
	 	 	
	

	 	 1	
	

POLITECNICO DI TORINO

Corso di Laurea Magistrale
In Ingegneria Informatica

Tesi di Laurea Magistrale
Incognito Mode and Rebtel News Feed:

Extending Calling App to improve the User
Experience

 Relatore Candidato
Giovanni Malnati Marco Caloiaro

	
	

	
Anno	Accademico	2018/2019	

	 	 	
	

	 	 2	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	 	 	
	

	 	 3	
	

ABSTRACT
	
	

Building a successful mobile app in a world which welcomes more than 1000 new apps
everyday on Google Play Store and Apple Store is not an easy task. 	

Tons of applications are duplicated, useless and sometimes, even if they are performing, the
world might not be ready for them yet. 	
	

However, by offering international calls and various services including Mobile Top Up and
early access Remittance at a very competitive price, Rebtel Networks has risen in the last
years generating a high revenue and customer satisfaction. 	

Calling has been a profitable business for years, but it might not be the same in the near
future, due to the rise in popularity of new free messaging/video calling services such as
WhatsApp, Messenger and Skype. 	

This is the main reason why establishing a good relationship with the customers and
improving the user experience on the app are two fundamental aspects. 	
	

My internship at Rebtel has been focusing on implementing two new features for the
company’s existing calling app: Incognito Mode and Rebtel News Feed. 	
	

The first one mentioned has become very popular in the last years. Browsers like Google
Chrome offer their customers local privacy through Incognito Mode, and Rebtel is putting the
same efforts in order to satisfy one of its users most asked requests, “Hidden CLI”. While a
temporary version of the feature was already in place since earlier releases, with the help of
the Design Team and Product Managers I redesigned the whole concept. 	

Rebtel was founded on solid values. Family is definitely the most important. By analysing the
main reasons why people call their relatives the most, during my internship I have explored
another interesting idea which might be introduced on the application in the future: Rebtel
News Feed. 	

Being always up to date with what is going on in your own country is very difficult,
especially if you live abroad and work many hours per day. This new feature would help the
customers to get access to top headlines from a specific country of their interest, resulting
into an increase in number of calls and in the average time a user spends daily on the app. 	
	

My internship at Rebtel has been really productive and the amount of learnings, both from a
business and technical prospective, has been huge. While Incognito Mode is already in
production and shipped for the next release of the app, Rebtel News Feed needs to be studied
carefully by the commercial team, in order to verify whether it can represent a real
opportunity for business or not.

	
	

	 	 	
	

	 	 4	
	

	
	

	
	

	
	

	
	

	
	

	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 	 	
	

	 	 5	
	

A mio padre e ai suoi 7 anni da solo a Turbigo, a mia madre e alle sue pratiche lavorative
fino a tarda notte. Grazie per tutto ciò che avete fatto per garantirmi un futuro migliore. 	

A mia zia Consiglia e a mio zio Vito, a mia cugina Danila e mio cugino Paolo che mi hanno
sempre trattato come un figlio/fratello.

A mio nonno Donato e a tutti i suoi sacrifici per strapparmi un sorriso. 	

Ai miei zii, i miei nonni e i miei cugini che mi hanno sempre supportato nei momenti più
difficili senza mai chiedere nulla in cambio.	

E per finire a tutti i miei amici che non mi hanno mai abbandonato, anche se a volte sono
stato poco presente, scontroso o nervoso. 	

	
	

A tutti voi, 	

Marco	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	
	

	
	

	 	 	
	

	 	 6	
	

TABLE OF CONTENTS
	

	

1. INTRODUCTION ... 8	
1.1	Aim	of	the	internship	...	8	
1.2	Introduction	to	Rebtel	...	9	
1.3	Description	of	operating	system	and	Dev	Platform:	Android	..	10	

1.3.1	Brief	History	of	Android	..	10	
1.3.2	Why	Android?	...	11	
1.3.3	Android	Environment	..	12	

2. Incognito Mode... 14	
2.1	Presentation	of	Rebtel’s	App	...	14	
2.2	Incognito	Mode.	Why?	..	17	
2.3	Incognito	Mode:	Rebtel’s	Case	..	18	

2.3.1	Current	Stage	of	the	Feature	..	19	
2.3.2	Initial	brainstorming	and	Incognito	Idea	..	20	
2.3.3	Implementation	of	the	feature	...	26	

3. Rebtel News Feed, Introduction ... 29	
3.1	Why?	..	29	
3.2	Expectations	for	the	feature	and	business	value	analysis	...	30	
3.3	Requirements	Analysis	..	31	

3.3.1	The	News	Feed	Page	...	31	
3.3.2	The	News	Feed	Favorite	Page	...	32	
3.3.3	Handle	communication	with	other	pages	...	32	

4. News Feed Implementation ... 33	
4.1	Design	Choices	...	33	
4.2	Implementation	Choices	..	35	

4.2.1	Architecture	..	35	
4.2.2	News	Article	Class	+	Builder	Pattern	...	37	
4.2.3	Articles	List	..	40	
4.2.4	NEWS	API	..	43	
4.2.5	HTTP	Request	and	JSON	..	45	
4.2.6	Room,	MVVM	Pattern,	Live	Data,	Repository	and	Network	Source.	47	
4.2.7	News	Feed	Calls	..	63	
4.2.8	Managing	Pages	Communications	...	64	

5. CONCLUSIONS .. 67	
5.1	Rebtel	News	Feed:	Future	Improvements	...	67	
5.2	Incognito	Mode:	Future	Improvements	..	68	
5.3	CONCLUSIONS:	MY	EXPERIENCE	..	73	

6. Bibliography ... 75	
	

	 	 	
	

	 	 7	
	

	 	 	
	

	 	 8	
	

CHAPTER 1
	
	

	

1. Introduction
	
	

This thesis will focus on the projects I have taken part in during my stage at Rebtel Networks
AB in Stockholm since the 4th March until the 28th June 2019. 	

All the activities carried out during the internship will be described in the next chapters,
according to the following subdivision:	

	
	

• Introduction, which will briefly describe the company history and the development
platform. 	

• Development, which will focus directly on the implementation of the features.	
• Conclusions, which will analyse results and next steps to improve the features

introduced. 	

	
	

1.1 Aim of the internship
	
	

My internship at Rebtel had 2 main aims: exploring the existing Calling Android App and
implementing new features that should improve the user experience and customer
satisfaction. 	
	

The first part of my experience, which lasted for one month, could be considered as
playground. I analyzed carefully Rebtel’s java code and the main patterns adopted by the
developers through the years, fixed some simple bugs and got a deeper understanding of the
company’s working flow with different tasks.

The second period, instead, regarded the research and the implementation of a good feature
from the company’s backlog1, respecting its roadmap and production deadlines. 	

																																																													
1	Backlog:	collection	of	tasks	to	be	implemented	and	completed.		

	 	 	
	

	 	 9	
	

At the end of a series of cross-functional team meetings, the final feature chosen was
Incognito Mode. Beside this project, required from the company, I was given the opportunity
to explore a personal idea. My choice fell on Rebtel News Feed. 	

	

The next sections of this introductive will briefly provide a presentation of Rebtel company
and will focus on the development platform adopted to implement the features: Android. 	

	

The next chapters will contain instead more in detail implementation choices, results
expected and results obtained. 	

1.2 Introduction to Rebtel
	
	

Rebtel is a global communication platform serving internationals founded in 2006 by Hjalmar
Winbladh & JonasLindroth. 	

	

From 2006 to 2014, under their management, the company went through different stages of
growth and released in 2012 an SDK, allowing developers to integrate voice calling into their
apps[1]. The same year, the company reported revenues of $80 million and 20 million users.	
	

In 2015, after a drop of nearly 20% YoY revenue registered in the second half of 2014, the
company had a new management take over. Magnus Larsson, the current CEO, has launched
a new strategy with more “product verticals like banking, remittance and independent work
for migrants and international nomads”[1]. Under the new management, Rebtel has reported a
+20% YoY revenue growth. 	
	

More in the specific, the company serves one of the fastest growing group on Earth: the
internationals. This large group, composed by migrants and travelers, contributes to a 15%
yearly communication growth in a large industry already worth more than 100$Bln.	

While nowadays immigrants are often portraited negatively, Rebtel sees them as an
inspiration for a global aspirational brand. 	
	

This is probably the main reason why it is one of Stockholm’s most diverse company, with
100+ employees representing more than 40 countries. Taking in consideration all the
different backgrounds, Rebte pays attention really carefully to migrants special needs, such as
money transfer/banking, international calling and Mobile Top Up. 	
	

By offering a very competitive price, Rebtel combines traditional telecom networks with
App+Voip technology. It provides a simple user experience, allowing its customers unlimited
calls in the world for a fixed price, always with the best connection based on quality and

	 	 	
	

	 	 10	
	

price. 	
	

The company projects are far from done. Rebtel Networks AB development team is currently
building a new banking service mobile app called Majority, which will offer unlimited
calling, based on Rebtel existing framework, no fee money remittance and a debit card to all
its users. 	

1.3 Description of operating system and Development Platform: Android
	
	

During the internship I have implemented the two new features for the existing Rebtel
Android app.	
	

Android is a mobile operating system developed by Google. Being based on a modified
version of the Linux kernel and other open source softwares, it is designed primarily for
touchscreen mobile devices such as smartphones and tablets. [2]	

	
	

1.3.1 Brief History of Android
	
	

Android Inc. was founded in Palo Alto, California, in October 2003 by Andy Rubin, Rich
Miner, Nick Sears, and Chris White.	
	

Rubin described the Android project as "tremendous potential in developing smarter mobile
devices that are more aware of its owner's location and preferences". [3]	

	

While the early intentions of the company were to develop an advanced operating system for
digital cameras[4], the founders then figured out that “Android goals were larger than the
market for cameras, and by five months later it had pivoted its efforts and was pitching
Android as a handset operating system that would rival Symbian and Microsoft Windows
Mobile”.[4][5]	
	

“In July 2005, Android Inc. was acquired by Google in a deal which is rumored to be at least
$50 million”[6]. “Its key employees, including Rubin, Miner and White, joined Google as
part of the acquisition”.[3]	

“At Google, the team led by Rubin developed a mobile device platform powered by the
Linux kernel. Google marketed the platform to handset makers and carriers on the promise of
providing a flexible, upgradeable system”.[7].	
	

	 	 	
	

	 	 11	
	

“The first commercially available smartphone running Android was the HTC Dream, also
known as T-Mobile G1, announced on September 23, 2008”[8][9].	
	

Since 2008, numerous updates have incrementally improved the Android operating system,
by adding new features and fixing bugs from previous releases. Each major release is named
in alphabetical order after a dessert or sugary treat, with the first few Android versions being
called "Cupcake", "Donut", "Eclair", and "Froyo".	

	
	

1.3.2 Why Android?
	

There are many reasons why implementing an app in Android might be more beneficial than
any other operating system. 	
	

First of all, the market share. With a share of 85.11% in 2018, Android dominates the mobile
app development market. Analysing future estimates, this number will slightly increase,
reaching the 87.1% of overall shipment volume in 2023. [10]	
	

Even from the profitability point of view, Android can still achieve significant results. In fact,
even if Apple Store has generated more than double the revenue of Google’s Play Store with
fewer than half as many downloads, Android users spent more than 11.8$Bln, only
considering the first half of 2018. [11]	
	

Choosing Android as operating system for development might be also due to other reasons,
not directly related to business, but still relevant. 	

Android development has a really low entry level barrier, which means that, in order to start
developing for Android devices, users do not have to use a specific operating system as for
iOS development. Besides, subscribing to Google Play as a developer is way cheaper than
other platforms. [12]	
	

Last but not less meaningful reason is the Google Play Store. While Apple Store’s review
process is tedious and might take many days for a developer app review, Google Play Store’s
guidelines are less strict and waiting time is slightly smaller than its main competitor.
However, Google has announced policy changes to improve the quality of apps in Play Store,
in wake of the recent scandals involving popular apps as Facebook, which in more than one
occasion has exposed accidentally its users sensitive data. [12]	
	

	 	 	
	

	 	 12	
	

1.3.3 Android Environment
	
	

“Android	apps	are	written	using	the	Android	software	development	kit	(SDK)	and,	until	
2017,	the	Java	programming	language,	combined	with	C/C++”.[13]	

However,	In	May	2017,	Google	announced	support	for	Android	app	development	in	the	
Kotlin	programming	language[14],	which	is	slowly	replacing	Java	as	the	main	programming	
language	for	Android.		

“The	SDK	includes	a	comprehensive	set	of	development	tools,	including	a	debugger,	
software	libraries,	a	handset	emulator	based	on	QEMU,	documentation,	sample	code,	and	
tutorials”.	[15]	

“Initially,	until	December	2014,	Google's	supported	integrated	development	environment	
(IDE)	was	Eclipse	using	the	Android	Development	Tools	(ADT)	plugin;	today,	Android	Studio,	
based	on	IntelliJ	IDEA,	is	the	primary	IDE	for	Android	application	development”.	[16][17]	
	

Some key features include:	

• “Gradle-based build system	
• Live-layout Editor with real time app layout rendering	
• Option to preview a layout on multiple screen configurations while editing	
• Build variants and multiple apk file generation	
• Supports developing Android Wear, TV and Auto apps	
• Enables app integration with Google Cloud Platform (App Engine and Google Cloud

Messaging)”	

[12]	

	
	

The Android version currently adopted in Rebtel is Android PIE 9, with API version 28. 	

