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SUMMARY

The work presented in this dissertation focuses on the task of predicting the privacy class of

images posted on social media. In particular, the results we are going to show aim at supporting

the hypothesis that abstract concepts are better suited for capturing the private nature of

content shared online. The definition of abstractness we adopted along this work refers to the

idea of something that is elevated from anything concerning the sphere of perceptions, difficult

to be appreciated through our senses or impossible to conceptualize as something even remotely

physical.

We developed a novel approach to investigate this hypothesis about abstractness in the

context of a specific task. Specifically we applied this type of analysis on the textual user

tags associated to a total of around 3 thousands selected images recently posted on Flickr.

The privacy classification task we target is binary and consists in labeling posts as ”public”

or ”private”. In order to provide a solid foundation to our experimental setup, we evaluated

the performances of different types of classification models, achieving results following a similar

pattern. To the best of our knowledge we are the first facing this kind of investigation, trying

to define some guidelines for the development of a methodology that could be applied to many

different topics and used as proof for intensifying the focus of researchers toward concepts’

abstractness.

In the effort of expanding the initial resources about words’ abstractness, our contribution

dealt with the task of scoring terms by abstractness, evaluating several techniques. Our ap-
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SUMMARY (continued)

proach made use of a dataset and samples’ representations never tried before. After extensive

analysis the results have been used for scoring, as precisely as possible, a set of unlabeled words,

exploited for further experimentation in the privacy prediction task.

The results of this thesis’ work are demonstrating the truthfulness of the hypothesis intro-

duced, supporting it from different points of view. We conclude our analysis providing some

insights about the directions the future works could follow starting from our conclusions.
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CHAPTER 1

INTRODUCTION

1.1 Goal and Motivation

The goal of this thesis is to prove that abstract concepts are strongly correlated to privacy

features, in the specific context of online media sharing.

A wide set of approaches have been experimented in the past for the prediction of images’

private nature. Many of them, especially the ones involving automatic annotation of samples

through visual features, are based on techniques that describe samples throughout character-

istics that are concrete by nature. These methods achieve good results, but assume that this

type of characterization is central for this type of task.

Our intuition is instead that abstract concepts are better candidate for the extraction of

privacy related information from media. The main idea is that characterizing this type of

resources with features related to sentiments, emotions and any other abstract object or notion

would enable to discriminate more easily privacy classes.

Our investigation therefore is not trying to achieve state-of-the-art results in any of the task

approached. It is instead specialized in creating the right condition and setup in order to be

able to perform interesting comparisons from which derive supporting proofs.

1
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Our main goal is in fact to create or support the foundation necessary to give the right push

to the research efforts in the field of extraction of abstract information from different types of

media.

Figure 1: Example of importance of abstract information in the privacy prediction.

1.2 Thesis Organization

The dissertation of the work executed has been organized as follows.

We are introducing the topic faced by our investigation in chapter 2, summarizing the

researches made by other original works. More specifically we are going to discuss about

the two main fields interested by our analysis: privacy prediction task in social media and

automatic scoring of words by abstractness. Furthermore, we will address the approaches and
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architectures exploited in our research for the representation of textual and visual data, through

a brief description of the contributions that have been essential for us.

In chapter 3 we are going to largely describe the approaches followed by our work in the

context of privacy classification of images from social media. The focus will be on the process

followed for the selection and manipulation of the dataset exploited and its analysis, as well

as on the methodologies used for the execution of the classification. Particular attention will

be dedicated on the description of all the models evaluated and the specific choice of the

parameters.

Afterwards, in chapter 4 we will introduce the secondary task of scoring terms with ab-

stractness values. Similarly to the previous chapter, we will describe the choices made in terms

of dataset and approaches adopted for the realization of the task. In addition, for the sake of

the final experiments that we will define in the following chapter, an in depth analysis of the

results obtained for this task will be proposed and some conclusion derived. In the light of

what emerges from this evaluation we will perform the scoring of a specific set of words, that

is going to be useful later.

Chapter 5 represents the crucial part of this work, introducing our original methodologies

tailored and developed appositely for the investigation of the truthfulness of the thesis we are

supporting. The focus will be on the specific reasons and intuitions we decided to follow, in

order to obtain the desired type of insights about the problem.

In Chapter 6 we are going to analyze the results of the experimental setup introduced.

Several observation will be produced in support of our thesis.
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The last chapter is dedicated to the final conclusions we have been able to derive and to

possible future development of this work.



CHAPTER 2

RELATED WORKS

This chapter will focus on the work of several other researches in the fields of the investigation

we are carrying on. The main topics we are concentrating on are the prediction of the privacy

of social media content and the automatic scoring of abstractness. The ideas and approaches

adopted in both topics are described, highlighting the contributions we have based our work on

or taken inspiration from. In conclusion, the attention will be dedicated to those researches that

developed interesting tools for the encoding of information of both textual and visual nature,

which have been essential in our research for the representation of the samples.

2.1 Privacy Prediction in Social Media

The rapid increase in images shared on the Web fascinated researchers to focus on establish-

ing adequate privacy predictive models to help protect users’ sensitive information. Researchers

also provided data on the awareness of people in relation to privacy risks associated with im-

ages shared online [1; 2]. Following this line of thought, several works were carried out to study

users’ privacy concerns in social network platforms, privacy decisions about sharing resources,

and the risk associated with them [3; 4; 5; 6]. Additionally, several works on privacy analysis

examined privacy decisions and considerations in mobile and online photo sharing [7; 8; 9].

For example, [10] studied the effectiveness of information about location and tags in predicting

privacy settings of images. They also carried a study to verify whether the visual features are

5
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relevant or not to an image’s privacy and found that content is one of the discriminatory factors

affecting image privacy, especially for images depicting people.

For the sake of the research we have worked on in this dissertation, two main automated

image privacy lines of approach are worth citing, concerning some interesting results.

The first are visual based approaches. Several works used features derived from the images’

visual content and showed that they are informative for predicting images’ privacy settings.

Given the recent success of convolutional neural networks, several works [11; 12; 13; 14; 15; 16]

showed promising privacy prediction results, if compared with visual features such as SIFT and

GIST. Other works, adopting the same type of features from convolutional neural networks,

also started to explore personalized privacy prediction models [17; 18; 19].

The second type of approach, that is particularly important for our task, is the tag based

one. Previous work in the context of tag-based access control policies and privacy prediction

for images showed initial success in correlating user tags with access control rules. For example,

[20; 21], [22], and [23] explored learning models for privacy prediction in images using user tags.

They found that user tags are very informative for predicting images’ privacy. However, the

scarcity of tags for many online pictures [24] and the workload associated with user-defined

tags influence badly the accuracy of analysis of images’ sensitivity based on this dimension.

Recently,additional studies [12; 13] showed that the images’ tags automatically obtained from

the visual content of images using CNNs can improve the performance of image privacy pre-

diction. Yet, since these type of model are trained on datasets concerning the recognition of
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objects and places in images, they are not able to capture the privacy orientation of the image

while generating the tags.

The main purpose of our work is in fact targeting the hypothesis that privacy is not exclu-

sively correlated to the material content of an image. On the contrary we believe that concepts

with abstract nature are better candidate to capture the privacy orientation of

2.2 Abstractness Prediction

The idea of abstractness has been an interesting topic for many researchers. Some studies

have investigated what it represents in term of cognition process in the human mind [25; 26]

and how it affects decision making and learning tasks when they involve the representation of

abstract and concrete concepts [27]. Fascinating theories have been formulated about what

these two aspects of knowledge represents essentially in terms of brain activity. Several authors

agreed on defining as concrete what can be experienced directly through senses and physical

actions, while abstract are those concepts that need a certain level of rational processing to be

represented.

A lot of effort has been dedicated to collecting words scored by concreteness [28; 29] as

well as by other psycho-linguistic features. In this regard it is worth citing the MRC database

[30] of manually annotated words, representing the first attempt of providing a solid base to

these studies. Brysbaert et al. [31] recently collected a large dataset focusing on providing

concreteness scores for 40 thousands words.

Various approaches exploiting supervised learning techniques have been experimented for

concreteness scoring [32; 33], exploiting representations both related to concepts textual and



8

visual features [34]. An interesting unsupervised technique showed high performances, correlat-

ing abstractness to the context of usage of terms and particular syntactical features of English

words [35]. It has been used to produce a dataset of 100 thousands unigrams scored by ab-

stractness. Different studies have been successfully taken benefit from concepts abstractness

for different tasks [36; 37] and our work follows a similar line of action, in the specific problem

of privacy prediction.

2.3 Encoding Techniques for Textual and Visual Data

Many researches have targeted the task of compressing information and meaning from dif-

ferent type of media into numerical vectors. These type of representation allow the execution

of models of very different type on top of these types of features, reducing the dimensionality

of the representation. In this section of the related works we will focus on two types of data,

which representation is of high interest in our work. We are referring to textual and visual data

and we are going to present in detail the works that have been crucial for the execution of our

experiments.

2.3.1 Word Embeddings

Word embeddings are a very successful type of representation for textual data. They have

been defined as a way to reduce the dimensionality of text representation, by encoding each

single term from the chosen vocabulary into a fixed size set of numbers. These values are

computed in order to capture the semantic meaning of each word, generally based on the

context of its usage in selected large corpora, according to the co-occurrence and similarity of

usage with the rest of the words.
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Different techniques and architectures have been developed and applied to this task, achiev-

ing results that have been largely adopted in researches related to the topic of natural language

processing or simply where a representation with semantic meaning is required for text. This

vector form of terms is particularly interesting because enabling researchers to easily define

comparison metrics between words, able to capture many aspects of their real meaning.

Some of the most used word embeddings are word2vec [38], GloVe [39] and fastText [40].

They differ in many features, especially the architectures used for their extraction and the

corpus on which they have taken the information about words usage and context.

In our applications we are going to make use of fastText, one of the latest approaches in word

embedding, which showed very good results in several researches akin to ours. Here follows an

in depth description of this type of word embedding.

2.3.1.1 fastText

The technique adopted behind this word vectorization has been very successful due to its

low resources requirements for execution in the training phase, being able to obtain very good

representation in short times. The trade-off that enables this technique, as well as others based

on similar approaches, is the necessity of a very large corpus.

The idea at the base of fastText has been applied as used in [41] and it is called Continuous

Bag of Words (CBOW) (see Figure 2). As the name suggests, for the representation of each

word it takes into account symmetric contexts in the corpus of sentences, composed by the c

words preceding and the c words following, where c is one of the parameters of the model. It
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does not take into account the order of the words, but weights differently the distance from the

the target word.

w[t+ 2]

w[t+ 1]

w[t− 1]

w[t− 2]

w[t]

W1 ∈ RVxN

W2 ∈ RNxV

WORD CONTEXT

WORD PREDICTED

Figure 2: Scheme of the CBOW model.

The CBOW techniques gets the context of a word as input and predicts the words most

likely to be associated to that context. It is based on the maximization of the log-likelihood

of the probability of the words conditioned by their surrounding, which is represented by the

following formula:
T∑
t=1

log(p(wt|Ct)) (2.1)
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where T is number of terms used from the corpus, wt for t ∈ {1, ..., T } are the words considered

from the corpus, Ct is the context of the term wt.

The particularity of their approach resides in the formulation adopted for the conditioned

probability which is expressed as:

p(w|C) = log(1+ e−s(w,C)) +
∑
n∈NC

log(1+ es(n,C)) (2.2)

where NC is the set of negative words, which consists in a randomly selected set of words from

the corpus never appearing in a context equal to C. This should take into account also the

differences between words in the model.

The parametrization of the model is realized by defining the scoring function s, which is

based on representing the predicted words through vectors vw and the set of context’s word by

the average of the words w ′ ∈ C represented by vectors vw ′ . The scoring function is defined as

follows:

s(w,C) =
1

|C|

∑
w ′∈C

uTw ′ · vw (2.3)

The parametrization used for predicted words and contexts’ words are different.

