
POLITECNICO DI TORINO
Corso di laurea in Ingegneria Informatica

Tesi Magistrale

Automatic Security in
Kubernetes with Polycube

Relatore
prof. Fulvio Risso Elis Lulja

Anno Accademico 2018-2019

invisibile

To my family

Contents

List of Figures 7

Abstract 9

1 Introduction 11

2 Background 13
2.1 Kubernetes . 13

2.1.1 Nodes . 13
2.1.2 Pods . 14
2.1.3 Namespaces . 15
2.1.4 Services . 16
2.1.5 Kubernetes Network Policies 16

2.2 Polycube . 16
2.2.1 Firewall Cubes . 17

3 Standard Kubernetes Network Policies 19
3.1 Features . 19
3.2 Structure of a Standard Kubernetes Network Policy 20

3.2.1 Common fields . 20
3.2.2 Name and namespace 21
3.2.3 The policy type . 21
3.2.4 Selecting methods . 22
3.2.5 PodSelector . 24
3.2.6 Ingress and Egress peers 25
3.2.7 Ports and Protocols . 26
3.2.8 Selecting allowed peers 26
3.2.9 The external world . 26
3.2.10 The internal world . 28

4

3.3 Combinations . 30
3.3.1 Combining Peers Selectors 31
3.3.2 Combining Protocol and Ports 31
3.3.3 Putting them all together 31

3.4 Deploying . 32
3.5 Viewing the results . 33
3.6 Applying security: a basic flow 33

3.6.1 Chains . 33
3.6.2 Preparing the environment 34
3.6.3 First example: the internal world 35
3.6.4 A Second Example: the external world 40

4 Existing Solutions 43
4.1 Calico . 43

4.1.1 Network Policies . 43
4.2 Cilium . 44

4.2.1 Network Policies . 45
4.3 Istio . 46

4.3.1 Istio Policies . 46

5 Polycube Network Policies 47
5.1 Features . 47

5.1.1 Human Readable Policies 47
5.1.2 Automatic type detection 49
5.1.3 Explicit Priority . 50
5.1.4 Strong distinction between the internal and external . . 50
5.1.5 Service aware policies 53

6 Polycube Security in K8s: Architecture 55
6.1 Overview . 55
6.2 The Data Plane . 56

6.2.1 Creating the Firewall 56
6.2.2 Fully Managed Security 57
6.2.3 Unmanaged Security 61
6.2.4 Compliance with Kubernetes 63
6.2.5 Dealing with unknown traffic 64
6.2.6 Enforce . 66
6.2.7 Cease . 69
6.2.8 On removing all policies 70

5

6.2.9 Reacting . 70
6.2.10 Keeping Consistency 71
6.2.11 Ensuring Resilience . 72

7 The Control Plane 73
7.1 Overview . 73

7.1.1 Controllers . 73
7.1.2 Subscribe . 75
7.1.3 Queries . 77

7.2 From Policy to Firewall . 77
7.2.1 Policy events . 77

8 Evaluation 83
8.1 On the same node . 83
8.2 On different nodes . 84

Bibliography 85

6

List of Figures

2.1 Kubernetes General Architecture 14
2.2 Worker nodes with running pods 14
2.3 On the left: the physical reality. On the right: virtual clusters

abstracted with namespaces. 15
2.4 A Service resource knows the addresses of all the pods that

expose the same functionality to other pods. 16
3.1 Two pods belonging to the same application but serving dif-

ferent purposes: their labels are used to reflect this situation. . 22
3.2 A visual representation of the labels selection process. 23
3.3 Two pods that have the needed labels but are on different

namespaces. 25
3.4 namespaceSelector works with the labels of a namespace: its

name is ignored. 29
3.5 namespaceSelector and podSelector can be joined for a more

sophisticated selection. 30
3.6 Traffic directed to the pod travels in the egress chain. Outgo-

ing packets go through the ingress chain 34
3.7 The example environment: databases can only be accessed by

an api server located in the same namespace. 36
3.8 The database should be accessible by some external hosts. . . 40
6.1 Firewalls are placed close to the pod they need to protect . . . 58
6.2 Firewalls can be created to protect instances of the same ap-

plication. 59
6.3 A high level component manages security for pods that are

similar: simply put, pods that are instances of the same ap-
plication. 60

6.4 Flow chart of the firewall linking mechanism. 61
6.5 The ambassador pattern. 62
6.6 Polycube as a sidecar. 63
6.7 A basic flow chart of the isolation mode. 65

7

6.8 A visual representations of policy actions. 66
6.9 The priority detection mechanism. 67
6.10 Flow chart of the behavior of a firewall when packets arrive to

it after a policy has been enforced. 68
6.11 Flow chart of the protection of a pod. 72
7.1 Controllers monitor the state of the cluster through Kuber-

netes API. 74
7.2 A basic flow of the functionality of controllers 75
7.3 An example of the subscription model. 76
7.4 An example of the query system. 77
7.5 Policies are processed only if there is someone they apply to

on the local node. 78
7.6 The policy processing flow chart. 80
8.1 Pod to pod communication performance on the same node. . . 84
8.2 Pod to pod communication performance on different nodes. . . 84

8

Summary

The goal of this project is to provide automatic security features and func-
tions to containers orchestrated by Kubernetes through the use of Polycube:
from the deployment of a Security Policy to the automatic discovery and
protection of the services involved.

9

10

Chapter 1

Introduction

Container platforms are used to package applications so that they can ac-
cess a specific set of resources of the operating system running in a physical
or virtual machine: in a microservice architecture, applications are split in
various services, each of them is packaged in a separate container.

But as the number of containers and services grows larger, a system ca-
pable of managing such a situation, handling the life cycle of containers and
checking their health, becomes essential.

Kubernetes is an orchestrator that provides the functionality of automatic
deployment, management, scaling, and availability of containers. Although
capable of providing the aforementioned features, it still needs a networking
framework to make containers communicate with each other and the external
world, as well as to protect them from unauthorized access and malicious
traffic.

Polycube is a solution developed by the Polytechnic University of Turin
that can create and destroy networking functions and make containers net-
working possible.

11

12

Chapter 2

Background

2.1 Kubernetes
Kubernetes is a portable and extensible platform for managing containerized
workloads and services, open-sourced by Google in 2014.

It orchestrates computing, networking, and storage infrastructure on be-
half of user workloads and was also designed to serve as a platform for build-
ing an ecosystem of components and tools to make it easier to deploy, scale,
and manage applications.

Additionally, the Kubernetes control plane is built upon the same APIs
that are available to developers and users: they can write their own con-
trollers, such as schedulers, with their own APIs that can be targeted by a
general-purpose command-line tool.

2.1.1 Nodes
Like most distributed computing platforms, a Kubernetes cluster consists of
at least one master and multiple compute nodes, called worker nodes.

The master is responsible for exposing the API, scheduling the deploy-
ments and managing the overall cluster. Each node runs a container run-
time, such as Docker or rkt, along with an agent that communicates with the
master and additional components for logging, monitoring, service discovery
and optional add-ons.

Worker nodes are the workhorses of a Kubernetes cluster: they expose
compute, networking and storage resources to applications.

Finally, nodes can be virtual machines (VMs) running in a cloud or bare
metal servers running within the data center.

13

2 – Background

UI

CLI

API
KUBERNETES

MASTER

WORKER NODE 1

WORKER NODE 2

WORKER NODE 3

Image Registry

Figure 2.1. Kubernetes General Architecture

2.1.2 Pods
A pod is a collection of one or more containers and serves as Kubernetes’
core unit of management.

WORKER NODE 1

APP

APP

APP 1 HELPER

APP

WORKER NODE 2

APP

APP APP

APP 1 APP 2

Figure 2.2. Worker nodes with running pods

Pods act as the logical boundary for containers sharing the same context

14

2.1 – Kubernetes

and resources. At runtime, pods can be scaled by creating dedicated resources
called replica sets, which ensure that the deployment always runs the desired
number of pods.

2.1.3 Namespaces

Kubernetes supports multiple virtual clusters backed by the same physical
cluster, and each of them takes the name of namespace.

Namespaces provide a good abstraction for environments, i.e. when want-
ing to logically separate production applications from the ones that are cur-
rently undergoing testing, or applications that have a concept of graphs.

Pods belonging to different namespaces are only logically isolated: physical
isolation is performed by other resources, such as Network Policies.

In the picture below, the color of each pod denotes its namespace: even if
they physically run in different nodes, they seem to be running in their own
cluster, separated from those in other namespaces.

WORKER NODE 1

APP

APP

WORKER NODE 2

beta

production

APP

APP

APP

APP
staging

APP

APP

Figure 2.3. On the left: the physical reality. On the right: virtual clusters
abstracted with namespaces.

15

2 – Background

2.1.4 Services
Services group a set of Pod endpoints into a single resource, solving the
problem of knowing the IP address of every single one of them.

The image below serves as a good example of this: frontend pods do not
need to know the IP address of every single backend pod, as they only need
to know the Service applied to them.

The frontend only needs to query the Service’s address, and a backend
pod will be chosen as its peer, independently of the worker node it is running
in.

FRONTEND

BACKEND
1.1.1.1

BACKEND
1.1.1.2

BACKEND
2.2.2.7

BACKEND
5.9.4.2

SERVICE
10.10.10.10

Figure 2.4. A Service resource knows the addresses of all the pods that
expose the same functionality to other pods.

2.1.5 Kubernetes Network Policies
A Kubernetes Network Policy is a specification of how groups of pods are
allowed to communicate with each other and other network endpoints.

Pods can communicate with each other by default, but as soon as a net-
work policy is deployed and applied to them, they become isolated and can
only communicate with allowed peers.

Network Policies need a network plugin in order to be fully functional:
this is a situation where Polycube comes to the rescue.

2.2 Polycube
The creation of network functions in eBPF can result very challenging to
end developers.

16

2.2 – Polycube

Polycube was born to provide a new software architecture and overcome
these struggles: network functions can be managed and created on a central-
ized and more simpler way.

The tools already provided by it can be used to create complex services
and scenarios.

Each network function created by Polycube is called cube: these are similar
to plug-ins and can be instantiated and destroyed on demand. Additionally,
they can be combined to create more powerful chains.

2.2.1 Firewall Cubes
Firewall cubes are transparent services that drop or forward packets accord-
ing to certain criteria specified in the given rules list.

Matching is done by checking the following fields:

• IPv4 addresses: source and destination addresses can be specified in a
CIDR notation.

• Level 4 Protocol: traffic can be filtered according to the transport pro-
tocol they are being sent with. TCP, UDP, and ICMP are supported.

• Level 4 Ports: both destination and source port can be specified.

• TCP Flags

• Connection Status: the firewall can discriminate packets according to
the connection status they belong to.

The criteria are not mutually exclusive and empty rule fields are inter-
preted as wild cards and the according value in the packet won’t be consid-
ered in the matching process in this case.

As for rule insertion, they are not applied until their processing is consid-
ered to be ready, thus providing atomicity features: only when all rules have
been successfully processed and applied the policy can be considered to be
effectively enforced.

Two ways of inserting rules are provided: the Interactive Mode, in which
results can be seen as soon as the rule is inserted, and the Transaction Mode,
in which rules must be manually applied to be effective. The latter is the best
choice in case of multiple rules insertion, as results are applied only when all
of them are inserted and, thus, avoiding unnecessary delays.

