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ABSTRACT

The ACM RecSys Challenge 2017 was focused on the problem of job recommendations on XING 
in a cold-start scenario. Given fixed historic dataset and fixed targets the goal of the challenge is to 
identify those users that might be interested in getting notified about the job posting and are also 
appropriate candidates for the given job. 
This dissertation analyzes and implements a general purpose supervised learning algorithm called 
factorization machines (FM) to make job recommendations to appropriate candidates. The 
algorithm can be used for both classification and regression tasks.  
Since our task is to predict whether a user will positively interact with an item (job) or not, a 
Factorization machines classifier will be implemented. There are three major phases to implement 
this classifier, i.e. Data preparation (Pre-processing) which involves merging interactions data 
with user/item features data and one hot encoding, Training phase, which involves splitting the 
dataset to training and test, creating FM model then training the model, Prediction phase, that is 
the final step which tries to make predictions to the test set then generate a recommendation file.
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Chapter One

1. INTRODUCTION

Recommender systems (RSs) are a set of software tools and techniques that provide item 
suggestions that are most likely of interest to a particular user. It means they are primarily directed 
towards users who lack sufficient personal experience and competence to evaluate the 
overwhelmingly increasing number of alternative items that a website offers. The suggestions relate
to various decision-making processes, such as what items to buy, what music to listen to, or what 
online news to read.

“Item” is a term used to imply what the RS recommends to users. A RS normally focuses on 
a specific type of item (e.g. news, jobs, movies...) and, accordingly, its design, its graphical user 
interface, and the core recommendation technique used to generate the recommendations are all 
customized to provide useful and effective suggestions for that specific type of item.

RSs are becoming the most important features of modern websites. Diverse applications in 
areas such as E-commerce, search engines, Internet music and video, gaming and Online dating 
apply similar techniques that leverage large volumes of data to better fulfill a user’s need in a 
personalized fashion. Especially commercial websites like amazon benefit from a boost in customer
loyalty, click through rates and revenue when implementing recommender systems that provide 
each customer personalized product recommendations that the user might be interested in.
For many practitioners and researchers in the fields of recommendation systems, their main focus 
has been to accurately predict ratings i.e. predict a metric, real valued variable. This main focus of 
accurate rating prediction was mainly triggered by the Netflix prize challenge which took place 
from 2006 to 2009. 

Most recommendation problems assume that we have a consumption/rating dataset formed 
by a collection <user, item, rating> tuples. This has been a starting point for most variations of 
collaborative filtering algorithms and they have proven to yield nice results, However in many 
applications, we have plenty of metadata(titles, categories, tags….) that can be used to make better 
prediction.

The main purpose of this thesis is to implement a general purpose Factorization machines 
model that in a natural way includes extra features in the model and make better predictions even 
under sparse settings.
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Chapter 2

2. BACKGROUND OF RECOMMENDER SYSTEMS

2.1. What are Recommender Systems
Recommender systems emerged as an independent research area in the mid-1990s. In recent 

years, the interest in recommender systems has dramatically increased, as the following facts 
indicate:

1. Recommender systems play an important role in highly-rated Internet sites such as 
Amazon, YouTube, Netflix, Spotify, LinkedIn, Facebook and many others. Moreover many media 
companies are now developing and deploying RSs as part of the services they provide to their 
subscribers. For example, Netflix, the online provider of on-demand streaming media, awarded
a million dollar prize to the team that first succeeded in substantially improving the performance of 
its recommender system. 

2. There are conferences and workshops dedicated specifically to the field, namely the 
Association of Computing Machinery’s (ACM) Conference Series on Recommender Systems 
(RecSys), established in 2007. This conference stands as the premier annual event in recommender 
technology research and applications. In addition, sessions dedicated to RSs are frequently included
in more traditional conferences in the area of databases, information systems and adaptive systems.
Additional noteworthy conferences within this scope include: ACM’s Special Interest Group on 
Information Retrieval (SIGIR); User Modeling, Adaptation and Personalization (UMAP); 
Intelligent User Interfaces (IUI); World Wide Web (WWW); and ACM’s Special Interest Group on 
Management Of Data (SIGMOD).

3. At institutions of higher education around the world, undergraduate and graduate
courses are now dedicated entirely to RSs, tutorials on RSs are very popular at computer science 
conferences, and a book introducing RSs techniques has been published as well . Springer is 
publishing several books on specific topics in recommender systems in its series: Springer Briefs in 
Electrical and Computer Engineering. A large, new collection of articles dedicated to
recommender systems applications to software engineering has also recently
been published.

4. There have been several special issues in academic journals which cover research and 
developments in the RSs field. Among the journals that have dedicated issues to RSs are: AI 
Communications (2008); IEEE Intelligent Systems (2007); International Journal of Electronic 
Commerce (2006); International Journal of Computer Science and Applications (2006); ACM 
Transactions on Computer Human Interaction (2005); ACM Transactions on Information Systems 
(2004); User Modeling and User-Adapted Interaction (2014, 2012); ACM Transactions on 
Interactive Intelligent Systems (2013); and ACM Transactions on Intelligent
Systems and Technology (2015).
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2.2. Recommender Systems Evaluation