Additional ”tricks ” have been applied:

• In order to avoid overfitting the representation on very common words and underfitting

on not very common ones, a discard probability has been associated to each word. Each

occurrence found in the corpus is used in the training step with the probability defined
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by that distribution and these probabilities are depending on the frequency of the word

(fw) and a parameter t as follows:

pdiscard = 1−
√
t/fw (2.4)

• Words in the contexts are weighted by their distance to the target word by the definition

of a weight vector for each position in the context. Consider p ∈ {−c, ...,−1, 1, ..., c} as

the set of positions in the context, dp as the vector for weighting the word in position p

and ut,p as the representation of the word in the context of the term t. The weighted

version of the word at position p in the context of the word t is defined as:

dp � ut,p (2.5)

FastText introduced a peculiar technique to enhance the representation of words that are

more rare in the corpora, due to their frequency in the targeted language. It is based on the

assumption that words representation can take advantage by the information extracted from the

context of usage of the subwords they are formed by. With subwords of a word, they intended

all the n-grams, with n maximum value as parameter, that are morphologically part of it. For

example the word ”word” is composed by the n-grams ”wo”, ”or”, ”rd”, ”wor”, ”ord”, etc.

They simply applied the model just introduced considering also the n-grams as words. Once

the representation of all of them has been computed they added the vector of each word to the

vectors representing the related n-grams. This way they proved that this morphology based
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semantic information is very useful for general words representation and specifically for rare

terms.

They made publicly available the vectors trained with and without subwords, exploiting

two particularly large datasets. Precisely they shared:

• 1 million words vectors based on Wikipedia 2017, UMBC webbase corpus and statmt.org

news datasets, consisting in a total of 16 billion tokens.

• 2 million words vectors based on Common Crawl dataset, consisting in a total of 600

billion tokens.

The size of the pre-trained vectors available is 300 values.

2.3.2 Features Extraction from Images

For what may regard the extraction of features from images a lot of different techniques have

been developed and largely applied. The state of the art in the extraction of such information

is represented by the convolutional neural networks architectures applied to image recognition.

They are able to identify objects from images very efficiently and with reasonably high accu-

racy. Their mechanism is based on the extraction of features maps starting from the pixels

representing the images, applying subsequent levels of filters on them and producing deeper

and deeper features maps. The output is then computed by a set of final fully connected layers

mapped on a probability distribution by a soft-max layer. This last steps associate a proba-

bility to each of the object categories on which the model has been trained, expressing how it

is likely that the related particular item is represented in the image. The training process of
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these models is basically tuning the values composing the kernel of several sets of convolutional

filters of different dimensions, automatically specializing on the detection of most informative

features for the recognition of the desired objects.

The most notable event, that has been a real springboard for the majority of these ar-

chitectures, has been the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [42].

This contest each year collects and evaluates the efforts of many researchers in applying novel

techniques to the classification of images from the ImageNet dataset [43] into the subset of 1000

categories selected for the challenge.

Here we are going to introduce two particular architectures that have been particularly

acclaimed by the reviewers of the context and found large use in many applications. They are

based on specific expedient for both easing the training phase and making predictions more

accurate.

2.3.2.1 Architectures with Residual Module

This architecture have been proposed by He et al. [44] and was the winner of the ILSVRC

2015, introducing a revolutionary module in the literature of convolutional neural networks

architectures.

The author of this model addressed a very important and problematic behaviour of deep

neural networks, particularly central for the convolutional neural networks because generally

composed by high number of layers. The problem is related to the vanishing gradient, and

how it influence the results in accuracy along with the increase of the depth of the network. It

has been proven that deeper architectures are akin to model more precisely complex problems
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such as image recognition, but after a certain threshold a degradation of the performances is

appreciated with usual architectures.

They solved the problem by the idea of the ”identity shortcut” in the architecture, which

propagate the value at one middle layer to a deeper layer, skipping some of them. The idea is

to avoid trying to fit the desired D(x) mapping, where x is the input, but instead try to train

the architecture to optimize the F(x) = D(x)−x function. This way, in order to get the desired

results, it is enough to add at the end of the module trained to model the residual function F(x)

the value of the input. A graphical representation of the model is shown in Figure 3.

For situations where the output of the module on which the residual approach is applied,

the mere identity propagation of the input x is not possible due to the difference in dimensions

between x and F(x), therefore a projection is applied to make the shape of the shortcut equal

to the output one.

They proved that this technique is easier to train in terms of how fast the weights update

are able to find the right perturbation, and overcome the training degradation problem. Their

contribution is very important because they solved a very important problem in gradient based

learning, without adding additional complexity to the model: no new parameter to be tuned is

in fact added.

The model they proposed that won the challenge is 152 layers deep, which was the deepest

at that time. It is composed by two main modules type:

• Residual module where the shortcut is skipping 3 convolutional layers of 3x3 sized filters

(3-layer block). See Figure 3;



16

Figure 3: Basic scheme of the residual module used in ResNet152.

• Residual module where the shortcut is skipping 3 convolutional layers of 1x1, 3x3 and

1x1 sized filters in this order (3-layer bottleneck block). This technique is reducing the

complexity of the model and can be used for channel dimensionality reduction, producing

good performances. See Figure 4;

The architecture is shown in Figure 5 and consists in the first 101 layers as a succession of

3-layer bottleneck blocks, followed by the remaining layer consisting in 3-layer blocks. They

adopted the projection shortcut for the changes in dimensions, while the number of filters for

each convolutional layer are specified in the picture.
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Figure 4: Basic scheme of the residual bottleneck module used in ResNet152.

The final layers of the architecture consist in average pooling,a fully connected layer and

a soft-max. This final portion is mapping on 1000 output values, corresponding to the 1000

categories defined by the rules of the challenge.

2.3.2.2 Architectures with Inception Module

The inception module have been introduced in convolutional neural networks by Szegedy

at al. in [45]. The idea at the base of this technique aimed at achieving higher performances

in images object recognition, avoiding the simple stacking of deeper layers, which has been

proven to strongly suffer from vanishing gradient, with subsequent degradation of accuracy.

The novelty of the module they introduced resides in the parallelization of the flow in the
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Figure 5: Basic scheme of the ResNet152 architecture.



19

architecture, applying sets of filters of different dimensions to the same input and concatenating

the respective outputs.

The module has been improved adding 1x1 filters before the higher dimensional ones, with

the purpose of reducing the number of channels (filters) and allowing cheaper convolutions.

The problem of the vanishing gradient was also addressed by the usage of auxiliary classifiers

at different depth of the architecture, which outputs are evaluated in the loss function, in order

to back-propagate quantities that could diminish the effect of low gradients.

They proposed the architecture called GoogleNet, and based on the module just described.

It is composed by an initial set of layers called the ”stem”, consisting in a sequence of convolu-

tional layer with a max pooling in the middle. The final portion of the network is composed by

average pooling, a fully connected layer with output of size 1000 and the final soft-max. Once

again this configuration has been adopted to classify in the 1000 categories of ILSVRC.

The improvement proposed in [46] aimed at avoiding filters of large sizes (e.g. 5x5) because

possibly introducing information loss by drastically reducing the size of the input. They realized

it by substituting these convolutional layer by a sequence of smaller sized convolutional layers,

reducing this way also the complexity of the model. For example they substituted 5x5 layers

with two subsequent 3x3 layers (see Figure 6); the resulting inception module will be referred

to as inceptionA.

Another improvement was introduced by factorizing the convolutions. Any layer involving

nxn filters was substitute by two subsequent layers using 1xn and nx1 filters, defining the incep-

tionB module type (see Figure 7). Additionally, instead of using this factorization connecting
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the substitute layers one after the other, they decided to connect them in parallel, concatenat-

ing all the results at the end of the inception module and defining inceptionC module type (see

Figure 8).

In terms of grid size reduction, they also substituted the usual max pooling with an efficient

grid size reduction that consists in an inception module using stride equal to 2 instead of the

usual value 1. This module is referred to as grid-size-reduction.

Figure 6: Basic scheme of the inceptionA module, with filter sizes used in InceptionV3.

The InceptionV3 architecture implements all the improvements of the inception module

described above, largely exploiting the factorized 7x7 filters, and new regularization techniques:

• RMSProp Optimizer;
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Figure 7: Basic scheme of the inceptionB module, with filter sizes used in InceptionV3.

• BatchNorm for the auxiliary classifiers;

• Label smoothing to avoid the model to overfit on specific classes.

Additionally they used only on auxiliary classifier composed by one convolutional layer of

size 5x5 and 768 filters, followed by another one with 128 filters and concluded by a fully

connected layers mapping on 1024 values. This feature has been used in InceptonV3 architecture

as a regularization mechanism rather than a help to achieve deeper models. The complete
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Figure 8: Basic scheme of the inceptionC module, with filter sizes used in InceptionV3.

architecture of the InceptionV3 model is composed by the following building blocks, in the

order of listing:

• stem layers, composed by three subsequent convolutions, a max pooling layer, two con-

volutions and a final max pooling;

• a series of 5 inceptionA modules;

• a grid-size-reduction block;

• a series of 4 inceptionB modules;

• a grid-size-reduction block;

• a series of two inceptionC modules

• average pooling;
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• final layers composed by dropout, fully connected with 1000 nodes and a final softmax to

create the probability distribution on the ILSVRC categories.

Before the second grid-size-reduction block it is positioned the auxiliary classifier, which consists

in average pooling, tow convolutions and the usual fully connected with softmax layers.



CHAPTER 3

PRIVACY PREDICITON TASK

The main task investigated by our research is the prediction of the privacy class of im-

ages posted on social media. In particular, the type of classification we approached is binary,

consisting in attributing the public or private label to a set of selected samples.

An additional level of complexity has been added to this task, because our interest is in the

analysis and comparison of the performances of abstract and concrete features in the context of

this specific type of classification. For this reason the selection of the dataset and the features

for its representation has been crucial in our approach.

Regarding the classification’s techniques adopted, we aimed at generalizing as much as

possible our results, focusing less on achieving high performances. This is the main reason

behind the choice of the models, which have been chosen from the commonly known literature

on the classification topic for their diffuse usage and not for the expectation of particularly

good performances. In order to provide more interesting results, one particular neural network

model has been chosen instead for its applicability to the problem and for the results achieved

in similar tasks.

In this chapter we are going to introduce and explain the choices behind the setup adopted

in our work for the privacy classification problem. Particular attention is going to be dedicated

to the dataset and the models.

24
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3.1 Dataset Preparation

The dataset we are going to adopt in our evaluation is the product of different choices that

we are going to introduce here. In particular some datasets available from the results of other

researches have been exploited for this purpose.

3.1.1 Online Privacy Reference Dataset

The first step for building our dataset is about defining the type of resource to use, which

must be able to provide samples from social media labeled by privacy classes. At this regard

there are not many available choices, therefore our attention was directed towards the Picalert

dataset [22] largely used in the context of privacy prediction of social media, as introduced earlier

in section 2. It consists in a collection of images posted on Flickr and manually annotated by

people of different ranges of age as private or public.

The diversity of the contents available on Flickr in terms of images, in conjunction with

the different concepts of privacy that can be obtained from a sample of people with different

ages, make this dataset perfectly in line with the purpose of extracting a generalized enough

understanding of privacy in social media.

3.1.2 Abstractness Scoring Reference Dataset

Consequently, considering the purpose of our investigation, it is essential to have a metric

to evaluate the abstractness of concepts. Different researches appeared to be interesting for this

scope, publicly providing large sets of words associated to scores indicating their abstractness

or concreteness.
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The choice has been made considering the data provided by two works in particular, intro-

duced earlier in chapter 2:

• Brysbaert at al [31] expressed as concrete anything that:

”refer to things or actions in reality, which you can experience directly through

one of the five senses. We call these words concrete words. Other words refer

to meanings that cannot be experienced directly but which we know because

the meanings can be defined by other words.”

They put the emphasis on the abstractness as the quality of a concept to be a linguistic

or cognitive artifact. They asked a sample of people to label a set of approximately 40

thousands English lemmas with a concreteness score from 1 to 5. We will refer to this

dataset as DBrysbaert.

• Rabinovich at al. [47] used a weakly supervised model, which selected some concrete and

abstract words from Wikipedia entry based on the morphology of the terms themselves.

They got these words annotated, by a set of people, with abstractness score from 1 to 7,

providing the definition:

”Words or phrases may refer to persons, places and things that can be seen,

heard, felt, smelled or tasted or to more abstract concepts that cannot be ex-

perienced by our senses. [...] concreteness in terms of sense-experience.”
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Exploiting examples of usage of these terms in sentences, they trained a recurrent neural

network model to label 100 thousands unigrams with abstractness scores in the range

between 0 and 1. We will refer to this results as DRabinovich.

