individual fiber meshes during the simulation. This script,
called FiberManager, reads from a textual file the coordinates of the cen-
troids used to identify the fibers and to map the detected electrical activity
correctly. When displaying the activity of the brain and the fiber, an LSL
stream sends a level of activity associated with the fibers. According to a
configurable parameter called the activation density, the script defines the
size of the portion of the fibers that will be displayed as active. When a
fiber is set to active, its shader is changed to display the recorded activa-
tion. The shader for the active fiber displays a flow animation, showing the
direction of the electrical activation along the fiber. More details on the
shader adopted are presented in Section 3.4.2.

Controllers Meshes

When using the application in virtual reality mode, the input is managed by
a couple of PlayStation Move controllers. To make the interaction natural
for the user, they need to be rendered and placed in the virtual environment
based on their position in the real world. There are then two meshes that
model the controller in the scene, only showed to the user when using the
application with the virtual reality system.

3.3 Key Features

3.3.1 EEG source imaging implementation

This section describes the implementation of the already introduced source
imaging pipelines.

33

3 – Virtual Reality System

Figure 3.3: Scalp activation as shown in the VR scene.

Scalp Source Imaging

This pipeline has to elaborate the potential value on every vertex of the
scalp mesh, based on the potential read by the EEG electrodes. The pa-
rameters used in the setup phase of this program are the vertex coordinates
used for the scalp mesh and the coordinates of the electrodes. The co-
ordinates are extracted from the mesh used in the ESI pipeline, with the
electrodes placed on the model using a standard configuration. By using
the program proposed in Chapter 5 it is possible to apply this pipeline to a
generic electrode position setup on measured location position. With these
parameters, the algorithm generates two interpolation matrix of order 4
by using an interpolation based on a spherical spline approach, proposed
in [44]. These matrices, one for the scalp vertex and the second for the
electrode position, are generated at the program launch, to reduce the com-
putational power needed during the application of the interpolation to the
sample. The procedure is made of three steps:

• The electrode position is placed on the sphere used to model the scalp,
obtaining a set of spherical coordinates for each electrodes

• The potential data are interpolated on the sphere surface according

34

3.3 – Key Features

to the following relation

U(E) = c0 +
n∑

i=1
cig(cos(E, Ei)) (3.1)

where zi are the potential value measured at the ith electrodes, in-
terpolated by the spherical splines U, Ei are the electrode spherical

coordinate and ci are the solution of the system

⎧⎨⎩GC + Tc0 = Z

T ′C = 0
,

with T ′ = (1,1, . . . ,1), C ′ = (c1, c2, . . . , cn), Z ′ = (z1, z2, . . . , zn) and
G = (gij) = (g(cos(Ei, Ej))).
The function g(x) is defined as

g(x) = 1
4π

∞∑
n=1

2n + 1
nm(n + 1)m

Pn(x) (3.2)

where Pn is the nth degree Legendre polynomial. Based on the Perrin
research, m was chosen with m=4, while n is equal to 7, for having a
precision of 10−6 on g(x).

• These splines values can then be projected on the surface plane, by
using a radial projection.

For visualization purposes, we have limited the interpolation area to the
upper part of the scalp, excluding from the elaboration every scalp vertex
placed at a distance greater than a fixed tolerance from any electrode. The
interpolated value for every mesh vertex is obtained by applying a scalar
product between the vector of the EEG samples received from LSL and
the interpolation matrix computed at the startup. The resulting vector is
normalized and sent through an LSL outlet to the Unity VR application.

Brain Source Imaging

This step of the pipeline is responsible for the application of the ESI tech-
niques described in Section 2.3. The brain leadfield is generated with a
BEM technique, while the algorithm used for the resolution of the inverse
problem is sLORETA [42]. Part of the optimization done for this algorithm

35

3 – Virtual Reality System

is a pre-computing phase at the start of the algorithm used to extract some
intermediate matrix from the input leadfield to accelerate the elaboration
loop used to process the data. All the matrix operations were performed
using the Python NumPy library, that allows for an efficient vector repre-
sentation and enables high performance in the operation [49].

Fiber localization

To identify which fiber is active based on the EEG reading on the scalp, we
have split the problem in two parts. At first, we have created a Leadfield
for the coordinates corresponding to the two end of the condensed fiber we
have obtained through the QuickBundles process. This leadfield is used to
map the brain current distribution to the potential at the end of every fiber
structure used in the visualization. By using the result of the IP generated
by the brain ESI phase, the fiber localization algorithm elaborates the po-
tential at the two end of every fiber cylinder. If this potential difference
is higher than a threshold (imposed to filter out noise and low activation
values) the fiber is considered active and it is flagged for activation in the
LSL output. For every fiber Unity receives an indication of the fiber status,
activating or deactivating it based on the stream values.

3.3.2 Colormap

In the scientific data visualization, a major design choice that has to be
made is how to color the data. It is necessary to define a function that
maps numerical value with a range of color. The range of color chosen is
commonly known as "colormap." A colormap is then a sequence of continu-
ous color, distributed along a range of values. The reason to use a colormap
is to provide to a human observer the ability to rapidly identify the areas
that represent the values of interest. The choice of the right color set is
essential for transmitting the right information and give the observer the
most effective clues to achieve a correct interpretation of the scientific data
visualization.

Some color patterns, like the commonly used rainbow patter, despite the
use of a large set of color, have been proven to perform poorly by multiple
studies [6, 39] Another factor that must be taken into account when choos-
ing an effective colormap is the different sensibility of each observer and,

36

3.3 – Key Features

Figure 3.4: Some of the colormap used for the project. From top to bottom:
viridis, plasma, magma, black body, inferno, blacktored.

possibly, the variety of display system that could be used. In this project
the chosen colormaps are displayed on both a traditional LCD monitor and
on the AMOLED display used by the HTC VIVE.

The adopted solution was to provide the user the capability of choosing
a colormap between a set of pre-selected maps. The colormap patterns
were taken from some of the colormap contained in the Python Matplotlib
Library and from the map proposed by Kenneth Moreland on its web-page
[38]. The colormap change can also be easily applied during the execution
of the application.

Mapping between values and color

Every chosen colormap has been converted into a .CSV file containing 256
lines of RGB values, corresponding to the color in the map in the various
range. In C# we have defined a ColorMap class, used to model each col-
ormap, providing useful helper methods. The main field of this class is a
list of colors, mapping the values extracted from the input .CSV file into
the color Unity object. The color object allows the specification of an alpha
value for each color, that can be applied to a texture if the shader supports
the transparency. To emphasize the higher values of the colormap, we have
added a linear transparency option. By specifying a minimum and a max-
imum alpha factor, the transparency range is linearly subdivided over the
256 color value existing in the ColorMap.

Another class, called ColormapperHandler was used to apply the col-
ormap to the mesh vertices and to change the visualized colormap at run-
time rapidly. This class was implemented using the singleton pattern, to
avoid multiple allocations of the list of instantiated colormaps and to pro-
vide a single point of access to the colormaps information in the application.

37

3 – Virtual Reality System

This handler keeps track of which colormap is actually in use, exposing the
colormap information of the active map. It also permits the change of the
linear transparency threshold for every stored colormap. This swap is an
expensive operation, that is not available to the final user, but it was ex-
posed as a property in the Unity editor for fast adjustment during the setup
phase of the system.

The actual mapping between the data received from the source imaging
pipeline and the colormap stored in the ColormapperHandler class is done
by a script attached as a component to the relevant objects. The data
received by the pipeline are stored in a queue since they arrive at an irregular
rate. Every frame a new vector of values is pulled from the top of the queue.
These values consist of floating-point numbers representing the electrical
activity on each vertex of the brain and the scalp. This data are normalized
according to the maximum and minimum received value and then scaled
along the colormap.

1 private ColormapperHandler cm;
2 ...
3 // data received by the LSL inlet
4 values = (double []) receiver . datasetQueue . Dequeue ();
5

6 // colors is an array of Colors with a size equal to the mesh
vertex number

7 cm. ApplyColormap (values , colors);
8

9 // the color matrix for the mesh is replaced with the one
extracted by the colormapper

10 mesh. colors = colors ;

3.3.3 Interaction mode

The application was developed with two distinct configurations to provide
the best user experience in both a virtual reality system and a traditional
desktop setup. The visual information that the system provides is the same
in both configurations, but it is presented to the user in different ways.
To accommodate the use of these two configurations several features were
adapted. The camera is positioned differently to frame the 3D model in a
meaningful way in the two environments. The input used is also different:
in a desktop setup the user can use the mouse and keyboard, while in the

38

3.3 – Key Features

virtual reality system the user uses a couple of controllers. With different
input systems comes the need to change the user interface, particularly the
option menu.

Traditional Desktop Mode

In this mode, which we have called "Keyboard mode", the application is
meant to be interacted with a keyboard. The scene can be seen using a
traditional monitor or with the VIVE Headset. When the system is in this
configuration, the tracking for the headset is disabled and the headset acts
only as a static immersive display. The brain is positioned at the center of
the screen, and the camera is always pointed towards it, by making use of
the LookAt() function provided by the Unity engine. The user can interact
with the scene using the keyboard with the following key binding:

• The camera can be rotated with the keys W, A, S, and D. With W
and S, the camera rotates along around the X-axis of a positive or a
negative value, respectively. The A and D, instead, rotate the camera
around the Y-axis. The rotation is done using the center of the scene
as a pivot point.

• Using the keys O and L, the user can "zoom in" or "zoom-out". When
pressing the corresponding key, the camera is moved along the axis
that connects the camera position with the center of the screen.

• Pressing C changes the colormap used for the visualization, as de-
scribed in the following section.

• By pressing M, the user can access the menu. The menu UI will pop-
up, partially covering the scene and allows the user to change several
settings. From the menu the user can choose which object to display
and can choose a transparency value for each mesh. There is also a
help section, meant to explain the key-bindings used in the project.