17

2 – Background

A Default Action can also be specified for those situations where a packet
matches no rules: in this case it can either be dropped or forwarded anyway
by setting the default action to Drop or Forward respectively.

Lastly, a Statistics feature is also available: the number of packets and
bytes forwarded or dropped is presented, divided by the rule that matched
the packet.

18

Chapter 3

Standard Kubernetes
Network Policies

Cluster security is not handled by Kubernetes itself: security policies are
correctly added to the cluster but totally ignored if no network plugin –
or, anyway, any security provider – is installed. In this project, this job is
entrusted to Polycube.

This chapter focuses on the network policies created and provided by Ku-
bernetes, providing insights and features that are common to the Polycube
Network Policies, which will be presented in Chapter 5.

3.1 Features
Securing the cluster means protecting pods from unauthorized access or pre-
venting such pods from performing malicious requests or, more generally,
that should not be allowed. The way to define this behavior is by creating
policies.

The Kubernetes Network Policies, introduced in Chapter 1, are supported
by Polycube.

Such policies provide a way to define peers that are allowed to instanti-
ate communications, and can be either internal to the cluster or located in
the external world. A very simple example is to use namespaces – intro-
duced in Section 2.1.3 – to define different environments, such as testing or
production and use policies to prevent pods from a namespace to access –
and, potentially, mess things – resources on the other namespace.

Communications can be filtered by defining rules for both incoming and

19

3 – Standard Kubernetes Network Policies

outgoing connections and the transport protocol used: both TCP and UDP
are supported. Only IPv4 traffic is checked: anything that is not IP is
forwarded regardless.

As soon as a network policy is deployed, pods are automatically protected
and the appropriate measures are taken in case of cluster events: pods are
automatically discovered as they scale up or down and protected with the
appropriate rules.

In case of crashing pods, Kubernetes will instantiate them again and Poly-
cube will protect them without any manual intervention.

Multiple policies can be applied for the same pod at the same time, spar-
ing operator the headache of manually integrating new rules into already
deployed policies.

3.2 Structure of a Standard Kubernetes Net-
work Policy

This section focuses on the correct steps to take in order to define an effective
policy (which have to be created in a YAML file), along with heads-up in
using its features.

3.2.1 Common fields
Like all resources, Network Policies share a common structures with all other
resources used by Kubernetes. These are:

• kind: it specifies the resource type that is going to be deployed.

• apiVersion: the resource’s targeted API version.

• metadata: a collection of fields used to identify the resource.

• spec: data unique to the resource and useful to perform actions with it.

For Kubernetes Network Policies, the kind and apiVersion fields are
defined like this:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy

20

3.2 – Structure of a Standard Kubernetes Network Policy

3.2.2 Name and namespace
The name of the policy is unique throughout a namespace, not in the entire
cluster.

The namespace defines the validity of the policy and where the pods to
be protected can be found. If left blank, the policy will be deployed in the
default namespace, but if the pod to protect is not in default, then it must
be filled accordingly: forgetting to do so will make the network plugin select
the wrong pods to protect and to restrict, or even fail to find them.

The name of the policy and its namespace validity must be defined in the
policy’s metadata:
metadata:

name: test-network-policy
namespace: my-namespace

3.2.3 The policy type
The PolicyTypes field, contained inside spec, defines the directions to filter:
if filled, it accepts at least one value, i.e. when only restricting one connection
direction – Ingress for incoming connections or Egress for the outgoing ones
– and at most two values when restricting them both.

Below, an example of a policy targeting both directions:
spec:

policyTypes:
- Ingress
- Egress

Caveats

The PolicyTypes field is actually used when wanting to restrict Egress con-
nections: when this field is omitted, the default direction is Ingress.

As a result, if the policy is indeed intended to be ingress only, this field
may be totally ignored and left blank, but if the policy is intended to be
an egress only or to cover both directions, then the Egress value must be
included in it.

Forgetting to do so may lead to subtle and naive errors, which in turn
will make any network plugin fail to parse the policy or, even worse, parse it
incorrectly: in this case, in fact, the parsing process is going to be performed
anyways and no errors will be shown because the network plugin thinks the
policy is ingress-only, making this error even subtler to debug.

21

3 – Standard Kubernetes Network Policies

3.2.4 Selecting methods
Before going on with the examination of a Kubernetes Network Policy, the
ways to select objects must be introduced, as they apply to many of the
subsequent fields and, more generally, to most objects in Kubernetes.

Labels

Like many resources, Pods can have labels: these are written in a key:
value format and are used to identify them.

As an example, consider a simple application called myapp consisting of a
pod running a database and one running a web server.

Since they both belong to the same application, a very clever thing to do
is to make them share a app: myapp label.

Then, a role: webserver label may be assigned to the web server pod
and role: database to the other one. The example below is visual repre-
sentation of this.

app: myapp
role: frontend

app: myapp
role: database

Figure 3.1. Two pods belonging to the same application but serving different
purposes: their labels are used to reflect this situation.

Label selection

Many objects in Kubernetes can be selected by their labels: pods and names-
paces, used in Kubernetes Network Policies, are among them.

Resources may contain as many labels as they need to, but they will be
selected only if they match all the desired ones.

The image below shows which resources are going to be selected in case
the following labels are provided:

22

3.2 – Structure of a Standard Kubernetes Network Policy

app: myapp
role: frontend

app: myapp
role: frontend

app: myapp
role: frontend

stage: beta

app: otherapp
role: frontend

app: myapp

Figure 3.2. A visual representation of the labels selection process.

The objects in the image above are not pods or namespaces but general
objects, and they are used to demonstrate the label selection algorithm: both
the key and the value of the labels provided as needle should be present,
regardless of all the other labels.

So, the resources on the first line are going to be selected correctly because
they match at least the needed labels. Those on the second line are going to
be ignored as the aforementioned rule is not satisfied.

Expressions

Expressions provide more flexible selection capabilities with operators like
In, NotIn, Exists, and DoesNotExist.

Nonetheless, expressions are rarely used not only because label selection
is more than enough for most clusters, but is not even supported by all
resources. For this reason, in this project the label selection is the only
selection method that is actually implemented.

23

3 – Standard Kubernetes Network Policies

All resources

Selecting all resources is done by using curly brackets {}.
Particular care must be taken if the namespace is not defined: in this case,

the policy’s namespace – defined in its metadata – will be used instead.

No resources

To select no resources, square brackets [] must be used.
In a Network Policy, since no resources are selected, this syntax is used to

block all resources from a given namespace or the one defined in the policy’s
metadata, if not specified.

3.2.5 PodSelector
This operator selects the pods that need to be protected and it is included
under the spec field. The selection methods defined thus far can be used,
although at least one resource must be selected, so the [] syntax is not
supported.

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:

name: protect-frontend
namespace: default

spec:
podSelector:

matchLabels:
role: frontend

The policy above will be applied to all pods that contain the labels listed
under matchLabels and that are in a namespace called default: as Fig-
ure 3.3 shows, the pod on the left satisfies both the label and the namespace
condition, so the policy will be applied to it. The one the right, instead, is
on a different namespace.

24

3.2 – Structure of a Standard Kubernetes Network Policy

betadefault

role: frontendrole: frontend

Figure 3.3. Two pods that have the needed labels but are on dif-
ferent namespaces.

3.2.6 Ingress and Egress peers
The ingress and egress fields start the restricting process: they include
the peers that are allowed to communicate with the pod – or the other way
around, respectively – and as such, they must be included under spec only
once.

Depending on the direction, peers are defined under the from field for
ingress or to for egress.

As a reminder, Egress should be added to the PolicyTypes field before
using egress.

To make an example: the following policy restricts both ingress and
egress connections. The parts that are not relevant have been cut, focusing
on the policy types only.

spec:
policyTypes:
- Ingress
- Egress
ingress:
- from: # Peer 1

Rules...
- from: # Peer 2

Rules...
egress:
- to: # Peer 1

25

3 – Standard Kubernetes Network Policies

Rules...
- to: # Peer 2

Rules...

3.2.7 Ports and Protocols
The transport protocol and the destination port can be defined by filling the
ports field and include it in each peer selector. If empty, rules will match
any protocol and any port.

Currently, Kubernetes Network Policies support TCP and UDP. SCTP proto-
col can also be included, but its rare usage and its alpha stage in Kubernetes
led to the decision not to support it in Polycube.

As a result, policies that only contain SCTP will not be enforced: instead of
leaving the cluster with potential vulnerabilities, such policies will translate
in a “drop all traffic” action instead.

The following rule will match packets that are sent via TCP on port 8080
by the specified peer, not included for the sake of clarity.
ingress:

- from: # Peer 1
Peer definition...
ports:
- protocol: TCP

port: 8080

3.2.8 Selecting allowed peers
There are four ways to define the allowed peers: IPBlock, PodSelector,
NamespaceSelector and a combination of the latter two, acting as a unique
selector.

Instead of going into details for each them, they have been divided by
their suggested usage or, better put, the peer’s location they mostly mean to
target: The external world and The internal world.

All the following examples relate to ingress connections and, thus, their
inclusion under a from field is implied. Nonetheless, they also apply to
egress by inserting them under a to field.

3.2.9 The external world
The definition means “anything that is not under direct control of Kuber-
netes”: simply put, anything that is not a pod. For this purpose, the IPBlock

26

3.2 – Structure of a Standard Kubernetes Network Policy

feature must be used.

IPBlock

This peer selector is the easiest one, as it allows a communication by sim-
ply writing the IP range the peers belong to, properly written in a CIDR
notation.

Exceptions can also be defined: they are inserted under the except field
and are written in the same fashion as the allowed IPs.

In order to allow all hosts inside the 100.100.100.0/24 subnet but ex-
cluding its first sixteen hosts, this peer selector can be taken as an example.

- ipBlock:
cidr: 100.100.100.0/24
except:
- 100.100.100.0/28

Caveats

IPBlock can also be used to select pods inside the cluster, although this
behavior is highly discouraged.

As a matter of fact, pods are a volatile – or ephemeral – entity: they can
be instantiated and deleted on demand, and as such, the IP address that is
assigned to them is not written in stone and will change accordingly.

As a consequence, using IPBlock to select a pod as an allowed peer means
treating it as a fixed resource: it may work fine at the beginning, but after
its first crash and re-deploy, no guarantee can be given as to what its new
address will be. In fact, most probably it will be different from the one it
had when the IPBlock field was defined.

This brings a non-negligible collateral effect: the automatic protection
capability will be completely lost because no meaningful information about
the pod to restrict was given to Polycube, and its IP address certainly cannot
suffice.

For this reason, IPBlock must only be used when targeting something
that is not a pod or is anyway located far from the Kubernetes cluster, i.e.
private or proprietary machines: hosts from the university’s campus, internal
laboratories or proprietary servers.

27

3 – Standard Kubernetes Network Policies

3.2.10 The internal world
As opposed to the external world, the internal world peer selectors obviously
focus on pods.

PodSelector

PodSelector simply selects groups of pods by using their labels as identifiers,
following the same rules that have been presented earlier.