Recommender systems research is being conducted with a strong emphasis on practice and 
commercial applications. One very important issue related to the practical side of RS deployment is 
the necessity of evaluating the quality and value of the systems. Evaluation is required at different 
stages of the system’s life cycle and for various purposes. At design time, evaluation is required to 
verify the selection of the appropriate recommender approach. In the design phase, evaluation 
should be implemented off-line and the recommendation algorithms, i.e., their computed 
recommendations, are compared with the stored user interactions. An off-line evaluation consists of 
running several algorithms on the same dataset of user interactions (e.g., ratings) and comparing 
their performances. This type of evaluation is usually conducted on existing public benchmark data 
if appropriate data is available, or, otherwise, on collected data. The design of the off-line 
experiments should follow known experiment design practices in order to ensure reliable results. 
Off-line experiments can measure the quality of the chosen algorithm in fulfilling its 
recommendation task. However, such evaluation cannot provide any insight about the user 
satisfaction, acceptance or experience with the system. The algorithms might be very accurate in 
solving the core recommendation.
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2.3. Recommender Systems Applications

Recommender systems research, aside from its theoretical contribution, is generally aimed at 
practically improving industrial RSs and involves research about various practical aspects that apply
to the implementation of the systems. Indeed, an RS is an example of large scale usage of machine 
learning and data mining algorithms in commercial practice. The common interest in the field, both 
from the research community and from the industry has leveraged the availability of data for 
research on one hand, and the evolving of enhanced algorithms on the other hand. Practical related 
research in RSs examines aspects that are relevant to different stages in the life cycle of an RS, 
namely, the design of the system, its implementation, evaluation, maintenance and enhancement 
during system operation. The Netflix Prize announced in 2006 was an important event for the 
recommender systems research community and industry, and their mutual interaction. It highlighted
the importance of the recommendation of items to users and accelerated the development of many 
new data mining recommendation techniques. Even though the Netflix Prize initiated a lot of 
research activities, the prize was a simplification of the full recommendation problem. It consisted 
of predicting user’s ratings while optimizing the Root Mean Square Error (RMSE) between the 
predicted and actual ratings.
Based on some specific application domains, we define more general categories of domains for the 
most common RS applications:
• Entertainment – RSs for movies, music, games...
• Content - newspapers, documents, web pages, e-learning applications, and email filters.
• E-commerce - products to buy such as books, computers and smartphones, PCs
etc. for different types of consumers.
• Services - travel services, experts for consultation, houses to rent, or matchmaking services.
• Social - people in social networks, content social media content such as tweets, Facebook news 
feeds, LinkedIn job updates, and others.
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2.4. Recommendation Techniques
In order to implement its core function i.e. identifying useful items for the user, a RS must predict 
that an item is worth recommending. In order to do this, the system must be able to predict the 
utility of some items, or at least compare the utility of some items, and then decide which items to 
recommend based on this comparison. The prediction step may not be explicit in the 
recommendation algorithm but we can still apply this unifying model to describe the general role of 
an RS.

In General recommendations can be categorized into personal and non personal recommendations.
Personal recommendations are offered as ranked list of personalized items. In the process of 
ranking, RSs predict what the most suitable items are based on the user’s preferences and 
constraints, which are either explicitly expressed as ratings or inferred by interpreting actions of a 
user. Non personal recommendations are simpler to generate and are normally featured in 
magazines and newspapers (top n selections of books or CDs) and are not addressed by RS 
research. 
The following diagram shows the different types of recommendation techniques.

Figure 1. Recommendation techniques (sciencedirect n.d.)
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2.4.1. Collaborative Filtering (CF) Techniques

Collaborative filtering methods generate user specific recommendations of items based on previous 
ratings (interactions) without the need for extra information about items or users. In order to 
establish recommendations, CF techniques need to relate two fundamentally different entities: items
(jobs in our case) and users. There are two main approaches to facilitate such a comparison, The 
neighborhood approach and Latent factor models.
1. The neighborhood approach focuses on relationships between 

 users (user based recommendations)
 items (item based recommendations)

2. Latent factor models comprise an alternative approach by transforming both items and users to 
the same latent factor space. The latent space tries to explain ratings by characterizing both items 
and users on factors automatically extracted from user feedback. The widely known latent factor 
model is matrix factorization (aka, SVD).
The common problem faced when using CF techniques is that they are not able to deal with cold 
start situations, and they over-generalize i.e. they are not able to answer why certain list of items is 
being recommended to a user.
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Most Popular CF Recommendation techniques

2.4.1.1. kNN (k Nearest Neighbors)
Recommender systems based on neighborhood automate the common principle that similar users 
prefer similar items, and similar items are preferred by similar users. kNN for Recommender 
Systems can generally be classified as User-based kNN and Item-based kNN.

User-based kNN
Let          - N(U) - Neighbors of User U and

    - Wuv - Similarity weight between users U and V

Problem: predict rating of user U for an item i, rui, 

Step 1. Calculate similarity weight among users, and build user-similarity matrix.

Step 2. Calculate rating of user u for item i,, rui 

Example: Given the rating matrix given below, to calculate predicted rating of Eric for the movie 
Titanic,

R[] The matrix Titanic Die Hard Forest Gump Wall-E
John 5 1 2 2
Lucy 1 5 2 5 5
Eric 2 ? 3 5 4
Diane 4 3 5 3

Table 1 – User kNN example
Step 1. Calculate similarity weight among users, and build user-similarity matrix.
To calculate similarity weights we use the Pearson Correlation (PC) formula, i.e. 

14



where:
Juv => Common set of Items rated by both user u and v

rui => rating of user u to item I

rvi=> rating of user v to item I

For instance to calculate similarity between John and Lucy,

JJL =  {The matrix, Titanic, Forest Gump, Wall-E} => common movies rated by John and lucy

rJ  = (5+1+2+2) / 4 = 2.5 => mean value for john’s ratings

rL = (1+5+5+5) / 4 = 4.0 => mean value for lucy’s ratings

Substituting these values in the above PC formula we get, PC(J, L) = -0.938. So we do the same for
each user and build the similarity matrix shown below.