• With the TAB key, the user can switch to the virtual reality mode.
This keyboard key remains also enabled when in VR if the user wants
to come back to the desktop mode.

The camera movement is designed with a fixed-step approach. At each
update a script checks if one of the mapped movement button is pressed.

39

3 – Virtual Reality System

Then the distance from the center, the horizontal angle and the vertical
angle is updated with a value specified as a configuration parameter in the
editor.

We set some boundaries to the possible camera movement, to keep the
visualization a controlled process. The minimum allowed distance from the
center was set to 0. The maximum allowed value was chosen to allow the
minimum dimension of the visualized brain to be of a 1/10 of the screen
width, in a 16:9 aspect ratio monitor. The far clipping plane of the camera
frustum was placed at a distance such that the brain polygons are all covered
at the maximum camera distance. The horizontal rotation can be done
around the entire brain, with no limitation on the maximum angle. The
vertical rotation was instead limited to a -90° to 90° boundary, offering a
180° arc of exploration.

Virtual Reality Mode

When the user is using the virtual reality headset, the camera position is
based on the physical position of the headset, tracked by the OptiTrack
cameras. Motive calculates the coordinates of the headset and the con-
trollers and sends it to the Unity application. The controllers, disabled in
the "keyboard mode," are enabled and placed on the scene on the location
identified by Motive. If a controller position is not detected the controller
is hidden from the user.

In the virtual reality environment, the brain is positioned at the center
of the virtual room where the user can explore and move around. The
tracked area that can be reached by the user measure around 9 square
meters, spanning along the cage used for the tracking. To give a more
natural user experience, the zoom in/out functionality offered in the desktop
configuration is replaced with a "drag and re-scale" interaction. If the user
presses both of the triggers on the controller and brings the controllers
closer, the meshes are made smaller. The opposite happens when moving
the controller away from each other. With the same key combination the
brain can be moved alongside the vertical y-axis. This gesture is obtained
by moving both controllers up or down, simultaneously. The same shift is
then replicated on the mesh. The maximum and minimum height reachable
has been limited with parameters we have set beforehand. With the analog
trigger, the user can move the geometries around the x-z plane, the plane

40

3.3 – Key Features

parallel to the room floor.
The menu was also changed compared to the desktop mode. A 2D flat

surface, positioned at the center of the field of view that occludes most of the
vision in a 3D environment is not an acceptable solution since it can cause
a severe discomfort sensation and the interaction is not natural. Instead,
the menu is positioned far away from the user, in a location where the user
can still easily read the writing and can interact with using the controller.
An adjustment was applied in the render order, to make sure that the menu
appears in the foreground even if the user is inside the brain meshes.

Mode change implementation

To manage the swap between the two configurations, it was necessary to
design two separate user interfaces. In Unity, all the UI elements are placed
in an abstract place called Canvas. In the Canvas, it is possible to change
the UI rendering property and the dimension of the user interface in the
scene. To keep the UI of the two configurations independent, the adopted
solution was to create two different Canvas, one for the VR scene and one
for the desktop scene. The Canvases are then managed by a script that
activates or deactivates the UI corresponding to the correct configuration.
In a typical use case, when switching from the virtual reality mode to the
desktop mode, the script hides the VR menu element and deactivates the
VR canvas. It then activates the desktop canvas and enables the menus
contained in the canvas.

The other important features that must be controlled between the two
modes are the position of the camera and the objects in the scene and the
way the camera position is updated. When in desktop mode, the camera
position is no longer bound to the tracked headset position and is controlled
with the keyboard. Moreover, the controller is not needed when using the
keyboard so they can be deactivated and hidden from the scene, to avoid
unnecessary rendering operations. To make this change, the meshes and
the initial camera position in each configuration are temporarily saved at
the program start. When in the desktop mode, the position tracking is
disabled, and the keyboard control is enabled. The position and the scale
of the meshes are restored, and the camera position is reset in the center
of the scene, pointing at the objects. When switching to the VR scene, the
camera is temporarily set at the center of the virtual room, until the tracking

41

3 – Virtual Reality System

information reaches the application. If the tracking system is not on, or if
there are some problems with the tracking information transmission, the
user can still see the meshes, but it cannot move around the scene. This
solution was adopted to prevent the erratic camera movement that can be
caused by the absence of the tracking data, that can be very annoying for
the user. The controller is then enabled, and the corresponding meshes are
displayed.

3.4 Implementation details

3.4.1 Position tracking

Instead of using the HTC Vive’s tracking system, the position tracking is
done through the OptiTrack camera setup. OptiTrack provides a Unity
plugin to allow access to all the information that are tracked with its cam-
eras. This information is then provided to the Unity scene and are bound
with the GameObjects that represent the various tracked object. A specific
marker set was built to track the position of the VR headset. The marker is
attached to the helmet through a custom 3D-printed support (Figure 3.5a).

(a) Headset marker setup. (b) Controller marker setup.

Figure 3.5: Some of the markers pattern adopted for the VR hardware.

A significant challenge with the adopted setup was the management of
the position and rotation tracking integrated with the HTC Vive headset.
The headset shows the video feed only if it detects at least one of its base
stations used by the system to track the position of the headset in the room.

42

3.4 – Implementation details

The headset then updates its position in the virtual scene according to the
tracking information obtained by the HTC Vive lighthouse. It is possible
to deactivate the position tracking, but the rotational position in the 3D
space of the headset is always active. Since it was not possible to override
this setup, the adopted solution was to manually undo any update that the
headset receives from the HTC Vive lighthouse. Between each frame, the
program checks the updated position of the headset obtained trough the
HTC lighthouse. This information is obtained through the Unity Engine
XR API. With a 3D translation, the headset is then reverted to its original
position, effectively negating the update done through the Lighthouse. After
this step, the position information acquired through the OptiTrack system
can be applied to the camera position. The following code snippet describes
the applied transformation:

transformation . rotation = transformation . rotation *
Quaternion . Inverse (InputTracking . GetLocalRotation (XRNode
. CenterEye);

This script is attached to the camera object, and it is executed once per
frame, in the Update() step of the UnityEngine pipeline. InputTracking is
the part of the API used by Unity to interact with the tracking system of
XR applications. The XRNode.CenterEye represent the point between the
eyes that corresponds to the camera position in the scene.

3.4.2 Shader and Rendering

The light emission, the color, and the transparency of all the active geome-
tries in the scene realized with the implementation of specific shaders. A
shader consists of the algorithms and code that can be used to calculate
the color of each pixel during the rendering phase. The input parameters of
a shader are usually the lighting and the material adopted for the surface,
but it can also include more complex user-defined values. The two main
components of a complete shade are the vertex shader and the fragment
shader. The vertex shader is applied on every vertex of the 3D geometry
and is used to transform all the vertex information (color, position, texture,
etc) from the original "object space" to the so-called "clip space". The clip
space is the area used by the rasterizer to determine which pixel of the
final image needs do to be drawn. The fragment shader is instead applied

43

3 – Virtual Reality System

"per-pixel". For every pixel that the object covers on screen, the fragment
shader is responsible for the elaboration of the colorization, the depth and
alpha testing, the texture application, the lighting and shadow, and other
post-processing effects.

In Unity, the shader creation can be done by using the shader graph tool
or by writing code in a variant of the high-level shading language (HLSL).
The graph tool allows for a visual creation of the shader, while displaying
a real-time preview of its effect. HSLS is a Microsoft proprietary language
used for DirectX. It is written in a C-like language, called Cg (C stands for
graphics). For this project, we have developed a specific shader for every
3D mesh that needs to display the electrical activity of the brain.

Brain Shader The brain is the most complex mesh in the scene. It
consists of a high number of vertices and faces, placed in a non-convex
configuration. This mesh should be rendered with a semitransparent effect,
to display the fiber located inside it and the backside of the brain. The
standard transparent shader offered by Unity, however, does not write into
the depth buffer. During the culling phase of the rendering pipeline, if a
complex non-convex mesh is not inserted in the z-buffer, it can result in
drawing order problems.

The culling operation is an optimization process in the rendering pipeline
that, after the application of the vertex shader, verifies which polygons are
facing away from the camera, and removes them from the rendering pipeline.
This operation is usually performed to avoid a rendering operation for all the
polygons that are not visible for the user. The workaround we implemented
is the filling of the depth-buffer before the transparency is rendered, allowing
a correct culling operation while preserving the semi-transparency effect.
The following code snippet illustrates the key parameter set in the shader
to obtain the desired effect:

1 SubShader {
2 Tags {" Queue"=" Transparent +1000" " IgnoreProjector "="True

" " RenderType "=" Transparent "}
3 LOD 200
4 Pass {
5 ZWrite On
6 Blend SrcAlpha OneMinusSrcAlpha
7 //in the first pass we render the back faces
8 Cull back

44

3.4 – Implementation details

9 ...
10 // fragment and vertex shader are located here
11 }
12

13 Pass {
14 ZWrite On
15 Blend SrcAlpha OneMinusSrcAlpha
16 // Then we render the front faces
17 Cull front
18 ...
19 // fragment and vertex shader are located here
20 }
21 }

The rendering queue parameter is a value used by Unity to establish the
order in which transparent and opaque objects are rendered. In this project,
since we have three transparent objects (scalp, skull, brain) covering an
opaque structure (the fibers), we had to specify the transparency rendering
order explicitly, to achieve a correct visualization. The Projector is a Unity
visual effect that allows a projection of a material onto all the object covered
by the frustum of the projector object. This effect does not work effectively
with a semitransparent object, so we have disabled it. The RenderType flags
used to categorize the shader in a specific group, like opaque, transparent,
background, and others. In the pass section of the shader, we force a write
in the z-buffer but we split the operation for the two sides of the faces. Since
the mesh is not convex, due to the presence of the two separate hemispheres
and the sulci on the surface of the cortex, in the first pass we add to the
buffer the polygons facing towards the viewer. These polygons correspond to
the external brain surface, the gyri, when the user is viewing the mesh from
outside and the sulci when the camera is immersed within the geometry.
The second pass adds the remaining polygons, allowing a correct display of
the various layer of the brain.

