POLITECNICO DI TORINO

Master’s Degree Course in Computer Engineering
Master’s Degree Thesis

Hybrid Mobile Apps:
Development and Testing
Challenges

Supervisor Candidate
Asst. Prof. Luca Ardito Sevil COSKUN
Correlatore: Student ID: 250910

Dr. Phd. Riccardo Coppola

Academic Year 2018 - 2019

This work is subject to the Licence as Described on Politecnico di
Torino website

Abstract

Context: The mobile market has grown exponentially in the latest
years and multiple platforms are available for the deployment of mo-
bile applications. Hybrid mobile apps, which can run on both Android
and IOS devices, are an important solution for developers who aim to
release their apps on both markets. Testing mobile applications, and
especially their Graphical User Interfaces (GUIs) is one of the most
crucial aspects of mobile development and requires an important ef-
fort from developers.

Goal: The objective of this thesis is to understand the development
frameworks and testing approaches for Hybrid mobile apps, and anal-
yse their main challenges, in the light of a literature review and an
exploratory experiment with an existing open-source hybrid app.
Method: Firstly, a Systematic Literature Review has been conducted
over various digital libraries. The main research questions of the
SLR revolved around hybrid development frameworks, mobile testing
frameworks compatible with hybrid apps, and challenges in both of
them. Secondly, it involved a Source Repository Analysis, conducted
on open-source Android projects, to analyze the diffusion of hybrid
applications and the number of tested ones among them. Lastly, an
exploratory analysis has been conducted by applying testing tools on
a hybrid app that was developed with Phone- gap.

Results: Result of the review shows that many development frame-
works and testing tools have been released during the last years:
Phonegap is the more adopted a development framework, and Ap-
pium is the most used testing tool for open-source projects. Through-
out the exploratory study, it has been found that automated testing
tools show several crucial issues when applied to real-life applications.
More specifically, Appium is perceived as the most adaptable tool
among those considered. Robotium, Ul Automator, and Selendroid
all exposed compatibility issues with cross-platform applications de-
veloped with the PhoneGap framework (now available as Cordova).

Conclusion: Hybrid apps can be developed with many frameworks
but all of them expose issues that are discussed in the present thesis.
According to the development framework selected and the applica-
tion type, several alternative testing tools can be leveraged. Existing
testing tools, even, exhibit many drawbacks and hybrid application
testing is proved to be very prone to compatibility issues. The re-
sults of the thesis confirm that the fast-growing technology and the
diversity of development patterns for Android should be coupled with
parallel advances from the testing community to ensure better testa-
bility for hybrid mobile applications.

Acknowledgements

The candidate warmly thank her parent(Munevver and Bora) and
sister, Deniz, for all love and their encouragement, moral support,
personal attention and care. Especially thank Cem to be with her all
time and support her when she feeling lost and depressed, takes care
her, and love her without any conditions.

Express candidate sincere gratitude to Asst. Prof. Luca Ardito and
Asst. Riccardo Coppola, for allowing her to conduct this research
under their auspices. She is especially grateful for their confidence
and the freedom they gave her to do this work also for the confiden-
tial information they have kindly provided by her, and for the useful
discussions they have allowed candidate to improve her thesis.

Contents

List of Tables

List of Figures

1

Introduction and Background

1.1 Mobile Devices and Operating Systems
1.2 Mobile App Development Frameworks
1.3 Mobile Application Testing
1.4 GUI Testing in Mobile Applications

Systematic Literature Review(SLR)

2.1 Research Questions

2.2 Research Strategy
221 Keywords
2,22 S0urces . .o ...
2.2.3 Search Strings
2.2.4 Inclusion and Exclusion Criteria

2.3 Data Extraction and Mapping

2.4 Analysisof SLR Result
24.1 Context
2.4.2 Tools for Development(RQ1)
2.4.3 Tools for Testing (RQ2)
2.4.4 Challenges for Development /Testing(RQ3) . . .

2.5 Discussion and Conclusion

4

3 Source Repository Analysis and Exploratory Study
3.1 Source Repository Analysis
3.2 Exploratory Study 0.

3.2.1
3.2.2
3.2.3
3.2.4
3.2.5

Application Selection and Software Objectives .
Testing Tool Selection and Description
Test Case Definition
Test Cases Implementation
Test Tools Evaluation and Results

4 Conclusion and Future Work

Bibliography

Appendix

57
58
62
63
65
74
76
7

83

87

99

List of Tables

2.1
3.1

3.2
3.3
3.4
3.5

Search Engine and Search strings
Distribution of projects among development and test-

ingtools
Test Cases
Results of Test Cases
Testing Challenges vs Testing Tools
Compatibility Table of Testing Tools vs Development

Approaches

List of Figures

2.1
2.2
2.3
24
2.5

2.6

2.7
2.8
2.9
2.10
2.11
2.12
3.1

3.2
3.3
3.4
3.5

Number of papers citing (combinations of) OSs 13
Number of selected papers per category 14
Number of papers per year 15
World map for the country of publications 16
Number of citations about Hybrid Development Tools

in the considered papers 21
Number of citations of Testing Tools in the considered

PAPEIS .« . . .o e e e 32
Taxonomy of Development Challenges 48
Hybrid Mobile Application Development Challenges . . 49
Taxonomy of Testing Challenges o1
Hybrid Mobile Application Testing Challenges 52
taxonomy of General Challenges 54
Hybrid Mobile Application General Challenges 55
Number of projects associated to the selected develop-

ment frameworks o000 60
Number of projects with the selected testing frameworks 61
Fresh Food Finder application views 65
Desired Capability Configuration in Appium 68
UI Element Detection feature of Appium Desktop Tool 69

Chapter 1

Introduction and
Background

1.1 Mobile Devices and Operating Sys-
tems

Nowadays mobile phone usage reached very high numbers, according
to Statista[l] values; in 2019, the number of mobile phone users is
forecast to reach 4.68 billion. According to these mobile phone num-
bers it is obvious that the number of mobile applications increased
very sharply. In 2017, 178.1 billion mobile apps and in 2018, 205.4
billion mobile apps were downloaded to consumers connected devices
[2]. As it seems from the numbers, in one year, the number of down-
loaded applications increased very rapidly. Recently, the most used
mobile phone operating systems are Android which is Linux based
operating system[9], IOS which is developed by Apple[9], Windows
which is based on Microsoft operating system[9] and they have dif-
ferent mobile applications stores (e.g., Google Play Store, the Apple
App Store, and the Windows Phone Store) which offer free and paid
mobile applications to users [3]. Therefore, it has very big impacts
on the software engineers’ life because creating a mobile application
for different devices with different purposes has some challenges such

1

1 — Introduction and Background

as time and cost. Hence, there is a big effort to analyze and cate-
gorize mobile applications for different user desires. Therefore it is
fundamental for researchers to try to find optimal solutions to make
developers life easier and increasing the quality of mobile applications
for everyone’s’ point of view [3][4][5].

1.2 Mobile App Development Frameworks

In the high-level perspective, mobile applications could be created
with three different development techniques as Web, Native, and Hy-
brid [3][4][6]. It is an inevitable fact that each different develop-
ment technique needs different requirements like application design,
development platform and language, testing strategies.[10] Previously,
web-based technologies were popular and accessible from browsers
with written by HTML, CSS programming languages [5]. Then the
smartphone era exploded, and native mobile applications added to
web-based versions. Later, a combination of web and native tech-
niques creates a hybrid development technique try to decrease effort
for cross-platform Mobile applications.

Web based mobile applications run on the web servers and accessible
via mobile web browsers and is highly portable across multiple mobile
platforms[3]. Users do not need to download any application to their
devices. Web application offers interaction with users and websites
like gathering information [7][8]. To create a web-based mobile appli-
cation, HTML, CSS, JS are basic necessary programming languages
and there is no need SDK(Software Development Kit), just some tem-
plates and frameworks enough such as Angular, React, Vue[7]. To test
a web-based mobile application, there are some testing tools such as
Selenium, Appium, UTAutomator|7]. Web-based mobile applications
generally categorized as like the website and they are generally infor-
mational and provides additional functionality and interactivity with
users, so they do not need to use much functionality of the mobile
phones. For example, Wikipedia is a website; it provides information.
Facebook is a web app that is more interactive. Web applications

2

1.2 — Mobile App Development Frameworks

have also mobile application version but if a user does not want to
download that mobile application, a user can reach a web application
version from his mobile phone browser such as Chrome, Safari. Fire-
fox. Therefore, web applications do not need to be downloaded like
native mobile applications do [9].

Native mobile applications made for specifically smartphones, tablets,
and any smart devices with running only a specific operating system[10][11].
Therefore, it can reach all software and hardware components like
GPS, camera, memory, and utilize the full capacity of the device of the
mobile hardware, which has better performance because of easy touch-
ing hardware [3]. It will be supported by the original device operating
system. Native mobile application development relies on different de-
velopment environments, testing tools and programming languages
that are original for the device, the operating system. To create a
native Android mobile application; some of the necessary program-
ming languages are Java, Kotlin; IDEs are AndroidStudio, Eclipse,
DroidScript; testing tools are Selenium, Appium, Espresso[7][20].0n
the other hand, to create a native IOS mobile application; some of
the necessary programming languages are Objective-C, Swift; IDEs
are XCode, Appcode, SublimeText; testing tools are Selenium, Ap-
pium, XCTestUI [5][7][8]. As it seems from the information above,
there are many different programming languages, IDEs, testing tools.
Additionally, creating a native mobile platform application has some
challenges about cost, the experience of the developer, and time be-
cause software developers need many different languages, tools, and
platform to create a mobile application and different tools and back-
ground for testing [6].

Hybrid mobile applications are a combination of native and web tech-
niques as well [3][5]. Hybrid uses a common code base to simultane-
ously deliver like native apps to multiple platforms. These apps can
access the hardware features of the device and are also distributed
using the platform’s app store. Hybrid apps are created using Cross-
Platform Tools (CPT) [4]. This approach combines native code with

3

1 — Introduction and Background

an independent code that is suitable for multiple platforms and al-
lows creating cross-platform mobile apps. These applications fit any
platform and function identically across different ones. There are
some examples of hybrid mobile applications such as Instagram, Uber,
Gmail, and Twitter. To create hybrid mobile application C#, HTML,
CSS, JS is necessary programming languages and for some exam-
ple of creating environment PhoneGap, Titanium, Xamarin, Cordova,
Iconic then for testing tools are possible such as Selendroid, Appium,
Espresso, XCTestUI, Calabash, Robotium, and UlAutmator [7][8].

For Multi-platform mobile application developments, there are some
challenges generally in design and implementation life cycle like com-
patibility of operating systems features, version differences.[3] Cross
platforms have four different types as Library, Framework, Platform,
and Product/Service to converts source code native binaries.[6] There
are some drawbacks, such as poor performance, poor native user in-
terface, limited hardware accessibility [6]. Additionally, user expec-
tations about the applications are remarkably high. It is a real chal-
lenge for the application vendors to provide versatile applications in
this competitive market in a short time. The challenge is even more
if the application is targeted for multiple platforms[10].

1.3 Mobile Application Testing

The quality and reliability of the applications are the key factors that
contribute to their success[12]. Therefore, testing is one of the most
important parts of the software development life cycle. From a high-
level point of view, there are functional and nonfunctional testing
categories. Functional testing can be defined as activities that vali-
date service functions, integration of the systems behaviors, external
system behaviors, and user interfaces[13]. Functional testing types
can be categorized as; Unit testing, Unit integration, System, Sys-
tem Integration tests in the V model. For mobile apps, unit and unit
integration tests focus on white-box tests, which run either on the

4

1.4 — GUI Testing in Mobile Applications

mobile device or the back-end server[12]. System and System inte-
gration tests focus on the black-box testing strategy[14]|. According
to Liu Z., Hu Y., and Cai L., a quality model of the mobile appli-
cation is categorized under eight test elements; Function, Interface,
Security, Reliability, Usability, Performance, Resource, Compatibility.
Those test elements have sub-test elements which are a more detailed
version[21]. Furthermore, there many different papers that describe
non-functional test categories in many different categories too but in
general, types can be categorized as; Performance, Usability, Qual-
ity of service, Reliability /Availability, Security, Memory and Energy,
GUI, and so on[13][14]. Generally, those tests are maintained man-
ually means that a human is responsible to conduct tests by hand.
However, manual testing of mobile applications may be a very costly
activity both in terms of time and resources, as well as an extremely
boring, repetitive, and error-prone activity. Not surprisingly, a grow-
ing interest in mobile testing automation techniques and tools has
been demonstrated by the industry[15].

1.4 GUI Testing in Mobile Applications

Recently, almost any software application has a graphical user inter-
face (GUI), in light of that, the user interface is the easiest way for the
interacting user and it is the easiest way for users to control software
systems by displaying visual widgets, buttons, etc[16]. Therefore,
GUI has a huge impact on the software, and according to researches,
as much as 60% of the lines of code are related to GUI[17]. In the func-
tional testing phase, overall system and integration testing of software
under test (SUT) involve testing via the GUI testing and the test de-
signer develops test cases, each modeled as a sequence of user events,
and executes them on the SUT via the GUI, either manually or auto-
matically. Manual GUI testing is the old and most used technique to
assess the behavior of GUIs by a human who directly interacts with
GUI with specific events or test cases[16]. Events include clicking
on buttons, selecting menus and menu items, and interacting with
the functionality of the system provided in the GUI[18]. In practice,

5

1 — Introduction and Background

unit and unit integration(white-box) testing are easier to translate as
automated testing but system testing(black-box) is more difficult to
translate as automated testing due to GUI for the end-users. Hence,
some of the failures of the software can only be caught when testing
trough GUI, so GUI testing is a very good method to estimate visible
failures for the end user’s perspective[19]. It is obvious that for every
kind of testing, GUI testing has some challenges, especially from the
perspective of the mobile application. According to P. Aho and T.
Vos, GUI testing is slower than traditional unit testing even if it is
automated. GUI testing probably limited to the smoke testing set.
Especially state space explosion is another challenge for modeling or
extracting the GUI models for test cases. Lastly, the complexity of
the state of GUI causes difficulties to deduce the state of GUI is cor-
rect or not[19]. These are some challenges about GUI testing, and for
that reason turning GUI testing from manual to automated is hard.
Furthermore, manual GUI testing can give a good overview of the sys-
tem for end-users perspective because manual testing is also executed
by a human, not a computer.

Make a connection to what thesis has been continued started with
this chapter introduction part. In Second chapter Systematic Litera-
ture Review and Mapping will be described in details with answering
my research questions. Third Chapter focuses on Source Repository
Analysis and Exploratory Study. Last chapter includes results of the
work and conclusion.

Chapter 2

Systematic Literature
Review(SLR)

This chapter starts with Research Questions which will establish the
connection between existing knowledge and problem of this thesis
work. Research questions are helpful to identify classification of the
papers.

Before starting analysing the papers, research strategy will be ex-
plained with identifying used keywords for search, used sources and
search strings which will be described in the Table 2.1.

It will be continued with inclusion and exclusion criteria will be ex-
plained in order to understand which papers are related or not and
then analysis of papers will be discussed according to division of re-
search questions.

Next chapter,analysis of the papers will be discussed by mapping pa-
pers with the related research questions. Additionally, statistics about
papers distribution will be shown by figures.

Lastly this chapter will be closed by answering all research questions
and some statistics about collected paper in conclusion part.

7

2 — Systematic Literature Review(SLR)

2.1 Research Questions

The work described in this thesis aims at providing answers to
following research questions;

RQ1:Which frameworks are available for developing hybrid ap-
plications?

RQ2:Which testing tools are available for automatically testing
hybrid applications?

RQ3:What are the main challenges associated with hybrid applica-
tions?

The questions assemble identifying and characterizing cross-
platform or hybrid applications development frameworks, automated
testing tools in GUI perspective and challenges of them. RQ1 aims
at assessing the development frameworks of hybrid applications.
RQ2 aims at gathering information about testing tools for hybrid
applications from real world and academic papers. RQ3 is more
related about challenges and also advantages and disadvantages on
the hybrid applications.

2.2 Research Strategy

2.2.1 Keywords
Mobile, hybrid, GUI, development, testing, challenges

2.2.2 Sources

IEEE
ACM-DL
Springer
Elsevier
ScienceDirect
Google Scholar

2 — Systematic Literature Review(SLR)

2.2.3 Search Strings
Search | Search Strings # in- | # re-
En- cluded| trieved
gine
IEEE | (mobile OR Android OR IOS) AND (hybrid OR | 31 37
cross-platform) AND (GUI OR graphicaluser-
interface) AND (development OR framework
OR testing OR automated OR automatedtest-
ing OR challenges)
ACM | (mobile OR Android OR 10S) AND (hybrid OR | 14 26
cross-platform) AND (GUI OR GraphicalUser-
Interface) AND (testing OR automatedtesting
OR challenges OR development)
Springet (mobile OR Android OR I0S) AND (hybrid OR | 5 15
cross-platform) AND (GUI OR Graphical User
Interface) AND (testing OR automated testing
OR challenges OR development)
Elsevier] (mobile OR Android OR IOS) AND (hybrid OR | 3 5
cross-platform) AND (GUI OR Graphical User
Interface) AND (testing OR automated testing
OR challenges OR development)
Science| ((((mobile OR Android OR 10S) AND (hybrid | 1 1
Direct | OR cross-platform)) AND (GUI OR Graphi-
calUserInterface))) AND (testing OR automat-
edtesting OR challenges))))
Others | (mobile OR Android OR IOS) AND (hybrid OR | 5 7
(Googlel cross-platform) AND (GUI OR graphicaluser-
Scholar})interface) AND (development OR, framework)
OR (testing OR automated OR automatedtest-
ing) AND (technique OR approach OR chal-
lenge OR limitation)
Total 39 91

Table 2.1: Search Engine and Search strings

'Retrieved papers in Google Scholar Qearch engine extracted from other search

engines

2 — Systematic Literature Review(SLR)

2.2.4 Inclusion and Exclusion Criteria

One of the main key elements of systematic literature review, it should
be decided on some selection criteria like inclusion and exclusion crite-
ria to make the analysis more adequate. The purpose of the inclusion
and exclusion criteria is to limit the study selection to papers that fit
in the proposed topic, i.e., techniques and tools for the automation
of GUI testing of hybrid mobile applications and that are available in
the scientific literature. To this aim, a set of inclusion criteria useful
to identify studies that could be considered in this mapping has been
designed.