Step 2: Calculate Rating of Eric to Titanic, i.e. rET.

Where 
Ni(E) = k Nearest Neighbors of Eric, i.e. if k=2, N1(E) = {Lucy} and N2(E) = {Diane}
WEU = Similarity of Eric with its neighborhood, i.e. from the user similarity      

PC(Eric, Lucy) = 0.922 and PC(Eric, Diane) = -0.659.

rUT = ratings of Eric’s neighbors to Titanic, i.e. rLT = 5 and rDT = 3,

 So, substituting this values in the above formula, We get

rET = (0.922 * 5) + (-0.659 * 3) / |0.922| + |-0.659|

rET = 4.61 + (-1.977) / 1.581

rET = 4.166
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Item-based kNN
Given the above example, to calculate predicted rating of Eric for the movie Titanic:
Step 1: Compute similarity among items and build item similarity matrix, using the Adjusted cosine
formula, i.e. 

Where,
  Uij = Entire set of users who have rated for the movies i and j 

  rui = rating of user u (from set Uij) to movie i

  ruj = rating of user u (from set Uij) to movie j 

 = mean value of ratings of user u

For instance to calculate the similarity between “The matrix” and “Titanic”, we have
UMT = {John, Lucy, Diane} => users who rated for both the matrix and titanic,

r The Matrix Titani
c

John 5 1
Lucy 1 5
Diane 4 3

rmean (John) = (5+1+2+2) / 4 = 2.5

rmean (Lucy) = (1+5+2+5+5) / 5 = 3.6

rmean (Diane) = (4+3+5+3) / 4 = 3.75

So, Substituting, we get, AC(M, T) =  -0.943

AC[] The matrix Titanic Die Hard Forrest Gump Wall-E
The matrix 1.000 -0.943 0.882 -0.974 -0.977

Titanic -0.943 1.000 -0.625 0.931 0.994
Die Hard 0.882 -0.625 1.000 -0.804 -1.000

Forrest Gump -0.974 0.931 -0.804 1.000 0.930
Wall-E -0.977 0.994 -1.000 0.930 1.000

Table 2 – Item kNN - Adjusted cosine
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Step 2: Compute predicted ratings of Eric for Titanic,

Where 
Ni(T) = k Nearest Neighbors of Titanic, i.e. if k=2, N1(T) = {Forest Gump} and N2(T) = {Wall-E}

WTI = Similarity of Titanic with its neighborhood, i.e. from the item similarity      

AC(Titanic, Forest Gump) = 0.931 and AC(Titanic, Wall-E) = 0.994.

rIE = Eric’s ratings to Titanic’s neighbors rFE = 5 and rWE = 3.

So, substituting this values in the above formula, We get

rET = (0.931 * 5) + (0.994 * 3) / (|0.931 + 0.994|) = 

rET = 8.631 / 1.925

rET = 4.483.
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2.4.1.1. MATRIX FACTORIZATION (MF)

Basically to factorize a matrix means finding two or more matrices such that when 
multiplied we get back the original matrix. Matrix factorization is the general term used for models 
that are induced by factorization of the user-item rating matrix (aka SVD based models). Of all the 
several MF techniques in this section we’ll see how the SVD model works along with a working 
example.

MF models map both users and items to a joint latent factor space of dimensionality f , such 
that user-item interactions are modeled as inner products in that space. The latent space tries to 
explain ratings by characterizing both products and users on factors automatically extracted from 
user feedback. For example, when the items are movies, factors might measure latent dimensions 
such as comedy vs. drama, amount of action, or orientation to people with ages in range; less well 
defined dimensions such as depth of character development or peculiar; or completely non 
interpretable dimensions. (Recommender systems handbook – second edition n.d.)
Given K as number of latent factors and R[i*j] as a sparse matrix of size i by j, the task is to fill the 
empty holes in the matrix (unrated values)

SVD Example

Rating matrix R[] I1 I2 I3 I4

U1 5 3 - 1
U2 4 - - 1
U3 1 1 - 5
U4 1 - - 4
U5 - 1 5 4

Table 3 – Matrix factorization example (quuxlabs n.d.)
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Step 1. Randomly initialize P[i*K] and Q[j*K] where K = 2 such that R ~ PQT = R’ :

P  = 

0.50 0.39
0.73 0.70
0.58 0.21      
0.61 0.24
0.79 0.58

Q = 

0.51 0.59
0.90 0.08
0.82 0.43
0.2 0.53

Where each row of P represents the strength of associations between a user and it’s features, 
similarly each row of Q represents the strength of associations between an item and it’s features. 

Step 2: To get predictions of a user ui for an item ij, we calculate the dot product of the two vectors

corresponding to  ui and  ij. 

r’ij = Pi
T qj = ∑k

k=1 pik qkj

pik = 

0.50 0.39
0.73 0.70
0.58 0.21      
0.61 0.24
0.79 0.58

qkj  =  

0.51 0.90 0.82 0.22
0.59 0.08 0.43 0.53

r’ij = 

0.48 0.48 0.57 0.31
0.78 0.71 0.89 0.53
0.41 0.53 0.56 0.23
0.45 0 19.08..56 0.60 0.26
0.74 0.75 0.89 0.48

Step 3: Minimize the difference between the original rating rij and estimated rating r’ij  using the 

Gradient descent algorithm, which aims at finding the local minimum of the difference.