In the vertex shader, the color of each vertex is applied based on the color
array generated by the colormap algorithm. The fragment shader, instead,
applies the color on every pixel and is responsible for the application of the
transparency value chosen by the user in the options menu:

1 col.a = col.a * Transparency

45

3 – Virtual Reality System

Skull and Scalp shader Skull and Scalp are simpler convex meshes than
the brain. For this reason, we have adopted a Unity graph shader. The
Albedo, the parameter that controls the base color of an object is based on
a vertex color multiplied by a Fresnel effect. For the skull, the vertex color is
unique while for the scalp the color array is generated by the color-mapper.
We also added an emission and specular propriety, also based on the vertex
color. The transparency is applied to the whole shader, and it is based on
the alpha value set in the UI.

Fiber shader For the fiber, we developed two distinct shaders, one during
the rest phase, and a second one for the activation. When the fiber is
not active, the shader is a simple opaque shader, with an added Fresnel
effect to add some reflective effect at the border of the fiber cylinder. For
the activation, we implemented an animated shader, used to display the
propagation of the electrical signal inside the fiber. We do not show the
exact flow of the electrical signal, but instead, we display an animation on
the fiber as long as electrical activity is registered on it. A preview of the
shader effect can be seen in Figure 3.6. This solution was adopted since it is

Figure 3.6: Fiber shader preview.

difficult to display the fast electrical transmission in the neurons effectively.
The animation was done by moving a white-striped texture alongside the
fiber, controlling the tiling and offset parameter of the Albedo UV. The
tiling and the offset are changed by a distance determined by a simple

46

3.4 – Implementation details

operation of speed × velocity, where velocity is the parameter we used to
regulate how fast the white stripes should move alongside the fiber cylinder.

3.4.3 Stream management

The application receives all the inputs from several different streams. We
have split the data flow used to display the electrical activity on the fiber,
the brain, and the scalp in three different streams, implemented by using the
Lab Streaming Layer (LSL) protocol. In VR, two additional input flow has
been included: the positional tracking of the objects and the input received
by the controllers. Both of these information are sent to the Neurosurf
application by Motive, with a server-client paradigm.

Lab Streaming Layer (LSL)

The Lab Streaming Layer (LSL) [4] is a library designed to stream scientific
data across devices over a shared network. It is composed of a core transport
library (liblsl) available in several language interfaces (C, C++, Python,
Java, C#, MATLAB). On top of liblsl, several tools can be adopted for
acquiring data from the lab instrumentation (like, for example, an EEG),
visualize or record it.

The LSL API provides some abstractions that can be implemented to
transmit or receive scientific data:

Stream Outlets this data structure is used to push the data into the
network. When an outlet is created, the stream is announced on
the network, according to the network setup and layout, by using
UDP multicast messages. When a client subscribes to the inlet, a
TCP connection is established between the two hosts. The data can
be pushed sample-by-sample or chunk-by-chunk, with a regular or a
variable rate but with a uniform value type.

Resolve Function functions provided by the LSL API that can be used
to identify which streams are currently active on the lab network.

Stream Inlet used to connect a client to an active streaming Outlet. From
the outlet, it is possible to retrieve meta-data on the received stream
and obtain the samples sent by the outlet.

47

3 – Virtual Reality System

All the streams are natively synchronized using the Network Time Pro-
tocol (NTP). LSL was used to implement the communication channels be-
tween each step of the EEG elaboration pipeline. LSL does not offer a secure
transmission of the data since it was designed for controlled laboratory en-
vironments. If the security of the streams becomes an essential parameter
for the application, a VPN-based solution should be implemented to protect
the data transmission. LSL allows multiple subscriptions from the inlets to
a single outlet. This feature has allowed the implementation of a modular
pipeline in which the source imaging algorithms for the brain, the scalp,
and the fibers can be split into three separate program, that can be exe-
cuted by different workstation connected on the same network, overcoming
computational limitation when using high-density EEG or complex brain
structure. The data received by these three modules come from the same
outlet generated by the prepossessing algorithm.

The Virtual Reality application receives the data from the various com-
ponents of the pipeline, generally placed on other computers connected to
the same network. Having the computationally heavy task parallelized on
different workstation frees resources for the computer dedicated to the vir-
tual reality rendering.

Motive C++ Wrapper

As already mentioned, the camera frames received by OptiTrack are elabo-
rated by Motive to obtain the position of each recognized marker in space.
Motive acts as a server, able to stream data using a UDP unicast or multi-
cast protocol. For this project, the configuration we have adopted is based
on a transmission on the local-host address, since we have utilized the same
workstation to manage the tracking and the VR visualization. The frames
acquired from the cameras are sent via UDP multicast through a dedicated
Ethernet port in the main workstation. On top of the standard Motive ap-
plication, OptiTrack offers a C/C++ API that can be used to implement the
Motive functionalities without a graphical user interface. To obtain a com-
plete integration between the tracking system and the Unity application,
we have developed a C++ application using the Motive API, to acquire the
tracking data. At launch, Unity starts the C++ application with a calibra-
tion file, a configuration file, and a target FPS parameter. The configuration
and the calibration are generated in the standard Motive application and

48

3.4 – Implementation details

then exported for the integrated C++ platform in an OptiTrack proprietary
binary format. The calibration file contains all the information related to
the camera position and orientation, the reference system adopted, the ori-
gin of the system and the location of the floor. The configuration file exports
all the data related to the configured tracker set, the rigid body defined in
Motive, the network configuration and more. Moreover, we have added a
parameter to specify the target number of positional information that the
application should provide at every frame, to match the framer-rate coming
from the camera with the visualization frame-rate of the VR headset. With
the HTC Vive, the maximum FPS supported are 90, but the tracking sys-
tem can stream information with up to 240 frames per seconds. This C++
application, after loading the calibration and importing the configuration,
activates the camera and starts sending the elaborated position to Unity.

SCP Server and XInput

The controllers used in this project consist of a modified version of the
Sony PlayStation Move VR controller. The tracking sphere of the PS Move
has been replaced by a set of five retrospective markers of 1.2 cm of di-
ameter. When connected, the controllers act as standard Sony Playstation
Controller. To acquire the input from a Sony controller on a Windows
platform, a specific driver and a wrapper for XInput is needed. XInput is
the standard API, available through the DirectX SDK, used to acquire the
input of generic game controllers in a Windows environment. XInput is
a C++ based API, but an open-source .NET wrapper is available, allow-
ing the adoption of the Xinput functionality in Unity [14]. This wrapper
was implemented in the Unity application to access the input data sent by
Motive.

Motive interfaces with the Sony controller with a tool called ScpToolkit.
ScpToolkit is a software composed of the Windows Driver needed to access
the PS Move controller and an XInput wrapper to map the data to the
standard DirectX configuration. The input is acquired by Motive and bun-
dled with the positional information streamed via UDP. Each controller
button set is mapped inside Motive with the corresponding set of markers
organized in a RigidBody.

In Unity, the information regarding the input of each controller is ac-
quired by interrogating the XInput API, using the index of the rigid body

49

3 – Virtual Reality System

as an ID (playerindex in the presented code):
GamePadState state = GamePad . GetState (playerIndex);

GamePadState is a struct offered by the XInputDotNet wrapper to map
the controller inputs, that is built as follows:

Listing 3.1: XInput GamePad structure
1 namespace XInputDotNetPure
2 {
3 public struct GamePadState
4 {
5 public uint PacketNumber { get; }
6 public bool IsConnected { get; }
7 public GamePadButtons Buttons { get; }
8 public GamePadDPad DPad { get; }
9 public GamePadTriggers Triggers { get; }

10 public GamePadThumbSticks ThumbSticks { get; }
11 }
12 }

For every element of the struct, we implemented a C# event following the
.NET Observer Design Pattern [3]. When a button is pressed the corre-
sponding event is raised and every class subscribed to that event receives a
notification. For example, by pressing the X button, the UI menu is shown.
The UI class is, in fact, subscribed to the event related to the X Button
and has a method to manage the received change in the button status.

50

Chapter 4

Brain segmentation

This chapter is dedicated to the presentation of a script designed to convert
the brain segmentation result obtained in Paraview in a format compatible
with the VR visualization. It will also present an additional feature devel-
oped for the system, which aims to give the user the opportunity to select
isolated brain area, by leveraging on the Mindboggle software tool-set.

4.1 Brain Mesh conversion

The Visualization Toolkit (VTK) is one of the most common software used
for the manipulation and visualization of 2D and 3D scientific data, in
particular for medical imaging. It is an open-source software, written in
C++, with wrapping for Python and Java. Almost all the medical 3D
images used for this project were exported and computed using VTK. A
game engine like Unity is not programmed to display scientific data and
does not support a direct import of VTK 3D images. Some interaction
between Unity and VTK were recently created, such as the possibility to
render VTK medical imaging data using OpenGL directly in a Unity scene
[50]. This solution was avoided because the brain element displayed in
Unity was, in most cases, reworked to obtain a better visualization effect
or for computational reason. Moreover, the project utilizes a combination
of meshes that comes from both a .VTK format (the brain, the scalp, and
the skull) and others that were modified in a .fbx object (the brain fibers).