In details, the following list of inclusion criteria has been considered:

1.

Studies must be directly related to mobile application develop-
ment frameworks techniques for hybrid mobile applications.

Studies must be focused on testing tools of hybrid mobile ap-
plications, including, too, system testing, black-box org grey-
box testing, especially GUI testing or any other testing activity
aiming at the verification of the functional correctness of the
application.

Studies must provide a qualitative or a quantitative evaluation
or challenges of hybrid mobile applications.

Studies must have been published between 2010 and 2019 and
the language should be English.

Studies have been placed in publications, conference papers, of-
ficial, and reachable.

In order to filter the set of papers from off-topic ones, the following
list of exclusion criteria have been defined:

1. Studies focused on development in general or not directly related

to hybrid mobile applications

2. Studies focused on testing in general, and not specifically GUI

testing on hybrid mobile application
10

2.3 — Data Extraction and Mapping

10.

Studies focused on Web-services, cross-platform with related to
web-service to native mobile transfers

Studies focused on testing in different systems rather than mo-
bile applications

Studies focused on other mobile topics not directly related to
application especially hybrid

Studies focused on surveys, reviews, mapping studies, thesis,
and any other kinds of papers

Studies focused on private testing tools i.e., developed by a uni-
versity or company, not found on the internet

Studies focused on too high-level definitions about development
frameworks, testing techniques

Studies focused on another non-functional testing perspective
i.e., usability, performance

Studies focused on other disciplines or more specific applica-
tions, i.e., mechanical engineering mobile applications.

2.3 Data Extraction and Mapping

The purpose of the data extraction is to limit the study of selected
papers related to the topic. After applying inclusion and exclusion
criteria, 59 papers are selected as related to the topic. However, it is
not enough to point papers, it needs more detailed analysis and cat-
egorization. Therefore, papers have been categorized under the three
categories which are development, testing and challenges.

Development papers provide details about hybrid application devel-
opment frameworks.

Testing papers provide details about hybrid applications testing tools.
Challenges papers provide details about hybrid application challenges.

11

2 — Systematic Literature Review(SLR)

Also there are combinations of two categories in order to emphasize
more details about more topics. All included papers have been filed
under those categories and mapped with a related category according
to their topics. To analyze the development and testing sets, the used
frameworks will be listed. The papers categorized as Challenges, were
used as input to a grounded theory procedure in order to list chal-
lenges which are collected from the literature.

Grounded Theory focuses on unstructured text to generate theory
from data and tries to turn structured text, diagrams, or even quan-
titative data[22]. According to Stol K., Ralph P., and Fitzgerald B.,
there are 11 basic core features of grounded theory[23], however, for
this thesis, only three of them is selected which are theoretical sensi-
tivity, coding and memoing.

Theoretical sensitivity which refers to the researcher’s ability to
conceptualize, and to establish relationships between concepts, lies at
the heart of developing grounded theory.

Coding which is the researcher uses inductive and logic to construct
analytically codes and infer theoretical categories from the data by
labeling ‘incidents’ and their properties.

Memoing which is The researcher writes memos (e.g. notes, dia-
grams, sketches) to elaborate categories as they emerge, describe pre-
liminary properties and relationships between categories, and identify
gaps, key features are selected.

2.4 Analysis of SLR Result

2.4.1 Context

Analysis of the SLR is based on the research questions, however, be-
fore starting to answer those questions; it can be crucial to share some
brief information and statistics about related paper analysis. The rea-
son for giving those statistics, they will clarify that some results have

12

2.4 — Analysis of SLR Result

unexpectedly bias, even if there is no research bias in the work. Statis-
tics will be given later that are related with which operating system,
publication years, their region, and number of articles labeled for each
category in order to give brief information about thesis strategy.

The details given in papers are not always enough to consider operat-
ing systems of the mobile applications. In some cases, the considered
operating system has been mentioned clearly, as it seems from the
Figure 2.1 below. In the first place, the mentioned mobile operating
systems in the included papers are mostly about Android. Secondly,
the most mentioned operating systems are Android and IOS with
together, and lastly, there are very few numbers of papers that are
related to both Android, IOS, and Windows phones. As a matter of
fact, there has not been found any paper which is related to only 10S
or Windows phone. Thus, the analysis seems to have a bias about
Android phones according to the majority of the papers related to
Android.

Distribution of Operating Systems per year
2010 |

® Android 2018

2017
® Android, 10S

2016
® Android, 10S, Windows

2015
Android, 10S, Windows,
Symbian

2014

Android, 10S, Windows,

Symbian, Blackber!
v v 2013

m Android, 10S, Blackberry
2012

W Android, Windows,
Blackberry 2011

2010

o

2

IS

6 8 10 12 14

Figure 2.1: Number of papers citing (combinations of) OSs

13

2 — Systematic Literature Review(SLR)

In the high level of the analysis, we divided the papers into three
categories according to research questions. Therefore it is useful to
make a graph of the number of citations among the categories and
combinations of categories with each other which is mentioned before
and it can be seen in Figure 2.2.

Distribution of included papers per each category

B Testing

B Development

u Challenges

= Development + Challenges
B Testing + Challenges

B Development + Testing

.ll[II

o
Ll

10 15 20 25 30
Figure 2.2: Number of selected papers per category

In light of the mapping study made by Tramontana P.,Amalfitano
D.,Amatucci N.,Fasolino A. R., included papers appeared mostly after
2010[15]. Therefore deciding a year boundary which is 2010 and 2019
on the work could have a valuable effect like selecting more relevant
papers. Number of citations by per year is handled in the Figure 2.3
below.

2.4 — Analysis of SLR Result

Year of publication (starting from 2010)

a

5 3 |

4 3 |

| JE—
= 2011 m 2012 2013

= 2010 2014 m 2015 m 2016 w2017 m 2018 m 2019

Figure 2.3: Number of papers per year

Moreover, the last statistic is the number of citations by publication
countries. Hence, there is no limitation or consideration of the country
in the work. However, as a result of this statistic which is seen in
Figure 2.4, most of the papers are published in the USA around 11
papers, secondly many published papers from Italy around 7 papers,
thirdly many papers were published in China and India around 5
papers for each. The rest of the papers are similarly taken into count
in other countries as well.

15

2 — Systematic Literature Review(SLR)

1 E——

Figure 2.4: World map for the country of publications

2.4.2 Tools for Development(RQ1)

Only 11 out of 59 papers provided hybrid mobile application develop-
ment techniques and tools. On the other hand, including the combi-
nation of test categories, there are 2 papers more and a combination
of challenges category, there are 9 papers more. In total, 22 papers
mentioned the development tools for hybrid applications, as it seems
in Figure 2.2.

According to [24], Easy App which is a tool suite that allows ending
users to create mobile applications without code barriers. This tool
suite involves three sub-systems, namely ServiceAccess, FasyApp, and
LSCE. ServiceAccess takes charge of the registration and management
of heterogeneous services and can export different forms of services
according to the requirements of the other sub-systems. EasyApp is
responsible for developing a GUI in the form of a mobile app. LSCE
takes charge of creating the application logic that can be invoked by

16

2.4 — Analysis of SLR Result

the mobile app directly. EasyApp is a drag-and-drop development en-
vironment that enables end-users to develop the GUI of applications.
These three modules are all implemented by adopting into Phone-
Gap with mobile web techniques, such as HTML5 and JQuery UL

According to [25], MVC UI Components Modification Process
is an adaptation technique based on the reuse of manufacturers’ SDKs
(Software Development Kits) to create multi-user prototype applica-
tions. The MVC UI Components Modification Process LOC figures
consider only the LOC needed to modify the components based on the
Android (Java), IOS (Objective-C), and Windows 8 (C#) prototypes
described in the previous subsection.

According to [20], there is the history of development platforms of
hybrid mobile applications. Especially, MoSync, RhoMobile, Ti-
tanium, PhoneGap, DragonRad, Xamarin 2.0 are mentioned
development platforms according to some criteria which are;

Development Criteria | Development Platforms or Tools

Code interpretation Titanium, RhoMobile

Re-targeting MoSync, Marmalade

Wrapping Phonegap, Marmalade

According to [26], technology Neutral DSL (Domain-specific language)
intended to be cross-compiled to generate native code for a diver-
sity of platforms. The Model Driven Architecture(MDA) approach to
provide a platform-independent model under textual format and the
M2M M2T transformations are applied to generate the GUI for a spe-
cific platform. Their first approach proposes a meta-model Android
GUI to design a model of the graphical user interface of an Android
application. Then, transformations M2M (Model To Model) and M2T
(Model to Text) are applied to generate the code of the graphic user
interface targeting a specific platform. In order to do this, they use
Xtext to define a DSL and Xtend to perform different transforma-
tions.

17

2 — Systematic Literature Review(SLR)

According to [5], The most used hybrid development frameworks are
Apache Cordova and Appcelerator Titanium counting to 258
and 116 apps, respectively, whereas all the other frameworks are very
less used across all categories.

According to [27], using plasticity as a GUI adaptability technique,
they develop a mobile cross-platform mechanism to solve cross-platform
application development problems. The proposed mechanism consid-
ers the dimensions that involve both plasticity and mobile computing.
While programming they used Web technologies and native libraries
conforming to a hybrid approach. Using a multi-platform develop-
ment, they employed a framework called PhoneGap, where a web
page was used as the user interface and compiled in the platform na-
tive libraries.

According to [28], in order to develop mobile and desktop applica-
tions at the same conceptual level, they propose a tool which is MDA
SMARTAPP, a tool that allows the user of models and provides a
way to support transformations for different target device families.

According to [29], Phonegap (a.k.a. Apache Cordova) from
Adobe is a frameworks to build mobile applications using CSS3, HTMLS5,
and JavaScript source code. The code is embedded on a skeleton na-
tive app, which interprets and executes the app code on the specific
device. On the other hand, Xamarin or React-Native is another
cross-platform mobile app development framework. It makes it pos-
sible to do native Android, IOS and Windows development in C#.
Developers re-use their existing C# code and share significant code
across device platforms.

According to [30], the explosively increasing demand for the devel-
opment of mobile apps creates the necessity of hybrid apps operates
based on web browsers already installed on mobile devices. There-

fore web-based application platform emerging as a solution for cross
platforms with Web-Based OSMU(One Source Multi-Use) technique.

18

2.4 — Analysis of SLR Result

Ultimately, PhoneGap and Titanium are the most used hybrid mo-
bile application development tools with OSMU technique.

According to [31], Qt SDK framework could be a solution for how
to develop cross-platform mobile applications. Hence, Qt is a cross-
platform application development framework widely used for the de-
velopment of GUI programs (in which case it is known as a widget
toolkit), and also used for developing non-GUI programs such as con-
sole tools and servers.

According to [11], frameworks like Titanium and PhoneGap are us-
ing widely used web development technologies (especially JavaScript),
do not require detailed knowledge of the target platform and are cer-
tainly worth considering for building cross-platform applications. Ti-
tanium supports the operating systems I0S, Android and Blackberry
(is in beta), while supported operating systems by PhoneGap include
I0S, Android, Blackberry, Windows Mobile and more.

According to [32], PhoneGap, Rhomobile, JQuery Mobile, and
Xamarin are some of the cross-platform mobile application develop-
ment tools available.

The comparison of four different development tools is mentioned in
[33], this paper provides proposes a survey on four major available
cross-platform development tools on the market which are Rhodes,
PhoneGap, DragonRad, and MoSync.

According to [34], ReactNative, Cordova and PhoneGap, are
increasingly gaining traction, as supporting cross-platform applica-
tions is rapidly becoming required for any non-trivial mobile venture.
Cordova and PhoneGap are designed to produce web view based ap-
plications for a mobile platform by allowing the developer to write
the base application in HTML, Javascript, CSS and then to display
the application Ul components using a provided special framework.
ReactNative on the other hand renders this base application code into

19

2 — Systematic Literature Review(SLR)

native platform widgets that call native APIs directly. However, such
frameworks are specifically designed to aid in the development of Uls
and views.

According to [35], there are many different vendors in order to create
hybrid mobile applications, such as Application Craft, Appcelerator,
Rhodes, dragonRAD, RHOMobile, IBM’s Worklight and Apache Cor-
dova/Phone Gap.

According to [36], several frameworks are supporting cross-platform
mobile application development, such as Sencha Touch, PhoneGap,
DOJO, Kendo UI, and jQuery Mobile.

Additionally, in the paper[37], there is a comparison and classification
about some hybrid appellation development tools such as; Phone-
Gap, Titanium, Sencha Touch. As a result of that paper, The
app written in PhoneGap is found to use minimum memory, CPU,
and power but provides a very simple user experience. It is also re-
ported that PhoneGap with Sencha Touch 2.0 work significantly well
when available memory is not an issue and better Ul is desired.

Lastly according to [71], many leading industrial companies (e.g.,
Google) attempt to leverage the native development scheme for cross-
platform code development (e.g., Flutter and Reactnative). Their
solutions are to develop the code only once and make it run on the
two different mobile systems.

From all analyzed papers, the Number of citations about hybrid mo-
bile application development tools graph has been created and shown
in the Figure 2.5. According to this statistic, the most used tool is
Phonegap, and then second used tool is Titanium and the third one
is Xamarin.

As a result of the graph in above, there are basic definitions of each
hybrid development tools from the most used to least used.

20

2.4 — Analysis of SLR Result

HYBRID MOBILE APPLICATION DEVELOPMENT TOOLS

W Sencha touch
EMoSync

W Mest

[]e

WOragonRad

mEasy App
mRhoMobile{Rhodes)

React Native

25 0F
3 g 3
P2 e
g 33

Figure 2.5: Number of citations about Hybrid Development Tools in
the considered papers

e« PhoneGap: is an open-source cross-platform smartphone ap-
plication development tool developed by Adobe System Inc un-
der Apache license. It provides a decent toolbox for building
native mobile applications using only HTML5, JavaScript and
CSS. PhoneGap is a “wrapper” that allows developers to enclose
applications written in known programming languages into na-
tive applications [20][32][33][34].

o Titanium: is written in JavaScript and complies with a native
application and utilizes native controls. A Titanium application
provides a set of security features that are required by mobile
app developers. It provides a rich API and low-level objects like
TCP Sockets. UI objects are customizable through a JavaScript
API. There is no HTML and CSS coding here. [5][11][37].

o Xamarin: allows developers to automatically build Android
and 1OS apps using this codebase. The Xamarin framework

21

2 — Systematic Literature Review(SLR)

makes it possible to do native Android, IOS and Windows de-
velopment in C#. Developers reuse their existing C# code and
share significant code across device platforms[29][38].

React Native: allows developers to write components in
JavaScript language, which are converted to native components
for IOS and Android platforms. React-Native renders the base
application code into native platform widgets that call native
APIs directly. This Framework receives as input an application
written in a particular not-native programming language and
transforms it into native code for a particular mobile platform
[29][34][71].

RhoMobile or Rhodes: is another cross-platform mobile ap-
plication development tool developed by Motorola solutions Inc
that is used to build an application for 10S, Android, Black-
Berry, Windows Phone, and Symbian. It is an open-source
Ruby-based mobile development environment used to develop
enterprise applications and data on a single source code across
the different operating systems listed above [32][33].

DragonRad: is a cross-platform mobile application develop-
ment platform by Seregon Solutions Inc. and distributed under
a commercial license. It allows developers to design, manage and
deploy mobile applications once and use it across IOS, Android,
BlackBerry, and Windows Mobile[33].

MoSync 4.0: is an open-source solution developed by a Swedish
company targeted to the mobile market. MoSync has fully-
fledged SDK which helps developers to build and package all
types of mobile applications, such as simple, advanced and com-
plex applications that share the same code base[33].

Sencha Touch 2.0: is another powerful yet complex cross-
platform mobile application development framework. Its SDK
tools provide access to a subset of phone native API such as
camera, notification, connection, and orientation[32].

22

2.4 — Analysis of SLR Result

e jQuery Mobile: is a mobile application development frame-
work that enables and supports touch events and design ele-
ments for a wide variety of tablets and smartphones in order to
make them look and function like native applications[32].

2.4.3 Tools for Testing (RQ2)

There are 24 papers are related to the testing category of the hybrid
mobile application testing techniques and tools out of 59 total papers.
Additionally, there are 9 papers more which are the combination with
other selected papers. In total, 33 papers mentioned the testing tools
for hybrid applications, as it seems in Figure 2.2.

According to [38], Android Monkey tool and analyzes the log files
of this execution for certain kinds of faults. The AndroidRipper
tool also performs stress testing of an Android app but by system-
atically crawling its GUIL. The M[agi]C tool is used to generate test
cases for apps using a combination of model-based testing and com-
binatorial testing. Android GUITAR can fire only click actions,
it seems unfair to use our results with action inference for compari-
son. ORBIT is designed specifically for mobile apps and uses a more
precise state-based model, which would also integrate well with other
state-based testing techniques.

According to [39], GUI-based testing needs some user interaction to
move an application from one state to another, therefore Monkey
testing tool is selected for an automatic event generation tool, to pro-
duce events in both random and deterministic ways.

