
POLITECNICO DI TORINO
College of Computer Engineering, Cinema and Mechatronics

Master’s Degree Thesis

Automatic Recognition And
Classification Of

Passengers’ Emotions In
Autonomous Driving Vehicles

Supervisor:
prof. Massimo VIOLANTE
Co-Supervisor:
dr. Jacopo SINI

Candidate:
Antonio Costantino MARCEDDU

Academic Year 2018-2019

Summary

The advent of autonomous driving cars bring hopes of reducing automobile acci-
dents, improving, in general, the road safety. Many problems remain to be solved,
but technology has made great steps in these years.

A problem, that must not be underestimated, is how the people will react to
these vehicles. In fact, the sense of security that is commonly felt is often false and
guided by false certainties. Then, an important question, to which those working
in the sector are trying to give an answer, is the following: people will consider
the self-driving cars safer than a vehicle driven by a human being, knowing that,
for definition, a real self-driving car is completely independent and not subject to
influences? Researchers, therefore, continue to look for new ways to improve the
social acceptance of these vehicles and the way they are seen by people.

With this thesis, we want to propose a new method that goes in this direction:
our idea is to monitor the mood of the people in the passenger compartment of a
self-driving car, in order to change the driving style of the car itself. For example,
if people inside the car do not feel safe, thus feeling emotions of fear or sadness, the
car will slow down its speed and will take the curves more slowly and with more
precision, even coming to stop if necessary, when these feelings do not calm down
within a certain period of time.

Due to the difficulty of access to autonomous driving cars, we started this project
as a feasibility study, analyzing all aspects of it. We thought that mood recognition
could be done using a neural network capable of recognizing the facial expressions
of people inside the car. So, as first step, we have developed a new program, called
Facial Expressions Databases Classifier (FEDC), to facilitate the preprocessing of
the images necessary for the training of a neural network; we then used it to train
two state-of-the-art neural networks, expressly created to detect facial expressions,
with different databases, and which we later used to do some road tests, necessary to
analyze the performance of the previously trained neural networks in real conditions.
The road tests were carried out with another program that we developed specifically,
called Emotion Detector, which we used to document the data coming from the
neural networks.

i

From this study, we have obtained very interesting results, which have given
us the determination to move on to the next phases of the project, and which
will concern the implementation of the same into a single-board computer and a
continuous improvement of FEDC, adding new features and supporting new facial
expressions databases.

A partial work, derived from this thesis, was presented at the Italian Workshop
on Neural Networks (WIRN) 2019, held from June 11th to 14th in Vietri sul Mare
(SA), Italy, and we are awaiting a response for publication in the book related to
the conference, published by Springer.

ii

Acknowledgements

I would like to thank prof. Massimo Violante and dr. Jacopo Sini for their support
during the realization of this thesis.

I am grateful to my love Sandra, who supported me along my university path, giving
me the strength to overcome all the problems I encountered, and which continues
to support me every day.

I am also grateful to my father Graziano, to my mother Silvia, to my sister Valentina
and to my grandmothers Amalia and Maria, who have provided me, throughout my
life, with moral and emotional backing.

Finally, I would like to thank my other family members, friends, and colleagues who
have supported me along the way.

iii

Page intentionally left blank.

iv

Contents

List of Figures vii

List of Tables xi

1 Introduction 1
1.1 Background . 1
1.2 Our idea . 2
1.3 Thesis structure . 4

2 Preprocessing 5
2.1 Previous works . 5
2.2 Posed and spontaneous facial expressions 8
2.3 Facial Expressions Databases Classifier 9

2.3.1 The FEDC interface . 11
2.3.2 Database Ensemble . 12
2.3.3 How FEDC works . 12
2.3.4 Information about supported databases 17
2.3.5 Final notes about FEDC . 18

3 Training of neural networks 19
3.1 Brief history of neural networks . 19
3.2 Useful notions about neural networks 20

3.2.1 Definition . 20
3.2.2 Overfitting and Underfitting 21
3.2.3 Bias and Variance . 22
3.2.4 Ground truth . 23
3.2.5 Metrics . 23
3.2.6 Hyperparameters . 23
3.2.7 Partitioning of the database 24

3.3 Other notions . 26
3.3.1 Normalization . 26
3.3.2 Data augmentation . 27

v

3.3.3 Confusion matrix . 27
3.4 Neural networks for facial expressions 27
3.5 Used tools . 28
3.6 Hardware configuration . 29
3.7 Trainings . 30

3.7.1 Neural network from the "Physiological Inspired Deep Neural
Networks for Emotion Recognition" paper 30

3.7.2 Neural network from the "Recognizing Facial Expressions Us-
ing a Shallow Convolutional Neural Network" paper 54

3.7.3 Comments on the results obtained 69

4 Road tests 71
4.1 Emotion Detector . 71
4.2 Tests . 72

5 Conclusions 75
5.1 Results . 75
5.2 Future work . 76

References I

vi

List of Figures

1.1 A possible implementation of this project in an autonomous driving
car. 3

1.2 A photo taken at the Italian Workshop on Neural Networks (WIRN)
2019. 4

2.1 The OVU team on the proclamation day of the winner of the hackathon. 5
2.2 The OVU stand at the Turin Maker Faire. 6
2.3 Dataset Preparation for CK+. 7
2.4 Dataset Preparation for FER2013. 7
2.5 Example of photos taken from the JAFFE database. 8
2.6 Facial Expressions Databases Classifier, version 4.0.3. 9
2.7 Example of photos taken from the FACES database. 10
2.8 Example of photos taken from the RaFD database. 11
2.9 Facial Expressions Databases Classifier, version 1.0.0. 12
2.10 Example of photos taken from the CK+ database. 14
2.11 Example of photos taken from the FER2013 database. 15
2.12 Example of photos taken from the SFEW 2.0 database. 17
2.13 Example of photos taken from the MUG database. 18

3.1 An image of the Perceptron. 20
3.2 The Bias-Variance tradeoff. 22
3.3 One of the possible subdivisions between train, validation, and test

datasets: this configuration was the one we used for all the training
we did. 24

3.4 An example of 5-Fold cross-validation. 25
3.5 One of the most interesting results coming from the 2018 Kaggle

Machine Learning & Data Science Survey. 29
3.6 Subdivision of the images between classes in the CK+ database. . . . 32
3.7 First network, CK+ database, first training series: loss and accuracy

of the best network. 33
3.8 First network, CK+ database, first training series: normalized con-

fusion matrix of the best network. 34

vii

3.9 First network, CK+ database, second training series: loss and accu-
racy of the best network. 35

3.10 First network, CK+ database, second training series: normalized con-
fusion matrix of the best network. 35

3.11 First network, CK+ database, third training series: loss and accuracy
of the best network. 36

3.12 First network, CK+ database, third training series: normalized con-
fusion matrix of the best network. 37

3.13 Subdivision of the images between classes in the FER2013 database. . 38
3.14 First network, FER2013 database, first training series: loss and ac-

curacy of the best network. 38
3.15 First network, FER2013 database, first training series: normalized

confusion matrix of the best network. 39
3.16 First network, FER2013 database, second training series: loss and

accuracy of the best network. 40
3.17 First network, FER2013 database, second training series: normalized

confusion matrix of the best network. 40
3.18 First network, FER2013 database, third training series: loss and ac-

curacy of the best network. 41
3.19 First network, FER2013 database, third training series: normalized

confusion matrix of the best network. 41
3.20 Subdivision of the images between classes in the FER2013 database

with the FER+ annotations. 42
3.21 First network, FER2013 database with the FER+ annotation, fourth

training series: loss and accuracy of the best network. 43
3.22 First network, FER2013 database with the FER+ annotation, fourth

training series: normalized confusion matrix of the best network. . . . 43
3.23 Subdivision of the images between classes in the Database Ensemble

of all the facial expressions databases supported by FEDC, created
merging the CK+, the FACES, the FER2013 with the FER+ annota-
tions, the JAFFE, the MUG, the RaFD and the SFEW 2.0 databases. 44

3.24 First network, Database Ensemble of all the facial expressions
databases, first training series: loss and accuracy of the best network. 45

3.25 First network, Database Ensemble of all the facial expressions
databases, first training series: normalized confusion matrix of the
best network. 45

3.26 First network, Database Ensemble of all the facial expressions
databases, second training series: loss and accuracy of the best network. 46

3.27 First network, Database Ensemble of all the facial expressions
databases, second training series: normalized confusion matrix of the
best network. 47

viii

3.28 First network, Database Ensemble of all the facial expressions
databases, third training series: loss and accuracy of the best net-
work. 48

3.29 First network, Database Ensemble of all the facial expressions
databases, third training series: normalized confusion matrix of the
best network. 48

3.30 Subdivision of the images between classes in the Database Ensemble
of posed facial expressions, created merging the CK+, the FACES,
the JAFFE, the MUG and the RaFD databases. 49

3.31 First network, Database Ensemble of posed facial expressions, first
training series: loss and accuracy of the best network. 50

3.32 First network, Database Ensemble of posed facial expressions, first
training series: normalized confusion matrix of the best network. . . . 50

3.33 First network, Database Ensemble of posed facial expressions, second
training series: loss and accuracy of the best network. 51

3.34 First network, Database Ensemble of posed facial expressions, second
training series: normalized confusion matrix of the best network. . . . 52

3.35 First network, Database Ensemble of posed facial expressions, third
training series: loss and accuracy of the best network. 53

3.36 First network, Database Ensemble of posed facial expressions, third
training series: normalized confusion matrix of the best network. . . . 53

3.37 Second network, FER2013 database, first training series: loss and
accuracy of the best network. 55

3.38 Second network, FER2013 database, first training series: normalized
confusion matrix of the best network. 56

3.39 Second network, FER2013 database, second training series: loss and
accuracy of the best network. 57

3.40 Second network, FER2013 database, second training series: normal-
ized confusion matrix of the best network. 57

3.41 Second network, FER2013 database, third training series: loss and
accuracy of the best network. 58

3.42 Second network, FER2013 database, third training series: normalized
confusion matrix of the best network. 59

3.43 Second network, FER2013 database with the FER+ annotations,
forth training series: loss and accuracy of the best network. 60

3.44 Second network, FER2013 database with the FER+ annotations,
forth training series: normalized confusion matrix of the best net-
work. 60

3.45 Second network, Database Ensemble of all the facial expressions
databases, first training series: loss and accuracy of the best network. 61

ix

3.46 Second network, Database Ensemble of all the facial expressions
databases, first training series: normalized confusion matrix of the
best network. 62

3.47 Second network, Database Ensemble of all the facial expressions
databases, second training series: loss and accuracy of the best network. 63

3.48 Second network, Database Ensemble of all the facial expressions
databases, second training series: normalized confusion matrix of the
best network. 63

3.49 Second network, Database Ensemble of all the facial expressions
databases, third training series: loss and accuracy of the best net-
work. 64

3.50 Second network, Database Ensemble of all the facial expressions
databases, third training series: normalized confusion matrix of the
best network. 64

3.51 Second network, Database Ensemble of posed facial expressions, first
training series: loss and accuracy of the best network. 65

3.52 Second network, Database Ensemble of posed facial expressions, first
training series: normalized confusion matrix of the best network. . . . 66

3.53 Second network, Database Ensemble of posed facial expressions, sec-
ond training series: loss and accuracy of the best network. 67

3.54 Second network, Database Ensemble of posed facial expressions, sec-
ond training series: normalized confusion matrix of the best network. 67

3.55 Second network, Database Ensemble of posed facial expressions, third
training series: loss and accuracy of the best network. 68

3.56 Second network, Database Ensemble of posed facial expressions, third
training series: normalized confusion matrix of the best network. . . . 68

4.1 One of the photos taken during the road tests. 72
4.2 One of the photos taken during the road tests. 72
4.3 One of the photos taken during the road tests. 73
4.4 One of the photos taken during the road tests. 74
4.5 One of the photos taken during the road tests. 74

x

List of Tables

3.1 The neural network described in the "Physiological Inspired Deep
Neural Networks for Emotion Recognition" paper. 31

3.2 First network: results of the first training series with the CK+
database, for every fold. 33

3.3 First network: Results of the second training series with the CK+
database, for every fold. 35

3.4 First network: Results of the third training series with the CK+
database, for every fold. 36

3.5 First network: Results of the first training series with the FER2013
database, for every fold. 38

3.6 First network: Results of the second training series with the FER2013
database, for every fold. 39

3.7 First network: Results of the third training series with the FER2013
database, for every fold. 41

3.8 First network: Results of the fourth training series with the FER2013
database with the FER+ annotation, for every fold. 42

3.9 First network: Results of the first training series with the Database
Ensemble of all the facial expressions databases, for every fold. 45

3.10 First network: Results of the second training series with the Database
Ensemble of all the facial expressions databases, for every fold. 46

3.11 First network: Results of the third training series with the Database
Ensemble of all the facial expressions databases, for every fold. 47

3.12 First network: Results of the first training series with the Database
Ensemble of posed facial expressions, for every fold. 50

3.13 First network: Results of the second training series with the Database
Ensemble of posed facial expressions, for every fold. 51

3.14 First network: Results of the third training series with the Database
Ensemble of posed facial expressions, for every fold. 52

3.15 The neural network described in the "Recognizing Facial Expressions
Using a Shallow Convolutional Neural Network" paper. 54

xi

3.16 Second network: results of the first training series with the FER2013
database, for every fold. 55

3.17 Second network: results of the second training series with the
FER2013 database, for every fold. 57

3.18 Second network: results of the third training series with the FER2013
database, for every fold. 58

3.19 Second network: results of the forth training series with the FER2013
database with the FER+ annotations, for every fold. 59

3.20 Second network: results of the first training series with the Database
Ensemble of all the facial expressions databases, for every fold. 61

3.21 Second network: results of the second training series with the
Database Ensemble of all the facial expressions databases, for every
fold. 62

3.22 Second network: results of the third training series with the posed
and spontaneous facial expressions Database Ensemble, for every fold. 64

3.23 Second network: results of the first training series with the Database
Ensemble of posed facial expressions, for every fold. 65

3.24 Second network: results of the second training series with the
Database Ensemble of posed facial expressions, for every fold. 66

3.25 Second network: results of the third training series with the Database
Ensemble of posed facial expressions, for every fold. 68

xii

Page intentionally left blank.

xiii

Page intentionally left blank.

xiv

Chapter 1

Introduction

1.1 Background

Cars are means of transport that, in our contemporaneity, fully represent the ideal
of personal freedom; unlike trains and trams, where it is normal for the vehicle
to be always driven by a third party, cars can be owned and driven by everyone,
and are commonly used to carry out normal daily activities, such as going to work,
shopping, gym and so on. The cars entered our lives a long time ago, so, nowadays,
for a young boy or a young girl, it is normal to think of wanting to buy one, especially
after obtaining the driving license.

The cars began to have affordable prices at the beginning of the XX century,
a time when Ford dominated the sector and was able to produce vehicles, like the
Ford Model N and the Ford Model T, which cost about half or less than the average
annual wage in the United States. A long way has been made since then, and safer
cars, full of optionals and more eco-friendly, can be purchased by anyone [45].