19



eij
2 = (rij -r’ij)

2 = (rij - ∑k
k=1 pik qkj)2  = 

4.52 2.52 0.57 0.69
3.21 0.71 0.89 0.53
0.41 0.53 0.56 0.23
0.45 0.56 0.60 0.26
0.74 0.75 0.89 0.48

At every iteration, to minimize the error we have to know in which direction we have to modify the 

values of pik and qkj . 

Step 4: Calculate the gradient at the current values, To do so we differentiate the above equation 

with respect to these two variables separately:

Step 5: Having obtained the gradient, we formulate update rules for pik and qkj  

Here, alpha is a constant whose value determines the rate of approaching the minimum. Usually we 

will choose a small value for alpha, say 0.0002. This is because if we make too large a step towards 

the minimum we may run into the risk of missing the minimum and end up oscillating around the 

minimum. Now let’s calculate the new pik and qkj with the above equation.

20



For instance, the first iteration of the gradient descent will be computed as follows:

iteration 1: 

 i=0 and j=0, k=0

 P00 = P00 + 0.0004 * (e00 * q00) = 0.50 + (0.0004*4.52*0.51) = 0.5009

 q00 = q00 + 0.0004 * (e00 * p00) = 0.51 + (0.0004*4.52*0.5009) = 0.5109

 i=0 and j=0, k=1

 P01 = P01 + 0.0004 * (e00 * q10) = 0.39 + (0.0004*4.52*0.59) = 0.3910 

 q10 = q00 + 0.0004 * (e00 * p01) =  0.59 + (0.0004*4.52*0.3910) = 0.5907

 i=0 and j=1, k=0

 P00 = P00 + 0.0004 * (e01 * q01) = 0.5009 + (0.0004*2.52*0.59) = 0.5018

 q01 = q01 + 0.0004 * (e01 * p00) =  0.90 + (0.0004*2.52*0.5018) = 0.9005

 i=0 and j=1, k=1

 P01 = P01 + 0.0004 * (e01 * q11) = 0.3910 + (0.0004*2.52*0.08) = 0.3911 

 q11 = q11 + 0.0004 * (e01 * p01) =  0.08+ (0.0004*2.52*0.3911) = 0.0803

We will keep computing Pik and qkj for each i, j and k. Finally we will again take the dot product of
the resulting P and Q and repeat every thing from step 3.

Pseudo-code (MF)

for step in NumberOfSteps

for i in length( R )

for j in length(R[i])

e[i][j] = R[i][j] – R’[i][j]

for k in K

P[i][k] = P[i][k] + 2*alpha*e[i][j]*q[k][j]

q[k][j] = q[k][j] + 2*alpha*e[i][j]*p[i][k]

R’ = dot product(P,q)

for i in length( R )

for j in length(R[i])

e = e + (R[i][j] – R’ )2

if e < threshold 

Exit()

Keep iterating until the specified number of steps to find the local minimize of the overall error e, or
stop when the error reaches a certain threshold.
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2.4.2. Content based Techniques

Content based methods learn to recommend items that are similar to the ones that user liked in the 
past. The similarity of items is calculated based on the features associated with the compared items, 
i.e. two items are similar if they have similar attributes. For example if a user has positively 
interacted with a job posting (item) that belongs to an Information technology industry, then the 
system can learn to recommend other job postings from this industry. 
Classic Content based techniques aim at matching the attributes of the user profile against attributes
of items. In most cases the items’ attributes are simply keywords that are extracted from the items’ 
descriptions.
The following example illustrates a running example of how Content based technique makes 
recommendations.

Item/job ads HR Consulting Engineering Development
/
programmin
g

I1 Full stack 
developer

 

I2 Front end 
developer

 

I3 Software 
Engineer

 

I4 HR specialist 

I5 Senior java 
developer

 

Table 4 – Content based recommendation example – Items and their categories
Suppose we have the Rating matrix, rated by the 5 users.
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R U1 U2 U3 U4 U5

I1 5.0 4.0 5.0
I2 4.0 5.0 4.0
I3 5.0
I4 5.0
I5 4.0 4.0 5.0 4.0

Table 5 – Content based recommendation – Rating matrix
From this observation data, we derive the users’ degree of interest in categories (number of times 
users accessed items related to categories) as follows,

U1 U2 U3 U4 U5

HR 1
Consulting 1 1 1 1
Engineering 2 1 2 2
Development 2 1 3 3

Table 6 – Content based recommendation – Users’ degree of interest

For example if we want to make recommendations to U5, we will calculate the similarity of U5 
with every item, as follows,

HR Consulting Engineering Development Sim(U5,Ii)
I1   (2*3)/

(3+2)=4/5
I2   (2*3)/

(3+2)=4/5
I3   (2*3)/

(3+2)=4/5
I4  0

I5   (2*3)/
(3+2)=4/5

Table 7– Content based recommendation –  target user-item  similarity
From this similarity matrix, we recommend to user 5 the items with highest similarity i.e. 
Recommendation (U5) = > Max(Similarity(U5,Ii)) => {I1, I2, I3, I5}.
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2.4.3. Hybrid Techniques

Hybrid methods combine the characteristics of techniques A and B and use the advantages 
technique A to overcome the limitations of technique B. 

They can be combined in various ways, for instance: 

 merging their individual predictions into a single and more robust prediction or

 adding content information into a collaborative filtering model. 

CF methods suffer from new-item problems, or, that they cannot recommend items that have
no ratings. This does not limit content-based approaches since the prediction for new items 
is based on their description (features) that are typically easily available.