According to [40], the tool, named A2T2(Android Automatic
Testing Tool), has been developed in Java and is composed of three
main components: a Java code instrumentation component, the GUI
Crawler, and the Test Case Generator.

According to [41], GUI ripper, the events of that iterative fire on
23

2 — Systematic Literature Review(SLR)

the GUI and observes the resulting GUI state changes. A GUI ripper
can be used to execute automated software testing processes too: in
this case, the ripper is used as an engine that fires sequences of events
on the GUI of the application under test (AUT) intending to search
for application failures.

According to [42], Automated Model Generator for Android
apps (AMOGA), a tool for automated UI model generation from
mobile applications. It is a strategy that uses a hybrid, static-dynamic
approach for generating a user interface model from mobile apps for
model-based testing. AMOGA implements a novel crawling technique
that uses the event list of Ul elements associated with each event to
dynamically exercise the events ordering at the run time to explore
the applications’ behavior. On the other hand, the tools selected for
the comparison with the AMOGA testing tool are Monkey, An-
droidGUITAR, SwiftHand, ORBIT, MCrawlT, and Mobi-
GUITAR. The AndroidGUITAR and ORBIT are not available freely
to download.

According to [43], a concolic-testing approach for generating single
events can be extended naturally to iteratively compute sets of in-
creasingly longer sequences of events. An algorithm, hereafter called
AllSeqgs can generate all event sequences of length up to k such that
each event sequence executes a unique program path. AllSeqs for
several Android apps and found a significant source of redundancy,
namely, that a large fraction of events do not have any effect on the
program state.

According to [44], GUI ripping tools simulate real user events on
an Android device to explore an application GUI. The majority of
these tools detect and report crashes generated during the exploration.
Coupled with detection of crashes, others of these tools which are
MonkeyLab, AimDroid, Android Ripper also reconstruct GUI
models resulting from the exploration. A previous effort has been
also focused on tools which are Sapienz, MobiGUITAR that build

24

2.4 — Analysis of SLR Result

testing suites based on their exploration strategy. CrashScope en-
ables context-aware input data and sensors and connectivity analysis.
CrashScope makes contextual changes in the application based on
API calls found statically in the code. Contextual fuzzing refers to
exercising apps with contexts observed in the wild. In this case, GUI
ripping is performed along the contextual fuzzing. Thor is another
tool that injects unexpected events (i.e., device rotation or incoming
calls) in existing test suites.

According to [45], Multi-Level GUI Comparison Criteria (Multi-
Level GUICC) is a set of abstraction levels for automated model-
based Android GUI testing. Also developed an automated model-
based GUI testing framework to perform automated GUI testing for
real-world Android apps, and we evaluate the influence of GUICC on
the testing results.

According to [46], today, the most popular mobile applications are
based on Android and IOS platforms. The functionality of the I0S
and Android apps can be successfully tested using Appium automa-
tion tool. Appium uses the Selenium WebDrivers to execute scripts
and being an open-source cross-platform tool, scripts can be written
in Java, Ruby, C, Python, Perl which gives the programmers the lib-
erty to use any language.

According to [47], Monkey, is an automatic event generation tool, to
produce events in both random and deterministic ways and feed these
events to the application. To discover a wide range of issues, random
sequences events are used by the Monkey tool and the sequences are
fed to the application under test.

According to [48], Calabash allowing developers to formally describe
touch gestures within a specification for Ul tests. Running the test
mimics human users by translating the specified gesture into corre-
sponding touch events injected into the AUT upon test case execution.
Developers and testers can write test scenarios in Calabash’s Gherkin

25

2 — Systematic Literature Review(SLR)

language and directly include touch gesture expressions without the
need for manual recording.

According to [49], juGULAR, a Hybrid GUI Exploration Technique
combining Automated GUI Exploration with Capture and Replay.
The approach can automatically detect Gate GUIs during the app
exploration by exploiting a Machine Learning approach and to unlock
them by leveraging input event sequences provided by the user. juGU-
LAR is implemented in a modular software architecture that targets
the Android mobile platform. juGULAR covered more source code
and Activities and generated more network traffic than the purely au-
tomated exploration, thanks to the automatic detection of two classes
of Gate GUIs, i.e., Login and Network Settings.

According to [50], the top 4 most used Android testing frameworks
are selected according to bitbar.com, which is we will evaluate, there
are: Espresso, Ul Automator, Appium, and Calabash. This
paper also gives a slight comparison between Appium and other Au-
tomated Testing tools.

According to [51], CHECKCAMP (Checking Compatibility Across
Mobile Platforms) can help mobile developers in testing their apps
across multiple platforms. An evaluation of the approach with a set
of 14 industrial and open-source multi-platform native mobile app-
pairs indicates that CHECKCAMP can correctly extract and abstract
the models of mobile apps from multiple platforms, infer likely map-
pings between the generated models based on different comparison
criteria, and detect inconsistencies at multiple levels of granularity.
CHECKCAMP, which for the same mobile app implemented for IOS
and Android platforms (1) instruments and generates traces of the
app on each platform for a set of user scenarios, (2) infers abstract
models from the captured traces that contain code-based and GUI-
based information for each pair, (3) formally compares the app-pair
using different comparison criteria to expose any discrepancies, and

26

2.4 — Analysis of SLR Result

(4) produces a visualization of the models, depicting any detected in-
consistencies.

According to [52], there are some limitations of existing testing tools
for GUI-based testing of Android apps in a novel hybrid approach,
therefore a new framework approach which is T+ is created. The ap-
proach of T+ is based on a novel framework, which is aimed at gener-
ating actionable test cases for different testing goals. The framework
also enables GUI-based testing without expensive test scripts collec-
tion for the stakeholders.

According to [54], The proposed model TriTest is an MBT approach,
based on SlumDroid, extending its functionality by integrating per-
formance and compatibility tests, which are not performed in Slum-
Droid, and automatically tests mobile apps’ functionality, performance,
and compatibility, which are important characteristics of quality. TriTest
system initiates its process using SlumDroid, the functional test re-
sults then generated are used as input to performance and compati-
bility test modules.

According to [55], the only two tools that are widely used in prac-
tice for testing Android apps are Monkeyrunner, a framework for
manually scripting sequences of user inputs in Python, and Monkey,
a random automatic user input generation tool. There is a proposed
testing algorithm, called SwiftHand, that uses execution traces gen-
erated during the testing process to learn an approximate model of
the GUI. SwiftHand then uses the learned model to choose user inputs
that would take the app to previously unexplored states. SwiftHand
implementation is made in Monkeyrunner and Monkey.

According to [56], MONKEYLAB provides stakeholders with an
automated approach for scenario generation that can be as powerful
as manual testing. MONKEYLAB mines event traces and generates
execution scenarios using statistical language modeling, static anal-
ysis, and dynamic analysis. Moreover, MONKEYLAB can generate

27

2 — Systematic Literature Review(SLR)

scenarios that differ from observed executions enabling it to explore
other paths that could trigger unexpected app crashes.

According to [58], MobiGUITAR (Mobile GUI Testing Frame-
work) conceptual framework, which we implemented in a toolchain
that executes on Android. It employs three primary steps: ripping,
generation, and execution. MobiGUITAR models the state of the
app’s GUI, which helps us more accurately model mobile apps’ state-
sensitive behavior.

According to [13], there are many testing tools for both native and
mobile Web app testing as well. Especially, MITE, MonkeyTalk,
seeTest Mobile, MobileCloud, Sikuli, Calabash, eggPlant,
MonkeyRunner, Robotium, Dollop, Selenium Android, Ap-
pium, Selendroid are the list of testing tools for GUI-based func-
tional testing. Keynote’s MITE and Selenium’s Android webDriver,
for example, only support testing for mobile Web apps, while Selen-
droid, Appium, and Calabash are designed to support just native app
testing.

According to [12], a basic test infrastructure consists of a PC running
the test script, one local device, and an automation tool. Selenium
Web Driver and Robotium are sample tools for mobile web apps
and Android apps testing.

According to [59], the MobiTest tool is designed to address some
of the difficulties associated with the automated testing of mobile ap-
plications, by using a single set of unit tests to test the application on
multiple platforms. The initial version focuses on testing through the
interface as this should be similar on all platforms. In this way, the
need for platform-specific code can be minimized.

According to [60], Paladin to achieve the goals of automated test

generation, reproducible executions, and better behavior exposures.
The key design of Paladin is to leverage the complete structure of the

28

2.4 — Analysis of SLR Result

view tree to identify equivalent app states and locate Ul widgets. Pal-
adin was compared with different Automated testing tools which are;
Collider defines a state as a combination of registered event handlers
and transitions as execution of event handlers, JPF-droid examines
method invocations to verify states, PUMA constructs a GUI feature
vector and uses the cosine-similarity metric with a user-specified simi-
larity threshold to identify equivalent states, Stoat encodes the string
of the GUI view tree as a hash value to distinguish states, VELERA
uses human visual perception to judge the test results, which is im-
practical for large-scale analysis, Mosaic uses a series of scalings and
normalization to map coordinates between platforms, Barista uses
XPath selector to locate Ul widgets since the GUI view tree can be
mapped to an XML document, SPAG-C uses image comparison to
identify equivalent states. However, image comparison is very sus-
ceptible to slight GUI changes such as different font styles and color
settings, Monkeyrunner which uses coordinate to locate widgets,
Culebra uses the GUI content to identify equivalent states, suffering
from state explosion as discussed before.

According to [61], PATDroid(Permission-Aware GUI Testing
of AnDroid) performs a hybrid program analysis on both an app
under test and its test suite to determine which tests should be ex-
ecuted on what permission combinations. PATDroid performs a hy-
brid program analysis on both an app under test and its test suite to
determine which tests should be executed on what permission combi-
nations. PATDroid currently supports the major Android’s GUI test
frameworks, namely Espresso, Robotium, and Monkey.

According to [62], Sapienz, an approach to Android testing that uses
multi-objective search-based testing to automatically explore and op-
timize test sequences, minimizing length, while simultaneously maxi-
mizing coverage and fault revelation. It combines random fuzzing, sys-
tematic and search-based exploration, exploiting seeding and multi-
level instrumentation. Of the publicly available tools, Dynodroid

29

2 — Systematic Literature Review(SLR)

and Monkey, were found to perform best in the recent comprehen-
sive study. Also, Sapienz always outperforms both Dynodroid and
Monkey, statistically significant and with large effect size.

According to [63], Appium can be termed as a revolutionary tool
that can completely change the testing process in a much efficient
and swift way. Appium has improved significantly since its inception
and is constantly being added up with new features. Since it supports
multiple scripting languages which means developers having diverse
expertise can use the same tool.

According to [64], Android Robotium is an open-source tool that
enables the automated and black box test execution of third parties
applications. The MonkeyRunner tool can run an automated func-
tional test for Android applications. MobileTest adopts a sensitive-
event based approach for the automatic black-box testing of software
running on mobile devices. Android Monkey tool provides features
for stress testing of mobile applications user interfaces.

According to [65], Robotium, supports test case developers to write
function, system, and acceptance test scenarios and simulate Black
Box testing for android application. Ranorex is mainly used for GUI
testing in windows which also supports mobile and web based applica-
tions. Appium is cross-platform, which allows writing a test against
multiple platforms using the same API. MonkeyTalk test from sim-
ple “smoke test” to sophisticated data-driven test suites. UlAutoma-
tor is a testing framework, which ensures an app to meet its functional
requirements and achieve a high standard quality.

According to [66], the systematic exploration tool called AMOGA is
created in order to comprise an event mapping section that is respon-
sible for extracting all app’s supported events statically. AMOGA is
compared against the code coverage with other existing Android ex-
ploration tools Android Monkey which is a testing tool available

30

2.4 — Analysis of SLR Result

in the Android SDK that can produce and send events in both ran-
dom and deterministic ways to an app, Android GUI Ripper which
dynamically analyses app’s GUI to obtain event sequences that can
be fired on the GUI, with each sequence representing an executable
test case that can be used for regression test and crash testing, and
Orbit which performs static analysis on the source code of an app to
generate set of user actions supported by an app.

According to [38], X-Checker aims to find bugs in Xamarin by gener-
ating apps, executing these apps on Windows Phone and Android, and
looking for inconsistencies in them. Thus, X-Checker’s design consists
of two parts, the test case generator, and the inconsistency checker.
X-Checker generates test cases that exercise the programming API
used by Windows Phone developers and X-Checker produces a pair of
apps for Windows Phone and Android. It executes them atop these
platforms to observe inconsistent behavior.

Lastly, according to [67], it has been found that Android app de-
velopers mostly use automated testing tools such as JUnit, Mon-
keyTalk, Robotium, Appium, and Robolectric. The perceived
usability of JUnit was the highest (45%). The perceived usability of
MonkeyTalk was next (20%), followed by Robotium (17.50%), and
then Robolectric (15%). Then automated testing tool with the least
perceived usability was Expresso (2.50%).

From all analyzed papers in the above, all mentioned testing tools
are collected and counted according to an appearance in the papers,
then the number of citations about the hybrid mobile application
testing tools graph has been created and shown in the Figure 2.6.
According to the graph, the most used tool is Android Monkey, and
then second used tools are Appium and Robotium and third tools are
MonkeyRunner and Android GUIRipper.

31

2 — Systematic Literature Review(SLR)

Hybrid Mobile Applicaiton Testing Tools

Android Monkey; 9

Monkeyrunner; 4

Android GUIRipper; 4

ORBIT; 3

MonkeyTalk; 3

MOobiGUITAR; 3

Calabash; 3

Ul Automator; 2

Selenium; 2

Sapienz; 2

Monkeylab; 2
MobiTest; 2
Espresso; 2
AndroidGUITAR; 2

AMOGA; 2

X-Checker; 1
VELERA; 1

Thor; 1

Stoat; 1
SPAG-C; 1

SlumDroid; 1

Selendroid; 1
seeTestMobile; 1

Robolectric; 1

Multi-Level GUICC; 1
Mosaic; 1
MobileCloud; 1
MITE; 1

MCrawiT; 1
M(agilC; 1
eggPlant; 1

Dollop; 1
Dynodroid; 1

CrashScope; 1

Coupled; 1

CHECKCAMP; 1
Collider; 1
Barista; 1
AimDroid; 1

A2T2; 1

o
-
~
w
IS
«
o
N
3
©

10

Figure 2.6: Number of citations of Testing Tools in the considered
papers 32

2.4 — Analysis of SLR Result

As a result of the line graph above, the most used and desired testing
tools are selected to give more details of them. Since some tools
are just created for making research, some testing tools have a price,
therefore, many different testing tools are not entered to the will be
described list below.

e Android Monkey: is a testing tool available in the Android
SDK emulator, therefore, no need to install explicitly. That tool
can produce and send events in both random and deterministic
ways to an app and generates pseudo-random streams of user
events such as clicks, touches, or gestures, as well as several
system-level events. You can use the Monkey to stress-test ap-
plications that you are developing, in a random yet repeatable
manner. It generates automatic events and analyzes the log files
of this execution for certain kinds of faults. To discover a wide
range of issues, random sequences events are used by the tool
and the sequences are fed to the application under test. This
tool provides features for stress testing of mobile applications
user interfaces. Therefore it simply gives a very quick idea if any
exception can be got by back and forth. [38][47][55][64][66]

e Appium: can be termed as a revolutionary open-source cross-
platform testing tool that can completely change the testing
process in a much efficient and swift way by using Selenium to
execute scripts. Those scripts can be written in Java, Ruby, C,
Python, Perl which gives the programmers the liberty to use any
language. Appium has improved significantly since its inception
and is constantly being added up with new features. Since it
supports multiple scripting languages which means developers
having diverse expertise can use the same tool. Appium allows
writing tests against multiple platforms using the same API that
the functionality of the IOS and Android apps can be success-
fully tested using this automation tool. [46][63][65]

 Robotium: Robotium is an open-source test framework that
has full support for native and hybrid applications for writing

33

2 — Systematic Literature Review(SLR)

automatic black-box test execution of third parties applications.
Robotium supports test case developers to write function, sys-
tem, and acceptance test scenarios and simulates Black Box
testing for android applications. Robotium can be used both
for testing applications where the source code is available and
applications where only the APK file is available and the imple-
mentation details are not known.[53][61][64][65][67]

MonkeyRunner: provides an API for writing programs that
control an Android device or emulator from outside of Android
code also it can be accessed to device and application compo-
nent. With monkeyrunner, you can write a Python program
that installs an Android application or test package, runs it,
sends keystrokes to it, takes screenshots of its user interface,
and stores screenshots on the workstation. This tool is primar-
ily designed to test applications and devices at the function-
al/framework level and for running unit test suites, but you are
free to use it for other purposes. monkeyrunner which uses coor-
dinate to locate widgets and also runs an automated functional
test for Android applications. The monkeyrunner tool is not
related to the UI/Application Exerciser Monkey, also known as
the monkey tool. [55][57][60][64)]

Android GUIRipper: can be used to execute automated soft-
ware testing processes that are used as an engine that fires
sequences of events on the GUI of the application under test
(AUT) intending to search for application failures. It is a tool
also performs stress testing of an Android app but by systemat-
ically crawling its GUI. Android GUI Ripper which dynamically
analyses app’s GUI to obtain event sequences that can be fired
on the GUI, with each sequence representing an executable test
case that can be used for regression test and crash and observes
the resulting GUI state changes testing.[38][41][66]

34

2.4 — Analysis of SLR Result

2.4.4 Challenges for Development /Testing(RQ3)

There are 5 papers are related to the category of the challenge of
the hybrid mobile applications. Additionally, there are 9 more pa-
pers which are the combination with challenges and development of
hybrid mobile applications. Lastly, 7 more papers are related to the
combination of challenges and testing. In total there are 21 papers
are under the category of challenges out of 59 total papers as it seems
in Figure 2.2. In this part of the paper, papers will be analyzed based
on Grounded Theory that technique is explained under the title 2.3.
While analyzing papers, coding, and memoing techniques were used
to differentiate and make high-level analyses about the challenges.
During the categorization of the challenges, it realized that collecting
challenges under 3 high-level categories which are general challenges
about hybrid mobile applications, development challenges and testing
challenges of hybrid mobile applications and analyzing under these
subtitles.

