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Abstract

Recurrent Neural Networks (RNNs) are the deep learning models which are
considered the state-of-the-art for sequence modeling and machine transla-
tion tasks. One of the most used RNN architectures is the Encoder-Decoder
network, which consists of two networks, one encoding the input sequence
to a fixed length representation and a second one which then decodes it to
produce a new sequence. These models, which lead to high accuracy results
and are able to handle sequences of different length, come with increased
computational complexity and memory requirements compared to other ma-
chine learning models. This complexity, in turn, translates into high energy
consumption. This additional overhead makes the execution of such mod-
els impossible on embedded devices or edge nodes, which are not equipped
with hardware powerful enough to sustain the heavy computations required.
However, researchers have shown that executing deep learning inference on
such devices, if made possible, would provide several benefits in terms of
responsiveness, total energy consumption and security.
In order to make the inference more energy efficient on edge nodes, this work
proposes an algorithm that improves the energy efficiency of the Encoder-
Decoder RNNs and proves its effectiveness by measuring the real energy sav-
ing on an embedded device. In particular, this work implements a dynamic
Beam Search algorithm, which varies the Beam Width (BW) according to
the input processed and the translation complexity. The value for this pa-
rameter, which is directly tied to the complexity of the network, will be
determined by using a new discrimination criterium which yields on the two
datasets tested a reduction of the execution time above 20%. This time re-
duction also affects the energy consumption, reducing it significantly while
keeping the same translation quality.
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Chapter 1

Introduction

Machine Learning has become increasingly present in every aspect of soci-
ety during the last years, performing tasks such as object recognition, image
recognition and speech recognition with accuracy close or superior to that
achieved by humans. Deep Learning, a subset of Machine Learning, uses
a general-purpose learning procedure, which employs layers of features not
designed by humans but learned from data. On the contrary, previous tech-
niques required careful engineering and a deep domain knowledge, making
the result specific for a single task [12]. Recurrent Neural Networks (RNNs)
are deep learning models used for tasks like Neural Machine Translation
and Image Captioning [14]. Differently from normal feed-forward Neural
Networks, that only produce outputs using the information extracted from
current inputs, RNNs have an internal memory, which allows them to process
sequences of data. Furthermore, they are able to handle variable length in-
puts and outputs, which yields improved results in sequence modelling tasks.
Deep Learning development and widespread adoption were mainly favoured
by the increased availability of computing power, which makes it possible
to train these models in a relatively short time [24], despite the increasing
complexity of neural network architectures needed to obtain higher accura-
cies. However, this increasing complexity and hardware requirements of the
models caused them to become too resource hungry to be run on low-power
embedded devices, where the hardware capabilities are limited and there is
no connection to the power grid.
The increasing popularity of edge-nodes, such as mobile phones and IoT
sensors, leads to trying to bring Machine Learning models directly on those
low power devices. While the training phase of the models should still be
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1 – Introduction

performed on the cloud using high performing clusters of computers, decen-
tralizing the inference phase and performing it directly on the device can
provide significant benefits [24]. On the one hand, it can decrease the overall
system latency (as data doesn’t have to be sent to the cloud for processing)
thus improving the responsiveness of the system. Moreover, as computation
is typically more efficient than wireless transmission, the energy consumption
on the edge node may also decrease. This trend has led to the design of new
more energy efficient Deep Learning architectures and to the optimization
of the inference phase to lower the complexity or the necessary hardware
requirements [25].
In literature various approaches have been proposed in order to optimize
deep learning models, such as hardware accelerators, which are specifically
tailored to perform the computations required by a neural network [24]. This
approach though has been, at the moment, explored mainly for models like
Convolutional Neural Networks, whose operations can be easily parallelised.
Various hardware solutions are present in literature while in the case of RNNs,
where sequentiality plays an important role, very few optimized hardware
solutions have been proposed [2]. Another approach to obtain more energy
efficient networks is reducing the complexity of the models by using the
approximate computing paradigm, which lowers the energy required by the
network but results in a lower accuracy [24]. Various approximate computing
have been proposed in literature, such as the binarization of the network, thus
avoiding floating point operations which are very expensive to be performed
on embedded devices [8]. Another possibility to reduce the complexity of
the network is modifying the architecture of the model by dropping layers or
neurons, thus reducing the number of computations required [24].
These approaches can be applied either statically or dynamically to the net-
work. In the static approach the configuration of the network is kept un-
changed during the whole execution [25]. This leads to suboptimal solu-
tions since the network will tend either to under-approximate inputs that are
harder to process, thus lowering significantly the accuracy, or over-approximate
easier inputs, thus wasting energy. The dynamic approach on the contrary
applies a different degree of approximation (e.g. binarization or quantization
of the weights), depending on the current input characteristics and is based
on the idea that not all the inputs are equally difficult to process for a net-
work. This adaptation of the network configuration during runtime allows to
achieve better accuracy-energy trade off than a static approach and it may
even reach higher accuracies [20].
Pagliari et al. [9] propose a more energy efficient Encoder-Decoder network,
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1 – Introduction

the state of the art RNN architecture for tasks like Neural Machine Transla-
tion. They introduce a dynamic Beam Search algorithm, changing its Beam
Width (BW) depending on the difficulty of the input during the inference
phase. The BW parameter influences heavily the network, in fact, an higher
value improves significantly the translation accuracy but at the same time
comes with an increased number of computations and network complexity.
This work implements the dynamic Beam Search on a real embedded device,
proposing a novel way to tune the BW depending on the input complex-
ity and proving empirically its effectiveness by measuring the energy saved
during the execution of the network with this approach. A reduction of the
execution time of more than 20% was obtained on both the datasets used in
this work. Furthermore, it was proved that the power consumption of the
Encoder-Decoder architecture doesn’t change over the whole inference phase,
due to its continuously repeated decoding operations. Thus, a reduction in
the execution time corresponds to a comparable energy saving.
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Chapter 2

Background

2.1 Overview
Deep neural networks (DNNs) have recently become the focus of many works
in the machine learning field [25] thanks to the increasing availability of
larger datasets, increasing computing power and easy to access and open-
source frameworks [24]. Their ability to discover intricate structures in high-
dimensional data [12] makes them ideal in many fields, like speech and image
recognition, where not only they are superior to the other methods but man-
age to exceed human accuracy [24] in some cases. Furthermore, an additional
perk of these methods is that their higher precision comes with still relatively
short periods of time to train.
Before the advent of the DNNs the machine learning techniques were limited
by the need to process natural data in a raw form, that made careful en-
gineering and high domain expertise necessary to obtain a suitable internal
representation which a classifier could then use [12]. This long and laborious
work, which had to be repeated for every problem in a domain, can be substi-
tuted by a representation learning method. This set of methods is able to be
fed directly with raw data and to discover automatically the representation
needed for detection or classification.
Deep learning uses representation-learning methods with multiple levels of
representations, obtained by composing non-linear modules that transform
the representation at one level. These data representation transformations
are called layers and by stacking many of them, even very complex functions
can be learned. Furthermore these layers are created through a general learn-
ing procedure instead of being designed by human engineers [12].
Deep learning, as the majority of other machine learning algorithms, is more
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2 – Background

commonly used with one of the two main methods to detect and extract
features: supervised learning. In this case the network is fed with data la-
belled with the respective class, so that the network will try to extract the
characterizing features and will be able to recognize the same features when
unlabelled data is provided. In order to do so, the data is fed to the network
multiple times at training time and the output obtained is compared with
the expected output. A loss function calculates how far the output is from
the expected ones and the parameters of the network are modified in order
to reduce this "distance" in a process called back-propagation.
Other forms of “learning” are unsupervised learning which, starting from
unlabelled data, tries to group those with similar characteristics and rein-
forcement learning, where the so-called "intelligent-agent" interacts with the
environment and calculates the cost of its actions.
There are various different architectures of Neural Networks (NNs), each one
born in order to address a specific set of problems:

• Feed-forward neural networks: the quintessential deep learning models,
made of function approximation machines that are designed to achieve
statistical generalization [5]. They are made of three types of layers:
the Input layer, the Output layer and a set of Hidden layers. This
architecture is mainly used for classification.

• Convolutional neural networks: feed-forward networks using one or more
layers performing a mathematical operation called convolution instead
of a normal matrix multiplication. They are now the dominant approach
for almost all image recognition and detection tasks [12].

• Recurrent neural networks: neural networks specialized in processing
sequences of values even with variable length. They possess a “memory
state” of what was previously analysed, so that the output value can be
chosen according to the current and the previous inputs.

The main architectures will be analyzed in more detail in the following sec-
tions, first an overview on the common elements composing the neural net-
works will be given.
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2 – Background

Figure 2.1: The neuron

2.2 Neuron
The artificial neural networks are composed of neurons, which are generic
computational units that perform a weighted sum of their inputs (and even-
tually a bias). Then, in order to avoid having a simple linear algebra opera-
tion, a non-linear activation function is applied on the result of the weighted
sum. Figure 2.1 shows a graphical representation of a neuron whose formula
is:

yi = h(
nØ
i=1

wixi + b) (2.1)

where wi are the weights applied to the respective input xi, b is the bias and
h the non linear activation function which is applied on the output of the
weighted sum.
The weights wi are updated during the training phase, while the bias is used
to shift the activation function on the x plane in order to increase the learning
flexibility. If all the outputs of the layers are connected to the input of the
next one, the network is called fully connected.
Among the possible activation functions for the neurons, the following are
the most commonly used [12]:

• Step function

h(x) =
0 x < 0

1 x ≥ 0
(2.2)
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A binary function (2.2) that manages only the cases in which the neuron
fires (so it has an output) or not. This is very limiting if we want to
understand how confident about the classification the neuron was. Fur-
thermore, an additional issue is the impossibility to derive the function
for x = 0 during the training time.

Figure 2.2: The step function plot

• Logistic function

h(x) = 1
1 + exp (−x) (2.3)

The logistic or sigmoid function (2.3) is one of the most conventional
activation functions used in the last years [12]. It allows to obtain an
output in the interval (0,1), but a network using the logistic sigmoid
may have its backpropagated gradient vanish or explode quickly [27].

• Hyperbolic tangent function

h(x) = tanh(x) = exp (x)− exp (−x)
exp (x) + exp (−x) (2.4)

The hyperbolic tangent function (tanh) has very similar characteristics
to the logistic one but its gradient is much more stable. Even if it is still
a saturated function, the saturation value of the hyperbolic tangent is
much lower than the one of the logistic function.

14



2 – Background

Figure 2.3: The logistic function plot

Figure 2.4: The hyperbolic tangent function plot

• Rectified Linear Unit

h(x) = max(0, x) =
0 x ≤ 0
x x > 0

(2.5)

The rectified linear unit (ReLU) is an activation function that doesn’t
saturate even when the input is very large. This solves the vanishing
gradient problem of the previous functions and allows a much faster
training of the network which uses it in the hidden layers. For these
reasons, the ReLU has become in the last years one of the most used
activation functions. The ReLU has one major problem though: the
“dying ReLU”. Some parts of the network will never fire and so the

15
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Figure 2.5: The rectified linear unit plot

weights of the neurons will never be updated. This issue can be solved
by changing the function to a Leaky ReLU (2.6), where the output of
the neuron for negative values is a small number and not zero, so that
learning can be performed even on parts that rarely “fire”.
The following becomes then the equation of the Leaky ReLU:

h(x) = max(αx, x) α ∈ (0,1) (2.6)

• Exponential linear unit

h(x) =
α(exp(x)− 1) x ≤ 0
x x > 0

(2.7)

The exponential linear unit (ELU) has, like ReLU, been proposed very
recently and it was designed mainly to solve the vanishing gradient prob-
lem. It still has negative values as output like batch normalization but
with lower complexity. The ELU has the advantage over the ReLU to en-
sure a noise-robust deactivation state, with a lower forward propagated
variation and information [3].
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Figure 2.6: The exponential linear unit plot with α = 1

2.3 Layers

Figure 2.7: An overview of a fully-connected network and its layers.

Layers are aggregations of neurons and are mainly divided into three cat-
egories:

• input layer : receiving the input data in a suitable format to be processed
by the network. Each input element represents a variable and is fed to
one of the neurons composing the layer.

