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Abstract 

In nuclear fusion systems, such as the International Thermonuclear Experimental 

Reactor (ITER), plasma is magnetically confined with Superconductive Magnets 

(SMs), which must be kept at cryogenic temperature in order to preserve their 

superconductive properties by a Superconducting Magnet Cryogenic Cooling 

Circuit (SMCCC). Loss-Of-Flow Accidents (LOFA) in the SMCCC must be 

avoided, because they endanger the cooling ability of the SMCCC. 

In this work, an approach to identify LOFA precursors (i.e., those component 

failures which lead to a LOFA) is developed, based on On-line Supervised Spectral 

Clustering (OSSC) with a Fuzzy C-Means (FCM) algorithm. The approach is 

applied to a simplified model of a cryogenic cooling circuit of a single module of 

the ITER Central Solenoid (CS), whose behaviour in normal and abnormal 

conditions is simulated by the validated deterministic 4C code. Results show that 

the approach elaborated timely identifies several LOFA precursors and components 

failed. In some cases, LOFA precursors are identified in scenarios with no LOFA, 

as well as components that have not actually failed. On one side, this conservatively 

increases the safety of the SMCCC (by overestimating the number of failed 

components to be inspected); on the other side, it might reduce its availability (due, 

e.g., to unnecessary inspection procedures). 

For reducing the overestimation, the quality of the “maps” used for training the 

LOFA precursors identification approach is improved by training an adaptive meta-

model to mimic the behaviour of the detailed, long-running 4C code, and using it 

to generate a large number of simulation runs for a deep exploration of the possible 

abnormal conditions of the system to be used for learning rules of precursors 

identification.  

KEYWORDS: Nuclear Fusion, Superconducting Magnets, ITER Central 

Solenoid, Cryogenic Cooling Circuit, Loss-Of-Flow Accident (LOFA), Precursors 

identification, Spectral Clustering, Fuzzy C-Means, Meta-model, Adaptive 

Simulation. 
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 ℱ𝑐𝑒 Generic element of ℱ̿ referring to c-th cluster and e-th 

component 
 𝐸 Number of components  
 𝑉𝑙𝑖𝑚,𝐿𝑂𝐹𝐴,𝑙 Limit for LOFA precursors identification at l-th time 
 𝑉1𝑠𝑡 First highest 𝑉𝑟𝑒𝑙,𝑙,𝑐𝑗 at l-th time 
 𝑉2𝑛𝑑 Second highest 𝑉𝑟𝑒𝑙,𝑙,𝑐𝑗 at l-th time 
 𝑐1𝑠𝑡 Cluster associated to 𝑉1𝑠𝑡 
 𝑐2𝑛𝑑 Cluster associated to 𝑉2𝑛𝑑 
 𝐹𝑙𝑎𝑔𝐿𝑂𝐹𝐴 Flag for LOFA precursors identification 
 𝑡𝑙𝑎𝑠𝑡,𝐹𝑎𝑖𝑙,𝑖 Time of last component failure before 𝑡𝐿𝑂𝐹𝐴,𝐶1,𝑖 
 𝑡𝑙𝑖𝑚,𝑖 Average between 𝑡𝑙𝑎𝑠𝑡,𝐹𝑎𝑖𝑙,𝑖 and 𝑡𝐿𝑂𝐹𝐴,𝐶1,𝑖 
 𝑉𝑙𝑖𝑚,𝑖 Second highest 𝑉𝑟𝑒𝑙,𝑙,𝑐𝑖 at 𝑡𝑙𝑖𝑚,𝑖 
 𝑀𝑙𝑖𝑚,𝐹𝐴𝐼𝐿,𝑙 Limit for component precursors identification at l-th time 
 𝐹𝑙𝑎𝑔𝐹𝐴𝐼𝐿,𝑒 Flag for e-th component failure 
 𝐶𝑜𝑢𝑛𝑡𝐹𝐴𝐼𝐿,𝑒 Number of 𝑀𝑟𝑒𝑙,𝑙,𝑐𝑗 that overcome 𝑀𝑙𝑖𝑚,𝐹𝐴𝐼𝐿,𝑙 at l-th time 
 𝒮 Proportional constant between l-th time and 𝑀𝑙𝑖𝑚,𝐹𝐴𝐼𝐿,𝑙 
 𝑁𝑖𝑡𝑒𝑟 Number of training attempts for each metamodel 
 𝑁∗ Number of scenarios to be included in DOE 
 𝑁𝑀𝐶𝑆 Number of scenarios generated with MC (for AK-MCS) 
 𝑁𝑘𝑟𝑖𝑔 Number of training and adaptive scenarios 
 𝓧 General input vector  
 𝓧̅ Ensemble of all the 𝑁𝑘𝑟𝑖𝑔 input vectors 
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 𝓧̅𝑀𝐶𝑆 Ensemble of all the 𝑁𝑀𝐶𝑆 input vectors 
 𝓧∗ One of the 𝑁∗ scenarios 
 𝓧̅∗ Ensemble of the 𝑁∗ inputs 
 𝐌𝐕𝐋∗ 𝓧∗ input in Multiple Valued Logic 
 𝓨 General output vector associated to 𝓧 
 𝓨𝑖 Output vector of the i-th scenario 
 𝓨𝑘 Vector with all the k-th output of DOE 
 𝒴𝑖

𝑘 k-th output element of the i-th scenario 
 𝓨̅ Ensemble of all the 𝑁𝑘𝑟𝑖𝑔 output vectors 
 𝓨𝑡ℎ𝑟 Vector with threshold values 
 𝒴𝑡ℎ𝑟

𝑘  Threshold value for 𝒴𝑖
𝑘 

 ℳℳ𝑘 Metamodel for the k-th output 
 𝑌̂𝑘(𝓧) Prediction of ℳℳ𝑘(𝓧) 
 𝒀̂𝑘(𝓧̅) Prediction of ℳℳ𝑘(𝓧̅) 
 𝜇𝑌̂𝑘(𝓧) Mean Kriging value of 𝑌̂𝑘(𝓧) 
 𝝁𝑌̂𝑘(𝓧̅) Mean Kriging values of 𝒀̂𝑘(𝓧̅) 
 𝜎

𝑌̂𝑘
2 (𝓧) Kriging variance of 𝑌̂𝑘(𝓧) 

 𝝈
𝑌̂𝑘
2 (𝓧̅) Kriging variance of 𝒀̂𝑘(𝓧̅) 

 𝜷𝑘
𝑇𝓱(𝓧)  Trend basis of ℳℳ𝑘 

 𝜷𝑘 Regression coefficient 
 𝓱(𝓧) Basis function 
 𝜎𝑘

2 Variance of the Gaussian process 
 𝒵(𝓧,𝜔) Zero unit mean variance 
 𝜔𝑘 Probability space 
 ℛ(𝓧,𝓧′; 𝜽𝑘) Correlation function 
 𝜽𝑘 Hyperparameters of ℳℳ𝑘 
 𝜃𝓂

𝑘  𝓂-th element of 𝜽𝑘 
 𝜉 Ellipsoidal function 
 𝑆𝕄

(𝑘) Ensemble with scenarios of 𝓧̅𝑀𝐶𝑆 near the fault line 
 𝑆

𝑓+
(𝑘) Ensemble with scenarios of 𝓧̅𝑀𝐶𝑆 above the upper limit of the 

confidence interval of the fault line 
 𝑆𝑓−

(𝑘) Ensemble with scenarios of 𝓧̅𝑀𝐶𝑆 above the lower limit of the 
confidence interval of the fault line 

 𝒰𝑘(𝓧) Learning function associated to the k-th variable 
 ℎ Orthogonal basis index  
 𝐻𝑘 Last orthogonal basis index for the k-th variable 
 𝜑ℎ

𝑘(𝑡) h-th Orthogonal basis of the k-th variable 
 𝑎𝑖ℎ

𝑘  Coefficient associate to 𝜑ℎ
𝑘(𝑡) for the i-th scenario 

 Ψ̿𝑘 Matrix with left-singular vector in each column 
 Φ̿𝑘 Matrix with right-singular vector in each column 
 Λ̿𝑘 Diagonal matrix containing Λ𝑖

𝑘 singular values 
 Λℎ

𝑘  Singular value associated to the h-th base 
 Γℎ

𝑘 Percentage of variability with POD with truncation at h-th 
element 

 𝜑𝑙ℎ
𝑘  Value reached by 𝜑ℎ

𝑘(𝑡) at l-th time 
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 𝐴̿𝑘 Matrix with coefficients of the 𝑁𝑘𝑟𝑖𝑔 scenarios related to the 
orthogonal basis of the k-th variable 

 𝒂ℎ
𝑘 Ensemble of coefficients of the 𝑁𝑘𝑟𝑖𝑔 scenarios related to the h-

th orthogonal base of the k-th variable 
 ℳℳℎ

𝑘 Metamodel for the h-th base coefficient related to the k-th output 
 𝑎̂ℎ

𝑘(𝓧) Prediction of the coefficient of the h-th base for the k-th variable 
related to the 𝓧 input 

 𝜇
𝑎̂ℎ

𝑘(𝓧) Mean Kriging value of 𝑎̂ℎ
𝑘(𝓧) 

 𝜎
𝑎̂ℎ

𝑘(𝓧) Kriging variance of 𝑎̂ℎ
𝑘(𝓧) 

 𝑦̃𝑗𝑙
𝑘  𝑦𝑗𝑙

𝑘  value approximated with POD-based Kriging 
 𝐺𝐶𝑆𝑀,𝑖𝑛(𝑡) Inlet flow in the CSM 
 𝐺𝐶𝑆𝑀,𝑜𝑢𝑡(𝑡) Outlet flow in the CSM 
 𝐺𝑚𝑎𝑥(𝑡) Maximum flow in the CSM 
 𝑡̃𝐿𝑂𝐹𝐴,𝐶1,𝑗 Approximation of 𝑡𝐿𝑂𝐹𝐴,𝐶1,𝑗 with POD-based Kriging 
 𝜑𝐺,𝑙ℎ Value of the h-th base at l-th time for 𝐺𝑚𝑎𝑥 output 
 𝑔𝑖ℎ Coefficient of 𝜑𝐺,𝑙ℎ related to the i-th scenario 
 𝒈ℎ Ensemble of each coefficient 𝑔𝑖ℎ(𝑖 = 1,… ,𝑁𝑘𝑟𝑖𝑔) 
 ℳℳℎ

𝐺  Metamodel for the h-th base coefficient related to 𝐺𝑚𝑎𝑥 output 
 𝑔̂ℎ(𝓧) Prediction of the coefficient of the h-th base for 𝐺𝑚𝑎𝑥 variable 

related to the 𝓧 input 
 𝜇𝑔̂ℎ

(𝓧) Mean Kriging value of 𝑔̂ℎ(𝓧) 
 𝜎𝑔̂ℎ

(𝓧) Kriging variance of 𝑔̂ℎ(𝓧) 
 𝐺̃𝑚𝑎𝑥,𝑙𝑗 Value of 𝐺𝑚𝑎𝑥(𝑡) at l-th time for the j-th scenario approximated 

with POD-based Kriging 
 𝜎𝑎𝑏𝑠

𝑘 (𝓧𝑗) Absolute error of the k-th variable of the j-th scenario employing 
singular values 

 𝑎𝑚𝑎𝑥
𝑘  Maximum order of magnitude of 𝜎𝑎𝑏𝑠

𝑘 (𝓧𝑗) 
 𝑎𝑚𝑖𝑛

𝑘  Minimum order of magnitude of 𝜎𝑎𝑏𝑠
𝑘 (𝓧𝑗) 