Used as a peer selector, both the {} and the [] operators can be used: for
the former, all pods inside the policy’s namespace will be selected; for the
latter, no pods from it will be allowed.

Specific selection has already been discussed, so the next example focuses
in the two operators just mentioned.

metadata:
namespace: beta

spec:
...

ingress:
- from:

- podSelector: {}

The above policy will match packets from any pod inside the beta names-
pace, while the one below, instead, will reject them.

metadata:
namespace: beta

spec:
...

ingress: []

NamespaceSelector

This selector does the same job as the PodSelector but applied to names-
paces, with the additional functionality of selecting all pods inside them.

It is important to stress that NamespaceSelector does not care about the
name of the namespace, but only about the labels of the namespace the peers
are in, whereas the namespace name will only be considered for the pod to
protect, i.e. the one defined in the policy’s spec.podSelector.

28

3.2 – Structure of a Standard Kubernetes Network Policy

metadata:
namespace: default

spec:
...
ingress:
- from:

- namespaceSelector:
matchLabels:
env: production

In the policy above, all connections coming from any pod inside names-
paces that include the label env: production will be allowed.

Figure 3.4 better illustrates such behaviour: when specifying the pod to
protect, its namespace is taken by name – default, defined in the policy’s
metadata – but the peers’ namespace is taken by its labels, its name is
ignored.

The name or the labels of the pods inside the namespaces is irrelevant,
and the picture just focuses on the namespaces: the first line contains its
name, while the second one contains its labels.

beta-ns
env: beta

production-env
env: production

production-ns
env: production

default

Figure 3.4. namespaceSelector works with the labels of a namespace:
its name is ignored.

podSelector and namespaceSelector

If used together, PodSelector and NamespaceSelector allow for more fine-
grained selections: only pods that have specific labels and are contained in
namespaces that match the desired labels will be allowed.

The policy below is an example of the two selectors put together.

29

3 – Standard Kubernetes Network Policies

metadata:
namespace: default

spec:
...
ingress:
- from:

- podSelector:
matchLabels:
role: api

namespaceSelector:
matchLabels:
env: production

All pods with label role: api are allowed, but only if they are inside
namespaces with label purpose: production.

Figure 3.5 elaborates more on this concept: pods that are on namespaces
that do not match the labels included in namespaceSelector will never be
considered. The pods that are indeed in the correct namespaces, instead, will
be allowed only if their labels match the ones provided in the podSelector.

beta-ns
env: beta

ns-1
env: production

role: api

ns-2
env: production

default

role: api

Figure 3.5. namespaceSelector and podSelector can be joined for a more
sophisticated selection.

3.3 Combinations
This last part will focus on the results of combining the fields that have been
described until now.

30

3.3 – Combinations

3.3.1 Combining Peers Selectors
When multiple peer selectors are included, the rules are obviously considered
independently: this means that they are OR-ed with each other.

The following policy accepts connections from hosts belonging to the
100.100.100.0/24 subnetOR from pods that include role: frontend among
its labels list.

- from:
- IPBlock:

cidr: 100.100.100.0/24
- podSelector:

matchLabels:
role: frontend

3.3.2 Combining Protocol and Ports
Multiple protocols and ports can be defined, and the same method of the
previous section is applied: protocols will be OR-ed in a non-exclusive fash-
ion.

For example, to match packets that come with TCP on port 8080 OR with
UDP on port 5000 the following selector can be used:

ports:
- protocol: TCP

port: 8080
- protocol: UDP

port: 5000

3.3.3 Putting them all together
Peers and protocols are AND-ed with each other: this means that they are
valid at the same time.

- from:
- IPBlock:

cidr: 100.100.100.0/24
- podSelector:

matchLabels:
role: frontend

ports:
- protocol: TCP

31

3 – Standard Kubernetes Network Policies

port: 8080
- protocol: UDP

port: 5000

The policy above will match the following packets, each line is an allowed
peer:

• source: 100.100.100.0/24 AND protocol TCP with port 8080

• source: 100.100.100.0/24 AND protocol UDP with port 5000

• source: role: frontend AND protocol TCP with port 8080

• source: role: frontend AND protocol UDP with port 5000

3.4 Deploying
To deploy a policy, the traditional apply command can be entered:

Local policy
$ kubectl apply -f path/to/policy.yaml

Remote policy
$ kubectl apply -f https://example.com/policy.yaml

The system will start a validation process, and in case errors are found,
a comprehensive error message will be displayed. Otherwise, the usual suc-
cessful message should appear and Polycube will start fetching the policy.

The same command serves for the updating process, but in this case both
the name and the namespace of the policy should be left the same, otherwise
the policy is interpreted as a new policy.

To get the list of the policies currently deployed, one can use the kubectl
get networkpolicies command, though appending -o wide is suggested:

Get list of policies on the default namespace
$ kubectl get networkpolicies -o wide

Finally, to cease the policy, two commands can be used:
Delete by path
$ kubectl delete -f path/to/policy.yaml

Delete a policy called "api-allow"
$ kubectl delete networkpolicy api-allow

32

3.5 – Viewing the results

As a final note, all previous commands work in case the policy is deployed
in the default namespace: to refer to policies in a specific namespace, -n
namespace-name should be appended:

Get policies in the production namespace
$ kubectl get networkpolicies -n production

Or...
$ kubectl get networkpolicies --namespace=production

3.5 Viewing the results
When policies are deployed, they are immediately processed by Polycube
with the goal of translating them into firewall rules. The results of this
process can be checked in Polycube’s CLI, with the polycubectl command.
The following command will show rules that have been inserted in the ingress
chain of a firewall called “fw”:

Show the rules in the ingress chain
$ polycubectl firewall fw chain ingress rule show

A table containing all the details of the active rules will be displayed, but
it can be tailored to be shown in a JSON or YAML format by appending
-json or -yaml.

3.6 Applying security: a basic flow
A couple of examples will be presented to illustrate what was explained until
now, along with the concept of priority and event reaction.

Before beginning, an introduction to chains is made.

3.6.1 Chains
As Figure 3.6 shows, firewalls work with a chains concept.

Incoming packets, which are the ones that are going to be restricted by
an Ingress rule in a network policy, travel on the firewall’s egress chain.

On the opposite side, outgoing packets, the ones matched by the policy’s
Egress rules and forwarded by the pod, are sent on the firewall’s ingress
chain.

33

3 – Standard Kubernetes Network Policies

Ingress

Egress

Figure 3.6. Traffic directed to the pod travels in the egress chain. Outgoing
packets go through the ingress chain

As a result, in order to see rules and statistics about incoming packets,
the egress chain must be consulted. The ingress chain must be selected for
the opposite direction.

3.6.2 Preparing the environment
The first step is to start with two simple pods, one that acts as a database
and has label role: db and one that acts as a front end server with a role:
frontend label.

For demonstration purposes and to keep things simple, pods in this ex-
ample actually run very simple applications and are all exposed on port 80.
Their names are just high level abstractions.

A database

In the following examples, the database pod will be the one that is going
to be protected and targeted by the other pods. In order to start it, the
following command can be written:

Start the pod, give it a name and a label, and expose it on port 80
$ kubectl run database --image=nginx --labels role=db --expose --port

80↪→

After a couple of minutes, a new pod is present on namespace default:

Start the pod, give it a label, and expose it on port 80
$ kubectl get pods -o wide

A frontend

The front end pod, and all the other ones from now on, can be started with
the following command:

34

3.6 – Applying security: a basic flow

Start the front end pod and get inside it
$ kubectl run frontend --rm -i -t --image=alpine --labels

role=frontend -- sh↪→

The above command not only starts a new pod on namespace default,
but also allows the user to get inside it and perform actions on its behalf by
using its default shell application.

Preparing the node

The following command must be entered in the node that is running the
database pod and will show the list of firewalls: they all have name in the
format of fw-<ip>, where <ip> is the pod’s IP.

Show the list of firewalls in the current node
$ polycubectl firewall show ?

Supposing that the database has address 192.168.5.38, the following
commands can be used to see rules:

Show rules and statistics
$ polycubectl firewall fw-192.168.5.38 chain <chain_name> show

Where <chain_name> is ingress or egress, as explained in Section 3.6.1.

3.6.3 First example: the internal world
This first example covers the following situation: the network administrator
wants the database to be accessed only through the api server, any other
entity should be prohibited from doing so.

In Kubernetes terms and for the environment that has just been created,
this can translate to the following: pods with label role: db will only
accept connections from pods with label role: api and that are inside the
namespace called default.

Figure 3.7 shows such situation.

35

3 – Standard Kubernetes Network Policies

secondary

role: api

default

role: db

role:
frontend

role: api

Figure 3.7. The example environment: databases can only be accessed by
an api server located in the same namespace.

Rather than environments, this example treats namespaces actually as
a group of micro services all working for the same application, though the
names have been kept to default and secondary for simplicity.

Non-isolation

Issuing the following command from the shell of the pod acting as a front
end will result in a message welcoming it to the database:

Contact the database from the front end pod
$ wget -qO- --timeout=5 http://database

Since no policy has been deployed yet, the database is in a non-isolation
mode and will accept all traffic.

This can be further verified by watching the rules regarding the egress
chain of the database firewall: the default action is forward and so all connec-
tions are being accepted. The statistics will prove that a number of packets
indeed travelled on the egress chain.

36

3.6 – Applying security: a basic flow

Protect the database

Of course this is not the desired situation, and it will be soon fixed by creating
the following policy:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:

name: api-allow
namespace: default

spec:
podSelector:

matchLabels:
role: db

ingress:
- from:

- podSelector:
matchLabels:
role: api

Deploying this policy, as specified in Section 3.4, will make Polycube aware
of the fact that has been a change in the desired state of the cluster: from
now on, it will be in charge of making sure that the current state of the
cluster always matches the desired one, and, more specifically, to protect the
database from unauthorized access while granting it to all api servers that
are part of the default namespace.

Verifying isolation mode

The situation of Section 3.6.3 is now reversed and the command will timeout
after five seconds: the database just switched to isolation mode and will only
accept connections allowed by the policy just deployed.

The statistics of the firewall’s egress chain will now show a number of
packets dropped and not allowed to further travel and reach the pod.

Non-isolation for outgoing packets

The policy did not include any policy type, and thus it reverted to the default
situation, which is to only restrict incoming packets: the ingress chain of
the firewall – refer to Figure 3.6 and Section 3.6.2 – will show that the default
action is forward. This means that the database can start communications
with anyone without restrictions.

37

3 – Standard Kubernetes Network Policies

Nonetheless, this does not represent a security hole for the database: as
verified in the previous section, all incoming connections – no matter their
status: new, established or invalid – will be dropped, unless they come
from the api server.

So, the database can initiate communications, but won’t be able to receive
any reply, either because the other peer will not accept it or because the
database itself will not accept its response.

The api server

The shell of the front end pod can be closed by entering exit.
In order to see if the policy is actually respected correctly, one needs to

deploy an api server:

Start the api pod and get inside it
$ kubectl run apiserver --rm -i -t --image=alpine --labels role=api

-- sh↪→

When the shell is ready, the database can be contacted again with the
same method presented in Section 3.6.3.

The welcoming message will print on screen, confirming that the api server
is indeed welcome to communicate with the database.