	
	

	
	

	
	

 	

	
	

	 	 	
	

	 	 13	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	

	
	

	
	

	

	

	 	 	
	

	 	 14	
	

	

CHAPTER 2.

	

2. Incognito Mode.
	

2.1 Presentation of Rebtel’s App
	

Rebtel’s	mobile	app	went	through	a	series	of	different	changes	in	the	last	years,	and	
probably	it	will	be	significantly	different	from	today	in	a	short	period	of	time	in	order	to	host	
the	implementation	of	new	features	and	the	redesign	of	current	ones.	

	However,	during	my	entire	internship	the	principal	screens	that	characterized	the	app	were	
2:	Living	Room	and	Account	View.	

	 	 	
	

	 	 15	
	

												

Living	Room	Design																																							

	

	

The	“Living	Room”	is	the	default	page	the	user	is	shown	after	signing	up	on	the	Rebtel	App	
and	whenever	he/she	opens	the	application.	It	represents	an	on-boarding	page	from	which	
the	customer	can	have	access	to	the	following	services:		

	

• Latest	calls	sent	and	received;		
• Latest	transactions	sent	and	received;		
• Latest	products	and	offers	available	for	the	user’s	Top	Country2.		

	

																																																													
• 2	Top	Cuntry:	country	for	which	the	user	has	the	most	contacts	in	his	address	book	or	the	Top	country	

the	customer	has	chosen	during	Sign	Up.			

	

	 	 	
	

	 	 16	
	

Through	an	intuitive	interaction	with	the	various	widgets	shown	on	the	screen,	the	user	can	
start	the	calling	process	after	tapping	the	search	box,	or	move	to	the	account	view	screen	by	
tapping	the	floating	action	button	at	the	right	bottom	of	the	Living	Room	page.	

	

	

	

Account	View	Design	

	

The	“Account	View”	plays	several	roles	inside	the	Application.	As	suggested	by	the	names	of	
the	different	fields,	it	hosts:	

- Wallet	Balance	fragment	on	top	of	the	page,	from	which	the	user	can	easily	edit	his	
settings;		

- Market	Place	section,	which	provides	recharges	and	products	purchase;			
- Account	Activity	stats	and	Monthly	Recap;		
- FAQ	section	
- Redeem	Voucher/TAF	activities.	

	

	 	 	
	

	 	 17	
	

The	navigation	inside	the	account	view	page	is	delegated	to	a	different	activity3,	called	
RebtelActionBarActivity.	

“Living	Room”	and	“Account	View”	are	both	fragments4	of	the	Main	Activity,	called	
PagedActivity.		

	

2.2 Incognito Mode. Why?
	

Incognito	Mode	is	a	feature	available	today	in	most	of	the	browsers.		

It	enables	users	to	browse	the	internet	anonymously	on	a	local	device.	“However,	it	does	
not	hide	internet	activity	from	a	service	provider	or	other	eventual	observers”.	[18]	

This	means	that,	while	ISP	can	be	aware	of	all	the	search	history	of	their	customers,	
Incognito	Mode	protects	a	person’s	privacy	from	other	people	who	may	have	access	to	the	
same	device.		

	

There	are	plenty	of	reasons	for	using	it,	but	let´s	focus	on	the	most	common	scenarios:		

	

• Buying	gifts:	brainstorming	for	gifts	idea	is	quite	common,	and	it	is	easy	to	disclose	
informations	with	a	regular	web	search.	Incognito	Mode	prevents	this	from	
happening;		

• Signing	in	with	Multiple	Email	Accounts:	it	is	possible	to	stay	signed	in	to	one	
account	while	simultaneously	checking	another	one	by	opening	an	Incognito	Session;		

• Related	search	and	results:	Incognito	Mode	prevents	Youtube	and	other	services	
from	spamming	recommended	videos	based	on	their	suggestion	algorithm;		

• Public	devices:	Incognito	mode	deletes	everything	associated	with	a	specific	session.	
This	brings	more	safety	logging	in	to	personal	accounts	while	using	public	devices;		

• Questionable	Searches:	it	could	happen	sometimes	to	look	for	unusual	things	on	the	
web.	For	instance,	if	a	user	is	a	creative	writer	and	wants	to	write	a	new	story	with	
suggestive	particulars,	he	might	look	for	questionable	stuff	on	the	web.	A	lot	of	
scenarios	regarding	this	matter	are	possible.	With	Incognito	Mode	privacy	is	
ensured.		

[12]	

																																																													
3	Activity:	window	where	UI	is	placed	in	Android.	
	
4	Fragment:	portion	of	user	interface	contained	inside	an	activity	

	 	 	
	

	 	 18	
	

Incognito	Mode	is	a	powerful	feature	which	has	gained	much	popularity	over	the	years.	
Studies	have	suggested	that	almost	20%	of	web	traffic	comes	from	private	browsing,	
reaching	a	peak	of	24%	in	Germany[19].		

	

	

	

	

2.3 Incognito Mode: Rebtel’s Case
	
Rebtel	is	a	calling	app.	The	reasons	listed	above	do	not	perfectly	explain	any	meaningful	
reason	for	the	tech	company	to	implement	Incognito	Model,	yet	the	customer	support	desk	
has	collected	in	the	last	years	many	requests	regarding	a	new	feature	to	allow	users	to	hide	
their	numbers	when	they	call.		

	

In	fact,	some	users	may	want	to	hide	their	numbers	in	order	to	conduct	business	using	
Rebtel,	others	would	like	to	call	their	relatives	using	a	hidden	number	to	prevent	them	from	
calling	back	and	incur	in	accidental	charges.	Other	purposes	for	wanting	an	Incognito	Mode	
are	less	common	but	in	general	a	lot	of	users	needed	this	feature	inside	the	app	and	they	
made	it	clear.		

	

	 	 	
	

	 	 19	
	

2.3.1 Initial Stage of the Feature
	

Rebtel	satisfied	its	customers’	needs,	well	at	least	kind	of.		

Before	my	implementation,	on	the	app	it	was	now	possible	to	turn	on	the	hidden	number	
calling	feature.	However,	when	turning	on,	the	user	was	presented	just	with	a	dialog	at	the	
bottom	of	the	screen	warning	him/her	that	his/her	number	was	now	hidden:		

	

					 	
Enabling	Hidden	CLI																																																			Disabling	Hidden	CLI		

	

After	this	feature	was	launched,	Rebtel	analysts	could	notice	a	steady	increase	on	calls	made	
with	hidden	CLI	in	Nigeria,	Cuba	and	India.	These	were	the	countries	from	which	the	users	
expressed	the	most	the	need	for	an	Anonymous	Calling	Mode.		

Nevertheless,	according	to	the	graph	below,	it	seems	like	the	design	logic	might	have	been	
confusing,	as	a	remarkable	percentage	of	people	were	not	aware	they	were	using	the	
feature	when	calling:	

	

	 	 	
	

	 	 20	
	

	

	

	

	

	

These	results	testified	there	was	room	for	many	significant	improvements.		

	

2.3.2 Initial brainstorming and Incognito Idea
	

Rebtel’s	design	and	product	team	have	conducted	many	studies	on	how	to	optimize	the	
feature	for	the	customers.		

	 	 	
	

	 	 21	
	

One	idea	could	have	been	reminding	the	user	anytime	he/she	accessed	the	Living	Room	that	
he/she	did	not	disable	the	hidden	CLI	feature,	as	shown	below:		

	

	

	

Through	traffic	analysis	the	teams	also	noticed	ETECSA,	Cuba’s	telecom	monopoly	operator,	
blocked	calls	with	Hidden	CLI.	That	is	why	many	customers	could	not	get	calls	connected	to	
Cuba	with	the	option	enabled.	One	way	to	prevent	this	from	happening	might	have	been	
displaying	a	message	with	a	link	for	requesting	more	informations:		

	

	 	 	
	

	 	 22	
	

	

	

Other	solutions	proposed	were	about	emphasizing	the	concept	of	making	the	user	aware	he	
had	enabled	a	different	mode.	Ahead	of	all,	a	Pre	call	screen	after	first	call	with	the	feature	
showing	the	message:	“Warning,	this	might	cause	your	calls	not	get	connected”	and	a	post	
call	screen:	“Your	next	call	will	not	be	hidden”	could	have	been	a	valuable	solution.	

All	the	ideas	explained	are	valid	and	might	overcome	most	of	the	issues,	but	the	most	
interesting	one	was	the	exploration	of	a	Dark	Mode.		

The	dark	mode,	or	Incognito	Mode,	would	have	consisted	in	changing	the	style	of	the	Living	
Room	and	the	main	calling	screens,	leaving	a	lot	of	possibilities	for	future	products	
development.		

The	first	design	choice	suggested	by	the	Design	Team	of	the	new	feature	is	the	one	shown	
below:		

	

	 	 	
	

	 	 23	
	

	

	
	

	

	 	 	
	

	 	 24	
	

	

	

	

	

	

	 	 	
	

	 	 25	
	

	
	

The	whole	flow	is	shown	below:		

	

	

	 	 	
	

	 	 26	
	

	

2.3.3 Implementation of the feature
	
Before	moving	forward	with	the	implementation,	one	last	sync	meeting	with	the	teams	
involved	took	place.	It	revealed	some	consistency	issues	with	the	design	previously	
proposed.	In	fact,	changing	the	theme	of	the	Living	Room	would	have	implied	to	apply	
changes	to	Living	Room	cards	(calling	and	products	ones)	and	to	decide	whether	or	not	the	
Account	View	page	should	have	been	affected.	In	brief,	more	design	resources	would	have	
been	requested	for	the	project.		

The	design	team	finally	suggested	to	keep	the	theme	as	it	is.	However,	it	would	have	been	
necessary	to	warn	the	user	as	much	as	possible	using	simple	screens	or	dialogs	that	do	not	
affect	directly	the	graphical	interface	of	the	app	screens.		

In	order	not	to	bring	more	complexity	to	the	app,	we	decided	unanimously	to	take	this	road.	

	

First	of	all,	when	the	user	enables	the	Incognito	Mode	for	the	first	time,	he	will	be	presented	
with	the	warning	screen	shown	below:		

	

	 	 	
	

	 	 27	
	

	

	

The	user	will	then	have	to	take	the	decision	of	keeping	the	regular	mode	or	eventually	
switching	to	Incognito	Mode.	If	he/she	follows	the	second	choice,	its	user’s	preference	gets	
updated	calling	a	method	from	the	ClientPreference5	class,	updateIncognitoFirstTime().		

This	method	updates	the	Boolean	value	“isFirstTimeHiddenCLI”	in	the	SharedPreferences	
of	the	user,	setting	it	to	false.	This	value	will	be	checked	every	time	the	user	enables	again	
the	Incognito	Mode	in	order	to	prevent	the	Warning	dialog	from	displaying	again.	

	

public	static	void	setFirstTimeHiddenCLI(Context	context,	boolean	hiddenCLIEnabled)	{	
			getPrefEditor(context).putBoolean(PREF_FIRST_TIME_HIDDEN_CLI,	hiddenCLIEnabled).apply();	
}	

	

public	static	boolean	isFirstTimeHiddenCLI(Context	context)	{	
			return	getPref(context).getBoolean(PREF_FIRST_TIME_HIDDEN_CLI,	true);	
}	

																																																													
5	Shared	preference:	Android	api	useful	to	store	and	retrieve	app	preferences.		

	 	 	
	

	 	 28	
	

@OnClick(R.id.hideNumberToggle)	
void	onHideNumberToggleClicked()	{	
	
			if	(isFirstTimeHiddenCLI())	{	
						handleFirstTimeHiddenCLI();	
	
			}	else	{	
						handleHiddenCLI();	
			}	
}	

	

private	boolean	isFirstTimeHiddenCLI()	{	
			return	ClientPreferences.isFirstTimeHiddenCLI(getContext());	
}	

	

The	Living	Room	with	Incognito	Mode	enabled	presents	a	new	field	below	the	Search	Box:	
the	indicator.	It	shows	a	text	that	alerts	the	customer	about	his/her	current	state.	The	
Incognito	icon	to	the	right	of	the	Search	Box	gets	updated	accordingly	to	improve	the	
awareness.		

After	tapping	the	information	icon	on	the	right	of	the	Indicator	text,	the	user	will	get	access	
to	more	informations	regarding	the	different	activities	available	in	Incognito	Mode.		

	

Beside	these	small	edits	in	the	Living	Room	page,	the	Call	Screen	Activity	idea	presented	by	
the	Design	team	found	was	preserved	and	implemented	as	shown	in	the	previous	design.		

Regarding	the	feature	block	applied	in	Cuba	and	Nigeria,	users	warnings	have	been	covered	
through	Braze.		

Braze	is	the	leading	customer	engagement	platform.	It	helps	brands	to	build	real	long	lasting	
relationships	between	brands	and	customers.		