 𝜎𝑟𝑒𝑙
𝑘 (𝓧𝑗) Relative error of the k-th variable of the j-th scenario employing 

singular values 
 𝑁𝑃𝑂𝐷 Scenarios that satisfied 𝜎𝑟𝑒𝑙

𝑘 < 10% between the 𝑁𝑀𝐶𝑆 scenarios 
 𝑁𝑑𝑎𝑡𝑎 Number of training, adaptive and approximated scenarios 

included in the new dataset 
 𝑁𝑑𝑎𝑡𝑎,𝑐 Number of scenario in c-th cluster between the  𝑁𝑑𝑎𝑡𝑎 ones 
 𝛩(𝑥) Heaviside function 
 𝑃𝐿𝑂𝐹𝐴,𝑙(𝑐) Probability of LOFA occurrence at l-th time respect to the c-th 

cluster 
 𝑃𝐹𝐴𝐼𝐿,𝑙(𝑒|𝑐) Probability of failure of the e-th component at l-th time respect 

to the c-th cluster 
 𝑃𝐿𝑂𝐹𝐴,𝑙,𝑗 Probability of LOFA occurrence at l-th time in the j-th scenario 
 𝑃𝐿𝑂𝐹𝐴,𝑙𝑖𝑚 Limit value for 𝑃𝐿𝑂𝐹𝐴,𝑙,𝑗 
 𝑃𝐶𝑙,𝑙(𝑐) Probability for the c-th cluster to be responsible of the failure 
 𝑃𝐹𝐴𝐼𝐿,𝑙,𝑗(𝑒) Probability of failure of the e-th component at l-th time for a j-th 

scenario 
 𝑃𝐹𝐴𝐼𝐿,𝑙𝑖𝑚(𝑒) Limit value for 𝑃𝐹𝐴𝐼𝐿,𝑙,𝑗(𝑒) 
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1 Introduction 

Natural gas has been the leading source of electricity, covering the 27.4% of the 

world energy demand, since 2018 instead of coal, which contributes for 25.4%. All 

renewable source (hydro, solar, wind and others) and nuclear accounted for 24.6% 

and 17.5% of the world electricity, respectively. The falling of the share of coal in 

the last decades has been followed by an evident increase of the gas consumption 

and a growth of renewables technologies, in particular wind and solar ones (IEA, 

2018a). However, if energy policies are not going to change, according to the 

“Current Policies Scenario” (i.e., future energy trend including legislation until 

mid-2018), the world energy demand will increase with a consequent rise of 

greenhouse emissions due to fossil fuels (IEA, 2018b).  

Greenhouse gasses are the main drive of global warming that leads to an increase 

of global average temperatures of air and oceans, a propagation of snow and ice 

melting and a rise of the global average sea level. These changes strongly affect 

climates with dramatical consequences on environment and our society (IPCC, 

2007). To mitigate these phenomena, an international treaty, known as Kyoto 

Protocol (COP-3), signed in 1997, has been ratified by 175 countries until today 

with the objective of reducing greenhouse emissions by at least a fixed quote 

(depending on the economy of the country) before 2020 with respect to the 

emissions of 1990. After the Paris climate conference (COP-21) at the end of 2015, 

a new global climate deal has been adopted by 195 countries with the aim of 

“holding the increase in the global average temperature to well below 2°C above 

pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5 

°C”.  

The European Union launched “Climate strategies & targets” in order to reduce 

progressively the amount of greenhouse leading to a climate-neutral economy by 

2050 (EC, 2019). With the “2020 Package”, whose targets were set in 2007 and 

enacted in legislation in 2009, a reduction of 20% in greenhouse gas emissions 

(from 1990 levels), the achievement of 20% of EU energy from renewables and a 

20% of improvement in energy efficiency for the 2020 are promoted. These targets 
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are going to be revised in 2021 with the “2030 Package”, set in 2014 but stepped 

up in 2018, leading to an abatement of 40% in greenhouse emissions, a share of 

32% of renewable energy and 32.5% of improvement in energy efficiency for the 

2030. These targets are going to increase after 2031 for the “2050 Package”. 

According to the “New Policies Scenarios” (i.e., future energy trend including 

actual policies intentions), and “Sustainable Development Scenario” (i.e., future 

energy trend including internationally agreed objectives on climate change, air 

quality and universal access to modern energy), electricity generation is undergoing 

to significant changes due to the increasing electrification in industry, transportation 

and buildings and heavy investments in new energy supply and low carbon 

technologies must be made (IEA, 2018b). Nuclear power has been one of the 

biggest sources of carbon-free electricity in the world reaching 1868 TWh (17,6%) 

in 2018 and $ 1.1 trillion of investment are going to be made to increase this 

capacity of 46% to 2040 (IEA, 2018a). Indeed, fission power plants are playing an 

important role in reducing CO2 emission typical of fossil fuels (coal, gas, oils, …) 

for its better availability and capacity factor then renewables (OECD, 2012). Also, 

fusion power plants, that are still at research level, are attracting considerable 

investments to make it possible to gain energy from nuclear fusion reactions for 

electricity production in the future. 

Studies are more addressed to the deuterium-tritium (D-T) reaction that consists in 

merging two isotopes of hydrogen producing an α-particle of 3.5 MeV and a 

neutron of 14.1 MeV. There are three main benefits coming from their use in power 

generation: fuel reserves, environmental impact and safety (Freidberg, 2007). 

Concerning fuel reserves, deuterium (whose nucleus contains one proton and one 

neutron) can be easily extracted from water in a cost-effective way, because there 

is 1 atom of deuterium every 6700 atoms of hydrogen. Tritium, that is a radioactive 

isotope with a half-life of about 12 years made by one proton and two neutrons, can 

be obtained by breeding lithium isotopes, because no natural tritium can be 

retrieved from earth. Natural lithium is composed by 7.4% of Li6 (that reacting with 

a thermal neutron produces 4.8 MeV of energy, an α-particle and tritium), and by 

92.6% of Li7 (that reacting with a fast neutron and absorbing 2.5 MeV of energy 

produces an α-particle, a neutron and tritium): as a consequence, fuel reserves are 
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strongly connected with lithium reserves, which would provide 20000 years of 

clean energy (considering the actual world energy consumption). For what concerns 

environmental impact, D-T reactions do not produce greenhouse gasses, but helium, 

which is inert, and neutrons, which activates the blanket and structural materials, 

making them radioactive on the order of 100 years: however, this time is much 

shorter than the one of actinides and lanthanides in fission spent fuel on the order 

of million years (EC, 2004). For the last advantage, in a fusion reactor there is no 

risk of melt-down, because no chain reactions must be maintained like in a core of 

a fission reactor and the small amount of fuel, that must be constantly plugged in 

the core, makes the melt-down impossible (Freidberg, 2007). 

Those benefits would have made fusion more attractive than fission, but fusion 

science is complex: D-T reactions require deuterium and tritium in plasma phase 

under extreme high temperatures (i.e., of the order of 150 ×  106 𝐾); also, plasma 

facing components and the blanket must withstand huge heat load and high energy 

neutrons. In addition, magnetic confinement fusion, that is considered more 

promising than the inertial one, need strong magnetic fields to confine plasma and 

an auxiliary heating system to increase plasma temperature. During the last half-

century “fusion machines” of different size and shape, as pinch, mirror, stellarator 

or tokamak, have been designed and used for fusion experiments in different 

countries (Ikeda, 2010). Tokamaks, that stands for “TOroidalnaya KAmera 

MAgnitnaya Katushka” (i.e., “Toroidal Chamber and Magnetic Coil”) have been 

playing the major role in nuclear fusion experiment. In this type of systems, the 

magnetic field necessary for plasma confinement is achieved by resorting to four 

basic magnet systems: toroidal field coils generate the toroidal magnetic field; an 

ohmic transformer induces the toroidal plasma current that leads to the poloidal 

magnetic field and, then, to an initial plasma heating; a field coil system generates 

the vertical magnetic field needed for toroidal force balance and shaping coils 

modify the cross section of the torus to non-circular shape, enhancing the MHD 

stability and lowering the impurity due to plasma wall interactions (Freidberg, 

2007).  
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All tokamaks built until now do not have the goal of producing electricity, but the 

study of thermonuclear reactions. The first tokamak built was the T1 Soviet in 

Soviet Union in 1957 with a plasma chamber of 0.4 m3 and a circular cross section. 

In following years, more technologies have been implemented increasing the level 

of sophistication and the size of the tokamaks: The ASDEX group in Garching 

marked an improvement of the energy confinement time in 1982 operating with a 

poloidal divertor. JET in Culham and TFTR in Princeton were the first tokamaks to 

study D-T reactions (before only D-D reactions had been studied). Neutral beam 

injection and radiofrequency heating were investigated as auxiliary heating 

systems; superconductive coils were implemented in magnet systems in order to 

produce higher magnetic fields driving higher current in them (exploiting the 

absence of ohmic heating) and so enhancing the confinement of plasma. The 

cooperation between countries was fundamental for addressing successfully the 

complexity of the physics and engineering of fusion systems: however, tokamaks 

capable of producing a power output considerably greater than the power input 

(necessary for plasma heating and plasma confinement) still do not exist (Ikeda, 

2010). 

Before being able to produce electricity on an industrial scale with these 

technologies, the feasibility of reaching a fusion energy gain factor (i.e., ratio 

between fusion power output and power input) of at least 10 must be demonstrated. 

In order to achieve this goal, the International Thermonuclear Experimental Reactor 

(ITER) is under construction at Cadarache in France with the cooperation of seven 

members (i.e., European Union, Russia, Japan, United States, Korea, India and 

China) and it is designed to produce 500 MW of power with an input of 50 MW. 

The next step will be the construction of DEMO (i.e., “DEMOnstrating fusion 

pawer reactor”) with the objective of demonstrating the feasibility of producing 

electricity with thermonuclear fusion reactions. Its design will be aided by the work 

carried out for ITER, but also by the development of other new facilities, like the 

Divertor Tokamak Test (DTT), which has the task of exploring new power exhaust 

solutions able to withstand the heat load characterizing DEMO (Crisanti et al., 

2017).  
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This thesis focuses on the safety analysis of a component (i.e., the cryogenic cooling 

circuit of one single module of the central solenoid magnet) of ITER. 

ITER (International Thermonuclear Experimental Reactor) (ITER, 2018) will be 

the first reactor that will produce a net amount of energy exploiting fusion reactions 

between Deuterium and Tritium, under extreme high temperature and pressure 

conditions (i.e., plasma at the temperature of the order of 108 K). ITER is designed 

to respect the high safety standards of international nuclear safety guidelines 

following different goals: preventing and mitigating consequences of accidental 

scenarios, ensuring an extremely low environmental impact during operation 

condition and maintenance, reducing the amount of radioactive waste and improve 

their handling (Alzburtas et al., 2015; Taylor et al., 2014; Wu et al., 2016). Indeed, 

the correct management of tritium and activated materials must be guaranteed to 

prevent radiological contamination of worker and environment (Taylor et al., 2017; 

Taylor, 2016). 

