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Abstract

This thesis aims at analyzing and experimenting on a Session-based
Recommender System problem, which dataset is provided by Trivago
for the Recsys Challenge 2019. In order to extract features we develop
2 solutions based on Recurrent Neural Networks, experimenting this
recent technology in a field yet to be entirely explored. The diver-
sity of the results obtained are interesting for analyzing how good this
approach works in this field. Along with the solution described we
analyze an ensemble of the results with a different algorithm (Matrix
Factorization), which is discussed in another thesis. This compari-
son made it possible to make conclusions about how good different
approaches are and why.
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Summary

In this thesis we present our solution for the Recsys 2019 challenge
which consists of 2 different RNN solutions: Pure-Classification and
Last-N, with the aim of predicting the hotel a user will choose to
clickout during his navigation on the Trivago platform, in a session-
based scenario.

First we introduce the world of recommender systems showing ex-
amples of fields where they are being successfully used as well as their
growing importance. We then describe how they have been classified
through the years and the different technologies that have been exper-
imented for solving recommending problems in different ways.

Starting from this knowledge we describe our solution for a spe-
cific problem belonging to the session-based category. The proposed
solution is composed of a cold-start approach for sessions of 1 step,
while the rest of the dataset is fed to 2 different approaches: Re-
current Neural Network and Matrix Factorization. The main
idea is to complement the MF strenght on sparse datasets with the
sequential knowledge extraction of the RNN, using an ensemble based
on a tree_based boosting algorithm: XGBoost. The experiments are
done on the dataset provided by Trivago, which consists of a collection
of user’s sessions on the web site with the goal of predicting which
hotel item the user will click (clickout). We initially do an analysis of
the dataset to make some assumptions that are essential for the ex-
perimental setup choices. This analysis showed that a lot of sessions
are 1 step long, making it impossible for the RNN to compute them.
The solution to this subset is a cold-start approach which consists
of recommending the impression_list field, which is the list of hotels
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showed to the user at the moment of the clickout.
To feed the RNNs we need to encode the input data in some sort

of numerical format. That is why after cleaning the dataset we create
the input by taking only the actions related to an item and encoding
them with a w2vec algorithm with the use of the Gensim library. We
do this to represent similar hotels close in a multi-dimensional space,
as the algorithm associates hotels by their proximity in the session
sequences.
We experiment 2 different RNN solutions.

The first one is the Pure-Classification, which is based on a RNN
which tries to select the right item in the whole list of existing hotels
by having as output a confidence score for each item, the higher score
the higher probability for it to be the right one. This is done by using
a LogSoftmax function at the end of the RNN, along with a NLLLoss
for the training part.

The second solution is the Last-N, which is configured like the one
in the first solution but selects the right hotel among the last visited
in a single session or decides that the clickout hotel is not present in
this list, and so recommends the impression_list instead.

As expected the results for the Pure-Classification solution shows
that an RNN approach based on a pure classification does not get good
results when facing such a sparse problem when compared to other
ones, but the goal of this solution is to complement the lack of the MF
solution with its study on the sequence features. The ensemble with
the MF showed a slightly score improvement, which can be related to
the hypothesis of the RNN succeeding in the sequence learning.

For what concerns the Last-N solution we observe that the training
does not need much time to train as the number of classes is very little,
resulting in a very clear loss shape after a little bit of tuning. The score
is much higher that the first solution as the last visited items are very
likely to be those the user is more interested to. In the ensemble with
the MF we notice that there is no noticeable overall score increase,
because the XGBoost yet considers the contribute of the last-n items.

Even if the score of the solution is not close to the leaderboard
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winners, the importance is not only in the score obtained for the chal-
lenge dataset but more importantly in the behaviour of such technology
when facing a session-based recommender problem. The last-visited
items confirm to be very important in the final user decision, despite
the solution they are included into. The need of a hybrid approach for
these problems seems necessary to overcome these lacks.
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Chapter 1

Introduction

The purpose of this thesis is to develop a solution to a Recommender
System problem, more precisely the one proposed by the RecSys Chal-
lenge 2019, sponsored by Trivago. Our goal is to try different and com-
plementary technologies (Matrix Factorization and Recurrent Neural
Network) on a session-based problem and ensemble them in order to
study not only their singularity but also their strong points in a multi-
approach matter.

1.1 Team

We are a team composed of 4 members joining the forces of Politecnico
di Torino and LINKS Foundation, under the supervision of Professor
Maurizio Morisio from the DAUIN department. Me and my colleague
Andrea Fiandro are the students who developed the complementary
solutions for the experiment. We were hugely supervisioned and helped
in doing that by more expert figures in the field: Giuseppe Rizzo, a
senior researcher employed at Links working in NLP and recommender
fields, and Diego Monti, a Phd student who mainly focuses his research
in recommender systems.
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1 – Introduction

1.2 Recommender system
A recommender system is an AI software which elaborates huge amounts
of data to suggest any kind of product to the customer, ranging from
real objects to media products. This permits to profile used preferences
and suggest the best item.

In recent years recommendation systems showed positive results in
both economic and research matters. Companies adopting this new
technology encountered an increment in their income, due to the in-
creasing satisfaction of the users and the affection that they develop
for the system. A noticeable case is the one involving media services
such as Netflix or Spotify, where the user taste are a top priority. In
terms of research this field is good for trying new AI technologies and
for exploring the modeling of people behaviours.

1.2.1 Applications
Recommender systems are applied in different fields. They help people
decide which object to buy, film to see or song to listen when using
web platforms, which are becoming more and more used. From buying
a product on Amazon to watching a tv web series on Netflix, those
services continuously keep recommending another product to consume
and users are happy about that and when users like a platform they are
encouraged to spend more time on it, increasing the company incomes.
Recommenations may be considered even in less consumistic way as
not only products are recommended, instead there are examples like
Facebook that recommends friends, Linkedin for jobs. As we can see
the fields of application are endless. These companies are investing
more and more money in recommender system as they understood the
great capabilities and incomes they may provide.

1.2.2 Technologies
The technologies used for recommendation purposes are those based
on the extraction of features from a large set of data which characterize

2



1.3 – Why Deep Learning?

the users and match those features with the ones belonging to the items
to be recommended.

This leads to the use of Matrix Factorization techniques, which are
characterized by direct user-item matches. But the recent development
of AI technologies (i.e. Machine Learning and Deep Learning) showed
new ways to extract features with very good results in fields such as
computer vision. The availability of Big Data opened the way to Deep
Learning solutions as we explore in this thesis.

1.3 Why Deep Learning?
Deep learning is a new technology that is obtaining more and more
interest in recent years, especially in fields like Computer Vision and
Natural Language Processing. The problem similarity between NLP
and Recommender Systems (considered as sequences of data) rises the
interest in testing this methods in the Rec field as we do in this thesis.

1.4 Results
The results of this experiment are considered by single solution and by
ensemble of 2 different solutions: Matrix Factorization and Recurrent
Neural Network. The RNN approach (the target of this thesis) results
are relative to the splitted dataset, which is a subset of the one for
the official leaderboard, and considered 2 different solutions scoring
very different MRR results: 0.28 and 0.54, while the ensemble best
score with the MF is 0.602774. The final submission to the Recsys
Challenge did not include the RNN results for time issues, but we
obtained a score of 0.62.
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Chapter 2

State of the art

In the following chapter we describe how recommender systems have
been studied and classified, with an additional analysis of the tech-
nologies that are obtaining good results in this field.