By	using	Braze	it	is	possible	to	follow	the	lifecycle	of	customers	by	tracking	exactly	what	they	
are	doing	on	an	application	and	when.	Then	it	becomes	easier	to	craft	personalized	
messages	based	on	their	behaviour	and	automate	the	delivery	using	an	adeguate	channel.		

In	Rebtel,	Braze	is	filled	with	data	from	a	Tracking	tool	called	mParticle	and	Rebtel’s	
BackEnd6	team.	It	then	notifies	correctly	users	who	have	the	feature	enabled	to	let	them	
know	Incognito	Mode	might	be	limited	to	some	of	the	countries	they	are	likely	to	call	the	
most.	

	

	

																																																													
6	Rebtel’s	Backend	team	stores	all	the	products	and	the	users	personal	informations.	

	 	 	
	

	 	 29	
	

	

	

	

CHAPTER 3
	

3. Rebtel News Feed, Introduction
	
After	the	implementation	of	the	Incognito	Mode,	a	feature	for	which	the	business	case	was	
already	built	and	that	is	ready	to	be	introduced	in	the	main	App,	the	company	product	
managers	gave	me	the	opportunity	to	explore	one	of	my	personal	ideas	which	might	
contribute	to	improve	the	daily	experience	for	Rebtel’s	users	in	the	future.		

That	is	how	the	Rebtel	News	Feed	concept,	which	will	be	the	main	focus	of	these	two	
following	chapters,	was	born.		

	

3.1 Why?
	
When	I	was	given	the	chance	to	think	about	a	new	feature	for	the	Rebtel	app,	I	knew	that	
coming	with	an	original	idea	was	not	an	easy	task.	The	calling	structure	is	already	solid	and	
most	of	the	features	regarding	the	transactional	world	(remittance,	recharges,	credit)	will	be	
taken	care	of	in	their	new	application	Majority,	which	will	hit	the	digital	stores	in	few	
months.		

	

That	is	why	me	and	my	tutor	started	brainstorming	and,	through	the	help	of	the	
documentation	provided	to	us	by	traffic	analysts,	we	came	to	the	conclusion	that	customers	
call	using	Rebtel	mostly	when	Breaking	news	events	happen	(natural	disasters	or	more	
general	news	related	to	politics/sports/economy).		

For	instance,	the	graph	below	shows	the	analysis	of	call	attempts.	The	28th	january	
registered	a	peak,	and	it	is	related	to	a	Tornado	occurred	in	Cuba	the	27th	january.	The	
second	peak,	instead,	occurred	on	Mother`s	day.		

	 	 	
	

	 	 30	
	

	

	
Graph	showing	calling	peaks	for	specific	days	

	

These	results	made	me	think	for	the	first	time	about	a	News	Feed	which	could	host	top	
headlines	from	the	Top	Address	Book	of	the	customer,	or	alternatively	from	the	Top	
Country	chosen	during	the	Sign	Up	process.	

	
3.2 Expectations for the feature and business value analysis
	
Rebtel	is	a	calling	app.	Why	would	it	be	worth	it	to	introduce	a	News	Feed?		

This	is	a	legit	question.	While	the	feature	is	not	yet	implemented	inside	the	app	and	a	real	
business	case	was	not	built	around	the	idea,	there	are	some	interesting	points	to	take	in	
consideration.		

First	of	all,	according	to	the	stats	provided	in	the	previous	section,	it	is	clear	that	Rebtel	
customers	are	following	the	news	from	the	country	they	call	the	most.		

Nowadays	there	are	several	online	solutions	that	are	completely	devoted	to	displaying	
articles	for	a	particular	topic,	such	as	Feedly	or	the	more	popular	Google	News.		

However,	none	of	the	mentioned	services	would	guarantee	the	users	one	single	experience	
inside	the	app.		

In	fact,	if	a	specific	headline	requires	an	immediate	call	(to	make	sure	your	relative	is	safe)	
or	more	in	general	if	it	seems	interesting	to	have	a	discussion	about	it,	Rebtel	News	Feed	
would	allow	users	to	make	a	call	instantly	inside	the	application.	This	would	prevent	a	more	
common	and	general	behaviour	of	postponing	the	call	or	totally	forgetting	about	it	while	
scrolling	articles	of	the	feed.	

From	a	user	experience	point	of	view	this	makes	a	lot	of	sense,	since	the	2	behaviours	are	
strictly	related.		

	 	 	
	

	 	 31	
	

	

Beside	this	main	deduction,	which	I	believe	to	be	the	most	relevant,	there	are	other	reasons	
why	this	feature	might	be	very	profitable	for	Rebtel	in	the	future.		

In	fact,	hosting	a	News	Feed	might	not	only	produce	an	increase	in	the	average	daily	time	
the	user	spends	on	the	app,	but	could	also	boost	the	sales	of	the	products	the	tech	company	
has	to	offer.		

As	already	mentioned	in	the	presentation	of	the	design	of	the	app,	Rebtel	has	launched	for	
its	customers	a	large	number	of	services	for	different	countries,	and	most	of	the	company	
advertisement	takes	place	today	on	the	Living	Room	page.	Obviously,	having	another	region	
inside	the	app	where	to	serve	users	with	the	range	of	products	offered	by	the	company,	
displayed	in	a	smart	and	not	invading	way,	would	probably	have	a	meaningful	impact	on	the	
sales.		

	

Last	but	not	less	important	reason	for	hosting	a	Rebtel	News	is	directly	related	to	the	
company	history.	Its	main	purpose	is	to	serve	internationals,	helping	them	to	be	in	contact	
with	their	families	and	friends,	and	one	fundamental	aspect	for	the	whole	team	is	
guaranteeing	the	user	a	good	experience	and	maximum	satisfaction.		

Offering	a	news	service	for	free,	without	asking	anything	in	return,	might	retain	the	existing	
customers,	intensifying	their	loyalty,	and	eventually	attract	new	ones.		

These	main	reasons	brought	me	to	explore	the	idea	of	a	News	Feed	inside	the	app,	which	I	
honestly	think	could	result	in	a	successful	outcome	for	Rebtel.		

The	next	sections	will	focus	on	development	choices	and	the	design/building	patterns	I	
adopted.		

	

3.3 Requirements Analysis

	
Before	describing	the	various	stages	of	the	implementation,	let`s	quickly	analyse	in	brief	
which	are	the	exact	requirements	needed	to	carry	out	the	task.		

	

3.3.1 The News Feed Page

	
The	News	Feed	Page	should	display	the	latest	headlines	for	the	user’s	Top	Country.	

	

	 	 	
	

	 	 32	
	

In	order	to	accomplish	the	mentioned	application	behaviour,	a	specific	network	request	to	
fetch	the	top	headlines	from	a	web	source	must	be	executed.		

	

While	fetching	new	items	every	few	seconds	is	fundamental	for	a	social	network	or	other	
kinds	of	services,	news	do	not	need	to	be	fetched	every	time	the	user	refreshes	the	news	
feed,	because	it	might	be	not	essential	and	very	costly	in	terms	of	resources.		

This	is	why	the	latest	news	fetched	from	the	system	should	be	stored	in	a	local	database	
within	the	device,	and	refreshed	every	15/20	minutes.		

	

Besides,	it	is	fundamental	to	allow	the	user	to	call	a	contact	directly	from	the	page,	so	a	
specific	button	should	be	placed	within	the	fragment.		

	

3.3.2 The News Feed Favorites Page
	

Some	articles	are	so	interesting	that	a	user	just	might	want	to	save	them.		

Or	maybe	the	user	cannot	read	an	article	at	the	moment,	but	would	like	to	save	it	for	later.	

These	are	2	common	scenarios	that	happen	every	day	to	all	of	us.		

This	is	why,	like	any	other	service,	a	mechanism	to	add	a	story	to	a	list	of	favorites	and	
display	it	in	a	different	screen	inside	the	app	should	be	in	place.		

Since	the	news	feed	will	be	regenerated	every	20	minutes,	it	will	be	necessary	to	flag	articles	
which	need	to	“survive”	the	deletion	when	new	ones	are	fetched.		

	

3.3.3 Handle communication with other pages
	
Rebtel	News	Feed	should	be	accessible	from	the	Living	Room	page,	but	the	existing	button	
only	takes	care	of	switching	between	the	Living	Room	and	the	Account	View.		

So,	editing	the	logic	of	the	buttons	or	introducing	a	new	one	is	required	to	correctly	handle	
the	communication	between	the	fragments.		

	

	

	

	 	 	
	

	 	 33	
	

	

	

	

CHAPTER 4
	

	

4. News Feed Implementation
	

Having	in	mind	the	requirements	described	in	the	previous	chapter,	let’s	proceed	analysing	
the	main	choices	and	patterns	adopted	for	the	implementation	of	the	News	feature.		

	
4.1 Design Choices
	

Rebtel	company	has	a	whole	team	which	worked	on	the	design	of	the	whole	app.	
Considering	as	reference	the	app	guidelines,	with	no	assistance	from	the	Design	team	due	
to	their	strict	deadlines	for	other	features	already	in	production	stage,	I	followed	my	taste	
and	decided	to	have	a	simple	design	view	for	the	Rebtel	News	Main	page	and	the	Rebtel	
News	Favorite	Articles	Page,	as	shown	in	the	picture	below:	

	
	

	

	

	

	 	 	
	

	 	 34	
	

							 	
														Rebtel	News	Feed	Page	Design																																											Rebtel	News	Feed	Favorites	Page	Design	

	

	

The	2	pages	design	consists	in	one	Constraint	Layout,	which	internally	hosts	an	inner	
Constraint	Layout	and	a	RecyclerView	inside	a	SwipeRefreshLayout7	(for	the	News	Feed	
Page	only).		

The	inner	Constraint	Layout	handles	the	title,	the	logo,	the	star/back	icons	and	is	clearly	
noticeable	due	to	its	red	background.		

The	Swipe	Refresh	Layout	allows	the	user	to	fetch	again	the	articles	currently	stored	in	the	
Database.		

	

As	suggested	by	the	two	design	pictures,	the	phone	icon	allows	the	user	to	call	a	contact,	
while	the	star	icon	has	the	power	to	flag	the	user’s	favourite	articles.			

	

																																																													
7	Layout	used	for	refreshing	contents	of	a	page.		

	 	 	
	

	 	 35	
	

	

	

4.2 Implementation Choices
	

In	this	section	we	will	focus	on	the	main	choices	that	influenced	the	implementation	of	the	
News	Feed.		

	

4.2.1 Architecture

	
During	the	first	part	of	the	internship	I	studied	some	of	the	main	design	patterns	adopted	
for	Rebtel	app.		

While	in	all	my	previous	experiences	with	coding	I	adopted	the	MVC	(Model-View-
Controller),	the	tech	company	made	large	use	of	MVP	(Model-View-Presenter)	and	MVVM	
(Model-View-View	Model)	patterns.		

	

The	MVC	has	3	main	components:		

• Model:	it	is	responsible	for	managing	the	data	of	the	application	and	receiving	user	
input	from	the	controller.		

• View:	it	is	responsible	for	presenting	the	model	in	a	specific	format.		
• Controller:	it	is	responsible	for	receiving	the	user	input,	optionally	validating	it	and	

passing	it	to	the	model.		

[20]	

	

“The	Model–view–presenter	(MVP),	on	the	other	hand,	represents	a	derivation	of	the	MVC	
architectural	pattern	and	it	is	widely	used	for	building	user	interfaces.	In	MVP,	the	presenter	
functions	as	“middle-man”	and	all	presentation	logic	is	pushed	to	the	presenter.	MVP	
advocates	separating	business	and	persistence	logic	out	of	the	Activity	and	Fragment”.	[21]	

	

	

	

	

	 	 	
	

	 	 36	
	

	

	

	

As	its	parent	MVC,	MVP	has	3	main	components:		

• Model:	it	is	responsible	for	providing	the	data	that	will	be	displayed	in	the	view.		
• View:	it	contains	a	reference	to	the	presenter.	Every	time	an	interface	action	occurs,	

the	view	calls	a	method	from	the	presenter.		
• Presenter:	it	is	responsible	for	retrieving	data	from	the	Model	and	for	returning	it	

formatted	to	the	view.	It	also	decides	what	should	be	done	when	the	user	interacts	
with	the	View.	

[21]	

	

The	main	differences	defined	above	are	explained	better	in	the	flow	picture	below:	

	

	

Image via Toptal
	

	 	 	
	

	 	 37	
	

	

	

	

MVP	is	a	mature	pattern	and	it	has	gained	a	lot	of	popularity	in	the	last	years.	However,	due	
to	some	concerns	about	its	testability	and	its	tight	coupling	(1	view	=	1	presenter),	Google	
introduced	Android	Architecture	Components	which	include	a	ViewModel	rather	than	
Presenter.	[22]	

	

MVVM,	as	its	ancestor,	has	still	three	main	components:	

	

• Model:	it	refers	to	a	domain	model,	which	represents	real	state	content,	or	to	the	
data	access	layer,	which	represents	content.		

• View:	it	is	a	fragment,	an	activity,	a	layout.	It	represents	anything	the	users	sees	on	
the	screen.			