2.4.3.1. How to implement hybrid RSs

In this section, How hybrid recommender systems are implemented and the different approaches of 
hybridization will be discussed in detail.

The most successful and commonly used approach is to combine CF and Content based techniques.
These RSs are based on the combination of the above mentioned techniques. A hybrid system 
combining techniques A and B tries to use the advantages of A to fix the disadvantages of B. For 
instance, CF methods suffer from new-item problems, or, that they cannot recommend items that 
have no ratings. This does not limit content-based approaches since the prediction for new items is 
based on their description (features) that are typically easily available. Given two (or more) basic 
RSs techniques, several ways have been proposed for combining them to create a new hybrid 
system.
The context of the user when he or she is seeking a recommendation can be used to better 
personalize the output of the system. For example, in a temporal context, vacation recommendations
in winter should be very different from those provided in summer. Or a restaurant recommendation 
for a Saturday evening with one’s friends should be different from that suggested for a workday 
lunch with co-workers.
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2.4.3.2. Classes of Hybridization

2.4.3.2.1. Parallelized hybridization

In this scheme, the output of several existing recommendation techniques are combined and used in 
parallel. It uses some kind of weighting or voting scheme to evaluate each technique where the 
weights are learned dynamically on the go and then used to select the technique with better result.

Figure 2. Parallelized hybridization design (Hybrid recommendation approaches n.d.)

There are three approaches for Parallelized hybridization: Weighted, Switching and Mixed. The 
next section explains each one in detail.

Weighted
Computes the scores (weights) of the items to recommend by aggregating the output scores of each 
recommendation technique using weighted linear functions. The weights of CF and CBF are set on 
a per-user basis enabling the system to determine the optimal mix for each user.
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How to decide the   weights of the algorithms  ?  
1. Try different random weights to the 2 algorithms (beta1 and beta2) such that beta1 +beta2 = 1

2. Calculate Mean Absolute Error (MAE) of the linear function using beta1 and beta2 in the 
previous formula.

3. Choose the weights (beta1 and beta2) that minimizes the MAE.

Switching
In this technique, the system switches between different recommendation techniques according to 
some criteria. The criteria can be for example when there are few ratings in the system. Different 
versions of the same basic strategy (e.g. CBF1-CBF2 or CF1-CF2) can be integrated in a switching 
form. For instance a CF - CBF recommender can switch to CBF only when the CF strategy doesn’t 
provide enough credible recommendations.

Example: The Daily-learner system uses a CF - CBF hybrid in which a CBF recommendation 
technique is employed first. If the CBF system cannot make a recommendation with sufficient 
confidence, then a CF recommendation is attempted.

Mixed

Results of different recommendation techniques are presented together. Recommendation result for 

user u and item i is the set of tuples <score,k> for each of its n constituting recommenders reck.
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2.4.3.2.2. Monolithic Hybridization

This scheme technically has only a single recommendation component. The hybridization step is 
virtual in a sense that feature sources of different recommendation paradigms are combined.

Figure 3. Monolithic hybridization design(Hybrid recommendation approaches n.d.)

There are two approaches for Monolithic hybridization: Feature combination and Feature 
Augmentation. The next section explains each one in detail.

Feature Combination
Ratings + Explicit features are used for similarity computation. Then one recommender’s output is
used as additional feature data to the other recommender. It is order sensitive.

The features can be of:

 Social features: Movies liked by a user.

 Content features: Comedies liked by user, dramas liked by a user.

 Hybrid features: user likes many movies that are comedies.

Feature Augmentation
One technique is employed to produce a rating or classification of an item and that information is 
then incorporated into the processing of the next recommendation technique. Note that this is 
different from feature combination in which raw data from different sources is combined.  
For example, the Libra system (Mooney & Roy 1999) makes content-based recommendations of 
books based on data found in Amazon, using a naive Bayes text classifier. In the text data used by 
the system is included “related authors” and “related titles” information that Amazon generates 
using its internal collaborative systems. These features were found to make a significant 
contribution to the quality of recommendations. Augmentation is attractive because it offers a way 
to improve the performance of a core system, like the NetPerceptions’ GroupLens Recommendation
Engine or a naive Bayes text classifier, without modifying it. Additional functionality is added by 
intermediaries who can use other techniques to augment the data itself.
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2.4.3.2.3. Pipe-lined Hybridization

One recommender system pre-processes some input for the subsequent one. 

Figure 4. Pipe-lined hybridization design(Hybrid recommendation approaches n.d.)

There are two approaches for Pipelined hybridization: Cascade and Meta-level.

Cascade
Successor's recommendations are restricted by the predecessor. 

where for all k > 1,

May not introduce additional items, but produce very precise results.

Meta-level

Successor exploits a model delta built by predecessor.

Example:

 Using CBF recommenders to build item representation models, and then employ this models
in CF recommenders to match the items with user profiles.
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2.4.4. FACTORIZATION MACHINES (FM)

Support Vector Machines (SVMs) are one of the most popular predictors in machine learning and 
data mining. Nevertheless in settings like collaborative filtering, SVMs play no important role and 
the best models are either direct applications of standard matrix/ tensor factorization models like 
PARAFAC. (Factorization Machines (n.d).)

FM models are at the cutting edge of Machine Learning techniques for personalization; they have 
proven to be an extremely powerful tool with enough expressive capacity to generalize methods 
such as Matrix/Tensor Factorization and Polynomial Kernel regression.

Why Factorization machines?