It is better to start with [3], because this paper has a very good cat-
egorized collection of challenges in Hybrid Applications which have
already done a similar study like this paper. Hybrid mobile applica-
tions challenges are;

o Testing challenge is the most severe challenge reported in 47%
of studies. Hybrid applications are targeted to run across plat-
forms, thus, testing each aspect in such applications quite chal-
lenging for developers.

o User Experience challenge is the second frequent mentioned
challenge in the literature (44%). Hybrid applications are not
executed like native applications. Therefore, developing these
applications have several issues due to different user interfaces,
lack of access to device features, and contextual factors, which
ultimately affects the performance and user experience (usabil-
ity, response time, and reliability) of hybrid applications.

o Compatibility issue in hybrid application development is the
35

2 — Systematic Literature Review(SLR)

third frequent challenge as reported in 21% of the identified liter-
ature. Hybrid applications also have compatibility issues due to
platform-specific constraints or access to API when translating
from one platform to another.

« Lack of Tool Support was reported in 12% of research studies.
Developing hybrid applications are quite challenging since it has
both native and web applications characteristics.

o Lack of Expertise was reported approximately 12% of stud-
ies as a significant challenge in hybrid application development.
Developers are always faced with a lack of expertise in devel-
opment tools (translating code efficiently from one platform to
another) and knowledge of each platform’s API or features.

o Change Management challenge is reported in 11% of the
identified literature studies. The frequency of the change man-
agement challenge is less reported in the literature. Neverthe-
less, managing change requests is quite difficult to tackle for
developers.

o Fragmentation challenge is mentioned in 4% of the articles.
Hybrid applications are aimed to overcome the shortcomings of
both native and web applications.

e Security is one of the least reported challenges in the literature
(4%). The web part of the hybrid application is prone to security
threats due to its open and dynamic interaction.

« Reuse of Code is the least mentioned challenge in the litera-
ture (2%). However, we consider this as one of the significant
challenges that need to be tackled by academia and industry.

According to [10], Hybrid applications are inferior in performance
compared to the native applications since the execution happens in
the browser engine.

36

2.4 — Analysis of SLR Result

o Hybrid applications are inferior in performance compared to the
native applications since the execution happens in the browser
engine.

« Since a hybrid application uses JavaScript Hardware abstraction
layers, it is subjected to cross space communication vulnerabil-
ities. Hybrid applications also suffer from platform-specific be-
havior of JavaScript and threading model incompatibilities with
JavaScript.

o Even though the user interface can be reused across different
platforms the user interface will lack the look and feel of a native
application. To achieve the native look and feel the platform-
specific styling might be required.

According to [68], challenges in Hybrid Applications are;

o Performance is a slight one issue that can be considered as a
challenge of the hybrid mobile applications because according
to a survey they perform poorly when dealing with low-level,
platform-specific features.

o Testing hybrid development frameworks are perceived as better
suited for finding the presence of bugs

o User experience is another challenge that should be consid-
ered because if a hybrid application seems more like a similar to
the native version it is more preferable.

« Reuse Code is the reason for the creation of hybrid develop-
ment but it needs existing knowledge of web developers to be
able to reuse.

According to [69], potential challenges on the use of multi-platform
are mentioned that;

« Development Tool needs to overcome the constraint of utiliz-
ing different languages and frameworks for each platform.

37

2 — Systematic Literature Review(SLR)

Development Practices needs to take advantage of the knowl-
edge and expertise already attained by programmers.

Development Cycles needs to be developed once, deploy any-
where.

User’s Experience needs to do not allow access (or provide
limited access) to some features of the mobile device.

Application Marketing needs that applications can be dis-
tributed through a variety of marketplaces.

According to [70], developing for multiple platforms is a recurring
problem that is not unique to the mobile world;

the lack of proper development and analysis support in
the mobile environment exacerbates the challenges.

Correctness and consistency of the app across different plat-
forms. One way to tackle this problem is by constructing tools
and techniques that can automatically infer interaction models
from the app on different platforms.

Testing challenges, follow-up studies could focus on generat-
ing test cases for mobile apps. A centralized automatic testing
system that generates a (different) test case for each target plat-
form could be a huge benefit. While platform-specific features
can be customized, core features could share the same tests.

The existing testing frameworks have serious limitations for
testing mobile-specific features and scenarios such as sensors,
rotation, navigation, and mobility (changing network connec-
tivity). As consequence developers either need to write much
test fixture code to assert mobile-specific scenarios or opt for
manual testing.

Rooted emulators that can mimic the hardware and software
environments realistically limitation is another challenge.

38

2.4 — Analysis of SLR Result

Better analysis tools, in order to measure and monitor dif-
ferent metrics of the app under development, is a necessity,
therefore, having an analysis tool could be a challenge of cross-
platform mobile applications.

According to [11], cross-platform application challenges are in the
following;:

Market place deployment is one of the challenge developers
need to consider that evaluate whether and how easy it is to
deploy apps to the app stores of mobile platforms.

Widespread technologies should be evaluated whether apps
can be created using widespread technologies, such as JavaScript.

Hardware and data access is another challenge that evalu-
ates whether apps have no access, limited or full access to the
underlying device hardware and data.

User interface and look and feel evaluates whether apps
inherently support native user interface components or native

user interface and look and feel is simulated through libraries,
such as JQuery Mobile.

User-perceived performance evaluates whether apps have
low, medium or high performance as perceived by the end-users
(like loading time and execution speed).

According to [32], cross-platform development environments are chal-
lenged by the different implementations, immature platform
support, variety of devices, and variety of browsers while the
platform-specific ones. Cross-platform development tools are flourish-
ing aiming at addressing user experience, the stability of frame-
work, ease of updating, cost of development for multiple plat-
forms, and the time to market of an application.

According to [33], it is a big challenge to develop high-performance
mobile applications in this competitive market that would meet the

39

2 — Systematic Literature Review(SLR)

expectation of customers. Cross-platform application development
challenges are categorized below;

Mobile Operating Systems supported to understand possible
effects on respective business models.

Tool licenses offered to evaluate the terms and conditions of
use.

Programming languages offered to developers for building
applications.

Availability of API’s provided to get an idea of different hard-
ware parts accessible in the OS.

Accessibility to native API’s to compare how it is possible
to access them from each tool.

Architecture provided for the development process of the ap-
plication.

Integrated Development Environments available for devel-
oping applications.

According to [9], hybrid mobile application have some challenges
which are;

Potential customer base of applications could be the first he
challenges.

Providing a better user experience is with the UI builders is
another challenge.

Fragmentation and the lack of updates. Fragmentation
is simply the problem that there are so many different devices
supporting Android, and it is difficult to create an App that
works across all various sorts. The lack of updates is the case
that certain devices, even quite new, will not receive updates of

the OS.
40

2.4 — Analysis of SLR Result

o Manufacturer of device difference is also another challenge
for hybrid applications because making consistent for all devices
hard such that Android has many different manufacturers and
to be consistent with all of them could be a trade-off when we
compare with a market share of Android vs I0S.

According to [35], there are three main challenges of a hybrid mobile
application is that ;

o User Interface(UI) layer has to be developed separately for
each hand-held mobile device such that it can provide device-
specific gestures to increase user satisfaction. Hence the native
application development offers the ultimate user experience and
performance for mobile applications.

« Fragmented set of development tools and multiple versions
of an application to serve the same user need. Using the above
mentioned frameworks and products is a sensible option when
developing apps for new initiatives where no functionality has
been deployed yet.

« Translator is necessary that the non-UI components be trans-
lated into the target platform’s language(s) Objective-C, C#
for deploying a mobile app on Apple and Microsoft mobiles re-
spectively. since the core app engine is translated to the target
platform using open source or commercial translators.

According to [36], cross-platform mobile applications have some chal-
lenges about Ul, reusability, a variety of mobile devices, and
development tool support. The wide variety of hardware and soft-
ware of smartphones is one of the difficulties for reusability in software
development for mobile devices. This challenge initiates many types
of research towards adapting Ul across many devices. Most of the
common development tools for visual design user interfaces are local
applications, which require developers to install locally in their com-
puters not like downloading once and deploying on many supported
platforms.

41

2 — Systematic Literature Review(SLR)

According to [37], cross-platform frameworks have to consider some
requirements which are listed below, therefore those requirements
seem as challenges of cross-platform frameworks most of them are
related to development challenges.

Multiple mobile platform support for Android and IOS are
very essential since they have the largest share in the application
markets.

Rich user interface should support for sophisticated graphics
(2D, 3D), animation, multimedia are necessary. Since the suc-
cess of an application highly depends on the user experience of
the interface, rich UI development should be incorporated.

Back-end communication protocols and data formats are ab-
solutely mandatory. Hence mobile devices promote an "always-
connected" model in which the users are sharing material in so-
cial networking sites, watching videos, communicating via live
chat, gathering information 24X7.

Security needs to be considered of applications developed by
cross-platform tools because in general, they are not highly se-
cure.

Support for app-extensions is required to install app exten-
sions on top of existing applications like in app purchase/billing
capability.

Power consumption is an important issue nowadays with
thousands of smartphones and tablets are being activated daily.
The generated applications must be optimized for power.

According to [71], the cross-platform framework faces the following
difficulties:

It is difficult to extract the components in the GUI pages accu-
rately.

42

2.4 — Analysis of SLR Result

o The types of the extracted components cannot be identified only
relying on the image processing techniques.

e There’s no such a technique that maps and transfers the GUI
implementation code of the two different platforms (i.e., Android

and 10S).

It can be understood that these difficulties mentioned above are mainly
merged under User Interface challenge of mobile application devel-
opment.

According to [44], testing is an underlying necessity in hybrid mobile
applications to deliver high-quality apps.

o defining tests suites and large combination of mobile de-
vices and operating systems for app testing is a difficult task
that requires a lot of effort, because it must consider all the
possible states of an app, its context (e.g., device in which is
running, sensors, touch gestures, screen proportions, connectiv-

ity) .

o GUI extraction is another difficult task for testing due to the
nature of model extraction based on GUI events. The majority
of automated testing tools detect and report crashes generated
during the exploration. Coupled with the detection of crashes,
others of these tools also reconstruct GUI models resulting from
the exploration.

According to [52], some challenges impact the automatic generation
of test cases for Android apps during the preliminary experiment.

« encapsulated components (e.g., KeyboardView, AutoCom-
pleteTextView, CalendarView, DatePi cker) can not be analyzed
during systematic exploration, because the subcomponents (e.g.,
each key of the keyboard) are not available for ripping at exe-
cution time.

» testing approaches should be able to deal with clean (i.e., no
previous data or cache in the app) and dirty launches (i.e., the
app keeps data from previous executions).

43

2 — Systematic Literature Review(SLR)

« the arrival time between events, during real execution of
mobile apps, should also be modeled to reduce idle time during
testing and to avoid the situation where feasible events become
infeasible (one option for dealing with this is by generating test
cases written with the Android UI Automation APT).

« statistical models require appropriate mechanisms for identi-
fying the required size of the training corpus.

According to [56], there are some challenging tasks in GUI-based hy-
brid Android app testing.

o Generation of test scenarios or test cases is a difficult
task because of the extraction of GUI models from Android app
execution traces, events, or source code.

o Mobile developers and testers face other emerging challenges
such as;

— rapid platform/library evolution and API instabil-
ity

— platform fragmentation

— continuous pressure from the market for frequent
releases

— limited availability /adequacy of testing tools for mo-
bile apps.

According to [13], cross-platform applicaiton testing has some diffi-
culities and challenges.

o construction of mobile test environments still involves
high costs and levels of complexity. Setting up a mobile test en-
vironment for multiple apps on each mobile platform for a range
of devices is tedious, time-consuming, and expensive, and fre-
quent upgrades in both device and platform space only exacer-
bate this challenge. Additionally, there are some sub-challenges
with related the main challenge;

44

2.4 — Analysis of SLR Result

— The lack of standardization in mobile test infras-
tructure, scripting languages

— Connectivity protocols between mobile test tools
and platforms

— The lack of a unified test automation infrastructure

the market for cross-platform mobile apps will grow 88
percent from 2009 to 2014, bringing an even stronger demand
for mobile test automation solutions that can cope with the
issues and challenges we described earlier.

According to [59], the creation of cross-platform testing tool presents
a number of challenges:

Use of XML to specify components although I0S and An-
droid can specify their layouts with XML, it may be that some
platforms do not.

Incorrect assumptions about layout suppose there are IOS
and Android layout XML files that both specify two buttons.
Based on the order in which components are specified in the file,
it will be assumed that the first button from one file corresponds
to the first button from the other.

Conflicting guidelines both I0S and Android provide a set
of guidelines for user interfaces. These guidelines are not always
compatible.

Platform-specific features each mobile platform has several
components unique to that platform.

Inconsistent number of screens a single screen on one plat-
form may correspond to multiple screens on another.

According to [64], a systematic software engineering approach to soft-
ware testing is aimed at maximizing fault detection, making results
reproducible, and reducing the influence of external factors, therefore
there are some challenges;

45

2 — Systematic Literature Review(SLR)

Test Selection leads to the unpredictability and high variabil-
ity of the inputs the application is potentially receiving.

Test Execution leads to the challenge on how to execute test
cases including rich contextual inputs.

Structural mobile application languages add some specific con-
structs for managing mobility, sensing, and energy consumption.

Functional mobile applications functional testing requires to
specify both the application and the environment it may operate
in (especially in MobileApps).

Performance and reliability testing performance and re-
liability of mobile applications strongly depend on the mobile
device resources, on the device operational mode, on the connec-
tivity quality and variability, and other contextual information.

Memory and Energy testing memory leaks may preempt
the (limited) memory resource, and active processes (of killed
applications) may reduce the device (battery) autonomy.

Security testing security is particularly relevant due to the
mobility of the device into networks with different security levels.
A Trojan might have access to personal data, private networks,
and private contextual information (e.g., where the application
user is located).

GUI testing test whether different devices provide an adequate
rendering of data, and to test whether native applications are
correctly displayed on different devices.

Product line testing is an application on a multitude of mo-
bile devices is certainly an important challenge, especially in the
Android O.S., where different mobile phones provide different
features and hardware components, and phone manufacturers
may deeply customize the O.S.

46

2.4 — Analysis of SLR Result

Out of 21 papers were selected as Hybrid Mobile Application chal-
lenges were manually examined, and creating categories for challenges
through the application of Theoretical sensitivity, Coding, and mem-
oing according to Corbin’s Grounded Theory approach[23]. Theoret-
ical sensitivity helps to conceptualize different words with a similar
meaning and make a relationship between them. Additionally, coding
helps to put the same category name if they are serving the same
purpose. Lastly, memoing helps to put those words in the taxon-
omy diagram to visualize for the reader in the high-level perception.
At the end of categorized challenges, it is found that challenges are
divided into three high-level categories which are related to Develop-
ment, Testing and General Challenges about hybrid mobile applica-
tions from all related papers.

Development Challenges of hybrid mobile applications

Development Challenges were examined and categorized thanks to
theoretical sensitivity that helps understand challenges related to the
development phase of the application. Then, challenges were coded
with meaningful and related name and then thanks to the memoing
taxonomy diagram are created and shown in Figure 2.7. Addition-
ally, the occurrence of these categories was counted and made a graph
about them. Out of all related papers, there is 41 occurrence of chal-
lenging keywords that are mostly related to development. According
to that occurrence of keywords, User Interface and User Experience
is the most appeared challenge(31.7%) in papers. The reason for it
could be that hybrid mobile application tried to more seem like na-
tive versions. The second most appeared challenge is Development
Tool support(24.3%) and the reason behind it could be a difficulty
of finding the best compatible development tool both cover all native
and web application characteristics. And the third challenge is Per-
formance(12.2%) and the reason behind it could have problems like
working slow while trying to reach platform-specific features. More
details of the hybrid development challenges shown in Figure 2.8.

47

2 — Systematic Literature Review(SLR)

User | | Gl
Interface Extraction

Compatibility

Fragmentatiomg

Consist ney
Criarmunee hl]t]lp[lnt]

111![]!\4! (.‘l)lil!

Development | Availability

of Al'l

Dev Tool || Language
Suppart Translator

Ermulator
cansistency

]}1:'»' Tnnl
Expertise

Change
Management
Development
|].,'lfu:l'lr'-.:h:
Lack of
Upelate

Figure 2.7: Taxonomy of Development Challenges

48

2.4 — Analysis of SLR Result

Development Challenges

Ux/Ul

Cevelopment Tool Support
Performance
Development Lifecyde
Reuse of Code
Fragmentation
Development Expertise

Consistency

Compatibility

=
19,
B

15

Figure 2.8: Hybrid Mobile Application Development Challenges

2 — Systematic Literature Review(SLR)

Testing Challenges of hybrid mobile applications

Testing Challenges were examined and categorized the same method-
ology with the development challenges approach. Categories were
scratched to make more visualize as taxonomy and shown in Figure
2.9. There is a statistical graph about high-level categories of testing
challenges shown in Figure 2.10. Furthermore, the same occurrence
statistic was made for this kind of challenge subdivision. According
to statistics collected from all related papers, there is 23 occurrence
of different keywords related to challenges about testing. Testing Ap-
proach, Testing Tool/Framework, and Platform Specific Features chal-
lenges have the same ratio (26.1%) and the most challenging topics.