• View	model:	“The	view	model	is	an	abstraction	of	the	view	exposing	public	
properties	and	commands.	The	main	difference	between	the	view	model	and	the	
Presenter	in	the	MVP	pattern,	is	that	the	presenter	has	a	reference	to	a	view	while	
the	view	model	does	not.	In	these	case,	a	view	binds	directly	to	the	view	model	to	
send	and	receive	updates.”	

[23]	

	

In	the	specific	case	of	the	feature,	I	decided	to	adopt	the	MVVM	Pattern,	extending	it	with	a	
Repository,	a	Network	Data	Source,	Live	Data	and	Room	Database.	These	components	will	
be	explained	in	the	next	section	and	any	meaningful	code	needed	to	understand	the	
implementation	will	be	attached.		

	

4.2.2 News Article Class + Builder Pattern

	
Let`s	start	from	the	Java	Classes.		

News	Article	class	is	a	simple	class	with	the	following	attributes:		

• ImageUri;	
• Title;	
• Content	–	unused	for	Developer	Plan;	
• Source;	
• Author;	
• Description;	

	 	 	
	

	 	 38	
	

• Favorite	(flag	to	specify	article	has	been	favorited	by	the	user);	
• LastHour	(flag	to	specify	article	belongs	to	latest	fetch);		
• Url	(necessary	for	Developer	Plan,	explanation	in	next	sections);		

	

This	class	contains	9	attributes,	and	it	is	predictable	that	remembering	the	order	of	the	
parameters	for	the	constructor	will	be	a	challenge	at	variable	initialization	time.		

This	is	the	main	reason	why	I	have	chosen	to	adopt	the	Builder	Pattern	for	the	News	Article	
Class.		

	

“The	Builder	is	a	design	pattern	that	provides	a	flexible	solution	to	various	object	creation	
problems	in	object-oriented	programming.	The	intent	of	the	Builder	is	to	separate	the	
construction	of	a	complex	object	from	its	representation”.	[24]	

	

An	implementation	of	the	Builder	is	provided	below:		

	

public	static	class	Builder	{	
	
			private	String	imageUri;	
			private	String	title;	
			private	String	content;	
			private	String	source;	
			private	String	author;	
			private	String	description;	
			private	int	favorite;	
			private	int	lastHour;	
			private	String	url;	
	
			public	Builder()	{	
			}	
	
			public	Builder	title	(String	title)	{	
						this.title	=	title;	
	
						return	this;	
			}	
	
			public	Builder	fromSource(String	source)	{	
						this.source	=	source;	
	
						return	this;	
			}	
	
			public	Builder	byAuthor(String	author)	{	

	 	 	
	

	 	 39	
	

						this.author	=	author;	
	
						return	this;	
			}	
	
			public	Builder	withContent(String	content)	{	
						this.content	=	content;	
	
						return	this;	
			}	
	
			public	Builder	withFavoriteFlag(int	favorite)	{	
						this.favorite	=	favorite;	
	
						return	this;	
			}	
	
			public	Builder	withImage(String	imageUri)	{	
						this.imageUri	=	imageUri;	
	
						return	this;	
			}	
	
			public	Builder	lastFetchFlag(int	lastHour)	{	
						this.lastHour	=	lastHour;	
	
						return	this;	
			}	
	
			public	Builder	articleUrl(String	url)	{	
						this.url	=	url;	
	
						return	this;	
			}	
	
			public	Builder	withDescription(String	description)	{	
						this.description	=	description;	
	
						return	this;	
			}	
	
			public	NewsArticle	build()	{	
	
						NewsArticle	newsArticle	=	new	NewsArticle();	
						newsArticle.title	=	this.title;	
						newsArticle.lastHour	=	this.lastHour;	
						newsArticle.favorite	=	this.favorite;	
						newsArticle.content	=	this.content;	
						newsArticle.author	=	this.author;	
						newsArticle.description	=	this.description;	
						newsArticle.imageUri	=	this.imageUri;	
						newsArticle.source	=	this.source;	
						newsArticle.url	=	this.url;	
	

	 	 	
	

	 	 40	
	

						return	newsArticle;	
			}	
	

	

	

	

	

Here	is	how	a	class	object	is	built	inside	the	view:		

	
NewsArticle.Builder	builder	=	new	NewsArticle.Builder()	
						.title(title)	
						.fromSource(source)	
						.articleUrl(articleUrl)	
						.byAuthor(author)	
						.lastFetchFlag(1)	
						.withContent(content)	
						.withImage(imageUri)	
						.withDescription(description)	
						.withFavoriteFlag(0);	
	
NewsArticle	article	=	builder.build();	

Its	main	advantages	are:	

• “It	supports	to	change	the	internal	representation	of	objects.	
• Encapsulates	code	for	construction	and	representation.	
• Provides	more	control	over	steps	of	construction	process.”	

[25]	

Compared	to	the	default	constructor,	the	Builder	makes	nearly	impossible	to	make	any	
mistake	with	parameters.	

	

4.2.3 Articles List

	
As	mentioned	in	the	Design	choices	section,	I	opted	for	Recycler	View	as	object	to	display	
the	latest	stories	and	the	list	of	favorite	articles.		

	

The	RecyclerView	widget	is	a	more	advanced	and	flexible	version	of	ListView.	

	 	 	
	

	 	 41	
	

“In	the	RecyclerView	model,	several	different	components	work	together	to	display	data.	
The	overall	container	for	the	user	interface	is	a	RecyclerView	object	that	is	added	to	the	
layout”.		[26]	

The	RecyclerView	is	auto	filled	with	views	provided	by	a	layout	manager	[26].	For	the	news	
feed	case	the	choice	fell	on	a	LinearLayoutManager.	

The	items	in	the	list	are	represented	by	view	holder	objects.	These	objects	are	instances	of	
the	RecyclerView.ViewHolder	class.	Each	view	holder	is	in	charge	of	displaying	a	single	item	
with	a	view.	The	RecyclerView	creates	as	many	view	holders	as	are	needed	to	display	the	
various	items,	plus	some	extra	holders.	[26]	

	

The	adapter	class	manages	the	view	holder	objects.	It	also	binds	the	view	holders	to	their	
data.	It	achieves	this	behaviour	by	assigning	each	view	holder	to	a	position,	and	calling	the	
adapter's	onBindViewHolder()	method.	This	method	uses	the	view	holder's	position	to	
determine	what	the	contents	should	be,	based	on	its	list	position.	[26]	

	

For	the	News	Feed,	I	have	designed	only	one	type	of	item	using	a	Constraint	Layout.		

	

ConstraintLayout	is	the	most	popular	choice	to	create	large	and	complex	layouts	with	a	flat	
view	hierarchy.	Similarly	to	RelativeLayout,	views	are	connected	by	expressing	relationships	
between	sibling	views	and	the	parent	layout,	but	it	presents	the	advantage	of	being	more	
flexible	and	easier	to	use	with	Android	Studio's	Layout	Editor.	[27]	

All	the	power	of	ConstraintLayout	is	available	directly	from	the	Layout	Editor's	visual	tools,	
because	the	layout	API	and	the	Layout	Editor	were	specially	built	for	each	other.	So,	it	is	
actually	possible	to	build	a	layout	with	ConstraintLayout	entirely	by	drag-and-dropping	
instead	of	editing	the	XML.	[27]	

“ConstraintLayout	is	available	in	an	API	library	that	is	compatible	with	Android	2.3	(API	level	
9)	and	higher”.	[27]	

In	order	to	define	a	view's	position	in	ConstraintLayout,	it	is	required	to	add		at	least	one	
horizontal	and	one	vertical	constrain.	A	constraint	connects	a	view	to	another	view,	the	
parent	layout,	or	an	invisible	guideline.	Each	view	must	have	a	minimum	of	one	constraint	
for	each	axis,	but	often	more	are	necessary.	[27]	

	

The	article	item	is	very	simple:	

• Image	View	to	host	the	story	thumbnail	
• TextView	for	Title	
• TextView	for	Description	

	 	 	
	

	 	 42	
	

• TextView	for	Source	
• Image	View	for	Star	Icon	
• Image	View	for	Phone	Call	

	

The	design	is	shown	below:		

	

	
Article	item	

	
However,	the	Star	Icon	on	the	Rebtel	Favorites	Articles	Page	activity	appears	different,	as	its	
behaviour	will	be	the	opposite	of	the	one	in	News	Feed	page	(removing	a	favourite).			

In	fact,	while	there	is	only	one	item	View	Type,	I	have	created	two	different	kinds	of	
ViewHolder.	The	first	one,	called	ArticlesViewHolder,	displays	exactly	the	item	from	the	
picture	above.	The	second	one,	FavoriteArticlesViewHolder,	displays	the	same	item,	but	the	
star	icon	is	changed	programmatically.		

The	adapter	class	receives	the	Context,	the	articles	list	and	an	additional	parameter	that	
plays	the	role	of	a	flag.	Based	on	this	Tag	attribute,	whose	String	value	represents	the	
fragment	from	which	the	adapter	is	set,	it	will	be	easier	for	the	adapter	to	recognize	which	
type	of	View	Holder	it	must	create	and	display.		

The	code	for	achieving	this	setting	is	available	below:		

	

SETTING	THE	ADAPTER	FROM	REBTEL	NEWS	FRAGMENT		

NewsAdapter	adapter	=	new	NewsAdapter(getContext(),newsArticles,	newsDatabase,	appExecutors,	"newsFeed");	

	

	 	 	
	

	 	 43	
	

ADAPTER	CONSTRUCTOR	

	
public	NewsAdapter	(Context	context,	List<NewsArticle>	articles,	NewsDatabase	database,	AppExecutors	appExecutors,	
String	extraOrigination)	{	
			this.mContext	=	context;	
			this.articlesList	=	articles;	
			this.newsDatabase	=	database;	
			this.mAppExecutors	=	appExecutors;	
			this.extraOrigination	=	extraOrigination;	
}	

ONBINDVIEWHOLDER		

@Override	
public	void	onBindViewHolder(@NonNull	RecyclerView.ViewHolder	viewHolder,	int	i)	{	
	
			if	(viewHolder	instanceof	ArticleViewHolder){	
						handleArticleViewHolder((ArticleViewHolder)	viewHolder,	i);	
			}	else	if	(viewHolder	instanceof	FavoriteArticlesViewHolder)	{	
						handleFavoriteArticleViewHolder((FavoriteArticlesViewHolder)viewHolder,i);	
			}	
	
}	

4.2.4 News API	

	
News	fetching	has	been	handled	by	using	an	online	News	API.			

	

After	checking	several	online	options,	my	first	choice	fell	on	NEWSAPI.org.		

	

“News	API	is	a	simple	HTTP	REST	API	for	searching	and	retrieving	live	articles	from	all	over	
the	web.”	[28]	

With	this	API	it	is	possible	to	search	for	stories	using	a	combination	of	these	criteria:	

	

• Keyword	or	phrase.		
• Date	published.		
• Source	name.		
• Source	domain	name.		

	 	 	
	

	 	 44	
	

• Language.	

[28]	

	

The	results	can	be	further	sorted	by:		

• Date	published.	
• Relevancy	to	search	keyword.	
• Popularity	of	the	source.	

[28]	

	

Authentication	for	the	API	is	handled	with	a	simple	API	Key,	which	is	available	for	free	for	all	
non-commercial	projects	(including	open-source)	and	in-development	commercial	projects.	
[28]	

However,	the	developer	plan	presents	some	limits:	the	content	of	the	news	is	truncated	to	
260	characters,	only	500	network	requests	can	be	sent	per	day,	and	new	articles	are	
available	with	a	15	minutes	delay.		

	

News	API	has	2	main	entry	points:		

• “Top	headlines:	returns	breaking	news	headlines	for	a	country	and	category.	
• Everything:	returns	every	recent	blog	article	published	by	over	30,000	different	

sources	large	and	small.	This	endpoint	is	better	suited	for	news	analysis	and	article	
discovery,	but	can	be	used	to	retrieve	news	for	display	as	well.”	

[28]

Due	to	the	purpose	of	the	Rebtel	News	Feed,	I	have	adopted	the	Top	headlines	entry	point	
for	fetching	articles.		

Although	client	libraries	for	several	languages	like	Node.js,	Ruby	and	Python	are	available,	
the	SDK	for	Java	is	still	not	implemented.	The	next	sections	will	explain	more	in	details	the	
various	steps	for	implementing	the	fetching	of	the	articles.		

	

	 	 	
	

	 	 45	
	

4.2.5 HTTP Request and JSON

	
Since	Java	Client	library	is	not	yet	available	for	NewsApi.org,	it	has	been	necessary	to	
establish	a	HttpUrl	connection	to	fetch	the	articles.		

This	can	be	easily	achieved	through	the	HttpURLConnection	class,	which	represents	a	
URLConnection	with	support	for	HTTP-specific	features.		

	

The	steps	required	for	a	correct	use	of	the	class	are	summarized	below:	

	

1. Obtain	a	new	HttpURLConnection	by	calling	the	method	URL.openConnection().	The	
result	will	be	casted	to	HttpURLConnection.	