Firewall Reaction

What just happened is the reaction process in action.
In the previous section, the state of the cluster diverged twice from the

desired state and the appropriate measures have been taken by both Kuber-
netes and Polycube to realign it, but in different contexts:

1. A new pod is deployed:

• Kubernetes checks its specifications – i.e.: containers list, scaling
needs, resources allocations etc. – and makes sure it is able to run
correctly by scheduling it to the appropriate node.

• Polycube enables it to perform network operations and instantiates
a firewall to protect it. No policy applies to it yet, so it will be able
to communicate with anyone.

2. The new pod is an api server but can’t contact the database yet:

38

3.6 – Applying security: a basic flow

• The database firewall’s default behavior for unknown peers is to
reject their connections requests, and the firewall does not know
who this new pod is yet: this is a clear violation of the policy and,
thus, a difference from the desired state of the cluster.
Polycube realizes this and makes changes in all the appropriate fire-
walls to fix this.

Changes in the egress chain

A further proof of the desired state being re-enforced can be seen by looking
at the database firewall’s egress chain: new rules, stating that packets sent
by the new api server pod must be accepted, have been inserted.

The statistics confirms that some packets have transited successfully.

Namespace isolation

As stated in Section 2.1.3, pods belonging to different namespaces are only
logically separated: now that a policy is deployed, isolation for incoming
packets is enforced.

To test this, a new namespace can be created like so:

Create a namespace called secondary
$ kubectl create namespace secondary

Now, Section 3.6.2 and Section 3.6.3 can be followed once again with
a slight difference in the command, as –namespace=secondary should be
appended in order to deploy them to the secondary namespace:

Run a front end pod in the secondary namespace
$ kubectl run frontend --rm -i -t --image=alpine --labels

role=frontend --namespace=secondary -- sh↪→

The result will be the same for both situations: both the front end and
the api server won’t be able to access the database because they don’t belong
to the same namespace of the database.

As a reminder, isolation is only for incoming packets: the database can
still communicate with pods in the secondary namespace but won’t receive
any reply, and, specifically for this case, not even from api servers. Refer to
Section 3.6.3 for more details.

39

3 – Standard Kubernetes Network Policies

3.6.4 A Second Example: the external world
Finally, a second policy may be deployed, one that targets hosts outside of
the Kubernetes cluster.

role: db130.130.0.0/16

130.130.1.0/24

Figure 3.8. The database should be accessible by some external hosts.

Externally the database should be accessed by hosts from 130.130.0.0/16,
but not those that are from 130.130.1.0/24.

Deploy the policy

To achieve this, the following policy may be deployed:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:

name: allow-external
namespace: default

spec:
podSelector:

matchLabels:
role: db

ingress:
- from:

- ipBlock:
cidr: 130.130.0.0/16
except:
- 130.130.1.0/24

40

3.6 – Applying security: a basic flow

Seeing the results

The egress chain of the firewall had an interesting change: the rules gener-
ated by this policy have been inserted before the ones generated by the one
deployed earlier.

Priorities

This is the concept of policy priority: more recent policies take precedence
against the older ones and thus the rules generated by the former will be
checked first.

The examples performed thus far may not expose their purpose very
clearly, but the following situation will do it. Suppose that two policies
are deployed in sequence: first, one that rejects all traffic regardless of the
peer and protocol and, later, one that selectively allows peers, like the one
on Section 3.6.3.

Without a concept of priorities the second policy would be completely
irrelevant: the first rule, generated by the policy that rejects all traffic, will
match first and no other rule will be checked.

Clean up

To clean everything up, all open shells – the ones from an api server or front
end – should be closed with exit.

Then, the following commands should be entered:

Remove the database
$ kubectl delete deployment database
$ kubectl delete service database

Delete the policies
$ kubectl delete networkpolicy api-allow
$ kubectl delete networkpolicy allow-external

Delete the secondary namespace
$ kubectl delete namespace secondary

41

42

Chapter 4

Existing Solutions

This chapter will analyze the way the three main network plugins handle the
security functionality.

4.1 Calico
Calico is integrated with all major cloud providers: from Kubernetes to Open-
Stack, Amazon Web Services to Google Compute Engine and currently uses
the standard Linux kernel data plane, Windows Host Networking Service
(HNS), and some capabilities of Extended Berkeley Packet Filter (eBPF).

It creates and manages a flat Layer 3 network, assigning each workload
a fully routable IP address. Workloads can communicate without IP en-
capsulation or network address translation to increase performance, easier
troubleshooting, and better interoperability. In environments that require
an overlay, Calico uses IP-in-IP tunneling or can work with other overlay
networking such as flannel.

Additionally, its data plane supports both IPv4 and IPv6, performs packet
filtering at layer 3/4 via Linux kernel iptables with ipsets and supports con-
figurable MTU.

4.1.1 Network Policies
Features

Calico supports both the Kubernetes Network Policies and its own take on
security with Calico Network Policies, which provide a richer set of policy

43

4 – Existing Solutions

capabilities, including explicit policy ordering/priority, different rule actions,
IPv6, and support for multiple transport protocols.

Calico network policies can also apply to multiple types of endpoints, such
as pods, VMs, and host interfaces and, when used with Istio service mesh,
support securing applications on layers 5-7.

Other functions include HTTP match, ports range, negative field match-
ing – i.e. the ability to allow all protocols except the one defined in the
notProtocol.

Calico Network Policies, like the Kubernetes ones, are namespace-scoped:
in order to be applied to pods in multiple namespaces, the Global Network
Policies can be used.

Syntax

The syntax is very similar to a Kubernetes Network Policy with focus on
operands that can be found in a programming language, like the “==” op-
erator, and functions:

apiVersion: projectcalico.org/v3
kind: NetworkPolicy
metadata:

name: allow-tcp-6379
namespace: production

spec:
selector: color == 'red'
ingress:
- action: Allow

protocol: TCP
source:

selector: color == 'blue'
destination:

ports:
- 6379

The policy above instructs pods that have a label with key color and
value red in the default namespace to accept connections from pods with
labels color: blue if they come with TCP and directed to port 6379.

4.2 Cilium
At the foundation of Cilium is the BPF technology.

44

4.2 – Cilium

By leveraging Linux BPF, it retains the ability to transparently insert
security visibility and enforcement, but does so in a way that is based on
service/pod/container identity – in contrast to IP address identification in
traditional systems – and can filter on application-layer, i.e. HTTP other than
on the transport and network ones.

Networking is based on a simple and flat Layer 3 and also supports overlay
and native routing using the regular routing table of the Linux host.

4.2.1 Network Policies
Features

Cilium’s custom Network Policies are supported along with those from Ku-
bernetes, and both are very similar in terms of functions.

The additional features provided include application-layer filtering for
HTTP, Kafka and DNS, and support for services without selectors.

Syntax

Its syntax very closely resembles that of Kubernetes, focusing on labels, the
use of the {} and [] operands, and very similar semantics. By deploying the
following policy, pods with label role: backend on the default namespace
will accept connections coming with TCP on port 80 if they come from pods
with labels role: frontend on its same namespace.

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:

name: "l4-rule"
spec:

endpointSelector:
matchLabels:

role: backend
ingress:
- fromEndpoints:

- matchLabels:
role: frontend

toPorts:
- ports:

- port: "80"
protocol: TCP

45

4 – Existing Solutions

4.3 Istio
Istio provides load balancing, service-to-service authentication, monitoring,
and other functions by installing it as a “sidecar” proxy in the environment
to intercept all network communication between microservices.

Its features include automatic load balancing for HTTP, gRPC, WebSocket,
and TCP traffic; fine-grained control of traffic behavior with rich routing rules,
retries, failovers, and fault injection; automatic metrics logs, and traces for all
traffic within a cluster; secure service-to-service communication in a cluster
with identity-based authentication and authorization.

4.3.1 Istio Policies
Istio’s take on policies is very different from the solutions just mentioned
as they are application-layer based and, so, policies can be based on virtual
host, URL, or other HTTP headers. In order to use network policies, another
network provider should be used, like the ones specified above.

The Istio’s proxy is based on Envoy, which is implemented as a user space
daemon in the data plane that interacts with the network layer using standard
sockets. This gives it a large amount of flexibility in processing, and allows
it to be distributed in a container.

Network Policies data plane is typically implemented in kernel space (e.g.
using iptables, eBPF filters, or even custom kernel modules). Being in kernel
space allows policies to be extremely fast, but not as flexible as the Envoy
proxy.

46

Chapter 5

Polycube Network Policies

In order to provide additional functionality and leverage on the full power
of Polycube’s firewall component, a brand new set of Network Policies have
been created called Polycube Network Policies.

5.1 Features
Polycube Network Policies are meant to include almost all the features that
the Kubernetes ones already do and be compliant with their “philosophy”,
ease up the operator’s work when securing the cluster, and add some addi-
tional features.

Obviously, Polycube policies have a different kind and apiVersion:

apiVersion: polycube.network/v1beta
kind: PolycubeNetworkPolicy

They share the same philosophy of isolation mode with Kubernetes poli-
cies: when a new Polycube policy is deployed, pods will stop accepting all
traffic and will only follow what’s stated there.

5.1.1 Human Readable Policies
Kubernetes policies can sometimes be challenging to read and, thus, use.
One of the goals of this project is to also encourage operators to write more
effective policies, and the very first thing that can help this process is a
friendly and understandable syntax.

47

5 – Polycube Network Policies

In Chapter 3 the labelSelector was introduced, but it was used both
when selecting the pod to protect and when selecting the peer to be protected
from.

Along with that, the [] and {} operators were mentioned: in almost all
programming languages, they both mean “empty”, but in Kubernetes, in-
stead, their purpose is to select everything but with a different approach
when it comes to the action: this may naturally lead to confusion and can
increase the learning curve considerably, other than seriously harm the secu-
rity of the cluster as a byproduct.

The following Kubernetes policy blocks all traffic:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:

name: deny-all
spec:

podSelector:
matchLabels:

role: db
ingress: []

Polycube policies perform the same job with this format:

apiVersion: polycube.network/v1beta
kind: PolycubeNetworkPolicy
metadata:

name: deny-all
applyTo:

target: pod
withLabels:

role: db
spec:

ingressRules:
dropAll: true

As shown, Polycube policies follow the natural language that humans
speak – humans with a basic understanding of the English language, that
is. As a matter of fact, when selecting the pods that the policy must be ap-
plied to, the applyTo field must be used, and the target field clearly specifies
the need to protect a pod that has labels role: db, as finally stated in the
withLabels field.

48

5.1 – Features

In order to drop all traffic, the dropAll can simply be set to true, leaving
no room for confusion whatsoever.

The same thing applies when wanting to accept all traffic: the allowAll:
true must be specified in this case.

...
ingressRules:

allowAll: true

Lastly, in order to apply a policy to all pods in the policy’s namespace,
the following applyTo field can be written:

applyTo:
target: pod
any: true

5.1.2 Automatic type detection
Section 3.2.3 explained that the policyTypesmust be specified when wanting
to target Egress traffic as well, and wrong policies may be generated if
forgetting do so.

This behaviour can be found really tedious and annoying. As a further
effort to bring more “friendliness”, Polycube policies get rid of this by smartly
recognizing the policy type accordingly.