17
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• output layer : providing the result of the neural network classification or
regression. In case of classification the number of neurons composing
this layer depends on the number of classes to predict, each node will
give the confidence that the output belongs to that class. In this layer
the activation function to be used depends strictly on the problem to be
solved, the most common ones are the softmax [14] and the logsoftmax.

• hidden layer : the layers that are present in the middle and whose output
is not directly the class to predict. Each one of them applies a function
to the input data, allowing to detect relations not visible during the
previous steps and so, to extract new features. These layers perform
the heaviest calculations of the network, requiring the majority of the
computing power during the execution.

The number of neurons composing an hidden layer has an impact on the per-
formance of the network, in fact, if they’re too few it will cause underfitting,
in which case the model won’t be able to recognise patterns. In the opposite
case, so if the number of neurons is too high, the model will overfit, becoming
unable to generalize (causing high accuracies on training data and low ones
on test data).
The number of neurons present in a layer gives the model width, while the
number of layers is the depth. In case of multiple hidden layers the network
can be called deep. The majority of the networks nowadays is a Deep Neural
Network since the average number of layers of the models has changed in the
last years, going from one hidden layer to a range from five to more than a
thousand [24].

2.4 Neural Network training
To be able to predict the correct values Neural Networks have to undergo a
learning or training phase, in which the weights are updated according to the
features extracted and the patterns found in the data are fed to the network.
In order to penalise the network when a wrong prediction is made in the
case of supervised learning, a cost or loss function L is chosen and will be
used at each step. The most common approach to optimize this function
is the maximum likelihood estimation (MLE) (2.8): during the learning the
networks weights w that minimise the error E between the known training
values yi and the predicted training values fw(xi) are sought. For instance,
if the loss function used is the Mean Squared Error between the known and
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predicted output (a typical choice for regression problems), then:

E(w) =
NØ
i=1

(yi − fw(xi))2 (2.8)

The training phase can be split in two main parts, during the first one the
network is fed with an input x and will output, after that the vector has
propagated in all the layers of the network, a predicted value fw(x). This
will continue until a scalar cost L(θ) is produced [5]. In the second phase
the weights of the network have to be updated according to the loss obtained
in the previous step; this process usually happens through the optimization
process called gradient descent. The partial derivative with respect to the
weight of the loss is calculated and the weight is modified by a small multiple
of that value [24]. This gradient (2.9) indicates the change required to lower
the loss. This two-step process is repeated iteratively until a certain stopping
criterion is met, e.g. a given value of the loss is obtained.
The gradient calculation, while analytically simple, may become very expen-
sive to compute numerically, slowing down the whole training phase. To
avoid this, the backpropagation, a process derived from the chain rule for
derivatives, is used to calculate the gradient because of it being simple and
computationally inexpensive. It consists in passing the gradient back to the
network and it’s computed at each layer, starting from the output one. Once
these gradients have been computed, the derivative of the loss is multiplied
by α, the learning rate, and used to update the weights. Equation (2.9) shows
the formula used to update the network weights. The learning rate can be
seen as the height of the jump while descending a function; if this value is
too big it will miss the minimum (overshooting) while if it is too small it will
get stuck in local minima.

wt+1
ij = wtij − α( ∂L

∂wij
) (2.9)

This backpropagation technique, while being very fast, doesn’t avoid the
possibility of getting stuck in a local minimum, but with a sufficiently large
dataset the chance of it happening is very low [12]. Furthermore this tech-
nique requires the network to store the intermediate outputs, in order to be
preserved for backwards computations, increasing the storage requirement
[24].
Once that the learning phase has concluded, the network can be used to
predict values from data whose class is unknown. This process of inference
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consists only of the forward pass of the network, since the labels are unknown
and the loss cannot be calculated any more, so the weights are unchanged
during this phase.

2.5 Network architectures

2.5.1 Feed-forward neural networks

Feed-forward networks are the simplest neural networks, which ultimate goal
is to approximate some function f∗. They define a mapping y − f(x; θ) and
learn the values of the parameter θ resulting in the best function approx-
imation. The models are called feed-forward because there is no feedback
connection feeding the outputs at various steps back to the network.
The name network derives instead from the fact that they are typically rep-
resented by the composition of many different functions, in fact the model
is associated with a directed acyclic graph describing how the functions are
composed together [5].

2.5.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a specialized type of neural net-
works for processing data with grid-like topology [5], that due to their out-
standing results in the last years, have become the state of the art for al-
most all the image recognition and detection tasks [12]. Their huge success
has been made possible thanks to the introduction of GPUs for computa-
tions (which allow greater parallelization than CPUs and so a huge increase
in computational power), thanks to the new normalization technique called
dropout and a technique to generate new data from the existing ones [12].
The name of this network derives from the convolution, a mathematical op-
eration on two functions of a real-valued argument [5]. This operation is
implemented by a type of hidden layers called convolutional layers, whose
formula paired with a ReLU is (2.10). In the equation h(n−1)

k is called input
feature map, wnkj is the kernel and hnj is the output feature map. The output
can be seen as an abstraction of the input, where only the most meaningful
features are left.

hnj = max(0,
KØ
k=1

hn−1
k ∗ wkjn) (2.10)

20



2 – Background

This operation performed by these layers can be seen as a set of matrix mul-
tiplications (as shown in Figure 2.8). Convolution brings several improve-
ments to a machine learning model: it lowers the memory usage, the number
of computations and allows the network to manage inputs of different sizes.
CNNs use a kernel (or filter) smaller than the input data, which allows to
detect small features and reduces the number of parameters to be stored.
Furthermore the weights of the network are shared, so they are reused for
more than one neuron, lowering even more the memory usage.
Another addition of the CNNs is the pooling layer, which applies a sliding

Figure 2.8: An example of convolution applied by a layer on the input [5]

window on the input and outputs only summary statistics of it. Two of the
most common pooling types are the max and the average pooling. These
layers can output a matrix of any size and can be used to manage inputs of
different dimensions. Furthermore pooling reduces the memory required by
the network since allows to discard features impacting less the prediction.
The batch normalization layer is used in order to stabilize the distribu-
tion of the inputs by working on their mean and variance. This technique
makes the gradients used in the training phase more predictive, improving
the accuracy and lowering the time required for training [23]. The dropout
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layer is used to avoid overfitting the network during the training time while
it is not used during the inference. It allows to switch off some neurons in
order to avoid co-adaptation, increasing the network generalization capabil-
ity.
Figure 2.9 shows an example of CNN, where the final layers are fully-

Figure 2.9: The CNN called LeNet-5 [11]

connected in order to predict the classes.

2.5.3 Recurrent Neural Networks
Recurrent Neural Networks (RNNs) are a type of neural network specialised
in processing sequential data. They are able to process sequences of values
x(1), . . . , xτ , that can be longer than for other non-specialised networks but
that can also change in length [5]. While the input sequence is still analysed
one item at a time like for feed-forward networks, the hidden units keep a
“memory” vector containing all the information about the past items of the
sequence. The time-stamp index t of the sequence of elements x(t) is not
always related to time but just the position in the sequence that, as long as
it fully observed before being provided to the network, can even go backward
in the time of the real word or be completely unrelated to it. The main fields
of application for the RNNs are:

• Image Recognition and characterization: if RNNs are paired with
CNNs, they can be used to first recognise the image fed to the network
and then give it a description.

• Machine Translation: handling the translation between languages
with different topologies and idioms.

• Language modelling: in this case RNNs are used in order to find the
next word in a sentence.
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In order to define the graphs of the RNNs and their structure, first the
computational graphs need to be able to represent cycles, which are needed
to show the influence of the current variable on itself in a future time step.

Graph Unfolding

This technique is used in order to display a recursive or recurrent computation
by using a computational graph, which is a way to formalise the structure
of a set of computations. This notation represents network parameters as
nodes and as arrows the interconnections among the computations done on
the nodes. The computational graph of a normal feed-forward network or
of a convolutional neural network, is a simple directed acyclic graph. The
unfolding technique is usually used on a chain of events and results in having
shared parameters through the whole DNN structure.
For example given the computational graph of a recurrent neural network
hidden units, since the definition of h at time t refers back to a definition at
a previous time step, it can be said that the graph is recurrent.

h(t) − f(h(t−1), xt; θ) (2.11)

In equation (2.11), h represents the state and will be used by the network
output layer as a summary of the important features of the past sequence
of inputs, θ the state parameters, x the input and f the mapping function.
In the case of RNNs, f represents the neural network used to perform the
prediction of the next element based on the current value (shown as the
arrows in the unfolded graph in Figure 2.10). The summary is defined as
lossy since it maps a variable length sequence to a fixed length one ht [5]. In
order to unfold (2.11), each variable at every time step will be represented
by a node of the unfolded graph, which will have size equal to the sequence
length and many repeated parts.
The equation of the state at the step t can then be written as:

h(t) − g(t)(x(t), x(t−1), · · · , x(1)) (2.12)

The function g(t), by using the previous inputs, produces the current state
and the unfolded graph allows its factorization by repeated application of f .
This factorization allows the network to manage different sequence lengths
as input. Furthermore it allows to use the same function f with the same
parameters for all time steps [5]. It is then possible to learn a single model
that can manage all the time steps and sequence lengths instead of a different
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Figure 2.10: The recurrent neural network with no outputs described in
(2.11). On the left the recurrent graph and on the right its unfolded compu-
tational graph [5].

one for each time step. The main advantage of the recurrent graph is its
capability to summarize what the network is doing, while the unfolded graph
is explicit and allows to visualise immediately the path of the information
and its flow forward and backward in time.

2.5.4 Recurrent Neural Networks Design Patterns
Due to the success of RNNs in many fields, multiple architectures were de-
signed over time, each one focused on performing a specific task. The most
important and common patterns [5] can be divided in three classes differen-
tiating themselves for their output and their loop back connections.
They are:

• Recurrent networks producing an output at every time step and that
have recurrent connections among hidden units.

• Recurrent networks producing an output at every time step, with recur-
rent connections from the output to the hidden units only of that time
step. This architecture is less powerful than the previous one but it may
be trained faster since each time step can be trained independently from
the others.

• Recurrent networks that have connections among hidden units and that
once read a whole sequence produce a single output. They can be used
to summarize a sequence and produce a fixed-length representation of
it.

In the following sections the training of a RNN of the first type will be seen in
more detail, since the architecture used in this work belongs to this category.
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2.5.5 Recurrent Neural Networks Training

Figure 2.11: An unfolded recurrent neural network [5].

The training of RNNs has long been considered an harder problem than
for standard feedforward networks due to the need to learn long-range de-
pendencies. This causes the hidden layers the need to have a "memory"
of the previous inputs, increasing the complexity of the networks architec-
tures. Furthermore problems like vanishing and exploding gradients occur
even more frequently than with standard DNNs when propagating back the
errors across multiple time steps [14].
Due to this additional level of complexity now an overview of the learning
phase in a recurrent neural network will be given.
The training phase of a RNN can be divided, as for the feed-forward networks,
in two main parts: the forward propagation and backward propagation. Con-
sidering the network depicted in Figure 2.11 and assuming a discrete output,
as in the word prediction case, we will describe the output o as the unnor-
malized log probabilities of each value that the discrete variable can assume.
We will then suppose to apply a softmax operation to obtain a vector of
normalised probabilities.
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The feed-forward phase starts at the initial state h0 and then at each time
step t from 1 to τ a set of update equations is applied:

a(t) = b + Wh(t−1) + Ux(t) (2.13)
h(t) = σ(a(t)) (2.14)
o(t) = c + Vh(t) (2.15)
ŷ(t) = softmax(o(t)) (2.16)

In these equations b and c are the bias vectors, while U, V, W are are
the weight matrices respectively for the connections between input to hidden
state, hidden to output state and hidden to hidden state. Finally σ is the
non-linear activation function of the layer [5].
The equation (2.17) shows how the total loss is derived given a series of x
values together with a series of y values.