2. Prepare	the	request.	The	primary	property	of	a	request	is	its	URI.		
3. Read	the	response.	Response	headers	typically	include	metadata	such	as	the	

response	body's	content	type	and	length,	modified	dates	and	session	cookies.	The	
response	body	can	be	read	from	the	stream	returned	by	
URLConnection.getInputStream().	If	the	response	has	no	body,	the	method	returns	
an	empty	stream.	

4. Disconnect.	Once	the	response	body	has	been	read,	the	HttpURLConnection	should	
be	closed	by	calling	disconnect().	All	the	resources	held	by	connection	will	be	
released	so	they	may	be	reused	or	finally	closed.		

[29]	

	

The	response	returned	from	the	News	API	is	in	the	form	a	JSON	file.		

“JSON	(JavaScript	Object	Notation)	is	a	lightweight	format	which	stores	and	transmits	data	
objects,	often	used	for	communication	between	a	server	and	a	web	page”.	

JSON	data	is	written	as	name/value	pairs.		
	

JSON's	basic	data	types	are:	Number,	String,	Boolean,	Array,	Object	and	null.		

“JSON	arrays	are	written	inside	square	brackets,	while	objects	are	written	inside	curly	
braces”.	[30]	
	

Below	a	simple	example	of	a	JSON	file	returned	once	a	request	is	sent	to	News	API:		

	

	 	 	
	

	 	 46	
	

{	

• "status":	"ok",	
• "totalResults":	38,	
• -	

• "articles":	[

o -	

o {	

! -	

! "source":	{	

• "id":	"cnn",	
• "name":	"CNN"	

! },	

! "author":	"Analysis	by	Stephen	Collinson,	CNN",	
! "title":	"Trump	offers	deals	where	only	he	can	win	-	CNN",	
! "description":	"President	Donald	Trump's	ambitious	plans	to	fix	the	immigration	system,	

forge	Middle	East	peace	and	coax	Iran	to	the	table	might	work	--	but	only	if	his	negotiating	
partners	agree	to	utter	capitulation.",	

! "url":	"https://www.cnn.com/2019/05/17/politics/donald-trump-immigration-middle-
east-iran/index.html",	

! "urlToImage":	"https://cdn.cnn.com/cnnnext/dam/assets/151222135452-donald-trump-
flag-december-16-2015-super-tease.jpg",	

! "publishedAt":	"2019-05-17T11:06:00Z",	
! "content":	"Washington	(CNN)President	Donald	Trump's	ambitious	plans	to	fix	the	

immigration	system,	forge	Middle	East	peace	and	coax	Iran	to	the	table	might	work	--	but	
only	if	his	negotiating	partners	agree	to	utter	capitulation.\r\nThe	President's	new	
immigration	bluepri…	[+6882	chars]"	

o },	

o -	

o {	

! -	

! "source":	{	

• "id":	"fox-news",	
• "name":	"Fox	News"	

! },	

! "author":	"Paulina	Dedaj",	
! "title":	"Body	of	West	Virginia	teen,	15,	found	in	mountain	area;	mother's	boyfriend	

arrested	-	Fox	News",	
! "description":	"A	West	Virginia	man	was	arrested	in	connection	to	the	death	of	15-year-old	

Riley	Crossman	after	police	discovered	her	“decomposed	body”	in	a	rural	mountain	area	
Thursday	morning.",	

! "url":	"https://www.foxnews.com/us/west-virginia-man-arrested-riley-crossman",	
! "urlToImage":	"https://static.foxnews.com/foxnews.com/content/uploads/2019/05/Riley-

Crossman.jpg",	
! "publishedAt":	"2019-05-17T11:00:49Z",	
! "content":	"A	West	Virginia	man	was	arrested	in	connection	to	the	death	of	15-year-old	

Riley	Crossman	after	police	discovered	her	“decomposed	body”	in	a	rural	mountain	area	

	 	 	
	

	 	 47	
	

Thursday	morning.\r\nAndy	J.	McCauley	Jr.,	46,	was	arrested	shortly	after	search	teams	
found	the	rem…	[+1302	chars]"	

									}	

]	

}	

*Sample	from	NEWS	API	Documentation.	

	

If	the	application	attempts	to	make	a	Network	Request	from	its	main	thread,	an	“On	Main	
Thread	Exception”	will	occur. In fact, requesting network access from the UI	thread would
disrupt the user experience due to often expensive operations. 	

An	Async	Task	or	an	Intent	Service	will	fix	the	issue.	The	reasons	which	brought	to	a	
particular	choice	between	the	two	components	will	be	described	in	the	next	section.		

The	Http	request	could	be	also	handled	by	adopting	the	Retrofit	client,	but	I	decided	not	to	
adopt	external	libraries	for	this	project.		

	

4.2.6 Room, MVVM Pattern, Live Data, Repository and Network Source.
	

The	News	Feed	has	been	implemented	following	the	MVVM	Pattern	logic.		

RebtelNewsFragment	and	FavoriteArticlesFragment	share	the	same	ViewModel	and	
associated	LiveData.		

	

The	NewsRepository	class	handles	communications	between	the	SQLite	database	and	a	
Network	Data	Source,	which	requests	data	from	the	server	making	use	of	an	Intent	Service.		

For	years	Async	Task	has	been	one	of	the	most	popular	and	adopted	Android	Components	
for	short	operations	to	run	asynchronously	in	the	background.	

While	it	is	a	very	powerful	class,	it	presents	some	remarkable	issues	regarding	Activity	
Lifecycle.	However,	the	choice	of	using	an	Intent	Service	instead	of	an	Async	Task	is	more	
related	to	the	fact	that	Intent	Services	can	be	scheduled.		

	

Usually,	SQLite	databases	require	the	use	of	APIs	like	SQLiteOpenHelper,	SQLiteDatabase	
and	SQLiteQueryBuilder.		

“These,	although	largely	adopted	and	popular,	reveal	a	lot	of	development	challenges,	
which	include	a	hard	way	to	validate	SQLite	statements	at	compile	time”.		[31]	

So,	for	the	Rebtel	News	feed,	the	database	that	stores	the	latest	fetched	articles	has	been	
built	by	using	the	new	SQLite	object	mapping	library,	Room.		

	 	 	
	

	 	 48	
	

	

Room	includes	a	lot	of	benefits:		

• It	can	map	database	objects	to	Java	objects.	This	result	in	ContentValues	or	Cursors	
being	not	necessary	anymore	and	in	less	boilerplate	code	compared	to	the	built-in	
APIs;		

• It	catches	incorrect	SQL	statements	at	compile	time,	not	at	runtime;		
• It	allows	for	data	observation	via	LiveData	and	RxJava	(which	will	be	explained	later).	

[31]	

	

	

It	has	three	main	components:		

	

• @Entity:	it	defines	the	schema	of	the	database	table.	An	Entity	is	created	by	
converting	a	Model	Object.		

• @DAO:	it	represents	a	class	or	interface	as	a	Data	Access	Object	(DAO).	DAOs	define	
the	methods	useful	to	access	a	database	and	provide	an	API	for	reading	and	writing	
database	data.	

• “@Database:	it	represents	the	database	holder.	This	class	usually	defines	a	list	of	
entities	for	the	database	and	the	data	access	objects	(DAOs)	for	the	database”.	

	

[31]	

	

Room	makes	use	annotations	to	define	the	table	structure.	[31]	

	

Entities	must	be	compliant	with	the	following	requirements:	

	

• They	must	be	correctly	associated	with	the	annotation	@Entity.	
• One	of	the	fields,	the	primary	key,	must	be	labeled	with	the	@PrimaryKey	

annotation.	
• Room	needs	access	to	all	of	the	fields.	In	order	to	achieve	this,	fields	should	be	public	

or	getters	and	setters	should	be	provided.	
• Only	one	constructor	should	be	exposed	to	Room:	Room	cannot	compile	an	entity	

with	two	constructors	because	it	doesn't	know	which	one	to	use.	In	order	to	hide	a	
constructor	from	Room,	@Ignore	annotation	can	be	used.		

	 	 	
	

	 	 49	
	

• If	some	of	the	fields	will	not	be	stored	in	the	database,	@Ignore	annotation	can	be	
used	as	well	to	hide	them	from	Room.	

	

[31]	

	

	

An	example	of	entity	is	shown	below:		

	

@Entity(tableName	=	"articlesDatabase")	
public	class	NewsArticle	{	
	
			@PrimaryKey(autoGenerate	=	true)	
			private	int	id;	
	
			private	String	imageUri;	
			private	String	title;	
			private	String	content;	
			private	String	source;	
			private	String	author;	
			private	String	description;	
			private	int	favorite;	
			private	int	lastHour;	
			private	String	url;	
	
	
	
			public	NewsArticle(int	id,	String	imageUri,	String	title,	String	content,	String	source,	
																		String	author,	String	description,	int	favorite,	int	lastHour,	String	url)	{	
						this.id	=	id;	
						this.imageUri	=	imageUri;	
						this.title	=	title;	
						this.content	=	content;	
						this.source	=	source;	
						this.author	=	author;	
						this.description	=	description;	
						this.favorite	=	favorite;	
						this.lastHour	=	lastHour;	
						this.url	=	url;	
			}	
	
	
	
			@Ignore	
			public	NewsArticle()	{	
	
			}	

	

	 	 	
	

	 	 50	
	

	

In	the	example	code,	which	was	the	one	used	in	the	specific	News	Feed	case,	the	Database	
table	is	called	“ArticleDatabase”.	The	“id”	key,	which	is	the	primary	key,	is	autogenerated.		

The	“@Ignore”	annotation	tells	Room	to	ignore	the	constructor	which	is	used	to	instantiate	
the	Builder	class.		

	

“Next	component	in	line	is	DAO	(Database	Access	Object).	DAOs	are	either	abstract	classes	
or	interfaces	that	define	the	read	and	write	actions	for	the	database	data”.	[31]	

“The	only	thing	a	DAO	needs	is	the	@Dao	annotation.	Methods	are	annotated	with	@Insert,	
@Delete,	@Update	and	@Query.	@Insert,	@Delete	and	@Update	are	convenience	
annotations	that	create	methods	which	do	as	their	name	implies”.	[31]	

@Query	instead	allows	the	developer	to	write	SQLite	to	create	custom	read/write	database	
operations.			

	

Below	are	listed	the	methods	for	the	ArticlesDAO:		

	
@Dao	
public	interface	ArticlesDao	{	
	
			@Query("SELECT	*	FROM	articlesDatabase	WHERE	lastHour	=	1")	
			LiveData<List<NewsArticle>>	getCurrentArticles();	
	
			@Insert(onConflict	=	OnConflictStrategy.REPLACE)	
			void	bulkInsert(List<NewsArticle>	articles);	
	
			@Query("DELETE	FROM	articlesDatabase	WHERE	lastHour	=	1")	
			void	deleteOldArticles();	
	
			@Query("UPDATE	articlesDatabase	SET	lastHour	=	0	WHERE	favorite	=	1")	
			void	updateFavoritesHourFlag();	
	
			@Query("UPDATE	articlesDatabase	SET	favorite	=	1	WHERE	id	=	:userId")	
			void	updatePost(int	userId);	
	
			@Query("SELECT	*	FROM	articlesDatabase	WHERE	favorite	=	1")	
			LiveData<List<NewsArticle>>	getFavoriteArticles();	
	
			@Query("UPDATE	articlesDatabase	SET	favorite	=	0	WHERE	id	=	:userId")	
			void	removeFavorite(int	userId);	
	
}	

	

	 	 	
	

	 	 51	
	

The	first	query	returns	the	list	of	the	last	fetched	articles	that	are	currently	stored	in	the	
database.		

	

The	method	“bulkInsert”	inserts	any	number	of	ListArticle	objects.	As	the	app	receives	lists	
of	news	article	entries	from	the	server,	it	uses	bulkInsert	to	put	them	into	the	database.	For	
“bulkInsert”,	an	additional	annotation	“OnConflictStrategy.REPLACE"	can	be	used	for	
replacing	old	articles	fetched	with	new	ones	when	a	new	network	requests	is	sent	to	the	
server.		

	

UpdateFavoritesHourFlag()	sets	the	“lastHour”	flag	of	all	the	previous	fetched	articles	which	
were	not	flagged	as	favorites	by	the	user	to	0	before	sending	a	new	network	request,	so	
that	the	DeleteOldArticles()	method	can	delete	them.		

	

Other	methods	listed	allow	the	user	to	set	an	article	as	favorite	or	to	remove	a	story	from	
the	favorites	list.		

	

With	Entity	and	DAO	in	place,	the	last	component	of	the	Room	Database	is	the	Database	
itself,	which	returns	a	DAO	object.		

The	simple	code	for	implementing	the	Database	class	is	shown	below:		

	
@Database(entities	=	{NewsArticle.class},	version	=	1)	
public	abstract	class	NewsDatabase	extends	RoomDatabase	{	
	
			private	static	final	String	DATABASE_NAME	=	"articlesDatabase";	
	
			private	static	final	Object	LOCK	=	new	Object();	
			private	static	NewsDatabase	sInstance;	
	
			public	static	NewsDatabase	getInstance(Context	context)	{	
						if	(sInstance	==	null)	{	
									synchronized	(LOCK)	{	
												sInstance	=	Room.databaseBuilder(context.getApplicationContext(),	
																		NewsDatabase.class,	NewsDatabase.DATABASE_NAME).build();	
									}	
						}	
						return	sInstance;	
			}	
	
			public	abstract	ArticlesDao	ArticlesDao();	
}	

	 	 	
	

	 	 52	
	

View	Model	is	the	main	component	of	the	MVVM	Pattern.	