The following policy does not mention incoming traffic in any kind, so it
is going to be recognized as an Egress policy correctly.

apiVersion: polycube.network/v1beta
kind: PolycubeNetworkPolicy
metadata:

name: pod-allow-all
applyTo:

target: pod
withLabels:

role: db
spec:

egressRules:
allowAll: true

So, pods with labels role: db will be allowed to establish new connec-
tions with anyone.

49

5 – Polycube Network Policies

5.1.3 Explicit Priority
Priority can explicitly be declared by properly writing it in the policy, where
a lower number indicates its importance in rules insertion.

It can be done by setting the priority field:

apiVersion: polycube.network/v1beta
kind: PolycubeNetworkPolicy
metadata:

name: pod-drop-all
priority: 1
...

This will tremendously help in situations where the removal of a policy
cannot be done or when not wanting to do so.

Just to provide a very simple and trivial example, if wanting to temporarily
block all accesses, a policy dropping all traffic – i.e. the one specified above
– can be deployed with priority: 1. Supposing all other policies were
deployed with a priority number greater than that, i.e with 2, the rules
generated by this policy will be inserted before all the other ones and, thus,
checked before them.

Policies that have the same priority will be treated with the same rules as
the Kubernetes ones: the most recent one will take precedence.

5.1.4 Strong distinction between the internal and ex-
ternal

The rules that can be specified are divided by what is internal to the cluster
and what is outside.

This is done to prevent the clear bad behaviour of using IPBlock to target
pods, as already mentioned in Section 3.2.9. Peers are divided in two groups:
pod, and world.

The internal world can be specified like so:

ingressRules:
rules:

- action: allow
from:
peer: pod
withLabels:
role: api

50

5.1 – Features

onNamespace:
withNames:
- beta
- production

Once again, the syntax closely resembles a natural spoken language: the
above policy allows pods withLabels role: api that are onNamespace
either named beta or production to communicate with the target pod, here
removed for shortness and clarity.

In Kubernetes Network Policies, namespaces can be targeted only by the
labels they have: basically, when wanting to target them, the operator is
forced to assign labels to namespaces even if they just need to target very
few of them. As the policy above shows, Polycube Policies provide a way to
select namespaces by their names as well, while also providing the ability to
do so by their labels.

The external world, instead, can be restricted by writing world in the
peer field. The example of Section 3.2.9 can be written in a Polycube policy
in different way:

ingressRules:
rules:

- action: drop
from:
peer: world
withIP:
- 100.100.100.0/28

- action: allow
from:
peer: world
withIP:
- 100.100.100.0/24

So, there is no need to write exceptions, because Polycube policies also
have a clear distinction between actions, as written in the following section.

Drop or Allow

The flexibility of the Polycube firewall has been fully ported to the Polycube
Policies, and actions can be specified for each rule: drop or forward:

ingressRules:
rules:

51

5 – Polycube Network Policies

- from:
peer: pod
withLabels:
role: api

action: forward

In order to allow a connection, the actions that can be written are allow,
pass, forward and permit.

The same applies when blocking connections, and the following words can
be used: block, drop, prohibit and forbid.

The presence of multiple words to define a single action has been done to
aid the definition of a policy, allowing for a more flexible semantic that is
easier to remember.

Black list

Providing both Drop and Forward actions brings the possibility of creat-
ing black lists: everything is allowed, except for some connections that are
specifically banned.

The following policy is deployed first:

priority: 2
spec:

ingressRules:
rules:

- from:
peer: pod
any: true

action: forward
protocols:
- protocol: tcp
ports:
source: 8546
destination: 8080

This policy will accept all pods – provided they are in the same namespace
as the policy’s one – to contact the target pod on port 8080 from 8546 with
TCP. The priority is 2 because later a “ban” policy is deployed:

priority: 1
spec:

ingressRules:
rules:

52

5.1 – Features

- action: block
from:
peer: pod
withLabels:
status: beta

protocols:
- protocol: tcp
ports:
source: 8546
destination: 8080

Now, all pods will be allowed to communicate with the pod except for
those that have label status: beta. This policy, having a priority number
lower than the one deployed earlier, will insert its rules before it: they will
be checked before any other.

Finally, this was a clear example of the flexibility of this solution, but
one must take very careful steps when creating a black list kind of policy:
although this could introduce some benefits in some cases, like lighter fire-
walls, it could also add some subtle inconsistencies and errors, like wrongly
allowing pods to start connections.

5.1.5 Service aware policies
Consider the following Polycube policy:

apiVersion: polycube.network/v1beta
kind: PolycubeNetworkPolicy
metadata:

name: service-allow-api
applyTo:

target: service
withName: database

spec:
ingressRules:

rules:
- from:

peer: pod
withLabels:
role: api

action: allow

By writing service as a target, Polycube will be aware of the fact that

53

5 – Polycube Network Policies

pods have a service applied to them and will make all the necessary steps to
protect the pods according to it.

Supposing that service named database has 80 and 443 as targetPorts
with protocol TCP, all the pods that apply such service will accept connections
from pods that have label role: api, but only on the aforementioned ports
and protocol.

This serves both as a convenient method for targeting pods without speci-
fiying the labels – withName: database can be seen as a clear shortcut in
this case – and without specifying the ports as well.

Being service-aware means that firewalls will react to Service events, too:
if, later, the cluster’s needs change and only the more secure 443 port is
decided to be supported, the service can be updated to reflect this change
and the solution will react as well by removing the behaviour it used to apply
for port 8080.

The service-aware functionality is made for those particular use cases when
a pod does not need a more advanced rule filtering, like allowing a pod on a
certain port and allowing others on another one: as already mentioned, this
is a convenient method for specifying all ports at once, and if such scenario
is needed, it must be done by specifying pod as the peer instead of using
service.

As a final note, only services with selectors are supported: services without
selectors need to be selected by writing world as the peer.

54

Chapter 6

Polycube Security in K8s:
Architecture

6.1 Overview
The integration of Polycube in Kubernetes brings up its flexibility and com-
ponents to enable security functions and let pods communicate with each
other, be it on the same node or other nodes in the cluster, or with the
external world.

At the very core, a switch component is placed on the node and pods
are attached to it. For security reasons, on each of such ports, a dedicated
transparent firewall is also connected.

Pods are an ephemeral entity: they can be deployed, updated and de-
stroyed on demand whenever the need to do so presents itself. Scalability is
the simplest example that can come to mind, but even creating a pod to be
used as a safe sandbox to execute unsafe commands can be a perfect example
of this.

As a result, the security solution must be totally asynchronous and able
to detect and react to such events in a proper way.

The Data Plane is in charge of enforcing and ceasing policies, as well
configuring the low level firewalls to reflect the events occurred in the cluster,
ensuring that policies are always respected or, in Kubernetes terms, that the
current state of the cluster always matches the desired one.

The Control Plane knows when something occurred to policies or to the
pods in the cluster by leveraging on the Kubernetes API, translating the
policies in a format that the data plane can easily understand.

55

6 – Polycube Security in K8s: Architecture

6.2 The Data Plane
The data plane performs many tasks: the most important ones are to inject
the rules in to the low level firewalls, change their default action, set up
the appropriate order of rules based on policy deployment and know how to
properly react to cluster events.

It has to deal with lots of events coming from the cluster: pods may rise
and die, policies may be deployed and integrate with pre-existing ones. For
this reason, particular effort has been made to divide its operations in three
core functions:

• Enforce: Given a new policy or an update of an existing one, the firewall
components need to be updated by applying the rules specified in it.

• Cease: A policy has been removed from the cluster and its rules must
be removed.

• React: Something happened in the cluster and the pods need to be
protected in the appropriate way. This means restrict access or remove
stale rules.

Such three core components will be covered later, while the following sec-
tions will describe some minor aspects that are nonetheless important to
provide security functions.

6.2.1 Creating the Firewall
The creation process is not trivial: different factors must be taken into ac-
count and the use case should be analyzed thoroughly in order to choose the
approach that best fits the cluster’s needs.

The problem

When pods are created by the user or any other entity, they cannot yet
communicate with other existing pods, as a network interface is not yet
assigned to it. As a result, the pod cannot be reached by other pods or by
the external world, nor can it start such communications: creating a firewall
cannot be performed at this point as it makes no sense.

In this scenario the CNI plugin is responsible for inserting a network in-
terface into the pod’s container network namespace and making all necessary

56

6.2 – The Data Plane

changes on the host. Additionally it will assign an IP address to it or delegate
assignment to a separate IPAM plugin.

When network capabilities are ready, the pod’s network interface is at-
tached to the node’s switch, allowing it to communicate with any entity.

The situation cannot stay like this because it is obviously unsafe and a
firewall instance is created to fix it. The flexibility that is built on Polycube
allows for different approaches to be chosen for such an operation: the Fully
Managed Security approach and the Unmanaged Security are both very valid
solutions but cover very different scenarios and, thus, may not apply to every
cluster usage.

The following sections focus on each of these approaches and provide com-
prehensible whys and why-nots.

6.2.2 Fully Managed Security
This approach fully entrusts the security of the cluster – including event
reaction and configuration – to Polycube, and it’s perfect for most scenarios,
when policies that need to be used can be considered pretty standard, i.e.
only restricting packets based on their fields, and no other rule elaboration
needs to be performed.

Firewall creation is totally handled by Polycube and presents some non-
mutually exclusive creation possibilities that depend on where the firewall
must be placed:

• Closer to the pod

• Closer to the node

These approaches present their benefits and disadvantages and can be adopted
to satisfy a specific use case or integrate one another, although, in the latter
case, particular care must be taken when doing so, as the number of traversed
network functions can potentially increase very quickly, further burdening the
control and data planes and introduce non-negligible performance penalties.

Picking the solution that prevents a single firewall cube from getting too
large can be considered a good rule of thumb, as deciding for a solution that
does not involve creating firewalls where not needed is as well.

In this project, firewalls are placed as close as possible to the pod they
are meant to protect, as this solution is the one that applies to most clusters
and fits most use cases.

57

6 – Polycube Security in K8s: Architecture

Firewall closer to the pod

WORKER NODE 1

APP APP APP

Load Balancer + address
translation

Bridging and routing

Nodeport discriminator

Linux networking
stack (routing +

natting)

VxLAN
Overlay
Network

WORKER NODE 2

WORKER NODE 3

Datacenter Network (L3)

Figure 6.1. Firewalls are placed close to the pod they need to protect

As Figure 6.1 shows, in this approach each pod in the node is protected
by a dedicated firewall.

Firewall closer to the pod: benefits

This approach can be labeled as a one-firewall-per-pod model for its special-
ized nature: only traffic that pertains to the pod to protect is filtered, be it
traffic destined to it or generated by it.

Firewalls are not “cluttered” by something that does not relate to the pod
and, as a consequence, it is very uncommon for the rules list to get too large
in average-to-big clusters. Nonetheless, this occurrence may still happen,
particularly in situations where policies are not created in a clever way, but
this model ensures that delay is not caused because of unnecessary match
lookup.

Firewall closer to the pod: a variant

This approach can be further evolved by passing from a one-firewall-per-pod
model to a one-firewall-per-application: such model is presented in Figure 6.2.