As described in chapter 3, the brain electrical activity is displayed

51

4 – Brain segmentation

through a change in real-time of the color of each mesh vertexes. To ef-
fectively apply this operation to all the elements in the scene, it has proven
to be necessary to have all the meshes under a single render pipeline. As a
result, the adopted solution was to convert all the .VTK in a format that
can be read and manipulated by Unity. According to the Unity documen-
tation for the used version of the software (2018.4), the engine supports
Filmbox (.fbx), Collada (.dae), Autodesk 3ds Max (.3ds), Autocad (.dxf),
and Wavefront (.obj) files. The solution that was adopted before this project
was the conversion of the .VTK file in an intermediate format that can be
opened with a third application, with format like PolyLine (.ply) or STereo
Lithography interface format (.stl).

The program used for the final conversion step are typically some 3D
computer graphics modeling software, like Blender o Autodesk 3ds Max;
both application can generate an output mesh with a format that can be
read and imported in Unity. The conversion sequence mentioned above is
lengthy, requires the knowledge of multiple software and can visibly modify
the mesh between each step of the pipeline.

The proposed solution was to develop a script to directly convert a .VTK
file in one of the Unity supported formats. The data structure used by both
the Wavefront and the VTK file are very similar, so the .obj format was
chosen as the target for the conversion.

VTK File format The VTK files can be saved into two different formats:
a legacy text-based format that can be directly read and modified, and a
binary based on an XML file. The legacy files are written in ASCII and are
subdivided in 5 parts:

• Header Header that identifies the VTK version used.

• Title Maximum 256 characters used to name the file

• Data Type This section can be either ASCII or binary. This line is
also used in the XML version.

• Dataset structure Line used to describe the geometry and topology
of the data contained in the file

• Dataset attributes The actual values of each element of the geomet-
ric figure saved in the file. Each data type starts with a line containing

52

4.1 – Brain Mesh conversion

a keyword describing the data (e.g., VERTEXES) and the number of
lines associated with that data.

The XML file can be saved as a serial file, in which all the information
is contained in a single file, or using a parallel structure. With the parallel
structure, the dataset is split into several elements, and it is designed to
work with multiple parallel processes used to read or write the data.

Wavefront OBJ File format The Wavefront .OBJ is an ASCII text-
based format used to describe the geometry information of an object. It
can also be written in a binary form to obtain better compression. The .obj
describes a standard to represent polygonal geometry based on points, lines,
and faces. Curves and surfaces are also supported, for the representation
of free-form geometry. Each line in the text file can either be a keyword
or a geometric value. For the values, the first ASCII characters in the line
are keywords used to identify the information contained in the line. For
example, the string

v 1.000 -1.000 2.000

is used to represent a vertex at the coordinates (1,-1,2).
The file has to be subdivided into sections. In each section, the keywords

appendix has to be listed in an order defined by the format. Some of the
elements that were used for the conversion, with the respective appendix
are geometric vertexes (v), texture vertexes (vt), texture normal (vn), point
(p), line (l) and face (f).

Implementation Most of the geometric information is saved in the same
way in the two formats. The reference system is also the same, so it is
possible to append the correct .obj appendix at each of the .vtk geometrical
data to obtain a valid format conversion. Since the .VTK file can be also
be written using a serial procedure, the VTK Python wrap was used to
manipulate both the legacy text-based .VTK format and the more recent
parallel file format. Python was chosen for the flexibility and the portability
of the script and the possible integration with other application.

The script loads the VTK file and converts every geometrical informa-
tion contained in an ASCII string that follows the OBJ standard.

53

4 – Brain segmentation

The source code for the script is presented in the appendix 6.2.
The script can be applied over a single file or over a folder containing mul-
tiple files that need to be converted. Since the conversion is text manipula-
tion and does not require complex geometric calculation, the operation has
proven to be fast and reliable. With the meshes presented in the following
4.2 subsection, the elapsed time for the conversion of the entire brain was
under 1 minute. The resulting .obj file retains the label name of the original
.vtk file, a particularly vital information when several brain parts are split
in different files.

The converted files can then be directly imported in Unity, without the
need for further processing.

4.2 Brain Labeling and Mindboggle
The main component of the human brain, the cerebrum, is not a uniform
structure. It is composed of two hemispheres that can each be further di-
vided into specific lobes. Over the past decades, the scientific literature has
defined several labeling protocols to precisely identify the different regions
of the cortex. Anatomical brain labeling is an operation done on brain
images acquired through Magnetic Resonance Imaging, and is used for a
wide variety of applications, ranging from medical diagnostic to advanced
brain analysis pipelines. Traditionally, the labeling procedure was done by
hand, but it is an impractical and lengthy process. For this reason, several
automated labeling algorithms were developed over the years [32] [11].

In the context of this thesis, the brain structure that is shown to the vir-
tual reality system is not labeled, so it can not be used to specific analysis or
comparisons between defined anatomical structures. The high-performance
source imaging algorithms used to display the electrical activity of the brain
on the mesh surface can be integrated with a labeling process, providing
the opportunity of identifying the activation of different brain parcels.

4.2.1 Mindboggle

The Mindboggle project [30] consist of an open-source platform that aims to
generate volumes, surface, and data of the human brain, taking in as input a
set of preprocessed T1-weighted MRI data. The project started in 2005 as a
doctoral dissertation. Today Mindboggle is available to the general public,

54

4.2 – Brain Labeling and Mindboggle

and it is also distributed as a cross-platform Docker container, easing the
configuration and reproducibility of the platform. The software is openly
available on GitHub and can also be found on their main website1.

The Mindboggle project also offers one of the most extensive data set
of manually labeled human brain [31], that can be used as an atlas for
the creation of labeling platform. Mindboggle adopts the Desikan-Killiany-
Tourville (DKT) Atlas protocol [10] for label classification. The DKT iden-
tifies 31 regions per hemisphere, but can also be adapted in a reduced variant
of 25 regions per hemisphere. The Mindboggle processing algorithm can be
synthesized as follows:

1. The T1-weighted MRI data, obtained from software like Freesurfer,
are converted in .VTK surfaces

2. Mindboggle offers the option to combine the MRI with Advanced
Normalization Tools (ANT) segmented volumes.

3. For each labeled regions obtained in the previous step, the software
extracts the volumetric shape measure

4. The shape measure for every surface vertex is computed

5. The cortical surface features are extracted and segmented with labels
from the DKT atlas

6. Additional measures for each label or sulcus are computed

7. The final step consist in the computation of statistics for every shape
and collection of vertices

The output of this pipeline consists of several volumes, in NIfTI format,
meshes, in VTK format, and tables. It provides labeled surfaces in the
DKT protocol and surfaces that can be visualized in Paraview to extract
information regarding the features of sulci and fundi or shape measures.
The shape measures are also condensed in distinct label, feature and vertex
tables.

1https://mindboggle.info

55

https://mindboggle.info

4 – Brain segmentation

This platform was of particular interest for this project due to an addi-
tional optional output: an exploded version of the brain mesh, in which all
labeled regions are split in individual mesh.

ROYGBIV

During the 2015 Brainhack hackathon, the Mindboggle team has developed
a web-based visualization of the shape generated by the Mindboggle soft-
ware. This project, called ROYGBIV [28] aimed to visualize the morphology
of the human brain on a web platform, leveraging on the meshes obtained
by the Mindboggle segmentation. For every cortex area, the application
visualizes the shape measures and statistics computed by the Mindboggle
pipeline.

Figure 4.1: ROYGBIV Web Application

After studying this project, we decided to implement in the Neurosurf
Virtual Reality application a similar feature. Mindboggle is able to generate
an "exploded" version of the brain mesh, as displayed in the ROYGBIV
application, that allows the user to select a specific brain label.

4.2.2 Neurosurf implementation

To implement the Mindboggle label segmentation in the Neurosurf project,
we used the Docker bucket offered by the Mindboggle project, We have
obtained the MRI data from the Connectome Database Project [24]. The

56

4.2 – Brain Labeling and Mindboggle

segmentation and labeling process, by using the Mindboggle platform in
a single-core mode, took about 8 hours. The time can be reduced when
deploying the Freesurfer segmentation operation in a multi-threaded con-
figuration. All the output meshes obtained by this operation are saved in
the .VTK format. By using the conversion script described previously at
4.1, we were able to convert all the meshes in a format supported by Unity.
This meshes are composed of 70 separated geometries, one for each DKT
label. The global brain mesh is formed with a total of 130.000 vertexes and
260.000 triangles. To manage all the meshes in Unity, we implemented a
simple script used to apply a Unity Material to all the meshes child of a
GameObject. This script was used to streamline the configuration phase
when applying the texture to the whole brain.

One major problem we had to solve in the transition from the VTK
format to Unity was the identification of the specific label name in Unity.
When opened in Paraview, each label mesh has a tag to associate a numer-
ical label identifier with the name in the DKT protocol. To recognize the
labels, during the export phase, we set each mesh name to be the label ID
used in Paraview. Then the association ID code - DKT name, was saved
as a JSON file. At the launch of the Neurosurfer application, a script dese-
rializes the JSON file and encapsulates the associations in a public, static,
and read-only object. Each field of this object is a string named after the
ID code, which value is the DKT name associated to that specific identifier.
When another Neurosurf class needs to access the DKT name, the string
value is obtained by using the C# reflection mechanism, as shown in the
following snippet:

Listing 4.1: Reflection access to the labels name
1 // Using reflection to obtain the name of the label from the

deserialized JSON
2 // The labels object is exposed through the GameManager
3 // The information can be accessed with info. GetValue (labels .

name)
4

5 FieldInfo info = GameManager . instance . labels .name. GetType ().
GetField (mesh.name);

6 var labelName = info. GetValue (GameManager . instance . labels .
name);

57

4 – Brain segmentation

The selection of the label in the virtual reality environment was imple-
mented with two different techniques: a laser-based interaction and a direct
touch with the controller.