In ITER, plasma is magnetically confined in a torus chamber with a D-shape cross 

section by different Superconductive Magnets (SMs) (Bigot, 2018; Mitchell et al., 

2008 & 2012): one Central Solenoid coil (CS), eighteen Toroidal Field coils (TFs), 

in Nb3Sn, six Poloidal Field coils (PFs) and eighteen Correction Coils (CCs), made 

by NbTi. The CS, that is the object of this thesis, is constituted by six Central 

Solenoid Modules (CSMs). Each CSM must sustain high currents (~40kA) in order 

to generate high magnetic fields (several T) to confine the plasma and its 

superconductive properties must be guaranteed to nullify ohmic heating. These 

properties strongly depend on temperature of the strands of SMs, on the current 

density that passes through them, on the magnetic field, in which they are immersed, 

and on their thermal strain: if these parameters overcome a threshold value, quench 

(i.e., loosing of superconductive properties) may occur (Takahashi et al., 2006). For 

this reason, coils are cooled with Supercritical Helium (SHe) at 4.5 K with a 

pressure of 0.5-0.6 MPa (Mitchell et al., 2008) by a Superconducting Magnet 

Cryogenic Cooling Circuit (SMCCC) that is in charge of the heat extraction from 

the CSMs to pools of saturated Liquid Helium (LHe) (Hoa et al., 2012; Zanino et 

al., 2010 & 2013). 
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In this light, if not promptly detected, a Loss-Of-Flow Accident (LOFA) in the 

SMCCC may impair the CS cooling capability, possibly leading to rapid surge of 

the CS pressure and temperature due to the ohmic heating. If the pressure and the 

temperature overcome 25 MPa and 150 K, respectively, the CS could be lost (IAEA, 

2002; ITER, 2006), as pointed out in numerous safety studies aimed at identifying 

the causes that may lead the SMCCC to work under abnormal scenarios (D’Amico 

et al., 2016; Wu et al., 2016; Savoldi et al., 2018; Bellaera et al., 2019). Safety of 

the CSMs, as well as for the other SMs, must be ensured to: (i) avoid severe 

damages to them because of their huge cost; and (ii) guarantee a high availability 

of ITER, because the replacement of such critical components is difficult, or even 

impossible, due to the complexity of the machine. For these reasons, multiple 

monitoring and detection systems have been designed to control ITER during 

operation (Mitchell et al., 2008 & 2012). 

In this respect, a strategy is proposed in the present thesis to identify LOFA 

precursors (i.e., those component failures leading to a LOFA), because this scenario 

is considered one of the most threatening for the SMCCC and, therefore, it has to 

be analysed in order to undertake the proper prevention and mitigation strategies. 

Since it is a tricky point for an operator to promptly intervene in the presence of a 

large volume of monitored signals, its decision may be supported by an automatic 

data-driven approach that recognises the pattern of signals measured during plant 

operation, which may reveal the accident precursors (i.e., the failed components) 

(Baraldi et al., 2015a; Di Maio et al., 2016; Al-Dahidi et al., 2018). To this aim, an 

On-line Supervised Spectral Clustering (OSSC) method embedding the Fuzzy C-

Means (FCM) algorithm is proposed as a novel strategy to identify LOFA 

precursors from signals of a developing (accident) scenario. Signals of abnormal, 

accident scenarios are simulated by the validated, deterministic 4C code, which is 

able to reproduce the overall system's response to failed components and estimate 

the effect of a LOFA in the SMCCC of a single module of the ITER Central 

Solenoid (CS) (Savoldi et al., 2010). A limited-sized set of 83 “exemplary” 

scenarios is used to “train” the proposed algorithm for LOFA precursor 

identification. The method is then tested to verify its robustness and validity on new, 

unknown scenarios. Results show that the approach elaborated timely recognises 
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several LOFA precursors and identifies most of the components failed. On the other 

hand, it detects LOFA precursors in scenarios with no LOFA and identifies as 

precursors some components that are not actually failed. On one side, this 

conservatively increases the safety of the SMCCC (by overestimating the number 

of failed components); on the other side, it reduces its availability (due, e.g., to 

unnecessary inspection procedures). 

These limitations can be explained by the small dataset (i.e., the small number of 

exemplary accident scenarios) initially employed to train the LOFA precursors 

identification algorithm. In other words, the training set adopted only covers a very 

small portion of the entire state-space of the system analysed (i.e., of the spectrum 

of all possible system configurations). In fact, a complex system is typically 

composed by a large number of components. As a consequence, each accident 

scenario may be characterized by a (potentially large) sequence of different events 

(i.e., of different component failures). In addition, each component failure may be 

characterized by different magnitudes and timings. The combination of these 

properties makes the problem high-dimensional:  a huge number of possible 

scenarios exist, but only few of them have been simulated because of the very high 

computational cost (requiring on average two days per simulation on an Intel Core 

i3-7100 3.90 GHz 3MB Cache) associated to the 4C code (Bellaera et al., 2018 & 

2019; Savoldi et al, 2010).  

In this light, the second part of the thesis is dedicated to the study and development 

of advanced computational methods able to intelligently increase the number of 

(accident) training scenarios at a reduced computational cost: the final objective is 

to improve the quality of the “maps” used for training the LOFA precursors 

identification approach and to consequently enhance its performance. This 

objective is achieved in two successive stages. In the first stage, a numerical 

“surrogate” model (also called “response surface” or “meta-model”) is constructed 

that mimics the behaviour of the detailed, long-running 4C code, but with a reduced 

computational cost (e.g., of the order of few seconds) (Turati et al., 2018; Simpson 

et al., 2001). This allows a significantly larger number of simulation runs and, thus, 

a deeper exploration of the possible abnormal conditions of the system (to be used 

for learning the rules of LOFA precursors identification). Notice that numerous 
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safety assessments in the nuclear field exploit metamodels to efficiently explore 

failure scenarios and to evaluate the probabilities of rare failure events, because the 

computer codes typically adopted in this field require large computing times 

(Cadini et al., 2015; Wang et al., 2018). In more details, the metamodel is here built 

and progressively refined, within an adaptive framework, in proximity of the 

“critical” regions of our interest (i.e., the LOFA scenarios): in other words, we 

preferentially guide the exploration of the (large) system state-space towards such 

abnormal scenarios, making an intelligent use of the information and knowledge 

gained at previous steps and iterations of the search (Schӧbi et al., 2017; Wang et 

al., 2007; Turati et al., 2017 & 2018). As a result, we obtain a surrogate metamodel 

that is very accurate in proximity of system failure (i.e., LOFA) configurations and 

less accurate in correspondence of (“less interesting”) safe states. The algorithm 

employed and briefly described above is known in the literature as Adaptive 

Kriging – Monte Carlo Sampling (AK-MCS) (Echard et al., 2011).  

In the second stage, making use of the information about system failures gained in 

the adaptive exploration phase described above, a Proper Orthogonal 

Decomposition (POD)-based Kriging metamodel is constructed (Marrel et al., 

2014; Nanty et al., 2017). The main feature of this type of metamodel is to be able 

to reproduce quickly time-varying signals: in this way, new transients can be 

simulated without resorting to the detailed 4C code, thus enriching – at a negligible 

computational cost – the database of scenarios necessary for the improvement of 

the maps used in LOFA precursor identification. Results show that the performance 

of the algorithm is enhanced: the rate of LOFA detection is increased and the 

corresponding precursor identification is more accurate (in particular, the 

overestimation of the number of failed components is softened). 

In summary, the main (methodological and applicative) contributions of this thesis 

are the following: 

• study and development of an original approach to promptly identify LOFA 

precursors (i.e., those component failures leading to a LOFA), based on an 

On-line Supervised Spectral Clustering (OSSC) method embedding the 

Fuzzy C-Means (FCM) algorithm; 
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• implementation of different metamodel-based approaches (AK-MCS and 

POD-based Kriging) to improve the performance of the LOFA precursors 

identification algorithm proposed, at a reduced computational cost (i.e., by 

circumventing the burden typically associated to detailed, mechanistic 

simulation codes); 

• first-time application of the algorithms mentioned above to a component of 

a nuclear fusion system (i.e., the SMCCC of a single ITER CSM). 

The remainder of the thesis is organized as follows. In Chapter 2, a detailed 

description of the simplified SMCCC is provided accompanied by information of 

the SMs of ITER and of the deterministic code 4C (Savoldi et al., 2010) used to 

simulate one of the six CSMs. Then, the LOFA precursors identification algorithm 

is presented in Chapter 3, together with information on the dataset generated for its 

training and the results of its application to new, unknown test scenarios. Chapter 4 

describes the use of metamodels to enhance the performance of the LOFA precursor 

identification algorithm of Chapter 3. In particular, the AK-MCS method is first 

presented and employed to efficiently and deeply explore the system failure region, 

thus gaining useful information about those system configurations leading to a 

LOFA. Then, the POD-based Kriging metamodels is described and used to “mimic” 

the behaviour of the 4C code with a reduced computation cost: this allows 

generating a large number of new time-varying signals (transients) to enrich the 

“maps” used for training the LOFA precursors identification approach. Lastly, the 

LOFA precursors identification algorithm of Chapter 2 is customized for the new 

dataset and tested on new scenarios. Finally, conclusions are drawn in Chapter 5. 
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2 Case studied 

ITER (Figure 2.1) is one of the most innovative and challenging international 

scientific projects in the world today: it will be the largest tokamak with a D-shape 

cross section and a plasma volume of 840 m³, where D-T thermonuclear reactions 

are achieved under extreme conditions, reaching temperature of the order of 150 

million °C, a plasma density of 1020 particle/cm3 (necessary to increase the 

frequency of collision between particles) and adequate confinement time 

(maintaining plasma in a defined volume). This prototype has different goals: (i) 

demonstrating the feasibility of producing 500 MW of output with a fusion energy 

gain factor of 10, (ii) testing technologies for fusion power plants (i.e., auxiliary 

heating and cryogenic systems, control, diagnostics and remote maintenance), (iii) 

achieving stable D-T reactions for long duration by exploiting internal heating from 

α-particles, (iv) demonstrating the feasibility of making tritium from mock-up in-

vessel tritium breeding blankets and (v) demonstrating the safety characteristics of 

fusion plants (ITER, 2018). 

  

Figure 2.1 A detailed cutaway view of the future ITER tokamak [Source (ITER, 2018)] 
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2.1 The Superconductive Magnets 

Plasma confinement is realized with a systems of SMs that generate magnetic fields 

of several Tesla: eighteen Toroidal Field coils (TFs), one Central Solenoid coil 

(CS), constituted by six Central Solenoid Modulus (CSMs), six Poloidal Field coils 

(PFs) and eighteen Correction Coils (CCs) (Figure 2.2). The TFs generate the 

toroidal magnetic field necessary for plasma stability, the CS, through an inductive 

flux, produces a toroidal current inside plasma, which in turn brings the poloidal 

magnetic field for plasma equilibrium, the PFs provide the magnetic field required 

for plasma vertical stability and for plasma pressure confinement and the CCs 

enhance plasma positioning correcting possible distortion in the magnetic field, for 

example, due to busbars and feeders (Mitchell et al., 2008; Koizumi, 2013). 

 
Figure 2.2 ITER Superconductive Magnets [Ref. (Koizumi, 2013)] 

All SMs exhibit superconductive properties, such as a null electrical resistance and 

the expelling of magnetic flux fields, below a characteristic critical temperature: 

with the absence of ohmic heating huge electric currents can be run inside them 

generating magnetic field of the order of Tesla. However, the magnetic field that 

covers the SMs, the density of the current that flows through them and the strain 

which they undergo contribute to reduce their critical temperature, that depends also 

on the material from which they are made (Takahashi et al., 2006). Specifically, the 

TFs and the CS are made by Nb3Sn, while the PFs and the CCs by NbTi: the cross 
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sections of each Cable-In-Conduit Conductor (CICC) that compose the SMs are 

shown in Figure 2.3 (a). 