Testing Tool and Framework have many sub-challenges such as Tool
Standardization or API Availability because there are many different
testing tools and those criteria need to be considered while hybrid mo-
bile application testing. Also, the number of different kinds of testing
tools is quite big when compared to development tools, therefore, tool
standardization has a very significant role.

Other problems are that even if the application would be developed in
any framework with whatever you won’t like the same layout for each
of different operating systems, etc. However, at the end of testing it,
it is necessary to take in the count for every Platform-specific features
aspects of different operating systems, because they could have differ-
ent structural and functional features.

Test Tool Expertise is also necessary because of time and cost consid-
eration since the well prepared conflicting guidelines would be helpful
for testers to deal with problems during the testing at the end it helps
saving more time and time money. Fragmentation is a general prob-
lem for both development and testing perspectives.

Lastly, Statistical model support could be beneficial at the end of the
test by creating statistics about bugs, etc. Hence, it is very important
feedback for the application quality.

50

2.4 — Analysis of SLR Result

| Tool Stan-
dardization

Lack of
H Scripting
Libwwary

Testing
1 Tool and
Framawork Lack of
H Connectivity
protocols

|| Availability
of Al

PPlatiorm
Sparcific
Components
Platform / Widgets
H Spaecilic

Tt i Features
Festing Lavyout

Doscriptions

Tost Tool || Lack of
Expertise Clhuidelines

o
Approach Fest Clase
Fragmentatiof

Statistical
g Maoddel
Support

Figure 2.9: Taxonomy of Testing Challenges

51

2 — Systematic Literature Review(SLR)

Testing Challenges

Test Approach

Platform Specific Features
Statistical Model Support

Tool Expertise

e
Testing Tool /Framework I

T

—

—

e

Fragmentation

Figure 2.10: Hybrid Mobile Application Testing Challenges

52

2.4 — Analysis of SLR Result

General Challenges of hybrid mobile applications

General Challenges are more related to common hybrid mobile appli-
cation features especially not technical detailed means that not related
to both development and testing. All 21 papers, some challenges were
not grouped under the development or testing categories. Thus, it
was better the called them as general challenges and the taxonomy
of it shown in Figure 2.11. Since these challenges are more related to
high-level features or inspections of hybrid applications.

From all analyzed papers, only 18 times these kinds of challenges
were faced, and the most challenging one is a variety of devices and
browsers(33.3%) should be considered the first challenge of this cate-
gory. Additionally, this challenge could be supported by other statis-
tics that it mentioned in the introduction of this paper which is "nowa-
days, the number of mobile phones is forecast to reach 4.68 billion|[2]".
It is an inevitable fact that today, in the mobile phone market there
are a lot of different devices and different browsers specific to that
device.

Second most challenge is about Application Market (27.7%) such as
Google Play Store, AppStore, etc and also it was mentioned in intro-
duction again "today the most used operating system is Android[9]",
and it means that the winner of application market is Google Play
Store and the balance should be stabilized thanks to hybrid appli-
cations. Therefore hybrid mobile applications have a very huge and
strong impact on the application market topic.

Details of the number of citations about general challenges can be
seen from Figure 2.12

53

2 — Systematic Literature Review(SLR)

| Application

Market

YVariety of
H devices &
hrowsers

| Hardware &
Data Access

General]‘

H Security

Technological
1 i ve-

ments
H Time |
'| (ot |

Figure 2.11: taxonomy of General Challenges

54

2.4 — Analysis of SLR Result

General Challenges

Variety of devices & browsers

e
Application Market |
Hardware & Data Access [N
Security |INEG—_—————
Time |
Cost [N
e

Technological imonvements

Figure 2.12: Hybrid Mobile Application General Challenges

2 — Systematic Literature Review(SLR)

2.5 Discussion and Conclusion

The purpose of this study was to collect, interpret and analyze all
shreds of evidence related to hybrid mobile application development,
testing techniques, approaches, and challenges. This study indicates
several research gaps that acquire further research and investigation
and find out the answers to three research questions.

The answer of RQ1 is reported in the section under 2.4.2 and Figure
2.5. Among collected related papers, the three used hybrid mobile ap-
plication development tools are Phonegap, Titanium, and Xamarin,
respectively, whereas all the other frameworks are very less used across
all categories.

The answer of RQ2 is reported in the section 2.4.3 and Figure 2.6.
The three most used hybrid mobile application testing tools are; An-
droid Monkey, Appium, and Robotium. All three testing tools have
almost the same qualifications as the diversity of operating systems,
free to use, and have good guidelines. For future research, these tools
can be selected for making deeper comparisons.

Lastly, to draw high level perspective of RQ3, made detailed explana-
tions are provided in section 2.4.4 with general results shown in the
Figures 2.8, 2.10, and 2.12. For answering this question, three ma-
jor challenge categories were selected to mainly focused on the topic
which are development, testing, and general challenges. Development
challenges mainly focused on User Interface which is more related to
differences among operating systems and trying to create similar vi-
sualization for all operating systems, Development tool Support, and
Performance of the applications.

56

Chapter 3

Source Repository Analysis
and Exploratory Study

In this chapter, open-source hybrid mobile apps mining and an ex-
ploratory work about automated GUI testing for hybrid apps were
performed. The process of conducting the mining part and making
an analysis of it will be explained in the next section. Then, in the
second section, a real-life example of automated GUI testing on a Hy-
brid Android application will be experienced based on some use cases.

The purpose of these works is getting results of these automated test-
ing tools for hybrid mobile applications. In order to make good as-
sumptions, literature reviews are not enough. Due to this reason, the
top five open-source automated testing tools, which are explained in
the previous chapter "Testing Tools" section, are selected for searches
in the GitHub project repository. The mining process will be ex-
plained in the next section. In the second part of the chapter, the
tentative to test a randomly-selected hybrid mobile app with those
mostly cited mobile frameworks.

o7

3 — Source Repository Analysis and Exploratory Study

3.1 Source Repository Analysis

According to the results of the literature review related to the oper-
ating system, Android is the most used operating system among mo-
bile applications. Thanks to new cross-platform development tools,
developers can develop not only Android but also other operating
systems. In the literature review results, Phonegap, Titanium, Xam-
arin, React-Native are the most used open-source development tools.
Additionally, Monkey, Appium, Robotium, Monkeyruner, and Cal-
abash are the most used open-source testing tools. Thus first filtering
of the mining made around the operating system of the application,
later development and testing tools will be filtered as well. The the-
sis needs some real data for this research, therefore, R. Coppola’s[73|
paper was analyzed and used their data in Github to filter some hy-
brid projects. This analysis made by gathering open-source projects
from GitHub and applying some filtering thanks to Bash scripts that
were created. The purpose of this work is by answering the Research
questions below:

e RQ4.1: How many projects use cross-platform development tools?
o RQ4.2: How many projects use automated testing tools?

« RQ4.3: How many projects developed by cross-platform tools
and tested with automated testing tools?

The starting point of the analysis was the set of 9827 projects pro-
vided in the mentioned paper. Later a filter was applied to identify
cross-platform development tools keywords such a PhoneGap, Cor-
dova, react-native, etc. Then, testing tool keywords such as Appium,
Robotium will be used for filtering from the specific projects. Later
on this automated search, there was an output file that has project
names and files that include searched keyword.

Furthermore, those projects were analyzed as being good candidates
or not manually. If the searched keyword is found in a comment or
variable name, or just a specific purpose will cause the project will

58

3.1 — Source Repository Analysis

be excluded. According to this last manual filtering criteria, the col-
lected results result that are detailed later, were not sufficient to make
statistics about Hybrid app development and testing tools.

How many projects use cross-platform development tools?

It is necessary to choose cross-platform development tools that are
mentioned at the beginning of this section as Phonegap, Titanium,
Xamarin, and React-Native. It seems from the Figure 2.5, top four
development framework was selected because other development tool
occurrence is very few and not a good candidate for making this anal-
ysis. There are exclusion criteria as well for the selection of the candi-
date projects. If the search keyword appears in the comment blocks,
or to be a dictionary word, not related to hybrid development just a
specific variable naming or library usage, exclude these projects from
the output list. After applying this exclusion criterion, the real appli-
cable projects will remain.

It reported in Figure 3.1, among all projects only 26(0.0026%)projects
have been filtered as Adobe Cordova - Phonegap projects, out of these
26 projects only 15 of them developed as hybrid android applica-
tions and most of them are tutorials, not real projects. For Tita-
nium 26(0.0026%)projects found but none of them is development, all
projects excluded from the output list. Additionally, only 8(0.0008%)
projects have been filtered with the react-native keyword, and only 4
of them are developed by React-Native. Then, only 15(0.0015%) of
them have been filtered with Xamarin keyword, and only 1 of them
is really developed with hybrid development.

59

3 — Source Repository Analysis and Exploratory Study

Number of Android
Projects in GitHub

) Phonegap/ Appcelerator
Filtering keywords Cordova React-Native Titanium
MNumber of

Filtered Projects

Number of 15
Related Projects

Figure 3.1: Number of projects associated to the selected development
frameworks

How many projects use automated testing tools?

In order to decide which testing tools will be used in this mining,
Figure 2.6 result is used. Among the top five open-sources, testing
tool keywords searched in GitHub. In order to make another min-
ing with the same data set 9827 projects wherein GitHub, the same
methodology of the deciding development tool is being applied as well.
This means that specific keywords will be searched inside GitHub au-
tomated by script language. If the search keyword appears in the
comment blocks, or to be a dictionary word, not related to hybrid
mobile application development just a specific variable naming or li-
brary usage, exclude these projects from the output list. At the end
of this exclusion criteria application, the real applicable projects will
be remain.

It reported in Figure 3.2, among all projects, 441 projects filtered
with Monkey keyword-only 316 of them tested with Android Monkey

60

3.1 — Source Repository Analysis

tool. However, this tool is inside of the Android studio and no possi-
bility to write code because that tool is working as pressing random
buttons, entering some keywords something like that. For that reason,
it is excluded from this analysis. Among all projects, 49 projects have
been filtered with appium keyword and 41 projects have been tested
by it. Out of 86 filtered project with Robotium keyword, 74 projects
have been tested with Robotium. Among all projects, only 6 of them
tested with Monkeyrunner and there is no project tested by Calabash.

Testing tools analysis gave more results than cross-platform devel-
opment tools but still not enough to make statistical analysis. It
is obvious that around out of 10K projects, the maximum valuable
project number is very low to make some predictions and assump-
tions. For that reason, it is better to collect some precise data man-
ually. As it is better to select a hybrid mobile application and try to
test automatically it then compares with the results of testing tools.

Number of Android
Projects in GitHub

Filtering keywords Monkey Monkeyrunner Calabash

Number of
Filtered Projects

Number of
Related Projects

Figure 3.2: Number of projects with the selected testing frameworks

3 — Source Repository Analysis and Exploratory Study

How many projects developed by cross-platform tools and
tested with automated testing tools?

After collecting data for development and testing tools in the previous
part, it is better to move on to check is there any intersection between
development and testing tools. For example, trying to find out is there
any project that is developed by selected cross-platform tool and then
tested by selected test tools. Unfortunately, again the number of
intersection sets of this question is very low as well, reported in Table
3.1. The total number of the project has a cross-platform development
tool and the testing tool as well is 9(0.009%).

Number of | Development Tool Testing Tool
Project

7 Cordova-PhoneGap Robotium

1 Cordova-Phonegap UTAutomator

1 React-Native MonkeyRunner

Table 3.1: Distribution of projects among development and testing

tools

According to the results of this mining shows that Robotium is the
most used tool which is developed by Apache Cordova Phonegap De-
velopment Framework. Unfortunately, this is not a good number to
perform a thorough static code analysis. For that reason, doing a
real-life experiment to observe automated testing tools behavior is a
good choice.

3.2 Exploratory Study

This last empirical study was carried out by selecting a Hybrid An-
droid application which is Fresh-Food-Finder application, then this
application will be evaluated by the testing tools which are Appium,
Robotium, UTAutomator, Selendroid and they will be compared against
each other in usability of the test tool, test execution speed, maintain-
ability of the test code, reliability of the test tools and in general issues.
The test suites were then run and the execution speed and reliability

62

3.2 — Exploratory Study

were analyzed based on these results. The test code is written is also
analyzed for maintainability by calculating the lines of code and the
number of method calls. The issues faced by the test developer with
the different tools are also analyzed. Shortly in this section, it will be
covered the brief evaluation of testing tools on a single hybrid appli-
cation. In the first part, will be used the project selection process will
be explained concerning selected software objectives. In the second
part, used testing tool selection process and basic information about
selected tools will be explained. In the third part, it will be present
information about test cases for testing automatically. In the fourth
part, test case implementation will be explained.

3.2.1 Application Selection and Software Objec-
tives

In order to select a hybrid mobile application, Google search has made,
some technological blogs have found in order to identify selecting cri-
teria. Hybrid mobile applications should be open source to analyze it
better, thus GitHub is a very useful platform to find a good project
for this purpose. The candidate projects are evaluated carefully with
usability, the functionality of the application, the number of screens,
number of classes are the criteria to select the best candidate for this
evaluation.

In the light of these criteria, the Fresh-Food-Finder application seems
enough to satisfy them. The project can be directly downloaded or
viewed from Github. ! Fresh Food Finder is an open-source mobile
application developed with Phonegap which is the most used cross-
platform development tool as a hybrid mobile application. It is an
application to find fresh markets under some criteria such as cate-
gory, city, payment type for users. The application is very easy to use
because only 3 buttons appear on the main page of the application

Thttps://github.com/triceam /Fresh-Food-Finder

63

3 — Source Repository Analysis and Exploratory Study

like in the Figure 3.3. Users can directly see fresh food markets by
pressing the first button whose name is "Find Markets Near Me". It
directs the next page to the maps based on customer current location.
Also, user can decide some filtering options like state, product type
or payment type for his specific search by pressing the "Search For
Market" button like in the second image in the same figure. When a
user wants to see the details market, the address of the market and
location on the map can seem as well.

After introducing the application, it is better to touch the technologi-
cal perspective of the application. It is written entirely using HTML,
CSS, and JavaScript, and runs on different platforms such as Android
and [OS. The code is organized into the following structure:

assets — This folder contains fonts, images, and CSS styles used within
the application.

js — This folder contains JavaScript resources and libraries used within
the application.

views — This folder contains UIl/Mustache templates. Each template
is within a separate HT'ML file.

The majority of the application logic is inside application.js, all
views are rendered from the Mustache templates inside of view Assem-
bler.js, and all Ul styling is applied via CSS within styles.css.

64

3.2 — Exploratory Study

]
Welcome! List Search Results

Results for criteria
California

W @ 207

Fresh Food Finder

State:
Alabama

Please refine your search results, only the
first 50 results are displayec

Find Markets Near Me

O seorenroraware

4

@ About This App

Search Phrase:

Anderson Certified Farmers Market
Deschutes Rd @ Hwy 273 (Shasta Outlets
Center] >
Anderson, California, 96007

Aptos Farmers Market
Soquel Drive, Cabrillo College)
aptos, California, 95003

Filver By Product:

@il Baked Goods
9 Cheese
@ AnssCafis
Ay Flowers

)@ Seafood

Auwater Village Farmers’ Marhet
3250 Glendale Bivd >
Los Angeles, California, 0039

Beverly Hills Farmers Market
9300 Civic Center Drive >
Beverly Hills, California, 90210

Figure 3.3: Fresh Food Finder application views

3.2.2 Testing Tool Selection and Description

According to the Systematic Literature Review part of the paper, the
top 5 mentioned testing tools among all papers are:

e Android Monkey

» Robotium

o Appium

o MonkeyRunner

e Android GUIRipper

Android GUIRipper is a toolset that is developed by a university and
is not freely available, therefore, it can be excluded from the list.
Android Monkey performs random events with SDK, therefore, we
cannot write any code for automation test because of that it can be
excluded from the list as well. According to mining results, Robotium
is the used testing tool, thus, it can be a good candidate for the first
testing tool. As stated in the literature review results, after Robotium

65

3 — Source Repository Analysis and Exploratory Study

testing tool Appium seems the second used testing tool, therefore, it
can be the second candidate for this exploratory work. Additionally,
to web search there are other candidates for hybrid testing tools are
UIAutomator and Selendroid as well.

In this study, testing tools will be compared against each other under
these requirements and results will be explained in the next chapter;

o Usability; setup of tools, easy to use, etc.

o Compatibility; run among all API levels, configurations, etc.
o Performance; test execution time and speed for each test cases
« Maintainability; for test cases, written lines of code(LOC)

o Reliability; results of the test cases, how many test cases passed
or not

Appium

Appium is an open-source automated testing tool for native, mobile
web, and hybrid mobile applications both on Android and IOS. For
Hybrid Applications, a wrapper around “web-view” is necessary which
enables the interaction with web content to provide cross platform
features. Importantly, Appium is "cross-platform" it allows you to
write tests against multiple platforms (i10S, Android, Windows), us-
ing the same API. This enables code reuse between iOS, Android,
and Windows test suites. Appium works as client-server architecture
which receives connections from a client, listens for commands, exe-
cutes those commands on mobile device, and responds with an HT'TP
response with results. In the web page of Appium, there is a very
good documentation about usage like actions. Thanks to this docu-
mentation, test cases can be created with any desired and supported
language such as Java, Python, etc with only using Appium client
libraries that provides easy adaptation for everyone[73].

66

3.2 — Exploratory Study

In order to setup and then use Appium as a testing tool, there are
some prerequisites for the system;

Java JDK
Android Studio Android SDK
ANDROID HOME and JAVA_ HOME environment path con-

figurations
IntelliJ IDEA or Eclipse or any other Java IDE
Appium Desktop

Some other necessary configurations, it needs to be checked from
the original Appium web page for the latest updates.