The following are the 3 major advantages of FMs:

1. FMs allow parameter estimation under very sparse data where SVMs fail.

2. FMs have linear complexity. So can scale to large datasets like  Netflix with 100 millions of 
training instances.

3. FMs are general predictors that can work with any real valued feature vectors. (Factorization 
Machines (n.d). )

2.4.4.1. Model Equation

The model equation for FM of degree d = 2 is defined as follows:

(Factorization Machines (n.d.))

where the model parameters to be learned during the training phase are 

W0 – the global bias

W – a vector of size n containing the weights of each feature Xi

V – models the interaction between the ith and jth variables.

(Factorization Machines (n.d.))

A row in V represents  the ith variable with k factors. 
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The complexity of the straight forward computation of the above Factorization machines model 

equation is O(kn2), because all the pairwise interactions have to be computed. 

But we can reformulate the model equation to be computed in linear time with complexity of 

O(kn).

Due to factorization of pairwise interactions, there’s no model parameter that directly depends on 
the parameters i and j, so the pairwise interaction can be reformulated as.

(Factorization Machines (n.d.))

This reformulation makes the equation have linear complexity in both k and n, O(kn).
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Why binary classification?

In our case, the target Y is “interaction type” provided in the RecSys dataset. “Interaction type” 
indicates the type of interaction a user performed on the item(job).

 0 => impression: XING showed this item to a user.

 1 => click: the user clicked on the item

 2 => bookmark: the user bookmarked the item on XING

 3 => the user clicked on the reply button or application form button that is shown on some 
job postings

 4 => the user deleted a recommendation from his/her list of recommendation (clicking on 
"x") which has the effect that the recommendation will no longer been shown to the user and
that a new recommendation item will be loaded and displayed to the user

 5 => a recruiter from the items company showed interest into the user. (e.g. clicked on the 
profile)

We have implemented the Job recommendation as a classification problem where the Interactions 
of  type 0, 1, 2 and 5 are considered as positive interactions and interaction type 4 is considered as a
negative interaction. As a result the target column will be replaced with a 0 or 1 accordingly.

The Factorization machines model can estimate parameters even if we have a very sparse 
interaction matrix, because it breaks the independence of the interaction parameters by factorizing 
them. In general It means that the data for one interaction helps also to estimate the parameters for 
related interatctions.
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User Jobs(items) User Features Item Features
Interaction

date

Target

(Interaction type)

1 0 0 … 1 0 0 …
DD/MM/

YY
4 (0)

1 0 0 … 0 1 0 …
DD/MM/

YY
3 (1)

0 1 0 … 0 1 0 …
DD/MM/

YY
1 (1)

0 1 0 1 0 0
DD/MM/

YY
1 (1)

Table 8 – Structure of Interaction data with features

2.4.4.2. Algorithm Explained with example

User (U) Job (I) career_level_u
ser (clu)

discipline_id_u
ser (du)

career_leve
l_item (cli)

discipline_id
_item (di)

experi
ence(e
x)

Alice(A) J1 professional(3) Engineering (6) professional
(3)

consulting(5) 5

Alice(A) J2 professional(3) Engineering (6) professional
(3)

consulting(5) 5

Alice(A) J3 professional(3) Engineering (6) professional
(3)

consulting(5) 5

Bob(B) J3 manager(2) HR(4) professional
(3)

HR(4) 7

Bob(B) J4 manager(2) HR(4) professional
(3)

consulting(5) 3

Charlie(C) J1 Beginner(1) Engineering (6) professional
(3)

consulting(5) 2

Charlie(C) J3 Beginner(1) Engineering (6) professional
(3)

consulting(5) 5

Table 9 – Factorization Machines example
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Assume we have the above interaction data in our RecSys dataset, and we want to predict if 
Alice(A) will positively interact with Job 4(J4). We will first do a one-hot encoding on the 
interaction data which will result in the following data.

A B C J1 J2 J3 J4 Clu Du Cli Di Ex Target(Y)

1 0 0 1 0 0 0 3 6 3 5 5 1

1 0 0 0 1 0 0 3 6 3 5 5 1

1 0 0 0 0 1 0 3 6 3 5 5 1

0 1 0 0 0 1 0 2 4 3 4 7 1

0 1 0 0 0 0 1 2 4 3 5 3 1

0 0 1 1 0 0 0 1 6 3 5 2 1

0 0 1 0 0 1 0 1 6 3 5 5 1

Table 10 -  Interaction data one hot  encoding

There is no case x in the training data where both variables XA and XJ4 are non-zero and thus a 

direct estimate would lead to no interaction (WA,J4 = 0). But with factorized interaction parameters 

<VA,VJ4> we can estimate the interaction even in this case.

Bob and Charlie will have similar factor vectors VB and VC, because they both have interactions 

with Job 3 (J3) for predicting interactions i.e. <VB,VJ4> and <VC, VJ4> have to be similar. 

Alice will have a different factor vector from Charlie because she has a different interactions with 
the factors of Job 1(J1) and Job 3(J3).

Y’(x) = w0+Wclu Xclu+WduXdu+WcliXcli+WdiXdi+ WexXex +

<VA, VJ1>XAXJ1 + <VA, VJ2>XAXJ2 + <VA,VJ3>XAXJ3+ <VA, VJ4>XAXJ4 +

<VB, VJ3>XBXJ3 + <VB,VJ4>XBXJ4 + 

<VC,VJ1>XCXJ1 + <VC,VJ3>XCXJ3

The 3 variables W0, Wi and V (marked with green)will be learned during the training phase with 
gradient descent method, as the one discussed in the previous chapter section 2.4.1.1. 