L({x1, · · · ,xτ}, {y1, · · · ,yτ})

=
τØ
t=1
L(t)

= −
τØ
t=1

log pmodel(y(t)|{x1, · · · ,xt})

(2.17)

The total loss is then the sum of all the losses over all the time steps, where
pmodel(y(t)|{x1, · · · ,xt}) is obtained from the vector of output ŷ(t) by taking
the value for y(t). This whole propagation is sequential and then it can’t be
parallelised. To compute the following time step, it is in fact necessary to
compute the previous first. Furthermore all these states computed in the for-
ward pass must be stored in order to be used during the next training phase,
increasing the memory required with respect to standard neural networks.
The second part of the training is the computation of the gradient and the
backward propagation. In this case the backpropagation technique has to be
adapted to work with sequences and takes the name of back-propagation
through time (BPTT). For each node N, the gradient ∇NL is computed in
a recursive way based on the gradient of the nodes following it in the graph.
The recursion starts at the node preceding the final one:

∂L

∂L(t) = 1 (2.18)

Assuming to use the same parameters used for the equation (2.13) and that
the loss is the negative log-likelihood of the true label y(t), the gradient can
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then be calculated for each of the previous steps. For example the gradient
∇o(t)L calculated at the step t for the output is:

(∇o(t)L)i = ∂L

∂o
(t)
i

= ∂L

∂L(t)
∂L(t)

∂o
(t)
i

= ŷ
(t)
i − 1i=y(t) (2.19)

This derivation repeated for every time step can cause the gradient either
to vanish or to explode. In the first case it means it will approach to zero
exponentially fast, making the network unable to properly “learn” long term
dependencies because of too small weight changes [7].
The opposite problem is when the gradient explodes, so it grows exponen-
tially fast. This causes the network to be unable to learn correctly as well,
by making the whole model unstable; the model loss will in fact vary greatly
between updates and may go to NaN value.
Either of this two problems can happen during the back-propagation time
depending on the weights of the current recurrent edge and on the activa-
tion function σ chosen [14]. To avoid the vanishing or the explosion of the
gradients, the following techniques can be used:

• Global search methods: like simulated annealing, that do not depend
on gradients but that are effective only for short sequences [7].

• Weight matrix initialisation: the weight matrix is initialised as an
identity matrix instead of using random values.

• Truncated backpropagation through time (TBPTT): a solution
to the exploding gradient, that consists in setting a maximum number
of steps for the error propagation. This approach makes the network
unable to learn longer term dependencies.

• Long Short-Term Memory(LSTM) networks

• Gated Recurrent Units (GRU) networks
The LSTM and the GRU networks will be described in the following section,
which will give an overview of the most common RNN architectures.

2.5.6 Recurrent Neural Network architectures
LSTM

This architecture extends the basic hidden unit and allows to improve the
learning of long-term dependencies while managing the problem of the van-
ishing gradient described previously. The weight of the self-loop that is
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present in the RNN cell graph (shown in Figure 2.12) is no more fixed but
will be now dependant on the context. This “gating” (controlled by another
hidden unit) allows to dynamically change the scale of integration based on
the input sequence.
This approach has been seen successful in various fields: speech recognition,
machine translation, handwriting recognition [5]. . . The LSTM cells have

Figure 2.12: The recurrent cell of a RNN.

the same input and the same output of the normal recurrent neural networks
but internally, a set of additional parameters and gating units are used in
order to control the information flow. Furthermore they possess an inter-
nal recurrence working alongside the external one of the RNNs. Figure 2.13
shows the inner structure of a LSTM cell. First the input feature is computed
with a normal neuron and, if the input gate allows it, its value is stored in
the state, which is the "memory" of the cell. The state possesses a self-loop
connected to the forget gate, which will handle the weights. Another impor-
tant element is the rectangle on the self-loop which instead indicates a delay
of one time step. Finally there is the output of the cell, which is controlled by
the output gate, that can even decide to shut it down completely depending
on the weights. All the gating units have a sigmoid non-linearity while the
input can have any squashing non-linearity.
The main part of the LSTM is the state unit sti, controlled by a forget gate
unit f (t)

i (where i is the cell and t is the time unit) which sets the weight in
the interval [0,1] with a sigmoid activation function.

f
(t)
i = σ(bfi +

Ø
j

Uf
i,jx

(t)
j +

Ø
j

W f
i,jh

(t−1)
j ) (2.20)

In the state unit function (2.20) the following variables are present: x(t) is
the input vector at the current time step, h(t) is the current hidden layer

28



2 – Background

Figure 2.13: The LSTM cell.

vector, containing the outputs of all the LSTM cells. bf ,Wf and Uf are
respectively the biases, recurrent weights and input weights for the forget
gates.
The state of the cell and its biases and weights are then updated using
equation (2.21):

s
(t)
i = f ti s

(t−1)
i + gtiσ(bi +

Ø
j

Ui,jx
(t)
j +

Ø
j

Wi,jh
(t−1)
j ) (2.21)

where b,W and U are the biases, the recurrent and the input weights in
the LSTM cell. Similarly for the external input gate g(t)

i (2.22), a sigmoidal
activation function is used in order to obtain values between 0 and 1.

g
(t)
i = σ(bgi +

Ø
j

U g
i,jx

(t)
j +

Ø
j

W g
i,jh

(t−1)
j ) (2.22)
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Finally the output of the LSTM cell h(t)
i can be changed by the output gate

q
(t)
i , which uses as well a sigmoidal activation function for gating (2.23).

h
(t)
i = tanh(s(t)

i )q(t)
i

q
(t)
i = σ(boi +

Ø
j

U o
i,jx

(t)
j +

Ø
j

W o
i,jh

(t−1)
j ) (2.23)

GRU

Figure 2.14: The GRU cell.

GRUs or gated recurrent units are a simplified version of the LSTM cells.
They still give the possibility to control the time scale and enhance the long
term dependencies learning, but with a less complex gating system. In fact
instead of multiple gating units controlling the forgetting part of the cell and
the update, only one is used.
The new update equation is the following:

h
(t)
i = u

(t−1)
i h

(t−1)
i + (1−u(t−1)

i )σ(bi+
Ø
j

Ui,jx
(t)
j +

Ø
j

Wi,jr
(t−1)
j h

(t−1)
j ) (2.24)

The functions u and r represent respectively the update gate and the reset
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gate, whose value is defined as:

u
(t)
i = σ(bui +

Ø
j

Uu
i,jx

(t)
j +

Ø
j

W u
i,jh

(t)
j ) (2.25)

r
(t)
i = σ(bri +

Ø
j

U r
i,jx

(t)
j +

Ø
j

W r
i,jh

(t)
j ) (2.26)

The two gates can act independently from each other and "switch off" different
parts of the state vector. In particular the update gates act as conditional
leaky integrators which are able to gate any dimension. They can either
copy (one of the sigmoid extrema) or decide to ignore (the opposite sigmoid
extrema) by substituting the input with the target state value to which the
leaky integrator tries to converge. The reset gate adds an additional non-
linearity between states by deciding the parts of the state that are used to
compute the successive target state.

Bidirectional networks

This network architecture is able to capture not only information from the
past and the present input but also the ones from future inputs. yt depends
in fact from the whole input sequence x, enhancing the results obtained
for many applications like handwriting recognition and sequence-to-sequence
learning [5].
This architecture is based on two RNNs; one moving forward through time
and an other going backward (starting from the end of the sequence). Figure
2.15 shows the structure of the bidirectional network, where h denotes the
forward time propagation while g the backward one. Then, the output o will
depend on past and future with more sensitivity around the current time step
t. The same idea can be extended to images, which are two dimensional, by
increasing the number of RNNs to four. While more expensive than convo-
lutional networks, bidirectional networks can allow long range interactions
between features in the same feature map [5].
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Figure 2.15: The bidirectional RNN computations [5]

Recursive neural networks

Recursive neural networks are a generalization of the recurrent neural net-
work, using a deep tree structured computational graph instead of the classic
chain-like one. They have been used mainly in processing data structures as
inputs, natural language processing and computer vision [5]. The advantage
of this architecture is the possibility to reduce the length τ of a sequence to
O(log (τ)), helping in the process of learning long-term dependencies.
A particular focus has to be put on how to structure the tree since it has
a considerable impact on the learning, but this choice is not necessarily de-
pendent on the input data (even balanced binary trees can be chosen to
represent the structures). The “best” data tree structure can sometimes be
inferred from external sources (like a parser for natural language processing),
but ideally should be discovered directly by the learner [5].
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Encoder and Decoder

The architectures described previously were able to manage input sequences
of fixed or variable length and give as output a sequence respectively of the
same length or of a fixed length. This architecture instead is able to map an
input sequence to an output sequence of different length, which is ideal for
many applications like speech recognition, question answering and machine
translation.
The input given to the RNN is often called “context” (C) and to repre-
sent it, a vector or a sequence of vectors that summarize the input X =
(x(1), · · · ,x(nx)) can be used. In the field of Neural Machine Translation, of-
ten embedding layers are used in order to represent efficiently sentences and
feed them to the network. This kind of layers substitutes the previously used
one-hot encoding or bag-of-words technique, which had very high memory
cost, with a more compact representation that manages to capture the se-
mantic meaning and similarity in the context (in this case the words will be
mapped in closer vector spaces).

Figure 2.16: An high level overview of an encoder-decoder RNN, both the
encoder and the decoder are composed by an embedding layer and multiple
hidden layers [9].

The encoder-decoder architecture consists of two distinct recurrent neural
networks (as shown in Figure 2.16), each one composed by multiple layers
(usually using LSTM or GRU) and with completely different tasks. The en-
coder, also called reader, reads the whole input sequence and by processing it,
it emits the context C, which is usually a simple function of its final hidden
state [5].
The decoder task is to predict the final sequence Ŷ = ŷ<1>, · · · , ŷ<T Í> by
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taking as input the context C from the encoder. The update function of the
decoder becomes then:

h(t) = f(h(t−1), ŷ(t−1), C) (2.27)

The update function will depend not only on the context but also on the
input and the hidden state at the previous time step. Figure 2.17 shows an

Figure 2.17: The unfolded graph of an encoder-decoder architecture during
the translation [9]

example of an unfolded network during the training phase; where a sentence
is given as input to the encoder, one word per step. The encoder will keep
reading words and update the hidden state until an EOS token is received,
then it will output the context C.
The decoder receives as input the word translated in the previous step (NULL
in the first one) and the updated state. The red Out. Sel. rectangle pur-
pose is to choose the most likely (based on the Decoder predictions) word at
a given time step (it will be described in detail in section 2.5.6).
The two networks are usually trained jointly in order to maximize the av-
erage of logP (ŷ(1), · · · , ŷ(n)|x(1), · · · , x(n)) and once that the training phase
has been performed, the network is able to output sequences given as input
sequences not seen during the learning.
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Attention

A fixed-size representation of a very long sentence that manages all the se-
mantic details is difficult to achieve without training large RNNs for a con-
siderable amount of time [5]. To overcome this problem without an excessive
use of memory or too long training times, the attention technique was intro-
duced. Sentences are read fully once in order to understand the context, then
the words are translated one per time while focusing on different parts of the
input sequence. An additional memory is then necessary to keep track of the
attention and it is derived from the hidden state ht, the context vector ct
and the previous output ŷ(t−1) [15] by concatenating the two in the following
way:

h̃(t) = tanh(Wc[ct;ht]) (2.28)
This attention memory is then fed to a softmax layer in order to obtain the
predictive distribution of the next word, the formula is:

p(yt, y<t, x) = softmax(Ws, h̃(t)) (2.29)

There are multiple ways to compute the attention, which change name de-
pending on which part of the input sentence is considered to compute the
context vector ct. They can be divided in two main categories:

• global attention: all the hidden states of the encoder are considered when
deriving the context vector ct. at represents a variable-length alignment
vector with same size as the number of time steps on the source side,
which is obtained by comparing the current target hidden state (ht) with
each source hidden state h̄s:

at(s) = align(ht, h̄s) = exp (score(ht, h̄s))q
sÍ exp (score(ht, h̄sÍ))

(2.30)

In equation (2.30) the function score is content-based and has three
different alternatives:

score(ht, h̄s) =


hTt h̄s dot
hTt Wah̄s general
vTa tanhWa[ht;hs] concat

(2.31)

• local attention: this approach solves the global attention issues in trans-
lating long sentences or whole chapters, which would require an imprac-
tical memory and computational overhead since for each target word
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Figure 2.18: An overview of how the global attention mechanism works [15]

all the input words would have to be considered [15]. By considering
only a small subset of the input sequence, computations are made less
expensive without loosing the differentiability.
The model first generates pt, an aligned position for each word at time t.
Then ct is obtained from the weighted average over the source of hidden
states in the window [pt −D, pt + D], with D empirically selected [15].
While the dimension of the alignment vector at changed according to
the input for the global attention, its size becomes fixed (R2D+1) thanks
to the window.
There are two possible variants of the model : the monotonic or the pre-
dictive alignment. The first sets pt = t and assumes source and output
sequences to be aligned monotonically. The alignment of the vector at
is described by (2.31). The other model variant instead predicts aligned
positions with the following computation [15]:

pt = S ∗ sigmoid(vTp tanh (Wpht)) (2.32)
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In this formula Wp and vp are used to predict positions and have to be
learned by the model, while S is the sentence source length. Furthermore
since a sigmoid function is used, pt lies in the interval [0, S].
The alignment weights are defined by the following formula, placing a
Gaussian distribution with centre in pt (this favours the points near the
centre) :

at(s) = align(ht, h̄s) exp
A
−(s− pt)2

2σ2

B
(2.33)

The align function is the one previously defined (2.30) with a standard
deviation equal to σ = D

2 . In this equation, s is an integer value in the
interval centred at pt.