2.1 Recommender Systems

Since the advent of Internet more and more users faced the opportu-
nity of having access to a constant growing number of information.
Nowadays this phenomenon is so big that everyone can do it in a mat-
ter of seconds with the use of a cellphone, from reading a new article
to booking a new hotel. Accessing data implies the creation of efficient
research methods on the net and with them the need of a system that
suggests the best fitting data to the user. As this need spread Rec-
ommender Systems were created to fulfill it, but they started to score
good results only after 2000. Since then a great number of classifica-
tions and applied methods have been defined [19]. To better analyze
and study recommender systems, different classifications were made
and we report them in the following sections [20].
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2 – State of the art

2.1.1 Context
Context categorization may depend on the characteristics of the prob-
lem and the dataset or simply on the choice of the implementation.

Last-N interactions

This approach consists in considering only the Last-N actions of the
session to predict the following one. This may be due to the nature of
the problem which makes older interactions not important for predic-
tion.

Session-Based

A session-based recommender system can use as information only ac-
tions belonging to a unique session, which is a limited window of
time in which the user interacts with the service. In this case we
lack historical information about the user and the analysis is usually a
short-term one. This category is typical for services without a needed
registration to the service but also news [6], e-commerce, videos.

Session-Aware

A session-aware recommender system can use both historical and
session information [17]. This type of system is great for both short
and long-term models.

2.1.2 Approach
Another categorization is due to the data relations that we consider
to extract features.

Content-Based

This approach takes into account user-item interactions and recom-
mends items similar to the ones the user has viewed before. It is based
on profiling a user by its features or behaviour or interaction with an
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2.1 – Recommender Systems

item. This item is characterized by its own features which may be used
to profile the user and to understand which type of item he may be
interested in. Example: A person may be using Amazon platform and
looking for a film. It is easy to assume that the same person attempt
and interest is to buy something for its collection and the system will
suggest similar movies or maybe a new television to watch them.

Collaborative Filtering

This approach is based on the similarity between users and recom-
mends the same items to similar users. People profiling is very impor-
tant in this field as we try to understand the taste of the user and how
it may reflect in other users. It is useful for discovering new items.
Example: take into account the Netflix platform. Two different user
may watch the very same action and humor films and being considered
very similar. When the first one watches a particular horror movie, the
system will suggest that to the second user, because it is very likely
for him to appreciate it.

Hybrid

It is a mix of the 2 methods, as they are very complementary it is a
good idea to consider both sides of the problem and take the best of
them.

2.1.3 Feedback
The feedback defines how we extrapolate the knowledge of the relation
between a user and an item.

Explicit

An explicit feedback consists of a user interacting directly with an
item, being the interaction positive, negative or just an interaction.
This association creates a user-item feature.
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2 – State of the art

Implicit

Implicit feedback is the one not depending on a direct user-item in-
teraction but deducted from user features which may be common or
related to features belonging to the considered item.

2.1.4 Domain
As we said recommendations can operate in diverse fields ranging from
e-commerce to music [22]. It is very important to consider the domain
in which the system will operate in terms of features to be considered
or technologies to use because the problem environment may vary.

E-Commerce

This is the most explored field as when a user watches or buys an
object he is very likely to buy another one which is related to it. For
instance buying a toothbrush may lead to buying a toothpaste. It is
very common for this systems to be Session-Aware as even if user pref-
erences are important, recent session interactions may be even more
relevant.

Music

This field shows the relevance of the session and more importantly to
the sequence itself as musical tastes rapidly change, even in short time
and the system must adapt to this trend. Next track prediction or
suggestion are the most important applications.

Video/TV series

In this case the tastes of the user are fundamental as they define the
type of TV series they watch and suggestions are picked from that
pool. The Netflix competition of 2006 showed a great performance of
Matrix Factorization in this context.
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2.2 – Technologies

2.2 Technologies
Technologies may be divided in 2 main categories: Sequence Learning
Algorithms and Sequence-Aware Matrix factorization.

2.2.1 Sequence Learning Algorithms
Sequence based algorithms focus on the succession of actions aspect of
the problem. It is useful when considering problems where we suggest
an item every time an event happens, so that there is a chance that
the user will interact with the newly recommmended item.
An example may be a user navigating on Amazon website: every time
we inspect an object, other similar or related items pop up in the
window to promote further navigation on the platform. This case needs
a prediction after every user interaction, but there are other cases (as
the one we face) where we only need to predict the last element of a
sequence. These methods not only focus on the items occurring in the
sequence but also on their order, as it may contain useful features on
the user intent. So they are the most impactful when we have data
which hides many information in the sequence of the actions.
Some of the main implementations are described below.

Markov Models

Markov Models are stochastic models used to predict that are based on
the knowledge we get from the current state without considering the
previous ones. One of the most used Markov Models for recommender
systems are Markov Chains. They are based on a stochastic model that
takes into account only the last few N actions before the prediction,
as we do not want to consider the history.

Reinforcement Learning

Reinforcement Learning algorithms are based on receiving a feedback
(positive or negative) after a prediction and maximizing the total re-
ward among multiple successive actions. The sequential nature of this
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2 – State of the art

technologies is perfect in this case.

Recurrent Neural Networks

Recurrent Neural Networks are described more deeply in section 2.3.

2.2.2 Matrix Factorization
Matrix Factorization is one of the most used algorithms in Recom-
mender Systems [9], since the Netflix competition which confirmed
this supremacy. Those algorithms are based on matrices as the name
suggests. More precisely they create 2 different matrices: one describ-
ing user features and one representing item ones. These will be used
to understand the relations between user and items. In Figure 2.1 we
have user matrix characterized by a yes/no for different genres and a
second matrix representing the genres in a multiple feature domain.
The core of the problem is that users usually do not interact with
every single item, resulting in a very sparse results matrix. The re-
sults matrix missing values are the ones we are going to predict, which
translates in foreseeing how much interest user u has in item t.

Also MF models divide into Content-Based and Collaborative Fil-
tering. The second type is very interesting as we can associate very
efficiently similar user tastes by comparing similar interacted object
using a matrix structure.

SVD

SVD (Singular Value Decomposition) is a commonly used algorithm
to decompose matrices. In the recommender filed it was successfully
used by Simon Funk for the Netflix challenge and it is based on the
decomposition of the initial user-item sparse matrix into 2 smaller
matrices, representing respectively users and items. This process is
done with a loss function which value is to be minimized. In the
prediction phase we multiply the 2 matrices and add a bias to obtain
the values referring to which items a user prefers.

10



2.2 – Technologies

Figure 2.1: User-Item Mf example.

Source: http://primo.ai/index.php?title=Matrix_Factorization

2.2.3 XGBoost

XGBoost1 (Extreme Gradient Boosting) is an algorithm which tries
to boost the performance of tree based classification systems [1].
These systems consist of a tree structure which aim is to make decisions
and discriminate between different classes. XGBoost analyzes the data
and maximizes the decision making of this tree with the use of machine
learning techniques. The major contribute of this library is in the
scalability it offers, making it a good fit for huge datasets like ours.
We use its potential to boost the ensemble between MF, RNN and
other significant features we discover in the dataset.

1https://xgboost.readthedocs.io/en/latest/index.html
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2 – State of the art

2.3 From AI to Deep Learning
Artificial Intelligence (AI) is the simulation of human intelligence
performed by a machine by the use of theory and algorithms. This
definition offers a huge variety of possible fields to consider, as it is
very general.