In recent decades, there has been a rapid evolution, that made some forms of
transport, generally of terrestrial type, semi or fully automated. The automation
progress has gone in parallel for rail vehicles, like trains and trams, and for non-rail
vehicles, primarily autos. Nowadays, the first types of vehicle, in all its forms of
automation, also the most advanced ones, is rather common and they are diffused
all around the globe; for the second type, however, only lower types of automation
are common, because they present more complexities and ethical problems than the
former. Fully automated driving cars are being tested, although, for now, it is nec-
essary to have a human supervisor who can take control of the car in extraordinary
emergency procedures in which the automatic system fails, in order to avoid the
violation of national laws.

But what is commonly meant by the term "autonomous driving car"?
For UCSUSA [55], "self-driving vehicles are cars or trucks in which human drivers
are never required to take control to safely operate the vehicle". For Treccani [54],

1

1 – Introduction

the automatic driving regards the "driving and control of robotic vehicles through
environmental data acquisition systems and automatic driving regulation, without
the need for intervention by a human driver"1. For Techopedia [53], "an autonomous
car is a vehicle that can guide itself without human conduction".

As we can read from the different definitions, autonomous driving cars are de-
scribed as fully automated, without human intervention. This is an optimum case:
an external control of the car can still be indispensable, at least for now, in certain
situations, like in the event of a traffic accident or when you need to park your car
in large garages.

One of the most important questions that car manufacturers, car rental agen-
cies and other actors are trying to answer is: will people put their trust in
autonomous driving cars? It is a question that is not easy to answer, because
the sense of security that is commonly felt is often false and guided by false certain-
ties; new technologies and methods to improve the social acceptance for this type
of vehicles are essential for the answer to be affirmative.

Therefore, for this thesis, we have developed a project that could be helpful in
this direction, and that we will present in the next section.

1.2 Our idea

We thought that a system in which the car is able to react according to
the passengers’ emotions, changing its driving style, could be useful for
the purpose. So, we asked ourselves: what emotions could be useful as input
for the vehicle? These emotions are expressed in the same way by everyone, or
they can change based on cultural, individual or other factors? In the early 1970s,
psychologist Paul Ekman answered this question by identifying six basic emotional
states, common to all cultures [3]:

• anger;

• disgust;

• fear;

• happiness;

• sadness;

• surprise.

1Translated by the author.

2

1.2 – Our idea

In later years, Paul Ekman himself and other researchers continued this study, find-
ing other common emotions, of which we will not discuss [16] [1]. So, we thought
that four of these emotions, namely fear, happiness, sadness and surprise, with the
addition of the neutrality, could actually be used as input, for the car, in this way:

• if most of the people inside the car experience feelings of fear or sadness,
the car will slow down its speed and take curves more accurately, with a lower
lateral acceleration, even coming to stop if necessary, when these feelings do
not calm down within a certain period of time;

• if most of the people inside the car experience neutral feelings, the car will
use its standard parameters;

• if most of the people inside the car experience feelings of happiness or sur-
prise, the car will go faster and will have a more sporting trim, always re-
specting the speed limits of the road in which it is located.

In case of need, if among the people in the passengers compartment there is no
majority state of mind, it is possible to proceed with strategies different from those
normally provided, such as, for example, the assignment of a higher priority to
passengers in state of fear, the use of the value obtained previously and others.

We thought about how we could actually implement this technology: for this
purpose, after drawing some sketches, we made a 3D rendering, which you can see
in figure 1.1.

Figure 1.1: A possible implementation of this project in an autonomous driving car.

This system could work with a properly trained neural network to recognize facial
expressions. Nowadays, they are the standard for carrying out this type of activities.

3

1 – Introduction

1.3 Thesis structure
We got the idea and we defined how the system could work; the next step was to
define a roadmap to follow during the thesis. For now, it is difficult to access to an
autonomous driving vehicle, so we decided, as a first step, to do a feasibility study,
in order to know if this approach can actually work. To this end, we have developed
and followed this roadmap:

• obtain information about the state of the art regarding the neural networks
capable of making facial expressions recognition. We will discuss this
in the third chapter, called Training of neural networks ;

• gain access to some facial expressions databases, in order to have the
material needed to train a neural network, and find an intelligent way to
preprocess these databases in order to be a good input for it. We will discuss
this in the second chapter, called Preprocessing ;

• train a neural network, able of recognizing facial expressions with a good
accuracy, taking into account the fact that it must work efficiently in different
light conditions, so it is very important that it is able to generalize. We will
discuss this in the third chapter, called Training of neural networks ;

• perform some road tests, in order to test some of the previously trained
neural networks. We will discuss this in the fourth chapter, called Road tests.

A partial work, derived from this thesis, was presented at the Italian Workshop
on Neural Networks (WIRN) 2019, held from June 11th to 14th in Vietri sul Mare
(SA), Italy (figure 1.2), and we are awaiting a response for publication in the book
related to the conference, published by Springer.

Figure 1.2: A photo taken at the Italian Workshop on Neural Networks (WIRN) 2019.

4

Chapter 2

Preprocessing

For the first part of our work, we focused on the preprocessing phase. We have solved
the related problem with a program: before talking about it, we want to discuss about
how the idea of realizing this program came from.

2.1 Previous works

In 2018, I participated in the “Smart Mood Reader” Hackathon, that took place in
the CLIK (Contamination Lab and Innovation Kitchen) laboratory of the Politecnico
di Torino. For this hackathon, I worked together with Mirko Crobu, Jessica Con-
treras and Daniel Gaiki for the development of a project called OVU, an acronym
that came from the Italian words Olfatto (smell), Vista (sight), and Udito (hearing).

Figure 2.1: The OVU team on the proclamation day of the winner of the hackathon.

5

2 – Preprocessing

OVU is a system that combines sounds, images and colored lights in order to
improve the mood of a person: for example, if a person is angry, OVU recognizes its
mood and displays on a TV or a smartphone a relaxing three-dimensional musical
video, where the user’s interactions can change the color of the lights in the room
where he is; the colors are defined according to their effects deriving from studies on
chromotherapy, and they are combined with the right images and sounds in order
to improve their effect. With this project we achieved the first position, winning
the hackathon (figure 2.1). The reward was the possibility to expose our project at
the Maker Faire of Rome and Turin, so we brought OVU there, where we got very
useful ideas and impressions (figure 2.2).

Figure 2.2: The OVU stand at the Turin Maker Faire.

OVU consisted of two parts: the physical part, composed of a Raspberry Pi
model 3 in which is executed a Python software, capable of capturing images using
a camera and requesting the mood detection, and by a pure software part, realized
with Unity, that receives the captured mood and that displays, consequentially, a
scene. A curiosity about OVU is that this name, in the Sardinian language, means
"egg": therefore, we decided to make the shell of the physical part of OVU with an
ovoid shape, in order to play with this homonym.

The mood detection in OVU was carried out with the Microsoft Azure API:
however, we thought it could be better, to protect users’ privacy, to do this on-site;
this also has the advantage of not having to depend on external services anymore,
and, potentially, of doing the operation faster and with greater reliability of response
than the counterpart obtainable with a cloud service. So, for the exam of Computer
Vision, which required the realization of a project, we proposed and get permission
to realize a neural network able to recognize facial expressions.

6

2.1 – Previous works

Figure 2.3: Dataset Preparation for CK+.

In this project, we had to solve the same preprocessing phase problems that we
had in this thesis, so we created two programs, called Data Preparation for CK+
(figure 2.3) and Data Preparation for FER2013 (figure 2.4): these programs,
created resorting to Eclipse with the addition of Java and OpenCV [9], classify
the images putting them in the right classification folder, and the CK+ [20] [24]
version can also perform operations like grayscale conversion and image resizing, all
with a simple and effective GUI.

Figure 2.4: Dataset Preparation for FER2013.

7

2 – Preprocessing

So, when we got this thesis, we proposed and get the permission to create a
program that included the functionality of these two programs, but that supported
more databases of facial expressions and more functions.

2.2 Posed and spontaneous facial expressions

We want to make a computer able to classify facial expressions [4]. To obtain this
result, therefore, a deterministic methodology, in which a facial expression can be
clearly determined, is needed.

A commonly used system, capable of classifying them, is the Facial Action
Coding System (FACS) [2]. The premise is that our face is full of muscles: every
single type of movement that can be done by a facial muscle or a group of them,
in the FACS system, is called Action Unit (AU). Thus, facial expressions can be
adequately classified, using this system, as groups of weighted AUs. There may
be more muscle configurations that can lead to defining a facial expression as part
of a particular class. For example, a person can be considered happy if he has a
beautiful smile arched upwards, but even if he has an open mouth and exposes
his teeth; if frowning, however, this last expression could also be associated with
a state of anger. Therefore, among the various facial expressions, there may be a
strong intraclass variability that can, in some way, undermine the accuracy of the
recognition implemented by an automated device.

The facial expressions databases make a clear distinction between posed and
spontaneous facial expressions: while the latter are the natural response to par-
ticular stimuli, the former are, in general, a more pronounced version of them.

Figure 2.5: Example of photos taken from the JAFFE database.

8

2.3 – Facial Expressions Databases Classifier

2.3 Facial Expressions Databases Classifier
The program that we proposed and then created, always resorting to Eclipse with
the addition of Java and OpenCV [9], was Facial Expressions Databases Clas-
sifier (FEDC) [48]; the main idea behind FEDC is the following: reduce to the
minimum the time and the code necessary for the classification of facial expressions
databases. Currently, FEDC is at version 4.0.3: starting from version 1.0.0, FEDC is
able to automatically classify images of some of the most used databases, depicting
human faces with posed and spontaneous expressions:

• Extended Cohn-Kanade Database (CK+) [20] [24];

• Facial Expression Recognition 2013 Database (FER2013) [18];

• Japanese Female Facial Expression Database (JAFFE) [25];

• Multimedia Understanding Group Database (MUG) [7];

• Radboud Faces Database (RaFD) [22];

Figure 2.6: Facial Expressions Databases Classifier, version 4.0.3.

Starting from version 3.0.0, support to the FACES Database [15] was added,
and since version 4.0.0, support to the Static Facial Expressions in the Wild
2.0 Database (SFEW 2.0) [12] was added, for a total of seven facial expressions
databases supported. FEDC does nothing magical: it uses the pre-classification

9

2 – Preprocessing

implemented by the databases’ creators. In addition to this, FEDC, from version
1.0.0, is also able to perform several useful operations on images:

• conversion in grayscale color space;

• histogram equalization;

• face detection to crop the images to face only;

• scaling of horizontal and vertical resolutions.

Figure 2.7: Example of photos taken from the FACES database.

Starting from version 2.0.0, the subdivision option between train, validation and
test dataset was added; from version 3.0.0, the possibility of changing the output im-
ages format was added, and, from version 4.0.0, CLAHE (Contrast Limited Adaptive
Histogram Equalization) option was added. Other useful additions, starting from
version 4.0.0, regards the support to the FER+ annotations [8], of other two
image formats, .PGM and .PPM, and of the option to add a padding in order to
transform the rectangular images into square ones; this feature was initially released
only for the SFEW 2.0 database, but, from version 4.0.2, it was extended to CK+,
FACES and RaFD databases. This feature was a useful addition, because is common
to build neural networks that work with square images.

10

2.3 – Facial Expressions Databases Classifier

Figure 2.8: Example of photos taken from the RaFD database.

2.3.1 The FEDC interface

From the figure 2.6, it can be seen that FEDC [48] has a simple, clean and essential
user interface, consisting of four macro-areas:

• on the left column, it is possible to choose the database to be classified, one
between those listed previously;

• on the other columns, it is possible to select the operations that will be carried
out on the photos: those available have already been mentioned above;

• on the lower part of the window, there are the buttons to select the input file,
output folder, and for start and cancel the classification;

• finally, above the buttons, there is the progress bar and the state of the current
operation.

The interface has changed considerably between the different versions, in order to
accommodate all the new features: if you look at the figure 2.9, which represents
FEDC version 1.0.0, you will notice that the new version is bigger and with more
options.

11

2 – Preprocessing

Figure 2.9: Facial Expressions Databases Classifier, version 1.0.0.

2.3.2 Database Ensemble

One of the features of FEDC [48] is to easily accomplish what we have called
Database Ensemble, which is a union of multiple databases, containing the same
classes or a subset of them. This merge operation can:

• increase the generalization capability of the neural network;

• partially or totally compensate the problems of having small databases.

For databases containing images, it is possible to uniform these data as much as
possible, performing, for example, operations like grayscale conversion, histogram
equalization and normalization: we will talk about this operation in the next chapter.

With FEDC, creating a Database Ensemble of facial expressions is simple: you
must set in FEDC, as far as possible, the same parameters for each database that
will be used, letting it prepare the images and then manually combining the obtained
results. If you use the subdivision function of FEDC, you can obtain a train, test
and, optionally, a validation dataset containing photos from all the databases, in
order to have a reliable evaluation of its performance.

2.3.3 How FEDC works

Supported databases have features that make them different from one another; there-
fore, FEDC [48] will perform different operations for each of them. So, now we will

12

2.3 – Facial Expressions Databases Classifier

make some examples regarding the operations carried out by FEDC for some of
them.

CK+ Case

The Cohn-Kanade Extended (CK+) database [20] [24] is composed of 593 sequence
of 123 subjects, where, for each of them, the portrayed person starts from a neutral
state and reaches a peak emotional state, which is in the last photo of each sequence.
In this database are reported a total number of eight different facial expressions:
anger, contempt, disgust, fear, happiness, neutrality, sadness and surprise. Of 593
peak emotional state photos, only 327 are FACS coded [2]: so, only these are relevant
if we want posed human faces. By adding a neutral photo for every subject, which
we said before being 123, we can reach a quantity of 450 photos: this is exactly
the number of photos that FEDC [48] will return. Others have chosen a different
number of photo, from the database, to train a neural network, for example the first
and the last three photos of each sequence [17]: for FEDC, we have chosen to use
only the FACS coded photos and the first photo of each sequence, but, if you want,
you can modify slightly the FEDC code, in order to achieve the desired results.
The images are contained in the "extended-cohn-kanade-images.zip" file, while the
emotion coded files are contained in the "Emotion_labels.zip" file: these are the
input files required by FEDC. If given, it will perform the following operations:

• if the user has not chosen to crop the images to face only, it asks him if he
wants to make square the images;

• extracts the images and the labels contained in the two .zip files in a temporary
folder;

• creates the classification folders and, in case, the subdivision folders;

• for every emotion coded file, checks if the file name is the one expected; if true,
it reads it, obtaining the FACS coded emotion, and searches the corresponding
image;

• once found, applies any optional operations selected by the user to the image
(grayscale color space conversion, histogram equalization, etc.);

• saves the image, with the chosen format, in the corresponding classification
folder.

• for every subject, adds the first photo of a sequence to the neutrality classifi-
cation folder;

• optionally, if chosen by the user, subdivides the images between train, test
and, always optionally, validation folders;

13

2 – Preprocessing

• deletes the temporary folders.

Figure 2.10: Example of photos taken from the CK+ database.