For the selection of the reference abstractness dataset we decided to manually evaluate the

words in their overlap. We could notice many samples where the scores where presenting high

discrepancies, characterizing some word with abstract connotation in one and concrete in the

other, and vice versa. Manual considerations, directly made by us, brought our decision towards

DRabinovich, because better fitting the idea of abstractness that we have. Both datasets presents

some objectively recognizable imprecisions, caused by different reasons. For demonstration

purposes we are showing in Table I a list of words with high disagreement between DRabinovich

and DBrysbaert.

The differences in the scores from the two dataset, in our pinion, are strictly correlated with

the slightly different definition adopted for the concrete and abstract concepts. For example

Brysbaert et al. emphasized the language related nature of the formulation of abstract idea,

which can lead annotators to confusion if it differs from their own idea of abstractness. Also the

difference in the scale of scores they adopted is probably influencing the annotation, for both

the width of the range, and for the order of the scores: one proposed increasing concreteness

scores, the other increasing abstractness scores.

The other important reason for the selection of DRabinovich has been the better overlapping

with the privacy dataset, allowing us to deal with higher amount of samples.
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Word DRabinovich score DBrysbaert score

abortion 0.7809 0.3975
accessibility 0.2133 0.675
adult 0.5311 0.15
analytics 0.3294 0.6425
insecurity 0.2124 0.87
availability 0.3784 0.67
brightness 0.6046 0.3925
collaboration 0.3932 0.6025
counting 0.5844 0.3575
dedication 0.4005 0.71
dictator 0.6284 0.1775
extinction 0.3161 0.6425
fascinated 0.0883 0.81
fructose 0.6234 0.1925
funeral 0.6077 0.2925
headache 0.7363 0.275
individual 0.7511 0.37
parent 0.6535 0.11
pregnancy 0.6425 0.1725
preacher 0.66 0.075
organism 0.6294 0.21
pain 0.6507 0.375
raven 0.5791 0.035
smart 0.2073 0.8125
technologic 0.1794 0.6975
universe 0.6597 0.2875

TABLE I: Datasets scoring discrepancies examples.

3.1.2.1 Samples’ Features of Interest

The first step for the selection of the samples for our dataset has been to decide the type of

features we needed for their representation.
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We started considering that the effort applied in research towards the evaluation of abstract-

ness has been mostly strictly related to words, as the most common way to identify concepts

and meanings.

Another important consideration, given the visual nature of the posts on social media such

as Flickr, is that generally the extraction of meaning from images and video in state-of-the-art

researches is generally aiming at information associated to concepts of concrete nature. Some

examples are the results obtained in image recognition models, which are usually used to identify

physical objects or actions. We haven’t been able to find notable approaches targeting the

extraction of information of abstract nature from pictures or visual representations in general.

Starting from these considerations, the only type of data we are able to exploit and dis-

criminate as abstract or concrete is of textual type, therefore our classification task will focus

on representing the images through the user tags they have been posted with. We believe that

the quantity of tags normally associated to the images from the Picalert dataset, and on Flickr

in general, is big enough for being able to represent the samples in a satisfying way. Therefore

we are going to represents our samples through sets of words rather than visual features of any

type.

3.1.2.2 Samples’ Selection Criteria

Once both the initial privacy and abstractness datasets have been defined we decided to

select a subset of samples with the specific purpose in mind of using them in an experiment

setup appositely tailored that we will introduce later in chapter 5. For the purpose of the

explanation given in this section, we will simply say that the main factor that interests us in
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the experiments is the ability to represent each of the samples using both abstract and concrete

information. Considering this aspect, we decided to apply the following constraints for selecting

the samples from Picalert to be part of our dataset:

• Presenting at least 2 abstract tags;

• Presenting at least 2 concrete tags;

• Presenting at least 10 tags in total, not counting as valid the unscored words not available

in fastText embedding vocabulary.

The first two constraints set a minimum of words for representing the samples from both

the abstract and concrete point of view, providing enough descriptive information. The choice

of using 2 as threshold followed a superficial analysis of the tags distribution in the original

dataset, which showed that using higher values would have reduced the number of samples

to a too low quantity in our opinion, possibly causing problems in the execution of a correct

classification evaluation.

The third restriction is instead deriving from the second step of our experiments, which

involves the automatic abstractness scoring of words not available in DAbstractness. We decided

to consider samples allowing us to increase the number of abstract and concrete words used for

their representation, in order to evaluate how the consequences in the privacy prediction task

would be. The limitation on the fastText embedding availability is related to choices we are

going to introduce in the chapter related to the abstractness scoring task (4).



31

3.1.2.3 Abstract and Concrete Discrimination

Some manual analysis of the abstractness dataset showed us some interesting features in

the actual words scoring. We noticed that the terms belonging to the central range of values,

precisely between 0.4 and 0.6, seem to be not perfectly scored. It is obviously difficult to

locate a precise value dividing abstract from concrete because of the continuous nature of the

adopted scale. The interesting thing is that there are instances of terms that for many people

would be ordered by abstractness in a certain way, but appear distributed in the dataset with

different relative positions. The explanation we decided to follow is that there are many words

that are not easy to be precisely arranged on a continuous scale of abstractness intensity.

Another particularity is that some words carry multiple meanings, and those can be correlated

to opposite positions in the abstractness range. Any dataset based in any way on manual

annotation, especially if averaging the labels given by different people on the same sample,

would be affected by this imprecision, directly derived from the subjective judgement of the

people involved in the process.

We considered the option of not using the words in this range of values in our dissertation,

but we also noticed that many of the words in it are instead correctly positioned on one of the

two extremes of scores and more importantly are very meaningful words for both the abstract

and concrete classes. We concluded deciding to keep all the words available in the dataset.

The discrimination of these terms in the abstract and concrete classes has been executed

using as a threshold score the central value of 0.5. This choice will surely cause some of the

words in the central range of values introduced above to be misclassified, but we believe that
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the error would be similar in intensity for both classes and would not involve a considerably

big quantity of terms. Also this is the trade-off we had to make in order to keep all the other

correctly scored words available in that range.

3.1.3 Selected Privacy Dataset

The dataset resulting from the selection process just introduced has been referred to as

the privacy dataset (DPrivacy). It is composed by approximately 3 thousands samples and will

be used in all the experiments involving the privacy classification task. Some statistics about

the features of its content have been shown in Table II for informative purposes. It is going

to be helpful to keep in mind this type of insights during some of the considerations that are

going to be stated in the next sections. In order to provide deeper information on the type of

words involved, Table III shows instead the distribution of words according to part-of-speech

typologies.

Class Pics
Abstract Tags Concrete Tags Unscored Tags

average tags
per picture

All
average tags
per picture

All
average tags
per picture

All

Private 1072 3.28 469 7.11 1658 8.71 3126
Public 1853 3.07 787 8.69 2839 9.90 5754
All 2925 3.15 913 8.11 3322 9.46 7077

TABLE II: DPrivacy dataset statistics.
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Class
Abstract Tags Concrete Tags Unscored Tags

Noun Verb Adj. Adv. Noun Verb Adj. Adv. Noun Verb Adj. Adv.

Private 445 7 16 0 1604 19 27 7 2724 49 284 52
Public 753 9 23 0 2739 29 55 14 5062 106 476 86
All 874 12 25 0 3206 39 59 16 6258 128 555 110

TABLE III: DPrivacy dataset statistics on part-of-speech tagging.

3.2 Classification Models

The classification task itself has been executed adopting and comparing different types of

classifiers. This choice has been leaded by mainly two reasons:

• The need of showing relevant results through different types of classification models in

order to provide more strength and general agreement to the conclusions we will extract

from the results;

• The necessity of trying different representation of the samples, as well as experimenting

the diverse features of the classifiers. This would allow us to better understand the results

obtained in term of what each classifier is specialized in capturing.

This subsection will provide a summary of the models adopted, the hyper-parameters and

variant chosen and the input representation selected. The approaches adopted are all classified

as supervised learning, therefore making use of the privacy labeled dataset introduced in the

previous subsection.
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3.2.1 Näıve Bayes Classifier

This is the simplest approach we explored for the classification. It is based on the näıve

assumption that each of the features used for representing the sample are statistically indepen-

dent with each other. This is the foundation of this method, which classify a data-point by the

computation of the conditioned probability of the features it is represented with the different

classes, selecting the class showing highest probability value. The implementation variants we

considered in our exploration are all provided by scikit-learn library [48].

3.2.1.1 Model’s Insights

More specifically it computes the conditioned probability of each feature, for each class,

considering the training set as the corpus of reference, then for a new data-point computes the

probability of belonging to each class, conditioned by the values of its features.

The mathematical dissertation behind it is based on the following step, making use of the

following definitions:

• n and K are respectively the number of features of the samples representation and the

number of classes;

• X represent the features vector of a generic sample and its components are identified by

xi where i ∈ {1, ..., n};

• Ck represent the classes, where k ∈ {1, ..., K};

• p(·) is the probability operator;

• (·|·) is the conditioned probability operator;
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• Z is a constant positive scaling factor whose value is not relevant for this context.

The theoretical foundation of this classifier is the following theorem:

Bayes’ Theorem: p(Ck|X) =
p(Ck)p(X|Ck)

p(X)
(3.1)

It is used to compute the conditioned probability for a set of features to belong to a certain

class as:

p(Ck|x1, ..., xn) = Z · p(Ck)
n∏
i=1

p(xi|Ck) (3.2)

The training process simply computes, based on the content of training set, the values of

p(Ck) ∀k ∈ {1, ..., K} and p(xi|Ck) ∀i ∈ {1, ..., n}, k ∈ {1, ..., K}. The final class y is predicted by:

y = arg max
k∈{1,...,K}

p(Ck|x1, ..., xn) (3.3)

3.2.1.2 Variants Explored

This model is used diffusely for the classification of documents composed by sets of words

which order doesn’t need to be contemplated, following the bag-of-words assumption.

We tried to use this model in different variants and different input representations. For

instance we evaluated the Gaussian Näıve Bayes Classifier, which is suited for features with

continuous values, adopting a tf-idf sample representation. Preliminary experiments confirmed

that this approach wasn’t giving us satisfying results, therefore we concentrated on a different

type of representation. We decided to adopt the simpler tf representation, in combination with
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Complement Multinomial and Bernoulli Näıve Bayes Classifiers. Our case is applicable to both

variants, because each user tag can be present or not in a sample, excluding the possibility to

count it more than once.

In the validation process of this model we considered the two variants just introduced, with

tf samples representation and with the add-one smoothing.

3.2.2 Support Vector Machine Classifier

This model is widely used in classification problem. It works by the selection of particular

data-points in the training set that are close to element of the other class. It exploits the points

to find the hyper-plane maximizing the distances to these support vector points. The resulting

plane should be a good separation between the two classes. We exploited the implementation

provided by scikit-learn library [48].

3.2.3 Model’ Insights

The model is basically representing in a high dimensional space, with same dimensionality

as the one of the data-points, all the samples from the training set. It simply aims at solving

a quadratic programming problem that practically corresponds to finding the equation of the

hyper-plane that separates the points of the two classes, also maximizing the distance between

each point for the two classes. The additional soft-margin technique add to the objective

function of the quadratic programming problem a penalty factor that gives a non zero contribute

only for the data-points that happen to be on the wrong side of the hyper-plane, directly

proportional to their distance to it. This feature introduces tolerance to the model, which
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allows solutions identifying a separation hyper-plane that doesn’t completely separate the two

classes.

The quadratic programming problem introduced above can be formalized as follows. Con-

sider the training vectors xi ∈ IRp, with i ∈ {1, ..., n}, labeled according to two different classes

1 and -1, and the vector y ∈ {1,−1}n which contains at the position i the value corresponding

to the class associated to the training point i. n is the number of training data-points and p

is the dimension of each of them. The quadratic programming problem solved by the support

vector machine aims at the minimization of the following objective function:

min
w,b,ζ

1

2
wTw+ C

n∑
i=1

ζi (3.4)

subject to the following constraints

yi(w
Tφ(xi) + b) ≥ 1− ζi, (3.5)

ζi ≥ 0, for i ∈ {1, ..., n}

The solution finds the values of w, b and ζi for i ∈ {1, ..., n}. The first two identify the

hyper-plane in the space of the training data-points, while ζi are optimized for the definition of

the margins. The most important parameter is C which defines the intensity of the penalization

given by the soft-margin technique and act like a regularization factor, used to balance between
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better fitting the data and avoiding overfitting. Higher values of C are specializing the model

on the training set, while lower values allow higher misclassifications.