Figure 2.19: An overview of how the local attention mechanism works [15]

Both the local and the global alignment decisions made during translation
should be, as proposed by [15], made jointly by taking into account past
alignments as well. This requires additional information to be passed at each
step of the network as input, so the attentional vectors h̃t are concatenated

37



2 – Background

with the next time step inputs, as shown in Figure 2.20. This approach takes
the name of input feeding.

Figure 2.20: The input-feeding approach [15]

Output selection

It has been explained in the previous sections how the model generates an
output probability distribution p(y|x) of each word (in the source vocabu-
lary) being the next word in the sentence. In order to get a full translated
sequence of words from this probabilities, the words are sampled at each step
by the layer Out. Sel. seen in Figure 2.17 in the decoder network. Further-
more since the complexity of generating all the possible sentences and getting
the one maximizing its likelihood is NP-complete (the search problem is ex-
ponential to the length of the output sequence), heuristic search algorithms
must be used. This allows the network to pick not the best solution but a
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good enough approximation with a feasible complexity.
There are three possible approaches to be considered, each one having dif-
ferent use cases:

• Random Sampling: used when from a single input, multiple outputs
have to be extracted (e.g. dialogue systems where to avoid monotonicity
in answers multiple outputs can be used). Variable values are sampled
at each time step, slowly conditioning on an increasing part of the con-
text. In the encoder-decoder architecture this consists of calculating pt
according to the previously sampled inputs. This technique is called
ancestral sampling.
Finally to calculate the probability of the sampled sentence it is suffi-
cient to multiply (or in case of log probabilities sum) the probabilities
of each sampled word during the sampling process.

• Greedy Search: used to generate the 1-best result by calculating pt
at every time step and selecting the word with highest probability [18].
This algorithm, while fast and computationally not expensive, doesn’t
guarantee to find the sentence with highest probability.

• Beam Search: this approach is very similar to the greedy search but
instead of selecting the 1-best word at each step, the BW best are se-
lected, where BW is a parameter called beam width.
As shown in Figure 2.21, starting from the root node, the model will
calculate the output probability distribution of each word in the vocab-
ulary, but keep only the BW-best and prune the others. At the following
iteration the model will consider only the previously kept hypothesis and
start the translation from there. After that, the model will output a vec-
tor of dimension BW ∗ vocabulary_size. Finally it will again prune the
possible translations and keep only the BW-best (which can possibly
come from the same decoder branch if they have the highest cumulative
likelihood). This number of hypothesis is kept constant during the whole
translation process, until an EOS is received or the maximum sentence
length has been reached.
An issue with this approach is that the beam search tends to prefer
shorter sentences since for each word a new probability is multiplied by
the cumulative likelihood, reducing it. This length bias has a significant
impact when a large BW is chosen but can be addressed in many ways.
One of the most common is dividing the final cumulative likelihood of
the sentence by its length, normalizing it. In this way only the sentences
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with the highest probability per word are chosen [18].
Finally while the beam search leads to better result than a greedy search,
it increases significantly the memory usage of the network, that needs
to keep in memory BW copies of the network (each one taking care of
an hypothesis).

Figure 2.21: An example of the beam search algorithm with a beam width
of 3. Image from [9]

2.6 Translation metrics
Evaluating the quality of the translation performed by a model is expensive
and time consuming due to the need of professional translators. Furthermore
their work can take long time to finish and cannot be reused in other contexts
[21]. This high time cost is necessary since a human translator has to consider
and evaluate many aspects of the translated text: adequacy, fidelity and
fluency. This slow evaluations are infeasible in a fast changing model, which
needs to be checked on a daily basis, to check that its results are reliable.
To address this problem multiple automated metrics have been introduced
in the last years, bringing a fast and reliable way to compute the quality of
a translation or of a summary without the need of a human translator. Not
only these metrics take negligible time to be computed, but they are also
language independent and so usable for any model.
The following are the most commonly used metrics which have been used in
this work to evaluate the quality of the translations made by the embedded
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device.

2.6.1 BLEU
BLEU, which stands for Bilingual Evaluation Understudy, is a measure
used to evaluate in a fast, automated and inexpensive way the quality of a
translation [21]. This metric evaluates how close the machine translated text
is to one produced by a professional human, quantifying mathematically its
closeness/distance.
BLEU uses a modified version of the precision metric, whose formula is:

Precision = tp

tp+ fp
(2.34)

In the previous equation tp are the true positive classifications while fp repre-
sents the false positive classifications. To calculate the precision in a machine
translation context, it is enough to count the number of translation words
(also called unigram) which are present in a reference translation and then
divide the value by the number of words in the candidate translation. This
approach doesn’t perform well though, since the model can generate sen-
tences composed of many “reasonable” words, which aren’t actually good
translations (but their score would be high). This problem can be solved
by avoiding to count the same word in the candidate translation more times
than the number of times the same word appears in the reference translation.
The approach just described takes the name of modified unigram precision
and can be used, with small modifications, even for n-gram tasks. Further-
more while the basic unit of the BLEU measurement is the sentence, using
the n-grams approach with some slight changes is possible to obtain the mea-
surement even in the common case of one source sentence but multiple target
sentences.
Precision favours shorter sentences, so BLEU contains a brevity penalty BP
which is obtained in the following way:

BP =
1 c > r

e(1−r/c) c ≤ r
(2.35)

where c is the length of the candidate translation and r the length of the ref-
erence sentence. This penalty can be then multiplied by the original formula
to obtain an updated and length independent BLEU score:

BLEU = BP ∗ exp( 1
N

NØ
n=1

log pn) (2.36)
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where pn is the n-gram precision.
BLEU output is in the interval [0,1], with a value of 0 indicating a perfect
mismatch and a value of 1 a perfect and ideal translation [21]. This score
can be also measured as percentage which results in obtaining values in the
interval [0,100].

2.6.2 ROUGE
ROUGE, which stands for Recall-Oriented Understudy for Gisting Evalua-
tion, is a metric used to evaluate the quality of translated and summarised
texts [13]. As for the BLEU, this metric compares the candidate text with a
golden reference, translated by a human professional translator.
There are multiple ROUGE measures:

• ROUGE-N: an n-gram recall between a candidate translation and its
reference. It can be used with multiple reference translation

• ROUGE-S: metric based on the co-occurrence of a pair of any word in
the sentence (also called skip-bigrams, since an arbitrary number of gaps
is allowed between the two words). This metric measures the overlap of
skip-bigrams between candidate and reference translation.

• ROUGE-L: metric based on the longest common subsequence (LCS). It
uses structural sentence level similarity in order to calculate the overlap
between the candidate translation and the reference one.

2.6.3 Perplexity
The Perplexity (PPT) measures the number of words that can follow a given
word, indicating how hard is for a model to tell which is the next word in
the sentence. It indicates how well the vocabulary was compressed and the
ability to translate of a model, which were learned during the training phase.
Given a training set W = (w1, · · · , wN), where N is the size, the perplexity
can be calculated in the following way:

PP (W ) = P (w1, · · · , wN) 1
N = 2L (2.37)

where L is the negative log probability of the cross entropy function, which
is normally used as cost function in RNNs. This measure highest value is N ,
that means that all the words in the model vocabulary are equally probable.
This is very unlikely to happen for languages since grammar rules constraint
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the position of the words. Then good translation models should have low
Perplexity after training.
This metric though depends on its training set, making it weak in evaluating
the quality of a translation model in a definite way. However it can be
effectively used in order to compare multiple language models.
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Related Works

Deep neural networks (DNNs) are currently the state of the art for many
applications in very different fields. The ability of these machine learning
models to reach high accuracies, sometimes superior to the human level,
requires a great computational and energy effort [24]. This cost becomes
infeasible for edge computing, where the computations are performed not
by a high performance hardware but by an embedded device, with limited
resources. Since edge computing has become more and more used in re-
cent years, due to the need for privacy and fast response times, more energy
efficient solutions (without lowering in a significant way the accuracy) for
DNNs have been developed. This problem has been approached in several
ways, with changes performed at the hardware level and software level.
Specific hardware accelerators have been introduced in order to enhance the
computational speed of fully connected and convolutional layers, whose cal-
culations can be easily performed in parallel since they are mainly composed
of multiply-and-accumulate (MAC) operations [24]. In these accelerators,
modifications are introduced not only in the processing logic, but also on the
memory hierarchy, bringing the compute into memory instead of the oppo-
site.
Techniques at the software/algorithm level that can further decrease the
energy-cost of DNNs were often proposed even if in this case, a degradation
in the accuracy is also present. Approaches that trade-off complexity for
accuracy are instances of the approximate computing paradigm and can be
divided mainly in two categories:

• reducing the size of operands and operations by passing from floating
point operations to fixed point ones, reducing bitwidth, weight shar-
ing. . .
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• reducing the number of operations and/or model size thanks to technique
such as pruning and compression. . .

Reducing the floating point (fp) precision is one of the first steps to be consid-
ered when working with embedded devices. In fact the hardware to support
32-bit operations, which are commonly used by DNN models, may be not
present on embedded devices. Even if present, the hardware support is less
performing and efficient than the one of GPUs or cloud servers.