2.3.1 Machine Learning
Machine Learning is a subgroup of AI, including a collection of tech-
niques which enable the machine to learn through experience. Ma-
chine learning techniques are widely used in today tasks such as image
recognition, speech recognition, e-commerce, social networks and much
more.

The machine takes as input some vectors of numbers and adjusts
internal weights according to the difference between its output and the
expected one. The most simple example of this is the perceptron of
Figure 2.2.

x1

x2

x3
.
.
.
xn

Output: 	σ(w*x	+	b)

w1

w2

w3

wn

Figure 2.2: Perceptron structure
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2.3 – From AI to Deep Learning

A computer program is said to learn from experience E,
with respect to class of tasks T and performance measure P,
id its performances at tasks T, as measured by P, improves
with experience E. [Arthur L. Samuel, Some studies in
machine learning using the game of Checkers (1959)]

Machine learning has been classified in 2 different subgroups:
Unsupervised Learning is about extracting features from unlabeled
items with tools like PCA or clustering.
Supervised Learning are the methods that take labeled data s input
and try to predict the correct label by the learning of the items features.
This is the most common type and the one that has produced the best
results so long.
Another important classification, more relevant for supervised models,
given X as the training data and Y as the target:
Discriminative Models estimate the parameters of P(Y|X) from the
training data. It just tries to model the data and classifies it.
Generative Models estimate parameters of P(X|Y) and P(Y) from
the training data and use Bayes Rule to calculate P(Y|X). It tries to
learn the model that generates the data.

2.3.2 Deep Learning
Deep Learning [12] is basically a concatenation of multiple percep-
trons where every layer extracts features from the previous one. It has
become more and more famous for its increasing success than simple
machine learning in tasks where we have a very large amount of data.
This has become possible thanks to the progress of computing power
of GPUs.
Different Deep Learning architectures have been developed according
to specific tasks:
Convolutional Neural Networks (CNN) are perfect for extracting
from multiple arrays of data and adapt very well to image processing
as they are composed of RGB vectors.
Recurrent Neural Networks (RNN) are used mainly for sequences
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2 – State of the art

of data and work very well in tasks like Natural Language Processing
or Recommender Systems. In the following section we go deeper in
this architecture description.

CELL

xi

hi

CELL CELL

x1 x2

h1 h2

Figure 2.3: Recurrent Neural Networks structure

2.3.3 Recurrent Neural Networks
Recurrent Neural Networks have been tested in session-based scenarios
[7] [5] and yet obtained good results by adding some mods to adapt
them to more specific recommender problems.

RNN architectures [2] process a sequence of input items (xi) one
at a time and keeps track of the hidden layer (hi) at each iteration by
concatenating it to the successive input as shown in Figure 2.3. The
main subclasses of RNN are described below.

Long-Short Term Memory (LSTM)

LSTM uses additional hidden units to better maintain the memory
of past inputs. Its difference is noticeable in the structure of the cell
which presents several arithmetic functions inside with the aim to keep
a cell state. The cell is able to select which information is worth to
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be kept and which is to be forgotten. In Figure 2.4 we can see the
internal structure composed of:

Figure 2.4: LSTM cell structure.

Source: https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-
step-by-step-explanation-44e9eb85bf21

• forget gate: to select which information to forget, as they are
not relevant for the task.

• input gate: to select which input features are worth to be kept.

• output gate: which decides which information will be kept in
the next hidden layer.

This solution proved to outperform vanilla RNN especially in long
sequence tasks but it is obviously more time consuming as the archi-
tecture complexity increases.
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Gated Recurrent Unit (GRU)

GRU is a simplified version of LSTM that does not have separated
memory cells but still controls the flow of information, improving time
performance while still keeping a good overall score. As we notice
in Figure 2.5 the structure has not the cell state any more and it is
composed of 2 gates:

• update gate: it decides which features are to be kept and which
to be forgotten. As the name suggests it makes an update based
on the new information.

• reset gate: it decides which features from past events are to be
forgotten as they are not relevant for the output.

Gradient Problems

Exploding and Vanishing Gradient [16] are well known problems
in deep learning. They are due to the update of the cells when process-
ing long sequences of data. Backpropagating in such a big number of
layers may cause the gradient to explode or vanish, making the update
too big or too little, meaning it is impossible to learn. The basic RNN
cell suffers this phenomeno but both variations of RNN we describe
solve the Vanishing Gradient problem [8].

Losses

The loss function is a crucial part of a deep learning algorithms as it
is what observes the difference between the obtained result and the
desired one, computing the gradient and understanding how to update
the net weights. As the training goes on, the loss value should decrease
with a hyperbolic rate because lower loss means less difference between
result and target, meaning that the net is learning. Different losses
have been created for different purposes, but we focus on the ones
more related to our problem:

16
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Figure 2.5: GRU cell structure.

CrossEntropy is the best loss for classification problem among a
wide range of classes. It expects an output of dimension C, where C
is the number of classes, each populated by a number related to the
likelyhood that that class is the right one. It is composed of a NLLLoss
+ LogSoftMax functions.

BPR stands for Bayesian Personalized Ranking [18]. It is a ranking
pairwise loss function which aims at promoting positive feedback on
items comparing it to negative feedbacks. Even it is possible to use it
with multiple items doing pair to pair comparison we thought it was
not the best solution for classification purposes.
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Chapter 3

Recsys Challenge

Recsys is the premier conference for sharing new solutions in the rec-
ommender field. Every year it organizes a challenge sponsored by a
different international company. The challenge is open to everybody
and it is a good opportunity to try new technologies on real problems,
proving their effectiveness not only in the research field, but consider-
ing the application side.

3.1 Last year LINKS participation

LINKS Foundation already took part in last year challenge [15], be-
ing able to place in the top10 of the leaderboard. The challenge was
about filling song playlists for different users starting from no or very
little knowledge. It was sponsored by Spotify, being one of the main
platforms for music streaming. The solution developed by the team
was a multiple deep learning classification approach using different fea-
tures provided by the dataset (artist, songname, ...) as input which
were then ensembled to obtain a better profiling and population of the
empty playlists. A similar approach is considered in this thesis work
but for a different problem such as the session-based prediction.
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3.2 Trivago

As mentioned earlier the sponsor of this year’s challenge is Trivago,
which is a very famous platform for comparing hotel from different
travel platforms by price, location, photos and similar features to rec-
ommend the best option to the visiting user. The nature of the service
makes easy to understand that it is great for a recommender system. A
typical Trivago session is as described in Figure 3.1. The user usually
types in the location he wants to travel to and other optional filters
such as hotel ratings, hotel type and similar or do some inspection
action like opening a hotel image to see the room he will book for.
Among the different actions the most important is the clickout, which
redirects to the hotel host website. This is the action that creates the
income to the company as the hotel platforms pay for this redirection,
which increases the amount of visiting users.

Filters and
other

feaures

Photos of the
hotel

Clickout action

Figure 3.1: Trivago Website.
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3.3 Session-based
A session-based problem is characterized by the lack (or minimal pres-
ence) of historical details about a single user, meaning that a user is
not likely to use the system multiple times or we do not record his
identity, this may depend on the service type or choice. The goal is to
analyze the succession of actions picked from the logs and model the
user preferences only by a single session information rather than his
historical choices.