The φ function consists instead in the kernel trick. This technique is simply mapping

through a pre-defined function (the kernel) each data-point in a different dimensional space.

This trick allows to have the model solving the same exact problem, but creating hyper-planes

that are not linear, but mapped on a polynomial, exponential or other type of function, helping

the model to better fit the data for some datasets.

3.2.3.1 Hyper-parameters Exploration

The input have been encoded using the tf representation. After a preliminar evaluation of

the performances using tf-idf we decided to avoid using it. Each input feature has been scaled,

by subtracting the mean and dividing by the standard deviation, in order to obtain better

result with this type of model. The model has been exploited using a balanced weighting of

classes because of the unbalanced dataset we are using. This option weights the elements of the

different classes proportionally to the population size of the classes themselves, providing better

results. Other than that, we decided to use the radial basis function kernel concentrating our

attention on the commonly used γ parameter set to the inverse of the product of the number

of features and the variance of the training set (”scale” value). We adopted for γ the values

”scale”, ”scale”/10 and ”scale”·10. The C values explored are the following: 0.01, 0.1, 1, 10,

100, 1000.



39

3.2.4 Random Forest Classifier

This type of classifier is based on an ensemble of Decision Tree models all trained on the

same training set, but with some randomness in their tuning. The variant we decided to use

is provided by scikit-learn library [48] merges together the results obtained by each tree by

averaging the probabilistic predictions.

3.2.4.1 Model’s Insights

The randomness of the models considered in the ensemble is realized by training them on

different subsamples of the same training set and using only a subset of the total features

available in the input representation. This allow each tree to capture particular features of

the dataset with high variance. The combination of the trees into the forest has the effect of

reducing the overall variance, decreasing this way the chances of overfitting.

The variant of the model we decided to use instill randomness in each tree by controlling

three main parameters:

• The number of trees generated in the ensemble.

• The maximum number of features evaluated in the creation of new nodes in the trees,

which allow each of them to randomly focus their search on specific subsets of the input

representation.

• Our variant of the random forest uses for each tree a training set with the same size of

the complete one, but creates it by randomly sampling from it. The choice of adopting

the sampling with or without replacement in this step is a parameter influencing the

randomness of the trees.
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The rest of the parameters that we can select in our application are instead referred to

the techniques adopted in the creation of each of the decision trees. Decision trees consist in

a branched map of choices, guiding the classification of a data-point. Each choice splits the

decision branch in multiple subbranches, based on the value of a specific feature associated to

the particular decision node. When the path reaches a leaf node of the tree, it defines the class

of the sample considered.

The basic mechanism behind the creation of a tree concerns the choice of a features on which

defining a threshold value for the creation of a branch. This choice is influenced by different

factors such as the metric used to evaluate the goodness of a branching and the number of

features considered for the branching. The other factor influencing the creation of trees is

whether to try to generate a new node or not, creating therefore a leaf node. This choice is

instead influenced by constraints defined on the minimum number of training samples to allow

the branching, minimum number of training samples allowed in a leaf node, the depth-level of

the node and maximum number of leaf nodes.

The choice of the parameters related to the creation of the trees is tuning how each of them

can be trained specifically on the subset of features and samples assigned. We are balancing

the variance of the singular trees through these choices, influencing the chances of overfitting

on each subset of the training set.

3.2.4.2 Hyper-parameters Exploration

Once again preliminary evaluation on the dataset revealed better performances representing

the data points through tf encoding, rather than tf-idf.
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The hyper-parameters we decided to experiment for this model are several and we are going

to list them here. We have tried:

• both variant with an without sampling with replacement;

• number of estimators equal to 50 and 250;

• limiting the maximum number of leaf nodes to 500 and leaving it unlimited;

• minimum number of samples to allow splitting equal to 2 and 5;

• minimum samples per leaf equal to 1, 2 and 5;

• maximum number of features evaluated in the generation of nodes equal to the squared

root of the total number of features;

• entropy as the metric used for choosing the best spitting criteria;

• no constrains on the tree depth.

3.2.5 Text Convolutional Neural Network Classifier

This particular model has been proposed by Yoon Kim [49] and consists in applying the idea

of convolutional neural network to input representing sentences. This approach is completely

different if compared with the ones previously introduced because it takes in consideration the

order of words, exploiting a totally different input representation.

3.2.5.1 Model’s Insights

The architecture proposed here has been developed following the idea of training sets of

filters of different dimensions on the representation of an ordered set of words. The filters have
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Figure 9: Visual representation of text convolutional neural network model.

a shape which is mono-dimensional and correspond to their width, or in other word the number

of words included in the sliding window that is passed along the sentence. These filters are

used to extract different features from the sentence and then fed in a fully connected layer for

the prediction of the class.

More in detail, each filter is computing a value for each position of the sliding window on

the sentence. If the positions of the sliding window are j ∈ {1, ..., n − h + 1}, with n as the

length of the sentence and h is the filter size, we have:

xj:j+h−1 = xj ⊕ ...⊕ xj+h−1 (3.6)
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cj = f(w · xj:j+h−1 + b) (3.7)

Where xi for i ∈ {1, ..., n} is the representation of the ith word in the sentence, k is the length

of words representation, w ∈ IRkh are the weights of the filter, b ∈ IR is the bias term and f is

the activation function. The concatenation operator is ⊕ and xa:b indicates the concatenation

of the words’ representations from xa to xb.

The set of n−h+1 features extracted by each filter is called feature map and the maximum

value is selected from it. This layer is called the max-over-time pooling and produce a total

number of values equal to the number of filters. A fully connected soft-max layer is applied on

this set of values, extracting a probability distribution over the number of classes desired: two

in our case.

It is important to specify that the value of n, in the training process on a specific training

set of sentences, is equal to the maximum sentence’s length available. Any phrase that is shorter

than that has been filled with trailing padding values.

3.2.5.2 Model’s Training and Features Exploration

First of all, the hyper-parameters of the variant of this architecture that we decided to

use have been mostly set with the author’s suggested values, we just explored some values for

regularization purposes, in order to avoid overfitting. We also decided to represent samples by

sorting in alphabetical order the tags associated, so that if two tags are both present they are

always in the same, or similar reciprocal positions.

In terms of architecture we used filters with of 3, 4 and 5 width, training 128 filters for each

size. Furthermore the input words have been encoded adopting 300-values sized fastText word
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embedding vectors, allowing the training updates also in the first layer, resulting in a fine-tuning

of the embedding values. This last design choice has been selected because performing better

than both the non-trainable version and the one using trainable random initial weights. The

activation function used for the computation of the features extracted by the filters is the relu:

f(x) = max(0, x).

Regarding the training process of the model the softmax cross entropy loss L(T, Y) has been

used on the values obtained from the output of the fully connected layer:

L(T, Y) = −

n∑
i=1

∑
c∈C

tic · log(yic) (3.8)

where T is the set of flags tic associating each sample i ∈ {1, ..., n} to the classes c ∈ C, n is the

number of element of the batch and C is the set of classes. tic flags values are 1 for the class

associated to sample i and 0 otherwise. yic ∈ Y are instead the output value produced by the

model for sample i for the class c.

We adopted the Adam optimizer for weights update, which consists in an adaptive mo-

mentum estimation through moving average on the batch results, tuning the learning rate

accordingly. The only parameter we fine tuned is the initial learning rate, adopting values from

within the following set: 0.001, 0.00025, 0.0001.

For avoiding overfitting we applied 0.5 drop-out probability and tried l2-regularization with

γ equal to 1, 0.1 and 0.01. The training termination criteria adopted is the early stopping,
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interrupting the weights update once the validation set loss function starts to increase for 3

consecutive epochs.



CHAPTER 4

ABSTRACTNESS SCORING TASK

A secondary task faced by this research is the scoring of words by abstractness. This task

has been approached by different researches and there are many resources available of scored

terms, from which take advantage for labeling new samples.

Our investigation here is strictly related to the primary privacy prediction task. In fact

the final purpose of the evaluation of scoring techniques is to enable us to enlarge the set of

available words labeled by abstractness and evaluate them in the final experiment setup.

The main steps of this task consist in selecting reference resource for scored words, some

scoring methodologies and an evaluation technique. In the process of choosing the method-

ologies and the dataset to use, different considerations have been made and new approaches

evaluated. In this section we are going to explain in depth this procedure.

In conclusion we are going to discuss the scoring of the unlabeled words we will need in the

privacy classification dataset.

We would like to anticipate that the set of results of the evaluation of the scoring techniques

is going to be shown and intensively analyzed here. We decided to introduce them here and not

in 6 because we believe them to be partial evaluation, not directly related to the final purpose

of this dissertation. It is important though to mention them because representing an interesting

example of both regression models evaluation and their application to an unlabeled dataset

46
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4.1 Dataset Preparation

Firstly, for this portion of the dissertation it is necessary to introduce the steps behind the

selection of the resources involved in the dataset we exploited for this analysis. We will start

introducing the reasons behind the choices of the features for the input data representation,

following with the actual dataset selection.

4.1.1 Features Representation

We decided to experiment two different types of representation of our data samples.

We occurred to consider that the abstractness of concepts is correlated to the semantic of

the associated words and in particular to the way they are used in the context of sentences.

The first type of representation we adopted is in fact completely related to the usage of the

meanings in textual contexts.

Additionally, we took inspiration from the work of Bhaskar et al. [34], who faced the

inverse problem of scoring words by concreteness. They explored the challenge evaluating the

performances of scoring techniques encoding the input words used by their models, through

features extracted by image recognition architectures from pictures correlated to the terms

involved.

4.1.1.1 Textual Features

After extensive searches, looking for the best distributional model for the representation of

words by they textual usage, we decided to exploit a particular word embedding representation.

This type of words encoding techniques is generally based on the training of a neural network
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architecture, focused on natural language processing, capturing in a numerical representation

the usage of selected words in the sentences of a selected corpus.

At this regard the options available are several, and considering the purpose of this research

we avoided to extensively try all of them to find the best performing ones. Actually we decided

to follow the results obtained by several other researches to guide our choice:

• Rabinovich et al. [47] compared, for the automatic scoring of words, the usage of dif-

ferent word embeddings encoding such as Google word2vec [38], Glove [39] and fastText

[50]. They observed the best performances in this particular ranking task using fastText

embedding.

• Charbonier and Wartena [51] also targeted the task of concreteness scoring of words,

achieving better results using fastText [40] rather than GoogleNews [41]. They found as

particularly performing the fastText embedding version trained on the Common Crawl

corpus and without subword information.

Given the analysis offered by the results of these works, we decided to adopt the fastText

word embedding trained on Common Crawl and without subword information. This type of

encoding resulted in very good performances generally, due to the innovative approaches used

by it in the application of the CBOW model (see section 2.3).

The flavor of fastText embedding we decided to use is composed by a vocabulary of 2 million

words and each of them is encoded by an array of 300 numerical values.
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4.1.1.2 Concatenation of Textual and Visual Features

The alternative representation we explored for our data points consists in visual features

related to each word. As introduced above we are following the ideas proposed by Bhaskar et

al. [34].

In their work they explored the comparison of performances using words co-occurrences

counts, word embeddings, features extracted from image recognition models and their concate-

nation in the task of words’ concreteness ranking.

Regarding the specific features used in their work, they involved word2vec [38] for the text

based representation and the features extracted by the AlexNet [52] and GoogleNet [45] as

the visual counterpart. For what concerns the results with the regression model, they showed

better performances with GoogleNet features and using the co-occurrences count. In general

the results obtained with the concatenation of visual features and word2vec were slightly worse.

Another aspect that emerged from their experiments is that the best approach, for applying

regression models on a dataset of concreteness scored words, is to exploit the samples on the

whole distribution in the range of values. The results obtained exploiting only samples in the

extremes of the range or in the central portion reflected worse performances, probably due to

the low number of available samples.

Features wise, We decided to follow a similar approach applying some changes:

• The visual features we are going to use are extracted from newer architectures that

achieved better results in image recognition with respect to AlexNet or GoogleNet;
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• The images we are going to use for the visual features extraction will be strictly related

to the context of social networks, in particular they are consisting of images from Flickr.

The relationship between an image and a word is realized when the word appears in the

set of user tags associated to the picture;

• We will only explore the concatenation of visual features and word embeddings variant.

It is in our believes that in the bigger dimensions of our context, which aims at the final

scoring of 7077 unlabeled words, using word embeddings instead of co-occurrences count

vectors would provide a better distribution for our samples. In addition the particularly

good results obtained by fastText embedding in previous researches (as introduced above)

lead us to this decision.