After providing those prerequisites, it is necessary to create a pom.xml
with some dependencies such as Selenium, Appium, TestNG, these de-
pendency versions and maven can be found directly on the web.

The last configurations such as device number, platformVersion, app-
Package and appActivity names about test device should be done from
Appium Desktop application >Desired Capabilities Page as in Figure
3.4. These configurations help to open inspector on Appium in order
to test GUIL. After all these jobs, test cases can be written and then
with Appium can be tested. At the end of each test case, Appium
provides a test result report to check the test passed or not.

67

3 — Source Repository Analysis and Exploratory Study

Figure 3.4: Desired Capability Configuration in Appium

While developing the tests it is necessary to import specific libraries
and then create a driver object in order to interact with the test
device. Thanks to Appium Desktop Tool, all source code can be fol-
lowed, and the desired element can be traceable in Figure 3.5. Selected
element has a specific id, it would be used to reach that element from
test case with findFElement method.

driver.findelementByXPath("//android.view. View[@content-desc="Welcome!"]");

Additionally, it can be possible to prepare test suite under @Before-
Suite or @AfterSuite tags. In order to start to write test case code,
@Test tag should be there and the methods should be public. After
initializing driver object, this driver object should be initialized as
WEBVIEW tag in order to test hybrid applications.

driver.context("WEBVIEW _com.phonegap.www. PGBUildApp");
After that, defined methods can be used for specific purpose of test

case. Lastly, the developer can run that created a test case with result
output which includes test execution time as well.

68

3.2 — Exploratory Study

© Appium - x

B App Source O Selected Element

Fresh Food Finder

Ke Clear | @
Find Markets Near Me
Find By Selector

O Search For a Market
4

@ About This App

Figure 3.5: Ul Element Detection feature of Appium Desktop Tool

Robotium

Robotium is an open-source Android test automation framework that
has full support for native and hybrid applications. Robotium makes
it easy to write powerful and robust automatic black-box GUI tests
for native and hybrid Android applications. Do not necessary to have
a huge knowledge about the application while testing, hence, it cap-
tures the features automatically. With the support of Robotium, test
case developers can write function, system, and user acceptance test
scenarios, spanning multiple Android activities.

Robotium tests can be written where a UI widget is searched for, it is
sent an input and assertions can be done afterward. It does not have
any desktop tool version or like that. In order to use it downloading a
jar file is enough from it’s official GitHub account [74]. It is compat-
ible with both Android Studio, IntelliJ, and Eclipse IDE in order to
run tests automatically. It officially supports Android API level 8 and
up for any Android devices as well. Robotium tests extend an out-
dated(not working with androidx) ActivitylInstrumentationTestCase2

69

3 — Source Repository Analysis and Exploratory Study

and use JUnit3 instead of JUnit4 in the test cases. Since Robotium
relies on the instrumentation framework, it can only handle interac-
tions within the one application for which the tests have been written.

In order to test the APK file without source code, it is necessary
to make some changes. Fresh Food Finder has project files in GitHub
but they are developed in Phonegap, therefore it is better to build
its APK file to use it Robotium Test. Adobe provides a website? for
building the APK file. In order to test with it, the APK file needs to
have the same certificate signature with the test project. Signature
matching is a process that has some compelling steps. In order to sign
the application, the following lines of command are used:

jarsigner -keystore /.android/debug.keystore -storepass android - key-
pass

android Application.apk androiddebugkey zipalign 4 Application.apk
TempApplication.apk.

After these commands it is necessary to change the name of TempAp-
plication.apk to Application.apk. If the application is signed, then
it is necessary to delete the application sign by deleting META_INF
folder of the application. Afterward, the application is designed us-
ing the commands presented above. Thus, testing with APK files is
possible but not as easy as testing with source code.

When creating a test project using Robotium, it is needed to find
the package and launcher activity name of the application under test.
Without knowledge about source code, it needs some complicated pro-
cess to reach that information. Ul elements are reachable by their in-
dex and texts. However, sometimes Robotium faces problems finding
elements by this information. Thus, reaching Ul elements by their
ID might be more effective. When making a test project utilizing

Zhttps://build.phonegap.com
70

3.2 — Exploratory Study

Robotium, it is expected to discover the package and launcher activ-
ity class name of the application under test. It was a complicated
and tough task without knowing the source code. On the other hand,
there was not enough source to learn details of testing Hybrid APK
without the source code of the application. It was a very hard process
to start testing hybrid apk when it compared with the Appium.

When developing the tests one uses Solo class to interact with the
test device. It uses set of classes (com.jayway.android.robotium.solo)
for testing. Robotium should be defined in gradle file for Android Stu-
dio or it should be downloaded and added under lib folder for Eclipse
IDE development of testing. This class supports test cases that span
over multiple activities. Solo is integrated with the Activitylnstru-
mentationTestCase2.

During this experience, there were a lot of problems like defining solo
class because ActivitylnstrumentationTestCase2 is deprecated in the
newest version of Android library. Android Studio improved its ver-
sion many times and latest updates made in September 2019, how-
ever, Robotium didn’t get any update until the last 3 years, available
in Github 3. Therefore it is normal that there are many bugs and
compatibility issues. Even if Robotium seems compatible with every
open-source apps, unfortunately, it is not working with hybrid apps
that are developed by PhoneGap(Cordova). Hence, Phonegap uses its
custom web client instead of creating objects inside of the Webview,
therefore, it is not compatible with Robotium. Because of the devel-
opment type of Fresh Food Finder testing by Robotium study have
not been concluded.

UI Automator

UI Automator is a Ul testing framework suitable for cross-platform
functional testing across the system and installed apps for Android

3https://github.com/RobotiumTech/robotium

71

3 — Source Repository Analysis and Exploratory Study

apps. Ul Automator testing framework offers a set of APIs for cre-
ating UI tests that execute user applications and system applications
interactions. The UI Automator APIs enable you to conduct activities
such as opening the Settings menu or the test device app launcher.
UI Automator testing framework is suitable for automated testing in
a black-box style, where the test code does not depend on the target
app’s inner execution information.

The features of the Ul Automator testing framework are:

o A viewer to inspect layout hierarchy. For more information, see
UI Automator Viewer.

e An API to retrieve state information and perform operations on
the target device. For more information, see Accessing device
state.

o APIs that support cross-app Ul testing. For more information,
see Ul Automator APIs[75].

In order to run UI Automator tests, it is necessary to have Android
4.3 (API level 18) or higher. According to the new Android Studio,
API level is 29 and the Fresh-Food-Finder API level is 25 and there
is no problem for availability problems like in the Robotium. The UI
Automator testing framework is an instrumentation-based API and
works with the AndroidJUnitRunner test runner.

Before starting the black-box test it is necessary to declare app pack-
age name with getLauncherPackageName() function to the driver to
fetch app to test. However, Cordova doesn’t support to give appPack-
ageName as in the native android apps. Furthermore, UlAutomator
is able to test hybrid apps but only developed as native WebView
component, not developed with CSS and js codes like in Cordova.
For that reason, Ul Automator doesn’t provide Platform Specific Fea-
tures for every kind of Android applications, it supports only native
widgets like WebView for hybrid applications, so, Fresh-Food-Finder
is developed by Cordova, which does not have WebView widget, it
means that cannot be tested with UlAutomator as well.

72

3.2 — Exploratory Study

Selendroid

Selendroid is a test automation framework that drives native and hy-
brid Android applications (apps) and mobile web user interfaces. Se-
lendroid can be used on emulators and real devices and for scaling
and parallel testing can be integrated as a node into the Selenium
Grid. Selendroid can be used on Mac, Linux, and Windows as well
for Native and Hybrid apps[76]. To start using Selendroid there are
some system requirements;

« Java SDK (minimum 1.6) must be installed and JAVA HOME
configured. IMPORTANT: If JAVA__HOME is pointing to a
Java runtime environment, selendroid will produce errors be-
cause tools like the jarsigner are not available!

o Latest Android-SDK must be installed and ANDROID HOME
set. If detailed instructions are needed, have a look at this guide.

o If you run selendroid on a 64bit Linux machine, please install:
sudo dpkg —add-architecture i386
sudo apt-get update
sudo apt-get install libc6:i386 libncurses5:1386 libstdc++-6:1386

e At least one Android virtual device must exist or an Android
hardware device must be plugged into the computer.

After meeting these requirements, selendroid-standalone-0.17.0-with-
dependencies.jar file should be downloaded to the test PC. In order
to use Selendroid for testing, the apk, which should be signed with
the same certificate with selendroid-server, should be downloaded as
well where the selendroid-standalone server will be launched. Since
custom selendroid server will be developed for the test of apk. To
launch Selendroid

java -jar selendroid-standalone-0.17.0-with-dependencies.jar -app
selendroid- test-app-0.17.0.apk
code should be written in the command-line-prompt. Selendroid-
standalone will start a http server on port 4444 and will scan all An-
droid virtual devices (avd) that the user has created (/.android/avd/).

73

3 — Source Repository Analysis and Exploratory Study

The Android target version and the screen size will be identified[77].

After written code which is described in the above, Selendroid server
should be started with the dependencies but unfortunately, it didn’t
start because of the error that the "android command is deprecated.
For manual SDK, AVD, and project management, please use Android
Studio. For command-line tools, use tools/bin/sdkmanager and tool-
s/bin/avdmanager".

Selendroid has a bug about AVD of Android because Android Studio
has a new version 3.2 and in that new version is not compatible with
the Selendroid version 0.17. Furthermore the reason is Selendroid
didn’t upgrade as Android Studio like that the latest date for Selen-
droid is more than one year. Additionally, Selendroid has open issues
about the hybrid test for Cordova-Phonegap crashes #1034[78], issue
opened date February 2016.

As it is known that Fresh-Food-Finder is a hybrid app, it should be
tested with a hybrid feature of Selendroid as finding "WebView" from
the window. However, there are some open issues about hybrid tests
especially for apps that are developed by Cordova-Phonegap. in the
light of these reasons, Selendroid is not a good testing tool for the
Fresh-Food-Finder app.

3.2.3 Test Case Definition

This empirical study is focusing on GUI Testing of Hybrid mobile
applications, therefore, it is necessary to draw a border to this func-
tionality about GUI. It is obvious that the GUI concept has very huge
subclasses and features, therefore it is better to create a checklist with
a high-level perspective to understand the main features of these se-
lected testing tools. Additionally, in order to decide the evaluation
criteria and test cases, it is better to identify some requirements for
testing frameworks. Fresh-Food-Finder has 3 main features which
have to be tested, are described below;

74

3.2 — Exploratory Study

o Find markets directly from the map(according to your current
position).

o Categorize his desire about fresh-market such as; State, Food
or/and Payment Type.

o Check a selected market direction to go there and map view of
the market

According to these main features, detailed test cases should be de-
signed with checking each feature one by one with correct and false
inputs. All test cases which will be used to test app as shown in the

Table 3.2.

Test Case | Test Case Name

TC1 Find Markets Near Me with in Map View

TC2 Search for a Market by city - Correct input " Birming-
ham"

TC3 Search for a Market by state - Wrong input " Torino"

TC4 Search for a Market by market name - Correct input
'"East Lake Farmers Market'

TCh Search for a Market by market name - Wrong input
"Torino markets"

TC6 Search for a Market by using state picker "California'

TCT Search for a Market by filtering no products and no pay-
ments

TC8 Search for a Market by filtering products as '"Baked
Goods" and no payments

TC9 Search for a Market by filtering no product and "Credit
Cards Accepted' in payments

TC10 Search for a Market by filtering products as 'Baked
Goods" and "Credit Cards Accepted" payments

TC11 Open Map View of the Selected Market

TC12 Getting directions of the Selected Market

Table 3.2: Test Cases
75

3 — Source Repository Analysis and Exploratory Study

3.2.4 Test Cases Implementation

Appium known that supports many different languages such as Java,
Objective-C, JavaScript with node.js, PHP, Ruby, Python, etc. For
this thesis study, Java is selected and written test suites run inside
IntelliJ IDE with Appium Desktop application. In order to evaluate
the behavior of the application, Android Studio a standard Nexus
5 emulator is used. Even a real android device can be used to see
the behavior of the application. At the beginning of each test case,
necessary configurations dependencies are adjusted like switching from
a NativeView to WebView switch in @BeforeSuite;

Set<String> con = driver.getContextHandles ();
for (String c: con){
if (c.contains ("WEBVIEW")) {
driver.context (c);
break ;

}

This BeforeSuite is the same for each test case, as well as AfterSuite.
After each test APK turns the original version by uninstalling the apk
for the next test, code is in under tag @QAfterSuite;

public void uninstallApp () throws InterruptedException {
driver.quit ();
}

All results of test cases are shown in the Table 3.3. During testing,
some bugs in the application were found which are caused by the avail-
ability of the app in the Google Market. Hence, Fresh-Food-Finder
is not visible in the Google Market now because of the update on
APT level 29. On the other hand, the app is working API level 25.
It means that geolocation () was working on that time but now it is
not working because the API level changed and not adopted it. So,
it’s broken the last version of the plugin (2.4.3) for Android 8 and for
Android 9.

76

3.2 — Exploratory Study

Only TC1 and TC11 is affected on this problem because they need
geolocation() function inside of the code. Also, search/filtering fea-
ture has a problem that cannot filter by name of the market like in
TC4, therefore, those tests have been failed. The rest test cases are
passed correctly. Additionally, test execution time very fast also be-
cause the test cases are not long, these detailed code pieces can be
seen in Appendix.

Test Case Result Time(Second)
TC1 Failed 25s
TC2 Passed 29s
TC3 Passed 31s
TC4 Failed 26s
TC5 Passed 29s
TC6 Passed 34s
TC7 Passed 27s
TC8 Passed 32s
TC9 Passed 38s
TC10 Passed 37s
TC11 Failed 38s
TC12 Passed 40s

Table 3.3: Results of Test Cases

For Robotium, UTAutomator, and Selendroid test were not be run
because of the problems will be covered in the result section of this
chapter.

3.2.5 Test Tools Evaluation and Results

In this section, the results of tools will be evaluated according to test-
ing challenges 2.9 that was mentioned in the challenges chapter. In the
literature review part of this thesis, hybrid development and testing
tools were described. According to these reviews, hybrid apps can be
tested with both Appium, Robotium, UIAutomator, and Selendroid.

77

3 — Source Repository Analysis and Exploratory Study

It is proven that there are some gaps in this claim because during the
exploratory study only Appium performs well with Fresh-Food-Finder
app which is developed by PhoneGap. The other testing tools failed
because of some compatibility problems such as Availability of API,
Platform Specific Components, not update guidelines. The compati-
bility table ,which are combination of testing challenges with respect
to each testing tools, is reported in Table 3.4. These compatibility
problems are also pointed in the testing challenges in the previous
chapter.

It is the proof that some challenges, which were discussed in liter-
ature reviews, occurred within the real practice that was made during
this study.

Challenges(L1) | (L2) Appium Robotium UIAutomator Selendroid

Testing Tool & | Tool Standard- | August 2019 | September March October

Frameworks ization (Last | (v1.14)[79] 2016([80] 2015(81] 2015(82]
Update Date)

Testing Tool & | Android API | >= 18[83] >= 14[84] >= 18[85] 10-19[86]

Frameworks Level

Platform Component Native =~ Web- | Native Web- | Native = Web- | Native = Web-

Specific Com- | and widgets View & Web | View View View

ponents Elements

Test Tool Ex- | Lack of Guide- | Updated Outdated Updated Outdated

pertise liness

Table 3.4: Testing Challenges vs Testing Tools

It is also necessary to mention that, PhoneGap creates an app like
a native application without OS-specific components. It does not cre-
ate the native layout or components of Android and I0S. PhoneGap
framework allows developers to use standard web technologies like
HTML, CSS, and Javascript for creating cross-platform mobile ap-
plications. Therefore, components which are developed in PhoneGap
is custom means that widgets are implemented inside of the HTML
tags like a web application. It is an advantage that not necessary to
develop layouts according to the different OS like 1OS, or Android.

Appium is working very well with Hybrid applications developed
by PhoneGap because Fresh-Food-Finder app was tested without any

78

3.2 — Exploratory Study

problems. It is obvious that Appium is a completely multi-platform
automated testing tool that is working at a higher level of abstraction.
It means that Appium does not care about the structure of the ap-
plication like low-level components like a web application. Therefore,
it is not looking for a native component to capture the application
layout. Appium can reach the WebView Elements by inspecting also
directly from a web browser. The only drawback for Appium is the
setup process of it, because it requires many different configurations
both in a PC system, and especially AppiumDoctor which tries to
diagnose and fix common Node, iOS, and Android configuration is-
sues before starting Appium as well. Running test was very basic like
capturing all web elements easily thanks to web browser support of
Appium. Consequently, Appium works perfectly to capture all Web-
View elements of the Fresh-Food-Finder app and run all test cases.

Robotium is working limited with Hybrid applications like devel-
oped as inside of the WebView component not developed by Phone-
Gap. Hence, Robotium is able to work with the Native WebView
component of android apps instead of Web Elements(HTML) which
are developed in PhoneGap. It is the reason that Robotium didn’t get
any update until September 2016 [70]. Additionally, an issue found
about Robotium and Cordova compatibility on GitHub[87] which is
the place of Robotium.jar file. In this issue, it was mentioned that
"Cordova uses their custom web client and therefore it is not com-
patible with Robotium", also this issue closed as "won’t fix". In light
of this information, it is clear that Robotium cannot test any hybrid
app developed by Cordova(PhoneGap). Therefore there is this com-
patibility problem that occurs during a real experiment on testing
Fresh-Food-Finder app.