3.1 CNN Optimization
The majority of the works in literature related to improving the energy vs
accuracy trade off of DNNs models focus on the image classification task
performed by CNNs.
Moons et al. [17] show in their work that even by reducing the fp preci-
sion, the final accuracy isn’t lowered significantly. Conversely, quantization
of weights can lower the energy consumption and the computational com-
plexity.
The “weakness” of this approach is that the choice of the floating point pre-
cision can’t be decided a priori but often requires a knowledge of the dataset.
In fact the accuracy may be unchanged even when the 8-bit fp are used in
some cases or may deteriorate immediately when using 16-bit operations.
This problem can be partially addressed by choosing the type of quantiza-
tion to apply, in fact it can be either uniform, so the same applied to all the
network, or ad hoc, changing depending on the layer [17].
Hubara et al. [8] replace the floating point weights with binarized ones
(their value can be either 0 or 1), reducing considerably the amount of mem-
ory required to store them. This change yields an increase in the power-
efficiency ratio of the network, since it allows to drop arithmetic operations
in favour of bitwise ones. However, for complex classification tasks, binariza-
tion significantly affects accuracy.
The other approach considered in other works is the reduction of the number
of operations or the simplification of the model. Sze et al. [24] propose in
their work the weight sharing approach which consists of reusing the same set
of weights for all the outputs, thus lowering the memory requirements of the
network. Another approach is based on the ReLU activation, which by set-
ting all the negative values to 0, leads to sparse output activation functions
and allows to skip read operations (and successive MAC) for zero-valued ac-
tivations [24]. All the previous works considered only a static approach to
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optimizing the network: the energy-accuracy trade off is decided at design
time and kept constant during the usage of the network.
The dynamic approach instead has been recently proposed and is based on
the fact that for a network not all the inputs are equally difficult to process.
For example the classification of images where the subject is very small or
blurry will result in a much more complex task to perform for CNNs. Due to
this reason networks which were tuned at design time but stay fixed during
their execution will waste energy in case of very simple inputs and perform
poorly on hard inputs.
Park et al. [22] propose in their work to use two DNNs, a big and a little
one, instead of a single one. At runtime then the “little” network, which
is the simplest and less computationally expensive of the two, is used first
in order to get a prediction. The output of the first network is then used
to decide the next step to perform: in case of a simple input the simpler
DNN will perform good enough and that output will become the final one.
Instead if the confidence, which is the measure of the likelihood of the clas-
sification performed by the network being correct, is not sufficiently high,
then the “big” network will be activated and perform the classification. This
approach works due to the fact that inputs are frequently “easy” enough
to achieve accurate scores with only the “little” network. Therefore, energy
can be saved with a slight decrease in final accuracy. This method though
requires longer time to train the models and furthermore increases the mem-
ory required since two different DNNs, each with different weights, have to
be stored in the system that executes the classification. This limitation can
prevent the deployment of the "Big/Little" approach on embedded systems
for IoT with limited memory space available.
Tann et al. [25] enhance the previous “Big/Little” architecture by proposing
only a big network whose parts are selectively activated at runtime depending
on the input. This approach requires a new training algorithm which per-
forms the learning incrementally but allows to reduce the memory required
to store the network while still performing similarly.
JahierPagliari at al. [20] propose another method to change the opera-
tions’ precision of the network during run-time, which depends on the input
and exploits the error resilience of deep learning. This approach allows a
more energy efficient network with an acceptable accuracy, furthermore it
doesn’t require models of increased size, retraining of existing networks or
any particular hardware to support it.
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3.2 RNN Optimization

RNNs literature mainly regards the creation of new architectures which yield
improved accuracy by approaching the task to fulfil in a different way. How-
ever these networks often improve their result at the cost of an increased
number of computations and higher complexity, which makes their execution
critical to perform on embedded devices, especially since vanilla RNNs al-
ready have an high computational cost.
Much less work is present in literature about optimizing the energy-efficiency
aspect of RNNs with respect to CNNs.
The aim of many of these works, as for this thesis, it is to optimize RNNs
in order to be able to perform the inference phase on embedded devices,
whose computational power and memory are constrained. The training
phase, which is the most computationally expensive, is still performed on
high performing hardware and then the model is deployed on the devices.
Chang et al. [2] propose to implement LSTM cells on specialized hardware
since current CPU and GPU either offer a too limited parallelism or are lim-
ited by the sequentiality of inputs of the RNNs. This allows greater speed
and increased energy efficiency with respect to a normal ARM CPU. Aside of
hardware accelerators, which are often too costly to be integrated in chips for
small IoT devices, other changes at the architectural level were introduced.
For example Amo et al. [1] introduce a new GRU cell architecture to be
used in embedded devices called eGRU. This new cell drops some of the gates
characterizing it in order to reduce its dimension, which leads to significant
increases in speed while keeping the accuracy loss low.
Many works in literature tried also to apply quantization and binarization to
the network weights, as other works did with considerable results for CNNs
and normal DNNs. Ott et al. [19] work shows high degradation of accura-
cies when weight binarization is introduced in RNNs, while other approaches
like stochastic and deterministic ternarization yield performances close to the
baseline RNNs but only for simple datasets..
He at al. [6] manage to achieve better performance than [19], it is shown
that 4-bit precision RNNs can achieve accuracy similar to the one of 32-
bit precision by designing LSTM and GRU cells specifically. Furthermore a
method to obtain quantized weights distributed in a balanced way over the
available parameter space is introduced, leading to increased accuracies in
predictions since the parameter space usage is improved.
Another approach to optimize RNNs is changing at the algorithm level the
network, in order to reduce the number of computations and the memory
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size of the network. This is the approach followed in this thesis.
Due to the success of the encoder-decoder architecture in tasks like translat-
ing and summarizing textual data, dynamic approaches have been developed
in order to optimize these models. Mejia-Lavalle et al. [16] introduce the
possibility to make the beam search size (BW ) dynamic by proposing two
different approaches which prune the less used states, allowing a faster exe-
cution and achieving the same performance as the fixed size beam search.
Freitag et al. [4] apply the dynamic beam search approach on the encoder-
decoder architecture, considering that the drawback of this heuristic is that
it may continue to work with hypothesis which are far less probable than
the current top ones, thus slowing the whole decoding process and wasting
memory, or drop some hypothesis close to the current top ones, since the BW
was exceeded. This problem can be avoided by making the BW parameter
change according to the current top hypothesis or by pruning the hypothe-
sis which are less likely than the top hypothesis by a given fixed threshold.
Another approach is to avoid taking more than a given number (which was
decided beforehand) of hypothesis from the same “beam”, even at the cost of
pruning more likely words, in order to avoid dropping hypothesis which could
result in better results in the successive steps because of a single more likely
one. All these beam width discrimination policies are input dependant and
allow to achieve notable speed ups in the decoding phase, saving time and
memory required. A drawback of this approach is the required knowledge
of the input in order to choose the best parameters for the “policies”, which
adds additional complexity to the model.
JahierPagliari at al. [9] work regarding dynamic beam search proposes
different policies which, based on the output of the decoder decide the beam
width required on the following beam search. This value doesn’t depend
on the most likely word or hypothesis like for [4] but on the top-n likely
words. This approach is furthermore tailored for embedded hardware and
tested on single core CPU, so the maximum beam width is constrained to
a lower value. This thesis is an extension of the previously mentioned work
[9] and its purpose is the introduction of new beam width policies less de-
pendant on the input parameters (so requiring no knowledge on the input
text) and the optimization of the already found ones while working on a true
embedded device, with limited hardware resources and optimized libraries
for performing calculations. Furthermore another goal of the thesis is the
measurement of the actual energy consumption to run a recurrent network
in order to confirm that these dynamic approaches can actually reduce it.
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All the previously mentioned works on the beam search [9] [4] [16], includ-
ing this work, obtain speed-ups in the network execution (and consequently
reduce its energy consumption) due to the lower number of decoder steps
performed, independently from the usage of an hardware accelerator as the
one proposed in [2]. Therefore, the two approaches are orthogonal and could
be combined to obtain even better results.
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Chapter 4

Dynamic Beam Search

4.1 Motivation
Due to the computational complexity of machine learning solutions, that are
now part of an increasing amount of applications these models are currently
evaluated in cloud based data centres. These centres are composed of clus-
ters of high performing GPUs, ready to run the machine learning models
necessary for the application. They wait in fact for a simple query from a
host, receive the necessary information to run and send back the result to
the querying application.
This approach results in a very low effort for the host that is able to use
high complexity machine learning models on low power devices connected to
the network. However, this method presents some defects. It is in fact very
time and energy inefficient, since the required data has to be sent from the
edge device to the cloud and vice versa. Another “weakness” of the cloud
based computations is the need to send the data through the network to an
unknown server, which may modify the data received and return a biased re-
sult, which the host has no way to check for any manipulation. Furthermore
sending this information to the network and awaiting for the response may
lead to high latencies, which for some specific tasks are not acceptable.
The security, latency and energy problems mentioned above have led to the
development of an alternative approach, known as edge computing. Part
of the computations, generally the prediction part concerning the RNNs, is
moved to the very devices that would have previously needed to perform
the query, avoiding to transmit the data on the network and to wait for a
response. Due to the low computational power of these devices though, opti-
mizing the machine learning model is necessary and this is the general goal of
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the thesis. More specifically, the goal will be the optimization of an encoder-
decoder RNN so that the energy efficiency of the network is improved and
the chosen models, which are computationally and time expensive to use,
can be run on a low ARM CPU.
The RNNs pre-trained models that were chosen for this work, that will be
described in detail later, have been first profiled by using the python mod-
ule profilehooks while being executed on the embedded device. This module
allows to track the number of times a function was called and its partial ex-
ecution time, reporting the results at the end of the execution of the python
script.
Additionally even if the ARM CPU of the device used in this thesis can use
up to four cores, using its full computational power to perform the predic-
tions was causing the process to freeze, so it was constrained to use only one
core for all the beam sizes tested. This can be useful to obtain a network
optimized even for embedded devices with lower computational power than
the one used in this thesis, such as those equipped with a single-core CPU.
The framework that was used in order to perform this profiling is OpenNMT,
specifically in its version based on PyTorch. The framework in the chosen
version offers many pre-trained models ready for prediction. Two of them,
whose common task is natural language translation, but with different ar-
chitectures and different input languages were chosen and deployed on the
embedded device. The whole architecture of the framework and the details
about the models will be described in the following chapter.
The main parts of the two networks, which are the encoding and the decoding
phases have been tracked during the execution and plots of the time spent by
both tasks have been generated. Each network has been executed five times
on the same dataset, increasing each time the beam width from one to five.
The interval [2−5] represents in fact a good trade off between the final score
of the network and the execution time, while a beam width of one represent
a Greedy Search. The results of profiling the first network, which is less com-
putational heavy of the two, are shown in Figure 4.1, from which it’s clearly
depicted that the time of execution of the encoder is almost unchanged if
the beam width is increased. Moreover, it impacts in a minimal way the
total execution time. Instead the decoder execution time is the most time
consuming part of the inference and increases almost linearly together with
the beam width. The second network is instead composed by more layers
than the other and introduces an attention mechanism, which makes it more
computationally expensive. However, Figure 4.2 shows a similar behaviour
as before. The decoding part increases together with the beam width while
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the encoding time remains unchanged and minimal with respect to the total
execution time.
Behaviours and time differ when a GPU is used, since the decoder calls can

Figure 4.1

Figure 4.2
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happen in parallel. In this case the increase in time due to a higher beam
width is less noticeable, however GPUs are rarely present on embedded de-
vices. On the contrary the single core CPU present on those devices has to
perform all the decoding calls sequentially.
By limiting the number of cores of the CPU that can be utilised during
the execution of both networks and considering that when the beam width
chosen changes, the only difference is the number of decoder calls but the
performed operations are the same, the CPU power consumption should not
change during the translation. Then, since the power is constant during the
whole execution, it is enough to lower the execution time in order to reduce
the energy consumption of the model.
Due to the major role of the decoding process in the total execution time
of the network and since the number of decoding steps performed depends
directly on the beam width chosen, acting on the Beam Search can lead to a
more energy efficient model.
Simply lowering the beam width may cause high losses of accuracy, since
hypothesis which may result in more likely translations in the following steps
may be dropped too soon. In fact a beam width equal to one is a Greedy
Search, whose result may not be optimal. Instead, increasing the beam width
too much makes the network too memory and computationally heavy for an
embedded device, while not granting always noticeable increases in accuracy.
Beam search normally uses a static beam width that is chosen before starting
the execution and is not influenced by the input being processed. A given
input may be either very easy to translate (and thus be fine with a low value)
or hard to translate (and then benefit from a higher value). The aim of this
work is to change this static approach into a dynamic one, with a network
that decides according to the input at each step the best value for the beam
width. This choice happens not depending on the best hypothesis but on
the whole probability distribution that the decoder outputs. Based on these
probabilities it is in fact possible to understand how uncertain the network
is about a possible translation of the current word and act accordingly. The
network will in fact dynamically adapt the beam width according to its un-
certainty and perform the beam search with an updated beam width. This
will allow to use a small beam width for inputs which are considered easy
to translate and in such a way to save energy, but keep a larger number of
hypothesis for hard translations such that the final accuracy doesn’t decrease.
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4.2 Objective