Each CICC is made by about 1000 strands wounded around a spiral tube like in 

Figure 2.3 (b), excepting for the ones of the CCs, made by about 300 strands without 

the presence of any spiral: 2/3 of the strands are manufactured with thousands of 

filaments with superconductive materials in a matrix of copper and the remaining 

1/3 are pure copper strands. A stainless-steel jacket, that is squared for the CS and 

the PFs and circular for the TFs, cover all the strands. 

a) 

 

b) 

 
Figure 2.3 Cross section of the CICC of each SM (a) [Ref. (Koizumi, 2013)]; CICC of the CS (b) 

[from (Takahashi et al., 2006)] 

The SMs must be maintained at cryogenic temperatures to preserve their 

superconductive properties and, so, they are cooled with Supercritical Helium 

(SHe) at 4.5 K and 0.42 MPa that is characterized by a proper heat capacity at this 

state: this is enabled by feeders that connect the Superconducting Magnet 

Cryogenic Cooling Circuit (SMCCC) with the SMs (Figure 2.4). This temperature 

is a good compromise for the operating points of all the SMs: the TFs and the CS 

operate in the range of 12-13 T, while the PFs and the CCs, made with cheaper 
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material, operate below 6 T. Several monitoring and protection systems, such as 

inherent features, detection/monitoring systems (active during operation condition) 

and testing systems (active at plasma interruption or at discharge of the SMs) are 

integrated into the devise, because magnets faults are difficult to be repaired and 

they reduce the availability of the machine. Indeed, huge mechanical stress and high 

energy handled by the SMs may impact neighbouring systems, such as tritium 

confinement barriers (Mitchell et al., 2012). 

 

Figure 2.4 Overview of feeders [Ref. (Mitchell et al., 2008)] 

The SMs work at different conditions: the eighteen TFs, fed by steady state current 

at 68 kA, produce a magnetic field with a total energy of 41 GJ and a peak of 11.8 

T; the CS has a magnetic stored energy of 6.4 GJ with a magnetic field peak of 12.5 

T, realized with pulsed current with peaks of 45-46 kA driven in its six modulus; 

the magnetic field generated by the PFs has a magnetic energy of 4 GJ and a field 

peak of 6 T, generated by varying current with peaks of 45 kA; smaller current with 

peaks of 10 kA is run in the CCs producing fields with lower magnetic energy. The 

interaction between magnetic fields and flowing currents generates strong Lorentz 

forces in the SMs and a mechanical support system is necessary to maintain these 

significant mechanical stresses. Each TFs is enclosed in a TF case in stainless steel: 

4 Outer Inter-coil Structures (OIS) and 2 Intermediate Inter-coil Structures (IIS), 

that connect the curved region of the TF case with 3 Pre-Compression Rings (PCR), 



14 
 

link together the 18 TFs as shown in Figure 2.5 (left). This mechanical structure 

helps also to maintain the PFs and the CCs at their position. Instead, a 

precompression structure, made by ties (hold together by a centring system) located 

at the inner and outer diameter of the CS, keep the CS fixed. Gravity support 

systems are necessary to hold the weight of the stainless steel structures and the 

SMs with a total weight of about 6000 ton for the CS structure and 3400 ton for the 

TF structure (D’Amico et al., 2018; Mitchell et al., 2008). 

  
Figure 2.5 ITER Magnet system, overview of a 40 degree section. Toroidal field coil system is in 

light grey; poloidal field coils system and central solenoid system are in dark grey (left) [Ref. 
(D'Amico et al., 2018)]; Overview of the CS assembly (right)  [Ref. (Everitt et al., 2013)] 

The CS is the object of this thesis. In order to induce a toroidal plasma current of 

15 MA for 300-500s, the CSMs that compose the CS have six independent profiles 

of current. After they are magnetized together for about 6 minutes reaching 40 kA, 

they will be discharged differently to initiate the plasma current: current drops to 

zero in the outer CSMs and changes direction in the inner ones.  In order to maintain 

the plasma current at a fixed value for more than 500s, the current continues to 

increase in the inner CSMs reaching values of 46 kA. Afterward, all the CSMs are 

discharged. The magnetic flux variation inside the CSM (due to current variation in 

the CSMs) is necessary to maintain the electric potential to drive plasma current 

according to Faraday-Neumann law, but AC losses are proportional to current time-

derivative (ITER, 2018). Particularly, we will focus more on the CS1U, because 

inner CSMs sustain higher AC losses than the outer ones, increasing more the inside 
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temperature of the coil, and their current sharing temperature is lower, because they 

are immersed in higher magnetic field. 

Each CSM is composed by three hexa-pancakes (HPs), a single quad-pancake (QP) 

and other three HPs disposed in series by means of electric joints (Savoldi et al., 

2014). The single pancake is built wrapping the single CICC fourteen times at the 

same height before passing above these windings and repeating the bending 

procedure for four or six times for the HP and the QP, respectively: the wrapping 

phase is started from the outer side of the CSM finishing at its outer part, so all the 

electric joints are located on the outer side of the CS connecting in series all the 

CICCs. From the wrapping procedure of seven CICCs there will be forty different 

channels at different heights from the bottom to the top of the CSM. At each channel 

there is a hole in the inner side of the solenoid connected with the feeder of the 

SMCCC and another one in the outer side. In this way, there are 40 separate 

hydraulic channels which are connected in parallel to the cryogenic system: the 

supercritical helium (SHe) is feed from the inner part to the outer one in each 

channel as shown in Figure 2.6. 

 

Figure 2.6 Cross section of an ITER CS module (a), with a zoom showing the insulation layer 
between adjacent turns (b) and down to a single CICC (c) [From (Savoldi et al,, 2018)] 

The validated deterministic 4C code has been used to model both the SMCCC and 

the coil. 
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2.2 The 4C code 

The Cryogenic Circuit Conductor and Coil code (4C code), designed at “Politecnico 

di Torino” (Savoldi et al., 2010), is a validated deterministic code embedding the 

Mithrandir code (Zanino et al., 1995) and the multi-conductor Mithrandir (M&M) 

code (Savoldi et al., 2000a). 

The Mithrandir code allows to solve the 1-D thermal-hydraulic model for both the 

two fluid regions of the CICC separated by the spiral tube: indeed, the SHe that 

flows inside the central region has a different thermodynamic state (i.e., flow speed, 

pressure and temperature) than the one in the bundle, but the two channels 

communicate each other, so a set of Euler equations is employed to solve the 

thermodynamic state of the SHe of the two streams. Also, the jacket and the strands 

are included in the model embedding transversal heat transfer phenomena in the 1-

D model, thermally coupling them with themselves by conduction and with the SHe 

convectively, enabling to evaluate their temperature: external heating and internal 

one, such us Joule effect and AC losses, are accounted, too. All coefficients and 

properties needed to solve the set of equations are gathered by a Computational 

thermal-Fluid Dynamics (CtFD) analysis in small portions of the CICC and then 

averaged over the cross-sections. 

However, the Mithrandir code enables to solve separately the single channels of the 

CSM, but the M&M code overcomes this limit implementing heat conduction 

phenomena in each radial section of the CSM between the 40 channels. This code 

has shown comparable results respect to real experiments in estimation of current 

sharing temperature (i.e., temperature when current starts flowing in copper strands) 

and other variables in the CSM with shots of current of different intensity as input 

(Savoldi et al., 2000a & 2000b). 

Instead, in 4C code, differently from the Mithrandir and the M&M codes, a 1-D 

compressible fluid model (for pipes and heat exchangers) based on Dymola and a 

0-D model for the mass and the energy balance in relevant points of the cooling 

loop (such as valves, tanks, pump, ...) are also integrated (Savoldi et al., 2010). This 

code has been validated several times: for instance, a study on the safety discharge 
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of a TF coil at 25 kA and on the HELIOS loop under pulsed load operation were 

performed showing results comparable to the experimental data (Zanino et al., 2011 

& 2013). 

In this thesis, the 4C code is employed to simulate the closed loop of the CS1U 

coupled with a simplified version of the SMCCC under fault conditions, paying 

particular attention to the effect of Loss-Of-Flow Accident (LOFA) possibly caused 

by component failures. Only one CSM is here considered because of the high 

computational cost associated to the 4C code (about two days per scenario 

simulation).  

2.3 The simplified Superconducting Magnet Cryogenic 

Cooling Circuit 

A simplified version of the SMCCC, that cools only one CSM (the CS1U), is here 

proposed. Figure 2.7 sketches the simplified scheme of the circuit employed also in 

(Bellaera et al., 2019): the Centrifugal Pump (CP) keeps the coolant in motion in 

the two cryolines, guaranteeing a nominal flow 𝐺0 = 0.32 kg/s and a downstream 

pressure 𝑝0 = 0.42 MPa at nominal operational conditions (Froio et al., 2016; 

Bellaera et al., 2019); the heat exchanger HX2 removes the heat produced in the 

CSM, while the HX1 cools the SHe after the compression in the CP with Liquid 

Helium (LHe) at saturated condition (𝑇𝑠𝑎𝑡 = 4.5 K); Control Valves (CV1 and 

CV2) are Normally Open (NO) during nominal operational condition, while the two 

Safety Valves (SV1 and SV2) and the By-pass Valve (BV) are Normally Closed 

(NC); the by-pass line, where the BV is located, connect the downstream of HX1 

with the upstream of CP; two Quench Lines (QLs), where the SVs are located, allow 

the communication of the input and the output of the CSM with the Quench Tank 

(QT) for the safety discharge of the coolant in case of quench; controllers C1 and 

C2 receive signals from flow meters and pressure detectors, respectively. In each 

scenario, the simulation has been performed during the mission time 𝑡𝑚𝑖𝑠𝑠 =

3600𝑠. 



18 
 

 
Figure 2.7 Simplified SMCCC [adapted from (Bellaera et al., 2018)] 

2.3.1 Control systems 

The CSM, as for each SM, must work at cryogenic condition in order to maintain 

its superconductive properties. Indeed, superconductivity is preserved, if three 

parameters, which are the magnetic field, the temperature and the current, are below 

a certain limit. In addition, presence of strain due to mechanical pressure, 

temperature gradients and Lorentz forces, contribute to reduce these limits.  

A critical surface in a 3-D space with respect to these parameters is  shown in Figure 

2.8: it is derived from critical current vs. strain, magnetic field and temperature 

correlation described in (Bottura et al., 2009) setting a total strain of the strands of  

-0.49% and scaling parameters like in (Martovetsky et al., 2017). If operation 

conditions fall above this surface (i.e., at least one parameter above the limit), 

superconductivity will be lost.  

 
Figure 2.8 Critical surface of the CSM (red) and critical current of the CSM at B=12.5 T (blue) 
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An example of a scenario where superconductivity is lost is reported in Figure 2.9. 

Initially, during operation condition (𝐼𝑜𝑝, 𝑇𝑜𝑝) all the current flows through the 

Nb3Sn strands, because the operative current 𝐼𝑜𝑝 is below the critical curve at 

operative temperature 𝑇𝑜𝑝, and the same happens until the current sharing 

temperature (𝑇𝑐𝑠) is reached. Once this value is overcome, only a portion of 𝐼𝑜𝑝, 

matching the critical current at the reached temperature, flows inside the 

superconductive strands (𝐼𝑆𝑀) and the remaining part starts to run through the 

cooper matrix (𝐼𝐶𝑢). Above critical temperature (𝑇𝑐𝑟), quench is occurred and all 

the current passes through the copper strands, that have an electric resistance lower 

than the ones made by Nb3Sn without superconductivity. 