3.4 MRR
The metric used to evaluate the score is Mean Reciprocal Rank (MRR).

MRR = 1
|Q|

|Q|Ø
i=1

1
ranki

(3.1)

As the ouput of the prediction is a reordered impression list, we
pick as ranki the position of the actually clicked item in the recom-
mendation_list the system gave as result.
Example:
query 1:
impressions = [100, 101, 102, 103, 104, 105]
clicked_item_id = 102
submission = [101, 103, 104, 102, 105, 100]
MRR = 0.25
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Chapter 4

Dataset

In the Dataset chapter we deeply analyze the Trivago Dataset structure
and statistics in order to make the right development decisions to fit
its peculiarities.

4.1 Description
We used the Dataset provided by Trivago for the RecSys Challenge
2019. As described in figure 4.1 we are provided with a train and a
test set, differentiated by the date in which the logs are taken.

As we can see the dataset is a collection of user sessions collected
by logs taken from 3 days of activity on the Trivago platform. Each
session is composed of a series of actions, each characterized by the
following fields (the most relevant ones are highlighted):

• user_id: id of the user

• session_id: id of the session

• timestamp: defining the time of the interaction

• step: incremental number defining the sequence of actions in one
single session
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• action_type: it specifies the type of action performed by the
user. This is one of the most important ones and it may have a
value taken from the following list:

– clickout item: user makes a click-out on the item and gets
forwarded to a partner website, this is the most important
action and it is the one to be predicted. The reference
value for this action is the item_id. Other items that were
displayed to the user and their associated prices are listed
under the ‘impressions’ and ‘prices’ column for this action.

– interaction item rating: user interacts with a rating or re-
view of an item. The reference value for this action is the
item id.

– interaction item info: user interacts with item information.
The reference value for this action is the item id.

– interaction item image: user interacts with an image of an
item. The reference value for this action is the item id.

– interaction item deals: user clicks on the view more deals
button. The reference value for this action is the item id.

– change of sort order: user changes the sort order. The ref-
erence value for this action is the sort order description.

– filter selection: user selects a filter. The reference value for
this action is the filter description.

– search for item: user searches for an accommodation. The
reference value for this action is the item id.

– search for destination: user searches for a destination. The
reference value for this action is the name of the destination.

– search for poi: user searches for a point of interest (POI).
The reference value for this action is the name of the POI

• reference: reference value for the action, this is the second most
important field as it often specifies the item_id, showing a direct
correlation between user and item.
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• platform: country platform used by the user

• city: name of the current city of the search context

• device: device used by the user (phone/pc)

• current_filters: list of pipe-separated filters that were active at
the given timestamp

• impressions: list of pipe-separated items that were displayed
to the user at the time of a click-out, this is very important as
it always contains the item clicked by the user, the one to be
predicted

• prices: list of pipe-separated prices of the items that were dis-
played to the user at the time of a click-out in the impressions

We are supposed to train our models on the train set and then
make a submission on the official website to know the score obtained
on the test set.

The test set has the last clickout action reference field set to NULL
as it is the one to be predicted. We do not have access to the real
value of this field.

The test set is also divided in validation and confirmation set,
the former being the one on which temporary scores are computed
when a submission happens, the latter being the one used for the final
leaderboard.

In the image vectors are filled by a ’X’ or ’?’ where a clickout
happens, ’X’ stands for a valued reference while ’?’ stands for a NULL
one.

As showed in Figure 3.1 Trivago site is based on a search tool that
shows a collection of accommodations (impressions field) according to
the user preferences. As Trivago incomings depend on users clickouts
on target hotel as it redirects him to the hotel website, the task here
is to reorder the hotels shown on the page from most to least likely to
be clicked. This translates in predicting the NULL clickout reference.
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A typical user session is structured as shown in Figure 4.2. The
user searches for a location on the platform and does different actions
ranging from filtering to read hotels descriptions, while the most per-
formed action is the interaction item image, as anybody is used to
watch the room photos before booking it. The session eventually en-
counters the most important action: the clickout item, being the one
leading the user to the hotel website. It usually is the last action as
it means that the user made his choice, but it may occur even in the
middle of a sequence.

Figure 4.1: Official Trivago Dataset.

4.2 Dataset Manipulation and Cleaning

4.2.1 Filtering
As we want to find user_item interactions we filtered the dataset by
keeping only actions with an item_id as reference value, meaning that
the action_type must be one of the following: interaction item image,
interaction item deals, clickout item, search for item.
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Focus on Distance
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Interaction item 
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929533
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2099360

Action 2

  

Cancun, Mexico

Action 1

Interaction item 
image

Search for 
destination

TO PREDICT

Action type

Reference

Actions to be dropped after manipulation

Figure 4.2: Typical user session.

4.2.2 Split
Trivago does not provide the values to be predicted in the test set, so
we have to create a local test set to try solutions locally and even after
the end of the challenge.

To do so we split the official train set into 2 sub sets: local train
(80%) and local test (20%). We obviously set to NULL the reference
of last clickout action if each session, while keeping the pre-nullified
version as the local ground truth set, useful for computing the score.

4.2.3 Ensemble split
XGBoost ensemble solution requires a training phase. This require-
ment translates in the need of an additional training and test sets.
So we split again the local training set into the so called inner and
dev datasets. The different solutions to be ensembled are to be run 2
times, one for the inner dataset to provide a target to the XGBoost to
be trained, and the dev dataset, which is the one to be considered for
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train_off test_off

train_local
(train_dev)
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RNN
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RNN
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XGBoost

final results

TRIVAGO

Figure 4.3: Dataset split and usage.

the real solution.

4.3 Statistics and Deductions
The first task and one of the most crucial one to do when working with
a huge dataset is to analyze it so that we can think the best solution
for our problem.
The provided dataset main features are described in Figure 4.4, where
we highlight session and hotel number in the dev dataset, because the
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former determines the number of sequences we have to process and
the latter defines the output layer dimension of the neural network.
The actual output layer has a dimension of 329604 values for the
first solution, as the encoding takes into account also hotels that are
present in the test set but not in the training set just to make sure they
are encoded and can be considered a possible solution. Such a huge
number of classes increases the complexity of the solution and leads
to some architecture decision for time consumption problems that are
discussed later on.

Figure 4.4: Statistical numbers of splitted dataset.

Figure 4.5: User distribution in train and test.

In Figure 4.5 we can see the of users that are in the training set
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and appear again in the test set. As we notice the this number is not
very high, so the choice of considering this a session-based problem
and leave the history feature behind is the right one.

Figure 4.6: Action distribution per type.

In our solution we decide to consider only actions related to a hotel.
this choice is supported by Figure 4.6 which shows the number of
actions per type. As we can see those directly referring to a hotel
are the huge majority, and we notice that ’interaction item image’
actions are more than half of the dataset. It is indeed likely for a user
to look at the hotels room photos before booking.

In Section 4.2 we explained how we split the dataset based on the
number of actions in the session. We can visually see the 2 splitted
dataset dimensions in Figure 4.7, where we highlight the ratio between
one step sessions and longer ones. It is important to consider how
big are the 2 datasets to estimate the impact of the different solutions
on the final score: we can not do much prediction for one step sessions.

The choice of using GRU instead of LSTM cells is justified by
Figure 4.8, where we can see that the great majority of sessions have
less than 100 actions and an average of 17, meaning that long sequences
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Figure 4.7: One step sessions ratio.