As announced above, we decided to exploit and evaluate two specific convolutional neural

networks for the extraction of the visual features, acknowledged to be the current state-of-the-

art in object recognition from picture: Details about both of them have been introduced already

in chapter 2:

• ResNet152 [44] is the particular variant of the convolutional neural network architecture

implementing the residual module. This particular architectural feature performed par-

ticularly well in the ILSVRC 2015 challenge, especially the deeper variant we have chosen

with 152 layers.

• Inception-V3 [46] is instead an improved version of GoogleNet that achieved very good

results also in the ILSVRC 2015 challenge.
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From both the architectures we decided to extract the features from the versions trained on

the 1000 objects categories from ImgeNet dataset [43] defined in the ILSVRC challenge itself.

In relation to the choice of the layers elected to be the ones providing the features desired, we

decided to select the last layers before the final fully connected and soft-max ones, after the

average pooling. The output of this layer, present in both the architectures, is characterized

by output’s dimension independent from the number of classes used in the training phase and

consists in 2048 values for both ResNet152 and InceptionV3. This choice will allow us to

execute a fair comparison of the two configurations, based only on the extracted values and not

influenced by differences in the dimensions.

4.1.2 Abstractness Scoring Reference Datasets

In regards to the abstractness scoring dataset we are going to use for the evaluation of the

different techniques we dedicated our attention again to the two works [31; 47] already presented

in chapter 3: DBrysbaert and DRabinovich.

A couple consideration about their scores distribution and our necessities are needed here

to explain the choices made by us.

First of all, considering the words representation, in term of features, introduced above, we

need all the element of our abstractness dataset to be represented by both textual and visual

features. At this regard the limitation imposed by the usage of fastText word embedding is

the most stringent constraint, because forcing us to filter out a portion of any reference dataset

we choose. This consideration has been done under the assumption that the images necessary

for the visual features are going to be available for most of the words considered. After the
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filtering, we obtained exactly 35425 words from DBrysbaert and 36277 from DRabinovich. Figure 10

and Figure 11 provide respectively a graphical representation of the distribution of words over

the whole range of scores. The scoring system from DBrysbaert has been converted from the

increasing scale of concreteness from 1 to 5 to the increasing abstractness one from 0 to 1. Each

bar in the graph is as wide as 1/100 of the whole score range.
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Figure 10: Distribution of the words from DBrysbaert filtered by fastText embedding.

From the resulting distributions, it is possible to notice how each of the dataset is com-

posed by a predominant presence of abstract or concrete words, reflecting pseudo-symmetric

arrangements of terms in the score range if compared. Therefore involving both of them would

automatically balance the presence of abstract and concrete samples, creating a suitable set of

data-points for the tuning of scoring models.
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Figure 11: Distribution of the words from DRabinovich filtered by fastText embedding

The other important factor to keep in mind is that we are going to exploit the dataset

selected at this step, not only for the evaluation of several scoring techniques, but most im-

portantly to score the unlabeled words from DPrivacy. A total of 7077 words is present in the

samples selected in the privacy dataset and we want to maximize the chances of providing scores

as accurate as possible and to achieve this for both the halves of the scoring range. In order

to do so, the more samples are given in the training set, the more are the chances for a new

word to present features similar to one of them, achieving this way precise results. Also, using

a balanced distribution would avoid to overfit the models towards scoring mostly on one side

rather than the other.

After these observations, we expect that using only one of the two dataset would not be

satisfying enough in term of general accuracy in the scoring techniques applied to the labeling

of our unscored words. We decided therefore to make use of both of them merged.
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4.1.3 Selected Abstractness Dataset

The technique we decided to use for the merging of DBrysbaert and DRabinovich simply consists

in:

• the conversion of both scoring schemes to the range of values from 0 to 1 of increasing

abstractness;

• assigning to any word belonging to both sets the average of the respective scores.

The choice of using both was necessary here due to the observation brought to the attention

of the reader in the preceding subsection. We haven’t followed the same choice in the context of

the privacy prediction task because of the possible incompatibility of some scores, signaled by

the presence of conflicting values associated to terms belonging to both dataset (see chapter 3).

In addition to the reasons just mentioned, we believe that one basic aspect justifies the different

choices: the use that we are going to make of those scores. In the context of abstractness

scoring of words introduced here, the scores from the dataset have been used to train a model

tuning a mapping of these numerical values on top of a set of features characterizing words by

semantically important features. Therefore, the final result expected from such approach would

add a deeper level of complexity to the definition of the scores for the unlabeled word, mitigating

the possible errors present in the original datasets. In the privacy task the values would have

been used as they are, without tuning on additional type of information. We think that the two

dataset would ”collaborate” achieving better results if merged, allowing the scoring techniques

to take advantage from both the scoring systems, guided by the semantically characterized

representation of the input.
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Figure 12: Distribution of the words from DAbstractness

We are going to refer from now on to the result of the merging procedure as the abstractness

dataset (DAbstractness. It is composed by exactly 63877 terms and their distribution is represented

in Figure 12.

4.1.3.1 Textual Dataset Resources

As anticipated previously the resource exploited for the representation of words through

textual features consists in the vocabulary offered by fastText word embedding [50]. Any

reference to textual features in this context is considering fastText encoding.

4.1.3.2 Visual Dataset Resources

Each word has been represented also by visual features. We already defined the modalities

we followed for the extraction of the above-mentioned features from single images, but here we

will explain how we select them and associate them to the terms involved.
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Again, we took inspiration from the approach adopted by [34], where each word have been

associated to the averaging of the features extracted by up to 25 images collected through

Google images search, using the term itself as keyword for the query.

Our approach is appositely focusing on the specific environment we selected: Flickr social

media. In fact we decided to adopt the same averaging technique for the features extracted,

but we differed by querying pictures through Flickr API. Specifically for each word we collected

a minimum of 5 and a maximum of 25 pictures having the term within their user tags.

We executed the crawling of pictures for both the words in DAbstractness and the unlabeled

terms in DPrivacy, in order to be able to provide a valid representation for each of them. Un-

fortunately not all the words involved in these two dataset were available as user tags in Flickr

in such quantity to respect the constraint of 5 pictures per term. We have been forced, for the

visual features approach, to use reduced version of both the reference dataset and the unlabeled

set of words, respectively consisting in 47130 and 6689 samples. We are referring to the visual

features oriented reduced version of DAbstractness as DVisual
Abstractness, the distribution of its samples

in the range of scores is shown in Figure 13. We can state that the distribution has not been

remarkably unbalanced with respect to the original one, keeping the overall disposition.
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Figure 13: Distribution of the words from DVisual
Abstractness.

4.2 Scoring Techniques

Now that we have defined the dataset and the features we are going involve in this abstract-

ness prediction task, we are describing the different approaches explored. We have divided them

in two categories: distance based and regression approaches

4.2.1 Distance Based Scoring

Two simple typology are included in this category. The main feature of these approaches

is the fact that they exploit a metric of distance between the representation of samples. We

decided to adopt the cosine distance as measurement of how two data-points are close to each

other.
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Given two vectors x and y, sharing the same size n, the cosine distance between them is

computed as:

cosine distance = 1−

∑n
i=1 xiyi∑n

i=1 x
2
i

∑n
i=1 y

2
i

(4.1)

4.2.1.1 Minimum Distance Scoring

This approach is the simplest and it consists in assigning to an unscored sample the same

score associated to the closest labeled data-point. We will refer to this technique as MinDist.

4.2.1.2 K Nearest Neighbors

This widely known clustering technique has been applied here, adopting different values

of K, to select a neighborhood for each unscored word and assigning to it the average of the

scores of the neighbors. The neighborhoods are defined as the samples with the smallest cosine

distance from the target word. This approach is going to be referred to as KNN.

4.2.2 Regression Models

These models are instead widely used methodologies for regression. The typologies exper-

imented are described in the following subsections. For each of them we used the available

implementation offered by the Python scikit-learn library [48].

4.2.2.1 Linear Regression

This model is the simplest one for regression. It looks for the linear dependency of the input

features and the output value of the training data-points.

It realizes this by minimizing the sum of the squares of the residuals of each sample. More

specifically the model define a linear dependence of the output variable and the input features
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x. We can define xi ∈ IRk as the set of features of a generic data-point, with i ∈ {1, ..., n}, where

n is the number of training samples and k the number of features. The linear dependence is

expressed by the equation:

f(x, β) = β0 + β1x (4.2)

where β0 ∈ IR, β1 ∈ IRk and x ∈ IRk is the set of independent variables. This is the linear

function that the linear regression tunes by selecting the best values of β.

The model converges when the linear function produce the minimum value of sum of squared

residuals S. The residual for the ith training element is defined as follows for i ∈ {1, ..., n}, where

yi is the labeled value for xi features:

ri = yi − f(xi, β) (4.3)

While the sum of squared residuals as:

S =

n∑
i=0

r2i (4.4)

The minimization of S is achieved by gradient descent approach, aiming for a null value for

the gradient for each of the input variables.

4.2.2.2 Ridge Regression

The ridge regression model, in particular the version exploiting the kernel trick that we

adopted, has a mathematical formulation very similar to the linear regressor just introduced.
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The kernel introduce a small difference in the function f and an l2-regularization term is added

to the loss function S.

In particular a kernel function σ(x) is introduced for mapping the input variables to a new

dimensional space, modifying Equation 4.2 into:

f(x, β) = β0 + β1φ(x) (4.5)

The formulation of Equation 4.4 for ridge regression is expressed as:

S =

n∑
i=0

r2i + α(β
2
0 + β

T
1β1) (4.6)

The values we evaluated for the regularization parameter α are: 0.001, 0.01, 0.1, 1, 10, 100,

1000. For what concerns the kernels, we tried three variants:

• the linear variant, that results in linear regression with l2-regularization;

• polynomial kernel, evaluating for 2nd, 3rd, 4th, 5th, 6th and 7th degree ;

• radial basis function kernel with γ equal to the inverse of the product of the number

of features and the variance of the training set (called ”scale” value), ”scale”/10 and

”scale”·10.

4.2.2.3 Support Vector Regression

This regressor model is based on the same exact mechanism introduced in section 3.2 con-

cerning classification task. The idea behind applying this technique to regression is based on
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the goal of finding a hyper-plane that deviates from the training values by a distance no greater

than ε, for each training point, and at the same time is as flat as possible.

In order to do so the quadratic programming problem is modified as explained below.

Consider the training vectors xi ∈ IRp, with i ∈ {1, ..., n} and the vector y ∈ IRn which contains

at the position i the label of training point i. n is the number of training data-points and p is

the dimension of each of them. The formulation of the problem is

min
w,b,ζ

1

2
wTw+ C

n∑
i=1

ζi + ζ
∗
i (4.7)

subject to the following constraints

yi −w
Tφ(xi) − b ≤ ε− ζi, (4.8)

wTφ(xi) + b− yi ≤ ε− ζ∗i , (4.9)

ζi, ζ
∗
i ≥ 0, for i ∈ {1, ..., n}

The solution finds the values of w, b, ζi and ζ∗i for i ∈ {1, ..., n}. The regularization

introduced by this model is of l1 type.

The values we evaluated for the C parameter are: 0.001, 0.01, 0.1, 1, 10, 100, 1000. We

decided to adopt the suggested 0.1 value for the ε parameter instead. For what concerns the

kernels, we tried three variants:

• the linear variant, that results in linear regression with l2-regularization;
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• polynomial kernel, evaluating for 2nd, 3rd, 4th, 5th, 6th and 7th degree ;

• radial basis function kernel with γ equal to the inverse of the product of the number

of features and the variance of the training set (called ”scale” value), ”scale”/10 and

”scale”·10.

4.3 Techniques Evaluation

This section describe the methodologies adopted for the evaluation of the different tech-

niques, concentrating on the metrics used. Then the resulting performances are shown and

discussed briefly.

4.3.1 Evaluation Metrics

The metrics adopted for the performance evaluation for the regression models are explained

above. In all these definition x is used to refer to the array of samples’ original annotated

abstractness score, y is for the array of samples’ predicted scores and D indicated the set of

samples that have a score in x and y. the notation ·̄ stands for the mean operator.

• Mean Absolute Error MAE

Metric for computing the average discrepancy of the value predicted for a sample with

respect to the correct one.