 
Figure 2.9 Critical current of the CSM (setting a total strain of -0.49% and a magnetic field of 

12.5 T) (blue); possible operative points (red)  

Temperature inside the CSM must not exceed 𝑇𝑐𝑠 and not 𝑇𝑐𝑟, because ohmic 

heating consequent to the electric current inside copper starts at this point 

accelerating more rapidly the temperature raising.   

A rapid increase of the temperature may lead to an excessive thermal stress inside 

the CSM, melting in a located region or a huge pressure increase. In the first two 

cases, the CSM strands may be damaged degrading the maximum current they can 

carry and leading to possible replacement of the component that is expensive and 

difficult to be substituted. In the last case, the integrity of joints in the CSM is at 

risk. This situation may lead to possible cascade events, especially if quench is not 

promptly detected, leading to theoretical potential damaging of neighbouring 

components: for instance, SHe may be sprayed into the vacuum vessel or the tritium 
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breeding system may be damage by impact or by heating (D’Amico et al., 2016 & 

2018; Mitchell et al., 2012). 

At operation condition, AC losses, proportional to the time derivative of the current, 

may increase the temperature inside the CSM and, then, the chance of quench 

occurrence, if not enough SHe is provided into the CSM to extract the heat. In case 

of a LOFA, there is a complete stagnation of the coolant (i.e., mass flow rate about 

at 0% of the nominal value) in the CSM and its integrity is in danger. For this reason, 

the mass flow rate of SHe at the inlet and at the outlet of the CSM is monitored by 

two mass flow meters and LOFA is detected conservatively, if both sensors measure 

a flow below 10% of the nominal value (equal to 0.032 kg/s) for more than the 

validation time (𝜏𝑣𝑎𝑙 = 1𝑠) as performed in (Savoldi et al., 2018). In this case, the 

controller C1 closes CV1 and CV2 and opens BV to prevent the CP failure and 

dumps the current inside the CSM in 30s independently from the value reached by 

the current (ITER, 2014), so that SHe can only flow through the by-pass line, 

isolating the CSM and reducing the inventory of bi-phase helium at CP upstream. 

In this way, the CP is maintained in a fail-safe condition operating with SHe cooled 

by the HX1. For the duration of the ramp down of the current, AC losses are 

generated for current variation and the heat deposition rise the temperature, because 

no coolant is provided for the closure of the CVs. A fast temperature increase may 

involve in an expansion of the SHe with a consequent pressure rise. For this reason, 

the controller C2, that acts like a PID controller (with proportional gain = 1∙10−7 

Pa−1, integration time = 0.2 s, derivation time = 1 s) connected to pressures gauges 

at the input and at the output of the CSM, opens the two SVs when the pressure in 

the CSM overcomes 𝑝𝑙𝑖𝑚 = 1.8 MPa, sending SHe in the Quench Tank (QT), at 

pressure 𝑝𝑄𝑇 = 0.35 MPa and temperature 𝑇𝑄𝑇 = 300 K (Bellaera et al., 2019), 

preserving the integrity of the CSM. 

2.3.2 Critical variables 

In this thesis, different variables are monitored to verify the integrity of the CSM. 

For each i-th simulation, 𝑁𝑘 = 3 variables 𝑦𝑖
𝑘(𝑡) [𝑘 = 1,2, … ,𝑁𝑘] are monitored at 

time t: the pressure 𝑝𝐶𝑆𝑀,𝑖𝑛 at the inlet of the CSM (𝑘 = 1), that must not exceed 



21 
 

𝑝𝑙𝑖𝑚 = 1.8 𝑀𝑃𝑎 (set point at which C2 opens the SVs for the integrity of joints and 

headers adjacent to the CSM during quench); the hotspot temperature 𝑇ℎ𝑠 in the 

CSM (𝑘 = 2), that must not exceed the current sharing temperature 𝑇𝑐𝑠 = 7.3 𝐾; 

the ratio 𝐼/𝐼𝑐𝑟 between the current flowing in the conductors that wraps the CSM 

and the critical one (𝑘 = 3), that must not exceed (𝐼/𝐼𝑐𝑟)𝑙𝑖𝑚 = 0.5 (that indicates 

how the electric current is near to the maximum current capacity of the CSM at 

certain magnetic field, temperature and mechanical stress).  

2.3.3 The simulator 

This circuit is simulated by means of the 4C code employing the Modelica scheme 

of the simplified SMCCC shown in Figure 2.10, also adapted from (Bellaera et al., 

2018 & 2019). Each component used in this scheme is described in (Zanino et al., 

2012). 

 
Figure 2.10 Modelica scheme of the Simplified SMCCC [adapted from (Bellaera et al., 2018)] 

Thermodynamic state of SHe along pipes (HXs, Cryoline 1, Cryoline 2) is solved 

with a set of 1-D mass, momentum and energy balance equations with a finite-

volume discretization: pipe characteristics needed to evaluate the pressure drop are 

shown in Table 2.1. 

 



22 
 

Table 2.1 Pipes characteristics 

 diameter Friction multiplier length 
Cryoline 1 46 mm 10−5 28 m 
Cryoline 2 46 mm 10−5 24 m 
1 of the 11 pipes of HX 20 mm 1.5 ∙ 102 31 m 

 

Each HX is modelled as an ensemble of 11 parallel pipes immersed in a “LHe bath” 

with the hypothesis of perfect phase separation and thermodynamic equilibrium 

between liquid and gas helium: for this assumption, the pipe wall temperature of 

HXs is assumed constant at 4.5 K and it absorbs heat convectively from the SHe 

through a wet perimeter of 105 m. 

The additional presence of SHe inside the circuit between components is accounted 

with 9 volumes, where physical quantities are evaluated with a set of 0-D mass and 

energy balance equations. Also the QT is modelled as a volume, but with higher 

size and temperature. All the information about these values are listed in Table 2.2. 

Table 2.2 Volumes characteristics at initial condition 

 Volume Pressure Temperature 
Vol1 10−1 m3 0.42   MPa 4.5  K 
Vol2 10−4 m3 0.42   MPa 4.5  K 
Vol3 10−1 m3 0.345 MPa 4.5  K 
Vol4 10−4 m3 0.345 MPa 4.5  K 
Vol5 10−4 m3 0.42   MPa 4.5  K 
Vol6 10−3 m3 0.42   MPa 4.5  K 
Vol7 10−3 m3 0.345 MPa 4.5  K 
Vol8 10−4 m3 0.345 MPa 4.5  K 
QT 10     m3 0.35   MPa 300 K 

 

The CP operation is simulated with the pump characteristic in (Zanino et al., 2013), 

providing a nominal flow 𝐺0 = 0.32 kg/s inside the CSM. Its length and flow area 

are set equal to 0.2 m and 3.46 ∙  10−3 m2, respectively. Its failure is modelled 

varying the mass flow rate provided by the CP. 

When the coolant passes through a valve, it undergoes an isenthalpic transformation 

and pressure drop is estimated from the flow, employing ISA S75 (IEC 60534 mod) 
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norms. It is considered a length of 0.2 m for all the valves and a flow area of 3.46 ∙

10−3 m2 for the CVs and the BV and of 3.46 ∙  10−4 m2 for the SVs. They are also 

characterized by a state, that corresponds to the mass flow rate ratio between the 

output and the input: 0 is the value corresponding to a close valve and 1 to an open 

valve. Controllers C1 and C2 act on these values: states of CVs and BV will be altered 

to 0 and 1, respectively, by the C1 when LOFA is detected; the SVs are controlled, 

instead, by the PID controller C2 that changes their state from 0 to 1, if 𝑝𝑙𝑖𝑚 is 

overcome. 

Failures of the valves are modelled acting on their state after the failure occurrence: 

the state of the fault valves cannot be changed by C1 and C2 once the event is 

occurred. If a NO valve remains stuck opened or if a NC valve completely opens, 

its state will be 1, otherwise, if a NO valve completely closes or if a NC valve 

remains stuck closed, its state will be 0. Instead, if a NO valve closes with a 

reduction of the flow section area of 50% or if a NC valve opens with the flow 

section area at 50%, its state will change to 0.18, because, it corresponds to the mass 

flow rate ratio between the output and the input of the valve with the hypothesis of 

an equal-percentage flow characteristic (i.e., the most common valve characteristic) 

(Fisher, 2017; Bellaera et al., 2018). 

For what concern the CSM, the flowing current, whose pulse is showed in Figure 

2.11 between the two red points, is fed to the simulator as a time-varying parameter. 

The single pulse of current follows 𝑄 = 5 phases (Savoldi et al., 2014). 

1) First Magnetization phase (FM): in the first 130s the current varies from 40 

kA to -40 kA in 80s leading to large AC losses and Eddy currents. 

2) Burning Phase (B): the current decreases to -45.5 kA for 386s. 

3) Rump Down phase (R): the current reaches 0 kA at 975s. 

4) Dwell phase (D): no current flows in the CSM until 1490s (to cool down the 

CSM after the heat load of the previous phases). 

5) Last Magnetization phase (M): current returns to the initial value of 40 kA 

and, after a plateau of 10s,  the pulse starts again for other 1800s. 
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Figure 2.11 Single pulse of current in the ITER CSM  

This electric current contributes to the variation of magnetic field and strain inside 

the CSM, that are important for physical properties employed in 4C to compute all 

the output at every time step. 
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3 LOFA precursors identification algorithm 

In this Chapter, a new strategy to identify LOFA precursors (i.e., those component 

failures leading to a LOFA) is proposed. Indeed, LOFA may lead to abnormal 

scenarios and proper prevention and mitigation strategies must be timely 

undertaken. The proposed method consists on an On-line Supervised Spectral 

Clustering (OSSC) method embedding the Fuzzy C-Means (FCM) algorithm that 

identify LOFA precursors from signal of a developing scenario: it recognises the 

pattern of signals measured during plant operation, which may reveal the accident 

precursors (i.e., the failed components) with a data-driven approach. In this way, 

operator decision may be supported for prompt intervention in the presence of a 

large volume of monitored signals (Baraldi et al., 2015a; Di Maio et al., 2016; Al-

Dahidi et al., 2018). 

The dataset, generated with rules submitted in Section 3.1 and employed in LOFA 

precursors identification algorithm, is presented in Section 3.2, while the OSSC is 

descripted in Section 3.3. Afterward, the devised algorithm is tested on new 𝑁𝑡𝑒𝑠𝑡 =

38 scenarios not included in the dataset. All the signals needed and presented in 

Section 2.3.2 were simulated with the 4C code able to reproduce the system 

response of the SMCCC and the SMs under abnormal scenarios (Savoldi et al., 

2010). 

3.1 Accidental scenario generation 

In the case studied, only failures of CP, CV1, CV2, BV, SV1 and SV2 may occur 

in a range between 0s and 1800s (time length of a single pulse) and control systems 

are assumed to work correctly as performed in (Bellaera et al., 2019). These failures 

may lead any of the limits for 𝑝𝐶𝑆𝑀,𝑖𝑛, 𝑇ℎ𝑠 and 𝐼/𝐼𝑐𝑟 to be overcome. For example 

(Bellaera et al., 2019): 

• The CP may decrease the rotational speed (leading to the reducing of the 

mass flow rate) at: i) 75%, ii) 50%, iii) 25% or iv) 0% of the nominal value. 
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• NO valves (CV1 and CV2) may fail in three different ways: i) stuck opened 

at nominal position; ii) partially closed with a flow area at 50 % of the 

nominal one; iii) completely closed. 