All the policies to determine the best beam width to be picked for the fol-
lowing beam search step are based on the idea that, given the output of
the decoding step (which is a vector storing the probabilities that the next
word in the sentence is the word i in the source vocabulary), it is possible
to understand how “confident” the network is. In fact a network which is
unsure about the translation will output very similar probability values for
multiple words in the dictionary. In this case, if the beam width is smaller
than the number of possible words with very close probability, some possi-
bly good hypothesis will be pruned and lower the final translation accuracy.
Some examples of very close words where the network may be “confused” are
synonyms and verbs tenses.
In the opposite case, when the network is confident, the probability distri-
bution will be “spread”, with one out of the many words with a much higher
probability than the others. In this case having a beam width too high will
cause the network to keep unlikely translations that will slow down the whole
execution.
To estimate the degree of uncertainty of a network various measures can be
used, some were introduced in [9] and have been brought to an embedded
device in this work, others were introduced in this thesis. The final goal of
this work is finding the best performing metrics which don’t require heavy
computations that would slow down the network and which allow not to
decrease the final precision of the translation. Furthermore an ideal metric
should perform equally good on any dataset given as input for the transla-
tion, so that it depends only on the input and not on any prior knowledge.
An example of a network implementing the dynamic beam width is shown
in Figure 4.3, while translating a sentence. In the example, supposing to
start with a beam width of two, it is then reduced in step 2 to one, since
the probability distribution resulted to be very spread with the word “liebe”
much more likely than the others. In this case the network avoids to perform
an additional and useless decoding, saving energy and time. In step 3, the
network confidence is lower than before and then the beam width is increased
to three, to avoid pruning words that may result in good translations.
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Figure 4.3: Dynamic beam search, figure taken from [9]

4.3 Inference in OpenNMT

In this section an overview of how the framework OpenNMT performs its
inference phase is given, while more details about the models and the frame-
work in general are given in the next chapter. The inference phase, where the
translations are performed by the models, is the part that was modified in
this work and which was performed on the embedded device. Given an input
text, OpenNMT splits it in sentences and translates it sentence by sentence.
To do this the network uses the weights it learned during the training phase,
performing in this case only the forward propagation and not the backward
one. OpenNMT is based on PyTorch and offers an encoder-decoder RNN
architecture which can handle different networks. In fact it is possible to
load the weights and the structure (layers, attention mechanism . . . ) of a
network, so that the framework can use it directly for the inference.
The network will receive as input a source text that has to be translated,
the beam width to be used in the beam search, the model whose weights
and structure need to be replicated and the batch size. This last parame-
ter indicates how many sentences have to be processed by the network in
a single chunk. An higher batch size lowers the execution time, but comes
with a decrease in the responsitivity (the model needs to receive batch size
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sentences before starting to translate) and an increased memory and com-
putational load. Servers equipped with GPUs can join inputs coming from
various sources and exploit the advantages of a high batch_size without low-
ering significantly the responsitivity. On the contrary an embedded device is
rarely equipped with a GPU, often instead just with a single core CPU, which
can’t handle parallelization. Furthermore embedded devices often handle a
single source of input, thus making the process too unresponsive if batch size
inputs need to be received before starting the inference. In practice then, due
to these hardware and inputs limitations, the models on embedded devices
don’t use a batch size > 1. Additional parameters that have been used in
this work are the target file and the shard size. The first one is the golden
reference to calculate metrics while the second one splits the input file to be
translated in smaller parts so that a file too big is not entirely loaded into
memory.
After that the model has been built by the framework with the layers and
all the weights learned during training time, a loop with one iteration per
batch (so per sentence) starts. As first step the encoder reads the whole sen-
tence, one word at time, until the <EOS> token is found, updating for each
word parsed the hidden state which contains the compressed information on
the input sentence. This memory, which at its last step is called C (context
summary) and is stored as a vector, is then used to initialize the decoder.
There are different types of decoders ready to use in OpenNMT, the one used
in this work implements the global attention mechanism, input feeding and
fixed width beam search.
The network, after instantiating both the decoder and the beam search class,
will keep looping over the words contained in C until the decoder predicts a
<EOS>. In this way the network is able to handle an input sentence with
different length with respect to the output one. The decoder, at each step
of the loop, is fed with the context C (weighted with the attention vector),
the previously decoded word and hidden state and finally the output of the
current cell. The decoder will then, as explained previously, calculate the
global attention vector as weighted sum of the source memory values and
use it in order to calculate the log probabilities of each word in its vocabu-
lary being the correct translation. This vector will then be then processed
by the beam search algorithm, which will extract the most likely translations
(as many as the beam width). This process will be repeated, with each step
aside from the first one having to handle beam width hypothesis that have
to be processed by the decoder and then by the beam search.
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In OpenNMT, the encoder receives as input the whole sentence and will
output the context as enc state and the memory of all the encoder states,
named memory bank. It will then initialize the decoder with those states,
repeating them already beam width times, so that each beam will be initial-
ized. Finally the Beam Search class is initialised with the memory bank and
the beam width chosen.
After the initialisations of all the classes the main decoding loop can start,
setting the number of iterations as the maximum length acceptable for a
sentence. At each iteration the function _decode_and_generate will receive
as input the previous output of the decoder, which is stored inside the Beam
Search class, and output the probabilities of each word as log_probs and the
attention vector attn.
The output of the decoder is then fed to the beam search class, which pos-
sesses two main functions: advance and update_finished. The first one is
called at each iteration and performs the beam search on the current vector
of log probabilities, whose size is the same as the source vocabulary of the
network multiplied for the beam width, since each hypothesis has been de-
coded and has its own attention and possible words. The chosen hypothesis
are then appended in a tensor with size beam width x decoding_step (where
the decoding step is current step in the decoding loop) and the memory bank
is updated. After the beam advance, the results are checked to understand
if any sentence has been completely translated, in that case the function up-
date_finished is called. This function will remove the beam that has finished
and store it after applying a penalty for its length, then it will check if also
the other hypothesis kept with the beam search have finished. In that case,
it will tell to the main loop to finish otherwise it will let the translation con-
tinue.
After repeating the loop described above enough times to have all the hy-
pothesis completed, the one with the largest likelihood is retrieved and trans-
formed from a list of indexes of words in the source vocabulary to a full text
sentence.
This inference loop is the main focus of this thesis. The loop in fact was
modified in order to allow the network to accept a changing beam width as
input and to determine the best beam width to use at each iteration. Deter-
mining the best beam width to set at the current time step, without slowing
the decoding process in a sensitive way, is the main focus of this thesis.
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4.4 Beam Width Policies

In order to pick the best beam width from the probability distribution vec-
tor of the words being the correct translation, which was calculated by the
decoder, many different discrimination metrics were tried. These discrim-
inating functions are called at each iteration of the translation, after the
decoding phase and before the beam search advance. These functions are
able to manage a batch size of one, which is the most commonly used in a
low power and memory environment. It would be in fact much more com-
plex to manage each sentence in the batch, all with their own beam size.
Furthermore all the policies need to be fast to compute in order to avoid a
considerable overhead for each decoder step, which would make it perform
worse than the fixed beam width network.
The majority of these policies are based on parameters that can be passed
from the command line and which have to be tuned according to the dataset.
They can be considered as additional parameters of the network, tuned in
this work on the validation dataset given with the pre-trained models.

4.4.1 Random

This policy implements a totally random approach which is not based on
the decoder output at the current time step. While very fast to implement
and to run, it is not “smart” and will be used together with the next policy
to check if policies based on words probabilities are at least able to produce
better-than-random results.
The interval in which the beam width can be picked is [1 − 5], so ranging
from a Greedy Search to the heaviest Beam Search that will be used in this
work.

4.4.2 Alternated

Another policy which implements a random approach and whose output is
independent from the decoded probabilities. The beam width value will be
alternating between one (a Greedy Search) and three (from where the gain
in an increased beam width is lower). This policy will be also used in order
to be compared to the baseline (the network with no modifications) and to
the other smarter policies.
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4.4.3 Standard Deviation
This policy is based on the top-k scores of the decoded probabilities. The
k value, which is the same as the maximum beam width for this policy,
has been limited to five for various reasons. Using the whole search space
would make the statistics computed less indicative than a reduced sample.
Furthermore a beam width of five is the value suggested by OpenNMT, in
fact it has been shown that increasing it won’t lead to substantial increases
in score. On the contrary an higher beam width would significantly increase
the execution time and the computational load.
After the top-5 log probabilities have been extracted the policy calculates
their standard deviation, which represents how dispersed the values are, and
mean. These values are used in order to choose the best value for the beam
width. Multiple versions of this policy have been implemented:

• Threshold-based: this variant keeps a memory of the previous beam
width and uses it in order to decide the following one. If the standard
deviation is greater than a threshold the beam width will be increased
by one, otherwise it will be decreased by one. In this case the std.
dev. is calculated as for a Normal distribution, while the threshold is a
hyperparameter that has to be set empirically for a given dataset.

• Mean ± Std. Dev.: the beam width is initially set to the maximum
value, then it is decreased by one for each value outside of the interval
with boundaries mean ± std.dev. and increased by one for each score
inside this interval. In this way, the sparsity of the value around the
mean is calculated and used to determine the best beam width value.
The boundaries used are the same proposed in [9], so 1/2, 1/3 etc. The
std. dev. is calculated both as Uniform and Normal.

4.4.4 Mutual Distance
This policy uses, in order to choose the beam width, the distance between
the top-5 log probabilities at the current decoding step. The distances be-
tween consecutive scores are calculated and a loop over them is started. For
each distance greater than a threshold, the beam width is decreased by one.
This measurements indicates how far the scores are from each other, so it
measures the sparsity of the log probabilities. Different thresholds have been
considered:
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• Mean: the mean of the distances is used as threshold, this approach
doesn’t consider the actual value of the distance, causing to have the
same results when scores are close and similarly separated or far and
similarly separated.

• Real Number: The threshold is a fixed parameter which has to be
tuned on the dataset which is used as input.

• Distances Distribution: variation of policy Mean ± Std. Dev., the
relative std. dev. of two scores is compared with their mutual distance.

An issue of this policy is that a high beam width is used if the top score is
much more likely than the others (which happens for easier translations). In
fact unlikely words will have low distances between them, which isn’t greater
than the chosen threshold, so the policy won’t decrease the beam width.

4.4.5 Score Margin
This policy has been proposed in the work [20], where it was used as well
to assess the classification confidence. Given the vector of log probabilities
produced by the decoder, the top five are extracted and the beam width is
set to one. Then a loop over the top values is started and at each step the
distance between the probabilities is derived. If this value is smaller than a
given threshold, which means that the probabilities are very close and the
network is “confused”, the beam width is increased by one otherwise the
current value of the beam width is used. The maximum beam width allowed
is five as in the other policies, while the threshold has to be tuned along the
dataset.

4.4.6 Score Margin Variant
This policy is a variation of the Score Margin described above. The score
margin is in this case computed as the difference between the best scores of
the decoder. This policy will set an initial minimal beam width (to avoid
using too often a Greedy Search) and will then iterate over the top-5 log
probabilities of the words. As long as the beam width is lower than five (the
maximum value accepted), it will be increased by one if the score margin be-
tween the currently two inspected scores is lower than a threshold, while if it
is below the policy will return the current beam width. In this way when the
scores are close, which means that the network is undecided on which word
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to pick, the beam width is increased and no useful hypothesis are pruned.
Some variation of this policy include an additional threshold that can imme-
diately stop the loop if the first and the second score are much more likely
than the others and comparing the scores in different order than from the
highest to the lowest.