Figure 4.8: Session distribution per length.

analysis is not so crucial.
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4.4 Metadata
Along with the training and test datasets we are provided with ameta-
data file, which is a csv containing a list of attributes per hotel. These
attributes may include the presence of services like a swimming pool
or a mini-bar, useful for characterizing the hotels. Unfortunately the
number of hotels included in this file is not comparable to the total,
as a result the predicting algorithm tends to always promote those ho-
tels instead of the ones without metadata, influencing too much the
final decision. For this reason we decide to exclude this file from the
solution.

4.5 Official impression list
The impression list is the list of items shown to the user at the moment
of the clickout. The order of this list is very important for deciding
which hotel is the right one as the user is more likely to consider the
items he sees first. Unfortunately this ordering can not be considered
in the local set we are using as Trivago shuffled the order of all the
impression lists, while in the official dataset they are ordered and it
can be considered as a feature. This creates a gap between official
training and test set results as the test set can get advantage of this
important feature.

32



Chapter 5

Solution Description

In this chapter we describe the overall idea behind the solution, from
the organization of the common part between the different approaches
to the description of the expected results of the single parts. The main
part is about the structure of the 2 RNN solutions.

5.1 Main Idea
Our idea is a hybrid approach to a session-based recommender
problem. It is hybrid because we try to utilize at best the versatility
of a sequence-based algorithm as the RNN one, complementing it
with the data-sparsity resistance of the Matrix Factorization one,
trying to overcome the problems of each solution with an ensem-
ble using XGBoost library. Other hybrid attempts were made with a
multi-approach solution [21] and we want to explore more of similar
techniques in a different scenario.

5.2 Overall Approach
Our solution is a multi-stage process, composed by a dataset division
part followed by the feature extraction performed on those separately.
The 2 subsets are the cold-start subset and the main subset. The
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first part is based on dividing the dataset in Cold-Start and Main,
separation based on the problem characteristics. We then opt for an
ensemble approach of 2 solutions we suppose to be complementary:
Matrix Factorization and Recurrent Neural Network.

5.3 Cold-start subset
Cold-start is a very common problem in Recommender Systems [11],
which arouses when facing the need to recommend in a scenario where
we do not really have much information on user recent activity. One
of the most common solutions to the problem is using user profiling or
collaborative filtering, but we are facing a session-based problem where
user history is not so relevant. We decide to separate those cold-start
sessions in a different subset for applying a different approach.

This subset consists of sessions of length len = 1, meaning that they
include only sessions populated by one single action, the clickout one.
The lack of information makes it impossible to extract features for the
user, as we also miss any kind of historical info as it is a session-based
problem. This leads to use the impression_list as the recommendation
list without any change, as it is the only information we have.

5.4 Main subset
This subset includes sessions of length len > 1. This is the interesting
part of the dataset as we can extract features from the succession of
different user-item interactions.
The solutions for this subset are breefly introduced below.

5.4.1 Matrix Factorization
The matrix factorization approach aim is to extract pure user-item
interactions, promoting those items the user interacted the most. It
promotes the analysis of pure association between user and item, but
it lacks a consideration on the sequence structure of the session. It
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is implemented with the use of LightFM1, which is a library created
to make Matrix Factorization implementations in a very simple but
effective way, with the extraction of user and item metadata. The
solution is based on the product between a user-feature and an item-
feature matrix to obtain the best fit between every user and the clickout
item. The final solution will be based on how much the user has
interacted with a particular hotel.

5.4.2 RNN
The Recurrent Neural Network approach is based on the analysis of the
succession of different actions to predict which will be the next item
to be clicked, considering which item, in which order and how many
times they are interacted with, complementing the lack of sequentiality
of the MF solution. It is deeply described in Chapter 6.

5.4.3 Ensemble
The Ensemble takes the output recommendation lists and aims at pro-
ducing a result which takes the best of the 2 solutions. We consider
two ensemble techniques: Bord-a and XGBoost.

Bord-a is an algorithm based on ranked ordered lists. It takes
as input multiple lists of the same objects ordered in different ways
and ranks every item with a score related to its position in the list,
in a decreasing matter. After that it assigns a score to every item
summing them up and recreates a final list ordered by this final score.
Unfortunately this method seems not to promote each solution strong
points and is not considered in the final results.

XGboost is a gradient boosting algorithm which can be boost
different features contribute in a tree based solution. We use it for the
ensemble by utilizing the resulting list of recommended hotels of the 2
solutions, each item labeled with a score which ideally represents how

1https://lyst.github.io/lightfm/docs/home.html
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confident the algorithm is in recommending target item. As XGBoost
is based on Machine Learning techniques it needs a training phase.
That is why we split the dataset into inner and dev. Both solutions
produce a solution list for the test_inner dataset, which is used as XGB
training, while the final evaluation is done by making the prediction
on the test_dev dataset and ensembling them for the final solution.
All this process is clearly represented in Figure 4.3.
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Chapter 6

Experimental Setup

This chapter describes the libraries and the very specific implementa-
tion of the two Recurrent Neural Network solution of our approach,
enriched by the ensemble with the Matrix Factorization one.

6.1 Hactar
All the experiments we do are possible thanks to the hardware pro-
vided by HPC polito. We specifically use the Hactar cluster of the
service where we have a powerful node with GPUs at our disposal,
interfaced by a scheduler for parallel and automatic computation of
the tasks. More details about hardware used is specified in Figure 6.1.

"Computational resources provided by hpc@polito, which is a project
of Academic Computing within the Department of Control and Com-
puter Engineering at the Politecnico di Torino (http://hpc.polito.it)"

6.2 Python
We opted for python language as it is one of the easiest and versatile
languages for experimenting and it is rich of different libraries for Big
Data and DL applications.
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Figure 6.1: Hactar Hardware specifications

6.3 Pandas
We use Pandas for the manipulation of the dataset importing the csv
files as Pandas Dataframe. A dataframe is a particular structure that
wraps the csv file in a column/row view allowing to apply a wide
variety of methods.
Among the methods used we highlight the ones we used the most:

GroupBy. It allows us to divide the dataset into groups wrapping
together rows that share the same value of a field specified by the user.
The most common example may be

df_tra in . groupby ( [ ’ s e s s ion_id ’ ] )

which allows us to group actions of the same session together and apply
the same transformations to the whole group.

Apply. Talking applying transformation, the apply method is the
one we use to apply whatever piece of code to every row of the dataset
(even specifying a condition). We often use the lambda paradigm to
describe the applied function. An example may be

df_tra in [ ’ r e f e r en c e ’ ] . apply ( lambda x : x = NULL)

for setting all references to NULL.
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We opt for this library as it is very easy to use and it is very
fast in manipulating very long datasets such as the one we got for
this challenge. These methods permit to modify chunks of rows in a
parallel way so that it is not necessary to iterate: this greatly reduce
the time needed for the pre-modification of the dataset, which is one
of the most important parts.

6.4 Pytorch
The main libraries for doing Deep Learning implementations in python
are TensorFlow and Pytorch. We opt for Pytorch as it is much more
intuitive than its counterpart and we had some previous experience
with this language, making it easier to develop an experimental setup.
Pytorch is a very complete and well documented library where we can
access all the basic deep learning structures, from net classes to loss
functions. The main classes we use are the following.