Laser based interaction

The laser pointer is an interaction technique commonly used in VR appli-
cation. The user can project a laser for the controllers, interacting with the
environment around him.

Figure 4.2: RayCast test during the development phase

The first implementation of the laser we tried was based on a ray-cast
mechanism. By pressing a specific button on each controller, a Ray is cast
starting from the controller position. Then, by doing a Physics Raycast
check, the Unity engine is able to establish which brain label is hit by the
ray. The ray is drawn by using the LineRenderer Unity component. This
solution was also easily extended for the Desktop version of the Neurosurf
application. In this configuration, the ray is cast by clicking the desired
label on the screen. The Ray starts from the camera position and its cast
on the screen in the direction extracted by using the Unity function:

Camera.ScreenPointToRay(mouse.position);

The problem with this specific implementation in the VR environment
is caused by the immersive navigation that the user can perform inside the
brain mesh. In this position, the use of the controller became uncomfort-
able, since the target meshes are surrounding the player, and the pointing

58

4.2 – Brain Labeling and Mindboggle

operation is difficult and un-intuitive. To avoid this problem, we introduced
a touch interaction, based on the direct interaction of the controller with
the mesh.

The laser interactivity, however, was not entirely discarded. The desktop
version was kept intact since it was easy to use and to implement. The VR
version was slightly changed. The RayCast check was removed, to avoid
unnecessary computation since the label selection was implemented with the
direct touch mechanism. The laser was transformed into a rigid object, used
to point specific areas of the brain and to interact with the UI menu. The
laser is a rigid geometry, that is scaled based on the hit point of a test ray.
To avoid additional raycast query, that may impact the VR performance,
the ray is cast only when the menu is active, and the check is done only for
the layer used for the UI.

Touch based interaction

Figure 4.3: Controller Box collider

The touch-based interaction was implemented by using the Unity col-
lider component. The collider defines the shape of an object for detecting
physical collision. It is an invisible structure that approximates the object
position, and it is only used in the physics detection pipeline. We added a
static non-convex collider on every label mesh of the brain. The collider is
not used for physical simulation, but only for hit detection, so even with the
complex meshes adopted, the colliders were easily managed by the engine.

59

4 – Brain segmentation

The idea of this interaction system is that the user can use the con-
troller as virtual hands, and directly "touch" the surface of the label he is
interested in. To implement the hit recognition on the label colliders, a box-
shaped Trigger collider was added at the end of the controller, as shown in
the picture 4.3. By using the OnTriggerEnter Unity event, raised when a
trigger collider detects the collision with another collider, we implemented
an Event-based system to manage the collision. The class subscribed to
the event is responsible for highlighting the specific mesh touched by the
user. This visualization effect is done by increasing the transparency of all
the other brain mesh element while making the touched label completely
opaque. The event system was implemented since, in future improvement
of this project, other classes can subscribe to this event to start the visu-
alization of specific information related to the selected label, like the name
or some stats extracted from Mindboogle.

60

Chapter 5

Electrode Localization

This chapter presents a proposed method to acquire the position of EEG
electrodes using an external motion capture system, like OptiTrack.

5.1 Problem Introduction

When trying to recreate an accurate electromagnetic model of a human head
and brain, the exact dimension of the head and the geometrical location of
the electrodes are fundamental parameters. If the adopted head model is
derived from a standard template model instead of the patient-specific MRI,
the spatial electrode coordinates can be used to adapt and correctly scale
the dimensions of the brain structures and electrical fields estimation.

A high-density research EEG is composed of a large number of electrodes
placed on the head of the patient. This high number of elements on the
head’s surface creates a challenge in the measure of the position of each
electrode, since it is not possible to add additional marker or reference
points on the EEG cap. A possible solution can be manual measurements
or the adoption of Computer Vision techniques which, however, usually
require expensive cameras set-up. Manual measurements are complex, time
consuming and prone to errors. Ad-hoc measurement device based on the
motion capture technology already exist on the market, like the Polhemus

61

5 – Electrode Localization

device. 1 With this device, the electrode position can be acquired by using
a stylus tracked with a motion capture system.

We propose a solution for a relatively fast acquisition of the position
by using the OptiTrack measurement system previously introduced. The
tracking, with OptiTrack, is based on the recognition of markers. Through
a triangulation, it is possible to measure the position of each electrode
independently on the movement of the patient head by using a reference
point attached to the patient. The reference point was installed by attaching
a rigid marker configuration to a headband placed on the forehead of the
patient.

In the adopted EEG configuration, with up to 64 electrodes, it was
not possible to install a marker on top of each electrode, since there is
no physical space available on the headset. Even adding external markers
in key points of the EEG cap is a troublesome operation. An external
tool to acquire each electrode position was instead adopted. In detail, a
PlayStation VR controller with its OptiTrack markers was used to acquire
the target positions. The acquisition can be made by physically positioning
one of the controller markers on top of each electrode. When using the
tracking cameras, the position of the reference marker and the PlayStation
controller is simultaneously acquired, allowing high consistency in the data
acquisition even if the patient is moving inside the tracked area. Motive,
additionally, provides an error estimation for the position of each marker
so that the final measure can be estimated with an uncertainty range. The
position that Motive provides is related to the center of the marker sphere.
Each sphere has a 12mm diameter, that should be considered when the
obtained measurements are used in the analysis of the head model.

An application with a Graphical User Interface was developed to aid
in the measurement process. The goal of the application is to provide a
simple and intuitive method to obtain the electrodes external position on
an EEG headset. For each reading, the estimated error is shown in real-
time, allowing a new measure if the accuracy is not considered acceptable.
Normal error range are sub-millimeter; higher errors can derive from a poor
calibration of the cameras or if the camera field-of-view is partially occluded
during the measurement procedure. The system has to be versatile to cover

1https://polhemus.com

62

https://polhemus.com

5.1 – Problem Introduction

different EEG electrode configuration that may be used to acquire a specific
signal. The most common electrodes should be included in the application
in order to attach the correct label to each acquired electrode.

NatNetSDK All the data recorded via the OptiTrack tracking system
can be accessed through the default Motive application or 2 SDKs: the
Camera SDK and the NatNet SDK. The Camera SDK allows direct ac-
cess to the cameras, for scenarios in which some custom tracking system
are deemed necessary. This SDK offers full camera control, from the syn-
chronization to the vector tracking. It is useful when developing custom
tracking application, with features that are not offered by the standard
Motive application.

To utilize the existing tracking software on a separate system or ap-
plication, OptiTrack offers the NatNet SDK. This SDK works with a clien-
t/server architecture that can be rapidly deployed in a shared network. The
client can access the motion capture data streamed by a tracking server.
The tracking server can be a custom application or standard tracking soft-
ware like Motive or ARENA. For this project, Motive was adopted as the
tracking server. Motive can send the client several different datasets:

• The Marker set data, containing the marker ID, the position and the
orientation in the 3D space and some statistic on the tracking

• A group of markers can be configured as a rigid body. All the spa-
tial information regarding the tracked rigid body can be transmitted,
together with the list of the associated markers.

• Several rigid bodies can be grouped in a collection defined as a Skele-
ton. The Skeleton data contain all the information regarding the
elements that compose it, organized hierarchically.

• Other advanced data, such as Force Plate and Analog Devices

With the SDK it is also possible to configure Motive remotely. The
SDK provides various APIs for different programming languages like a C++
"Native" client, a .NET managed assembly and also managed client that can
be used in other applications such as MATLAB.

63

5 – Electrode Localization

5.2 Implementation

Figure 5.1: NatNet application

The NatNetSDK was implemented using the C# integration and was
integrated in a Windows Form application. The application offers several
features to the user.

Information grid A grid that shows several information for each object
and marker. The information shown is the positional information of
the object (X, Y, Z coordinates and pitch, yaw and roll), network
information (frame drops, ping, latency) and the mean error on the
positional measure. This grid is updated in real-time, allowing the
user to rapidly identify if there are problems with the connection or
the tracking.

Message report panel This panel shows a log for the application and
shows the values recorded after each electrode measure, allowing the
user to redo the measure if needed.

Connection panel Interface used to connect the application to the Mo-
tive application. Motive can be run on the same machine and be con-
nected using the local-host interface or in another computer connected
in the same local area network. This allows us to have a computer
dedicated to the EEG recording and electrode position measurement,

64

5.2 – Implementation

while another workstation manages the OptiTrack tracking system.
The connection itself can be done using unicast, multicast or broad-
cast, giving maximum flexibility in the connection setup. To start
the connection, the user has to choose the local interface used for the
connection and the remote IP for the server (set by default to the
local-host 127.0.0.1).

Property panel Used to configure Motive remotely. With this panel, it
is possible to enable or disable specific asset in the Motive scene,
identified by their name. It is also possible to change e configure
specific property of the asset. Usually, the configuration should be
done beforehand on the Motive application, but this option allows
on-the-fly change if some configuration does not work correctly.

Record panel This is the key element of the application. With this panel,
it is possible actually to start the measurement of the electrode po-
sition. The first setup that must be done is the choice of a tracked
reference for the head and the electrode.
To enable an accurate recording independent on the head movement,
it is necessary to attach a set of markers to the user head. In the test
done, the most comfortable setup was an elastic headband with a set
of reflective markers attached. The headband does not interfere with
the EEG helmet and can be easily removed after the recording. Other
solution can be adopted, to leave the patient in the most pleasant
situation achievable.
The electrode reference is designed to be the OptiTrack controller with
its marker setup. However, if other configurations are deemed neces-
sary, other markers can be easily selected as a reference. To obtain
the best measure possible, the pivot point of each chosen reference for
the electrode must be placed on the spherical marker that will touch
the electrodes.
After the references are chosen, the operator can pick which electrode
configuration to record. Two pre-configured setup are already pro-
vided, if the EEG electrodes are placed according the common 10-10
standard electrode position [33] or the extended 10-20 [18].
When using the standard electrode position, the system suggests the

65

5 – Electrode Localization

name of each electrode that should be measured next, according to
the standard nomenclature. To use a non-standard electrode position,
such as EEG recording done with a high number of electrodes (e.g.,
128 electrodes setups), the operator can select an arbitrary number
of positioned electrode before starting the measure. However, since
this particular configuration does not have a standard nomenclature
or position order, it is not possible to provide the user a suggested
order to acquire the values. So the responsibility to acquire the data
in a specific sequence is left to the user, according to the measure
intended goal. Once a measure is acquired, it can be saved using one
of the 3 provided common export format: a .csv spreadsheet, a JSON
file or an XML file.