The	ViewModel	class	is	designed	to	hold	and	manage	UI-related	data	in	a	life-cycle	
conscious	way.	In	this	way	data	will	survive	configuration	changes	such	as	screen	rotations.	
By	adopting	this	class,	a	separation	of	responsibilities	take	place:	ViewModel	deals	with	
providing,	manipulating	and	storing	UI	state	while	UI	Controller	handles	the	display	of	the	
state.	[31]	

ViewModel	is	always	associated	with	components	with	a	LifecycleOwner	(fragments	or	
activities).	“By	providing	a	LifecycleOwner,	a	connection	between	the	ViewModel	and	the	
LifecycleOwner	is	established.”	

	

ViewModels	do	not	share	the	same	lifecycle	behaviour	with	their	associated	UI	Controllers.	
While	the	latter	are	destroyed	and	recreated	on	configuration	changes,	ViewModels	are	
not.	[31]	

Below	is	a	diagram	showing	how	different	is	the	lifecycle	of	a	ViewModel	compared	to	the	
lifecycle	of	the	activity,	when	the	activity	is	created,	rotated	and	finished.	[31]		

	

	

	 	 	
	

	 	 53	
	

ViewModels	are	often	associated	to	the	concept	of	LiveData	objects.		

	

“LiveData	is	a	data	holder	class	that	is	lifecycle	aware.	It	keeps	a	value	and	allows	this	value	
to	be	observed	by	a	list	of	associated	objects,	called	observers.	This	is	what	is	called	
observer	pattern.	The	object	observed,	called	subject,	notifies	all	his	observers	whenever	its	
state	changes,	usually	by	calling	one	of	their	methods.”	[31]		

	

	

	

	

In	the	case	of	LiveData,	the	subject	is	characterized	by	the	LiveData	itself	and	the	observers	
are	objects	which	represent	subclasses	of	the	Observer	class.	Every	time	the	methods	
postValue()	or	setValue()	are	called	the	subject's	state	changes,	and	the	active	observers	will	
be	triggered.	[31]	

“LiveData	keeps	a	list	of	associated	observers	and	LifecycleOwners.	In	general	Observers	are	
only	considered	active	when	their	associated	LifecycleOwner	is	on	screen.	This	means	it	is	in	
the	STARTED	or	RESUMED	state.	The	fact	that	LiveData	keeps	track	of	LifecycleOwners	is	
why	LiveData	is	called	lifecycle	aware”.	[31]	

Below	an	example	of	how	the	LiveData	was	used	in	the	specific	Rebtel	News	code:		

	

RebtelNewsFragment	

mViewModel.getArticles().observe(getViewLifecycleOwner(),	newsArticles	->	{	
			NewsAdapter	adapter	=	new	NewsAdapter(getContext(),newsArticles,	newsDatabase,	appExecutors,	"newsFeed");	
			articlesRecycler.setAdapter(adapter);	
});		

	 	 	
	

	 	 54	
	

View	Model	

	
public	class	ArticlesViewModel	extends	ViewModel	{	
	
			private	final	LiveData<List<NewsArticle>>	newsArticlesList;	
			private	final	LiveData<List<NewsArticle>>	favoriteArticles;	
	
			//	Date	for	the	weather	forecast	
			private	final	NewsRepository	mRepository;	
	
			public	ArticlesViewModel(NewsRepository	repository)	{	
						mRepository	=	repository;	
						newsArticlesList	=	mRepository.getCurrentArticles();	
						favoriteArticles	=	mRepository.getFavoriteArticles();	
			}	
	
			public	LiveData<List<NewsArticle>>	getArticles()	{	
						return	newsArticlesList;	
			}	
	
			public	LiveData<List<NewsArticle>>	getFavoriteArticles()	{	return	favoriteArticles;	}	
}	
	

The	activity	or	fragment	observes	a	MutableLiveData<>	object,	which	holds	a	NewsArticle.	
When	the	PostValue()	is	called	and	the	object	is	updated,	the	observers	are	notified.		

As	shown	in	the	code	above,	the	ArticlesViewModel	needs	a	reference	to	a	NewsRepository.	
However,	the	default	constructor	that	is	automatically	called	by	ViewModelProvider	when	
instantiating	a	new	ViewModel	takes	no	argument.	This	small	issue	can	be	easily	overcome	
by	providing	a	View	Model	Provider	Factory,	as	suggested	below:	

public	class	ArticlesViewModelFactory	extends	ViewModelProvider.NewInstanceFactory	{	
	
			private	final	NewsRepository	mRepository;	
	
			public	ArticlesViewModelFactory(NewsRepository	repository)	{	
						this.mRepository	=	repository;	
			}	
	
			@Override	
			public	<T	extends	ViewModel>	T	create(Class<T>	modelClass)	{	
						return	(T)	new	ArticlesViewModel(mRepository);	
			}	
}	

	 	 	
	

	 	 55	
	

The	Repository	plays	the	role	of	exposing	the	network	and	database	data	to	UI.		

In	this	specific	case,	NewsRepository	delegates	all	the	operations	to	the	ArticlesDAO	and	
NetworkDataSource.	In	fact,	it	observes	LiveData	from	the	NetworkDataSource	in	order	to	
perform	a	database	update	as	soon	as	it	finishes	fetching	new	data.	

The	NetworkDataSource	handles	all	network	operations	and	provides	the	most	recently	
downloaded	network	data.	This	is	achieved	through	a	MutableLiveData	object	that	is	
updated	anytime	a	new	network	request	is	sent	to	the	server.		

The	NetworkDataSource	is	able	to	perform	network	requests	using	an	IntentService.		

	

“IntentService	is	a	base	class	for	Services	that	handles	asynchronous	requests	(expressed	as	
intent	calls).	The	service	is	started	as	needed,	handles	each	Intent	in	turn	using	a	worker	
thread,	and	stops	itself	when	its	work	is	done”.	[32]	

Intent	Services	use	the	so	called	"work	queue	processor"	pattern	in	order	to	offload	tasks	
from	an	application's	main	thread.	[32]	This	purpose	can	be	achieved	by	extending	
IntentService	and	implementing	the	onHandleIntent()	method.	IntentService	will	receive	the	
Intents,	launch	a	worker	thread,	and	stop	the	service	as	appropriate.	

All	requests	are	handled	on	a	single	worker	thread	--	they	may	take	as	long	as	necessary	
(and	will	not	block	the	application's	main	loop),	but	only	one	request	will	be	processed	at	a	
time.	

	

The	fetching	and	storing	flow	for	RebtelNewsFeed	is	shown	below:		

	

1.	NewsRepository	observes	LiveData	from	NetworkDataSource.	

	

	
	

	 	 	
	

	 	 56	
	

	

	
private	NewsRepository(Context	context,	ArticlesDao	mArticlesDao,	NetworkDataSource	mNetworkDataSource,	
AppExecutors	executors)	{	
			mContext	=	context;	
			articlesDao	=	mArticlesDao;	
			networkDataSource	=	mNetworkDataSource;	
			mExecutors	=	executors;	
			initializeArticlesData();	
			LiveData<List<NewsArticle>>	networkData	=	networkDataSource.getArticles();	
			networkData.observeForever(newForecastsFromNetwork	->	{	
	
}	

	

	

2.	NetworkDataSource	creates	and	immediately	starts	NewsArticleIntentService.	

	

	

	

	 	 	
	

	 	 57	
	

public	void	startFetchArticlesService()	{	
			Intent	intentToFetch	=	new	Intent(context,	NewsArticlesIntentService.class);	
			context.startService(intentToFetch);	
}	

	

	
3.	IntentService	first	retrieves	an	instance	of	NetworkDataSource,	which	performs	the	
actual	fetch.	Once	finished,	it	updates	the	MutableLiveData	objects	delegated	to	store	the	
most	recently	downloaded	data.	

	

	

	

public	class	NewsArticlesIntentService	extends	IntentService	{	
	
			public	NewsArticlesIntentService()	{	
						super("NewsIntentService");	
			}	
	
			@Override	
			protected	void	onHandleIntent(Intent	intent)	{	
						NetworkDataSource	networkDataSource	=	InjectorUtils.provideNetworkDataSource(this.getApplicationContext());	
						networkDataSource.fetchArticles();	
	
			}	
}	

	

void	fetchArticles()	{	
			executors.networkIO().execute(()	->	{	
						try	{	
	
									URL	articlesRequestUrl	=	NetworkNewsUtils.buildURL(ClientPreferences.getTopCountryCode(context),	
ContactAPI.getInstance(context).getTopCountriesCodes(2));	

	 	 	
	

	 	 58	
	

	
									//	Use	the	URL	to	retrieve	the	JSON	
									String	jsonArticleResponse	=	NetworkNewsUtils.getResponseFromHttpUrl(articlesRequestUrl);	
	
			
									NewsAPIResponse	response	=	new	OpenArticlesJSonParser().parse(jsonArticleResponse);	
	
									if	(response	!=	null	&&	response.getNewsArticles().size()	!=	0)	{	
	
												//	When	you	are	off	of	the	main	thread	and	want	to	update	LiveData,	use	postValue.	
												//	It	posts	the	update	to	the	main	thread.	
												mDownloadedNewsArticles.postValue(response.getNewsArticles());	
	
												//	If	the	code	reaches	this	point,	we	have	successfully	performed	our	sync	
									}	
									}	catch	(Exception	e)	{	
									//	Server	probably	invalid	
									Log.d(TAG,	"Exception	occurred.	");	
						}	
			});	
}	

	

	

	

4.	NewsRepository,	triggered	by	the	PostValue(),	will	update	the	database	and	return	the	
LiveData	object	to	the	ViewModel.	

	

	

	
networkData.observeForever(newForecastsFromNetwork	->	{	
						mExecutors.diskIO().execute(()	->	{	
	
									updateFavoritesFlag();	
	

	 	 	
	

	 	 59	
	

									deleteOldArticles();	
	
									articlesDao.bulkInsert(newForecastsFromNetwork);	
						});	
			});	
	
	
}	
	
private	void	updateFavoritesFlag()	{	
			articlesDao.updateFavoritesHourFlag();	
}	
	
public	synchronized	static	NewsRepository	getInstance(Context	context,	ArticlesDao	articlesDao,	
NetworkDataSource	networkDataSource,	
																																									AppExecutors	executors)	{	
			if	(sInstance	==	null)	{	
						synchronized	(LOCK)	{	
									sInstance	=	new	NewsRepository(context,	articlesDao,	networkDataSource,	
															executors);	
						}	
			}	
			return	sInstance;	
}	
	
private	void	deleteOldArticles()	{	
			articlesDao.deleteOldArticles();	
}	
	
/**	
	*	Creates	periodic	sync	tasks	and	checks	to	see	if	an	immediate	sync	is	required.	If	an	
	*	immediate	sync	is	required,	this	method	will	take	care	of	making	surCe	that	sync	occurs.	
	*/	
	
/**	
	*	Database	related	operations	
	**/	
	
public	LiveData<List<NewsArticle>>	getCurrentArticles()	{	
			return	articlesDao.getCurrentArticles();	
}	

	
5.	Finally,	the	ViewModel	returns	the	articles	List	to	the	view,	which	will	update	the	UI	
accordingly.		

	
public	ArticlesViewModel(NewsRepository	repository)	{	
			mRepository	=	repository;	
			newsArticlesList	=	mRepository.getCurrentArticles();	
			favoriteArticles	=	mRepository.getFavoriteArticles();	
}	
	

	 	 	
	

	 	 60	
	

public	LiveData<List<NewsArticle>>	getArticles()	{	
			return	newsArticlesList;	
}	
	
public	LiveData<List<NewsArticle>>	getFavoriteArticles()	{	return	favoriteArticles;	}	

	

Rebtel	News	Fragment		

	

public	void	onViewCreated(View	view,	Bundle	savedInstanceState)	{	
			super.onViewCreated(view,	savedInstanceState);	
			newsDatabase	=	InjectorUtils.provideNewsDatabase(getActivity());	
			ArticlesViewModelFactory	factory	=	InjectorUtils.provideArticlesViewModelFactory(getActivity());	
			mViewModel	=	ViewModelProviders.of(this,	factory).get(ArticlesViewModel.class);	
			AppExecutors	appExecutors	=	InjectorUtils.provideAppExecutors(getActivity());	
	
			articlesRecycler.setLayoutManager(new	LinearLayoutManager(getContext()));	
	
			mViewModel.getArticles().observe(getViewLifecycleOwner(),	newsArticles	->	{	
						NewsAdapter	adapter	=	new	NewsAdapter(getContext(),newsArticles,	newsDatabase,	appExecutors,	
"newsFeed");	
						articlesRecycler.setAdapter(adapter);	
			});	
	
			swipeRefreshLayout.setOnRefreshListener(new	SwipeRefreshLayout.OnRefreshListener()	{	
						@Override	
						public	void	onRefresh()	{	
									mViewModel.getArticles().observe(getViewLifecycleOwner(),newsArticles	->	{	
												NewsAdapter	adapter	=	new	NewsAdapter(getContext(),newsArticles,	newsDatabase,	appExecutors,	
"newsFeed");	
												articlesRecycler.setAdapter(adapter);	
									});	
	
									if	(swipeRefreshLayout.isRefreshing())	{	
												swipeRefreshLayout.setRefreshing(false);	
									}	
						}	
			});	
}	

Since	Repository	is	not	associated	with	any	Lifecycle	owner,	it	calls	the	observeForever()	
method	on	the	NetworkDataSource,	which	is	very	similar	to	observe()	but	it	is	considered	
always	active.	[31]	

Repository,	Database,	NetworkSource	are	Singleton	classes:	this	means	only	one	Instance	
running	for	these	classes	is	needed.		