During the experiment, a simple app that has Native Webview was
developed to understand Robotium is able to test any hybrid app or
not. The app had appPackageName and activityName inside of the
Manifest.xml, additionally, a WebView variable was created to point
a real web page. In theoretically, it was a hybrid app that opens in an

79

3 — Source Repository Analysis and Exploratory Study

android device but it had native codes to declare WebView element.
After all, Robotium was able to find a WebView element of this sim-
ple app and the test was achieved successfully. According to literature
reviews, Robotium is able to test hybrid apps that are only developed
as a native app with WebView element; not supporting apps devel-
oped by Cordova(PhoneGap).

UIAutomator is mainly used for cross-platform functional testing
for Android apps by using Java libraries to interact with native el-
ements. FEven if it supports black-box testing and compatible API
level improvements, it works limited as Robotium because it supports
only native WebView element in android applications. It means that
UIAutomator does not support the testing of hybrid apps developed
by PhoneGap. Hence, Fresh-Food-Finder has HTTML web elements
instead of native WebView elements like buttons or other widgets as
well. Development by Phonegap prevents to test the app with Ul
Automator.

Selendroid is another test automation framework for cross-platform
mobile applications like native and hybrid. Similarly, it has compat-
ibility problems like Robotium. Selendroid supports corresponding
API levels between 10 to 19. However, the Fresh-Food-Finder API
level is more than 19 and it caused problems on this testing frame-
work. The reason for this API level support is that Selendroid is not
updated as new improvements on Android. The latest improvements
on Selendroid are more than 3 years and this time difference is very
crucial. On the other hand, Selendroid libraries are not improved
according to Android ADV libraries, therefore, it failed during the
setup phase of the experiment. Additionally, there are no good con-
flict guidelines to help testers because all documents are also outdated
like more than 3 years. According to these problems, even if Selen-
droid seems one of the cross-platform testing frameworks, it didn’t
use for this experiment.

At the beginning of the study, there were 4 different cross-platform

80

3.2 — Exploratory Study

testing tools/frameworks to test Fresh-Food-Finder hybrid app, but
only one of them which is Appium corresponds to the testing activity
of the app. Comparison of testing tools concerning development fea-
ture of the hybrid apps is shown in the Table 3.5.

Test Tool/ Appium | Robotium | UTAutomator | Selendroid
Dev. Tool

Native Webview Yes Yes Yes Yes
Cordova(PG) Yes No No No
Titanium|[89] Yes No No No
Xamarin[90] Yes No No No
React-Native[91] | Yes No No No

Table 3.5: Compatibility Table of Testing Tools vs Development Ap-
proaches

As a result of all-out findings, Appium is the best tool for testing
hybrid applications developed by PhoneGap, and other development
frameworks as well. On the other hand, Robotium, UI Automator,
and Selendroid didn’t work well apps developed because of the com-
patibility problems which are covered in the challenges part of this
study.

81

82

Chapter 4

Conclusion and Future Work

Hybrid apps can be developed with many frameworks but all of them
expose issues that are discussed in the present thesis. Firstly, many
literature reviews were collected in order to answer three research
questions which were discussed in the second chapter. The most used
open-source development tool is Apache Cordova(known as Phone-
Gap) and the testing tool is Appium. Furthermore, these development
and testing tools have many challenges. Mainly "User Interface" is the
more significant difficulty for development challenges perspective, on
the other hand, "Platform Specific Features" is the most critical chal-
lenge belongs to testing tools.

After literature review results, this study focused on Source Reposi-
tory Analysis which is explained in the third chapter. Source Repos-
itory analysis have done by collected 9872 open-source projects from
GitHub. During this analysis, distribution of development and test-
ing tools for hybrid mobile has been evaluated. Unfortunately, the
result is not sufficient to support literature review results. Accord-
ing to results of this mining shows that Robotium is the most used
tool which are developed by Apache Cordova(Phonegap) Development
Framework. Since, only 0.009% of projects have been pointed both
development and testing tools which are described in the literature
review results.

83

4 — Conclusion and Future Work

Lastly, Exploratory Study have been conducted because Source Repos-
itory Analysis was not sufficient. An open-source hybrid app (Fresh-
Food-Finder) developed by PhoneGap was found from GitHub to be
tested among selected several testing tools. Based on this study, Hy-
brid applications which are developed by PhoneGap are totally differ-
ent than native android applications because they are implemented
with HTML, CSS, Javascript instead of Native Android style with
Java and inside WebView component. According to the development
framework selected and the application type, there are several alter-
native testing tools that can be leveraged. Referring to literature
review results and source repository analysis; Appium, Robotium,
UIAutomator, and Selendroid are the selected tools for this experi-
ment. Even if taking only one open-source hybrid application from
GitHub and tried to be tested with these tools, some compatibility
problems have been encountered for all tools except Appium. Briefly,
these problems are categorized;

e Outdated tools, and libraries

o API availability

« Specific Component and Widget declaration like web elements(HTML)
o Lack of guidelines and official tutorials

These problems also appeared in the challenges mentioned in the lit-
erature review results. This demonstrates that some issues on one
random app happens on these challenges happens. This is a result
even more problematic mobile app are not tested sometimes and cross-
platform apps are more problematic than others. The results of the
thesis confirm that the fast-growing technology and the diversity of
development patterns for Android should be coupled with parallel ad-
vances from the testing community to ensure better testability for
hybrid mobile applications.

84

4 — Conclusion and Future Work

As future work, there may be some improvements on this study. It can
be updated cross-platform test automation tools which do not have
compatibility problems like it appears in this study. Additionally good
and compatible guidelines can be developed for helping developers to
avoid common issues for hybrid app development and testing. Fur-
thermore, the efforts from researchers in the area of mobile app testing
should be focused on finding ways to overcome compatibility, layout
and widget specification for WebView, documentation, etc problems
which are described in the taxonomy of challenges.

85

86

Bibliography

1]

Statista, Number of mobile phone users world-
wide — 2015-2020 Statista [Online]. Available:https:
//www.statista.com/statistics/274774/
forecast-of-mobile-phone-users-worldwide/.[Accessed:31-
Mar-2019].

Statista, 2019, Annual number of mobile app down-

loads worldwide 2022 Statistic [Online]. Avail-
able:thttps://www.statista.com/statistics/271644/
worldwide-free-and-paid-mobile-app-store-downloads/.[Accessed:31-
Mar-2019].

Ahmad, A., Li, K., Feng, C., Asim, S., Yousif, A. and Ge, S.,An
Empirical Study of Investigating Mobile Applications Development
Challenges, IEEE Access, 2018, pp.17711-17728.

Ali, M. and Mesbah, A.,Mining and characterizing hybrid apps.
Proceedings of the International Workshop on App Market Analyt-
ics, WAMA 2016.

Malavolta, I., Ruberto, S., Soru, T. and Terragni, V.,Hybrid Mo-
bile Apps in the Google Play Store: An Exploratory Investigation,
2015 2nd ACM International Conference on Mobile Software En-
gineering and Systems.

Alamri, Hammoudeh & Mustafa, Balsam.,Software Engineering
Challenges in Multi- Platform Mobile Application Development,
2014 2Advanced Science Letters. 20. 10.13140/2.1.5122.7523.

87

https://www.statista.com/statistics/274774/forecast-of-mobile-phone-users-worldwide/
https://www.statista.com/statistics/274774/forecast-of-mobile-phone-users-worldwide/
https://www.statista.com/statistics/274774/forecast-of-mobile-phone-users-worldwide/
https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-app-store-downloads/
https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-app-store-downloads/

BIBLIOGRAPHY

[7] Sauce Labs.,Native — vs. Web ws. Hybrid ~ Mo-
bile Apps: Testing Tools and Techniques, 2019
[online]. Available:https://saucelabs.com/blog/
native-vs-web-vs-hybrid-mobile-apps-testing-tools-and-techniques/.
[Accessed 20 Feb. 2019].

[8] Medium.,App Development Decisions: Native, Web
or Hybrid? — Imaginovation — Medium., 2019 [on-
line]. Available:https://medium. com/@Imaginovation/

app-development-decisions-native-web-or-hybrid-31c103f9b4el/.
[Accessed 20 Feb. 2019].

[9] T. Gronli, J. Hansen, G. Ghinea and M. Younas.,2014 Mobile Ap-
plication Platform Heterogeneity: Android vs Windows Phone vs
I0S vs Firefor OS, 2014 IEEE 28th International Conference on
Advanced Information Networking and Applications. Available:

10.1109/aina.2014.78

[10] C. Rahul Raj and Seshu Babu Tolety,A study on approaches to
building cross-platform mobile applications and criteria to select

appropriate approach,2012 Annual IEEE India Conference (INDI-
CON), 2012. Available: 10.1109/indcon.2012.6420693

[11] S. Xanthopoulos and S. Xinogalos,A comparative analysis of
cross-platform development approaches for mobile applications,
Proceedings of the 6th Balkan Conference in Informatics on - BCI
13, 2013. Available: 10.1145/2490257.2490292

[12] K. Haller, Mobile Testing ACM SIGSOFT Software En-
gineering Notes, vol. 38, mno. 6, pp. 1-8 2013. Available:
10.1145/2532780.2532813

[13] J. Gao, X. Bai, W. Tsai, and T. Uehara, Mobile Application Test-
ing: A Tutorial Computer, vol. 47, no. 2, pp. 46-55, 2014. Avail-
able: 10.1109/mc.2013.445

[14] H. Muccini, A. Di Francesco and P. Esposito, Software testing
of mobile applications: Challenges and future research directions

88

https://saucelabs.com/blog/native-vs-web-vs-hybrid-mobile-apps-testing-tools-and-techniques/
https://saucelabs.com/blog/native-vs-web-vs-hybrid-mobile-apps-testing-tools-and-techniques/
https://medium.com/@Imaginovation/app-development-decisions-native-web-or-hybrid-31c103f9b4e1/
https://medium.com/@Imaginovation/app-development-decisions-native-web-or-hybrid-31c103f9b4e1/

BIBLIOGRAPHY

2012 7th International Workshop on Automation of Software Test
(AST), 2012. Available: 10.1109/iwast.2012.6228987

[15] P. Tramontana, D. Amalfitano, N. Amatucci and A. Fasolino,
Automated functional testing of mobile applications: a systematic

mapping study Software Quality Journal, vol. 27, no. 1, pp. 149-
201, 2018. Available: 10.1007/s11219-018-9418-6

[16] G. Bae, G. Rothermel, and D.-H. Bae, Comparing model-based
and dynamic event-extraction based GUI testing techniques: An
empirical study, Journal of Systems and Software, vol. 97, pp.
15-46, Nov. 2014.

[17] Myers, B.A., User interface software tools ACM Trans. on
Comput.-Hum. Interact., 2(1):64-103, 1995.

[18] P. Brooks, B. Robinson and A. Memon, An Initial Characteriza-
tion of Industrial Graphical User Interface Systems, 2009 Interna-

tional Conference on Software Testing Verification and Validation,
2009. Available: 10.1109/icst.2009.11

[19] P. Aho and T. Vos, Challenges in Automated Testing Through
Graphical User Interface, in 2018 IEEE International Confer-

ence on Software Testing, Verification and Validation Workshops
(ICSTW), 2018.

[20] E. H. Marinho and R. F. Resende, Native and Multiple Tar-
geted Mobile Applications,in Computational Science and Its Ap-
plications — ICCSA 2015, Springer International Publishing, 2015,
pp. 544-558.

[21] Z. Liu, Y. Hu, and L. Cai, Software Quality Testing Model for
Mobile Application, in Mobile Web Information Systems, Springer
International Publishing, 2014, pp. 192-204.

[22] Glaser, B.G. 1992. Basics of Grounded Theory Analysis: Emer-
gence vs Forcing. Sociology Press.

89

BIBLIOGRAPHY

[23] K. Stol, P. Ralph and B. Fitzgerald, "Grounded theory in soft-
ware engineering research', Proceedings of the 38th International
Conference on Software Engineering - ICSE 16, 2016. Available:
10.1145/2884781.2884833

[24] Z. Zhai, B. Cheng, M. Niu, Z. Wang, Y. Feng and J. Chen,
"An end-user oriented tool suite for development of mobile appli-
cations", Proceedings of the 31st IEEE/ACM International Con-
ference on Automated Software Engineering - ASE 2016, 2016.
Available: 10.1145/2970276.2970279

[25] M. Pichiliani and C. Hirata, "Adaptation of Single-user Multi-
touch Components to Support Synchronous Mobile Collabora-

tion", Mobile Networks and Applications, vol. 19, no. 5, pp. 660-
679, 2014. Available: 10.1007/s11036-014-0512-0

[26] M. Lachgar and A. Abdali, "Generating Android graphical user
interfaces using an MDA approach", 2014 Third IEEE Interna-
tional Colloquium in Information Science and Technology (CIST),
2014. Available: 10.1109/cist.2014.7016598

[27] J. Giron, S. Mendoza and C. Torres-Huitzil, "Mechanism for
dynamic deployment of plastic mobile cross-platform user inter-
faces", 2011 8th International Conference on Electrical Engineer-
ing, Computing Science and Automatic Control, 2011. Available:
10.1109/iceee.2011.6106613

[28] A. Nestor Ribeiro and C. Rogério Aratjo, "An Automated Model
Based Approach to Mobile UI Specification and Development",
Lecture Notes in Computer Science, pp. 523-534, 2016. Available:
10.1007/978-3-319-39510-4_ 48

[29] M. Martinez and S. Lecomte, "Towards the Quality Improvement
of Cross-Platform Mobile Applications', 2017 IEEE/ACM 4th In-
ternational Conference on Mobile Software Engineering and Sys-
tems (MOBILESoft), 2017. Available: 10.1109/mobilesoft.2017.30

90

BIBLIOGRAPHY

[30] Y. Chang and S. Oh, "A study on the development of one source
multi use cross-platform based on zero coding", Multimedia Tools
and Applications, vol. 74, no. 7, pp. 2219-2235, 2014. Available:
10.1007/s11042-014-1886-5

[31] X. Shi and W. Zhang, "Qt-based mobile application GUI style
for smart phone operating system", 2010 IEEE International Con-
ference on Software Engineering and Service Sciences, 2010. Avail-
able: 10.1109/icsess.2010.5552446

[32] G. Mesfin, G. Ghinea, D. Midekso, and T.-M. Grenli, “Evaluat-
ing Usability of Cross-Platform Smartphone Applications,” Mobile
Web Information Systems Lecture Notes in Computer Science, pp.
248-260, 2014.

[33] M. Palmieri, I. Singh, and A. Cicchetti, “Comparison of cross-
platform mobile development tools,” 2012 16th International Con-
ference on Intelligence in Next Generation Networks, 2012.

[34] S. Chadha, A. Byalik, E. Tilevich, and A. Rozovskaya, “Facili-
tating the development of cross-platform software via automated
code synthesis from web-based programming resources,” Com-
puter Languages, Systems & Structures, vol. 48, pp. 3-19, 2017.

[35] Gokhale, P. and Singh, S. (2014). Multi-platform strategies, ap-
proaches and challenges for developing mobile applications. 2014
International Conference on Circuits, Systems, Communication
and Information Technology Applications (CSCITA).

[36] C.-K. Diep, Q.-N. Tran, and M.-T. Tran, “Online model-driven
IDE to design GUIs for cross-platform mobile applications,” Pro-
ceedings of the Fourth Symposium on Information and Communi-
cation Technology - SoICT 13, 2013.

[37] 1. Dalmasso, S. Datta, C. Bonnet and N. Nikaein, "Survey, com-
parison and evaluation of cross platform mobile application devel-
opment tools", 2013 9th International Wireless Communications

91

BIBLIOGRAPHY

and Mobile Computing Conference (IWCMC), 2013. Available:
10.1109/iweme.2013.6583580

[38] W. Yang, M. Prasad and T. Xie, "A Grey-Box Approach for
Automated GUI-Model Generation of Mobile Applications", Fun-
damental Approaches to Software Engineering, pp. 250-265, 2013.
Available: 10.1007/978-3-642-37057-1_19

[39] C. Hu and I. Neamtiu, "A GUI bug finding framework for An-
droid applications", Proceedings of the 2011 ACM Symposium on
Applied Computing - SAC 11, 2011.

[40] D. Amalfitano, A. Fasolino and P. Tramontana, "A GUI
Crawling-Based Technique for Android Mobile Application Test-
ing", 2011 IEEE Fourth International Conference on Software
Testing, Verification and Validation Workshops, 2011.

[41] D. Amalfitano, A. Fasolino, P. Tramontana, S. De Carmine and
G. Imparato, "A toolset for GUI testing of Android applications’,
2012 28th IEEE International Conference on Software Mainte-
nance (ICSM), 2012.

[42] 1. Salihu, R. Ibrahim, B. Ahmed, K. Zamli and A. Usman,
"AMOGA: A Static-Dynamic Model Generation Strategy for Mo-
bile Apps Testing", IEEE Access, vol. 7, pp. 17158-17173, 2019.
Available: 10.1109/access.2019.2895504.

[43] S. Anand, M. Naik, M. Harrold and H. Yang, "Automated con-
colic testing of smartphone apps', Proceedings of the ACM SIG-
SOFT 20th International Symposium on the Foundations of Soft-
ware Engineering - FSE "12; 2012.

[44] S. Linan, L. Bello-Jimenez, M. Arevalo and M. Linares-Vasquez,
"Automated Extraction of Augmented Models for Android Apps',
2018 IEEE International Conference on Software Maintenance and
Evolution (ICSME), 2018.