GRU. This is the class implementing a full GRU net interface.
The input of the net is composed by a tensor representing the input
in the format

tensor(seq_len, batch, input_size) (6.1)

• seq_len: represents every step in a single session

• batch: is for iterating among batches

• input_size: is the dimension containing the encoding of a single
action

and the hidden layer h which is the output of the previous step
(the first step is initialized). The output of the net is actually the
hidden layer, so it is important to remember that they share the same
dimension. The output vector has shape:

tensor(seq_len, batch, hidden_size) (6.2)

The most important parameters for this class are:
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• input_size: size of the input vector, which is the same as our
w2vec encoding

• hidden_size: size of the hidden layer and the output one

• num_layers: number of RNN to stack

NLLLoss. Is the class implementing the loss function NLLLoss.
The most important things to consider here are the input and output
size. Input should have shape (N, C) where N is the number of batches
and C is the number of classes of our classifier. Output has instead
shape (N), because it ouputs a single loss value for every batch.

6.5 Encoding
The use of a Deep Learning model implies the encoding of the input
data in order to be processed by the network, which means transform-
ing the item_id into some sort of coded sequence.

1-hot encoding is the first attempt we make. This solution is
unfeasible because of the huge number of different hotels: transforming
every encoded item into a tensor of dimension X, where X is the number
of items, is not possible in terms of memory as the input layer is too
big.

So we choose to use a w2vec encoding as it is explained in the
following section.

6.5.1 Word2Vec
Word2vec [14] is a powerful encoding tool initially developed for NLP
solutions. After providing a corpus populated by lists of occurring ob-
jects, it represents every occurring object in a multi-dimensional space,
minimizing the distance between similar ones. The space proximity of
similar items depends on how often and how close those items appear
in the corpus.
It offers 2 main methods: Common Bag of Words (CBF) and Skip
Gram (SG).
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CBF aim is to take a context as input (which may be one or a
collection of words) and tries to predict target word, of which we get
the representation. This method is usually better for frequent words.

SG is the opposite. It takes as input a single word and gives a
score probability for each word, for each context, going from the word
to the context. As explained in Mikolov paper, given a collection of
training words w1, w2, w3, · · · , wT this method tries to maximize the
average log probability

1
T

TØ
t=1

Ø
−c<j<c,j /=0

logp(wt+j|wt) (6.3)

referring to c as the size of the training set, the corpus. p(wt+j|wt) is
defined as the softmax function as

p(wO|wI) =
exp(vÍ

wO
ÛvwI

)qW
w=1 exp(vÍ

wÛvwI
)

(6.4)

where vw and vÍ
w are the input and output vector representations of

the word w, and W is the number of different words in the vocabulary.
SG works better with less frequent words and as we learn that the

dataset is composed of a huge number of items that do not occur often
among different sessions, we decide to use this model.

In our implementation the corpus is defined as a list of lists: a
collection of sessions, each composed by a succession of items, cor-
responding to the reference values of the actions in that particular
session.

We use a model based on Gensim implementation, using the Skip-
gram model with its default parameters and the following:

• embedding vector dimension = 60 (we initially try 100 but it
turned out to be unfeasible in terms of memory)

• window size = 5

• min_count = 1 (for capturing every single item occurrence as
items are very sparse).
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6.6 Pure-Classification solution
Recurrent Neural Network is one of the most used neural network
models. Its task is to extract features from a sequence of different
inputs by predicting the next one. This is possible for its structure
which involves a cell that memorizes the previous output as hidden
state and concatenates it with the successive input, thus meaning that
we keep memory of previous data.
We do not really need to predict every single action but only the one
at the end of the sequence (session), the clickout action.

The most common implementations of RNN are basic RNN,GRU
and LSTM. We choose to use GRU cells over the basic RNN and
LSTM because the former has the vanishing gradient problem and the
latter are computationally heavy and they do not have much better
performance than GRU [13], especially for short sequences.

6.6.1 Input preparation
Preparing the input for the network is one of the most important parts,
especially for computational matters.

The input preparation phase consists of 3 main steps:

1. remove every action unrelated to an item, as explained in sec-
tion 4.2.1.

2. only keep the reference field of each action, as it contains the
item id.

3. keep the impression_list of null reference clickout actions for the
prediction part.

The input X is the collection of sessions, where each one is com-
posed of a variable list of encoded items (hotels) using w2vec.

X = xS
0 , xS

1 , · · · , xS
n (6.5)

xi = hw
0 , hw

1 , · · · , hw
m (6.6)
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Figure 6.2: Recurrent Neural Network training architecture.

The target Y is the list containing a single item target associated
to each session, encoded by its index in the hotel list.

Y = y0, y1, · · · , yn (6.7)
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Batches

Batching is a technique that consists in wrapping multiple input data
(sequences) in the same tensor and process them together. This means
that instead of backpropagating after every single sequence is pro-
cessed, we only backpropagate after b input data, where b is the num-
ber of sequences in a single batch. As this operation is the most time
consuming one in the learning phase of a deep model we save a lot
of time, while keeping the accuracy almost intact as there is so much
input data in our dataset.

Batching input data is a must for Big Data processing in Deep
Learning. In our case it means that we batch together different ses-
sions. The problem is that our sequences are not the same length,
which is a requirement for those which belong to the same batch. We
solve this problem by padding to 0 every session to the length of the
longest sequence in that batch.

Computational problem

The padding of the batches arouses a problem: very few sessions are
characterized by a huge number of actions, meaning that every ses-
sion of the same batch is padded to the same length, wasting a lot of
memory and making the problem unfeasible. This problem is solved
by cutting sessions to the last 200 actions, as we empirically noticed
that user’s most recent actions are the most relevant ones.

6.6.2 Net Structure and Training phase
In figure 6.2 we can see the structure of the Neural Network as it goes
trough the training phase. The blue line represents the user session
from which we extract every hotel and encode each one using Item2Vec
(implemented with W2Vec). Each encoded item is sequentially served
to the GRU layer. The GRU cells carry previous item features by pass-
ing their hidden state to the next step. Before the last step (clickout
action), the last hidden layer is sent to a fully connected layer. This is
for expanding the latent features to get an output of size equal to the
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number of hotels, assigning a confidence score to every single existing
item. We compare our network output with the hotel target (clickout
reference) using a NLLLoss, optimal for classification purposes. We
use a sigmoid function after the GRU for activation and we use a Log-
SoftMax before the loss function to get the scores in range(-inf, 0).
We opt for NLLLoss instead of CrossEntropy because the former does
not include the LogSoftMax layer, thus allowing to better analyze the
scores for the prediction part.

6.6.3 Loss function

The choice of the loss function for a problem structured as a classifica-
tion one leads to 2 main alternatives: NLLLoss and CrossEntropy.
Even if CrossEntropy usually shows better results we opt for NLLLoss
as we need the output of the LogSoftMax function in order to obtain a
score for every item and order them (CrossEntropy include a softmax
function by deafult).

LogSoftMax

The LogSoftMax is a function that applies a softmax and computes
the Log function over the result. The softmax itself takes as input an
array of dimension C, where C is the number of classes and outputs an
equal dimension array containing C values ranging [0, 1] which sum is
equal to 1 as we can see in Figure 6.3. This output may be interpreted
as the probability of the input being classified as target class.

LogSoftMax(xi) = log

A
exp(xi)q
j exp(xi))

B
(6.8)

Doing the log of this output leaves us with outputs ranging [-inf, 0]
instead, necessary process for it to be passed to the NLLLoss function.
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Figure 6.3: Softmax function example.

6.6.4 Test Phase: Prediction
In Figure 6.4 we can see the process for obtaining the final result in
the testing phase.
The strategy for obtaining the recommendation list begins by extract-
ing and encoding all items in the session, feeding the neural network
and obtaining the confidence score for every item, promoting those
sharing similar latent features with the ones present in the session.