FER2013 Case

The FER2013 database [18] is composed of 35887 photos, which depicts people
with seven different spontaneous facial expressions: anger, disgust, fear, happiness,
neutrality, sadness and surprise. It presents a default subdivision between train,
validation and test of 80%-10%-10%, so, as first thing, FEDC [48] will ask if you
want to use it or not: if you do not want to use it and you have not chosen to use
the FEDC integrated subdivision, the photos will be inserted in a single folder, and
in the right classification folder.

The images and the information about the facial expressions and the subdivision
folders are contained in a unique file, called "fer2013.csv". This is the input file
required by FEDC. If given, it will perform the following operations:

• if the user has not chosen to perform the automatic subdivision made by
FEDC, asks him if he wants to use the default subdivision of the database;

• creates the classification folders and, in case, the subdivision folders;

• starting from every byte of them, it recreates the images; if the number of bytes
of one of them exceeds 2304, there will be an error, because FEDC expects
images of 48x48 pixels;

• applies any optional user-defined operation: it is relevant to say that the
grayscale option has no effect, because the images already are;

14

2.3 – Facial Expressions Databases Classifier

• saves the images, with the chosen format, in the right classification folder,
eventually using the default subdivision super folder.

• if chosen by the user and if the default subdivision was not selected, subdivides
the images between train, test and, always optionally, validation folders;

• deletes the temporary folder.

Optionally, you can also provide to FEDC the FER+ annotations [8], that re-
label FER2013 adding also the contempt state and removing some images, contained
in it, that do not contain human faces. The FER+ annotations are applied by FEDC
using the "Majority Voting" modality: for more information, please read the FER+
annotations paper.

Figure 2.11: Example of photos taken from the FER2013 database.

SFEW 2.0 Case

The Static Facial Expressions in the Wild (SFEW) 2.0 database [12] is composed
of frames picturing actors with spontaneous expressions, extracted from Acted Fa-
cial Expressions in the Wild (AFEW) [13] [14], a database that contains sequence
taken from different movies. SFEW contains aligned photos, that contains only the
cropped faces of the actors, and non-aligned photos, that are the entire frames, both
subdivided between train, validation and test folders. The number of aligned photos
is 1694, divided as follows:

• 891 for train;

15

2 – Preprocessing

• 431 for validation;

• 372 for test.
Instead, the non-aligned photos are 1766, divided as follows:

• 958 for train;

• 436 for validation;

• 372 for test.
The test folders contains non-labeled photos, so they cannot be classified: however,
the chosen transformations will also be applied to the test dataset, so as to give the
user the freedom to use it, for example as a test for a neural network trained with
this database. FEDC [48] works only with the aligned faces images: this because
the rest of the frame is not useful for the evaluation of the facial expressions, so,
at the moment, the non-aligned faces images are not supported. The aligned faces
images are non-square; as we said above, with the introduction of SFEW 2.0, the
option to add a padding to make these images square was added to FEDC, so the
user can choose if he wants that the images become square or not. The aligned
photos were cropped with automatic tools: therefore, there are images that do not
contain human faces or that have a wrong crop. FEDC can eventually remove these
photos.

For classifying the SFEW 2.0 database, FEDC requires these files: "Train-
_Aligned_Faces.zip", "Val_Aligned_Faces_new.zip" and "Test_Aligned_Faces-
.zip". If you input them to FEDC, it will perform the following operations:

• asks the user if he wants the images with an incorrect crop to be discarded;

• if the user has not chosen to perform the automatic subdivision made by
FEDC, asks him if he wants to use the default subdivision of the database;

• asks the user if he wants to make square the images;

• extracts the images contained in the three .zip files in a temporary folder;

• if the user has not chosen the default subdivision, it creates the classification
folders and, in case, the subdivision folders;

• applies the operations chosen by the user;

• saves the image, with the chosen format, in the corresponding classification
folder;

• optionally, if chosen by the user, subdivides the images between train, test
and, always optionally, validation folders;

• deletes the temporary folders.

16

2.3 – Facial Expressions Databases Classifier

Figure 2.12: Example of photos taken from the SFEW 2.0 database.

2.3.4 Information about supported databases

We have provided some information regarding the CK+ [20] [24], FER2013 [18] and
SFEW 2.0 [12] databases, and we have seen how FEDC [48] works with them; also
the other supported databases have particularities, which we would like to discuss
here:

• the JAFFE database [25], like the FER2013 database, only contain grayscale
images;

• the RaFD database [22] also contains profile photos. If you enable the option
to perform face detection and crop of the images, FEDC will ask if you want to
use a separate, less accurate face detector for this type of photo; independently
from the answer, FEDC will exclude photos in which it has not found any
human face;

• regarding the MUG database [7], FEDC only works with the manual annotated
images, contained in the "manual.tar" file;

Finally, it is important to add that FEDC requires the ownership of the previously
cited databases to work; the access to these is usually allowed only for research
purposes: for more information, consult the related sites.

17

2 – Preprocessing

2.3.5 Final notes about FEDC

We think that FEDC [48] is a very useful tool for people who work with facial
expressions: it was designed with the word "flexibility" in mind, so its code was
released under the MIT license on GitHub. Everyone can download it and use it
freely, modifying the code at will. The code is all commented in english, so this
simplifies understanding. The addition of a classifier for a new database is simple:
there is a class, called Classifier.java, which implements all the optional operations
to be applied on the images present in FEDC, and which can be inherited from the
new classifiers and used, reducing the number of lines to write; also, unzipping and
untarring classes are present. If desired, the code can be freely modified so that it
can also be used in totally different contexts than that of facial expressions.

Figure 2.13: Example of photos taken from the MUG database.

18

Chapter 3

Training of neural networks

After creating Facial Expressions Databases Classifier, we wanted to use it for train-
ing neural networks capable of recognizing facial expressions. Therefore, we looked
for the state of the art regarding the neural networks created for this purpose, in or-
der to make comparisons on the degree of accuracy that we have been able to obtain
with respect to that obtained by others. It is important to note that we do not want
to build a new high-performance neural network specifically for facial expressions,
but we are rather interested in make experiments in such a way we know if we can
use this technology for making predictions in cars interiors.

3.1 Brief history of neural networks

The history of the neural networks started a long time ago, when studies on the
behavior of the human brain began. But it is from the end of the XIX century
that the most important phases took place: now, we will mention some of the most
important events [51].

In 1943, Warren McCulloch and Walter Pitts wrote an article concerning the
possible functioning of a neuron. This was an input for other researches, and, in
1958, Frank Rosenblatt defined the Perceptron (figure 3.1), a simplified mathemat-
ical model of a neuron. A year later, Bernard Widrow and Marcian Hoff developed
the single-layer neural network ADALINE (acronym of ADAptive LINear Ele-
ments) and its multi-layer version MADALINE, which is still commercially used
today.

After a period in which studies froze for various reasons, such as unfulfilled claims
and fears, they resumed in the early 1980s. in 1997, Sepp Hochreiter and Jürgen
Schmidhuber defined the LSTM (Long-Short Term Memory) recurrent neural
network (RNN).

in 1998, Yann LeCun, Joshua Bengio and Patrick Haffner created the LeNet-5
[23] convolutional neural network (CNN): originally, it was built to automatically

19

3 – Training of neural networks

read the digits on bank cheques in the United States, but is still used nowadays in
industry.

After a long time, in which neural networks sporadically appeared in some con-
tests and papers [10] [11], in 2012, exploiting the growing computational power of the
new GPUs, a new neural network, called AlexNet [21], came out; it was presented
at the ImageNet Large Scale Visual Recognition Challenge 2012 (acronym
ILSVRC2012), imposing on opponents with an error rate lower than almost 11%
compared to them: an astonishing performance, which has catapulted the neural
networks into the current trend topic in the field of data science.

The AlexNet document has been cited for more than forty thousand times, and
continues to be a source of inspiration for the improvement of neural networks, which
have greatly improved in these seven years.

Figure 3.1: An image of the Perceptron.

3.2 Useful notions about neural networks

Before starting, it might be useful to mention some brief notions about neural net-
works, because we will use them abundantly later.

3.2.1 Definition

In the last section, we briefly talked about the history of neural networks. An
Artificial Neural Network (ANN) [46] [56] is a mathematical system, partly
inspired to the human brain. For the sake of brevity, most of the time the word
"artificial" is not reported, but it would be important to mention it, because there
is a huge difference between a normal neural network and an artificial one. An ANN
is composed of artificial:

20

3.2 – Useful notions about neural networks

• synapses, which have a weighting and interconnection function;

• neurons, which makes the linear combination between the inputs coming from
the synapses in this way:

Y =
∑

(weight · input) + bias

This value is then passed to an activation function, which is needed to decide if
the neuron is activated or not. Some of most common activation functions are the
following:

• ELU;

• LeakyReLU;

• Linear;

• PReLU;

• ReLU;

• Sigmoid;

• Softmax;

• Tanh.

For the neural networks that we will experiment in this thesis, we will use the ReLU,
LeakyReLU and Softmax activation functions.

3.2.2 Overfitting and Underfitting

For a machine learning system, the primary objective is to create a model that is
able to generalize well [41]: this means that the model, optimistically, must work in
the same way both with data already seen and with new, unseen data. A model is
called:

• overfitted when it learned too many features from the input data, thereby
limiting its ability to generalize towards new data;

• underfitted when it has not been able to learn sufficient characteristics from
the input data, and that, consequently, is not able to generalize towards new
data.

A model that is capable to generalize in a good way will be neither overfitted nor
underfitted.

21

3 – Training of neural networks

3.2.3 Bias and Variance

A model, when trained, is able to make good predictions about the nature of a
sample if:

• it belongs to one of the classes that the model can classify;

• it is sufficiently similar to the samples used for its training;

If the model had been trained with very different classes, the accuracy of the pre-
diction is expected to be higher than if it is trained with very similar classes. So,
it’s important to understand two concepts regarding prediction errors [50]:

• the bias is the difference between the correct value that we are trying to predict
and the average prediction. A high bias involves oversimplification and little
attention to the important features of the training data;

• the variance indicates the sensitivity of the model to small perturbations of
the train dataset. Contrarily to what we said for the case of high bias, when
there is a high variance the model tends to learn too much from the training
data, losing its ability to generalize well on the data it has never seen before.

Then, there will be overfitting when there is a high variance, while there will be
underfitting when there is a high bias. Optimistically, one would like to have both
a low bias and a low variance (figure 3.2).

Figure 3.2: The Bias-Variance tradeoff.

22

3.2 – Useful notions about neural networks

3.2.4 Ground truth

The ground truth is the class that is assigned to a particular object by experts,
and that assumes that this object actually belongs to that class. While for many
problems understanding the class to which an object belongs can be simpler, as in the
case of a binary problem of distinction between dogs and cats, for many other cases
this may not be so simple, especially if the classes have minimal differences between
them and have a very high acceptance variance, as happens, for example, exactly
with facial expressions. The FER+ annotations paper [8] gives a good example in
this regard; in fact, the team, after analyzing the entire FER2013 database [18], has
efficiently documented the fact that:

• the ground truth sometimes is not exactly the truth;

• as the number of experts involved in making the classification increases, so too
does the accuracy thereof.

3.2.5 Metrics

During the training, for evaluating the performance of a model are commonly used
two metrics, that are the following:

• the accuracy [30] indicates the fraction of predictions guessed by the model,
and it has the following formal definition:

Accuracy = Number of correct predictions
Total number of predictions

• the loss [31] indicates how bad the prediction of the model was on a sin-
gle sample. The loss reaches zero if the prediction is perfect, otherwise it is
greater than this value. There are different types of metrics; we will use the
categorical cross-entropy [33], defined as:

L(y, ŷ) = −
∑M

j=0

∑N
i=0(yij · log(ŷij))

3.2.6 Hyperparameters

The hyperparameters are variables that must be set before the training and that
determines how the network will be trained. Now we will briefly discuss some of the
most important hyperparameters [32]:

• the learning rate defines the speed of network updates; low values slow down
the learning process but it becomes smoother, while high values accelerate
the learning process, but increases the risk, for the network, of not having a
convergence and to overfit;

23

3 – Training of neural networks

• the sample is an element of a dataset. For example, it can be an image or an
audio file;

• the batch is a set of N samples, processed independently and in parallel.
During the training, a batch makes a single update of the network;

• an epoch is a limit that can be set by the user and is generally defined as "a
passage on the entire dataset", used to divide the training in more phases in
order to make, for example, periodic evaluation and logging. With Keras and
similar tools, callback functions [37] can be called at the end of every epoch;
we will make use of some of them, like, for example, the learning rate changer
(ReduceLROnPlateau in Keras) and the early training stopper (EarlyStopping
in Keras): these two callbacks are called when the given metrics have stopped
improving;

3.2.7 Partitioning of the database

For the training a neural network, it is good practice to divide the database into
three parts [36] [38]:

• the train dataset, that is used to train the network;

• the validation dataset, that is used to evaluate the network;

• the test dataset, that is used to test the network, in order to test the capability
of the network to generalize on new, unseen data.

Percentages commonly used for the subdivision between train, validation and test
datasets are 60%-20%-20% or 80%-10%-10% (figure 3.3).

Figure 3.3: One of the possible subdivisions between train, validation, and test datasets:
this configuration was the one we used for all the training we did.

Sometimes only train and test dataset, which also serves as validation dataset,
are used, but this results in the following problem: in each epoch, the model makes
predictions using the validation dataset to optimize his hyperparameters, but he
does not learn from it: for this reason, if it is also used as test dataset, the error rate
during the test will be lower than what really is. So, the golden standard requires
the use of three distinct datasets.

24

3.2 – Useful notions about neural networks

A good technique to reduce the overfitting resulting from the training can be
achieved partitioning the dataset into multiple subsets, in order to use one part for
training and the remaining part for validation/testing, performing multiple rounds
with different subsets of the same data so as to reduce the variance: this technique
is called cross-validation [47]. There are several types of cross-validation, which
we will discuss now:

• the Leave-One-Out Cross-Validation (LOOCV), which is performed by
subdividing the dataset, that we suppose of size n, into two parts; one will
contain one single observation, that will be used as validation/test dataset,
and the other one will contain the rest of the dataset (n-1), which will be used
for training. The operation will be repeated for every sample;

• the k-Fold cross-validation, which is performed, as the name suggests, split-
ting the dataset into k folds of approximately the same size, and using k-1 fold
for training and the remaining for validation/testing (figure 3.4). The process
will be repeated k times, modifying the groupings. The LOOCV is a variant
of the k-Fold in which k is equal to n;

Figure 3.4: An example of 5-Fold cross-validation.

• the Stratified cross-validation, which is done by rearranging the dataset so
that each fold can be seen as a good representation of the whole dataset. This
is used for binary classification problems;

25

3 – Training of neural networks

• the Time-Series cross-validation, that is used when the dataset is com-
posed of observations made at different time points.

In general, cross-validation reduces bias and variance, at the cost of multiple training,
which can be very expensive. For this thesis, we have chosen to use the k-Fold cross-
validation for every test we have performed.

3.3 Other notions
In this section, we will briefly discuss about some operations and visualization meth-
ods that we will use later.