92

BIBLIOGRAPHY

[45] Y. Baek and D. Bae, "Automated model-based Android GUI test-
ing using multi-level GUI comparison criteria', Proceedings of the
31st IEEE/ACM International Conference on Automated Software
Engineering - ASE 2016, 2016.

[46] S. Singh, R. Gadgil and A. Chudgor, "Automated Testing of Mo-
bile Applications using Scripting Technique: A Study on Appium",
2014 INPRESSCO International Journal of Current Engineering
and Technology, Vol.4, No.5 (Oct-2014)

[47] C. Hu and I. Neamtiu, "Automating gui testing for android ap-
plications", Proceeding of the 6th international workshop on Au-
tomation of software test - AST 11, 2011.

[48] M. Hesenius, T. Griebe, S. Gries and V. Gruhn, "Automat-
ing Ul tests for mobile applications with formal gesture de-
scriptions”, Proceedings of the 16th international conference on

Human-computer interaction with mobile devices & services - Mo-
bileHCI ’14, 2014. Available: 10.1145/2628363.2628391.

[49] D. Amalfitano, V. Riccio, N. Amatucci, V. Simone and A. Fa-
solino, "Combining Automated GUI Exploration of Android apps
with Capture and Replay through Machine Learning", Information
and Software Technology, vol. 105, pp. 95-116, 2019. Available:
10.1016/j.infsof.2018.08.007.

[50] Meiliana, I. Septian, R. Alianto and Daniel, "Comparison Analy-
sis of Android GUI Testing Frameworks by Using an Experimental
Study", Procedia Computer Science, vol. 135, pp. 736-748, 2018.
Available: 10.1016/j.procs.2018.08.211.

[51] M. Joorabchi, M. Ali and A. Mesbah, "Detecting inconsisten-
cies in multi-platform mobile apps", 2015 IEEE 26th International
Symposium on Software Reliability Engineering (ISSRE), 2015.
Available: 10.1109/issre.2015.7381838.

93

BIBLIOGRAPHY

[52] M. Linares-Vasquez, "Enabling Testing of Android Apps", 2015
IEEE/ACM 37th IEEE International Conference on Software En-
gineering, 2015. Available: 10.1109/icse.2015.242.

[53] "Robotium", En.wikipedia.org, 2019. [Online]. Available:
https://en.wikipedia.org/wiki/Robotium. [Accessed: 28- Apr-
2019].

[54] N. us Saqib and S. Shahzad, "Functionality, Performance, and
Compatibility Testing: A Model Based Approach”, 2018 Interna-
tional Conference on Frontiers of Information Technology (FIT),
2018. Available: 10.1109/fit.2018.00037.

[55] W. Choi, G. Necula and K. Sen, "Guided GUI testing of an-
droid apps with minimal restart and approximate learning', ACM
SIGPLAN Notices, vol. 48, no. 10, pp. 623-640, 2013. Available:
10.1145/2544173.2509552.

[56] M. Linares-Vasquez, M. White, C. Bernal-Cardenas, K. Moran
and D. Poshyvanyk, "Mining Android App Usages for Generat-
ing Actionable GUI-Based Execution Scenarios', 2015 IEEE/ACM
12th Working Conference on Mining Software Repositories, 2015.
Available: 10.1109/msr.2015.18

[57] "monkeyrunner | Android Developers", An-
droid Developers, 2019. [Online]. Available:
https://developer.android.com/studio/test /monkeyrunner.
[Accessed: 28- Apr- 2019].

[58] D. Amalfitano, A. Fasolino, P. Tramontana, B. Ta and A.
Memon, "MobiGUITAR: Automated Model-Based Testing of Mo-
bile Apps", IEEE Software, vol. 32, no. 5, pp. 53-59, 2015. Avail-
able: 10.1109/ms.2014.55

[59] 1. Bayley, D. Flood, R. Harrison and C. Martin, "MobiTest:A
Cross-Platform Tool for Testing Mobile Applications', [ARIA, no.
978-1-61208-230-1, p. ICSEA 2012 : The Seventh International
Conference on Software Engineering Advances, 2012

94

BIBLIOGRAPHY

[60] Y. Ma, Y. Huang, Z. Hu, X. Xiao and X. Liu, "Paladin’, Pro-
ceedings of the 20th International Workshop on Mobile Comput-
ing Systems and Applications - HotMobile '19, 2019. Available:
10.1145/3301293.3302363

[61] A. Sadeghi, R. Jabbarvand and S. Malek, "PATDroid:
permission-aware GUI testing of Android", Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering - ES-
EC/FSE 2017, 2017. Available: 10.1145/3106237.3106250

[62] K. Mao, M. Harman and Y. Jia, "Sapienz: multi-objective auto-
mated testing for Android applications", Proceedings of the 25th
International Symposium on Software Testing and Analysis - IS-
STA 2016, 2016. Available: 10.1145/2931037.2931054

[63] G. Shah, P. Shah and R. Muchhala, "Software Testing Automa-
tion using Appium",INPRESSCO, International Journal of Cur-
rent Engineering and Technology, vol. 4, no. 5, 2014. Available:
http://inpressco.com/category /ijcet.

[64] H. Muccini, A. Di Francesco and P. Esposito, "Software testing
of mobile applications: Challenges and future research directions",
2012 7th International Workshop on Automation of Software Test
(AST), 2012. Available: 10.1109/iwast.2012.6228987

[65] S. Gunasekaran and V. Bargavi, "Survey on Automation Testing
Tools for Mobile Applications", International Journal of Advanced
Engineering Research and Science (IJAERS), vol. -2, no. -11, 2015.

[66] I. Salihu and R. Ibrahim, 'Systematic Exploration of An-
droid Apps’ Events for Automated Testing", Proceedings of
the 14th International Conference on Advances in Mobile
Computing and Multi Media - MoMM ’16, 2016. Available:
10.1145/3007120.3011072

[67] A. HUSSAIN, H. RAZAK and E. MKPOJIOGU, "THE PER-
CEIVED USABILITY OF AUTOMATED TESTING TOOLS
FOR MOBILE APPLICATIONS", Journal of Engineering Science

95

BIBLIOGRAPHY

and Technology Special Issue on ISSC’2016, no. 42017, pp. 86 -
93, 2017.

[68] 1. Malavolta, S. Ruberto, T. Soru and V. Terragni, "End Users’
Perception of Hybrid Mobile Apps in the Google Play Store", 2015
IEEE International Conference on Mobile Services, 2015. Avail-
able: 10.1109/mobserv.2015.14

[69] L. Corral, A. Janes and T. Remencius, "Potential Advantages
and Disadvantages of Multiplatform Development Frameworks—A
Vision on Mobile Environments", Procedia Computer Science, vol.
10, pp. 1202-1207, 2012. Available: 10.1016/j.procs.2012.06.173

[70] M. Joorabchi, A. Mesbah and P. Kruchten, "Real Challenges
in Mobile App Development', 2013 ACM / IEEE International
Symposium on Empirical Software Engineering and Measurement,
2013. Available: 10.1109/esem.2013.9

[71] S. Chen, L. Fan, T. Su, L. Ma, Y. Liu and L. Xu,
"Automated Cross-Platform GUI Code Generation for Mo-
bile Apps", 2019 IEEE 1st International Workshop on Ar-
tificial Intelligence for Mobile (AI4Mobile), 2019. Available:
10.1109/aidmobile.2019.8672718

[72] R. Coppola, M. Morisio, M. Torchiano and L. Ardito, "Scripted
GUTI testing of Android open-source apps: evolution of test code
and fragility causes', Empirical Software Engineering, vol. 24, no.
5, pp. 3205-3248, 2019. Available: 10.1007/s10664-019-09722-9
[Accessed 3 September 2019].

[73] "Introduction - Appium', Appium.io, 2019. [Online]. Avail-
able: http://appium.io/docs/en/about-appium/intro/?lang=en.
[Accessed: 03- Sep- 2019].

[74] https://github.com/RobotiumTech /robotium

[75] "UI Automator | Android Developers", An-
droid Developers, 2019. [Online]. Available:

96

BIBLIOGRAPHY

https://developer.android.com/training/testing /ui-automator.
[Accessed: 21- Sep- 2019].

[76] D. Dary, "Selendroid: Selenium for Android", Selendroid.io,
2019. [Online|. Available: http://selendroid.io. [Accessed: 21- Sep-
2019).

[77] D. Dary, "Selendroid: Getting started', Selendroid.io, 2019. [On-
line]. Available: http://selendroid.io/setup.html. [Accessed: 21-
Sep- 2019].

[78] https://github.com/selendroid /selendroid /issues/1034

[79] https://github.com/appium/appium/releases

[80] https://github.com/RobotiumTech/robotium

[81] https://developer.android.com/jetpack/androidx/releases/archive/test

[82] https://github.com/selendroid /selendroid/releases

[83] http://appium.io/docs/en/about-appium/platform-support/

[84] https://github.com/RobotiumTech/robotium /search?’q=API&unscoped _q=A
[85] https://developer.android.com/training/testing/ui-automator

[86] https://github.com/selendroid/selendroid/search?q=
19&unscoped__q=19

[87] https://github.com/RobotiumTech /robotium/issues/757

[88] https://github.com/selendroid/selendroid/issues?utf8=&q=
is%3Aissue+is%3
Aopen+cordova

[89] https://medium.com/adamtarmstrong/build-test-deploy-a-
titanium-cross-platform-app-with-fastlane-3099ae01a07f

[90] https://forums.xamarin.com/discussion/26942/experiences-
with-automated-ui-testing-with-xamarin-for-android

97

BIBLIOGRAPHY

[91] https://medium.com/@ronak8036/react-native-testing-tools-
£38d715adb57

98

Appendix

/%%
* Test Case 1 — Find Markets Near Me with in Map View
*/
driver.findElementByld ("nearMe"). click ();
String nearme = driver.findElementByld ("contentRoot")
.getText ();
nearme. contains ("'location ");

[*%

x Test Case 2 — Search for a Market by city —

Correct input

" Birmingham '

*/
driver . findElementById ("search"). click ();
driver.findElementById ("search_ searchPhrase").sendKeys
("birmingham ") ;
driver.findElementByld ("searchButton"). click ();
int size = driver.findElementByld ("searchResultsView").
findElement (By.tagName ("ul")). getSize (). height;
Assert . assertNotEquals(size , 0);

JET:
x Test Case 3 — earch for a Market by state —
Wrong input

99

4 — Appendix

" Torino"

*/
driver.findElementByld ("search"). click ();
driver.findElementByld ("search_searchPhrase").sendKeys
("torino");
driver .findElementByld ("searchButton"). click ();
int size = driver.findElementByld ("searchResultsView").
findElement (By.tagName ("ul")). getSize (). height;
Assert.assertEquals(size, 0);

[*%

x Test Case 4 — Search for a Market by market name —

Correct

xinput 'FEast Lake Farmers Market

*

/

driver . findElementById ("search"). click ();
driver.findElementById ("search_ searchPhrase").sendKeys
("East Lake Farmers Market");
driver.findElementByld ("searchButton"). click ();
int size = driver.findElementByld ("searchResultsView").
findElement (By.tagName ("ul")). getSize (). height;
Assert . assertEquals (size , 1);

/%%

x Test Case 5 — Search for a Market by market name —
Wrong
input "Torino markets"
*/
driver.findElementByld ("search"). click ();
driver.findElementByld ("search_searchPhrase").sendKeys
("Torino Market");
driver .findElementById ("searchButton"). click ();
int size = driver.findElementByld ("searchResultsView").
findElement (By.tagName ("ul")). getSize (). height;

100

4 — Appendix

Assert . assertEquals(size , 0);

e
x Test Case 6 — Search for a Market by using
state picker
x" California'
*/
driver.findElementById ("search"). click ();
Select states = new Select(driver.findElementByld
("search\ state'));
states.selectByIndex (4);
driver.findElementByld ("searchButton"). click ();
int size = driver.findElementByld ("searchResultsView").
findElement (By.tagName ("ul")). getSize (). height;
Assert . assertNotEquals(size , 0);

/%%
x Test Case 7 — Search for a Market by filtering
no products
xand no payments
*/
driver.findElementByld ("search"). click ();
driver . findElementByld ("searchButton"). click ();
int size = driver.findElementByld ("searchResultsView").
findElement (By.tagName ("ul")). getSize (). height;
Assert . assertNotEquals(size , 0);

/%%

x Test Case 8 — Search for a Market by filtering
products
xas 'Baked Goods" and no payments

*/
driver.findElementById ("search"). click ();

101

4 — Appendix

driver.findElementByld ("search\ bakedGoods"). click ();
driver .findElementByld ("searchButton"). click ();

int size = driver.findElementByld ("searchResultsView").
findElement (By.tagName ("ul")). getSize (). height;

Assert . assertNotEquals(size , 0);

JEE:

x Test Case 9 — SSearch for a Market by filtering no
product and "Credit Cards Accepted' in payments

*/

driver . findElementById ("search"). click ();

Point point = driver.findElementById ("search\ credit").
getLocation ();

TouchAction actionl = new TouchAction(driver);
actionl.press(PointOption.point (816, 1711))
.moveTo(PointOption

.point (816,0)).release (). perform ();

driver .manage (). timeouts (). implicitlyWait (2,
TimeUnit .SECONDS) ;

driver.findElementByld ("search\ credit"). click ();

TouchAction action2 = new TouchAction(driver);
action2.press(PointOption.point (816, 300))
.moveTo(PointOption

.point (816,1811)).release (). perform ();
driver.findElementByld ("searchButton"). click ();

int size = driver.findElementByld ("searchResultsView").
findElement (By.tagName ("ul")). getSize (). height;
Assert.assertNotEquals(size , 0);

/%%

x Test Case 10 — Search for a Market by filtering
products
xas "Baked Goods" and 'Credit Cards Accepted" payments

*/
102

4 — Appendix

driver.findElementByld ("search"). click ();
driver.findElementByld ("search_bakedGoods"). click ();
Point point = driver.findElementByld ("search\ credit")
.getLocation ();

TouchAction actionl = new TouchAction(driver);
actionl.press (PointOption

.point (816, 1711)).moveTo(PointOption.point (816,0))
.release (). perform ();

driver .manage (). timeouts ().implicitlyWait (2,

TimeUnit .SECONDS) ;

driver.findElementByld ("search\ credit"). click ();
TouchAction action2 = new TouchAction(driver);
action2.press(PointOption.point (816, 300))
.moveTo(PointOption

.point (816,1811)).release (). perform ();
driver.findElementByld ("searchButton"). click ();

int size = driver.findElementByld ("searchResultsView").
findElement (By.tagName ("ul")). getSize (). height;
Assert . assertNotEquals(size , 0);

/%%
x Test Case 11 — Open Map View of the Selected Market
*/
driver.findElementByld ("search"). click ();
driver.findElementByld ("search\ flowers"). click ();
Point point = driver.findElementById ("search\ credit")
.getLocation ();

TouchAction actionl = new TouchAction(driver);
actionl.press(PointOption.point (816, 1711))
.moveTo(PointOption

.point (816,0)).release (). perform ();

driver .manage (). timeouts (). implicitlyWait (2,
TimeUnit .SECONDS) ;

driver.findElementBylId ("search\ credit"). click ();

103

4 — Appendix

TouchAction action2 = new TouchAction(driver);
action2.press (PointOption.point (816, 300))
.moveTo(PointOption

.point (816,1811)). release ().perform ();
driver.findElementByld ("searchButton"). click ();

int size = driver.findElementByld ('searchResultsView")
.findElement (By.tagName ("ul")). getSize (). height;
Assert.assertNotEquals(size , 0);

driver.findElementByld ("searchResultsView "). findElement
(By. cssSelector

("ul > li:nth—child (1)")).click ();
driver.findElementByld (" marketDetailsView "). findElement
(By.className ("button")). click ();

/%%

x Test Case 12 — Getting directions of the

Selected Market

*/
driver.findElementById ("search"). click ();
driver.findElementByld ("search_flowers"). click ();
Point point = driver.findElementById ("search\ credit")
.getLocation ();

TouchAction actionl = new TouchAction(driver);
actionl.press(PointOption.point (816, 1711))
.moveTo(PointOption

.point (816,0)). release ().perform ();

driver .manage (). timeouts ().implicitlyWait (2,

TimeUnit .SECONDS) ;

driver.findElementByld ("search\ credit"). click ();
TouchAction action2 = new TouchAction(driver);
action2.press (PointOption

.point (816, 300)).moveTo(PointOption.point (816,1811))
.release (). perform ();

driver.findElementByld ("searchButton"). click ();

104

4 — Appendix

int size = driver.findElementByld ('searchResultsView")
.findElement (By.tagName ("ul")). getSize (). height;
Assert.assertNotEquals(size , 0);

driver.findElementByld ("searchResultsView "). findElement
(By. cssSelector ("ul > li:nth—child (1)")). click ();
driver.findElementByld (" marketDetailsView "). findElements
(By.className ("button")).get (1).click ();

105

	List of Tables
	List of Figures
	Introduction and Background
	Mobile Devices and Operating Systems
	Mobile App Development Frameworks
	Mobile Application Testing
	GUI Testing in Mobile Applications

	Systematic Literature Review(SLR)
	Research Questions
	Research Strategy
	Keywords
	Sources
	Search Strings
	Inclusion and Exclusion Criteria

	Data Extraction and Mapping
	Analysis of SLR Result
	Context
	Tools for Development(RQ1)
	Tools for Testing (RQ2)
	Challenges for Development/Testing(RQ3)

	Discussion and Conclusion

	Source Repository Analysis and Exploratory Study
	Source Repository Analysis
	Exploratory Study
	Application Selection and Software Objectives
	Testing Tool Selection and Description
	Test Case Definition
	Test Cases Implementation
	Test Tools Evaluation and Results

	Conclusion and Future Work
	Bibliography
	Appendix