• NC valves (BV, SV1 and SV2) may fail in three different ways: i) stuck 

closed at nominal position; ii) partially opened with a flow area at 50 % of 

the nominal one; iii) completely opened. 

Each accidental i-th scenario is characterized by a sequence of events described by 

a vector of 𝑀 = 12 elements 𝓧𝑖 = [𝑚𝐶𝑃, 𝜏𝐶𝑃, 𝑚𝐶𝑉1, 𝜏𝐶𝑉1, 𝑚𝐶𝑉2, 𝜏𝐶𝑉2, 𝑚𝐵𝑉, 𝜏𝐵𝑉 , 

𝑚𝑆𝑉1, 𝜏𝑆𝑉1, 𝑚𝑆𝑉2, 𝜏𝑆𝑉2], built with a Monte Carlo approach: for each component the 

magnitude (𝑚) of the failure and the time (𝜏) at which the failure occurs are listed. 

The magnitude (𝑚) is assumed as follows: 

• The magnitude of the CP can be a value between 0 and 4. If the component 

is not failed, 𝑚𝐶𝑃 = 0. Instead, if 𝑚𝐶𝑃 is equal to 1, 2, 3 or 4, these values 

correspond respectively to a reduction of the mass flow rate of 75%, 50%, 

25% or 0% of the nominal value due to a decrease of its rotational speed. 

• The magnitude of NO valves (CV1 and CV2) can assume a value between 

0 and 3. If the component works correctly, 𝑚 = 0. Instead, if 𝑚 is equal to 

1, 2 or 3, the considered valve remains respectively stuck opened, partially 

closed with a reduction of the flow section area of 50% or completely 

closed. 

• For the magnitude of NC valves (BV, SV1 and SV2) there could be four 

possible values, too. If the component is not failed, 𝑚 = 0. Otherwise, if 𝑚 

is equal to 1, 2 or 3, the considered valve remains respectively stuck closed, 

partially opened with the flow section area at 50% of the one completely 

opened or completely opened. 

The failure time (𝜏) is a discrete value between 0s and 1800s. If the component 

works correctly, 𝜏 is null. 

For instance, if the input vector is equal to 𝓧𝑖 = [2, 60, 2, 1785, 1, 689, 0, 0, 1, 856, 

3, 1405] the scenario to be simulated with 4C entails the failure of the CP at 60s 

with the flow at 50% of the nominal value, the valves CV2 and SV1 stuck at their 
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nominal position at 689s and 856s respectively, the complete opening of SV2 at 

1405s and the partial closing of CV1 at 1785s, whereas the BV works correctly for 

all the transient.  

The entire sequence of event of the 𝓧𝑖 input may be visualized better resorting to 

Multiple Valued Logic (MVL) approach (Garribba et al., 1985), where the failure  

order (𝑜𝑟𝑑) and the failure time interval (𝑡) replace the failure time (𝜏). 

• The time (𝑡) is discretized in 6 time intervals of 300s numbered 1 to 6. These 

values correspond respectively to [0s, 300s], [301s, 600s], [601s, 900s], 

[901s, 1200s], [1201s, 1500s], [1501s, 1800s]. If 𝑡 is null, it means the 

component works correctly. 

• The order (𝑜𝑟𝑑) can assume values between 1 and 6: if a component fails 

with 𝑜𝑟𝑑 = 1, it means that it is the first event that occurs. Otherwise, if 

𝑜𝑟𝑑 = 6, other 5 components failed before. If a component is not failed, its 

order is equal to “NaN”. This value is necessary to store the order of the 

failures of two or more components that happen at the same time interval: 

in fact, this number is never redundant. 

In this way, a 𝓧𝑖 input can be associated to a 𝑴𝑽𝑳𝑖 = [𝑚𝐶𝑃, 𝑡𝐶𝑃, 𝑜𝑟𝑑𝐶𝑃,𝑚𝐶𝑉1, 

𝑡𝐶𝑉1 , 𝑜𝑟𝑑𝐶𝑉1 , 𝑚𝐶𝑉2 , 𝑡𝐶𝑉2, 𝑜𝑟𝑑𝐶𝑉2, 𝑚𝐵𝑉 , 𝑡𝐵𝑉, 𝑜𝑟𝑑𝐵𝑉, 𝑚𝑆𝑉1, 𝑡𝑆𝑉1, 𝑜𝑟𝑑𝑆𝑉1, 𝑚𝑆𝑉2, 𝑡𝑆𝑉2, 

𝑜𝑟𝑑𝑆𝑉2]. For instance, if 𝓧𝑖 is the same of the previous example, the corresponding 

𝑴𝑽𝑳𝑖 will be [2, 1, 1, 2, 6, 5, 1, 3, 2, 0, 0, 𝑁𝑎𝑁, 1, 3, 3, 3, 5, 4], because in that 

scenario the failure of the CP is in the 1st time interval [0s, 300s] with the flow at 

50% of the nominal value, the valves CV2 and SV1 stuck at their nominal position 

during the 3rd time interval [601s, 900s], the complete opening of SV2 during 

[1201s, 1500s] and the partial closing of CV1 during the last time interval [1501s, 

1800s], whereas the BV works correctly for all the transient.  

Resorting to MVL and employing these settings, 108 possible accidental scenarios 

can be generating (Bellaera et al., 2019). 
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3.2 Initial Dataset description 

Among all the 108 possible scenarios, 𝑁𝑡𝑟𝑎𝑖𝑛 = 83 randomly selected scenarios 

have been simulated and clustered in 𝐶 = 9 groups with the aim of identifying 

"classes" of abnormal transients in the CSM (Bellaera et al., 2019). 

Figure 3.1, Figure 3.2 and Figure 3.3 show the behaviour of 𝑝𝐶𝑆𝑀,𝑖𝑛, 𝑇ℎ𝑠 and 𝐼/𝐼𝑐𝑟 

(dotted lines) for the 𝑁𝑡𝑟𝑎𝑖𝑛 transients, grouped in clusters: for each cluster the 

prototypical transient (i.e., the transient belonging to a cluster with the largest value 

of membership, which can be taken as most characteristic of the cluster (Baraldi et 

al., 2015b) is also plotted (continuous line).  

 

Figure 3.1 Prototypical behaviour of 𝑝𝐶𝑆𝑀,𝑖𝑛   for each cluster 
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Figure 3.2 Prototypical behaviour of 𝑇ℎ𝑠   for each cluster 

 

 
Figure 3.3 Prototypical behaviour of 𝐼/𝐼𝑐𝑟   for each cluster 

It is worth pointing out that scenarios of cluster 4 show the largest values of 𝑝𝐶𝑆𝑀,𝑖𝑛 

and 𝑇ℎ𝑠 (without overcoming the threshold limits 𝑝𝑙𝑖𝑚 and 𝑇𝑐𝑠, respectively), 
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whereas scenarios of cluster 2, 3, 8 and 9 show 𝑝𝐶𝑆𝑀,𝑖𝑛 lower than 𝑝0 and none of 

the scenarios exceed (𝐼/𝐼𝑐𝑟)𝑙𝑖𝑚. 

Figure 3.4 (left) collects each 𝑡𝐿𝑂𝐹𝐴,𝐶1,𝑖 (𝑖 = 1,… , 𝑁𝑡𝑟𝑎𝑖𝑛), which is the time when 

control system C1 detects a LOFA in the i-th scenario, for all the 𝑁𝑡𝑟𝑎𝑖𝑛 scenarios 

according to their belonging cluster. This event may occur during one of the 𝑄 = 5 

phases of a single pulse of current (Savoldi et al., 2014), represented in Figure 2.11. 

Instead, a matrix ℒ̿[𝐶, 𝑄] containing information of LOFA occurrence for each c-th 

cluster (𝑐 = 1,… , 𝐶) at each q-th time interval (𝑞 = 1,… , 𝑄) is built in Figure 3.4 

(right). The generic element ℒ𝑐𝑞 = 1, if there is at least one 𝑡𝐿𝑂𝐹𝐴,𝐶1,𝑖 at the c-th 

cluster during the q-th phase, otherwise ℒ𝑐𝑞 = 0. Figure 3.4(right) shows the map 

with points where ℒ𝑐𝑞 = 1. 

 
Figure 3.4 Exact times when LOFA occurs in the 83 (clustered) training scenarios (left); map of 

LOFA occurrence in each pulse phase for each cluster (right) 

It can be seen that in the scenarios of cluster 4, LOFA occurs mostly during the 

early phase of the pulse of current (FM, B, R phases), where AC losses in the CSM 

are significative, making 𝑝𝐶𝑆𝑀,𝑖𝑛 and 𝑇ℎ𝑠 reach the largest values, as pointed out 

before. On the other hand, no LOFAs occur in scenarios of clusters 2 and 7, despite 

that the prototypical component failures (i.e., the list of the components failures that 

occurs in the majority of transients belonging to each cluster) differ between 

clusters 2 and 7 (only CP failure for cluster 7 vs CP, CV, BV and SV for cluster 2), 

as it can be seen in Figure 3.5. 
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Figure 3.5 Map of prototypical failures 

A matrix ℱ̿[𝐶, 𝐸 = 4] is built from Figure 3.5 and each generic element ℱ𝑐𝑒 is 

referred to the c-th cluster for the e-th component (𝑒 = 1,… , 𝐸): the generic 

element ℱ𝑐𝑒 = 1, if the e-th component is a prototypical failure of the c-th cluster, 

otherwise ℱ𝑐𝑒 = 0. 

It is important to notice that failure of the CP is present in all clusters and failures 

of the CV and the BV in most of them (except clusters 3 and 7). This highlights the 

challenging identification of the component failures leading to LOFA (i.e., the 

LOFA precursors) by mining out information only from Figure 3.5. In what follows, 

we show an approach for an extensive and automatic LOFA precursors 

identification, to be applied on-line for promptly characterizing new scenarios 

evolutions, not included within the 𝑁𝑡𝑟𝑎𝑖𝑛 = 83 transients used for training (i.e., 

building) the hereafter described approach. 

3.3 The On-line Supervised Spectral Clustering 

An On-line Supervised Spectral Clustering (OSSC) method, trained with the 

available 𝑁𝑡𝑟𝑎𝑖𝑛 = 83 scenarios described in Section 3.2, is proposed for 

identifying the LOFA components failures responsible for the LOFA triggering, for 

any j-th scenario 𝑦𝑗
𝑘(𝑡) of the remaining 108 − 83 scenarios. As well as each 𝑦𝑖

𝑘(𝑡) 

for 𝑖 = 1, 2, … ,𝑁𝑡𝑟𝑎𝑖𝑛, 𝑦𝑗
𝑘(𝑡) consists in 𝑁𝑘 = 3 trajectories, 𝑘 = 1, 2, 3 (𝑝𝐶𝑆𝑀,𝑖𝑛, 

𝑇ℎ𝑠 and 𝐼/𝐼𝑐𝑟, respectively) and 𝑗 = 1,2, … ,𝑁𝑡𝑒𝑠𝑡, but, contrarily to 𝑦𝑖
𝑘(𝑡), it results 
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from the simulation of the cooling circuit behaviour under MVL conditions that 

were not considered among the set of 𝑁𝑡𝑟𝑎𝑖𝑛 scenarios. 