3.3.1 Normalization

The normalization [34] is a family of operations, commonly used in machine learn-
ing and other fields, that is used to bring the numeric features of a distribution on
a similar scale. Commonly used normalization techniques are:

• the feature clipping, which is an operation, usually complementary to other
types of normalization, used to set the interval of a distribution, cutting the
values above it.

• the log scaling, which is an operation that compresses a wide range into a
narrow one; this helps to improve the performance of a linear model. It is
defined as follows:

x′ = log(x)

• the scaling to a range normalization, which, as the name implies, changes
the range of the distribution into the desired one. Common scaling range are
[−1,+1] and [0,1]. This is useful if the data are approximately uniform in a
known range and there are some outliers or none of them. For scaling into a
range, the following operation must be applied:

x′ = x−xmin

xmax−xmin

• the z-score normalization, also called z-score standardization, which is
used to make sure that the distribution has a mean equal to zero and a standard
deviation equal to one. It is useful when there is a limited number of outliers
and their cropping is not necessary. It is defined as follows:

x′ = x−µ
σ

We will make some tests using the scaling to a range normalization between 0 and
1, and the z-score standardization.

26

3.4 – Neural networks for facial expressions

3.3.2 Data augmentation

The data augmentation [43] is a technique, commonly used in machine learning
when you have a relatively small database, and that consists in the generation of
batches of samples, modified with respect to the original ones contained in the
database. For example, if the database contains images, the augmented images are
obtained with mixes of transformations like translations, rotations, shearings and
many others. This improves the ability of the model to generalize towards new data,
and its performance.

3.3.3 Confusion matrix

The confusion matrix [6] is a two-dimensional matrix, having the class predicted
by the classifier and the true class of the sample as dimensions. It is commonly used
to display the performance of a classifier respect to a test dataset. If the classifier
performs well, the majority of the values will be found in the main diagonal of the
confusion matrix.

3.4 Neural networks for facial expressions

For our task, we searched for some of the best neural networks created specifically
for facial expressions recognition; our choice fell on those presented in the following
papers:

• Physiological Inspired Deep Neural Networks for Emotion Recogni-
tion [17];

• Recognizing Facial Expressions Using a Shallow Convolutional Neu-
ral Network [27].

Both networks are quite recent, released in 2018 and 2019 respectively, and while the
first is sufficiently complex, the second is much simpler. They have approximately
the same number of parameters, around 9 million, but while the first network has a
default images size of 120x120 pixels, the second has as default size 48x48 pixels; the
first one, setting a images size of 48x48 pixels, reduces the number of hyperparame-
ters to just over 2 million, a much lower value than the previous one: this is due to
the many max pooling layers present in the network, which performs images down-
sampling thus also reducing the number of parameters. This is an important fact,
because if we want to use these networks on the cars, using fewer parameters means
less demand for computational power, and less space required for store the neural
network. So, we will examine their performances, using the following databases as
input:

27

3 – Training of neural networks

• CK+ (only for the first network) [20] [24];

• FER2013 [18] and FER2013 with FER+ annotations [8];

• a Database Ensemble composed of all the facial expressions databases sup-
ported by FEDC;

• a Database Ensemble composed of all the posed facial expressions databases
supported by FEDC.

3.5 Used tools
In October 2018, Kaggle conducted a worldwide survey, aimed at data science pro-
fessionals and involving 23,859 people. One of the most interesting results of this
survey is the one concerning the most used programming languages, on a regular
basis, for data science (figure 3.5): Python, with its 83%, is the most used, followed
by SQL with 44% and R with 36%. The great advantage of Python, compared to
other languages, consists in its richness of data science libraries and in the ease of
performing even very complex operations.

That is why, for our task, we decided to use Python 3.7, alongside with the
Anaconda distribution, which we used as interpreter, and JetBrains Pycharm,
which we used as primary IDE. We have written the code necessary to train the neu-
ral networks with Keras [44], a high-level neural networks API, written in Python
and able to run on top of three different popular frameworks for machine learning:

• TensorFlow;

• CNTK (The Microsoft Cognitive Toolkit);

• Theano;
Of these three, we decided to use TensorFlow [40] as backend. We also used the
following libraries:

• Matplotlib [19]: a powerful, 2D plotting library for Python;

• NumPy [5] [29]: a BSD licensed Python package used for scientific computing;

• OpenCV (Open Source Computer Vision Library) [9]: an open-source,
computer vision and machine learning software library for C++, Java, MAT-
LAB and Python;

• Pandas [26]: an open-source, BSD-licensed Python library providing high-
performance, easy-to-use data structures and data analysis tools;

• Scikit-learn [28]: an open-source, BSD licensed Python library for data min-
ing and data analysis.

28

3.6 – Hardware configuration

Python
SQL

R
C/C++

Java
Javascript/Typescript

Bash
MATLAB
C#/.NET

Visual Basic/VBA

PHP
SAS/STATA

Scala
Go

Ruby

Julia
Other
None

83

44

36

23

21

17

14

14

9

7

6

6

4

2

2

1

3

2

Percentage of participants

P
ro

gr
am

m
in

g
la

ng
ua

ge

Figure 3.5: One of the most interesting results coming from the 2018 Kaggle Machine
Learning & Data Science Survey.

3.6 Hardware configuration
For the training, we have used a laptop and a desktop computers with the following
configurations:

• Laptop:

CPU: Intel® Core™ i7 8750H;

GPU: NVIDIA® GeForce® RTX 2080 8GB GDDR6 with Max-Q Design;

RAM: 32 GB DDR4, 2666 MHz;

256GB PCIe M.2 SSD + 1TB (+8GB SSHD) Hybrid Drive.

29

3 – Training of neural networks

• Desktop:

CPU: Intel® Core™ i7 4770K;

GPU: NVIDIA® GeForce® GTX 1070 8GB GDDR5;

RAM: 32 GB DDR3, 1866 MHz;

1TB PCIe M.2 SSD + 512 GB SATA SSD + 1TB HDD.

In both cases, we used TensorFlow-GPU [40], which, for NVIDIA® graphic
cards, recurs to the NVIDIA® CUDA® Deep Neural Network library
(cuDNN) [35], which provides GPU-accelerated primitives for deep neural net-
works.

As much as possible, we have set some seeds to make the tests reproducible, but
the use of a multicore CPU for training a neural network, or, better for performances,
of a GPU, can introduce some sort of randomness in different part of the network
[32] [42].

3.7 Trainings

3.7.1 Neural network from the "Physiological Inspired Deep
Neural Networks for Emotion Recognition" paper

We have chosen to make our first tests with the network described in the
Physiological Inspired Deep Neural Networks for Emotion Recognition
paper [17], so we reimplemented it in Keras [44]. Some of the most interesting tests
have been reported here.

For the e-block layer, we implemented the "crop and resize" operation, for the
input coming from E(x), using a single convolution layer: its kernel size has to be
changed in base of the input images:

• for an images size of 120x120 pixels, that is the input default size for the
network, a kernel size of 106x106 is needed;

• for an images size of 48x48 pixels, that we will use later, a kernel size of 43x43
is needed.

In both cases, we have set a number of output filters of 64, in order to make the
inputs for the multiplication operation of equal size. For each test, we used the
EarlyStopping callback, set up to block training if, after 20 epochs, there were no
improvements to the validation loss, and the ReduceLROnPlateau callback, set to
multiply the learning rate by 0.99 in every epoch.

30

3.7 – Trainings

Layer
#

Network
Module Layer (type) Output

shape Connected to

1

E(x)

input_1(InputLayer) (3, 120, 120) -
2 conv2d_1(Conv2D) (16, 120, 120) input_1
3 conv2d_2(Conv2D) (16, 120, 120) conv2d_1
4 max_pool2d_1(MaxPooling2D) (16, 60, 60) conv2d_2
5 conv2d_3(Conv2D) (32, 60, 60) max_pool2d_1
6 conv2d_4(Conv2D) (32, 60, 60) conv2d_3
7 max_pool2d_2(MaxPooling2D) (32, 30, 30) conv2d_4
8 conv2d_5(Conv2D) (64, 30, 30) max_pool2d_2
9 conv2d_6(Conv2D) (64, 30, 30) conv2d_5
10 max_pool2d_3(MaxPooling2D) (64, 15, 15) conv2d_6
11 conv2d_7(Conv2D) (128, 15, 15) max_pool2d_3
12 conv2d_8(Conv2D) (128, 15, 15) conv2d_7
13 conv2d_tr_2(Conv2DTranspose) (64, 30, 30) conv2d_8

14 concatenate_1(Concatenate) (128, 30, 30) [conv2d_tr_1; conv2d_6]

15 conv2d_9(Conv2D) (64, 30, 30) concatenate_1
16 conv2d_10(Conv2D) (64, 30, 30) conv2d_9
17 conv2d_tr_2(Conv2DTranspose) (32, 60, 60) conv2d_10

18 concatenate_2(Concatenate) (64, 60, 60) [conv2d_tr_2; conv2d_4]

19 conv2d_11(Conv2D) (32, 60, 60) concatenate_2
20 conv2d_12(Conv2D) (32, 60, 60) conv2d_11
21 conv2d_tr_3(Conv2DTranspose) (16, 120, 120) conv2d_12

22 concatenate_3(Concatenate) (32, 120, 120) [conv2d_tr_3; conv2d_2]

23 conv2d_13(Conv2D) (16, 120, 120) concatenate_3
24 conv2d_14(Conv2D) (1, 120, 120) conv2d_13
25

F (x, x̂)

conv2d_15(Conv2D) (16, 120, 120) input_1
26 conv2d_16 (Conv2D) (16, 120, 120) conv2d_15
27 max_pool2d_4(MaxPooling2D) (16, 60, 60) conv2d_16
28 conv2d_17(Conv2D) (32, 60, 60) max_pool2d_4
29 conv2d_18(Conv2D) (32, 60, 60) conv2d_17
30 max_pool2d_5(MaxPooling2D) (64, 30, 30) conv2d_18
31 conv2d_19(Conv2D) (64, 30, 30) max_pool2d_5
32 conv2d_20(Conv2D) (64, 30, 30) conv2d_19
33 max_pool2d_6(MaxPooling2D) (64, 15, 15) conv2d_20

34 eblock_1(e-block) (64, 15, 15) [max_pool2d_6; conv2d_14]

35

G(h)

dense_1(Dense) (512) eblock_1
36 dropout_1(Dropout) (512) dense_1
37 dense_2(Dense) (512) dropout_1
38 dropout_2(Dropout) (512) dense_2
39 dense_3(Dense) (8) dropout_2

Table 3.1: The neural network described in the "Physiological Inspired Deep Neural Net-
works for Emotion Recognition" paper.

For every database, the initial configuration for our tests, with little modifications
about the hyperparameters respect the ones reported in the paper, was the following:

• batch size: 50;

• maximum number of epochs: 1000;

• learning rate: 0.001;

31

3 – Training of neural networks

• preliminary subdivision of 90%-10% between train and test dataset, made with
FEDC [48];

• a 9-fold, which further divides the train dataset into variable train and valida-
tion datasets.

Through the preliminary subdivision and the 9-fold, the following subdivision of the
database was obtained:

• 80% for the train dataset;

• 10% for the validation and the test datasets;

With FEDC, we converted to grayscale the images of the database, and choose to
crop the images on the face only so as to remove the unwanted part of the images
and to improve the results of the training.

CK+ database

These first tests are useful to verify the goodness of the implemented network. The
data distribution for the training with the CK+ database [20] [24] is reported in
the figure 3.6. It should be noted that the total number of available images is very
low and not well distributed among the different expressions: for example, it can be
seen in fact that, for the contempt case, we have only 18 photos, against the 123
photos available for the neutrality case.

Anger
Contempt

Disgust

Fear
Happiness
Neutrality

Sadness
Surprise

45

18

59

25

69

123

28

83

Number of photos

Fa
ci

al
ex

pr
es

si
on

Figure 3.6: Subdivision of the images between classes in the CK+ database.

32

3.7 – Trainings

The subdivision between datasets, obtained with the settings listed above, is as
follows:

• 364 photos for train;

• 46 photos for validation;

• 40 photos for test.

Using these settings, we trained 9 networks, obtaining the results in table 3.2: the
best of them, achieved using the seventh fold as validation dataset, was capable to
achieve a test accuracy of 82.5% after 137 epochs of training. It can also be noted
that some networks have failed to converge at all.

Fold
#

Epochs
of

Training

Test
Accuracy

Max
Validation
Accuracy

Min
Validation

Loss

Final
Validation
Accuracy

Final
Validation

Loss
0 50 0.67500 0.78261 1.03806 0.69565 2.21111
1 65 0.80000 0.84783 1.09511 0.71739 1.74286
2 582 0.30000 0.21739 12.61581 0.21739 12.61581
3 32 0.37500 0.54348 1.82376 0.47826 3.19177
4 35 0.50000 0.60870 1.26470 0.58696 3.86469
5 35 0.65000 0.68889 1.31010 0.62222 3.19715
6 41 0.65000 0.80000 0.70550 0.71111 1.64283
7 137 0.82500 0.88889 0.58596 0.84444 0.92168
8 28 0.45000 0.66667 1.29982 0.51111 4.33535

Table 3.2: First network: results of the first training series with the CK+ database, for
every fold.

Figure 3.7: First network, CK+ database, first training series: loss and accuracy of the
best network.

33

3 – Training of neural networks

Figure 3.8: First network, CK+ database, first training series: normalized confusion matrix
of the best network.

We can see that the results are surprisingly good, but the graphs are really bizarre
(figure 3.7). From the loss graph in particular, but also from the accuracy ones, we
can see that there is a big jump around epoch 60, indicating that the network has
begun to learn something; around epoch 90, there is another rapid increase in the
accuracy graph, of minor evidence in the loss one, which has brought the accuracy
to its final value.

So, after this first encouraging training series, we ran another one, adding the
scaling to a range normalization between 0 and 1, which, from now, we will call
simply [0,1] normalization; we also added the data augmentation with the following
parameters:

• a brightness range from 50% to 100%;

• horizontal flip enabled;

• rotation interval between +− 2.5 degrees;

• a shear range of +− 2.5%;

• a width and height shift range of +− 2.5%;

• a zoom transformation interval between +− 2.5%;

The results of the training are visible in table 3.3.

34

3.7 – Trainings

Fold
#

Epochs
of

Training

Test
Accuracy

Max
Validation
Accuracy

Min
Validation

Loss

Final
Validation
Accuracy

Final
Validation

Loss
0 101 0.87500 0.91304 0.24669 0.91304 0.41047
1 80 0.90000 0.86957 0.54744 0.78261 1.09485
2 89 0.77500 0.76087 1.03602 0.69565 1.05636
3 84 0.90000 0.80435 0.64164 0.73913 1.09686
4 23 0.30000 0.30435 1.89738 0.30435 1.90445
5 85 0.65000 0.66667 1.10012 0.62222 1.32859
6 115 0.92500 0.88889 0.32270 0.88889 0.45699
7 101 0.80000 0.84444 0.42916 0.80000 0.63079
8 113 0.87500 0.97778 0.06847 0.86667 0.81287

Table 3.3: First network: Results of the second training series with the CK+ database, for
every fold.