Creating	a	Singleton	requires	a	static	variable	of	the	class	and	a	Lock	object	to	ensure	thread	
safety.	Then	the	getInstance()	method	returns	an	instance	of	the	class	if	it	exists	or	creates	a	
new	one,	as	shown	below:		

	

	 	 	
	

	 	 61	
	

private	static	final	Object	LOCK	=	new	Object();	
private	static	volatile	NewsDatabase	sInstance;	
	
public	static	NewsDatabase	getInstance(Context	context)	{	
			if	(sInstance	==	null)	{	
						synchronized	(LOCK)	{	
									sInstance	=	Room.databaseBuilder(context.getApplicationContext(),	
															NewsDatabase.class,	NewsDatabase.DATABASE_NAME).build();	
						}	
			}	
			return	sInstance;	
}	

	
Network	fetching	could	happen	every	time	the	user	updates	or	refreshes	the	News	main	
page,	but	it	might	be	highly	under	performing	and	useless,	considering	that	News	API	
updates	the	headlines	each	15	minutes	(at	least	for	the	Developer	plan).		

This	is	why	for	this	purpose	I	have	decided	to	schedule	the	fetching	service	through	a	Job	
Scheduler.		

“Job	Scheduler	is	an	API	for	scheduling	various	types	of	jobs	against	the	framework	that	will	
be	executed	in	the	application's	own	process”.	[33]	

“A	JobInfo	object	is	passed	to	the	JobScheduler	using	the	schedule()	method.	When	the	
criteria	declared	are	met,	the	system	will	execute	this	job	on	the	application's	JobService.	
The	service	component	that	implements	the	logic	for	the	job	is	identified	when	constructing	
the	JobInfo	using	JobInfo.Builder.JobInfo.Builder(int,	android.content.ComponentName)”.	
[33]	

“The	framework	will	choose	the	appropriate	time	to	execute	jobs,	and	attempt	to	batch	and	
delay	them	as	much	as	possible.	It	can	be	run	at	any	moment	depending	on	the	current	
state	of	the	JobScheduler's	internal	queue”.	[33]		

“While	a	job	is	running,	a	wakelock8	is	hold	by	the	system	on	behalf	of	the	app.	For	this	
reason,	no	action	is	required	to	guarantee	that	the	device	stays	awake	for	the	duration	of	
the	job”.	[33]	

	

The	scheduling	follows	this	simple	flow:	

	

1. If	it	is	a	fresh	install	and	the	first	time	the	user	wants	to	access	the	news	feed,	the	
articles	are	fetched	and	stored	inside	the	database.	A	flag	is	updated	accordingly.		

2. After	the	first	time,	the	repository	will	schedule	a	job,	which	will	be	executed	every	
20	minutes	and	it	will	update	the	database.		

																																																													
8	Wakelock:	A	wake	lock	is	a	mechanism	to	indicate	that	an	application	needs	to	have	the	device	stay	on.	

	

	 	 	
	

	 	 62	
	

3. After	the	second	time,	since	the	job	has	been	already	scheduled,	the	repository	will	
always	return	by	default	the	list	of	articles	currently	available	in	the	database,	and	
fetching	and	updating	will	happen	periodically.	

	

private	void	initializeArticlesData()	{	
	
			if	(isFirstTimeFetching())	{	
	
						startFetchArticles();	
	
						ClientPreferences.setTimeStampLastNewsRequest(mContext,	1);	
	
			}	else	{	
	
						if	(JobSchedulerUtils.isJobScheduled(mContext,JobId.DOWNLOAD_ARTICLES_JOB_ID))	return;	
	
						networkDataSource.scheduleArticlesFetching();	
	
	
			}	
	
}	
	
private	Boolean	isFirstTimeFetching()	{	
	
			long	lastRequest	=	ClientPreferences.getTimeStampLastNewsRequest(mContext);	
	
			return	lastRequest	==	-1;	
	
}	
	
/**	
	*	Deletes	old	weather	data	because	we	don't	need	to	keep	multiple	days'	data	
	*/	
	
/**	
	*	Checks	if	there	are	enough	days	of	future	weather	for	the	app	to	display	all	the	needed	data.	
	*	
	*	@return	a	fetch	is	needed	
	*/	
	
/**	
	*	Network	related	operation	
	*/	
	
private	void	startFetchArticles()	{	
			networkDataSource.startFetchArticlesService();	
}	

	

	 	 	
	

	 	 63	
	

In	the	specific	case,	it	is	necessary	to	create	a	persistent	and	periodic	JobInfo	object,	which	
requires	any	type	of	Network.		

Below	the	code	for	scheduling	the	job:		

public	void	scheduleArticlesFetching()	{	
	
			JobScheduler	jobScheduler	=	(JobScheduler)	context.getSystemService(Context.JOB_SCHEDULER_SERVICE);	
			ComponentName	componentName	=	new	ComponentName(context,	FetchingJobService.class);	
			JobInfo	jobInfo;	
			if	(Build.VERSION.SDK_INT	<	Build.VERSION_CODES.N)	{	
						jobInfo	=	new	JobInfo.Builder(JobId.DOWNLOAD_ARTICLES_JOB_ID,	componentName)	
												.setMinimumLatency(3600000)	
												.setPersisted(true)	
												.setRequiredNetworkType(JobInfo.NETWORK_TYPE_ANY)	
												.build();	
			}	else	{	
						jobInfo	=	new	JobInfo.Builder(JobId.DOWNLOAD_ARTICLES_JOB_ID,	componentName)	
												.setPeriodic(3600000)	
												.setPersisted(true)	
												.setRequiredNetworkType(JobInfo.NETWORK_TYPE_ANY)	
															.build();	
			}	
			jobScheduler.schedule(jobInfo);	
	
}	

	

 4.2.7 News Feed Calls
	

One	of	the	main	reasons	for	introducing	the	news	feed	was	to	allow	users	to	call	their	
relatives	or	friends	after	reading	an	interesting	story	from	their	top	countries.	In	order	to	
achieve	this	I	have	connected	the	Rebtel	News	Feed	to	the	ContactBookSearch	Fragment	
that	already	implemented	the	calling	logic	in	the	App	by	setting	an	OnClickListener	for	the	
Phone	Icon	of	each	article	item.		

ContactBookSearch	activity	loads	all	contacts	from	the	user’s	address	book,	but	in	the	
specific	case	only	the	contacts	from	the	designed	country	should	be	displayed.		

This	is	why	the	following	method	has	been	introduced:		

public	static	void	startContactBookSearchFromNewsFeed(Context	context,	int	tabPosition,	String	origination)	{	
			Intent	intent	=	new	Intent(context,	ContactBookSearchActivity.class);	
			intent.putExtra(EXTRA_TAB_POSITION,	tabPosition);	
			intent.putExtra(ORIGINATION,origination);	
			context.startActivity(intent);	
}	

	 	 	
	

	 	 64	
	

The	extra	with	tag	“ORIGINATION”	is	only	present	in	the	intent	bundle	object	when	
ContatBookSearch	activity	is	started	from	the	News	Feed	fragment.

Inside	the	ContactSearchFragment,	a	method	checks	if	the	intent	Bundle	contains	key	
“ORIGINATION”.	Then	the	user’s	top	country	is	returned	by	executing	the	code	below:	

	

	private	String	getUserTopCountry()	{	
			String	topCountryCode	=	ClientPreferences.getTopCountryCode(getContext());	
			if	("".equals(topCountryCode))	{	
						String	topAddressCountryCode	=	ContactAPI.getInstance(getContext()).getTopCountriesCodes(2).get(0);	
						return	topAddressCountryCode;	
			}	else{	
						return	topCountryCode;	
			}	
}	

At	this	point,	by	using	Rebtel’s	ContactAPI	it	is	possible	to	fetch	all	the	contacts	for	a	specific	
country	and	display	them	on	the	screen.		

	

	

4.2.8 Managing Pages Communications
	
The	last	part	of	the	implementation	focuses	on	the	communication	between	the	different	
pages	(Living	Room,	Account	View,	Rebtel	News	Feed).		
Currently,	Rebtel	app	manages	the	switching	of	Living	Room	and	Account	View	through	a	
floating	action	button	at	the	right	bottom	of	the	screen.	It	also	handles	enter	and	exit	
animations	of	the	pages.		

Rebtel	News	has	been	made	accessible	only	from	the	Living	Room	page,	by	using	a	Floating	
Action	Button	at	the	left	bottom	of	the	screen,	at	the	same	height	of	the	one	used	for	
opening	the	Account	View.		

Some	changes	in	the	logic	for	the	animations	were	implemented	as	well,	in	order	to	prevent	
unnatural	behaviours	when	switching	from	a	page	to	another.	

	

LIVING_ROOM(LivingRoomFragment.class,	R.anim.enter_from_left,	R.anim.exit_to_right,	R.drawable.ic_settings),	
ACCOUNT(AccountViewFragment.class,	R.anim.enter_from_right,	R.anim.exit_to_left,	R.drawable.ic_home),	
REBTEL_NEWS	(RebtelNewsFragment.class,R.anim.enter_from_left,R.anim.exit_to_right,R.drawable.ic_home);	

	

public	void	setEnterAnim()	{	
			this.enterAnim=R.anim.enter_from_right;	
			this.exitAnim	=	R.anim.exit_to_left;	

	 	 	
	

	 	 65	
	

}	
	
public	void	unsetEnterAnim()	{	
			this.enterAnim	=	R.anim.enter_from_left;	
			this.exitAnim	=	R.anim.exit_to_right;	
}	

	

@OnClick(R.id.fab)	
void	switchPages()	{	
			if	(currentPage	==	Page.LIVING_ROOM)	{	
						setPage(Page.ACCOUNT,true);	
						fabNews.setVisibility(View.GONE);	
						TrackManager.getInstance().getGeneralFlowTracker().trackTapOneViewSwitch();	
			}	else	if	(currentPage	==	Page.ACCOUNT)	{	
						Page.LIVING_ROOM.unsetEnterAnim();	
						setPage(Page.LIVING_ROOM,true);	
						fabNews.setVisibility(View.VISIBLE);	
						TrackManager.getInstance().getGeneralFlowTracker().trackTapOneViewSwitch();	
			}	else	if	(currentPage	==		Page.REBTEL_NEWS)	{	
						Page.LIVING_ROOM.setEnterAnim();	
						setPage(Page.LIVING_ROOM,	true);	
						fabNews.setVisibility(View.VISIBLE);	
			}	
	
}	

While	the	default	behaviour	for	Living	Room	Page	was	to	enter	from	the	left	and	exit	to	
right,	if	the	current	page	is	Rebtel	News	(which	similarly	to	Living	Room	enters	from	left	and	
goes	out	to	the	right),	the	Living	Room	will	now	enter	from	right	and	exit	from	the	left.	The	
current	setting	is	reset	once	the	page	is	switched	to	Account	View	page.		

	

	

	

	

	

	

	

	

	

	

	 	 	
	

	 	 66	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 	 	
	

	 	 67	
	

	

	

CHAPTER 5
	

5. CONCLUSIONS
	

5.1 Rebtel News Feed: Future Improvements
	
The	Rebtel	News	Feed	might	be	implemented	in	the	next	releases	of	Rebtel	or	not,	but	
there	is	for	sure	room	for	improvements.		

	

First	of	all,	since	this	was	an	exploration	I	made	without	any	support	from	the	Design	Team,	
the	graphical	interface	could	be	totally	redesigned	to	improve	the	user	experience.		

	

News	API,	beside	top	headlines	articles,	offers	a	lot	of	other	options.	One	idea	to	improve	it	
might	be	to	take	track	of	the	user	behaviour.	Storing	the	keywords	contained	in	the	stories	
with	which	users	interact	the	most	might	be	very	useful	in	the	future.	In	fact,	Rebtel	could	
build	a	suggestion	algorithm	to	provide	the	customer	recommended	news	and	topics	of	
his/her	interest.		

	

Allowing	users	to	select	some	topics	and	display	the	latest	news	about	them	might	be	
another	thing	to	take	in	consideration	as	well.		

At	the	current	stage	of	the	feature,	the	News	Feed	only	shows	headlines	from	one	country.	
One	improvement	might	be	displaying	stories	from	different	countries	by	using	a	ViewPager	
and	a	TabLayout;	in	this	way,	switching	from	one	country	to	another	would	be	easy	and	
intuitive.		