To obtain a valid position measure for each electrode, it is necessary
to subtract from the positional and rotational value of the electrode, the
measure of the reference point. Assuming the reference is connected with
the patient head, with this subtraction, the obtained values are indepen-
dent from the position of the user. Every value is therefore related to the
OptiTrack system origin, located at the center of the room at the ground
level. The recorded value for each electrode, and the reference is affected
by a mean error, provided by the Motive server. To obtain an uncertainty
range for each electrode, the measurement error theory has to be applied.
Since the error is dependent on each other, the Mean Errors provided by
OptiTrack has to be added.

5.3 Results

Overall, the time needed to acquire each electrode position is in the order of
few seconds. The measure operation, by itself, is fast, but the identification
of the electrode position on the cap can be a lengthy operation, especially if
the operator is not familiar with the standard electrodes placement. How-
ever, this problem can be mitigated by taking the measure during the setup
phase of the cap. In the wet-based EEG used in this project, for every
electrode, it is necessary to put a liquid electrolytic gel between the elec-
trode and the scalp. When using the gTec setup, it is possible to obtain the
impedance of each electrode to verify if the application was made correctly.

66

5.3 – Results

If the electrodes are prepared following the standard enumeration, it is pos-
sible to acquire the position of each electrode between each gel application,
reducing the overall setup phase time.

Regarding the precision of the system, we have found that it is mostly
dependant on the calibration of the OptiTrack cameras. As expected, the
mean error in the position of each electrode has the same order of magnitude
of the global error detected by Motive during the Calibration phase. The
errors has a range that went from 0.2 to 1 mm, while all the position measure
wherein the cm order. To adapt the electrode placement model, these values
were adequate to adjust the model to the specific EEG reading.

67

68

Chapter 6

Conclusion

6.1 Results

The objective of this thesis was the creation of a new Virtual Reality system
that integrates advanced EEG source imaging algorithms to display, in real-
time, the brain activity recorded from the EEG. By leveraging on modern
brain segmentation techniques, we were able to obtain a realistic model of
the human head and a valid representation of the white matter fiber tracts.
The meshes were obtained from real human MRI and fMRI, with different
resolutions. The system was built to support high-resolution geometries
while keeping the frame-rate required for a fluid VR experience.

We implemented an ESI pipeline able to solve the inverse problem with
a low delay, even when adopting a high-density research EEG setup. We
adopted a modular approach, to distribute the workload of the high-density
EEG elaboration on multiple machines. The pipeline was tested with both
simulated data and real EEG recording. The real-time elaboration was sta-
ble even when adopting a high-resolution headset, with 64 or 128 electrodes.
By making use of the Unity3D XR library, we were able to integrate the
visualization on a modern VR headset, while developing a custom tracking
system by making use of an external tracking technology. The application
can be used as a standalone desktop experience or in a 3D immersive envi-
ronment designed to be explored with a VR headset and with the OptiTrack
tracking technology.

The system was adopted in several demonstrations, with EEG recording

69

6 – Conclusion

acquired directly with an EEG cap, or with pre-recorded data. The result of
this thesis has shown this project can be easily adapted for Neurofeedback
treatments or for research and diagnostic application. With the MRI and
fMRI data of a patient, it is possible to reconstruct an accurate model of
its brain structure. This information can be exploited to obtain a precise
analysis of the brain activity while localizing the activation source through
the ESI pipeline.

Figure 6.1: Live demonstration of the Neurosurf application and Pipeline.
The data are acquired from a 32-electrodes wireless EEG cap, and the VR
scene is also projected on the wall

6.2 Future Works

Application Device-Independent All the work that has been done for
this thesis has been designed around the available hardware, headset, and
tracking system. A major feature that can be introduced in the project is the
separation of the software component related to the source imaging pipeline
and the mesh visualization and management from the HTC VIVE Headset
and the OptiTrack tracking modules. By creating a unified API or an add-
on for Unity, it will be possible to integrate the developed technologies on

70

6.2 – Future Works

a large variety of platforms. The mesh import and configuration should
be streamlined and, possibly, automatized. The source imaging pipeline,
given its modularity, can that be executed on different workstation or even
on remote server, allowing the visualization also on lower-end VR headsets
and workstations.

Numerical Information To extend the usage of the proposed applica-
tion in an effective medical environment, more information should be pro-
vided to the user. The colormap can give a quantitative indication of the
activation of the various area of the brain. However, if a more accurate
research needs to be done, the numerical value extracted from the EEG
should be provided to the user. This will require the creation of two dif-
ferent User Interfaces for the desktop user and the Virtual-Reality user.
Displaying a large volume of text or graphs, it’s a common practice when
using technical application on a desktop setup, but fonts and 2D-graphs are
usually not designed for a VR experience. Text has to be positioned care-
fully in the environment, to not occlude large parts of the user field of view.
Moreover, the text dimension is strongly limited by the device resolution,
even top-of-the-line consumer headset like the HTC Vive. Furthermore, it
should be possible to identify the specific EEG frequency band during the
visualization. These bands are used to study specific brain behavior and
should be considered individually for a visualization purpose.

71

72

Appendices

73

Appendix A - Conversion from .VTK to .OBJ

1 import vtk
2 import os
3 import sys
4

5

6 def createResultFolderIfMissing (base_folder ,
new_folder_name):

7 joined = os.path.join(base_folder , new_folder_name)
8 if not os.path. exists (joined):
9 os. makedirs (joined)

10

11

12 def vtkOBJWriter (vtkPolyData , labelName , outputFileName):
13

14 file = open(outputFileName , ’w’)
15

16 file. write("# wavefront obj file generated from a .vtk
file\n")

17 file. write("o "+ labelName +"\n")
18

19 print(" Converting points ...")
20 # writing points v, if any
21 for pointIndex in range(vtkPolyData . GetNumberOfPoints ())

:
22 point = vtkPolyData . GetPoint (pointIndex)
23 x = str(round(point [0], 6))
24 y = str ((round(point [1] ,6)))
25 z = str(round(point [2] ,6))
26 file.write("v " + x + " " + y + " " + z + "\n")
27

28 print(" converting normals ...")
29 # writing normals if any. We are not calculating the

normals if they are missing
30 vtkNormals = vtkPolyData . GetPointData (). GetNormals ()
31 if vtkNormals :
32 for normalIndex in range(vtkNormals .

GetNumberOfTuples ()):
33 normal = vtkNormals . GetTuple (normalIndex)
34 file. write("vn " + str(round(normal [0], 6))
35 + " " + str(round(normal [1], 6))
36 + " " + str(round(normal [2], 6)) + "\

n")
37

75

38 print(" converting texture coordinates ...")
39 # writing texture coordinates if any
40 vtkTCoords = vtkPolyData . GetPointData (). GetTCoords ()
41 if(vtkTCoords):
42 for tCoordsIndex in range(vtkTCoords .

GetNumberOfTuples ()):
43 tCoord = vtkTCoords . GetTuple (tCoordsIndex)
44 file.write("vn " + str(round(tCoord [0], 6))
45 + " " + str(round(tCoord [1], 6))
46 + " " + str(round(tCoord [2], 6)) + "\

n")
47

48 # No materials and no smoothing
49 file.write(" usemtl None\n")
50 file.write("s off\n")
51

52 print(" converting vertexes ...")
53 writing verts
54 vertNum = vtkPolyData . GetNumberOfVerts ()
55 verts = vtkPolyData . GetVerts ()
56 if vertNum > 0:
57 if verts:
58 verts = vtkPolyData . GetVerts ()
59 id_list = vtk. vtkIdList ()
60 for i in range (0, verts.len ()):
61 file.write("p ")
62 verts. GetNextCell (id_list)
63 for j in range (0, id_list . GetNumberOfIds ()):
64 file.write(str(id_list .GetId(j)+1))
65 file.write("\n")
66

67 print(" converting lines ...")
68 # writing lines
69 linesNum = vtkPolyData . GetNumberOfLines ()
70 if linesNum > 0:
71 lines = vtkPolyData . GetLines ()
72 id_list = vtk. vtkIdList ()
73 for i in range (0, linesNum):
74 file. write("l ")
75 lines. GetNextCell (id_list)
76 for j in range (0, id_list . GetNumberOfIds ()):
77 if vtkTCoords :
78 file.write(str(id_list .GetId(j)+1) + "/"

+ str(id_list .GetId(j)+1) + " ")
79 else:

76

80 file.write(str(id_list .GetId(j)+1)+" ")
81 file.write ("\n")
82

83 print(" converting polys ...")
84 # writing polys
85 polyNum = vtkPolyData . GetNumberOfPolys ()
86 if polyNum > 0:
87 polys = vtkPolyData . GetPolys ()
88 id_list = vtk. vtkIdList ()
89 for i in range (0, polyNum):
90 file.write("f ")
91 polys. GetNextCell (id_list)
92 for j in range (0, id_list . GetNumberOfIds ()):
93 if vtkNormals :
94 if vtkTCoords :
95 file.write(str(id_list .GetId(j)+1) +