Figure 3.9: First network, CK+ database, second training series: loss and accuracy of the
best network.

Figure 3.10: First network, CK+ database, second training series: normalized confusion
matrix of the best network.

35

3 – Training of neural networks

We can see that the best network, achieved using the sixth fold as validation
dataset, obtained a test accuracy of 92.5% after 115 epochs of training: a 10% im-
provement over the first test. We can see that even the graphs are slightly improved
(figure 3.9). The bad thing is that the network has not learned well how to classify
the sadness facial expression: the confusion matrix shows an accuracy of 0% for this
state.

In our last training series with the CK+, we replaced the [0,1] normalization
with the z-score standardization: the results are displayed in table 3.4.

Fold
#

Epochs
of

Training

Test
Accuracy

Max
Validation
Accuracy

Min
Validation

Loss

Final
Validation
Accuracy

Final
Validation

Loss
0 51 0.77500 0.80435 0.71713 0.76087 1.12720
1 46 0.92500 0.80435 0.54962 0.78261 0.55664
2 56 0.92500 0.82609 0.86837 0.71739 2.34957
3 21 0.30000 0.34783 1.98085 0.34783 2.06859
4 60 0.77500 0.71739 0.78750 0.67391 1.09214
5 48 0.77500 0.80000 0.85224 0.75556 1.48810
6 76 0.80000 0.91111 0.28022 0.82222 0.69303
7 60 0.82500 0.91111 0.31529 0.88889 0.51948
8 105 0.87500 0.97778 0.14559 0.88889 0.65755

Table 3.4: First network: Results of the third training series with the CK+ database, for
every fold.

Figure 3.11: First network, CK+ database, third training series: loss and accuracy of the
best network.

36

3.7 – Trainings

Figure 3.12: First network, CK+ database, third training series: normalized confusion
matrix of the best network.

It can be seen that two networks achieved a 92.5% of test accuracy. If the
validation losses are also observed, however, it is possible to note that the network
obtained using the second fold as validation dataset, has a higher overfitting at the
end of the training: therefore, the best neural network is the other. Compared
to the best network obtained with the [0,1] normalization, this one had a faster
convergence, but its descent has been disturbed in the same way: lowering the
learning rate, we obtained cleaner graphs, but with a slower convergence.

In these training series, we obtained results in line with those stated in the
paper in which this neural network was presented; now we will do new tests using a
different database.

FER2013 database

After doing some test with the CK+ database, we have adapted the network in order
to work with the FER2013 database [18], which is a more populous database than
CK+, but with very small images size: only 48x48 pixels. It is also important to
add that the basic FER2013, compared to CK+, does not have the contempt state,
so it has only 7 states. We used the same settings and hyperparameters that we
used for the training made with the CK+ database, increasing only the batch size
to 100. For FER2013, the subdivision between datasets, obtained with the same
settings listed above, is as follows:

• 28712 photos for train;

• 3590 photos for validation;

37

3 – Training of neural networks

• 3585 photos for test.

The results of the first training series are reported in table 3.5.

Anger

Disgust

Fear

Happiness

Neutrality

Sadness

Surprise

4,953

547

5,121

8,989

6,198

6,077

4,002

Number of photos

Fa
ci

al
ex

pr
es

si
on

Figure 3.13: Subdivision of the images between classes in the FER2013 database.

Fold
#

Epochs
of

Training

Test
Accuracy

Max
Validation
Accuracy

Min
Validation

Loss

Final
Validation
Accuracy

Final
Validation

Loss
0 27 0.55593 0.57772 1.15456 0.56490 2.10535
1 27 0.55621 0.58735 1.14676 0.56701 2.01254
2 28 0.54700 0.56952 1.19026 0.55364 1.96380
3 28 0.55537 0.56172 1.21151 0.55057 2.44195
4 30 0.56569 0.56980 1.17097 0.56367 2.21624
5 29 0.55872 0.57398 1.19150 0.55893 2.04431
6 29 0.57127 0.58651 1.16405 0.57816 1.99641
7 29 0.54840 0.55949 1.20620 0.55336 2.01819
8 30 0.56179 0.58373 1.16308 0.57648 2.28562

Table 3.5: First network: Results of the first training series with the FER2013 database,
for every fold.

Figure 3.14: First network, FER2013 database, first training series: loss and accuracy of
the best network.

38

3.7 – Trainings

Figure 3.15: First network, FER2013 database, first training series: normalized confusion
matrix of the best network.

We can see that the best network is the one obtained using the sixth fold as
a validation dataset, which obtained a test accuracy of 57.127% after 29 epochs of
training. From the final validation losses and from the loss graph of the best network
(figure 3.14), it is clear that all the networks gone overfitting after a small number
of epochs.

We want to reduce this effect: so, for the second training series, we added the
[0,1] normalization and the data augmentation, with the same options that we used
for the CK+. We can see the results in table 3.6.

Fold
#

Epochs
of

Training

Test
Accuracy

Max
Validation
Accuracy

Min
Validation

Loss

Final
Validation
Accuracy

Final
Validation

Loss
0 23 0.25049 0.25571 1.80701 0.25292 1.80844
1 30 0.25049 0.24464 1.81092 0.24464 1.81140
2 29 0.25049 0.25383 1.80251 0.25383 1.80385
3 80 0.61395 0.62413 1.03863 0.62413 1.06054
4 31 0.25049 0.24909 1.80709 0.24909 1.80802
5 69 0.25049 0.25383 1.80803 0.25383 1.80840
6 110 0.60223 0.61326 1.04642 0.61326 1.05739
7 59 0.25049 0.24659 1.81474 0.24659 1.81568
8 150 0.50265 0.50878 1.30024 0.49875 1.30781

Table 3.6: First network: Results of the second training series with the FER2013 database,
for every fold.

39

3 – Training of neural networks

Figure 3.16: First network, FER2013 database, second training series: loss and accuracy
of the best network.

Figure 3.17: First network, FER2013 database, second training series: normalized confu-
sion matrix of the best network.

With these settings, we can see that most of the networks have not been able to
converge, but the best network achieved a test accuracy of 61.395% after 80 epochs
of training: not an incredible percentage, but definitely improvable. We can also
note a clear improvement in the form of the graphs, which now tends to saturate
in the last epochs (figure 3.16). Replacing the [0,1] normalization with the z-score
standardization, we got the results displayed in table 3.7.

40

3.7 – Trainings

Fold
#

Epochs
of

Training

Test
Accuracy

Max
Validation
Accuracy

Min
Validation

Loss

Final
Validation
Accuracy

Final
Validation

Loss
0 63 0.60307 0.62423 1.07525 0.61281 1.11469
1 57 0.62455 0.63360 1.02003 0.62998 1.06835
2 51 0.61506 0.62469 1.04563 0.61744 1.09491
3 49 0.61646 0.62887 1.05984 0.61884 1.15689
4 56 0.60363 0.61688 1.07400 0.60463 1.14892
5 56 0.61925 0.63054 1.01599 0.61856 1.07072
6 56 0.60753 0.61744 1.05614 0.60853 1.09714
7 50 0.60223 0.61521 1.08188 0.60184 1.13446
8 62 0.60335 0.61772 1.07363 0.60853 1.17247

Table 3.7: First network: Results of the third training series with the FER2013 database,
for every fold.

Figure 3.18: First network, FER2013 database, third training series: loss and accuracy of
the best network.

Figure 3.19: First network, FER2013 database, third training series: normalized confusion
matrix of the best network.

41

3 – Training of neural networks

We can see that the best network reached a test accuracy of 62.455% after 57
epochs of training: a small improvement, but far from the test accuracy of about
69% that others have achieved with the same database [27].

We will now use the FER2013 with the FER+ annotations, that relabels FEDC
in a more accurate way and allows to remove some images that do not contain
human faces. Differently from FER2013, it has also the contempt state, for a total
of 8 facial expressions (figure 3.20).

Anger
Contempt

Disgust

Fear
Happiness
Neutrality

Sadness
Surprise

3,111

216

248

819

9,355

12,906

4,371

4,462

Number of photos

Fa
ci

al
ex

pr
es

si
on

Figure 3.20: Subdivision of the images between classes in the FER2013 database with the
FER+ annotations.

With the FER2013 database with the FER+ annotations, we got the results
displayed in table 3.8.

Fold
#

Epochs
of

Training

Test
Accuracy

Max
Validation
Accuracy

Min
Validation

Loss

Final
Validation
Accuracy

Final
Validation

Loss
0 52 0.76784 0.76873 0.70279 0.75775 0.74301
1 45 0.78138 0.77296 0.68491 0.77014 0.73256
2 48 0.75515 0.76219 0.73907 0.75148 0.81934
3 50 0.77207 0.78670 0.65363 0.77937 0.69809
4 44 0.76869 0.79121 0.63467 0.77318 0.67572
5 50 0.77123 0.77966 0.69770 0.77120 0.72551
6 49 0.78477 0.78980 0.65247 0.78980 0.68151
7 45 0.76756 0.76698 0.71291 0.75768 0.73650
8 47 0.78364 0.78670 0.65710 0.77543 0.73530

Table 3.8: First network: Results of the fourth training series with the FER2013 database
with the FER+ annotation, for every fold.

42

3.7 – Trainings

Figure 3.21: First network, FER2013 database with the FER+ annotation, fourth training
series: loss and accuracy of the best network.

Figure 3.22: First network, FER2013 database with the FER+ annotation, fourth training
series: normalized confusion matrix of the best network.

Using the FER+ annotations, the test accuracies have significantly improved:
the best has reached a value of 78.477%. However, this value is about 8% lower
than that obtained by other researchers [8], so it can be certainly improved. Finally,
it is important to note the poor accuracy, of the neural network, with expressions
such as contempt and disgust (figure 3.21), probably caused by the very low number
of images present for these two states.

43

3 – Training of neural networks

Database Ensemble of all the facial expressions databases supported by
FEDC

We have already talked, in the second chapter, about the possible advantages of
creating a Database Ensemble; in particular, this can be of great help for our
task, because we want to create a neural network that is able to generalize well and
that can work even with lights coming from different directions: a common situation
in the passengers compartment of a car. So, we created a big Database Ensemble
merging the databases supported by FEDC, and choosing the following options:

• width and height of 48x48 pixels, in order to adapt the images size of the other
databases to those of FER2013;

• grayscale option to true;

• face detection and crop option to true.

For the FER2013 database, we chose to use the FER+ annotations, which previously
significantly increased the accuracy of the test.

Anger
Contempt

Disgust

Fear
Happiness
Neutrality

Sadness
Surprise

4,328

788

1,340

1,887

10,676

14,196

5,524

5,254

Number of photos

Fa
ci

al
ex

pr
es

si
on

Figure 3.23: Subdivision of the images between classes in the Database Ensemble of all the
facial expressions databases supported by FEDC, created merging the CK+, the FACES,
the FER2013 with the FER+ annotations, the JAFFE, the MUG, the RaFD and the
SFEW 2.0 databases.

For this Database Ensemble, the subdivision between datasets, obtained using
the same settings as usual, is as follows:

• 35212 photos for train;

• 4402 photos for validation;

• 4379 photos for test.

In the first train, we obtained the result reported in table 3.9.

44

3.7 – Trainings

Fold
#

Epochs
of

Training

Test
Accuracy

Max
Validation
Accuracy

Min
Validation

Loss

Final
Validation
Accuracy

Final
Validation

Loss
0 27 0.73738 0.75170 0.75490 0.74739 1.22234
1 25 0.71615 0.72717 0.86230 0.71059 1.63357
2 27 0.74081 0.74057 0.81986 0.73308 1.37405
3 30 0.74606 0.76261 0.75066 0.75557 1.30018
4 27 0.72551 0.73603 0.81603 0.73171 1.35684
5 27 0.68235 0.68780 0.96217 0.68530 1.86440
6 28 0.74789 0.75778 0.79279 0.75778 1.35676
7 26 0.73578 0.74688 0.78196 0.74688 1.27023
8 28 0.74195 0.74960 0.79738 0.74960 1.32298

Table 3.9: First network: Results of the first training series with the Database Ensemble
of all the facial expressions databases, for every fold.

Figure 3.24: First network, Database Ensemble of all the facial expressions databases, first
training series: loss and accuracy of the best network.

Figure 3.25: First network, Database Ensemble of all the facial expressions databases, first
training series: normalized confusion matrix of the best network.

45

3 – Training of neural networks

The best neural network, trained using the sixth fold as validation dataset, ob-
tained a test accuracy of 74.789% after only 28 epochs: not bad, considering that we
are not using neither data augmentation nor normalization. However, the presence
of overfitting is evident (figure 3.24), therefore we have tried to reduce it using the
[0,1] normalization and the data augmentation; the results can be seen in table 3.10.

Fold
#

Epochs
of

Training

Test
Accuracy

Max
Validation
Accuracy

Min
Validation

Loss

Final
Validation
Accuracy

Final
Validation

Loss
0 91 0.78854 0.79191 0.60639 0.79191 0.62411
1 98 0.78625 0.79123 0.63274 0.79123 0.63724
2 135 0.75634 0.76761 0.68421 0.75738 0.71353
3 121 0.76296 0.78782 0.64510 0.77715 0.67840
4 91 0.74127 0.76056 0.71522 0.74716 0.72823
5 102 0.78671 0.80345 0.59054 0.79096 0.63663
6 61 0.78420 0.78709 0.62844 0.78050 0.65949
7 119 0.75063 0.75596 0.71076 0.74847 0.72175
8 97 0.78511 0.78823 0.61428 0.78028 0.65644

Table 3.10: First network: Results of the second training series with the Database Ensemble
of all the facial expressions databases, for every fold.

Figure 3.26: First network, Database Ensemble of all the facial expressions databases,
second training series: loss and accuracy of the best network.

46

3.7 – Trainings

Figure 3.27: First network, Database Ensemble of all the facial expressions databases,
second training series: normalized confusion matrix of the best network.

In this second training series, the results are clearly better than before, with less
overfitting (figure 3.26) and with a test accuracy that reached 78.854%. We then
performed a last training series, replacing the [0,1] normalization with the z-score
standardization; the results can be seen in table 3.11.

Fold
#

Epochs
of

Training

Test
Accuracy

Max
Validation
Accuracy

Min
Validation

Loss

Final
Validation
Accuracy

Final
Validation

Loss
0 55 0.78397 0.79464 0.62088 0.78305 0.67163
1 80 0.79059 0.79032 0.63431 0.78487 0.66214
2 61 0.79767 0.79487 0.62683 0.79259 0.74198
3 96 0.80384 0.81508 0.56137 0.81418 0.60667
4 48 0.79447 0.79782 0.64320 0.78919 0.66748
5 76 0.79447 0.80164 0.59570 0.79936 0.63107
6 55 0.78785 0.78959 0.66027 0.78687 0.70305
7 59 0.79013 0.79232 0.62626 0.78391 0.67526
8 62 0.79744 0.79505 0.61571 0.78664 0.64963

Table 3.11: First network: Results of the third training series with the Database Ensemble
of all the facial expressions databases, for every fold.