The gradient of the FM model is:
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Since our prediction task is binary classification, after learning all the parameters during the training
phase and get the final value of Y’(X), the sign of Y’(X) will be used i.e. if it’s negative, it implies a
negative interaction and if it’s positive, it implies a positive interaction.
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2.4.4.3. Features to be fed to the FM Model

User Features

Career level * 0 => unknown
1 => Student/Intern
2 => Entry Level (Beginner)
3 => Professional/Experienced
4 => Manager (Manager/Supervisor)
5 => Executive (VP, SVP, etc.)
6 => Senior Executive (CEO, CFO, President)

Discipline Id * Anonymized IDs representing disciplines such as “consulting”, 
“HR” etc...

Industry Id * Anonymized IDs representing industries such as “Internet”, 
“Automotive”, “Finance”

Premium Implies whether the user is subscribed to XING’s premium 
membership. 0=>no subscription 1=>active subscription

Experience_years_experience* It is the estimated number of years of work experience that the 
user has

0 = unknown
1 = less than 1 year
2 = 1 - 3 years
3 = 3 - 5 years
4 = 5 - 10 years
5 = 10 - 20 years
6 = more than 20 years

edu_degree * estimated university degree of the user
 0 or NULL = unknown
 1 = bachelor
 2 = master
 3 = phd

edu_fieldsofstudy * Fields of study of the user

Table 11 – User Features
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Item Features

Career level *  0 => unknown
1 => Student/Intern
2 => Entry Level (Beginner)
3 => Professional/Experienced
4 => Manager (Manager/Supervisor)
5 => Executive (VP, SVP, etc.)
6 => Senior Executive (CEO, CFO, 
President)

Discipline Id * Anonymized IDs representing disciplines such 
as “consulting”, “HR” etc...

Industry Id * Anonymized IDs representing industries such as 
“Internet”, “Automotive”, “Finance”

is_paid indicates that the posting is a paid for by a 
company

employment The type of employment
 0 => unknown
 1 => full-time
 2 => part-time
 3 => freelancer
 4 => intern
 5 => voluntary

Table 12 – Job features
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CHAPTER 4.

4. THE RECSYS CHALLENGE 2017 DATASET

In this section, different statistics information on the RecSys dataset will be elaborated with figures.

4.1. Interactions

We have about 0.3 billion interactions, most of which are of type ‘impression’ as depicted below.

Figure 5 - Interactions type statistics
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We have about 613 million unique items and 1 billion unique users in the given interaction data.

Figure 6 - Distinct Items and Users in Interactions data
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4.2. Items (Jobs)

As seen below on the diagram, most of the job postings we have are from Germany, followed by 
Switzerland and Austria and other countries.

Figure 7 - Total number of Jobs by country
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Almost 80% of the job postings are of career level 3 i.e. Professional/Experienced levels of 
postings, then follow Student/Intern and Management and Entry level postings. 

Figure 8 - Jobs career level
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Figure 9 - Jobs’ Employment type statistics

As seen above, Most of the Job postings are full type jobs.

4.3. Users

Figure 10 - Total number of users by country

Most of the users we have are from Germany. With more than 80% being non-premium users.
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Figure 10 - Premium users

Figure 11 - Premium users by country
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Chapter 5.

5. MODEL DESIGN

In this section, the architecture of the proposed recommender system and how the algorithm makes 
recommendations will be illustrated with diagrams.

5.1. SYSTEM ARCHITECTURE

Figure 12 – High level system architecture
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First, the Dataset contains users, Items(Jobs), Target users, Target items and Interactions. To finally 
obtain the extended Interaction data with user and item features, we follow the following steps.

1. Merge the target users list with users data columnwise using the user_id field as key.

2. Merge the target items list with items data columnwise using the item_id field as key.

3. Merge the Interaction data with the above two resulting data using user_id and item_id fields as 
keys.

After merging, the extended data will have the following structure;

Figure 13 – Structure of data to be fed to the model

This data will be one-hot encoded then be fed to the Factorization Machine model.
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5.2. HIGH LEVEL SYSTEM DESIGN

Figure 14 – High level design

From a higher point of view, we have two layers of the overall task, the data Pre-processing layer 
and Model layer. 

In the Pre-processing layer, we build up the extended dataset using the techniques discussed in the 
above section, Then split the data to Training and Test set with 80/20 slices.

In the the Model layer, we do most of the training the model with training set and predicting for test 
data.
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5.3. WORKFLOW OF PREDICTION

Figure 15– Workflow of Prediction
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CHAPTER 6.

6. EVALUATION SETUP

6.1. Evaluation Metrics

Important terms

 True Positives (tp): The cases in which we predicted YES and the actual output was 
also YES.

 True Negatives (tn): The cases in which we predicted NO and the actual output was 
also NO.

 False Positives (fp): The cases in which we predicted YES and the actual output was a 

NO.

 False Negative (fn): The cases in which we predicted NO and the actual output was a 
YES.

6.1.1. Precision and Recall

Precision indicates the ability of a classifier not to label as positive a sample that is negative. It is 
defined by the ratio: tp/(tp+fp) 

where tp= Number of true positives and fp= Number of false positives.

It takes as input an array of the true values of the target and an array of the predicted values of the 

target then outputs a floating point number indicating the precision of the positive class. 

Recall measures how many true relevant results are returned where tp= Number of true positives 

and fn= number of false negatives. It is defined by the ration: tp / (tp+fn)

6.1.2. F-measure (F1 score) 

Balanced F-score or F-measure is a weighted average of the precision and recall and calculated as 
F1 = (2 * (precision * recall)) / (precition + recall).