The OSSC proceeds as follows (further details are reported in Appendix A), for 

each j-th scenario (the flowchart is sketched in Figure 3.10): 

Step 1: The k-th trajectory 𝑦𝑗
𝑘(𝑡) is recorded every ∆𝑡 = 0.01𝑠 time step from 0s to 

3600s, corresponding to the length of two consecutive current pulses, so 𝐿 =

360001 points for each k-th variable are saved and any 𝑦𝑗𝑙
𝑘  (𝑙 = 1,2, … , 𝐿) 

corresponds to the value of the k-th variable of the j-th scenario at the l-th time. 

Each 𝑦𝑗
𝑘(𝑡) trajectory has the same discretization of 𝑦𝑖

𝑘(𝑡) trajectory and 

𝑌̿𝑘[𝑁𝑡𝑟𝑎𝑖𝑛, 𝐿] matrix at i-th row and l-th column contains the value 𝑦𝑖𝑙
𝑘 of the k-th 

variable of the i-th training scenario at the l-th time point. 

Step 2: Each 𝑦𝑖𝑙
𝑘 (𝑖 = 1,2, … ,𝑁𝑡𝑟𝑎𝑖𝑛; 𝑙 = 1,2, … , 𝐿) and each 𝑦𝑗𝑙

𝑘  (𝑙 = 1,2, … , 𝐿) are 

normalized as in Eq.(3.1) and in Eq.(A.1) (Appendix A): 

𝑦𝑛,𝑗𝑙
𝑘 = 0.2 + 0.6 ∙

𝑦𝑗𝑙
𝑘 − 𝑚𝑖𝑛(𝑌̿𝑘)

𝑚𝑎𝑥(𝑌̿𝑘) − 𝑚𝑖𝑛(𝑌̿𝑘)
,   𝑘 = 1,… ,𝑁𝑘 (3.1) 

It is worth mentioning that, if 𝑦𝑗𝑙
𝑘  overcomes the maximum (or the minimum) value 

in 𝑌̿𝑘, 𝑦𝑛,𝑗𝑙
𝑘  may not lie in 0.2-0.8. 

Step 3: The Euclidean pointwise distance 𝛿𝑙,𝑗𝑖 between the j-th scenario and the i-

th training scenario (𝑖 = 1,2, … ,𝑁𝑡𝑟𝑎𝑖𝑛), at l-th time is calculated as in Eq.(3.2): 

𝛿𝑙,𝑗𝑖 = ∑ ∑|𝑦𝑛,𝑗𝑝
𝑘 − 𝑦𝑛,𝑖𝑝

𝑘 |

𝑙

𝑝=1

𝑍

𝑘=1

,      𝑖 = 1,2, … ,𝑁𝑡𝑟𝑎𝑖𝑛   𝑎𝑛𝑑      𝑙 = 1,2, … , 𝐿 (3.2) 

Step 4: The similarity vector 𝑊̅𝑙,𝑗[1, 𝑁𝑡𝑟𝑎𝑖𝑛] is built at each l-th time step, whose 

generic element 𝑤𝑙,𝑗𝑖 is given in Eq.(3.3): 

𝑤𝑙,𝑗𝑖 = 𝑒−𝐹∙𝛿𝑙,𝑗𝑖
2

       𝑤𝑖𝑡ℎ 𝐹 = 1.7 ∙ 10−9  (Bellaera et al. , 2019) (3.3) 

The higher 𝑤𝑙,𝑗𝑖, the higher the similarity between the j-th testing scenario and the 

i-th training scenario until the l-th time step. 
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Step 5: The row vector 𝑈̅𝑙,𝑗[1, 𝐶] is calculated projecting 𝑊̅𝑙,𝑗 in the eigenspace 

employing Eq.(B.8) (see Appendix B for proof). Afterward, it is normalized 

determining 𝑇̅𝑙,𝑗[1, 𝐶], whose generic element 𝓉𝑙,𝑗𝑐 is given by Eq.(3.4): 

𝓉𝑙,𝑗𝑐 =
𝑢𝑗,𝑗𝑐

√∑ 𝑢𝑗,𝑗𝑐
2𝐶

𝑐=1

 ,       𝑐 = 1, 2, … , 𝐶 
(3.4) 

Step 6: Each 𝑀𝑙,𝑐𝑗 membership of the j-th scenario at the l-th time step to the c-th 

cluster is calculated as in Eq.(3.5) (which is obtained from Eq.(A.8) of the FMC 

algorithm): 

𝑀𝑙,𝑐𝑗 =   [∑(
‖𝑇̅𝑙,𝑗 − 𝒜̅𝑐‖

‖𝑇̅ 𝑙,𝑗 − 𝒜̅𝜍‖
)

2
𝜌−1

𝐶

𝜍=1

]

−1

, 𝑐 = 1,2,3, . . . , 𝐶 (3.5) 

where 𝒜̅𝑐[1, 𝐶] (𝑐 = 1,2, … , 𝐶) contains the eigenspace coordinates of the 

prototypical transient of the c-th cluster and 𝜌 = 2 is the fuzzy partition exponent 

(Bezdec, 1981). The membership 𝑀𝑙,𝑐𝑗 measures the “degree” with which the j-th 

(test) scenario at the l-th time step “belongs” to the c-th cluster. Figure 3.6 and 

Figure 3.7 show the membership trends for a scenario with no failures (hereafter 

referred to as 𝑗 = 0) and for a scenario with the complete closure of the CV1 at 

623s, respectively: these two scenarios belong to cluster 7 and cluster 5, 

respectively, because 𝑀𝑙,7𝑗 in Figure 3.7 and 𝑀𝑙,5𝑗 in Figure 3.6 rapidly rise and 

reach values close to 1, whereas the other memberships gradually drop to 0. 

  
Figure 3.6 Membership trends for a scenario 

at nominal conditions with no failures 
Figure 3.7 Membership trends for a scenario 

“complete closure of CV1 at 623s” (and 

𝑡𝐿𝑂𝐹𝐴,𝐶1,𝑗 = 627.14𝑠) 
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Step 7: Calculate the pointwise difference between 𝑀𝑙,𝑐𝑗 and 𝑀𝑙,𝑐0 resulting in 

𝑀𝑟𝑒𝑙,𝑙,𝑐𝑗 (shown by way of example in Figure 3.8 for the scenario “complete closure 

of CV1 at 623s”) as in Eq.(3.6): 

𝑀𝑟𝑒𝑙,𝑙,𝑐𝑗  = 𝑀𝑙,𝑐𝑗 − 𝑀𝑙,𝑐0  ,           𝑐 = 1,2, … , 𝐶 (3.6) 

The difference (3.6) serves the purpose of “removing” from the membership trend 

of the j-th test transient to cluster c the “background” contribution of a “standard” 

scenario at nominal condition with no failures. 

Step 8: Calculate 𝑉𝑟𝑒𝑙,𝑙,𝑐𝑗 with Eq.(3.7), i.e., a discrete estimator of the derivative of 

the membership 𝑀𝑙,𝑐𝑗 with respect to the l-th time (shown in Figure 3.9 for the 

scenario “complete closure of CV1 at 623s”): 

𝑉𝑟𝑒𝑙,𝑙,𝑐𝑗 = {   

0                                         𝑖𝑓 𝑙 = 1 
𝑀𝑟𝑒𝑙,𝑙,𝑐𝑗 − 𝑀𝑟𝑒𝑙,(𝑙−1),𝑐𝑗

∆𝑡
  𝑖𝑓 𝑙 ≠ 1

 ,          𝑐 = 1,2, … , 𝐶 (3.7) 

It is evident from Figure 3.8 and Figure 3.9 that 𝑀𝑟𝑒𝑙,𝑙,𝑐𝑗 and 𝑉𝑟𝑒𝑙,𝑙,𝑐𝑗 start differing 

from “0” at 623s after the closure of CV1, because its failure deviates the system 

from its nominal behaviour (i.e., from the scenario with no failures): in particular, 

the failure of CV1 generates an accidental scenario with an initial affinity to cluster 

1 and 5, as testified by the simultaneous increase in the values of 𝑀𝑟𝑒𝑙,𝑙,1𝑗, 𝑀𝑟𝑒𝑙,𝑙,5𝑗, 

𝑉𝑟𝑒𝑙,𝑙,1𝑗and 𝑉𝑟𝑒𝑙,𝑙,5𝑗; however, the increase in 𝑀𝑟𝑒𝑙,𝑙,5𝑗 and 𝑉𝑟𝑒𝑙,𝑙,5𝑗 becomes 

dominant at about 1450s, correctly and clearly showing that the scenario belongs to 

cluster 5. 

  
Figure 3.8 𝑀𝑟𝑒𝑙,𝑙,𝑐𝑗  trends for scenario 

“complete closure of CV1 at 623s” 
Figure 3.9 𝑉𝑟𝑒𝑙,𝑙,𝑐𝑗  trends for scenario “ 

complete closure of CV1 at 623s” 
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Step 9: Identify LOFA precursors as follows. 

Step 9a: Compare 𝑉𝑟𝑒𝑙,𝑙,𝑐𝑗 [𝑐 = 1,… , 𝐶] with 𝑉𝑙𝑖𝑚,𝐿𝑂𝐹𝐴,𝑙, following the pseudo code 

in Figure 3.11. In extreme synthesis, if at least two values of 𝑉𝑟𝑒𝑙,𝑙,𝑐𝑗 overcome the 

threshold 𝑉𝑙𝑖𝑚,𝐿𝑂𝐹𝐴,𝑙 (see Figure 3.12 below) at time l, and if a LOFA can occur in 

the corresponding clusters (according to the map of Figure 3.4(right)), the algorithm 

identifies the LOFA precursors. 

Step 9: Identification of 

LOFA precursors 

Figure 3.10 Flow chart of the OSSC procedure 

𝑦𝑗
𝑘(𝑡) (𝑘 = 1,2,3) and 𝑦𝑖

𝑘(𝑡) (𝑘 = 1,2,3; 𝑖 = 1,… , 𝑁𝑡𝑟𝑎𝑖𝑛) are defined 

Step 2: Calculate 𝑦𝑛,𝑗𝑙
𝑘  and 𝑦𝑛,𝑖𝑙

𝑘  by normalizing 𝑦𝑗𝑙
𝑘  and 𝑦𝑖𝑙

𝑘 respectively 

Step 1: Record 𝑦𝑗𝑙
𝑘  from 𝑦𝑗

𝑘(𝑡) and 𝑦𝑖𝑙
𝑘  from 𝑦𝑖

𝑘(𝑡) (𝑙 = 1,… , 𝐿) 

Step 7: Calculate 𝑀𝑟𝑒𝑙,𝑙,𝑐𝑗 

Step 8: Calculate 𝑉𝑟𝑒𝑙,𝑙,𝑐𝑗 

Step 6: Calculate 𝑀𝑙,𝑐𝑗 (𝑐 = 1,… , 𝐶) 

Step 5: Calculate 𝑇̅𝑙,𝑗[1, 𝐶] by normalizing 𝑈𝑙,𝑗[1, 𝐶] that is found projecting  
𝑊̅𝑙,𝑗 in eigenspace with Eq.(B.8) 

 

Data of 𝑵𝒕𝒓𝒂𝒊𝒏 training scenarios 

 

Step 4: Build the similarity row 𝑊̅𝑙,𝑗[1, 𝑁𝑡𝑟𝑎𝑖𝑛]  

Step 3: Calculate the Euclidian pointwise distance 𝛿𝑙,𝑗𝑖 between the j-th scenario 
and each i-th training scenario (𝑖 = 1,… , 𝑁𝑡𝑟𝑎𝑖𝑛) at l-th time step 
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The trend of 𝑉𝑙𝑖𝑚,𝐿𝑂𝐹𝐴,𝑙 is assumed to be a monotonic increasing piecewise function 

that is calculated relying on the information stored in the 𝑁𝑡𝑟𝑎𝑖𝑛 scenarios, 

following the pseudo-code of Figure 3.12. The trend of 𝑉𝑙𝑖𝑚,𝐿𝑂𝐹𝐴,𝑙 is initially 

defined using a discrete set of points obtained from the 𝑁𝑡𝑟𝑎𝑖𝑛 scenarios and joined 

together to build a stepwise function monotonically increasing. 