4.4.7 Standard Deviation Mapping
This policy has been taken from [9], where it is presented as the top per-
forming policy on the validation dataset of the models that will be used in
this work.
This policy is a variation of the Standard Deviation approach, it is in fact
using the standard deviation to understand the network “confusion” for the
next word to be translated. In their work, Pagliari et al. [9] use a line
equation to formalise the relationship between the standard deviation and
the future beam width. The standard deviation is the independent variable
indicating the integer points inside the interval [BWmin, BWmax]. This equa-
tion returns a point in this space, which once rounded to the closest integer,
will become the next beam width. The standard deviation used for the cal-
culations of the point is derived from the top-5 scores and when it is very
large it indicates very spread out distribution, which means that the network
is very confident and the beam width returned will be small. In the opposite
case, the standard deviation will be a small value, so with a “confused” net-
work a high beam width will be returned.
Both the line equation and the two main points (shown in Figure 4.4), which
handle the maximum beam width and the maximum standard deviation to
be considered, that will be used in this work are the same as the ones sug-
gested by Pagliari et al. [9], since have been tested already on the same
dataset. The rounding techniques used, which play an important role in
the final average beam width of the translation, have been taken from the
previously mentioned work as well.
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Figure 4.4: Standard Deviation Mapping, figure taken from [9]

4.4.8 Entropy
This policy is based on the Shannon’s entropy calculated on all the log prob-
abilities produced by the decoder. The formula is:

S = −
NØ
i

Pi logPi (4.1)

This metric is also known as Information Entropy and it is a measurement
of the amount of information of a source [26]. The higher this value is, the
higher the “confusion” of the network is, so an higher beam will be needed.
This policy will often use the maximum entropy value, which depends on the
vocabulary size of the network and can be calculated as:

max_entropy = logb (vocabulary_size) (4.2)

In this work b, the base of the logarithm, will be e instead of 2, which is more
common in the computer science word, because the decoder directly outputs
the log probabilities required for 4.1, which are already calculated with base
e. This value still needs to be multiplied by the beam width of the previous
step in order to be the true maximum entropy, but the values can be pre-
computed and stored in a data structure when the network is instantiated.
Furthermore the maximum beam width has been constrained to five.
Various versions of this policy have been developed, the first set, which de-
pend directly on the value of the entropy includes:

• Interval based: the interval between [0,max_entropy] is split in five
parts of equal dimensions, then the current step entropy is calculated
and the index of the interval in which the entropy is will be the new
beam width.
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• Interval with offsets: since values close to the maximum value of the
entropy are almost impossible to see (it would require the whole set of
words in the vocabulary to be equally probable), the maximum beam
width is rarely used. To avoid this problem two offsets are added as addi-
tional parameters, so that the final interval will be [start_offset,max_entropy−
end_offset]. These two offsets shrink the five intervals created allowing
to give to the policy a greater sensitivity. In case of an entropy smaller
than the start_offset a beam width of one is selected, while if the en-
tropy results higher than max_entropy-end_offset a beam width of five
is returned.

Even with the addition of the offsets, this first set of policies wasn’t sensitive
enough to small changes. Furthermore the time required to split in equal
parts the considered interval slowed down the decoding phase excessively.
The second set of versions drops the idea of the interval in favour of a similar
approach as the Standard Deviation Mapping policy. Specifically, a line equa-
tion is used to create a mapping between entropy and beam width (rounding
the result appropriately). The entropy is divided by the max_entropy in
order to obtain a value in the interval [0,1]. This is the list of different
implementations:

• Entropy linear: the basic version of the policy described above, it is
the fastest “smart” policy to compute. It has been tested with beam
widths in the intervals 1-2, 2-4, 1-5.

• Entropy exponential: this policy calculates the line equation using
the exponential of the current value of the entropy. While this allows
the policy to be more sensitive to changes it makes the tuning harder
and the calculations slower.

• Entropy relative: this version of the policy was developed in order to
speed up the calculations of the entropy by removing all the probabilities
of the decoder lower than the mean value of the probabilities at that time
step. However finding and pruning the probability vector resulted to be
a too time consuming task.

• Entropy absolute: similar to the previous approach, the probability
vector was instead pruned of the candidate words with probability lower
than a fixed threshold. This approach is slightly slower than the Entropy
linear, but it didn’t bring considerable improvements, so it was dropped.
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In order to understand the time required by the network in order to compute
each policy, the most promising ones in terms of accuracy (see below) have
been profiled and the results out of 5000 calls are displayed in Figure 4.5.
The Entropy Linear policy was the fastest to compute even if, differently
from the Standard Deviation Mapping policy, the whole probability vector
is used, while the Entropy Relative, is by far the slowest to be computed.

Figure 4.5: Execution times of some of the proposed policies.

4.5 Framework modifications
The framework OpenNMT supports not only translation, but many other
tasks like summarization, speech to text and image to text. Only a subset
of the files composing it were modified in order to allow the network to use
the dynamic beam width approach at inference time. This section details
the modifications done to the framework as well as some of the challenges
encountered in order to make the encoder and the decoder handle different
beam width sizes during the runtime. To optimize the memory usage of these
new variables, in order to avoid duplicating large vectors which could fill the
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main memory and cause hangs or crashes on the embedded device.
The following is the list of the files which have been modified:

• opts.py: the file which parses the parameters passed on the command
line. Here all the thresholds and the command to choose the policy have
been added.

• translator.py: the main file which performs the translation, here the
encoding and the decoding phase are performed. The memory bank,
which holds the states of the encoder, has been made adaptive in size,
so that it can handle different beam widths. The beam policy function
has been added as an additional parameter of the network, it is first
chosen among the list of possible options when the network is created,
then the function itself is passed as parameter to the function called to
translate a batch of sentences. This additional step is performed after
the decoding function but before advancing the beams.

• beam_search.py: this is the class which, given a vector of probabil-
ities, performs the beam search on it. The main function called after
every decoding step is advance, which now receives as new argument
the new beam width and will handle not only the current results but
update the previous ones as well. The tensor where both the results and
the various attentions are stored is in fact updated every time the beam
width changes.

The whole set of modification has been deduced by a reverse engineering
process due to the lack of documentation provided by the framework, which
went through several changes during the writing of the thesis. Furthermore,
even if the pre-trained models used in this work are the same as in [9], both
OpenNMT and the framework PyTorch used to write it, have gone through
significant changes which made the previous code impossible to run.
As mentioned before, the main constraint was the lack of memory of the
embedded devices, which made it critical to preserve resources at each iter-
ation of the decoding phase. Updating the sizes of the variables which are
changing along the beam width, without allocating new variables, has been a
major challenge in this work and has required profiling the network numerous
times.
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Chapter 5

Experimental Results

5.1 Framework selection and installation
Deep learning has become an increasingly popular approach to various tasks
such as image recognition, speech recognition and machine translation. This
rise in popularity is not due only to the possibility of retrieving big datasets
or the increasing computational power available, but also thanks to the avail-
ability of open-source frameworks for machine learning. These libraries avoid
rewriting every time models, architectures and algorithms from scratch, of-
fering optimized implementations which are on par with the fast changing
machine learning world.
These frameworks not only provide an useful abstraction layer over the algo-
rithms but allow to use a high level API, while implementing the computation
on a lower level, speeding up the development of new models.
Deep learning frameworks can be divided in two main categories according
to the way in which they implement the computational graph of the network,
i.e. the underlying programming model that allows to implement inference
and training. Static frameworks like TensorFlow create the computational
graph of the network only once, keeping it unchanged during the rest of the
execution. This approach ensures very good performances and is usually
the solution adopted for production-ready models. Furthermore TensorFlow
offers many pre-trained models ready for the inference phase, multiple pro-
gramming languages APIs, and the version TensorFlowLite which is opti-
mized to run models on ARM CPUs.
The other framework category is represented by the the dynamic ones, which
allow the programmer to modify the computational graph during its execu-
tion. PyTorch, which belongs to this category, is a framework available in
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Python and C++, which has become more and more common in the research
world. It is a less mature project than TensorFlow, but it’s growing rapidly
and offers as well pre-trained models, extensive documentation and faster
prototyping for new network architectures.
In this work PyTorch was used since the dynamic beam width approach
requires modifications of the network during runtime, which would not be
possible with TensorFlow. This choice comes with a drawback though, since
the chosen framework doesn’t offer any support for ARM CPUs, limiting its
optimization to GPUs and Intel CPUs. Furthermore its installation is very
memory heavy which made it impossible to install directly on the embedded
device. The whole framework had to be recompiled directly on the device
with an increased swap partition and with the flags for enabling the usage of
the Neon library and the floating point 32-bit operations too.

5.2 Experimental Setup
OpenNMT [10] is an open-source framework for neural machine translation
and sequence modelling created by the Harvard NLP group in 2006. The
library purpose is to ease the implementations of complex architectures, by
offering an easy to use tool kit which can improve the research on NMT.
Originally it was built for Torch, but then it got implemented in TensorFlow
and PyTorch as well.
Currently the Torch version of the framework has been dropped in favour of
the other two, which are continuously improved by adding the state of the
art implementation for the tasks mentioned before. Both the PyTorch and
the TensorFlow implementations offer pre-trained models. As mentioned
previously, this work will use OpenNMT in its PyTorch implementation.

5.2.1 Models
OpenNMT offers pre-trained models for three different tasks: translation,
summarization and dialog. In this work the translation models were used,
which are:

• German to English (DEEN): this model was trained using the IWSLT14
dataset, the network implements 2 layers of 500 LSTM, word embedding
of size 500, a bidirectional encoder, input-feeding and attention mecha-
nism.
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• English to German (ENDE): this model has been trained using the
WMT15 dataset and is composed of 6 layers of 512 LSTM. It uses the
“Attention is all you Need” approach proposed by Google Brain and Byte
pair encoding (BPE), which is a compression algorithm which substitutes
consecutive common pairs of bytes with a new byte not occurring in the
data.

Both networks implement a static Beam Search approach in order to select
the output of the decoder which has been modified into a dynamic one for
this work.

5.2.2 Inference Platform

The evaluation of the policies proposed in this work has been performed on
an embedded device equipped with a ARMv8 Cortex A53 CPU and 1 GB
of RAM. Even if the processor is able to use four cores, PyTorch has been
constrained to use only one during the inference. Using all the cores caused
the execution to hang or crash due to the high memory consumption. Fur-
thermore, in this way it was possible to achieve results similar to those that
would be obtained with an even less powerful embedded device. Additionally
the network has been set to use only one sentence at time (i.e. to use a batch
size of 1), as it normally happens in edge computing. Increasing it would
in fact lower the responsitivity of the system, which would need to wait to
receive batch_size sentences before starting the translation.
In order to quickly evaluate the policies proposed during the experimental
phase a desktop computer equipped with a Intel Core i5 CPU and 8 GB
of RAM has been used. However this approach only works for accuracy vs
Beam Width plots, and not for accuracy vs execution time plots. In fact, the
time required when performing the inference on an ARM CPU, even when
normalized, is different from the one on an Intel CPU (which can count on
additional optimizations provided by PyTorch).
As mentioned above all the policies have been tested on the validation dataset
provided by OpenNMT together with the model. PPL, BLEU and ROUGE
are the metrics that have been chosen to evaluate the time (or complexity)
versus score trade off.
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5.3 Results
In order to understand the improvement and the effectiveness brought by the
proposed policies, a baseline set of measurements of the unmodified network
provided by OpenNMT has been performed on the ARM CPU. The inference
of each network has been ran once for every beam width in the interval [1,5]
using the whole validation dataset. For each execution it was kept track of
the BLEU, the PPL and the ROUGE scores and the execution time. Figures
5.1, 5.2, 5.3 and 5.4 show the results obtained with the inferences mentioned
before, both for the ENDE and DEEN network. In the Figures 5.2, 5.3
and 5.4 the normalized time which is used as horizontal axis is the total time
required by the network to perform the translation of the sentences (excluding
the time to allocate classes and load the required modules), divided by the
time required by the network with beam width equal to one.