"/" + str(id_list .GetId(j)+1) +
"/"+str(id_list .GetId(j)+1)+" "

)
96 else:
97 file.write(str(id_list .GetId(j)+1) +

"//" + str(id_list .GetId(j)+1)
+ " ")

98 else:
99 if vtkTCoords :

100 file.write(str(id_list .GetId(j)+1) +
"/" + str(id_list .GetId(j)+1) +
" ")

101 else:
102 file.write(str(id_list .GetId(j)+1) +

" ")
103 file.write("\n")
104

105 print(" converting strips ...")
106 # writing strips
107 tStripsNum = vtkPolyData . GetNumberOfStrips ()
108 if tStripsNum > 0:
109 tStrips = vtkPolyData . GetStrips ()
110 id_list = vtk. vtkIdList ()
111 for i in range (0, tStripsNum):
112 for j in range (2, id_list . GetNumberOfIds ()):
113 j1 = j-1
114 j2 = j-2
115 if vtkNormals :
116 if vtkTCoords :

77

117 output = "f "+str(id_list [j1]+1)+"/"
+str(id_list [j1]+1)+"/"+str(
id_list [j1]+1)+" "

118 output += str(id_list [j2]+1)+"/"+str
(id_list [j2]+1)+"/"+str(id_list [
j2]+1)+" "

119 output += str(id_list [j]+1) + "/" +
str(id_list [j]+1) + "/" + str(
id_list [j]+1) + "\n"

120 file.write(output)
121 else:
122 output = "f " + str(id_list [j1]+1) +

"//" + str(id_list [j1]+1) + " "
123 output += str(id_list [j2]+1) + "//"

+ str(id_list [j2]+1) + " "
124 output += str(id_list [j]+1) + "//" +

str(id_list [j]+1) + "\n"
125 file.write(output)
126 else:
127 if vtkTCoords :
128 output = "f " + str(id_list [j1]+1) +

"/" + str(id_list [j1]+1) + " "
129 output += str(id_list [j2]+1) + "/" +

str(id_list [j2]+1) + " "
130 output += str(id_list [j]+1) + "/" +

str(id_list [j]+1) + "\n"
131 file.write(output)
132 else:
133 output = "f " + str(id_list [j1]+1) +

" "
134 output += str(id_list [j2]+1) + " "
135 output += str(id_list [j]+1) + "\n"
136 file.write(output)
137

138

139 def main(inputFolder):
140 createResultFolderIfMissing (inputFolder , " converted ")
141 for file in os. listdir (inputFolder):
142 if file. endswith (".vtk"):
143 file_name = os.path. splitext (file)
144 input_path = os.path.join(inputFolder , file)
145 output_path = os.path.join(inputFolder , "

converted ", file_name [0] + ".obj")
146

147 print(" Reading vtk file: " + file)

78

148 reader = vtk. vtkGenericDataObjectReader ()
149 reader . SetFileName (input_path)
150 reader . Update ()
151

152 inputPolyData = reader . GetOutput ()
153

154 print(" Starting obj conversion ")
155 vtkOBJWriter (inputPolyData , file_name [0],

output_path)
156

157

158 # main program here
159 try:
160 inputFolder = str(sys.argv [1])
161 except :
162 print(" Missing or not valid folder argument ")
163

164 if os.path. exists (inputFolder):
165 main(inputFolder)
166 else:
167 print("The input is not a valid folder ")

79

80

Bibliography

[1] Encyclopedia of Neuroscience | ScienceDirect,
https://www.sciencedirect.com/referencework/9780080450469/encyclopedia-
of-neuroscience.

[2] How to maximize AR and VR performance with advanced stereo ren-
dering – Unity Blog, https://blogs.unity3d.com/2017/11/21/how-to-
maximize-ar-and-vr-performance-with-advanced-stereo-rendering/.

[3] Observer Design Pattern | Microsoft Docs,
https://docs.microsoft.com/en-us/dotnet/standard/events/observer-
design-pattern.

[4] sccn/labstreaminglayer, September 2019, original-date: 2018-02-
28T10:50:12Z.

[5] T. Blum, R. Stauder, E. Euler, and N. Navab, Superman-like X-ray
vision: Towards brain-computer interfaces for medical augmented re-
ality, 2012 IEEE International Symposium on Mixed and Augmented
Reality (ISMAR), November 2012, pp. 271–272.

[6] D. Borland and R. M. Taylor Ii, Rainbow Color Map (Still) Considered
Harmful, IEEE Computer Graphics and Applications 27 (2007), no. 2,
14–17.

[7] Borís Burle, Laure Spieser, Clémence Roger, Laurence Casini, Thierry
Hasbroucq, and Franck Vidal, Spatial and temporal resolutions of EEG:
Is it really black and white? A scalp current density view, International
Journal of Psychophysiology 97 (2015), no. 3, 210–220.

[8] Baek-Hwan Cho, Saebyul Kim, Dong Ik Shin, Jang Han Lee, Sang
Min Lee, In Young Kim, and Sun I. Kim, Neurofeedback Training with
Virtual Reality for Inattention and Impulsiveness, CyberPsychology &
Behavior 7 (2004), no. 5, 519–526.

81

Bibliography

[9] C. G. Coogan and B. He, Brain-Computer Interface Control in a Vir-
tual Reality Environment and Applications for the Internet of Things,
IEEE Access 6 (2018), 10840–10849.

[10] Rahul S. Desikan, Florent Ségonne, Bruce Fischl, Brian T. Quinn,
Bradford C. Dickerson, Deborah Blacker, Randy L. Buckner, An-
ders M. Dale, R. Paul Maguire, Bradley T. Hyman, Marilyn S. Albert,
and Ronald J. Killiany, An automated labeling system for subdividing
the human cerebral cortex on MRI scans into gyral based regions of
interest, NeuroImage 31 (2006), no. 3, 968–980.

[11] Longwei Fang, Lichi Zhang, Dong Nie, Xiaohuan Cao, Islem Rekik,
Seong-Whan Lee, Huiguang He, and Dinggang Shen, Automatic brain
labeling via multi-atlas guided fully convolutional networks, Medical
Image Analysis 51 (2019), 157–168.

[12] Karl J. Friston, Functional and effective connectivity in neuroimaging:
A synthesis, Human Brain Mapping 2 (1994), no. 1-2, 56–78 (en),
Citation Key Alias: fristonFunctionalEffectiveConnectivity1994a.

[13] Eleftherios Garyfallidis, Matthew Brett, Marta Morgado Correia,
Guy B. Williams, and Ian Nimmo-Smith, QuickBundles, a Method for
Tractography Simplification, Frontiers in Neuroscience 6 (2012) (En-
glish).

[14] Rémi Gillig, speps/XInputDotNet, September 2019,
https://github.com/speps/XInputDotNet.

[15] Rolando Grave de Peralta Menendez, Micah M. Murray, Christoph M.
Michel, Roberto Martuzzi, and Sara L. Gonzalez Andino, Electrical
neuroimaging based on biophysical constraints, NeuroImage 21 (2004),
no. 2, 527–539 (eng).

[16] Roberta Grech, Tracey Cassar, Joseph Muscat, Kenneth P. Camil-
leri, Simon G. Fabri, Michalis Zervakis, Petros Xanthopoulos, Vangelis
Sakkalis, and Bart Vanrumste, Review on solving the inverse problem
in EEG source analysis, Journal of NeuroEngineering and Rehabilita-
tion 5 (2008), no. 1, 25.

[17] Vijay P.B. Grover, Joshua M. Tognarelli, Mary M.E. Crossey, I. Jane
Cox, Simon D. Taylor-Robinson, and Mark J.W. McPhail, Magnetic
Resonance Imaging: Principles and Techniques: Lessons for Clini-
cians, Journal of Clinical and Experimental Hepatology 5 (2015), no. 3,
246–255.

82

Bibliography

[18] Tyler Grummett, Richard Leibbrandt, Trent Lewis, Dylan DeLosAnge-
les, David Powers, John Willoughby, Kenneth Pope, and Sean Fitzgib-
bon, Measurement of neural signals from inexpensive, wireless and dry
EEG systems, Physiological Measurement 36 (2015).

[19] L Haas, Hans Berger (1873–1941), Richard Caton (1842–1926), and
electroencephalography, Journal of Neurology, Neurosurgery, and Psy-
chiatry 74 (2003), no. 1, 9.

[20] Hans Hallez, Bart Vanrumste, Roberta Grech, Joseph Muscat, Wim
De Clercq, Anneleen Vergult, Yves D’Asseler, Kenneth P Camilleri,
Simon G Fabri, Sabine Van Huffel, and Ignace Lemahieu, Review on
solving the forward problem in EEG source analysis, Journal of Neuro-
Engineering and Rehabilitation 4 (2007), no. 1, 46 (en).

[21] Sofie Therese Hansen, Søren Hauberg, and Lars Kai Hansen, Data-
driven forward model inference for EEG brain imaging, NeuroImage
139 (2016), 249–258.

[22] Lars G Hanson, Introduction to Magnetic Resonance Imaging Tech-
niques, 48 (en).

[23] Lawrence J. Hettinger and Gary E. Riccio, Visually Induced Motion
Sickness in Virtual Environments, Presence: Teleoperators and Virtual
Environments 1 (1992), no. 3, 306–310.

[24] Michael R. Hodge, William Horton, Timothy Brown, Rick Herrick,
Timothy Olsen, Michael E. Hileman, Michael McKay, Kevin A. Archie,
Eileen Cler, Michael P. Harms, Gregory C. Burgess, Matthew F.
Glasser, Jennifer S. Elam, Sandra W. Curtiss, Deanna M. Barch,
Robert Oostenveld, Linda J. Larson-Prior, Kamil Ugurbil, David C.
Van Essen, and Daniel S. Marcus, ConnectomeDB—Sharing human
brain connectivity data, NeuroImage 124 (2016), 1102–1107.