58

6.2 – The Data Plane

WORKER NODE 1

APP APP

Load Balancer + address
translation

Bridging and routing

Nodeport discriminator

Linux networking
stack (routing +

natting)

VxLAN
Overlay
Network

WORKER NODE 2

WORKER NODE 3

Datacenter Network (L3)

APP

Figure 6.2. Firewalls can be created to protect instances of the same application.

As the figure shows, when multiple instances of the same applications are
recognized, they are all connected to the same switch, exclusively dedicated
to them, which is in turn attached to a port in the node’s main switch, where
the firewall is also connected.

Nothing prevents this model from working fine, but it was not the one that
was decided to be implemented in this project, as it brings more complexity
to the architecture and its creation process, along with additional delays in
creating and traversing the appropriate network functions.

Firewall closer to the pod: caveats

Pushing firewalls close to the pods brings redundancy issues when it comes
to scalability or the deployment of multiple instances of the same application
in general.

As a matter of fact, one can note the presence of multiple equal firewalls
as applications scale up, and this obviously leads to question oneself if they
can be grouped in some way.

The increased presence of firewalls brings the additional minor problem of
having small rules list, which is a direct consequence of the way policies are
used: if the they are not mindfully defined and deployed, there would be a

59

6 – Polycube Security in K8s: Architecture

situation where firewalls act as just simple packet forwarders and don’t do
any meaningful filtering.

So, a better understanding of network policies usage and, especially, the
security needs of the applications, is encouraged.

The abstracted variant

Certainly, one way to solve the firewall redundancy issue can be to adopt the
variant introduced earlier, but, due to its already outlined caveats, this was
not the model that was actually implemented.

So, instead of solving it that way, a high level approach has been developed
to mitigate this problem: the one-firewall-per-application model is abstracted
by creating a high-level component dedicated for this purpose.

This high level component, that can be called “Firewall Manager”, man-
ages and configures all firewalls protecting instances of the same application:
pods that run the same application are all “linked” to the same firewall man-
ager.

WORKER NODE 1

APP APP

Load Balancer + address
translation

Bridging and routing

Nodeport discriminator

Linux networking
stack (routing +

natting)

VxLAN
Overlay
Network

WORKER NODE 2

WORKER NODE 3

Datacenter Network (L3)

APP

Figure 6.3. A high level component manages security for pods that are
similar: simply put, pods that are instances of the same application.

As Figure 6.3 shows, at high level this looks like having a firewall with
multiple ports that protects instances of the same application, but the low

60

6.2 – The Data Plane

level reality is still the one of Figure 6.1.
This model also helps for resiliency and scalability issues, which will be

covered later.

New pod is born

Are there
other

instances of
the same

application it
is running?

No

LINK IT TO THE
SAME FIREWALL

MANAGER

Yes

CREATE A
FIREWALL

MANAGER FOR IT

Figure 6.4. Flow chart of the firewall linking mechanism.

Finally, Figure 6.4 shows a very basic flow chart of what was just said.

6.2.3 Unmanaged Security
There are certain situations in which rules elaboration must take some “un-
orthodox” steps or otherwise needs to go through some additional operations
with proprietary tools.

These scenarios are available by adopting the Sidecar pattern.

The Sidecar Pattern

This design pattern is used in micro-services architectures and consists of
running a supporting application in the same container as the main one, or
even in the same machine when not using containers. The purpose of the
sidecar pattern is to to be able to perform operations based on certain con-
ditions without changing/complicating the main application, or when doing
so is not feasible.

Some variants exist, like the Adapter and the Ambassador, but are all
based on the principle just explained.

61

6 – Polycube Security in K8s: Architecture

MAIN
APPLICATION

AMBASSADOR

Production

Beta

Staging

Figure 6.5. The ambassador pattern.

Figure 6.5 shows a typical example of a sidecar pattern called Ambassador :
the main application keeps working as usual, and the sidecar application,
named the ambassador application, is installed in the container with the
purpose of re-forwarding the traffic generated by the main one to different
environments based on some initial configuration set by the administrator.

Polycube can be installed as a sidecar inside the pods to take the role of
the “Security Ambassador”.

Polycube as the Security Ambassador

Installing Polycube in sidecar mode leaves the end-user, or any third party
entity, totally in charge of the pod’s security.

This method consists in adding Polycube in a Deployment’s – or even a
single Pod’s – containers list. It can then be contacted through its REST
API.

Security functions, i.e. a firewall, can be created by an agent installed
inside the cluster or even remotely: they “live” inside the pod and act as
totally transparent services.

As per the firewalls instances, they can still be managed internally, but
this is not the purpose of this approach: the whole point of it is to be able
to update and handle them remotely in a direct way. So event reaction and
rules generation are the user’s responsibility and policies can even be totally

62

6.2 – The Data Plane

ignored by using static rules.
Particular care must be taken in this case, as a non-mindful utilization

of the firewalls can potentially isolate the pod and only a force-removal will
solve the problem.

Nonetheless, this approach can potentially satisfy many security needs
and can seriously be considered as a valid production-ready security solution:
from firewalls to ddos mitigators and other security functions, it allows for
the most complex, versatile and flexible solutions to secure a service.

As a final note, it is worth mentioning that although the provided method
works for pods in the Kubernetes orchestrator, this approach can be extended
and made to work for any existing orchestrator or any solution that involves
the use of containers in general.

Figure 6.6 shows an example of such approach: firewalls protect the pods
from the inside.

WORKER NODE 1

APP APP APP

Load Balancer + address
translation

Bridging and routing

Nodeport discriminator

Linux networking
stack (routing +

natting)

VxLAN
Overlay
Network

WORKER NODE 2

WORKER NODE 3

Datacenter Network (L3)

Figure 6.6. Polycube as a sidecar.

6.2.4 Compliance with Kubernetes
Polycube firewalls can work on any kind of situation, but on this project they
were adapted to work as intended by Kubernetes guidelines and documenta-
tion.

63

6 – Polycube Security in K8s: Architecture

Non-isolation Mode

By default, pods are non-isolated and can accept connections coming from
anyone as well as establish them. This situation persists as long as no Net-
work Policy selects them: when this occurs, the network plugin will have to
make the appropriate changes to isolate the pod from unauthorized access.

Isolation mode is covered in Section 6.2.5.

Connection-oriented Filtering

Both the standard Kubernetes policies and those created by Polycube work
on connections: whenever a connection is established, the peers should be
able to receive packets and reply on that same connection.

A better coverage of this concept is examined in section 6.2.6.

Policy Priority

Multiple policies can be active for a given pod.
Priority in Polycube is detected during the enforcing and reacting process,

and rules are built according to it.
Refer to Section 3.6.4 for an example of the priority concept and Sec-

tion 6.2.6.

6.2.5 Dealing with unknown traffic
The firewall’s default action affects its behavior in case the examined packet
matches no rule, i.e. when the combination of peer and/or protocol is not
present among its list of rules. These packets can be thought of as unknown
traffic.

The following sections should serve as a better explanation of the non-
isolation mode that was witnessed in Section 3.6.3.

At least one policy is enforced

As mentioned in Chapter 3, when there is at least one policy selecting a pod,
the non-isolation mode should be ceased and the pod must become isolated.

In Polycube this situation is handled during the Policy Enforcement pro-
cess. Isolation is applied depending on the policy type that it is intended
to be enforced, but ultimately, it is done by changing the default action to
Drop, and the firewalls will only accept what it is specifically stated in the
policy rules.

64

6.2 – The Data Plane

No policy enforced

This situation arises when a pod starts running in a namespace with no
policies or none of them selects the newly born pod, as well as when all
policies have been ceased for a given pod.

Depending on the direction, non-isolation is verified: if there are no ingress
type policies enforced, unknown traffic is forwarded to the pod; if there are
no egress type policies, unknown traffic generated by the pod itself will be
able to traverse the firewall.

Basic flow chart

Figure 6.7 is an over-simplified flow chart of what was discussed in the two
previous sections, but should serve as a good summary.

Packet arrives to the firewall

Is the firewall
enforcing

any policies?

FORWARD

No

CHECK RULES

Yes

Figure 6.7. A basic flow chart of the isolation mode.

Changing the default action

The situations that will trigger a change in the default action are those that
should interrupt the non-isolation mode defined by Kubernetes or dictate its
return, and are the ones specified in the two previous sections:

• A new policy is being enforced: isolation will be enforced for the direction
the policy is targeting, but only if this policy is the first one targeting
that direction.

65

6 – Polycube Security in K8s: Architecture

From now on, unknown traffic in that direction will be blocked, unless
– and uselessly – the policy specifically says to accept all traffic.

• A policy is being removed: non isolation mode is returned for the direc-
tion the policy was targeting, but only if there are no policies targeting
that direction anymore.

6.2.6 Enforce
Enforcing a policy is the act of injecting the rules in the firewall instances and
apply them, so that the pod can be properly protected from any entity that
is not allowed to communicate with it or, as a derived advantage, protect the
rest of the cluster by preventing the pod from performing illegal/malicious
requests.

The enforcing process is composed of some smaller tasks.

Activating policy actions

A policy must not be enforced just once, but every time there’s a change
in the current state of the cluster: security must always be brought at the
desired state, and the way to do that is to know the action that must be
taken when a certain condition applies.

This means evolving the enforcing process to be a bit smarter by making
it aware of the fact that events can happen.

When a request to enforce a policy is made, Policy Actions are activated:
they can be thought of as hooks built by the control plane, and Figure 6.8 can
provide a good example, reiterating what was shown in Section 3.6: when an
event, related to the Event Actor, occurs, the proper Event Action is applied.

In order not to be overwhelmed with events, only pods that actually mat-
ter, i.e. the ones specified by the policy, are listed as event actors.

Pod with label role: api,
on namespace default

Event Actor

Policy A: insert these rules
Policy B: insert this rule

Event Action

Figure 6.8. A visual representations of policy actions.

The purpose is to make the enforcing and reaction components collaborate
to realign the current state of the security for a given pod to the desired state.

66

6.2 – The Data Plane

A direct consequence and benefit of this is that events may appear while
the enforcing process is still ongoing: after setting the actions, no events are
going to be missed even if the process is not finished yet, as they are going
to be queued and handled when it will be over.

This further increases rules consistency and updates up to the latest
events.

Priority detection

Polycube policies have an explicit concept of priority, so their insertion is
really trivial, as the lower their priority number is the more important they
are. But in case it is not specified or for policies with the same priority
number, their behavior is the same of Kubernetes Network Policies, which is
explained here.

Policies belong to a sort of “time slot”: most recent policies are not inserted
on top by default, but according to their deployed time – or creation time –
and the rules generated by them will follow the same pattern.

This is done because a policy may be updated, and the update could
change the selectors and thus target pods that it wasn’t targeting before:
this is like deploying a “new-old” policy.

api-allow
2 days old

deny-8080
10 days old

allow-beta-pods
1 month old

Policies Currently Enforced

allow-staging-pods-8081
3 days old

Rules List

allow-staging-pods-8081
3 days old

Policy to enforce

Figure 6.9. The priority detection mechanism.

67

6 – Polycube Security in K8s: Architecture

As Figure 6.9 shows, policies are ordered based on their “age” – the
youngest taking first positions – and the policy to enforce, allow-staging-
pods-8081, should be placed on the second position. Its rules should behave
in a similar way: they are inserted right after the last rule generated by the
policy that precedes this one, all the other rules will shift downwards.