MAEx,y =
1

|D|

|D|∑
i=0

|yi − xi| (4.10)
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• Mean Squared Error MSE

Metric for computing the average squared discrepancy of the values predicted with respect

to the correct ones.

MSEx,y =
1

|D|

|D|∑
i=0

|yi − xi|
2 (4.11)

• Coefficient of Determination R2

This metric is defined exploiting the following definitions:

TSSx (Total Sum of Squares) =

|D|∑
i=0

(xi − x̄)
2 (4.12)

SSEx,y (Sum of Squared Errors) =

|D|∑
i=0

(xi − yi)
2 (4.13)

TSS value expresses how the data values are far away from the mean value, while SSE

indicates how intensely the predictions are different from the original values. We define

the coefficient of determination as:

R2x,y =
TSSx − SSEx,y

TSSx
(4.14)

The difference at the numerator can be interpreted as the improvement in the prediction

given by the regression model, in comparison to a model scoring everything with the

mean value. Dividing this quantity by the TSS should simply return a metric of the

same improvement, but proportioned. Values close to 1 indicate predictions very close to
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reality, while close to 0 indicates a model with performances similar to the mean model.

An alternative way of representing this measure in function of the MSE is the following:

R2x,y = 1−
MSEx,y

MSEx̄,x
(4.15)

Where x̄ is an array of element with the same dimension as x and y but having each

element as the average value form x. It corresponds to the simplest prediction possible,

scoring everything with the average value.

• Pearson Correlation Coefficient r

This metric is used to evaluate intensity and direction for the linear correlation between

a pair of variables. Let us see the mathematical formulation:

rx,y =
cov(x, y)

σxσy
(4.16)

Where:

– cov(x, y) =
∑|D|
i=0

(xi − x̄)(yi − ȳ)

|D|
is the co-variance between x and y variables;

– σx =
∑|D|
i=0

(xi − x̄)
2

|D|
is the variance of variable x, analogously for y

Rearranging the formula we obtain the following:

rx,y =

∑|D|
i=0(xi − x̄)(y1 − ȳ)√∑|D|

i=0(xi − x̄)
2

√∑|D|
i=0(yi − ȳ)

2

(4.17)



65

This score can have a value in the range between 1 and -1. The extremes of this scope

indicate respectively perfect positive and negative linear correlation between the two

variables. On the other hand a r value of 0 stands for the complete absence of linear

relationship.

• Spearman Correlation Coefficient ρ

This metric evaluate the rank correlation between two variable. In other words it asses how

much the relationship between the variables can be expressed by a monotonic function.

In order to express it mathematically we need to define rank variables: rankx is the rank

variable of variable x, which simply represents each element of the latter by their rank in

the whole set of values.

We can define the ρ metric as the Pearson Correlation Coefficient of the rank version of

the variables:

ρx,y = rrankx,ranky =
cov(rankx, ranky)

σrankxσranky
(4.18)

This metric also have values in the range between -1 and 1 and expresses intensity and

direction of the monotonicity of their correlation.

We made some consideration regarding the metric to use for the choice of the best performing

hyper-parameters of the scoring techniques. Our interest is to train models able to score with

acceptable precision on the whole scale of values. Considering the lower amount of training

samples in the extremes of the scores range, we expect to obtain a general tendency towards

predicting values oriented to the central portion of range. We aim at increasing as possible
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the chance to achieve satisfying precision in predicting scores also in the extremes of the scores

range, especially for the abstract portion.

The latter consideration lead us to expect higher errors for the fewer elements in the extremes

of the range, we need to select a metric that allow us to highly penalize this behaviour during

the parameters validation step. We started excluding MAE because it assign the same weight

to errors, hiding low occurrences of high errors in the averaging process. Regarding r and

ρ, they are respectively evaluating the correlation in terms of linearity and the monotonicity

between the prediction and the expected values, but again, high errors for few samples are not

penalizing enough these metrics in our opinion. The behaviour of the MSE metric instead is

exactly targeting the penalization weights we desire, amplifying the value of errors with high

discrepancy through squaring the values. The only counterpart is that it is dependant on the

range of error values we are dealing with, not giving an absolute definition of what is a good

value and what is not.

Our finally decision is to elect the R2 metric as method to evaluate performances in valida-

tion. Referring to its formulation in function of MSE, we can obtain the same weighting effect

offered by the latter, but evaluated in a proportional way, with respect to the performance of

the mean value scoring, which correspond to the simplest model we could think of.

4.3.2 Evaluation Setup

The evaluation of the techniques adopted has been executed through 5-fold cross validation

for testing, with hold-out for the validation of the hyper-parameters. It results in:

• 20% for testing;
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• 20% for validation of hyper-parameters;

• 60% for training.

As introduced above, the datasets used for this evaluation are DAbstractness and DVisual
Abstractness

respectively when textual features only and the concatenation of textual and visual features are

used.

In the execution of this evaluation all the hyper-parameters introduced with the techniques

in the previous section have been experimented and fine-tuned to obtain the best results. This

validation step has been evaluated through the R2 metric. Each regression based scoring method

have been applied to both the typology of features introduced.

Figure 14: Visual representation of the evaluation of the different features and scoring models.

4.3.3 Performance Results

We are showing here the complete results obtained by the different approaches. In order to

avoid useless extensive tables of values we decided avoid presenting any partial results associated
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to the validation of most hyper-parameters. On the contrary, in the specific case of regression

models exploiting the kernel trick, we opted for showing the different results obtained for each

kernel type. We believe this information can be interesting in terms of what type of feature

mapping is best for fitting the specific type of representation.

Table IV shows the results obtained using textual features form fastText word embedding.

Table V depicts the performances obtained adopting the representation concatenating textual

to visual features extracted respectively from ResNet152 and InceptionV3 architectures. The

performances using the textual features only has been recomputed and shown here, using the

same exact splits, in order to provide a proper comparison.

In the comparison with the usage of visual features, results are showing best performances

with the regression models when visual features are involved, in particular the one extracted

from ResNet152, while they are degrading when the concatenation is with InceptionV3. Any-

ways the differences in the scores are very small, changing only after the second decimal digit.

For this reason, and for the reduce training sat available for the visual features, we will adopt

the fastText representation for the scoring of the unlabeled words.

The most important observation is that, independently from the input representation, any

linear model is not performing well, meaning that mapping values onto a new dimensional

space is useful. Ridge regression with rbf kernel seem to be the best performing for when using

visual features, while the polynomial one achieves best results for textual features. Furthermore

the results obtained exploiting residual architecture are better than the one from InceptionV3.
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We can highlight that the best performing models are showing high Pearson and Spearman

correlation, reflecting respectively a good linearity and monotonicity in the correlation.

Technique R2 MAE MSE r ρ

Minimum Distance 53.58 0.1215 0.027 76.13 74.67

K Nearest Neighbors (k = 12) 71.28 0.0998 0.0167 85.84 84.28

Linear Regressor 0.6509 0.113 0.0203 0.8196 0.8051
Linear Ridge Regressor 0.6509 0.113 0.0203 0.8196 0.8051
Kernel Ridge Regressor (polynomial kernel) 0.7406 0.0949 0.0151 0.8677 0.8553
Kernel Ridge Regressor (rbf kernel) 0.7367 0.0956 0.0153 0.8623 0.8503
Linear Support Vector Regressor 0.651 0.1130 0.0203 0.8196 0.8051
Kernel Support Vector Regressor (polynomial kernel) 0.6719 0.1095 0.0191 0.8372 0.8313
Kernel Support Vector Regressor (rbf kernel) 0.717 0.1011 0.0165 0.864 0.8518

TABLE IV: Performances of abstractness scoring techniques using textual features.

4.4 Unlabeled Words Scoring and Results Discussion

From the consideration presented above regarding the performances of the different scoring

techniques we selected the best performing hyper-parameters for each technique in relation

to both the type of input representations. For what concerns the involvement of the visual

features, we decided to analyze here the results obtained by the best performing convolutional

neural network architecture, which is the ResNet152 one.

In this portion of the dissertation we are going to discuss the results from both the quan-

titative point of view of the performances and the qualitative one of the application of the

techniques to a real scoring scenario.
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Technique R2 MAE MSE r ρ

Regression on Text & Visual features (ResNet152)
Linear Regression 0.5979 0.1179 0.022 0.7910 0.7747
Linear Ridge Regression 0.6211 0.1147 0.0208 0.8069 0.7892
Kernel Ridge Regression (polynomial kernel) 0.7122 0.0977 0.0158 0.8565 0.8404
Kernel Ridge Regression (rbf kernel) 0.7244 0.0956 0.0151 0.8639 0.8473
Linear Support Vector Regression 0.6233 0.114 0.0206 0.7944 0.7777
Kernel Support Vector Regression (polynomial kernel) 0.6991 0.1009 0.0165 0.8541 0.8372
Kernel Support Vector Regression (rbf kernel) 0.7031 0.1004 0.0163 0.859 0.8418

Regression on Text & Visual features (InceptionV3)
Linear Regression 0.6041 0.1168 0.0217 0.7949 0.7789
Linear Ridge Regression 0.6241 0.1145 0.0206 0.8115 0.7945
Kernel Ridge Regression (polynomial kernel) 0.6670 0.1054 0.0182 0.8297 0.8157
Kernel Ridge Regression (rbf kernel) 0.6686 0.1059 0.0182 0.8281 0.8156
Linear Support Vector Regression 0.6101 0.1159 0.0214 0.7956 0.7795
Kernel Support Vector Regression (polynomial kernel) 0.6439 0.1104 0.0195 0.8191 0.8074
Kernel Support Vector Regression (rbf kernel) 0.6361 0.1131 0.0199 0.8283 0.8140

Regression on Text features (fastText)
Linear Regression 0.6311 0.1133 0.0202 0.8151 0.7961
Kernel Ridge Regression (polynomial kernel) 0.7207 0.0961 0.0153 0.8615 0.8452
Kernel Ridge Regression (rbf kernel) 0.717 0.097 0.0155 0.8545 0.8381
Kernel Support Vector Regression (polynomial kernel) 0.6611 0.1083 0.0186 0.8334 0.8188
Kernel Support Vector Regression (rbf kernel) 0.6857 0.1044 0.0172 0.8563 0.8401

TABLE V: Performances of abstractness scoring techniques using the concatenation of textual
and visual features from ResNet152 and InceptionV3 architecture. The performances using
textual features only have been reevaluated using the same splits division, for comparison

4.4.1 Results

We are providing here some information about the resulting scoring of the 7077 unlabeled

words from DPrivacy. We scored them using the whole set of words from DAbstractness using

the following techniques and respective hyper-parameters. For textual features from word

embeddings:

• Minimum distance scoring: no hyper-parameter is needed;
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• K nearest neighbors: best performing with k = 12;

• Regression model: ridge regressor with polynomial kernel of 5th degree and α = 0.1.

For concatenation of textual features and visual ones from ResNet architecture:

• Regression model: ridge regressor with α = 0.1, rbf kernel, γ equal to the inverse of the

product of the number of features and the variance of the training set.

The resulting distribution of words in the scoring range are shown in Figure 15, while some

basic statistics are provided in Table VI.

Extension
Average
Score

Concrete Words Abstract Words

< 0.5 < 0.4 ≥ 0.5 > 0.6

Minimum Distance 0.3995 4985 4045 2092 1348
K Nearest Neighbors 0.4134 5140 4160 1937 1222
Regression on word embedding 0.3960 5322 4178 1755 972
Regression on concat. with visual features 0.4123 4912 3689 1777 1003

TABLE VI: Statistics on the new scores

From these visual representation of the distributions we can infer the following observations:

• The results from the maximum similarity technique appear to be the most spread on the

whole range, counting several samples for almost each of the sub-ranges of values. This

behaviour is expected, considering that this technique assign to words the score of the

most similar scored one. This approach is increasing the chance of error as we can state
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from the performances collected in Table IV, but it is statistically able to target most of

the score values available.

• The k-nearest neighbors approach shows a distribution concentrated in the central portion

of the scores range. We expected this behaviour, because the fact that each new score

has been computed as the average of a set of values influence the distribution to be more

dense around the central range. For the same exact reason this method is not good in

predicting scores belonging to the outer ranges of values: it is unlikely that the whole

neighborhood of a data-point present only extreme scores. This method would work well

for the extreme scores decreasing the value of k, causing lower precision for the words

belonging to the central portion and therefore an overall worse performance.