47

3 – Training of neural networks

Figure 3.28: First network, Database Ensemble of all the facial expressions databases,
third training series: loss and accuracy of the best network.

Figure 3.29: First network, Database Ensemble of all the facial expressions databases,
third training series: normalized confusion matrix of the best network.

The neural network that obtained the highest test accuracy is the one having the
third fold as validation dataset: it was capable of reaching an accuracy of 80.384%,
a good result. We can also see that the network is able to recognize all facial
expressions well enough (figure 3.29).

48

3.7 – Trainings

Database Ensemble of all the posed facial expressions databases sup-
ported by FEDC

As last test with this network, we decided to create a Database Ensemble made
only with the posed facial expressions databases that are supported by FEDC [48],
which are, in order, CK+ database [20] [24], FACES database [15], JAFFE database
[25], MUG database [7], and RaFD database [22]. Our intention is to increase the
test accuracy: using only posed facial expressions, we expect to improve the result
obtained with the previous Database Ensemble. So, we created this database by
combining the five mentioned above, preparing the images with FEDC and setting
the following options:

• width and a height of 120x120: we can use the standard images resolution of
the neural network because we will not use the FER2013 database;

• grayscale option to true;

• face detection and crop option to true.

Anger
Contempt

Disgust

Fear
Happiness
Neutrality

Sadness
Surprise

981

572

1,022

950

1,089

1,070

953

656

Number of photos

Fa
ci

al
ex

pr
es

si
on

Figure 3.30: Subdivision of the images between classes in the Database Ensemble of posed
facial expressions, created merging the CK+, the FACES, the JAFFE, the MUG and the
RaFD databases.

For this Database Ensemble, the subdivision between datasets, obtained with
the same settings listed above, is as follows:

• 5847 photos for train;

• 731 photos for validation;

• 715 photos for test.

As usual until now, we started the first training series using the default settings.

49

3 – Training of neural networks

Fold
#

Epochs
of

Training

Test
Accuracy

Max
Validation
Accuracy

Min
Validation

Loss

Final
Validation
Accuracy

Final
Validation

Loss
0 46 0.92587 0.93707 0.30826 0.93434 0.38069
1 42 0.93287 0.92202 0.28003 0.91655 0.40912
2 48 0.94266 0.91929 0.35101 0.91108 0.44459
3 46 0.92727 0.93160 0.31080 0.90014 0.47682
4 40 0.94685 0.90971 0.37273 0.90971 0.46919
5 50 0.92867 0.92066 0.35045 0.90424 0.45716
6 49 0.94406 0.91655 0.36122 0.91245 0.44036
7 39 0.93846 0.91382 0.41681 0.90698 0.45320
8 36 0.93566 0.91370 0.35453 0.90548 0.44373

Table 3.12: First network: Results of the first training series with the Database Ensemble
of posed facial expressions, for every fold.

Figure 3.31: First network, Database Ensemble of posed facial expressions, first training
series: loss and accuracy of the best network.

Figure 3.32: First network, Database Ensemble of posed facial expressions, first training
series: normalized confusion matrix of the best network.

50

3.7 – Trainings

We can see, from the table 3.12, that the results are, in general, very good,
because all the neural networks have converged and have very similar values. The
best network achieved an accuracy of 94.685%, only 2% better than those that went
worse, confirming what was said previously. Now, we will make another training
series adding the data augmentation, for simplicity always with the same values,
and the [0,1] normalization.

Fold
#

Epochs
of

Training

Test
Accuracy

Max
Validation
Accuracy

Min
Validation

Loss

Final
Validation
Accuracy

Final
Validation

Loss
0 150 0.97063 0.96717 0.11521 0.95486 0.13700
1 137 0.97203 0.96990 0.14160 0.95896 0.15575
2 199 0.95944 0.93981 0.20904 0.92066 0.26187
3 66 0.96783 0.94938 0.16656 0.94938 0.16662
4 101 0.89790 0.87962 0.39859 0.85773 0.45697
5 50 0.14965 0.16005 2.05512 0.13817 2.05548
6 102 0.81958 0.80848 0.58044 0.80027 0.58339
7 24 0.14825 0.18057 2.06165 0.12722 2.06284
8 98 0.88252 0.84110 0.46822 0.83014 0.47432

Table 3.13: First network: Results of the second training series with the Database Ensemble
of posed facial expressions, for every fold.

Figure 3.33: First network, Database Ensemble of posed facial expressions, second training
series: loss and accuracy of the best network.

51

3 – Training of neural networks

Figure 3.34: First network, Database Ensemble of posed facial expressions, second training
series: normalized confusion matrix of the best network.

Respect to the first training series, from the table 3.13 it can be seen that not
all neural networks have been able to converge, but the best one, obtained using
the first fold as validation dataset, was able to achieve an accuracy of 97.203%.
It has also a greater validation accuracy and a lower validation loss (figure 3.33),
at the price of a higher training time: 137 epochs. As last test for this network,
we replaced the [0,1] normalization with the z-score standardization, obtaining the
results displayed in table 3.14.

Fold
#

Epochs
of

Training

Test
Accuracy

Max
Validation
Accuracy

Min
Validation

Loss

Final
Validation
Accuracy

Final
Validation

Loss
0 88 0.96783 0.95075 0.18734 0.94938 0.23673
1 80 0.96783 0.96170 0.15437 0.96170 0.19863
2 88 0.91469 0.90424 0.33568 0.88235 0.43428
3 74 0.94685 0.95075 0.20459 0.94802 0.25145
4 50 0.94406 0.91245 0.32322 0.91108 0.39697
5 61 0.97343 0.94802 0.16156 0.93570 0.19506
6 81 0.92587 0.89877 0.32843 0.88646 0.36951
7 74 0.96923 0.95349 0.21463 0.94528 0.24640
8 62 0.97203 0.94932 0.19354 0.93699 0.21231

Table 3.14: First network: Results of the third training series with the Database Ensemble
of posed facial expressions, for every fold.

52

3.7 – Trainings

Figure 3.35: First network, Database Ensemble of posed facial expressions, third training
series: loss and accuracy of the best network.

Figure 3.36: First network, Database Ensemble of posed facial expressions, third training
series: normalized confusion matrix of the best network.

These results are similar to those obtained with the second training series: all the
network have converged, and the best performed slightly better, scoring a 97.343%
as test accuracy. We succeeded in our intent: with this database, we have increased
the test accuracy, respect to the previous Database Ensemble, by around 17%.

53

3 – Training of neural networks

3.7.2 Neural network from the "Recognizing Facial Expres-
sions Using a Shallow Convolutional Neural Network"
paper

As previously said, we have chosen as second neural network the one described in
the Recognizing Facial Expressions Using a Shallow Convolutional Neural
Network paper [27]; so, as we did before for the other network, we implemented it
in Keras [44] and we made some tests to evaluate its performance.

For each test, we used the EarlyStopping callback, set up to block training
if, after 20 epochs, there were no improvements to the validation loss, and the
ReduceLROnPlateau callback set to multiply the learning rate by 0.95 if, after 5
epochs, there were no improvements on the validation loss.

The initial configuration for our tests, with little modifications about the hy-
perparameters respect the ones reported in the paper, and to those used for the
networks previously trained, was the following:

• batch size: 100;

• maximum number of epochs: 1000;

• learning rate: 0.0001;

• preliminary subdivision of 90%-10% between train and test set, made with
FEDC [48];

• a 9-fold, which further divides the train dataset into variable train and valida-
tion datasets.

Layer
Layer (type) Output

shape Connected to

1 input_1(InputLayer) (1, 48, 48) -
2 conv2d_1(Conv2D) (44, 48, 48) input_1
3 max_pool2d_1(MaxPooling2D) (44, 24, 24) conv2d_1
4 conv2d_2(Conv2D) (44, 24, 24) max_pool2d_1
5 max_pool2d_2(MaxPooling2D) (44, 12, 12) conv2d_2
6 conv2d_3(Conv2D) (44, 12, 12) max_pool2d_2
7 max_pool2d_3(MaxPooling2D) (88, 6, 6) conv2d_3
8 dense_1(Dense) (2048) max_pool2d_3
9 dropout_1(Dropout) (2048) dense_1
10 dense_2(Dense) (1024) dropout_1
11 dropout_2(Dropout) (1024) dense_2
12 dense_3(Dense) (8) dropout_2

Table 3.15: The neural network described in the "Recognizing Facial Expressions Using a
Shallow Convolutional Neural Network" paper.

54

3.7 – Trainings

Through the preliminary subdivision and the 9-fold, the following subdivision
was obtained:

• 80% for the train dataset;

• 10% for the validation and the test datasets;

In the subsequent subsections, we will not talk again in-depth about the databases
used, because we have already done so with the first network.

FER2013 database

As first test, we chose to use the FER2013 database [18], which was also used in
the paper to test the neural network. Using the configuration discussed above, we
obtained the results that can be seen in table 3.16.

Fold
#

Epochs
of

Training

Test
Accuracy

Max
Validation
Accuracy

Min
Validation

Loss

Final
Validation
Accuracy

Final
Validation

Loss
0 26 0.54031 0.54345 1.32770 0.54011 2.66320
1 27 0.52971 0.53775 1.34140 0.52076 2.70367
2 28 0.52022 0.54639 1.33296 0.53580 2.67951
3 28 0.52831 0.53135 1.39962 0.52884 2.68709
4 28 0.52915 0.54556 1.33967 0.54277 2.59144
5 27 0.53110 0.53998 1.34322 0.53831 2.63350
6 28 0.52552 0.55280 1.33953 0.55280 2.58805
7 27 0.53026 0.53720 1.33277 0.52772 2.68649
8 27 0.53026 0.53720 1.34818 0.52382 2.64731

Table 3.16: Second network: results of the first training series with the FER2013 database,
for every fold.

Figure 3.37: Second network, FER2013 database, first training series: loss and accuracy
of the best network.

55

3 – Training of neural networks

Figure 3.38: Second network, FER2013 database, first training series: normalized confusion
matrix of the best network.

From the loss graph (figure 3.37) of the best network, obtained using the fold
zero as validation dataset, we can see that there is a high overfitting at the end of
the training: this is a problem that all the trained networks have, as we can see in
table 3.16.

So, we tried to reduce this adding the scaling to a range normalization between
0 and 1, which, from now, we will call simply [0,1] normalization; we also added the
data augmentation with the following parameters:

• a brightness range from 50% to 100%;

• horizontal flip enabled;

• rotation interval between +− 2.5 degrees;

• a shear range of +− 2.5%;

• a width and height shift range of +− 2.5%;

• a zoom transformation interval between +− 2.5%;

The results of the training are visible in table 3.17.

56

3.7 – Trainings

Fold
#

Epochs
of

Training

Test
Accuracy

Max
Validation
Accuracy

Min
Validation

Loss

Final
Validation
Accuracy

Final
Validation

Loss
0 30 0.61032 0.60696 1.14295 0.60696 1.53288
1 33 0.59944 0.61382 1.13490 0.60992 1.62046
2 32 0.61674 0.61159 1.13793 0.60518 1.63738
3 32 0.61311 0.60769 1.17814 0.60658 1.62133
4 30 0.59191 0.60602 1.14051 0.59710 1.57101
5 29 0.60139 0.60463 1.14682 0.58930 1.55101
6 32 0.59163 0.62301 1.12906 0.61744 1.55449
7 31 0.60809 0.60574 1.16365 0.60574 1.70865
8 30 0.59861 0.60769 1.14109 0.59877 1.60830

Table 3.17: Second network: results of the second training series with the FER2013
database, for every fold.

Figure 3.39: Second network, FER2013 database, second training series: loss and accuracy
of the best network.

Figure 3.40: Second network, FER2013 database, second training series: normalized con-
fusion matrix of the best network.

57

3 – Training of neural networks

We can see that overfitting is still present, but reduced (figure 3.39); test accuracy
also increased from 54.031% to 61.674%, with an improvement of about 7.5%. So, we
did another test, replacing the [0,1] normalization with the z-score standardization:
the results can be seen in table 3.18.

Fold
#

Epochs
of

Training

Test
Accuracy

Max
Validation
Accuracy

Min
Validation

Loss

Final
Validation
Accuracy

Final
Validation

Loss
0 28 0.62706 0.62507 1.11134 0.62507 1.49650
1 28 0.62064 0.62719 1.08190 0.62719 1.57904
2 27 0.60502 0.62497 1.10494 0.61633 1.51394
3 30 0.62287 0.61800 1.12345 0.61493 1.60090
4 28 0.61674 0.62162 1.12227 0.61577 1.46712
5 30 0.61618 0.61995 1.10043 0.61884 1.52056
6 29 0.62176 0.63360 1.09683 0.63360 1.46685
7 26 0.62232 0.61939 1.09767 0.60992 1.49174
8 28 0.61841 0.62190 1.11380 0.61326 1.61051

Table 3.18: Second network: results of the third training series with the FER2013 database,
for every fold.

Figure 3.41: Second network, FER2013 database, third training series: loss and accuracy
of the best network.

58

3.7 – Trainings

Figure 3.42: Second network, FER2013 database, third training series: normalized confu-
sion matrix of the best network.

With the z-score standardization, the test accuracy has increased to 62.706%,
about 1% more than before; the overfitting still persists, but on average it is a little
smaller (figure 3.41). Using these same settings, which are the best we have achieved
so far with the FER2013 database, and with this network, we have used the FER+
annotations to find out what the increase in test accuracy would have been.

Fold
#

Epochs
of

Training

Test
Accuracy

Max
Validation
Accuracy

Min
Validation

Loss

Final
Validation
Accuracy

Final
Validation

Loss
0 44 0.76051 0.74845 0.77456 0.74845 0.82788
1 45 0.73907 0.74451 0.77359 0.73408 0.88808
2 49 0.75205 0.75571 0.75651 0.74387 0.89038
3 50 0.75599 0.74866 0.76107 0.74134 0.87609
4 51 0.76671 0.75852 0.73327 0.75007 0.85974
5 43 0.74669 0.74556 0.79539 0.74162 0.87022
6 52 0.75205 0.75824 0.74593 0.75092 0.86451
7 50 0.76164 0.74979 0.77193 0.74387 0.90470
8 46 0.74302 0.75035 0.78157 0.73711 0.87906

Table 3.19: Second network: results of the forth training series with the FER2013 database
with the FER+ annotations, for every fold.

59

3 – Training of neural networks

Figure 3.43: Second network, FER2013 database with the FER+ annotations, forth train-
ing series: loss and accuracy of the best network.

Figure 3.44: Second network, FER2013 database with the FER+ annotations, forth train-
ing series: normalized confusion matrix of the best network.

The best network achieved an accuracy of 76.671% (figure 3.19), that is a good
result, however far from the state of the art and moreover about 2% lower than
the best result obtained with the other neural network. By carrying out more
tests, trying different values for hyperparameters and using other images processing
techniques, it is certainly possible to increase this value. Like the previous network,
from the confusion matrix (figure 3.44) it can be seen that the performance with
the cases of contempt and disgust are very bad, probably due to the low number of
images available for these facial expressions.