So, in the rule matching process, they will be checked right after those of
the “fresher” policies, in case none of these ones match.

Rules Insertion

The last step in the enforcing process is to finally insert rules.
The firewall manager will loop through all linked firewalls and will push

the rules via their API.
In order to speed up insertion, ingress and egress rules are inserted con-

currently and applied independently.

Results

Packet arrives to the firewall

Is it from an
allowed
peer?

Are protocol
and port
allowed?

Detect the connection it belongs
to

Is the peer
allowed to
make new

connections?

DROP

DROP

FORWARD

NoYes

No

Yes
Invalid

New

Established

No

Yes

Figure 6.10. Flow chart of the behavior of a firewall when packets arrive to
it after a policy has been enforced.

After the enforcing process is finished, the default action is changed – if
needed – and the results can be immediately acknowledged.

68

6.2 – The Data Plane

Packets will now be forwarded only if they meet specific criteria defined
by the policy just enforced.

For example, the Figure 6.10 contains a flow chart that can be followed for
packets arriving to a generic firewall after a policy has been enforced: this is
a very simplified rule matching algorithm performed by the firewall.

As it is shown, packets belonging to established connections will always be
forwarded, as it implies that the connection has been accepted and follows the
principle that peers should be able to communicate on the same connection.
So, if the pod is allowed to accept a connection from an allowed peer, it should
also be allowed to get its replies and other packets on that same connection.

No guarantees can be given as to if new connections can be made on the
opposite direction – i.e. if a policy allows the pod to accept connections from
a certain peer but not to instantiate one with it – but replies to accepted
connections, instead, must be accepted.

Finally, connections that are explicitly prohibited do not go through the
previous flow chart, as they are obviously dropped as soon as the packet
matches the according rule.

6.2.7 Cease
Ceasing means removing all the rules that were generated by the policy to be
removed. This does not necessary mean reverting to a situation where peers
and connections that were first forbidden will now be allowed, as different
operations are involved.

Remove the Policy Actions

Everything that belonged to the policy to be ceased must now be removed,
including the actions that were generated during the enforcing process.

Removing the policy actions will also affect the behavior of any event wait-
ing to be processed: as a matter of fact, they will search for the correspondent
policy actions only to find no match and stop instantly.

Detect the Policy Type

At this point, the policy to be removed is examined in order to know the
connections direction it was restricting.

This is done to check if non-isolation should be re-introduced or not for
that direction.

69

6 – Polycube Security in K8s: Architecture

Removing rules

All the rules generated by the policy are selected and removed from all the
appropriate firewalls.

Results

After removing a policy, different scenarios may arise, all depending on the
number of policies still actively enforced: isolation mode could be ceased or
kept.

Refer to Section 6.2.5 for the details of the first situation, and Figure 6.10
for the latter.

6.2.8 On removing all policies
Ceasing policies may leave the pod unprotected from the external world or
from illegal access by entities inside the cluster.

Although there is no particular issue in leaving pods with no policies, this
is not a viable option for clusters that take security as a critical feature.

A very common practice, also recommended by Kubernetes, is to deploy
a policy that denies all traffic – or at least the one coming from the external
world or from others namespaces – as the first one for any given pod and
later deploy all other ones.

This will leave no security holes as the policies are ceased, because the
very first one, the one that drops all packets, will still continue to work.

6.2.9 Reacting
A Kubernetes cluster is a dynamic entity, composed by resources that may
vary with time and go through different stages: the current state of the
cluster, and specifically its security part in this case, will diverge numerous
times from the desired state throughout its life time.

Performing the action

The reaction component can actually be seen as an extension of the enforcing
or ceasing components.

The policy actions that were defined during the enforcing process will be
respected: rules may be deleted in case of pods that were detected to be

70

6.2 – The Data Plane

dead, or, on the opposite side, they may be inserted for newly born – and
allowed – pods.

On removing rules

As for dead pods, the rules that targeted them are deleted to prevent stale
rules: if they were kept, some pods may later be deployed and take the IP
address that earlier belonged to the one that just died.

As a consequence, the new pod may be prevented from contacting the
pod, or may even be wrongly allowed to, because the firewall would wrongly
think it is still the pod that died some time prior.

6.2.10 Keeping Consistency
As illustrated in Section 6.2.2, the model used in this project consists in
logically “grouping” firewalls that protect instances of the same application.

A benefit of this approach is that policies need to be parsed and examined
only once: they’re going to be applied to all the proper firewalls and they
will all have the same rules, updated up to the latest events, according to
the details explained until now.

This is very convenient for new pods as well: when they’re born to a node
that is running other instances of the same application, all the latest rules –
already present in the other instances’ firewalls – will be instantly injected
to the new pods’ firewalls without further ado. This process is completely
transparent to the control plane.

Slow Path and Fast Path

What was described thus far can be summarized in the flow chart of Fig-
ure 6.11.

The part on the left involves computation and queries to both the Kuber-
netes API and cache, by both the data plane and the control plane: it can
be considered a “Slow Path”, because it may introduce non-negligible delays
due to the tasks it has to perform.

The part on the right is a “Fast Path” because another pod, running the
same application as the new pod, is already present on that node: someone
already did the hard work before, so the new pod will benefit from this by
having everything already prepared and ready.

71

6 – Polycube Security in K8s: Architecture

New pod is born

Does a
firewall

manager
already exist

for this
application?

Parse the policies that apply to it

Get all the correct peers

Build the rules and actions

Enforce

INJECT
YesNo

Figure 6.11. Flow chart of the protection of a pod.

This will further help scale the solution, as no further modules are going
to be needed for the new instances, and no additional computation is going
to be performed, since all the “heavy” load needs to be carried only once.

6.2.11 Ensuring Resilience
A direct consequence of the system just discussed is the resilience question.

When pods die and are configured to be re-instantiated, they are going to
be re-deployed by Kubernetes on that same node, or another one.

This situation can be considered the same as the one in the previous
Section (6.2.10): the pod that will take its place would be considered a new
instance and will benefit from all the features presented thus far.

As a final note, the Firewall Manager assigned to a certain application
will continue to react to events and parse policies even in case such pods all
die.

This is done to wait for the pods to be re-deployed or re-scheduled to that
node: if this does happen, firewalls will once again have all rules ready for
them as if they always were in that node; but if it does not happen, the
module will automatically die after a configurable timeout is expired, thus
freeing machine resources for other tasks.

72

Chapter 7

The Control Plane

7.1 Overview

The control plane leverages on the Kubernetes API and structures to make
the automatic security solution aware of its environment and the changes
that occurs around it.

Other features include policy parsing and firewall rules generation.

7.1.1 Controllers

Controllers are a key component in Kubernetes. As their name suggests,
they control the current state of the cluster and can detect when it diverges
from the desired state.

In practice, this means running a non-terminating loop to continuously
monitor changes. As an example, the Replicaset Controller, created by Ku-
bernetes, is in charge of matching the current number of replicas of a Pod
to the desired one specified in its definition, or the Node Controller, which
monitors that status of the nodes and performs the appropriate actions when
a server goes down or is added to the cluster.

Figure 7.1 provides a high level view of the main features of controllers:
they specialize on a single resource type, i.e. pods, and list resources based
on provided criteria or “watch” events that occurred to them. Finally, they
supply such information to all modules that are interested to it.

In order to provide automatic security capabilities, a couple of controllers
have been created for this project, all adopting a Publisher/Subscriber model.

73

7 – The Control Plane

API

List

Watch

Provide resource

Forward event

Pods

Network Policies

Services

CONTROLLERS

Figure 7.1. Controllers monitor the state of the cluster through Kubernetes API.

A basic flow

Figure 7.2 defines a basic flow of the way Controllers do their job: blue parts
are handled by Kubernetes API and structures, red ones are specific to the
single controller.

The detected event can be of three types: Added, Updated or Deleted.
Events are processed and then inserted in a local storage, and can later be
accessed by using an index assigned to them.

The first part is managed by an Informer, a key component of controllers,
which lists resources using the Kubernetes API and caches, and watches for
changes in them.

Events pass through callbacks that handle them: they can process the
event immediately, or send it to a queue and let someone else do it.

Finally, the controller, through one or multiple Workers, will perform the
needed actions with the event.

This particular flow is called ListAndWatch.

74

7.1 – Overview

WORKER
WorkQueue

API Server

Reflector

DeltaFIFO

Indexer

Local
Store

Callback

Clients

CRUD

Informer

Controller

Write

List/Watch

Get by Key

Figure 7.2. A basic flow of the functionality of controllers

7.1.2 Subscribe

Creating a controller is a particularly tedious task and brings a lot of repet-
itive and boilerplate code. In order to solve the problem of duplicate use of
controllers and in an effort to bring more simplicity to the previous flow, dur-
ing the course of this thesis a Publisher/Subscriber pattern has been adopted
for the controllers.

In this model, entities interested in watching events about specific re-
sources are called Subscribers, and they are notified about occurred events
by the Controllers, which act as the Publishers of such events.

This model considerably simplifies the way a module can listen for changes,
as it strips the complexity of creating and starting a new controller entirely
and reduces overhead by making use of just one controller per resource kind.

On Figure 7.3 the subscription flow is shown: to start monitoring changes
about a certain resource kind, it is enough to “subscribe” to the appropriate
resource controller and specify the event type – and, in some situations,
some specifics about the resource to be notified of, i.e. only if the resource
is “running” – and the action to perform when such event occurs.

75

7 – The Control Plane

API

Pods

Network Policies

Services

Pods

Network Policies

Services

CONTROLLERS

Logger

Security

Monitor

Subscribe to dead pods

Action: email admin

Subscribe to new policies

Action: enforce

Subscribe to new services

Action: add endpoints

Figure 7.3. An example of the subscription model.

From that point on, every time that event is detected by the controller,
the provided action is going to performed.

Caveats

The Subscription model makes watching for changes a lot easier, but, de-
pending on the scenario, also brings with it some caveats to be aware of.
Most of them are due to the very unpredictable nature of events and re-
sources and are common to all events detection mechanisms, even those that
just rely on the one provided by Kubernetes, i.e. the informer introduced in
Section 7.1.1.

As the number of resources monitored by a controller grows larger, an
increase in events and, consequently, of threads started by the controller can
also be noticed: actions to perform should be designed to perform as little
computation as possible if such situations are predicted to happen. Although
the issue can be mitigated by using multiple workers in the controller, it is
still something to take into consideration.

As a final note, the previous situation may also happen in case of unstable
resources: as a matter of fact, such resources continually crash and redeploy,
thus launching several events that are going to be uselessly processed.

76

7.2 – From Policy to Firewall

7.1.3 Queries
Controllers can watch and list resources of a particular kind. In order to
provide a way for modules to get resources which only satisfy certain criteria,
a very simple querying system has been developed, further stripping down
the complexity of learning and knowing how to use the resource’s specific
structures to do so.

Figure 7.4 shows an example of the querying mechanism: a logger that
wants to get all pods that are on the default namespace and have at least
the label role: api.

Pod Controller

Logger

Get pods on namespace default
That have label role: api

Figure 7.4. An example of the query system.