The second step is designed to extract the impression_list field
from the clickout we want to predict, because it contains the list of
items the user can choose from, which we want to order. Using a
map, we associate every hotel in this list with its confidence score,
thus allowing us to rank it by using a simple sort to obtain the final
item_recommendation list.

6.6.5 Test phase: XGBoost feed
For the XGBoost part we have to provide a result for the inner set and
dev set, structured in a particular way. The XGBoost algorithm needs
as input the collection of recommended hotels as the basic submission
but every item has to be enriched by a score which represents the
confidentiality of that particular recommended item. So we got an
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additional csv output file from the net which represents the model
descripted and is visually represented like the output of the GRU net
in Figure 6.4. Along with the MF we also considered the order of the
visited hotels as a feature for the ensemble, as this feature boosting
in Matrix Factorization and similar techniques has been successfully
used [10].

6.7 Last-visited solution

This section describes the second approach we try by using a classifi-
cation among the last-n hotels the user interacted with.
The idea is to analyse the user behaviour in the session to make the
neural network decide which hotel he will click among the last-n vis-
ited or if it is not present in this list, meaning that the clickout hotel
will be chosen by using the impression list like in the single-clickout
sessions.

The experimental setup is almost equal to the one described previ-
ously with slightly differences we are going to describe and the neural
network being the same. This solution shows way better scores than
the previous one as we cover in section 7.1.

6.7.1 Data extrapolation

The Last-N approaches are based on the importance of the last-visited
items: we decide to focus on the last 3 hotels visited by the user by
collecting an ordered list of those item’s names.

When organizing our dataset and grouping it into sessions we ob-
tain this set by taking the list of encountered hotels, cleaning it of its
duplicates (keeping the last one among duplicates) and shrinking it to
the last 3 elements in a reverse order. We do this for every session we
are going to process.
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Figure 6.4: Test phase: obtaining the prediction.
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6.7.2 Classification
The classification part is the main difference from the previous solu-
tion: instead of deciding directly target hotel from the hotel dictionary
(which is very big) we now classify between 4 classes:

• 0: target hotel is not among the the last-n and the recommended
list is equal to the impression list

• 1: the target is the n hotel

• 2: the target is the n - 1 hotel

• 3: the target is the n - 2 hotel

The training phase will be done by converting the last-n list to the
classes we showed, meaning that the output encoding of a single hotel
depends on the session it is considered in.

6.7.3 Prediction
In the test phase we take the output of the neural network and select
the right hotel in the last-n list by using it as an index + 1, the only
exception is the 0 class case where none will be taken. We then fill the
rest of the recommender list by taking the remaining hotels from the
impressions_list.

6.8 Evaluation Metrics

6.8.1 MAE/RMSE
Mean Absolute Error (MAE) and Root Mean Squared Error
(RMSE) are used to compare expected and actual results checking
how much we are doing mistakes. MAE is the most commonly used but
the two methods are aiming at minimizing the value of their formulas.
The difference is in the square operation of the RMSE that hugely
penalizes greater errors. If we expect to evaluate N predictions and
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we label with ye the expected value and with yr the real value, the
formulas may be written as:

MAE = 1
N

N−1Ø
i=0

|ye − yr| (6.9)

RMSE =

öõõô 1
N

N−1Ø
i=0

(expected − actual)2 (6.10)

6.8.2 Precision and Recall
Precision andRecall [3] are very famous accuracy methodologies and
are very important in the recommendation field. They both make a
comparison between the items we correctly recommended and another
features. In precision the other factor is the number of items we are
actually recommending while in recall the comparison is done with the
number of items which could be recommended.

Precision = correctly recommended items
recommended items (6.11)

Recall = correctly recommended items
correctly recommendable items (6.12)

6.8.3 ROC curve
The ROC curve is a graphic used to compare 2 probabilities: TPR,
true positive rating, and FPR, false positive rating. We want
the 2 probabilities curve to overlap the less as possible, so that when
the TPR is high the FPR is has high as possible and viceversa. This
definition defines the ideal situation of a step shape in the plot but a
more realistic curve is represented in Figure 6.5, where we can see that
the shape tends to a step but is not perfect, while the worst case is
the straight line one represented by the dashed line which divides the
space equally.
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1

Figure 6.5: Typical ROC curve.
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Chapter 7

Results

In this chapter we present the results obtained by the 2 RNN config-
urations and the ensemble with the Matrix Facotrization, along with
our comments on them.

7.1 Pure-Classification Results
The results obtained by the first RNN solution are shown in Table
7.1. Every row shows an experiment with different tuning of the net
hyperparameters, focusing on changing one at a time in order to better
analyze the influence of each one to the loss function and to the final
score. The tuning mainly considers Epochs, learning rate of the net,
hidden dimension of the GRU.

Watching the loss plots of Figure 7.1 we can see that they all have
a descending trend, even if not very constant, which is very important
for understanding if the net is learning, as in this case. A few words are
to be said about the 60 hidden dimension case, where the loss function
seems to have a really constant descending trend, even if the final
score is not the best one. This may be due to the input dimension
being equal to the hidden one, leading to a better extraction of the
item features as we do not explode the vector values to too many
dimensions. A noticeable thing to consider is the average value of the
loss value. Without considering minor oscillations, it usually reaches
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values <10. Taking into account that we are using a NLLLoss it means
that the classifier reduces the window of probable items to 10, which
is a great result considering the total of 300k different outputs.

The best score on the test set is obtained by the attempt with a
higher learning rate, maybe because the net learns much faster but in
a less reliable way. The score difference is not so noticeable.

The distance between the 0.28 best score of the RNN compared to
the 0.68 of the winner of the challenge is to consider. The way lower
score of this network is to deduct from the solution structure and the
dataset shape. The huge number of different accomodations (300k+)
is an important limit as the classificator turns out to have hundreds
of thousand of outputs to be considered every time we have to decide
target hotel.

The most important limit is in the session’s structure: items usually
occur in a very few number of different sessions, meaning that the
encoding of similar hotels is very limited compared to the NLP case,
where less words occur multiple times in a document and relations are
easier to be defined.

Name Epochs W2Vec L. rate Hidden dim MRR(dev)
s_1 150 60 0.001 100 0.268952
s_2 200 60 0.001 100 0.271442
s_3 150 60 0.005 100 0.28277
s_4 150 60 0.001 60 0.262958

Table 7.1: RNN parameters tuning.

7.2 Last-N Results
The Last-N RNN solution results are shown in Table 7.2. The first
thing we can notice is the huge increase in the overall attempts with
respect to the previously described solution, due to the very important
influence of the last visited items feature. A bit of tuning is made
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Figure 7.1: First solution loss plots.

after observing that the loss function is rapidly saturating because of
the way lower number of output classes (4). This may indicate an
overfitting problem , so we decide to lower the learning rate and, more
importantly, the number of epochs. With an increase from 0.48 to
0.54 the overfitting hypothesis seems to be the right one, leading to
the best score with this solution. We also try to decrease the encoding
number of features to 30 to check if it was not necessary to have that
many for a good result, saving a lot of computing resources. Watching
the loss plots of Figure 7.2 we can see that the 3rd and 4th attempt
seem to have the best loss shape, while the first 2 are less constant,
meaning the assumptions we make are correct. It is worth to notice
that the score does drop with this change, but the difference seems not
so noticeable: from 0.5404 to 0.5359.
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Figure 7.2: Last-n solution loss plots.