60

3.7 – Trainings

Database Ensemble of all the facial expressions databases supported by
FEDC

We decided to carry out other tests, with this network, using the Database Ensemble
composed of all the supported databases of FEDC, which, with its approximately
44k photos, reached just over 80% with the previous network, around 2% more
than FER2013 with the FER+ annotations. Therefore, we wanted to know the
performance that this network could achieve with the same database, so we started
a first series of training, using the default settings.

Fold
#

Epochs
of

Training

Test
Accuracy

Max
Validation
Accuracy

Min
Validation

Loss

Final
Validation
Accuracy

Final
Validation

Loss
0 30 0.70473 0.71422 0.94393 0.70763 1.56618
1 33 0.70724 0.70309 0.96692 0.70195 1.68587
2 31 0.70792 0.70150 0.95007 0.70082 1.59655
3 31 0.70610 0.71876 0.94849 0.70332 1.50601
4 33 0.69742 0.72490 0.92732 0.70718 1.47552
5 31 0.71386 0.70825 0.93753 0.70825 1.47951
6 30 0.70815 0.71643 0.94069 0.70189 1.60602
7 31 0.70975 0.71188 0.95577 0.71029 1.55642
8 32 0.71203 0.70166 0.98792 0.70075 1.63287

Table 3.20: Second network: results of the first training series with the Database Ensemble
of all the facial expressions databases, for every fold.

Figure 3.45: Second network, Database Ensemble of all the facial expressions databases,
first training series: loss and accuracy of the best network.

61

3 – Training of neural networks

Figure 3.46: Second network, Database Ensemble of all the facial expressions databases,
first training series: normalized confusion matrix of the best network.

The best network obtained a test accuracy of 71.386% (table 3.20). A consistent
overfitting is present towards the end of the training (figure 3.45), so, methods for
reducing it are needed: adding the [0,1] normalization and the data augmentation,
with the same parameters that we listed before, we obtained the result in table 3.21.

Fold
#

Epochs
of

Training

Test
Accuracy

Max
Validation
Accuracy

Min
Validation

Loss

Final
Validation
Accuracy

Final
Validation

Loss
0 67 0.75405 0.76420 0.72287 0.75988 0.76959
1 66 0.75383 0.75852 0.74369 0.75125 0.77098
2 67 0.75451 0.75670 0.74199 0.75670 0.78084
3 62 0.75200 0.76193 0.73144 0.75261 0.78043
4 60 0.75634 0.75375 0.76255 0.75193 0.78797
5 78 0.76867 0.77142 0.70332 0.76869 0.79194
6 63 0.75360 0.75869 0.74453 0.75687 0.77810
7 72 0.75679 0.76142 0.74951 0.75846 0.81412
8 75 0.76913 0.76846 0.72408 0.76460 0.80526

Table 3.21: Second network: results of the second training series with the Database En-
semble of all the facial expressions databases, for every fold.

62

3.7 – Trainings

Figure 3.47: Second network, Database Ensemble of all the facial expressions databases,
second training series: loss and accuracy of the best network.

Figure 3.48: Second network, Database Ensemble of all the facial expressions databases,
second training series: normalized confusion matrix of the best network.

The best network, obtained using the eighth fold as validation dataset, has
achieved a test accuracy of 76.913%, having much less overfitting than before (figure
3.47). As last test with this network, we have replaced the [0,1] normalization with
the z-score standardization.

63

3 – Training of neural networks

Fold
#

Epochs
of

Training

Test
Accuracy

Max
Validation
Accuracy

Min
Validation

Loss

Final
Validation
Accuracy

Final
Validation

Loss
0 55 0.77575 0.77806 0.70743 0.77442 0.79705
1 48 0.76136 0.76920 0.73583 0.75943 0.82329
2 54 0.76205 0.76102 0.75215 0.75920 0.89250
3 50 0.76707 0.77260 0.72821 0.76670 0.80878
4 47 0.77072 0.76397 0.74732 0.76124 0.83240
5 49 0.76935 0.76210 0.70761 0.76142 0.80077
6 44 0.77483 0.76528 0.73239 0.76051 0.79613
7 46 0.77392 0.76369 0.74481 0.75801 0.80058
8 58 0.78465 0.77641 0.71401 0.77414 0.81141

Table 3.22: Second network: results of the third training series with the posed and spon-
taneous facial expressions Database Ensemble, for every fold.

Figure 3.49: Second network, Database Ensemble of all the facial expressions databases,
third training series: loss and accuracy of the best network.

Figure 3.50: Second network, Database Ensemble of all the facial expressions databases,
third training series: normalized confusion matrix of the best network.

64

3.7 – Trainings

With this last training series, the accuracy has increased to 78.465% (table 3.22),
about 1.5% better than the last result, but 2% lower than the top result of the other
network.

Database Ensemble of all the posed facial expressions databases sup-
ported by FEDC

As the last series of tests, we decided to use, as database, the Database Ensemble
of all the posed facial expressions databases supported by FEDC. The default im-
ages size of the database is 120x120 pixels, but, using this dimension, the number
of parameters required by the network exceeded 42 million: a number out of the
question for our task. So, we used an images size of 48x48 pixels. The first training
series were made with the same default settings that we have used so far.

Fold
#

Epochs
of

Training

Test
Accuracy

Max
Validation
Accuracy

Min
Validation

Loss

Final
Validation
Accuracy

Final
Validation

Loss
0 70 0.92168 0.90971 0.35392 0.89603 0.39677
1 65 0.89930 0.89603 0.38485 0.88919 0.44421
2 50 0.89930 0.90287 0.35048 0.88782 0.40239
3 57 0.91608 0.89466 0.39016 0.89466 0.44771
4 67 0.92587 0.89740 0.33108 0.88509 0.40613
5 65 0.89930 0.88919 0.37963 0.87825 0.47014
6 70 0.91888 0.88235 0.44195 0.87688 0.47819
7 50 0.91748 0.88509 0.44123 0.87688 0.49250
8 62 0.91888 0.88630 0.41992 0.88356 0.46755

Table 3.23: Second network: results of the first training series with the Database Ensemble
of posed facial expressions, for every fold.

Figure 3.51: Second network, Database Ensemble of posed facial expressions, first training
series: loss and accuracy of the best network.

65

3 – Training of neural networks

Figure 3.52: Second network, Database Ensemble of posed facial expressions, first training
series: normalized confusion matrix of the best network.

The best network, obtained using the fourth fold as validation dataset (table
3.23), has reached an accuracy of 92.587%. In general, for all folds, the results
are quite good, and we can see from the graphs of the best network that both the
accuracy and the validation loss tend to saturate (figure 3.51). We then did another
series of tests, adding the data augmentation and the [0,1] normalization.

Fold
#

Epochs
of

Training

Test
Accuracy

Max
Validation
Accuracy

Min
Validation

Loss

Final
Validation
Accuracy

Final
Validation

Loss
0 160 0.92727 0.92202 0.26021 0.91655 0.27167
1 186 0.93427 0.92202 0.26615 0.90834 0.28135
2 160 0.92867 0.91382 0.26997 0.90834 0.28574
3 146 0.91888 0.91108 0.27067 0.90150 0.28854
4 184 0.93566 0.90834 0.27611 0.89330 0.32516
5 179 0.94825 0.92339 0.23256 0.91245 0.25431
6 210 0.93287 0.90834 0.29135 0.90834 0.33928
7 130 0.90909 0.89056 0.36083 0.88782 0.36966
8 159 0.92028 0.90822 0.31355 0.88630 0.35776

Table 3.24: Second network: results of the second training series with the Database En-
semble of posed facial expressions, for every fold.

66

3.7 – Trainings

Figure 3.53: Second network, Database Ensemble of posed facial expressions, second train-
ing series: loss and accuracy of the best network.

Figure 3.54: Second network, Database Ensemble of posed facial expressions, second train-
ing series: normalized confusion matrix of the best network.

We can see, from the table 3.53, that many epochs were necessary to train
the network with these parameters. Test accuracy has increased slightly, rising to
94.825% for the best network. As the last series of tests, we have replaced the [0,1]
normalization with the z-score standardization.

67

3 – Training of neural networks

Fold
#

Epochs
of

Training

Test
Accuracy

Max
Validation
Accuracy

Min
Validation

Loss

Final
Validation
Accuracy

Final
Validation

Loss
0 140 0.94965 0.94118 0.19601 0.92613 0.24151
1 119 0.95524 0.93434 0.23120 0.92613 0.25884
2 118 0.95524 0.92750 0.25967 0.91792 0.28674
3 208 0.95944 0.95212 0.18458 0.94665 0.20879
4 121 0.96783 0.92750 0.24785 0.92066 0.29790
5 150 0.95105 0.93981 0.19217 0.93981 0.19316
6 125 0.94685 0.92202 0.27961 0.92202 0.28979
7 116 0.95105 0.92476 0.28561 0.90561 0.32591
8 145 0.95524 0.94247 0.22367 0.92740 0.26000

Table 3.25: Second network: results of the third training series with the Database Ensemble
of posed facial expressions, for every fold.

Figure 3.55: Second network, Database Ensemble of posed facial expressions, third training
series: loss and accuracy of the best network.

Figure 3.56: Second network, Database Ensemble of posed facial expressions, third training
series: normalized confusion matrix of the best network.

68

3.7 – Trainings

With this last series of tests, the best network reached a test accuracy of 96.783%
(table 3.25), about 2% more than the previous result, but lower than the 97.343%
achieved by the first network.

3.7.3 Comments on the results obtained

We analyzed the networks present in two different papers:

• Physiological Inspired Deep Neural Networks for Emotion Recogni-
tion [17];

• Recognizing Facial Expressions Using a Shallow Convolutional Neu-
ral Network [27].

In general, we can see that these two networks, which we have chosen and tested,
have very similar results, but, as we have seen in the last section of each test series,
the first has almost always had slightly better results. If we were to choose one, we
would certainly choose the first, because, although it is more complex and requires
more time for training, it works better, and, for the same images size, it requires
far fewer parameters: with 48x48 pixels images, it requires little more of 2 million,
against the approximately 9 million of the other network. This factor is very im-
portant to us, because in the future it will be necessary to implement this neural
network in a single board computer.

69

3 – Training of neural networks

Page intentionally left blank.

70

Chapter 4

Road tests

After training some neural networks, we have reached the point of wanting to do
some road tests, so as to get evidence on how they work in practical cases. Since we
did not have the opportunity to access to an autonomous driving vehicle, we decided
to do a feasibility study, using a normal car and capturing images in the vehicle with
a webcam of a laptop or a tablet, in different weather conditions and lights. In order
to make this type of tests, it was necessary to develop a software able to execute the
neural network and to display the results on-the-fly.

4.1 Emotion Detector

For the computer vision exam, besides the Data Preparation for CK+ and Data
Preparation for FER2013 program, we realized, resorting to Eclipse, with the addi-
tion of Java, OpenCV [9], DeepLearning4J (acronym DL4J) [52] and Apache
Maven another program, called Emotion Detector. This program, at the user’s
request, is able to acquire frames from a webcam of a laptop or desktop computer,
and, again upon request, can use a neural network to make a prediction about the
user’s current facial expression. Once the analysis is finished, the results are ar-
ranged on a histogram, so that the user can view and interpret them in a simple
way. Emotion Detection was a natural choice for the task we had to perform, so we
have therefore decided to improve its interface by adding:

• a box, in which to show the image as it is seen by the neural network, and on
which it will make the prediction; so, this box will only contain the face of the
user, cropped with the Haar Feature-based Cascade Classifiers;

• a function to automatically take a photo of the program interface immediately
after a prediction, in order to collect and document a series of actual results.

71

4 – Road tests

Figure 4.1: One of the photos taken during the road tests.

4.2 Tests

After making the modifications described above to Emotion Detection, and obtain-
ing some neural networks with a good test accuracy, we made multiple test sessions
in practical conditions, with different actors and cars: we sat the actor/actress on
the back seats of the car, with a laptop or a tablet on his/her legs, raised with a
special pedestal in order to be at the right face height.

Figure 4.2: One of the photos taken during the road tests.

72

4.2 – Tests

The first test session was made with the network described in the Physiological
Inspired Deep Neural Networks for Emotion Recognition paper, trained
with the FER2013 database [18] with the FER+ annotations [8]: the problem
is that this is not a well-balanced database, and, as we have seen before from the
confusion matrix in figure 3.21, it has a very low performance with some expressions:
so, it was difficult to achieve a part of them, like contempt or disgust, but it had a
strong recognition of other expressions, like happiness or neutral.

Figure 4.3: One of the photos taken during the road tests.

We must remember that, for our project, we do not need all these facial ex-
pressions, but we are only interested in fear, happiness, neutrality, sadness and
surprise; anger, contempt and disgust will be treated by the system as “do not
care”, because they are useless for controlling the speed of the vehicle. Maybe,
they can be used for other purposes, for example for ambient intelligence, but these
applications are beyond the purpose of this thesis.

We carried out other tests using the same neural network, but trained with the
Database Ensemble of all the facial expressions databases supported by
FEDC, obtaining better results. Due to the high number of neutral and happiness
photos, even here it was easy to get these two states, but a greater number of
photos of contempt, disgust, fear and sadness states made the recognition of these
facial expressions a little more accurate: this can be seen also from the figure 3.29,
depicting the confusion matrix of the neural network.

73

4 – Road tests

Figure 4.4: One of the photos taken during the road tests.

Figure 4.5: One of the photos taken during the road tests.

74

Chapter 5

Conclusions

5.1 Results
A feasibility study was conducted in this thesis. In order to obtain useful results,
we have tried to detail and innovate all the sections encountered by our work. In
particular, we have carried out the following works:

• we developed a novel software, called Facial Expressions Databases Clas-
sifier (FEDC) [48], that has a GUI that makes it simple to use, and that is
capable to classify, for now, the images coming from seven facial expressions
databases, applying optional transformations, chosen by the user, to each one
of them. This reduces the work necessary for the pre-classification of the pho-
tos, the code necessary to train the neural networks and eases the creation
of what we called Database Ensemble, that is a wider database obtained
by merging the databases together. The code of FEDC is freely download-
able from GitHub, where it was distributed under the MIT license, which was
specifically chosen to maximize the freedom given to those who wants to mod-
ify it. One of the strengths of the code is also the ease of modification, so that
new databases and functions can be added;

• we tested some state-of-the-art neural networks, displaying the results ob-
tained with the chosen hyperparameters and with commonly used operations
to improve the convergence and performance of neural networks;

• we developed a program to be used for the on-the-field tests, called Emotion
Detector, so as to assess the performances of some of the best neural networks
we trained in cases similar to the real ones, with all the limits dictated by the
absence of a real autonomous driving car.

After the tests, we think that the results we obtained are really promising: this
approach, together with others that have been developed or are in-the-work, could

75

5 – Conclusions

really facilitate the diffusion of the autonomous driving cars as it was for the au-
tomation of trains and other types of rail transports, which are commonly used in
everyday life.

5.2 Future work
For many years, national laws were strong constraints regard autonomous driving
car tests, but, from a few years, things are changing. In this year, 2019, also in Italy
there were the first authorizations to road tests regarding autonomous driving car;
this is encouraging news, which gives us the right spirit for continuing our work in
the near future.