• The results from the regression method are also showing a low number of samples with

scores in the farthest extremes of the range, but not as low as the previous approach.

We believe it is representing an improved interpretation of the correlation between the

encoded representation of samples and the scores, supporting this observation through

the quantitative better results obtained.

• Analogue observation can be applied to the results using the concatenation with visual

features. They present a distribution very similar to the regression applied to word

embedding. The quantitative results are showing lower metrics for this case probably

because it has been trained with slightly less samples, due to the problem faced in the

retrieving of enough images for all words.
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Considering the overall pattern in the distribution obtained from the different methods, we

can state that they are consistent with each other, all showing a high peak of samples with

scores around 0.3, an almost flat profile in the range between 0.5 and 0.7 and few occurrences in

the extremes of the whole range. This observation provide some support to the trustworthiness

of our results.

4.4.2 Final Conclusion

Our final decision is to adopt the new scores obtained through the regression technique on

the textual features. We decided not to use the one produced with visual features because the

number of words it can score is limited, providing a lower number of extension samples, but

mainly because the real limitation is in the available training set. The latter could strongly

effect the performances. The similarity in the distribution obtained by all approaches can

be interpreted as a good reason to believe that the results are trustworthy enough for being

exploited in the next task.
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Figure 15: Distribution of new scores predicted for the unlabeled words from DPrivacy. The
four images refer respectively from top to bottom the minimum distance technique, the k
nearest neighbors and the regression applied to the textual features, the last one is the result
of regression on textual and visual features concatenation.



CHAPTER 5

EXPERIMENTS

This chapter of our thesis work focuses on the description of the reasons, the methodologies

and the execution of the different experiments tailored appositely to test our thesis.

As introduced several times in the previous chapter, the final purpose of this dissertation is

to investigate how the abstractness of words, user tags associated to pictures in social media,

is correlated to the private nature of the content shared. We would like to show that the usage

of abstract concepts is better in representing the samples in a classification task such as the

binary privacy prediction one, especially in the comparison with terms of concrete disposition.

We are presenting firstly the evaluation setup we decided to adopt for the evaluation of the

singular classification models, describing precisely the dataset used and the validation process.

Secondly we introduce a detailed review of the approaches adopted for the experiments. The

whole experimental setup is structured in a twofold manner and has been executed in two main

steps. Here we are going to describe its organization in detail, providing the reasons behind

each choice.

5.1 Evaluation Setup

We are going to apply the same exact setup for the evaluation of each of the experiments

that we are going to introduce.
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First of all, as anticipated previously we are going to use DPrivacy as the online privacy

labeled dataset. For evaluating the abstractness nature of the words we will exploit DAbstractness

scores, expanding it to cover also the unscored words from DPrivacy in the second part of the

experimentation.

Each experimental setup involves the evaluation of the four different classification models

largely described in section 3.2. In particular we applied a 5-fold stratified cross-validation tech-

nique for testing, with hold-out for validating the hyper-parameters. This approach is applied

to each model, evaluating the specific hyper-parameters listed in their description (section 3.2).

The resulting proportions of the sizes of the different sets used for training, test and validation

are respectively 60%, 20% and 20%. Each model has been evaluated using the same exact splits

subdivision.

In order to avoid skewed results, due to the unbalance in the population of the private and

public classes, the private samples of each training set have been oversampled, so that the same

number of data-points per class, even if repeated, is perfectly equal.

The metrics we are going to evaluate in terms of performances are the ones commonly

adopted in the task of binary classification. In particular we adopted the accuracy measure for

validating the best performing hyper-parameters, and also the f1-score of both the private and

public class for the evaluation of the results on the test sets.

5.2 The Experimental Setup

In this section all the details related to the dual characterization of the experiments’ setup

are explained.
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Figure 16: Visual representation the evaluation of the different classifiers for privacy.

5.2.1 Abstract vs Concrete

The first basic information we need to extract from our results comes from the comparison

of the results obtained by abstract and concrete words. For this reason each of the experiments

described is going to be evaluated by the performances obtained separately by each of the two

types of terms, es well as the ones gathered by using both together.

Basically each sample has been used three times in each experiment: represented by abstract

words only, by concrete words only and by both typology together. The constraints imposed

in the selection of DPrivacy have been selected for this exact reason, allowing this way to have

a minimum of two abstract terms and two concrete ones representing each data-point.
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We believe that this lower bound to the quantity of words of each type is able to provide

us with a diverse enough set of samples, that will enable us to capture the difference in privacy

discriminating power of the two categories of concepts.

5.2.2 Manipulation of User Tags Distribution Over Samples

The secondary aspect of the investigation is instead focusing on evaluating the abstract and

concrete categories, keeping in consideration the intense diversity and width of their distribution

among the privacy dataset.

5.2.2.1 Natural Tags Distribution

The first experiment type is simply keeping the distribution of tags over the samples un-

changed. Both the type and quantity of the words associated to each sample has been left as

it is originally.

This setup aims at observing the differences in performances using concrete or abstract

words, reflecting the original configuration and distribution of the words. Therefore any unbal-

ance in the quantity of the tags in each sample or in the overall dataset has been maintained.

The statistics gathered from the dataset we are using, show a largely higher presence of

concrete tags, thus we ideally expect the classification model employed to perform better us-

ing that type, due to the low presence of the abstract counterpart. We are referring to this

experiment setup as Natural-Distribution.
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5.2.2.2 Tags Presence Equally Balanced by Category

The second setup instead aims at balancing the presence of abstract and concrete tags in

the context of each singular sample. In other words we tried to obtain an equal amount of

abstract and concrete tags associated to each data-point.

The approach followed here consisted in selecting a specific integer value N, and randomly

sampling the tags of each sample in the following way, where A and C are respectively the sets

of abstract and concrete word of the specimen sample:

• A number of tags equal to the minimum between N, |A| and |C| is randomly selected from

A and used as the new set of abstract tags;

• A number of tags equal to the minimum between N, |A| and |C| is randomly selected from

C and used as the new set of concrete tags.

The balance created for each sample enables this setup to show the actual discriminating

power of each tag category. It creates the condition where the descriptive potential of the

two types for each sample is completely equal. Another interesting aspect, that this type of

experiment will show us, is the evolution of the performances along the increase of the N

parameter. We will refer to this setup as the N-Sample-Balanced.

A slightly modified version of this setup has been also explored. In this variant we have

simply avoided the parameter dependency of the result, removing N in the definition. Therefore

for each sample:
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Abstract

1) childhood
2) comfort
3) happiness
4) joy
5) love
6) youth

Concrete

1) child
2) white
3) face
4) female
5) family
6) mother
7) toddler
8) lifestyle
9) daughter
10) indoor

Abstract

1) childhood
2) comfort
3) happiness
4) joy
5) love
6) youth

Concrete

1) child
2) face
3) female
4) family
5) toddler
6) indoor

Figure 17: Visual representation of how tags selection is performed in Max-Sample-Balanced

• A number of tags equal to the minimum between |A| and |C| is randomly selected from A

and used as the new set of abstract tags;

• A number of tags equal to the minimum between |A| and |C| is randomly selected from C

and used as the new set of concrete tags.

The result here is the maximization of the equal contribution of information from both

abstract and concrete categories. We expect to extract the most insightful results through this

setup, because not only it creates the balance just introduced, but it also exploits the tags

availability to the fullest. We are referring to this specific type of experiment as Max-Sample-

Balanced.
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5.3 Extending the Abstractness Scored Dataset

This second portion of the experimentation involves the extension of the set of abstractness

scored word by labeling the 7077 unscored tags present in DPrivacy. Specific experiment setups

have been executed exploiting this extension, to confirm the insights obtained using the original

abstractness dataset and to get further insights.

5.3.1 Abstractness Scoring Extension Choice

The extension of the scored words dataset has been done using the best scoring technique

resulted from the evaluation described in chapter 4. The discussion expressed at the end of the

above-mentioned chapter concluded that the best performing approach is the ridge regression

model, with polynomial kernel of 5th degree, using the textual features from fastText word

embedding for the samples representation. This decision has been confirmed by the quantitative

considerations about the metrics values of the results. Moreover, the fact that using textual

features, rather than the concatenation with visual ones, allows us to score more terms and more

precisely, due to the low availability of images on Flickr for some specific terms (see chapter 4).

The results obtained in the scoring process have been largely described in the previous

chapter about the abstractness scoring task. Particularly helpful are the information gathered

in Table VI and Figure 15.

A notable insight about the resulting distribution is that concrete tags are present in higher

quantity with respect to the abstract ones. Specifically we are dealing with three times more

concrete words than abstract. Considering only the terms in the extremes of the scoring range,
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Class Pics
Abstract Tags Concrete Tags

per picture Tot per picture Tot

Private 1072 5.95 1279 13.16 3974
Public 1853 6.17 2270 15.50 7110
All 2925 6.09 2668 14.64 8644

TABLE VII: DPrivacy dataset statistics using the complete extension.

which corresponds to values above 0.6 and below 0.4, the unbalance is higher, reaching the ratio

of four to one.

5.3.2 Exploiting the Complete Extension

Initially we decided to execute the same exact experiment setups adopted for the original

abstractness scoring dataset, but extending it with the complete set of 7077 newly labeled

terms. Specifically the two Natural-Distribution and Max-Sample-Balanced experiments have

been evaluated.

The usage of the extension allows us to evaluate our hypothesis without the influence of

removing from the consideration a large portion of words. We had in fact to ignore the set

of 7077 unscored terms, because unable to define their nature in term of abstractness. The

automatic scoring technique allow us to use all of them, excluding from the evaluation only the

unscored tags not representable through fastText word embedding.

Some statistics about the resulting privacy dataset, using the complete extension, are shown

in Table VII. The interesting insights that we can get from this setup concern the fact that the
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difference in the amount of concrete and abstract has increased, as well as the average amount

of concrete words per sample.

5.3.3 Exploiting the Extremes of the Extension

The second approach we experimented evaluate the performances exploiting only a portion

of the automatically scored words. The selection of the samples to use aims at exploiting a

subset of terms for which we have higher confidence about their nature.

More specifically, we started considering that in the context of the privacy classification

experiments we are using words in a binary way, defining them as abstract or concrete on the

base of the scores associated. Therefore we decided to keep in our extension only the tags

which have been strongly characterized towards one of the two extremes of the scoring range.

Specifically we defined as belonging the extremes of the range any word with a score below 0.4

and above 0.6. This choice has been tailored in order to keep a large enough amount of words

from both sides.

Class Pics
Abstract Tags Concrete Tags

per picture Tot per picture Tot

Private 1072 4.61 917 11.34 3423
Public 1853 4.50 1597 13.71 6177
All 2925 4.54 1885 12.84 7500

TABLE VIII: DPrivacy dataset statistics using the extremes of the extension.
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The words selected from the extension has been added in the consideration of the experi-

ments and the Natural-Distribution and Max-Sample-Balanced setups have been executed with

the new asset. The statistics related to the version of DPrivacy extended this way are shown in

Table VIII.



CHAPTER 6

RESULTS AND DISCUSSION

This chapter is dedicated to the presentation of the performance results obtained from the

execution of the experimental setup and adopting the evaluation modalities as discussed in

chapter 5.

The dissertation is divided in two portion, one related to the outcomes of the experiments

using the original DAbstractness and the following regarding the abstractness dataset extension

through automatic scoring.

In conclusion we propose a discussion of the results in general, focusing on the comparison

of the overall performances.

We are going to analyze the results by the point of view of three metrics: accuracy and

f1-measure for both the privacy classes. The accuracy should give us a broader idea about

the general proportion of correct predictions among the complete set of samples. F1-scores

will provide us some insights about the general performances of the models in relation to each

class, its value represent a unique evaluation of both precision and recall for the class targeted,

allowing us to understand if the model is skewed towards one of the two, or if it is labeling

samples in a balanced way.
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6.1 Results with Original Abstractness Dataset

The performances using DPrivacy, with DAbstractness for terms abstractness evaluation and

adopting the evaluation procedures and metrics introduced in 5.1, are shown in Table IX.

We would start commenting these results by highlighting a general performance pattern,

easily noticeable by a quick review of the table. Precisely, considering the comparison between

the metrics values obtained using abstract only tags and concrete ones, all models performed

generally better in the former case. We decided to start from this consideration because it

represents an important achievement, consisting by itself in a strong proof in support of our

thesis.