	 	 	
	

	 	 68	
	

	

Beside	the	News	Feed,	one	idea	that	came	to	my	mind	was	a	Weather	forecast	activity,	
which	would	have	shown	the	weather	predictions	for	the	user’s	top	country,	and	maybe	
alert	him/her	if	anything	relevant	(storms,	hurricanes	etc.)	was	currently	happening.		

	

Although	the	messaging	feature	has	been	removed	by	Rebtel	in	the	latest	releases,	maybe	
sharing	News	Feed	articles	inside	the	app	through	a	chat	could	have	been	really	powerful.		

	

5.2 Incognito Mode: Future Improvements
	
At	the	current	stage,	the	Incognito	Feature	has	solved	the	most	urgent	issues	related	to	the	
first	roll	out.		

However,	before	reaching	a	final	idea	for	the	implementation,	several	meetings	with	the	
designers	and	product	managers	brought	to	different	ideas,	which	have	been	currently	
discarded	for	lack	of	business	case	built	on	them	but	might	have	a	shot	in	the	near	future.	

The	most	outstanding	idea	for	Incognito	Mode	was,	beside	changing	the	theme	and	
efficiently	alerting	users	about	their	current	calling	mode,	to	make	account	activities	and	
monthly	recaps	private.		

In	order	to	understand	the	reason,	let´s	have	a	look	at	which	informations	the	Monthly	
Recap	shows:		

	

	 	 	
	

	 	 69	
	

				 	
	

	

	
Some	users	may	want	to	keep	some	of	these	infos	to	themselves;	my	initial	idea	was	to	ask	
the	user		whether	he	wanted	or	not	to	choose	a	simple	Passcode	the	first	time	he/she	
enabled	the	Incognito	Mode.	If	the	user	opted	for	a	Passcode,	access	to	Monthly	Recap	and	

	 	 	
	

	 	 70	
	

Account	Activity	with	Incognito	Mode	set	would	have	required	to	enter	the	password	
picked.		

This	idea	was	initially		well	welcomed	by	product	managers	and	designers,	and	I	started	
developing	it.		

	

	

											 	

First	time	Enabling	Incognito	Mode																																											User	decides	to	enable	Passcode	Verification	

	

	 	 	
	

	 	 71	
	

															 	

User	is	warned	Incognito	Mode	is	not	available	in																				Incognito	Mode	Indicator	in	Living	Room	
Cuba,	if	his/her	top	country	is	Cuba.	

	 	 	
	

	 	 72	
	

	

Incognito	Mode	Dialog	with	informations	

	

The	main	difference	between	Regular	Mode	and	Incognito	mode	would	have	been	that	the	
Account	Activity	in	regular	mode	would	have	displayed	only	calls	and	transaction	made	in	
regular	mode	while,	when	accessing	Account	Activity	in	Incognito	Mode,	the	user	would	
have	seen	all	his/her	activities	with	no	restrictions	(This	task	would	have	required	Rebtel	
BackEnd	Team	support).	Monthly	Recap	instead	would	have	been	the	same,	but	by	enabling	
Incognito	Mode	access	to	the	feature	would	have	required	the	chosen	code.		

Unfortunately,	while	a	Business	case	was	already	built	for	the	final	idea	implemented,	there	
was	not	enough	data	about	the	business	value	these	2	sub	features	could	eventually	bring	
to	the	product.	

The	Backend	team	and	the	design	team	were	both	really	busy	with	the	new	app	Rebtel	is	
launching	and	could	not	provide	enough	support	for	implementing	the	feature	with	the	
explained	settings.		

Besides,	if	we	take	in	consideration	the	values	promoted	by	Rebtel	(being	connected	to	your	
family	and	relatives),	this	extension	of	the	feature	might	have	been	a	contradiction	with	the	
ethic	of	the	app.	This	is	why	my	idea	did	not	see	the	light	of	the	day.		

	 	 	
	

	 	 73	
	

However,	I	think	privacy	is	something	really	important	nowadays,	and	it	would	be	really	
interesting	to	explore	these	solutions	in	the	future.	One	improvement	to	my	
implementation	might	be	the	fingerprint	authentication	instead	of	a	simple	code.	This	could	
be	made	easily	achievable	using	a	Biometric	Prompt	dialog	in	Android	Pie,	but	for	older	
version	the	deprecated	version	of	FingerPrintManager	allows	to	obtain	performing	results	
as	well.		

	

5.3 CONCLUSIONS: MY EXPERIENCE

Before	starting	this	internship	abroad	I	had	a	lot	of	expectations.	I	wanted	to	move	for	some	
months	to	a	different	country	to	improve	my	English	communication	skills,	to	come	in	touch	
with	a	different	culture	and	to	understand	better	how	companies	in	other	countries	
organize	their	work	timeline.		

Beside	my	thesis	project,	my	main	goals	were	basically	2:	

• To	become	a	better	Android	developer;	
• To	learn	how	to	work	with	a	real	development	team.		

	

Honestly,	I	can	say	Rebtel	gave	me	everything	I	was	looking	for.		

First	of	all,	I	had	the	huge	opportunity	to	work	in	a	very	international	environment	with	
people	from	more	than	40	countries	and	this	has	been	an	amazing	experience.		

The	communication	between	different	departments	happens	on	a	daily	basis	and	everything	
is	handled	properly	by	respecting	deadlines	very	carefully,	although	the	company	also	
reserves	some	time	for	fun	activities	inside	the	office,	aiming	to	create	a	better	connection	
between	the	employees.		

My	company	tutor,	Rafael,	has	been	really	helpful	since	the	first	days	and	gave	me	tons	of	
material	to	study	from.	He	suggested	me	how	to	use	different	design	patterns,	like	MVVM,	
MVP,	Builder	Pattern,	Singleton	and	more.	Today,	I	feel	like	I	have	learnt	a	lot	of	new	stuff	
and	new	programming	tricks	in	a	very	short	time.		

Thanks	to	Andy,	the	head	of	mobile	and	the	person	who	gave	me	this	huge	opportunity,	I	
observed	how	to	manage	a	team	and	how	to	make	everything	work,	even	if	there	are	issues	
inside	a	group	of	developers.	

I	am	highly	satisfied	by	the	Rebtel	News	feature	I	implemented.	For	this	one,	I	finally	got	rid	
of	the	“Spaghetti	Code”	style	I	was	used	to	adopt	whenever	I	had	to	do	something	on	my	
own.	I	understood	that	coding	for	small	and	especially	large	teams	comes	with	the	
responsibility	of	making	your	work	comprehensible	to	other	developers	and	other	people	
involved	in	a	project.	

	 	 	
	

	 	 74	
	

I	am	also	happy	for	the	other	feature	implementation	I	took	part	in,	the	Incognito	Mode.	
Although	the	final	result	obtained	is	pretty	simple	and	basic,	I	could	directly	experience	the	
whole	flow	companies	follow	in	order	launch	new	features	and	I	have	to	say	that	I	found	it	
more	difficult	than	one	may	think,	because	it	is	fundamental	to	take	in	consideration	so	
many	aspects	that	I	took	for	granted	in	the	past.		

I	just	wish	I	could	have	done	more	for	the	company.	To	be	honest,	I	think	the	Internship	was	
really	useful	for	me	and	my	future	experiences,	the	amount	of	learnings	has	been	noticeable	
so	I	really	wanted	to	work	on	something	more	meaningful	than	a	single	feature.		

But	I	also	came	to	understand	that	most	of	the	features	in	a	successful	company	require	a	
business	case	built	already,	and	during	my	specific	internship	there	was	none	available	
beside	Incognito	Mode.	

	

	

	

	

	

	

		

	

	

	
	

	

	
	

	

		

	

	 	 	
	

	 	 75	
	

	

6. Bibliography
	

[1]	Sven	Carlsson.	“Migranter	i	USA	sätter	ny	fart	på	Rebtel”.		URL:	
https://digital.di.se/artikel/migranter-i-usa-satter-ny-fart-pa-rebtel	

[2]	Anirudh	Bishnoi.	“Android,Your	Co-Partner”.		

[3]	Elgin,	Ben.	“Google	Buys	Android	for	Its	Mobile	Arsenal”.	Bloomber	Businessweek.		

[4] Alabaster,	Jay	(April	16,	2013).	"Android	founder:	We	aimed	to	make	a	camera	OS".	PC	
World.	International	Data	Group

[5] Welch,	Chris	(April	16,	2013).	"Before	it	took	over	smartphones,	Android	was	originally	
destined	for	cameras".	The	Verge.	Vox	Media.	

[6]	Manjoo,	Farhad	(May	27,	2015).	"A	Murky	Road	Ahead	for	Android,	Despite	Market	
Dominance"	

[7]	Block,	Ryan	(August	28,	2007).	"Google	is	working	on	a	mobile	OS,	and	it's	due	out	
shortly".	Engadget.	AOL.

[8] Aamoth,	Doug	(September	23,	2008).	"T-Mobile	officially	announces	the	G1	Android	
phone".	TechCrunch.	AOL.	

[9]	Gao,	Richard	(September	23,	2016).	"Android	and	its	first	purchasable	product,	the	T-
Mobile	G1,	celebrate	their	8th	birthdays	today".	Android	Police.	

[10]	Reith,	Ryan.	Chau,	Melissa.	“Smartphone	Market	Share”.	URL:		

https://www.idc.com/promo/smartphone-market-share/os	

[11] Perez,	Sarah.	“Apple’s	App	Store	revenue	nearly	double	that	of	Google	Play	in	first	half	of	2018	
“	URL:	https://techcrunch.com/2018/07/16/apples-app-store-revenue-nearly-double-that-of-
google-play-in-first-half-of-2018/	

[12]	Ogbo,	Obaro.	“7	reasons	why	you	should	develop	apps	for	Android	rather	than	iOS”.	URL:	
https://www.androidauthority.com/develop-apps-for-android-rather-than-ios-607219/	

[13]	Android	Developers	Application	Fundamentals.	URL:	
https://developer.android.com/guide/components/fundamentals.html	

[14]	Lardinois,	Frederic.	“Kotlin	is	now	Google’s	preferred	language	for	Android	app	development”.	
URL:		https://techcrunch.com/2019/05/07/kotlin-is-now-googles-preferred-language-for-android-
app-development/	

	 	 	
	

	 	 76	
	

[15]	“Tools	Overview”.	Android	Developers	

[16]	“Android	Studio’s	Website”	

[17]	Ducrohet, Xavier; Norbye, Tor; Chou, Katherine. "Android Studio: An IDE built for Android"

[18] Lynch, Ryan. “5 reasons why you should use Incognito Mode for Browsing”. URL:
https://www.maketecheasier.com/reasons-for-browsers-incognito-mode/	

[19]	Epstein,	Yoni.	“Where	did	my	cookies	go?”.	URL:	https://engineering.taboola.com/where-
did-my-cookies-go/	

[20]	Vyas,	Anshul.	“MVC	Pattern”.	Medium.	URL:	https://medium.com/@anshul.vyas380/mvc-
pattern-3b5366e60ce4	

[21]	Pandey,	Bipin.	“MVP	in	Android	with	a	simple	demo	project”.	URL:	
https://medium.com/cr8resume/make-you-hand-dirty-with-mvp-model-view-presenter-
eab5b5c16e42	

[22]	Sharma,	Ankit.	“Why	to	choose	MVVM	over	MVP	—	Android	Architecture	

“.	URL:	https://android.jlelse.eu/why-to-choose-mvvm-over-mvp-android-architecture-
33c0f2de5516	

[23]	“The	MVVM	Pattern”.	Microsoft.	URL:	https://docs.microsoft.com/en-us/previous-
versions/msp-n-p/hh848246(v=pandp.10)	

[24]	“Builder	Design	Pattern”.	SourceMaking.	URL:	
https://sourcemaking.com/design_patterns/builder	

[25]	"Index	of	/archive/2010/winter/51023-1/presentations"	(PDF).	
www.classes.cs.uchicago.edu.	Retrieved	2016-03-03.	

[26]	Android	Developers.	“Create	a	list	with	RecyclerView”.	URL:	
https://developer.android.com/guide/topics/ui/layout/recyclerview	

[27]	Android	Developers.	“Build	a	Responsive	UI	with	Constraint	Layout”.	URL:	
https://developer.android.com/training/constraint-layout	

[28]	News	Api	Documentation.	URL:	https://newsapi.org/docs	

[29]	Android	Developers.	“HttpURL	Connection”.	URL:	
https://developer.android.com/reference/java/net/HttpURLConnection	

[30]	W3School.	“What	is	JSON”.	URL:	https://www.w3schools.com/whatis/whatis_json.asp	

[31]	Codelabs	Developers.	“Build	an	App	with	Architecture	Components”.	DEPRECATED.	URL:	
https://codelabs.developers.google.com/codelabs/build-app-with-arch-components/index.html#0	

[32]	Android	Developers.	“Intent	Service”.	URL:	
https://developer.android.com/reference/android/app/IntentService	

[33]	Android	Developers.	“Job	Scheduler”.	URL:	
https://developer.android.com/reference/android/app/job/JobScheduler	

	

	 	 	
	

	 	 77	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
	