So, our next step will be a transposition of this system into a single-board com-
puter, like a Raspberry Pi 3, in order to test the performance of the neural network
and evaluate the impact of existing optimization techniques, such as pruning and
compression of neural networks, on a device with less computing power than a nor-
mal computer. We also want to work to improve FEDC [48], adding support for
new databases and features.

The trainings were made with a relatively low number of images, a common
problem for the neural networks: it could be useful, for future tests in controlled
environments, to search for the participation of the testers: they can help to improve
the accuracy of the recognition sharing the photos made by the cars, so as to be
labeled by professionals and used to retrain the network, partially with fine-tuning
or transfer learning, or in full: afterward, the new network can be redistributed as
an update.

76

Page intentionally left blank.

77

Page intentionally left blank.

78

References

References from books

[1] Daniel Cordaro, Rui Sun, Dacher Keltner, Shanmukh Kamble, Niranjan Hud-
dar, and Galen McNeil. Universals and cultural variations in 22 emotional
expressions across five cultures. Emotion, 18, 06 2017.

[2] P Ekman and W Friesen. Facial Action Coding System (FACS): A technique
for the measurement of facial action. 01 1978.

[3] Paul Ekman and Wallace V. Friesen. Constants across cultures in the face and
emotion. Journal of personality and social psychology, 17 2:124-9, 1971.

[4] Ying Li, Takeo Kanade, Jeffrey Cohn, Stan Li, and Anil Jain. Facial Expression
Analysis, pages 247–275. 12 2005.

[5] Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA,
2006.

[6] Kai Ming Ting. Confusion Matrix, pages 209-209. Springer US, Boston, MA,
2010.

References from articles

[7] N. Aifanti, C. Papachristou, and A. Delopoulos. The mug facial expression
database. In 11th International Workshop on Image Analysis for Multimedia
Interactive Services WIAMIS 10, pages 1-4, 4 2010.

[8] Emad Barsoum, Cha Zhang, Cristian Ferrer, and Zhengyou Zhang. Training
deep networks for facial expression recognition with crowd-sourced label distri-
bution. pages 279-283, 08 2016.

[9] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

I

[10] Kumar Chellapilla, Sidd Puri, and Patrice Simard. High performance convolu-
tional neural networks for document processing. 10 2006.

[11] Dan C. Ciresan, Ueli Meier, Jonathan Masci, Luca Maria Gambardella, and
Jürgen Schmidhuber. Flexible, high performance convolutional neural networks
for image classification. In IJCAI, 2011.

[12] A. Dhall, R. Goecke, S. Lucey, and T. Gedeon. Static facial expression analysis
in tough conditions: Data, evaluation protocol and benchmark. In 2011 IEEE
International Conference on Computer Vision Workshops (ICCV Workshops),
pages 2106-2112, 11 2011.

[13] A. Dhall, R. Goecke, S. Lucey, and T. Gedeon. Collecting large, richly anno-
tated facial-expression databases from movies. IEEE MultiMedia, 19(3):34-41,
7 2012.

[14] Abhinav Dhall, Roland Goecke, Jyoti Joshi, Karan Sikka, and Tom Gedeon.
Emotion recognition in the wild challenge 2014: Baseline, data and protocol.
11 2014.

[15] Natalie Ebner, Michaela Riediger, and Ulman Lindenberger. Faces—a database
of facial expressions in young, middle-aged, and older women and men: Devel-
opment and validation. Behavior research methods, 42:351-62, 02 2010.

[16] P. Ekman. Basic emotions. In Handbook of Cognition and Emotion, pages
45-60, 1999.

[17] P. M. Ferreira, F. Marques, J. S. Cardoso, and A. Rebelo. Physiological inspired
deep neural networks for emotion recognition. IEEE Access, 6:53930-53943,
2018.

[18] Ian J. Goodfellow, Dumitru Erhan, Pierre Luc Carrier, Aaron Courville, Mehdi
Mirza, Ben Hamner, Will Cukierski, Yichuan Tang, David Thaler, Dong-
Hyun Lee, Yingbo Zhou, Chetan Ramaiah, Fangxiang Feng, Ruifan Li, Xiaojie
Wang, Dimitris Athanasakis, John Shawe-Taylor, Maxim Milakov, John Park,
Radu Ionescu, Marius Popescu, Cristian Grozea, James Bergstra, Jingjing Xie,
Lukasz Romaszko, Bing Xu, Zhang Chuang, and Yoshua Bengio. Challenges in
representation learning: A report on three machine learning contests, 2013.

[19] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science
Engineering, 9(3):90-95, 5 2007.

[20] T. Kanade, J. F. Cohn, and Yingli Tian. Comprehensive database for facial
expression analysis. In Proceedings Fourth IEEE International Conference on
Automatic Face and Gesture Recognition (Cat. No. PR00580), pages 46-53, 3
2000.

II

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. Imagenet classification
with deep convolutional neural networks. Neural Information Processing Sys-
tems, 25, 01 2012.

[22] Oliver Langner, Ron Dotsch, Gijsbert Bijlstra, Daniel Wigboldus, Skyler Hawk,
and Ad Knippenberg. Presentation and validation of the radboud face database.
Cognition & Emotion - COGNITION EMOTION, 24:1377-1388, 12 2010.

[23] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning ap-
plied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, Nov
1998.

[24] P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, and I. Matthews.
The extended cohn-kanade dataset (ck+): A complete dataset for action unit
and emotion-specified expression. In 2010 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition - Workshops, pages 94-101, 6
2010.

[25] M. Lyons, S. Akamatsu, M. Kamachi, and J. Gyoba. Coding facial expressions
with gabor wavelets. In Proceedings Third IEEE International Conference on
Automatic Face and Gesture Recognition, pages 200-205, 4 1998.

[26] Wes McKinney. Data structures for statistical computing in python. In Stéfan
van der Walt and Jarrod Millman, editors, Proceedings of the 9th Python in
Science Conference, pages 51 - 56, 2010.

[27] S. Miao, H. Xu, Z. Han, and Y. Zhu. Recognizing facial expressions using a
shallow convolutional neural network. IEEE Access, 7:78000-78011, 2019.

[28] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python. Jour-
nal of Machine Learning Research, 12(Oct):2825-2830, 2011.

[29] S. van der Walt, S. C. Colbert, and G. Varoquaux. The numpy array: A struc-
ture for efficient numerical computation. Computing in Science Engineering,
13(2):22-30, 3 2011.

References from sites
All sites were last visited on October 5, 2019.

[30] Classification: accuracy. https://developers.google.com/machine-
learning/crash-course/classification/accuracy.

III

https://developers.google.com/machine-learning/crash-course/classification/accuracy
https://developers.google.com/machine-learning/crash-course/classification/accuracy

[31] Descending into ML: training and loss. https://developers.google.com/
machine-learning/crash-course/descending-into-ml/training-and-
loss.

[32] Keras FAQ: Frequently Asked Keras Questions. https://keras.io/getting-
started/faq/.

[33] Loss functions: categorical crossentropy. https://peltarion.com/
knowledge-center/documentation/modeling-view/build-an-ai-
model/loss-functions/categorical-crossentropy.

[34] Normalization. https://developers.google.com/machine-learning/data-
prep/transform/normalization.

[35] NVIDIA cuDNN. https://developer.nvidia.com/cudnn.

[36] Training and test sets: splitting data. https://developers.google.com/
machine-learning/crash-course/training-and-test-sets/splitting-
data.

[37] Usage of callbacks. https://keras.io/callbacks/.

[38] Validation set: another partition. https://developers.google.com/
machine-learning/crash-course/validation/another-partition.

[39] 2018 Kaggle ML & DS survey. https://www.kaggle.com/kaggle/kaggle-
survey-2018, 2018.

[40] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. Software available from https://www.tensorflow.org/.

[41] Anas Al-Masri. What are overfitting and underfitting in machine learn-
ing? https://towardsdatascience.com/what-are-overfitting-and-
underfitting-in-machine-learning-a96b30864690, 06 2019.

[42] Jason Brownlee. How to configure image data augmentation in
Keras. https://machinelearningmastery.com/reproducible-results-
neural-networks-keras/, 06 2017.

IV

https://developers.google.com/machine-learning/crash-course/descending-into-ml/training-and-loss
https://developers.google.com/machine-learning/crash-course/descending-into-ml/training-and-loss
https://developers.google.com/machine-learning/crash-course/descending-into-ml/training-and-loss
https://keras.io/getting-started/faq/
https://keras.io/getting-started/faq/
https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/loss-functions/categorical-crossentropy
https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/loss-functions/categorical-crossentropy
https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/loss-functions/categorical-crossentropy
https://developers.google.com/machine-learning/data-prep/transform/normalization
https://developers.google.com/machine-learning/data-prep/transform/normalization
https://developer.nvidia.com/cudnn
https://developers.google.com/machine-learning/crash-course/training-and-test-sets/splitting-data
https://developers.google.com/machine-learning/crash-course/training-and-test-sets/splitting-data
https://developers.google.com/machine-learning/crash-course/training-and-test-sets/splitting-data
https://keras.io/callbacks/
https://developers.google.com/machine-learning/crash-course/validation/another-partition
https://developers.google.com/machine-learning/crash-course/validation/another-partition
https://www.kaggle.com/kaggle/kaggle-survey-2018
https://www.kaggle.com/kaggle/kaggle-survey-2018
https://www.tensorflow.org/
https://towardsdatascience.com/what-are-overfitting-and-underfitting-in-machine-learning-a96b30864690
https://towardsdatascience.com/what-are-overfitting-and-underfitting-in-machine-learning-a96b30864690
https://machinelearningmastery.com/reproducible-results-neural-networks-keras/
https://machinelearningmastery.com/reproducible-results-neural-networks-keras/

[43] Jason Brownlee. How to configure image data augmentation in Keras.
https://machinelearningmastery.com/how-to-configure-image-data-
augmentation-when-training-deep-learning-neural-networks/, 04
2019.

[44] François Chollet et al. Keras. https://keras.io, 2015.

[45] History.com Editors. Automobile history. https://www.history.com/topics/
inventions/automobiles, 04 2010.

[46] Josh.ai. Everything you need to know about artificial neural networks.
https://medium.com/technology-invention-and-more/everything-you-
need-to-know-about-artificial-neural-networks-57fac18245a1, 12
2015.

[47] Renu Khandelwal. K-fold and other cross-validation techniques.
https://medium.com/datadriveninvestor/k-fold-and-other-cross-
validation-techniques-6c03a2563f1e, 11 2018.

[48] A. C. Marceddu. Facial Expressions Databases Classifier (FEDC).
https://github.com/AntonioMarceddu/Facial_Expressions_Databases_
Classifier, 2019.

[49] Heads or Tails. What we do in the kernels - a Kaggle sur-
vey story. https://www.kaggle.com/headsortails/what-we-do-in-the-
kernels-a-kaggle-survey-story, 12 2018.

[50] Seema Singh. Understanding the bias-variance tradeoff. https:
//towardsdatascience.com/understanding-the-bias-variance-
tradeoff-165e6942b229, 05 2018.

[51] Kate Strachnyi. Brief history of neural networks. https://medium.com/
analytics-vidhya/brief-history-of-neural-networks-44c2bf72eec, 01
2019.

[52] Eclipse Deeplearning4j Development Team. Deeplearning4j: Open-source dis-
tributed deep learning for the JVM, Apache Software Foundation License 2.0.
http://deeplearning4j.org/, 2019.

[53] Techopedia.com. Autonomous car. https://www.techopedia.com/
definition/30056/autonomous-car.

[54] Treccani.it. Guida autonoma. http://www.treccani.it/vocabolario/
guida-autonoma_%28Neologismi%29/, 2017.

V

https://machinelearningmastery.com/how-to-configure-image-data-augmentation-when-training-deep-learning-neural-networks/
https://machinelearningmastery.com/how-to-configure-image-data-augmentation-when-training-deep-learning-neural-networks/
https://keras.io
https://www.history.com/topics/inventions/automobiles
https://www.history.com/topics/inventions/automobiles
https://medium.com/technology-invention-and-more/everything-you-need-to-know-about-artificial-neural-networks-57fac18245a1
https://medium.com/technology-invention-and-more/everything-you-need-to-know-about-artificial-neural-networks-57fac18245a1
https://medium.com/datadriveninvestor/k-fold-and-other-cross-validation-techniques-6c03a2563f1e
https://medium.com/datadriveninvestor/k-fold-and-other-cross-validation-techniques-6c03a2563f1e
https://github.com/AntonioMarceddu/Facial_Expressions_Databases_Classifier
https://github.com/AntonioMarceddu/Facial_Expressions_Databases_Classifier
https://www.kaggle.com/headsortails/what-we-do-in-the-kernels-a-kaggle-survey-story
https://www.kaggle.com/headsortails/what-we-do-in-the-kernels-a-kaggle-survey-story
https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
https://medium.com/analytics-vidhya/brief-history-of-neural-networks-44c2bf72eec
https://medium.com/analytics-vidhya/brief-history-of-neural-networks-44c2bf72eec
http://deeplearning4j.org/
https://www.techopedia.com/definition/30056/autonomous-car
https://www.techopedia.com/definition/30056/autonomous-car
http://www.treccani.it/vocabolario/guida-autonoma_%28Neologismi%29/
http://www.treccani.it/vocabolario/guida-autonoma_%28Neologismi%29/

[55] Ucsusa.com. Self-driving cars explained. https://www.ucsusa.org/clean-
vehicles/how-self-driving-cars-work, 02 2018.

[56] Avinash Sharma V. Understanding activation functions in neural net-
works. https://medium.com/the-theory-of-everything/understanding-
activation-functions-in-neural-networks-9491262884e0, 03 2017.

VI

https://www.ucsusa.org/clean-vehicles/how-self-driving-cars-work
https://www.ucsusa.org/clean-vehicles/how-self-driving-cars-work
https://medium.com/the-theory-of-everything/understanding-activation-functions-in-neural-networks-9491262884e0
https://medium.com/the-theory-of-everything/understanding-activation-functions-in-neural-networks-9491262884e0

	List of Figures
	List of Tables
	Introduction
	Background
	Our idea
	Thesis structure

	Preprocessing
	Previous works
	Posed and spontaneous facial expressions
	Facial Expressions Databases Classifier
	The FEDC interface
	Database Ensemble
	How FEDC works
	Information about supported databases
	Final notes about FEDC

	Training of neural networks
	Brief history of neural networks
	Useful notions about neural networks
	Definition
	Overfitting and Underfitting
	Bias and Variance
	Ground truth
	Metrics
	Hyperparameters
	Partitioning of the database

	Other notions
	Normalization
	Data augmentation
	Confusion matrix

	Neural networks for facial expressions
	Used tools
	Hardware configuration
	Trainings
	Neural network from the "Physiological Inspired Deep Neural Networks for Emotion Recognition" paper
	Neural network from the "Recognizing Facial Expressions Using a Shallow Convolutional Neural Network" paper
	Comments on the results obtained

	Road tests
	Emotion Detector
	Tests

	Conclusions
	Results
	Future work

	References