Name Epochs W2Vec L. rate Hidden dim MRR(dev)
c_1 150 60 0.001 100 0.4823
c_2 150 60 0.0005 100 0.5184
c_3 80 60 0.0005 100 0.5404
c_4 150 60 0.0005 60 0.5359

Table 7.2: Last-n RNN results.

7.3 Solutions breakdown

The first solution we developed was based on a classification over
300k+ and experiment showed that this approach did not lead to good
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score results. We think that this was not mainly due to the huge num-
ber of classes but to the dataset features, as hotels appeared to be very
sparse and it was difficult for the net to learn shared features where
there were few or any. Indeed the items occurred in 1 or very few
sessions, precluding us from associating them with a suitable number
of other items. We can assume that this kind of solution is not proper
for a dataset shaped like that.

The second solution classification was done on a way smaller num-
ber of classes, but the crucial aspect was considering as a key feature
the importance of the last visited items. We saw a a huge score im-
provement with respect to the previous solution and this is due to the
use of a yet powerful feature. Indeed we already know that recom-
mending the last visited hotel leads to a good score, but we use the
RNN to analyse the session structure and discriminate among the n
last hotels to obtain better results.

7.4 Ensemble results
For the ensemble we use XGBoost to match the best attempts of the
2 RNN solutions separately (MF + RNN1 and MF + RNN2), while
we have a third case showing the score of the MF + features (MF ),
excluding the deep learning approach to better compare the results.

In Table 7.3 we can see the obtained results. At first glance we can
see that the best score is obtained by the Pure-Classification solution,
with a gain of 0.005 from the baseline score of the MF alone. The
little gain may be due to the hypothesis of the sequence analysis of
the RNN we did, which is extracted by the XGBoost algorithm and
added as contribute to the MF solution. Even if the gain is not so
relatively high, the slightest gain is important as we saw by the top10
leaderboard scores which differed by very little deltas. In Figure 7.3 we
can see the importance of every feature given as input to the XGBoost
in the decision tree: score_rnn and score_mf are the fields describing
the 2 solutions. The other features we see (user_bias, item_bias, ...)
are outputs taken from the LightFM algorithm of the MF solution.
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As XGBoost is a tree based algorithm, the F score is based on how
many times that features is considered in the decision making of hte
algorithm, which may be considered as the importance of that feature.
An interesting consideration is the huge contribute of the rnn algorithm
despite the low score of the solution by itself. A deeper consideration
is to be done on the recent_index feature, which is created by giving
a score to the last-n visited items in the session, the bigger the closer
to the end of the session. This feature is not complementary with the
idea behind the Last-N RNN as they are based on the same concept,
that is why the baseline does not increase. Anyway if we consider the
second solution we go from 0.5404 to 0.5980 (+0.0576).

Setup MRR Offset
MF 0.598043 0
MF + RNN_1 0.602774 +0.0576
MF + RNN_2 0.598029 -0.000014

Table 7.3: Ensemble results.
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Figure 7.3: XGBoost features importance for MF + RNN_1.
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Chapter 8

Conclusions and Future
Work

In this thesis we presented our RNN solution for the Recsys 2019 chal-
lenge and obtained different results from different approaches. We
introduced the world of recommender systems showing examples of
fields where they are being used nowadays. We then described how
they have been defined through the years and the different technolo-
gies that have been experimented for solving recommending problems
in different ways.

Starting from this knowledge we tried our solution for a specific
problem belonging to the session-based category, practically experi-
menting on a dataset provided by Trivago for the Recsys challenge
2019, which consists in a collection of user’s sessions on the web site
with the goal of predicting which hotel item the user will click (click-
out). Our proposed solution was a hybrid approach composed of a
Matrix Factorization to exploit the user-item direct relation and an
RNN approach to analyze the sequence contribute of the dataset, then
ensembled using the XGBoost algorithm.

We experimented 2 different RNN solutions: the Pure-Classification
one, which tries to select the right item in the whole list of existing
ones, and the Last-N, which classifies among the last visited items.
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As expected the results for the first solution showed that an RNN ap-
proach based on a pure classification does not get good results when
facing such a sparse problem when compared to other ones, but the
goal of this solution was to complement the lack of the MF solution
with its study on the sequence features. For what concerns the sec-
ond solution we observed that the training did not need much time to
train as the number of classes is very little, resulting in a very clear loss
shape with a little bit of tuning. The score is much higher that the first
solution as the last visited items are very likely to be those the user is
more interested to. Even if the score is of the solution is not close to
the leaderboard winners, the importance is not only in the score ob-
tained for the challenge dataset but more importantly in the behaviour
of such technology when facing a session-based recommender problem.

This experiment showed that extracting latent features from a ses-
sion based scenario is not an easy task, but more importantly the
sparsity of a such a huge number of items along with the lack of ad-
ditional informations on them makes a prediction very difficult for a
Deep Learning Approach. The last-visited items confirm to be very
important in the final user decision, despite the solution they are in-
cluded into. The need of an hybrid approach for these problems seems
necessary to overcome these lacks.

8.1 Future Works
For what concerns the Neural Network, trying to create or use new
embedding solutions for such a sparse problem might be a possible
solution. New concepts are being created like BERT [4] or Attention
and we could experiment them in contexts different from NLP. Also
thinking of a way to include item features even if they are limited to
a bunch of items might be a nice boost. The dataset itself presented
minor information about the actions that seemed not so relevant as
the main focus was on the item itself, but thinking a way to include
those minor contributes for a better learning of the net might be rele-
vant. The net structure could be enriched with parallel nets extracting
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features from different fields, then finding a smart way to merge all the
knowledge to obtain the best result. The XGBoost algorithm has been
used to boost the contribute of dataset features, but experimenting it
by merging those parallel RNN is a possible next step. It could be also
interesting to slightly modify the net to test the solution on different
losses which are good for ranking problems (BPR).

For what concerns the complementarity of sequence and user-item,
a good point for the future is the need to go deeply into different
solutions to overcome the difficult task of predicting items in a scenario
where we lack history and items are so sparse among user sessions.
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Appendix A

Parameters

A command line interface is set to test our solution with different pa-
rameters. The parameters specification is defined as follows.

python3 ./setup.py {parameters}

• –traininner: training set in a csv format

• –testinner: test set in a csv format

• –gtinner: ground truth set in a csv format, it is basically the test
set with non-NULL reference for clickouts. It is needed for score
computation

• –hiddendim: hidden dimension for the Recurrent Neural Net-
work, more hidden nodes usually correspond to deeply analisys
but slower computation time

• –epochs: number of epochs for the training phase. A higher
number means the net goes through the dataset more times,
meaning it has more opportunity to learn and improve the score.
This is true if we do not fall into overfitting.

• –ncomponents: number of dimensions in which we represent the
items using the W2Vec algorithm. A high number quickly esca-
lates to very high RAM usage.
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• –window: length of the window of words considered together by
the W2Vec algorithm

• –learnrate: learning rate for the training phase, it tunes the
weights update. This is a very delicate parameter as a low num-
ber may cause the net to learn anything and a high number may
cause it to learn so quickly that it is unstable and unreliable.

• –iscuda: if specified it enables the use of GPU instead of doing
computation only on CPU. This parameter is always used cause
computation time may become unfeasible otherwise.

• –subname: name for the submission files. It is put at the start
of every output file so we can also speficy a subfolder.

• –batchsize: batch size in the training phase. It allows a nice
computation time reduction as backpropagation is a slow process
and batches allow to do that only every x sequences instead of
every time.
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