(a) ENDE (b) DEEN

Figure 5.1: BLEU baseline

The graphs show that increasing the Beam Width increases the BLEU
and the Rouge scores and decreases the perplexity, which corresponds to an
increased quality of the translation. This is due to the fact that the networks,
by increasing the beam width, will keep in memory more possible transla-
tions instead of just taking the best one at the current time step (which is
a Greedy Search, performed when the beam width is 1). While some of the
scores differ by a small amount when the beam width increases from 1 to 5,
the output and then the translation quality are still significantly affected by
these changes. However the increase of the beam width leads to an increasing
number of computations necessary to perform the translations, which in turn
brings longer inference times.
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(a) ENDE (b) DEEN

Figure 5.2: BLEU vs Time baseline

(a) ENDE (b) DEEN

Figure 5.3: Perplexity baseline

The highest increase of BLEU and ROUGE is, for both models, between the
translations with Beam Width 1 and 2, while further increasing the beam
width doesn’t lead to such noticeable improvements. The BLEU after the
initial jump doesn’t increase significantly (while the inference times keep in-
creasing). In fact, the score almost saturates with Beam Width bigger than
4.
While the most significant increase in BLEU happens between 1 and 2, the
normalized execution time increases only by 13% for DEEN and by 9% for
ENDE, while it increases respectively by 30.5% and 30.4% between 2 and 3.
This behaviour, changes when the inferences are performed on an Intel CPU
as shown by Figure 5.5, where the highest gap in execution time is between
the beam width 1 and 2.
In both cases though, to gain a minimal increase in the score and so in the
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(a) ENDE (b) DEEN

Figure 5.4: Rouge baseline

Network Beamwidth PPL BLEU ROUGE Ex_time

DEEN

1 1.662 30,85 0.541 1
2 1.611 31,55 0.548 1.091
3 1.594 31,73 0.550 1.423
4 1.589 31,8 0.550 1.505
5 1.585 31,81 0.550 1.822

ENDE

1 1.585 32,18 0.543 1
2 1.554 32,78 0.549 1.134
3 1.544 33,01 0.550 1.478
4 1.540 32,92 0.550 1.598
5 1.538 33,08 0.551 1.946

Table 5.1: Fixed Beam width network results

translation quality, a significant increase of computations and model com-
plexity is required, which together with the low computational power of an
embedded device may slow down excessively the inference. Table 5.1 summa-
rizes the results obtained by the various inferences with the original network
in a more compact way.

Figure 5.6 shows some of the policies described previously and their BLEU
score on the IWSLT14 dataset using the DEEN network, where in this case
the horizontal axis represents the average beam width of the whole inference.
The policies results should be as close as possible to the top left corner of
the plot, which would mean a high BLEU score with a low complexity net-
work. As expected, some policies are below the baseline score which was
obtained with a fixed beam width approach, like the Alternated policy and
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(a) ENDE (b) DEEN

Figure 5.5: Comparison of the inferences performed on an Intel CPU by [9]
with the ones performed on an Arm CPU

the Random policy. These under performing policies are the ones that use
an input independent approach while policies with a more sophisticated ap-
proach which change the network depending on the current input manage
instead to outperform the baseline score while keeping the complexity of
the network low. The policies which manage to surpass the baseline score
more often and by a noticeable amount are the Entropy based policy and the
Standard Deviation Mapping policy, while the Score Margin policy and the
Standard Deviation policy weren’t so consistent.

Figure 5.6: DEEN policies results

Figure 5.7 shows the BLEU scores obtained on the WMT15 dataset by the
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ENDE network, the best performing policies are still the Entropy and the
Standard Deviation Mapping, while the Alternated and Random approach
are under performing. Due to the previous results, which allowed to un-
derstand which were the best performing policies, the Standard Deviation
Mapping and the Entropy policies were explored more in detail, with a more
careful fine tuning of the parameters necessary to choose the best beam width
at a given time step.

Figure 5.7: ENDE policies results

5.3.1 Standard Deviation Mapping Results
Figures 5.8, 5.9, 5.10, 5.11 show the results of the Standard Deviation Map-
ping policy obtained using the parameters found in [9], which while tested
on the same datasets and with the same models, have been obtained from
an embedded device equipped with an Intel CPU instead of an ARM CPU
like the one used in this work. Notice that, for average beam width val-
ues between 1 and 2, the policy results are below the baseline (Figure 5.9).
Because of the steep increase in BLEU with a short time overhead it is in
fact difficult to find parameters outperforming the baseline. Regarding the
Perplexity (where a better score is in the lower left corner) and the Rouge
scores these policies perform better than the baseline except, as mentioned
before, for average beam widths between 1 and 2. Table 5.2 summarizes the
results obtained; it can be seen that with a beam width between 2 and 3,
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results equal or superior to those obtained with a fixed beam width 5 can be
obtained in a shorter time both for the DEEN and the ENDE networks.

(a) ENDE (b) DEEN

Figure 5.8: BLEU with Standard Deviation Mapping

(a) ENDE (b) DEEN

Figure 5.9: BLEU vs Time with Standard Deviation Mapping
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(a) ENDE (b) DEEN

Figure 5.10: Perplexity with Standard Deviation Mapping

(a) ENDE (b) DEEN

Figure 5.11: Rouge with Standard Deviation Mapping
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Network min/maxBW min/max STD Avg BW PPL BLEU ROUGE Ex_time

DEEN

2/4 0,1/0,6 2.268 1,6004 31,69 0,54875 1.189
2/5 0,1/1,7 2.936 1,59 31,79 0,55007 1.348
2/5 0,1/1,7 3.670 1,5867 31,8 0,55098 1.506
2/4 0,1/1,7 2.342 1,5969 31,74 0,54998 1.244
1/3 0,1/2,2 1.990 1,6018 31,62 0,549 1.169
1/3 0,1/3,12 2.129 1,5965 31,68 0,55011 1.203
1/2 0,1/3,12 1.594 1,6121 31,42 0,54775 1.117
1/2 0,1/2,2 1.603 1,6222 31,25 0,54664 1.118

ENDE

2/4 1,7 2.218 1,5503 32,91 0,54865 1.272
2/5 0,1/1,7 3.371 1,5412 33,12 0,55114 1.521
2/5 0,1/1,3 2.861 1,5434 33,07 0,55041 1.403
1/3 0,1/1,7 1.906 1,5563 32,76 0,54771 1.208
1/3 0,1/3,12 2.061 1,5521 32,85 0,55011 1.243
1/2 0,1/3,12 1.564 1,561 32,67 0,54784 1.148
1/2 0,1/2,2 1.588 1,5637 32,55 0,54561 1.155

Table 5.2: Standard Deviation Mapping parameters and results
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5.3.2 Entropy Results
Figures 5.12, 5.13, 5.15, 5.14 show the results obtained with the policy based
on Entropy (orange dots) using a linear mapping. Table 5.3 lists the pa-
rameters used in order to to obtain each point in the graph. Furthermore
the maximum and the minimum Beam Width (max/min BW in the table)
that the network could use were modified as well together with the line pa-
rameters. As for the Standard Deviation Mapping, for beam width between
1 and 2, even if the BLEU increases and surpasses the baseline value, the
network becomes slower than the fixed one with beam width 2. This is due
to the steep increase of BLEU score between 1 and 2, which doesn’t increase
significantly the total execution time.
The policies outperform the baseline scores for higher beam widths, for the
ENDE network in fact a result almost equal to the one with a fixed beam
width of 5 was obtained with an average beam width of 2.29, which leads to
a reduction of the execution times by 33% and thus to a considerable energy
saving. The same policy but with different parameters applied to the DEEN
allows to obtain a BLEU score higher than the one obtained with beam width
5 with an average beam width of 3.03, so with a reduction of the execution
time of 20%. This policy manages to obtain better results when the interval
of possible beam width is reduced and smaller values are excluded.

(a) ENDE (b) DEEN

Figure 5.12: BLEU with Entropy policy
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(a) ENDE (b) DEEN

Figure 5.13: BLEU vs Time with Entropy policy

(a) ENDE (b) DEEN

Figure 5.14: Perplexity with Entropy policy

(a) ENDE (b) DEEN

Figure 5.15: Rouge with Entropy policy
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Network min/maxBW m/q Avg BW PPL BLEU ROUGE Ex_time

DEEN

1/5 1/0,4 2.729 1,5874 31,71 0,54937 1.371
1/5 1,5/0,2 2.125 1,5918 31,64 0,54905 1.267
1/5 2,5/0,5 4.056 1,5829 31,85 0,55085 1.683
1/5 1/0,2 1.730 1,5988 31,52 0,54834 1.185
1/5 1/0,5 3.339 1,5854 31,79 0,55006 1.549
1/5 1/0,1 1.382 1,6121 31,23 0,54582 1.129
2/4 0,5/0,5 2.196 1,5953 31,7 0,54927 1.242
2/4 2/0,5 3.033 1,587 31,82 0,55028 1.455
2/4 2/0,7 3.634 1,5868 31,81 0,55023 1.566

ENDE

1/5 1/0,4 3.081 1,5419 32,98 0,55014 1.536
1/5 1,5/0,2 2.580 1,5447 32,98 0,55171 1.389
1/5 2,5/0,5 4.644 1,5383 33 0,55076 1.877
1/5 1/0,2 2.072 1,5514 32,89 0,55025 1.256
1/5 1/0,5 3.528 1,5401 33,09 0,55063 1.616
1/5 1/0,1 1.523 1,559 32,73 0,54784 1.165
2/4 0,5/0,5 2.299 1,5459 33,07 0,55047 1.314
2/4 2/0,5 3.515 1,5411 33,03 0,55041 1.605
2/4 2/0,7 3.944 1,5405 32,94 0,54996 1.658

Table 5.3: Entropy Policy parameters and results
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5.4 Energy Measurements

Figure 5.16: The devices used to take the measurements

B

R

vx

Vin

A

Figure 5.17: High level view of the circuit used for the measurements

In order to prove that the energy consumption of the embedded device dur-
ing the inference is constant since the same operations are repeated during
the whole execution time, measurements with a multimeter were performed.
In case of a constant energy consumption, reducing the execution time (as
done in this work) would yield comparable energy savings. The energy con-
sumption of both the network was measured while translating 400 randomly
selected sentences of the validation datasets due to the excessively long ex-
ecution time of their full version. For the same reasons, the measurements
were performed only for the networks with a fixed beam width of 1,3 and 5,
plus the entropy policy.
The measurement, which can be seen in Figure 5.16 , can be summarized
by the circuit shown in Figure 5.17. It is composed by the embedded board
mounting the ARM CPU, a Digital Multimeter (HP/Agilent-34401A) and
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a Battery Manager Evaluation Module (Texas Instruments BQ27Z561EVM-
011). The voltage drop Vx was read by the multimeter every second and saved
on a file on a computer. Then, after the measurements were completed, the
current flowing through the circuit was derived:

I = V
R

= Vi
10(−3) (5.1)

Once the current was obtained, since the input voltage of the board (the
rectangle in Figure 5.17) is known, the power can be obtained:

P = I ∗ Vinput = I ∗ 5 (5.2)

Finally the power was integrated over time in order to obtain the energy:

E =
Ø
i

Pi (5.3)

Figures 5.18 and 5.19 , show the voltage obtained during the inferences re-
spectively for the DEEN and the ENDE network. It can be observed that the
voltage remains almost constant during the whole execution time and that
it doesn’t change depending on the beam width of the network. Table 5.4
shows the energies obtained from the graphs. This proves that by reducing
the execution time of the network thanks to the proposed policies there is an
actual energy saving proportional to the time saved.

Table 5.4: Entropy Policy results

Network Avg BW Energy ENDE (J) Energy DEEN (J)
Fixed BW 1 14 605.224 4260.878
Fixed BW 3 21 298.098 5561.152
Fixed BW 5 27 867.806 7383.225
Dynamic BW 1,27 16 579.907 4489.028
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Figure 5.18: DEEN inferences comparison

Figure 5.19: ENDE inferences comparison
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Chapter 6

Conclusions and Future
Works

The high amount of resources needed to execute deep learning models and
in particular recurrent neural networks, has made them too complex to be
run on embedded devices with low memory and computational power.
This work proposes an optimization of such models, in particular the Encoder-
Decoder architecture, that is modified at runtime depending on the complex-
ity of the input that is being processed. This reduces the number of com-
putations required and so the energy consumption of the network. It has
been proved that applying the tuning to the network on an embedded device
reduces effectively the time required to perform the inference. Furthermore
various discrimination criteria to decide which is the best configuration for
the network at the current time step, that base their decision on the input,
were tested. The two most promising criteria were explored more in detail
and by applying them on the inference phase it was possible to reduce the
execution time of more than 20%, while yielding higher accuracies than the
unmodified networks. Furthermore the whole process power consumption
was measured using a multimeter.
The network can be further optimized by applying other approximated com-
puting techniques like the quantization of the weights or the simplification
of LSTM cells. In future this approach and the proposed discrimination cri-
teria can be implemented on GPUs, in order to exploit its parallelism and
translate multiple sentences, each one with a different dynamic beam width.
Furthermore the relationship between the proposed policy using the Shan-
non’s Entropy and the Perplexity used by the network as loss function can
be explored more in detail, in order to choose better parameters policies or
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even change them at runtime.
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