47



6.1.3. Accuracy

It is the ratio of the number of correct predictions to the total number of input samples.

 Accuracy =       Number of correct predictions 

                     ______________________________

                             Total number of input samples 

In other words,

Accuracy = (tp + tn) / (tp + tn + fp + fn)

6.1.4. Confusion Matrix

It is a matrix used to describe the performance of a classification model (classifier) on a test data for
which the true values are known.

Example:

n = 5888
Predicted

NO
Predicted

YES
Actual

NO
TN = 4058 FP = 20

Actual
YES

FN = 70 TP = 1740

Table 13 – Confusion matrix

6.1.5. Receiver Operating Curve (ROC)

It’s a metrics used to evaluate the output quality of a classifier. It typically features true positive 
rate on the x-axis and false positive rate on the y-axis.
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6.2. Model Setup

order: defines the order of the factorization machines model i.e. the number of parameters we want 
to estimate interactions between. In our case the order is 2 because we want to model interactions 
between a specific user and item.

learning_rate: It’s a floating point hyper-parameter used for the stochastic gradient descent 
optimization algorithm. If the learning rate is too high, the model parameters will not converge 
while if it’s too low the algorithm is no longer time efficient.

n_epoch: It’s an integer number representing the number of iterations for training the model.

batch_size: It’s an integer number representing the number of samples in mini-batches. Set to -1 for
full gradient i.e. the whole training set in each batch.

model = TFFMClassifier(
    order=2,
    rank=6,
    optimizer=tf.train.AdamOptimizer(learning_rate=0.01),
    n_epochs=50,
    batch_size=1024,
    init_std=0.01,
    input_type='dense',
    seed=42
)
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6.3. Experimental Results

Total number of samples: 14,719

Training samples: 11,775

Test samples: 2944

order
[fixed

]
learnin
g_rate

No. of
epochs

Batch
size

Precision
_score

Accuracy
_score Recall F1-Measure

Confusio
n matrix

2 0.01 50 1024

0.97863414
1276

[weighted]
0.978600543

5

0.978600543
478[weighte

d]
0.9784852981
06[weighted]

[[4120 32]
[ 94 1642]]

2 0.01 50 1024

0.98033895
1735

[macro]
0.981657608

7
0.975471353
041 [macro]

0.9778621186
64 [macro]

[[4109 39]
[ 69 1671]]

2 0.01 50 1024

0.98471467
3913[micro

]
0.984714673

9
0.984714673
913[micro]

0.9847146739
13[micro]

[[4058 20]
[ 70 1740]]

2 0.01 100 1024
0.98403532

61
0.984035326

1
0.984035326

1 0.9840353261
[[4069 32]
[ 62 1725]]

2 0.02 100 1024 0.97265625 0.97265625 0.97265625 0.97265625

[[4090 32]
[ 129

1637]]

2 0.03 100 1024
0.97112771

74
0.971127717

4
0.971127717

4 0.9711277174

[[4119 26]
[ 144

1599]]

2 0.04 100 1024
0.95889945

65
0.958899456

5
0.958899456

5 0.9588994565

[[4083 44]
[ 198

1563]]

2 0.05 100 1024
0.94361413

04
0.943614130

4
0.943614130

4 0.9436141304

[[4034 97]
[ 235

1522]]

2 0.001 100 1024
0.97554347

83
0.975543478

3
0.975543478

3 0.9755434783

[[4048 42]
[ 102

1696]]

Table 14 – Experimental Results

As seen from this table of results, Best precision and accuracy is achieved with a learning rate 0.01, 
the model being trained for 50 iterations. We can also see that as we increase the value of the 
learning rate, the precision and accuracy of the classifier tend to lower.
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Figure 16 -  ROC curve (XGboost baseline)

As seen above, the ROC curve is a performance measurement for classification problems at various 
threshold settings. It tells us how much the model is capable of distinguishing between positive and 
negative classes. Figure 16 shows the resulting ROC curve tested on the same dataset used by the 
Factorization machines. The dotted red line covered with the blue line indicates the random 
behavior of the classifier. The AUC value represents the degree or measure of separability.  
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Figure 17 – ROC curve -  Factorization machines

An excellent model has an AUC near 1 which indicates that it has a good measure of separability. A 
poor model has an AUC near 0, which indicates that it has the worst measure of separability, In fact 
it means it’s reciprocating the results, It’s predicting 0s as 1s and 1s as 0s. Figure 17 shows us that 
the Factorization machines has it’s curve passing through the top left, and has and AUC = 0.97 
meaning that our model is performing well on such dataset.
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Figure 18 – Precision-Recall curve (XGboost baseline)

Evaluating both precision and recall is useful in cases where there is a label imbalance in the 
observation data. Specifically there are many examples of class 0 and only few examples of class 1. 
The value AP represents the average precision score of the classier. 
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Figure 19 – Precision-Recall curve (Factorization Machines)

The Average precision score for the Factorization machines model is 0.97, which shows us that the 
model is performing well on such dataset.
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Chapter 7.

7. CONCLUSION AND FUTURE WORKS

This paper presents the implementation of the Factorization Machines algorithm for Job 
recommendations of the ACM RecSys challenge. It is experimentally proven that implementing 
Factorization Machines for this purpose solves the issue of cold start situations i.e. having to predict
for users who never interacted, by integrating content information (features) of both users and items
(jobs) in the training data. It is also tested that the algorithm improves precision and accuracy 
without having to increase its computational complexity. According to the results of this thesis, the 
Factorization machines can be applied to similar sparse datasets obtaining maximum efficiency and 
lower computational resources.
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