Here follows a list of observation we can derive from the resulting performances:

• Natural-Distribution setup unexpectedly is showing slightly better results using abstract

words rather than concrete. The accuracy metric is showing an average discrepancy

oscillating around 1.5% between the usage of the two types of tags.

It is important to notice that even though the quantity of different concrete tags in each

single sample and in the overall dataset is certainly higher with respect to the abstract

counterpart, the latter is still performing better. The higher variety and presence of

concrete words should suggest higher probabilities, for this category of terms, to be better

suited for characterizing the samples in the privacy prediction task. On the contrary the

evidence emerged from this initial result are proving the opposite.

• Max-Sample-Balanced experiment further supports our thesis showing an important in-

crease in the performances gap compared with the natural distribution. In this case each
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of the metric, in the evaluation of each of the models, is stating that abstract words are

better performing. More specifically they are reaching an average 5% more in accuracy

and a minimum of 3% more in f1-scores, for both classes, when compared with concrete

words performances.

It is important to observe from the values reported by the different metrics, how it is

emerging a general trend of achieving similar performances when using abstract tags only

or in combination with concrete ones. Therefore the contribution of information brought

by concrete concepts, when available in the same quantity as the abstract counterpart,

seems to be not very meaningful for privacy prediction.

From this setup we can derive that the discriminating power of concrete words here is

certainly enhanced by the extremely high presence they have in each single sample. This

experiment reduced their presence, keeping it at the same level as for abstract words,

consequently showing important decreases in performances.

• N-Sample-Balanced experiments, with the different values of N from 1 to 4, have been

evaluated in order to understand if the considerations derived from previous results are

still valid when the information available for each samples is extremely limited. These

setup aim at evaluating the comparison of performances of concrete and abstract concepts

at the core of their essence to verify if the discrepancies in their discriminating power is

still present.

With a gradual increase in the value of N we have been able to monitor the performances

step by step. Ensuring the balance in the number of abstract and concrete tags for each
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sample, we started from the setup with the minimum possible tags, to the one maximizing

it. The differences in performances between concrete and abstract have been verified by

each model and for all values of N.

The fact itself that this pattern is repeated for each of the four values of the parameter

suggests us that it is not a behaviour influenced by the particular randomly sampled

terms. Therefore we can use it to prove that the better performance appreciated with

abstract concepts in Max-Sample-Balanced is not caused by the sub-sampling action itself,

but is related to actual distribution of words among samples and their abstract nature

Experiment
Setup

Tags
Type

SVM NB RF CNN

Acc.
(%)

Pri. F1
(%)

Pub. F1
(%)

Acc.
(%)

Pri. F1
(%)

Pub. F1
(%)

Acc.
(%)

Pri. F1
(%)

Pub. F1
(%)

Acc.
(%)

Pri. F1
(%)

Pub. F1
(%)

Natural-
distribution

A 68.0 73.75 73.83 69.26 64.06 73.17 72.55 77.42 77.44 72.82 63.77 78.22
C 66.84 73.97 74.0 67.52 60.86 72.26 69.06 73.76 73.90 73.06 62.24 79.04

A+C 71.15 77.6 77.63 73.43 67.72 77.46 75.79 80.27 80.36 76.55 67.05 81.74

Max-Sample-
Balanced

A 67.22 73.01 73.04 69.23 63.96 73.17 71.93 76.49 76.54 72.51 63.53 77.91
C 62.29 70.11 70.18 62.05 55.37 67.00 64.99 72.46 72.53 66.46 53.96 73.62

A+C 66.74 73.83 73.86 70.19 64.82 74.15 74.05 78.86 78.93 74.09 64.52 79.57

1-Sample-
Balanced

A 59.14 62.57 62.64 57.81 54.97 60.32 67.14 74.3 74.34 65.84 56.44 71.87
C 51.21 49.24 49.37 52.76 51.37 53.82 62.19 71.92 71.98 60.48 51.65 66.56

A+C 60.51 66.94 67.10 61.51 56.47 65.50 67.86 74.91 74.92 67.93 57.75 74.12

2-Sample-
Balanced

A 65.88 71.25 71.29 67.66 62.53 71.56 70.6 76.08 76.11 70.32 62.59 75.4
C 57.71 64.22 64.36 56.31 51.91 59.97 62.77 72.06 72.08 63.25 52.24 70.11

A+C 64.68 71.83 71.84 68.79 63.14 72.94 71.18 76.92 76.93 72.89 63.18 78.53

3-Sample-
Balanced

A 66.70 72.23 72.24 68.96 63.39 73.06 71.11 75.92 75.95 72.27 64.59 77.2
C 59.08 66.39 66.53 61.71 54.3 67.05 63.62 71.47 71.48 65.81 54.82 72.45

A+C 65.54 72.76 72.77 70.32 64.84 74.34 72.92 77.83 77.86 74.02 65.1 79.29

4-Sample-
Balanced

A 66.80 72.63 72.67 68.78 63.03 73.01 71.62 76.63 76.68 71.86 63.51 77.07
C 60.96 68.3 68.35 62.8 56.77 67.36 65.13 72.69 72.71 67.35 57.16 73.59

A+C 67.25 74.13 74.15 71.49 66.18 75.37 73.91 78.71 78.75 73.91 64.51 79.32

TABLE IX: Results of the privacy classification experiments on DPrivacy using abstractness
scores from DAbstractness
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Experiment
Setup

Tags
Type

SVM NB RF CNN

Acc.
(%)

Pri. F1
(%)

Pub. F1
(%)

Acc.
(%)

Pri. F1
(%)

Pub. F1
(%)

Acc.
(%)

Pri. F1
(%)

Pub. F1
(%)

Acc.
(%)

Pri. F1
(%)

Pub. F1
(%)

Complete Extension
Natural-Distribution

A 68.24 74.69 74.71 69.16 63.25 73.44 73.06 78.18 78.19 74.02 63.22 79.90
C 70.63 76.66 76.71 71.62 65.05 76.13 73.78 79.45 79.50 75.73 64.93 81.41

A+C 70.67 76.67 76.70 74.6 68.45 78.76 76.65 81.24 81.31 76.92 67.45 82.11

Complete Extension
Max-Sample-Balanced

A 67.76 74.26 74.28 68.62 62.93 72.79 72.48 77.62 77.64 73.4 63.01 79.21
C 64.55 71.28 71.33 64.75 58.98 69.11 68.75 75.79 75.84 69.13 56.89 75.93

A+C 69.54 76.29 76.32 71.08 65.61 75.05 74.46 79.47 79.50 75.86 65.70 81.36

Extension Extremes
Natural-Distribution

A 68.96 75.32 75.37 68.68 62.98 72.87 72.31 77.35 77.39 73.98 64.64 79.41
C 69.09 75.76 75.81 70.25 63.28 75.02 72.34 77.83 77.89 74.26 63.26 80.16

A+C 70.22 76.42 76.47 73.67 67.34 77.97 76.17 80.94 81.00 77.13 67.10 82.45

Extension Extremes
Max-Sample-Balanced

A 68.34 74.80 74.83 68.89 63.33 72.99 72.48 77.33 77.36 73.61 64.34 79.04
C 62.77 70.82 70.94 62.77 57.15 67.09 66.74 74.15 74.18 67.86 54.49 75.16

A+C 68.61 75.42 75.44 71.35 65.75 75.39 73.91 78.86 78.88 75.52 65.57 80.99

TABLE X: Results of the privacy classification experiments on DPrivacy using abstractness scores
from DAbstractness and the extension of automatically scored ones.

6.2 Results with Abstractness Dataset Extension

We are now focusing our attention toward the outcomes observed in the experiment setups

exploiting the extension of the abstractness scored dataset. Once again the evaluation has been

performed according to the methodologies described in chapter 5.1. The performances obtained

are shown in Table X.

Here follows a list of observation on the performances achieved:

• The results obtained from the Natural-Distribution experiment using the complete exten-

sion is reflecting very similar results from the usage of abstract and concrete only words.

In general concrete tags are performing slightly better. The main consideration that we

can derive from this setup is related to the amount of tags added to the consideration

by the extension. The new distribution of words among samples has kept the same ratio
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between the number of concrete and abstract terms, also in the two privacy classes, but

the amounts have been tripled. This is surely increasing the performances for both cate-

gories of words, as verified, but the concrete one is gaining the most advantages from it.

This behaviour can be justified by the fact that the large variety of tags added enables

the concrete ones to be descriptive enough for the samples, to the point of performing

better than the abstract counterpart. This hypothesis is also supported by the fact that

the average amount of tags per data-point is increased by almost 6 for the concrete class

and only 3 for the abstract one.

• The Max-Sample-Balanced setup with complete extension is showing better performances

with abstract tags. With respect to the results obtained without the extension, it is

possible to notice a slight decrease of the gap in accuracy, reduced now to 4%, while the

f1-scores have kept on the average the same discrepancy. These results seem to confirm

the observation derived from the previous experiment, demonstrating that even with the

greater amount of concrete results from the extension, once the number of words per

category is equal, the samples are better classified through the abstract tags.

• The setup with Natural-Distribution using the extension extremes is also providing inter-

esting insights. In comparison to the setup using the complete set of newly scored words,

it is increasing a little the ratio of quantity of concrete words with respect to abstract.

Considering the average number of words per sample of each type, it also seems to give a

slightly higher contribute to the concrete category increasing the statistic by around 3.5

for the latter and only 1.3 for the abstract. The effect in performances is very similar to
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the other experiment, but the small gap in the metrics value appear to be even smaller.

The main observation that we can derive from this behaviour is that the increased pre-

cision in the abstractness scores added by this setup, in spite of creating again an even

higher unbalance in the distribution of tags in favor of the concrete category, is decreas-

ing the performance discrepancy. Our hypothesis is that this behaviour is caused by the

higher precision of the extension’s scores, but we can hardly confirm that due to the very

subtle performance’s changes with respect to the setup using the whole extension

• The last setup, with Max-Sample-Balanced using the extension extremes, is proving the

previous hypothesis in regards of the scores precision. In fact, comparing the performances

with the same setup using the complete extension, we can detect a slight, but shared,

performances increase for abstract words and decrease for concrete ones. This behaviour

is increasing the gap between the results of the two categories by adding a lower amount

of words, but with higher confidence about their abstract nature.



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

From the results obtained by this investigation we are now able to infer that abstractness is

closely related to privacy, when we talk about characterizing the images through their user tags.

The experiments allowed us to evaluate how abstract words are better representing images for

privacy, if compared with concrete, especially when the representation of the samples is reduced

to one or two terms. We also tested how extending the quantity of abstract and concrete

information associated to the images influences the privacy prediction, once again verifying

that the abstract terms, even if considerably lower in amount, are obtaining performances

comparable to the concrete counterpart. Lastly we also noticed that it is very important to

use precise scoring for abstractness, evaluating how this is influencing the results of the privacy

prediction.

With regards of the task of scoring words by abstractness, we have been able to test the

performances of representing them through word vectors or a concatenation of textual and

visual features. We concluded that they perform very similarly in this task, adopting the models

chosen, and it is important to mention that the features extracted by ResNet152 architecture

are better performing than the InceptionV3 ones. We couldn’t compare the results with other

works, because the dataset used by us has never been tried before. Through the qualitative

analysis of the usage of the scoring models on unlabeled words from our privacy dataset we

have been able to appreciate the importance of using a symmetrically distributed dataset. This
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feature of the training set allowed us to obtain scores not too unbalanced on one specific side

of the range, resulting in plausible values.

One important statement, regarding the abstractness related task in general, is that it is

important to enlarge the available datasets on the topic. Another issue regards the preciseness of

these data resources. The problem of judging abstractness resulted, by itself, difficult to be faced

objectively, often producing consideration that are not shared my everybody. Particularly hard

is to score concepts that are not extremely characterized toward one of the two extremes of the

scoring range. Even using a precise definition, both dataset we analyzed showed discrepancies,

suggesting that the ability of precisely recognizing the abstractness of concepts is very hard

to achieve, and could require the choice of a particular annotation setup or a new definition,

focusing on slightly different aspects of the idea of abstract.

This research offers a good starting point for further analysis about abstractness and privacy

correlation. Future works should investigate the results using other type of textual data asso-

ciated to online images, such as titles, descriptions and comments. A particularly interesting

direction of this research would be to explore new ways to extract abstract information from

images, task that has been hardly approached by researchers. This investigation could reach

fascinating insights about how complex model would be able to detach from the mere level of

the images’ pixels, extracting concepts of elevated nature from it.
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