[25] Scott A Huettel, Allen W Song, and Gregory McCarthy, Functional
Magnetic Resonance Imaging, Second Edition, 8 (en).

[26] Ben Jeurissen, Maxime Descoteaux, Susumu Mori, and Alexander
Leemans, Diffusion MRI fiber tractography of the brain, NMR in
biomedicine 32 (2019), no. 4, e3785 (eng).

[27] Derek K. Jones, Thomas R. Knösche, and Robert Turner, White mat-
ter integrity, fiber count, and other fallacies: The do’s and don’ts of
diffusion MRI, NeuroImage 73 (2013), 239–254.

[28] Anisha Keshavan, Arno Klein, and Ben Cipollini, Interactive online
brain shape visualization, Research Ideas and Outcomes 3 (2017),

83

Bibliography

e12358 (en).
[29] Seung-Wook Kim and Joon-Kyung Seong, Virtual Display of 3d Com-

putational Human Brain Using Oculus Rift, Design, User Experience,
and Usability: Technological Contexts (Aaron Marcus, ed.), Lecture
Notes in Computer Science, Springer International Publishing, 2016,
pp. 258–265 (en).

[30] Arno Klein, Satrajit S. Ghosh, Forrest S. Bao, Joachim Giard, Yrjö
Häme, Eliezer Stavsky, Noah Lee, Brian Rossa, Martin Reuter,
Elias Chaibub Neto, and Anisha Keshavan, Mindboggling morphom-
etry of human brains, PLOS Computational Biology 13 (2017), no. 2,
e1005350 (en).

[31] Arno Klein and Jason Tourville, 101 Labeled Brain Images and a Con-
sistent Human Cortical Labeling Protocol, Frontiers in Neuroscience 6
(2012) (English).

[32] J. L. Lancaster, L. H. Rainey, J. L. Summerlin, C. S. Freitas, P. T.
Fox, A. C. Evans, A. W. Toga, and J. C. Mazziotta, Automated label-
ing of the human brain: A preliminary report on the development and
evaluation of a forward-transform method, Human Brain Mapping 5
(1997), no. 4, 238–242 (en).

[33] Jian Le, Min Lu, Emiliana Pellouchoud, and Alan Gevins, A rapid
method for determining standard 10/10 electrode positions for high res-
olution EEG studies, Electroencephalography and Clinical Neurophys-
iology 106 (1998), no. 6, 554–558.

[34] A. Lécuyer, F. Lotte, R. B. Reilly, R. Leeb, M. Hirose, and M. Slater,
Brain-Computer Interfaces, Virtual Reality, and Videogames, Com-
puter 41 (2008), no. 10, 66–72, Citation Key Alias: lecuyerBrainCom-
puterInterfacesVirtual2008a.

[35] Hengameh Marzbani, Hamid Reza Marateb, and Marjan Mansourian,
Neurofeedback: A Comprehensive Review on System Design, Methodol-
ogy and Clinical Applications, Basic and Clinical Neuroscience 7 (2016),
no. 2, 143–158.

[36] Christoph M. Michel and Denis Brunet, EEG Source Imaging: A Prac-
tical Review of the Analysis Steps, Frontiers in Neurology 10 (2019),
325 (eng).

[37] Christoph M. Michel, Micah M. Murray, Göran Lantz, Sara Gonzalez,
Laurent Spinelli, and Rolando Grave de Peralta, EEG source imaging,
Clinical Neurophysiology 115 (2004), no. 10, 2195–2222 (en).

84

Bibliography

[38] Kenneth Moreland, Color Map Advice for Scientific Visualization,
https://www.kennethmoreland.com/color-advice/.

[39] Kenneth Moreland, Why We Use Bad Color Maps and What You Can
Do About It, Electronic Imaging 2016 (2016), no. 16, 1–6 (en).

[40] Tim Mullen, Christian Kothe, Yu Mike Chi, Alejandro Ojeda, Trevor
Kerth, Scott Makeig, Gert Cauwenberghs, and Tzyy-Ping Jung, Real-
time modeling and 3d visualization of source dynamics and connectivity
using wearable EEG, Conference proceedings: ... Annual International
Conference of the IEEE Engineering in Medicine and Biology Society.
IEEE Engineering in Medicine and Biology Society. Annual Conference
2013 (2013), 2184–2187 (eng).

[41] S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank, Brain magnetic reso-
nance imaging with contrast dependent on blood oxygenation, Proceed-
ings of the National Academy of Sciences 87 (1990), no. 24, 9868–9872
(en).

[42] R D Pascual-Marqui, Standardized low resolution brain electromag-
netic, Clinical Pharmacology (2002), 16 (en).

[43] Roberto D. Pascual-Marqui, Michaela Esslen, Kieko Kochi, and Di-
etrich Lehmann, Functional imaging with low-resolution brain electro-
magnetic tomography (LORETA): a review., Methods and findings in
experimental and clinical pharmacology 24 (2002), no. Suppl, 91–95.

[44] F. Perrin, J. Pernier, O. Bertrand, and J. F. Echallier, Spherical splines
for scalp potential and current density mapping, Electroencephalogra-
phy and Clinical Neurophysiology 72 (1989), no. 2, 184–187, Citation
Key Alias: perrinSphericalSplinesScalp1989a.

[45] François Tadel, Sylvain Baillet, John C. Mosher, Dimitrios Pantazis,
and Richard M. Leahy, Brainstorm: A User-Friendly Application for
MEG/EEG Analysis, 2011.

[46] Richard F Thompson, The brain : an introduction to neuroscience /
Richard F. Thompson, The brain an introduction to neuroscience, A
series of books in psychology, Freeman, New York, 1985 (English).

[47] Mullen Tim, The Glass Brain - Tim Mullen | Neuroscience,
http://www.antillipsi.net/art-1/the-glass-brain.

[48] Andries van Dam, David H Laidlaw, and Rosemary Michelle Simpson,
Experiments in Immersive Virtual Reality for Scientific Visualization,
Computers & Graphics 26 (2002), no. 4, 535–555.

[49] Stéfan van der Walt, S. Chris Colbert, and Gaël Varoquaux, The

85

Bibliography

NumPy Array: A Structure for Efficient Numerical Computation,
Computing in Science & Engineering 13 (2011), no. 2, 22–30.

[50] Gavin Wheeler, Shujie Deng, Nicolas Toussaint, Kuberan Pushparajah,
Julia Schnabel, John Simpson, and Alberto Gomez, Virtual Interaction
and Visualisation of 3d Medical Imaging Data with VTK and Unity,
Healthcare Technology Letters 5 (2018).

[51] Clinton Johan Ade Wicaksono, Susy Suswaty, Nursama Heru
Apriantoro, and Ary Sasongko, Image Quality Analysis 4 Chamber
Sections of Cardiac MRI with and without utilizing shim volume in
the steady state free precession sequences, Journal of Vocational Health
Studies 1 (2018), no. 3, 97–101 (id-ID).

[52] QiBin Zhao, LiQing Zhang, and Andrzej Cichocki, EEG-based asyn-
chronous BCI control of a car in 3d virtual reality environments, Chi-
nese Science Bulletin 54 (2009), no. 1, 78–87 (en).

86

Acronyms

API Application Program Interface.
AR Augmented Reality.

BCI Brain-Computer Interfaces.
BEM Boundary Element Method.
BOLD Blood Oxygenation Level.

CPU central processing unity.
CSF Cerebrospinal fluid.
CSV Comma-separated values.
CT computed tomography.

DIS Distributed Inverse Solution.
DKT Desikan-Killiany-Tourville.
dMRI diffusion magnetic resonance imaging.
DoF Degree of Freedom.
DOTS Data-OrientedTechnology Stack.
DTI Diffusion Tensor Imaging.

EEG Electroencephalography.
EPSP excitatory postsynaptic potential.
ESI EEG Source Imaging.

FEM Finite Element Method.
fMRI Functional MRI.
FP forward problem.

87

Acronyms

GPU graphics processing unit.

HDPR High-Definition Render Pipeline.

iEEG intracranial EEG.
IL2CPP Intermediate Language To C++.
IP inverse problem.
IPSP inhibitory postsynaptic potential.

JSON JavaScript Object Notation.

LSL Lab Streaming Layer.

MEG Magnetoencephalography.
MN Minimum Norm.
MR Mixed Reality.
MRI Magnetic Resonance Imaging.

NIRS Near-infrared spectroscopy.
NTP Network Time Protocol.

PET Positron Emission Tomography.

RAM Random Access Memory.

SDK Software Development Kit.

UI User Interface.

VR Virtual Reality.
VRPN Virtual-Reality Peripheral Network.
VTK Visualization Toolkit.

WMN Weighted Minimum Norm.

XML eXtensible Markup Language.

88

	Summary
	Acknowledgements
	Introduction
	Project Description
	Neurofeedback
	State of the art

	Technical Background
	Brain Physiology
	Neuroimaging
	MRI, fMRI
	EEG

	EEG Source Imaging
	Forward Problem
	Inverse Problem

	Project organization
	Hardware setup
	Software used
	Pipelines

	Virtual Reality System
	Neurosurf Introduction
	Project organization
	Camera
	Illumination
	C# scripting component
	3D polygonal meshes

	Key Features
	EEG source imaging implementation
	Colormap
	Interaction mode

	Implementation details
	Position tracking
	Shader and Rendering
	Stream management

	Brain segmentation
	Brain Mesh conversion
	Brain Labeling and Mindboggle
	Mindboggle
	Neurosurf implementation

	Electrode Localization
	Problem Introduction
	Implementation
	Results

	Conclusion
	Results
	Future Works

	Appendices
	Bibliography
	Acronyms