7.2 From Policy to Firewall
The control plane detects when changes to the state of the security in the
cluster occurred and activates all the necessary procedures in order to main-
tain the desired state, as specified by the cluster administrator.

Events concerning pods are more relevant to the data plane, so that it
knows if a firewall should be created, or existing ones should be updated to
reflect the event. Refer to Chapter 6 for such details.

Changes related to policies are more interesting to the control plane:
proper configuration and rules must be generated in order for the data plane
to know what to do.

7.2.1 Policy events
Naturally, the most important event is the deployment of a new policy, as it
– more than the other – is a clear and “radical” change of the security needs
of the cluster.

77

7 – The Control Plane

This particular event involves lots of operations that are briefly covered
below.

The pod and the namespace

The first, and arguably most important, step, is to know the “target” of the
policy, i.e. the kind of pods the policy is intended for.

In order to get it, one needs to get the namespace of the policy, which also
specifies where the target pod must be found and its labels.

Once done, the pods could be found easily by querying the controllers,
and the protection process could begin, although this is not the mechanism
that was developed in this project: as a matter of fact, this step may require
some serious computation needs and involve many calls to the Kubernetes
API to get the needed resources.

Another approach, slightly different, has been adopted: as mentioned in
Section 6.2.2, there is a high-level component in charge of protecting instances
of the same application and assigned exclusively to them.

New policy is deployed

Is there
someone
protecting
this pod in
this node?

NoYes

IGNORE
PROCESS THE

POLICY

Figure 7.5. Policies are processed only if there is someone they apply
to on the local node.

As Figure 7.5 shows, the control plane knows the list of such components
that are currently active in its node, and rather than starting the process

78

7.2 – From Policy to Firewall

of protecting the appropriate pods, it checks if this component exists: obvi-
ously, protecting something that is not there does not make any sense, and
preemptively doing so is a waste of resources because there is no way to know
if such pods will actually ever be scheduled to the node.

So, in case the aforementioned condition is not verified, the policy will
simply be ignored and the job is “postponed” to when the pod will actually
be scheduled on the node. The situation of Figure 6.11 will occur in this
case.

As it is going to be explained later, getting a list of pods is a potentially
expensive operation, and since this method is entirely local and does not
involve searching for pods, it makes this solution more scalable.

Policy type detection

The policy type is closely examined, so that the data plane could later cor-
rectly configure isolation mode for the correct direction.

For a more detailed coverage of isolation mode, refer to Section 6.2.5.

Protocols parsing

Protocols and ports are parsed before any other field, i.e. peers selectors.
The reason for this is mainly to detect if the protocol is effectively sup-

ported by the firewall or not: knowing this information a priori will prevent
the control plane to waste time by searching for pods if the protocol is not
supported. Specifically, as stated in Section 3.2.7, Kubernetes Network Poli-
cies also support SCTP, which, for the reasons also specified there, is not
recognized by the Polycube firewall.

Parsing and loading the allowed peers is an expensive operation, and it
must be avoided if the protocols only involve unsupported ones.

Just to make an example with Kubernetes Network Policies, the following
policy will only generate rules for TCP, ignoring SCTP entirely: packets that
travel with SCTP will be dropped. In case only SCTP is specified, no rule will
be generated at all.

ports:
- protocol: TCP

port: 6379
- protocol: SCTP

port: 6379

79

7 – The Control Plane

Peers detection

The other important part is detecting the peers that are allowed to commu-
nicate with the target, or the other way around.

This involves querying the API to get potentially lots of pods: in case
of large clusters and not very specific selectors, a great number of pods are
going to be searched – and, consequently, returned – by the controllers, and
for this reason, the Kubernetes cache is used as much as possible.

Rules are generated for each peer found without any information about the
ports and protocols: when the process is over, they are going to be merged
together, and new rules are generated for each port and protocol.

As a final note, as a consequence of the peer searching, Ingress and
Egress directions are parsed concurrently in case a pod targets them both.
The picture below can be thought of as a summary of what has been presented
until now: outline has been given to the fact that the pod controller is used
to get the peers.

Get the target

Get the policy type

Parse the protocols Parse the protocols

Get the peers Get the peers

Merge Merge

Rules

Pod Controller

IGNORE
POLICY

Not on this node

EgressIngress

Figure 7.6. The policy processing flow chart.

Policy actions

Lastly, templates, or policy actions, are generated based on the rules that
have been defined until now: these are going to be used by the data plane
when events occur, so the peer can be correctly filtered when it occurs.

80

7.2 – From Policy to Firewall

To make a very simple example, consider the following rule:

- from:
- podSelector:

matchLabels:
role: api

ports:
- protocol: TCP

port: 8080

This will generate rule templates with the provided protocols and ports
only: this is the action. The actor, which is the pod that generated the event
and that must trigger this action, is called default|role: api, which is a
combination of namespace name and pod labels.

The data plane will incorporate such information in its enforcing process,
as specified in Section 6.2.6.

81

82

Chapter 8

Evaluation

This last chapter will analyze the network throughput of Polycube with the
automatic security solution activated and will compare the results to those
of Calico and Cilium.

The tests are performed by setting the three plugins in the same envi-
ronment and progressively increment the number of policies they have to
enforce. The environment consists of two nodes, on which three pods, run-
ning the iperf tool, are deployed: one will act as a server, and the other two,
which will send requests to the server one, will act as clients.

The following sections will examine the network performance between two
pods and all the results are gathered considering the same packet size and
same transport layer protocol.

8.1 On the same node
As Figure 8.1 shows, as the number of policies and, consequently, number of
rules increase, all plugins have consistent performance when pods that are
on the same node communicate with each other, with Polycube and Cilium
falling closely behind Calico.

83

8 – Evaluation

50,858
51,026

50,654

51,070

50,775

53,077

52,589
52,763

52,526

52,869

50,785 50,843 50,782 50,820 50,759

No policies 1 policy 100 policies 250 policies 1000 policies

49,000

49,500

50,000

50,500

51,000

51,500

52,000

52,500

53,000

53,500

Throughput (mbps)

Polycube Calico Cilium

Figure 8.1. Pod to pod communication performance on the same node.

8.2 On different nodes
The test involving pods running on different nodes proves that eBPF -based
solutions, such as Cilium and Polycube, to perform better than those utilizing
iptables, such as Calico. The former two show, once again, very similar
performance.

18,864 18,915 18,682 18,780 18,840

12,066 12,165 12,309 12,150 12,664

19,403 19,588 19,654 19,556 19,195

0

5,000

10,000

15,000

20,000

25,000

No policies 1 policy 100 policies 250 policies 1000 policies

Throughput (mbps)

Polycube Calico Cilium

Figure 8.2. Pod to pod communication performance on different nodes.

84

Bibliography

[1] The Kubernetes Documentation,
https://kubernetes.io/docs/home/

[2] Polycube,
https://github.com/polycube-network/polycube

[3] Kubernetes 101: Pods, Nodes, Containers, and Clusters,
https://medium.com/google-cloud/kubernetes-101-pods-nodes-containers-
and-clusters-c1509e409e16

[4] The New Stack,
https://thenewstack.io/kubernetes-an-overview/

[5] Kubernetes Network Policies Recipes,
https://github.com/ahmetb/kubernetes-network-policy-recipes

[6] An Introduction to Network Policies for Security People,
https://medium.com/@reuvenharrison/an-introduction-to-kubernetes-
network-policies-for-security-people-ba92dd4c809d

[7] Securing Cluster Networking with Network Policies (KubeCon Talk),
https://www.youtube.com/watch?v=3gGpMmYeEO8

[8] A Deep Dive into Kubernetes Controllers,
https://engineering.bitnami.com/articles/a-deep-dive-into-kubernetes-
controllers.html

[9] Understanding Kubernetes Networking Model,
https://sookocheff.com/post/kubernetes/understanding-kubernetes-
networking-model/

[10] Writing Kubernetes Custom Controllers,
https://medium.com/@cloudark/kubernetes-custom-controllers-
b6c7d0668fdf

[11] Multi Container Pod Design Patterns,
https://matthewpalmer.net/kubernetes-app-developer/articles/multi-
container-pod-design-patterns.html

[12] Wireshark,

85

Bibliography

https://www.wireshark.org/
[13] Resilience,

https://en.wikipedia.org/wiki/Resilience_(network)
[14] Golang,

https://golang.org/doc/
[15] Docker,

https://docs.docker.com/
[16] Cilium,

https://cilium.readthedocs.io/en/stable/policy/
[17] ISTIO,

https://istio.io/docs/
[18] Calico,

https://docs.projectcalico.org/v3.8/security/calico-network-policy

86

Acknowledgements

It was an incredible experience. An amazing journey. I learned a lot, more
than I could ever think and hope for.

First and foremost, I’d like to thank all my beloved family for their endless
love, support and advice. I’m pretty sure you won’t understand a thing of
what I’ve written here and I know I’ll have to translate everything for you,
but I also know that all of you are worth the effort. I know it sounds cliché
because everyone writes this in their thesis, but I really don’t know how I
could have done this without you.

Another big thank you to my professor Fulvio Risso for giving me the
chance to work on this. When I started, I knew like five percent of what
I was going to do. Now I don’t think I have pushed it much further than
seventy, but that’s another thing I have to thank you for: the opportunity
to keep learning and, consequently, fall in love with this field.

Another round of thanks to Mauricio and Matteo for the help they gave
during this thesis. By giving me obvious replies to my endless nonsensical
questions, you soon realized how unbearable it was to work with me. Thanks
for your help and patience.

Finally, I want to thank all those who were with me throughout the years:
cousins, friends, the ones that got away and those that, instead, decided to
stay. Your contribution to this is zero, but you provided me with distractions
and allowed me to unwind a bit, and I have to thank you for this, even if it
was just for a short time.

Thank you,

Elis

87

	List of Figures
	Abstract
	Introduction
	Background
	Kubernetes
	Nodes
	Pods
	Namespaces
	Services
	Kubernetes Network Policies

	Polycube
	Firewall Cubes

	Standard Kubernetes Network Policies
	Features
	Structure of a Standard Kubernetes Network Policy
	Common fields
	Name and namespace
	The policy type
	Selecting methods
	PodSelector
	Ingress and Egress peers
	Ports and Protocols
	Selecting allowed peers
	The external world
	The internal world

	Combinations
	Combining Peers Selectors
	Combining Protocol and Ports
	Putting them all together

	Deploying
	Viewing the results
	Applying security: a basic flow
	Chains
	Preparing the environment
	First example: the internal world
	A Second Example: the external world

	Existing Solutions
	Calico
	Network Policies

	Cilium
	Network Policies

	Istio
	Istio Policies

	Polycube Network Policies
	Features
	Human Readable Policies
	Automatic type detection
	Explicit Priority
	Strong distinction between the internal and external
	Service aware policies

	Polycube Security in K8s: Architecture
	Overview
	The Data Plane
	Creating the Firewall
	Fully Managed Security
	Unmanaged Security
	Compliance with Kubernetes
	Dealing with unknown traffic
	Enforce
	Cease
	On removing all policies
	Reacting
	Keeping Consistency
	Ensuring Resilience

	The Control Plane
	Overview
	Controllers
	Subscribe
	Queries

	From Policy to Firewall
	Policy events

	Evaluation
	On the same node
	On different nodes

	Bibliography