 

At l-th time 
Calculate 𝑉1𝑠𝑡 = max

𝑐
(𝑉𝑟𝑒𝑙,𝑙,𝑐𝑗) ; 

Calculate 𝑐1𝑠𝑡 = arg (max
𝑐

(𝑉𝑟𝑒𝑙,𝑙,𝑐𝑗)); 
Calculate 𝑉2𝑛𝑑 = max

𝑐≠𝑐1𝑠𝑡

(𝑉𝑟𝑒𝑙,𝑙,𝑐𝑗); 

Calculate 𝑐2𝑛𝑑 = arg ( max
𝑐≠𝑐1𝑠𝑡

(𝑉𝑟𝑒𝑙,𝑙,𝑐𝑗)); 

𝐹𝑙𝑎𝑔𝐿𝑂𝐹𝐴 = 0;   
If (𝑉1𝑠𝑡 > 𝑉𝑙𝑖𝑚,𝐿𝑂𝐹𝐴,𝑙 & 𝑉2𝑛𝑑 > 𝑉𝑙𝑖𝑚,𝐿𝑂𝐹𝐴,𝑙)  
 Find q-th current phase that corresponds to l-th time 
 𝐹𝑙𝑎𝑔𝐿𝑂𝐹𝐴 = ℒ𝑐1𝑠𝑡𝑞 ∗ ℒ𝑐2𝑛𝑑𝑞; % ℒ𝑐𝑞 = {0,1} (see  Figure 3.4 (right)) 
End 
If 𝐹𝑙𝑎𝑔𝐿𝑂𝐹𝐴 = 1 
 LOFA precursor is identified; 
Else 
 LOFA precursor does not exist;  
End 

For each i-th scenario (𝑖 = 1,… , 𝑁𝑡𝑟𝑎𝑖𝑛) 
 If LOFA occurs 

𝑡𝑙𝑖𝑚,𝑖 = round ((𝑡𝑙𝑎𝑠𝑡,𝐹𝑎𝑖𝑙,𝑖 + 𝑡𝐿𝑂𝐹𝐴,𝐶1,𝑖)/2); 
Else 
 𝑡𝑙𝑖𝑚,𝑖 = 𝑁𝑎𝑁; 
End 

End 
𝑽𝒍𝒊𝒎,𝑳𝑶𝑭𝑨,𝒍 DEFINITION: 
Define 𝑉𝑙𝑖𝑚,𝐿𝑂𝐹𝐴,1 = 0;  
For 𝑙 = 2: 1: 𝐿 
 Find 𝑖 such that l-th time = 𝑡𝑙𝑖𝑚,𝑖  (𝑖 = 1,… , 𝑁𝑡𝑟𝑎𝑖𝑛) 
 If  𝑖 exists 

 Calculate 𝑐1𝑠𝑡 = arg (max
𝑐

(𝑉𝑟𝑒𝑙,𝑙,𝑐𝑖)); 
 Calculate 𝑉𝑙𝑖𝑚,𝑖 = max

𝑐≠𝑐1𝑠𝑡

(𝑉𝑟𝑒𝑙,𝑙,𝑐𝑖); 

 𝑉𝑙𝑖𝑚,𝐿𝑂𝐹𝐴,𝑙 = 𝑉𝑙𝑖𝑚,𝑖; 
Else 

𝑉𝑙𝑖𝑚,𝐿𝑂𝐹𝐴,𝑙 = 𝑉𝑙𝑖𝑚,𝐿𝑂𝐹𝐴,(𝑙−1); 
End 

End 
𝑽𝒍𝒊𝒎,𝑳𝑶𝑭𝑨,𝒍 REVISION: 
For 𝑝 = 𝐿:−1: 1    
 For 𝑙 = 1: 1: (𝑝 − 1)    
  If 𝑉𝑙𝑖𝑚,𝐿𝑂𝐹𝐴,𝑙 > 𝑉𝑙𝑖𝑚,𝐿𝑂𝐹𝐴,𝑝  
   𝑉𝑙𝑖𝑚,𝐿𝑂𝐹𝐴,𝑙 = 𝑉𝑙𝑖𝑚,𝐿𝑂𝐹𝐴,𝑝; 

End 
 End 
End 

Figure 3.11 Pseudo code for 𝑉𝑟𝑒𝑙,𝑙,𝑐𝑗  and 𝑉𝑙𝑖𝑚,𝐿𝑂𝐹𝐴,𝑙 

Figure 3.12 𝑉𝑙𝑖𝑚,𝐿𝑂𝐹𝐴,𝑙 calculation procedure 
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where 𝑡𝑙𝑎𝑠𝑡,𝐹𝑎𝑖𝑙,𝑖 is the time when the last failure before 𝑡𝐿𝑂𝐹𝐴,𝐶1,𝑖 occurs. Figure 

3.13 reports results of each step of procedure in Figure 3.12.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 9b: Compare 𝑀𝑟𝑒𝑙,𝑙,𝑐𝑗 (𝑐 = 1,… , 𝐶) to the threshold 𝑀𝑙𝑖𝑚,𝐹𝐴𝐼𝐿,𝑙 (3.8), 

following the pseudo code in Figure 3.14. In extreme synthesis, if all the values of 

𝑀𝑟𝑒𝑙,𝑙,𝑐𝑗 that exceeds 𝑀𝑙𝑖𝑚,𝐹𝐴𝐼𝐿,𝑙 at l-th time step presents the e-th component as 

prototypical failure, according to the map of Figure 3.5, the algorithm identifies the 

failure of the e-th component as a LOFA precursor. 

 

Figure 3.13 𝑉𝑙𝑖𝑚,𝐿𝑂𝐹𝐴,𝑙  calculation results 
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𝑀𝑙𝑖𝑚,𝐹𝐴𝐼𝐿,𝑙 is calculated as in Eq.(3.8): 

𝑀𝑙𝑖𝑚,𝐹𝐴𝐼𝐿.𝑙 = 𝒮 ∙ (𝑙𝑡ℎ 𝑡𝑖𝑚𝑒)      𝑤𝑖𝑡ℎ 𝒮 = 5.56 × 10−8 𝑠−1 (3.8) 

It is worth mentioning that 𝑀𝑙𝑖𝑚,𝐹𝐴𝐼𝐿,𝑙 is assumed to be linearly dependent on time, 

because in 𝛿𝑖𝑗 (A.2) linearly increases from 𝑡 = 0𝑠 to 𝑡 = 𝑡𝑚𝑖𝑠𝑠 = 3600𝑠 and it is 

used to calculate 𝑀𝑟𝑒𝑙,𝑙,𝑐𝑗. 𝒮 is the value that maximises the number of training 

scenarios whose components failures are correctly identified as LOFA precursors, 

minimising at the same time the time delay between components failures and 

precursors identification. 

3.4 Results 

The proposed procedure is tested with respect to LOFA precursors identification 

for the SMCCC of Section 2, for which 𝑁𝑡𝑒𝑠𝑡 = 38 scenarios, different from the 

𝑁𝑡𝑟𝑎𝑖𝑛 = 83 scenarios used to build the OSSC method of Section 3.3, have been 

simulated resorting to the 4C code. 

As an example, we show the results with respect to the scenario “complete closure 

of CV1 at 623s”, whose memberships are plotted in Figure 3.7 above. In Figure 

At l-th time considering an e-th component 

𝐹𝑙𝑎𝑔𝐹𝐴𝐼𝐿,𝑒 = 1;   

 𝐶𝑜𝑢𝑛𝑡𝐹𝐴𝐼𝐿,𝑒 = 0;   

 For 𝑐 = 1: 1: 𝐶 

  If 𝑀𝑟𝑒𝑙,𝑙,𝑐𝑗 > 𝑀𝑙𝑖𝑚,𝐹𝐴𝐼𝐿,𝑙  

  𝐹𝑙𝑎𝑔𝐹𝐴𝐼𝐿,𝑒 = 𝐹𝑙𝑎𝑔𝐹𝐴𝐼𝐿,𝑒 ∗ ℱ𝑐𝑒;   % ℱ𝑐𝑒 = {0,1}  (see Figure 3.5) 

𝐶𝑜𝑢𝑛𝑡𝐹𝐴𝐼𝐿,𝑒 = 𝐶𝑜𝑢𝑛𝑡𝐹𝐴𝐼𝐿,𝑒 + 1; 

End 

End 

If 𝐹𝑙𝑎𝑔𝐹𝐴𝐼𝐿,𝑒 = 1 & 𝐶𝑜𝑢𝑛𝑡𝐹𝐴𝐼𝐿,𝑒 ≠ 0; 

 e-th component is failed 

Else 

 e-th component is not failed; 

End 

Figure 3.14 Pseudo code for 𝑀𝑟𝑒𝑙,𝑙,𝑐𝑗  and 𝑀𝑙𝑖𝑚,𝐹𝐴𝐼𝐿,𝑙 
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3.15 a zoom of the values of each 𝑀𝑟𝑒𝑙,𝑙,𝑐𝑗 and 𝑉𝑟𝑒𝑙,𝑙,𝑐𝑗  (𝑐 = 1,… , 𝐶) in the interval 

[600s,650s] (i.e., when CV1 incidentally fails at 623s) is shown. 

  
Figure 3.15 Zoom of 𝑀𝑟𝑒𝑙,𝑙,𝑐𝑗  (left) and 𝑉𝑟𝑒𝑙,𝑙,𝑐𝑗 (right) trends in the interval [600s-650s] for 

scenario “complete closure of CV1 at 623s” 

It can be seen that 𝑉𝑟𝑒𝑙,𝑙,3𝑗 and 𝑉𝑟𝑒𝑙,𝑙,9𝑗 overcome 𝑉𝑙𝑖𝑚,𝐿𝑂𝐹𝐴,𝑙 at 625s (that is therefore 

taken as LOFA detection time and plotted with a cross in Figure 3.16) in the R 

phase. During this phase of the current pulse, as suggested in Figure 3.4, the 

component failures of the prototypical scenarios of clusters 3 and 9 might be 

responsible for the LOFA detection during this phase. However, no component is 

identified as “failed” by the algorithm at that time, because no values of 𝑀𝑟𝑒𝑙,𝑙,𝑐𝑗 

have overcome 𝑀𝑙𝑖𝑚,𝐹𝐴𝐼𝐿,𝑙. On the other hand, 𝑀𝑙𝑖𝑚,𝐹𝐴𝐼𝐿,𝑙 is reached by 𝑀𝑟𝑒𝑙,𝑙,4𝑗 at 

637s, suggesting that component failures of the prototypical transient of cluster 4 

(i.e., CP,  CV and BV) are responsible (shadowed lines in Figure 3.16). This is also 

confirmed when 𝑀𝑟𝑒𝑙,𝑙,5𝑗 and 𝑀𝑟𝑒𝑙,𝑙,1𝑗 overcome 𝑀𝑙𝑖𝑚,𝐹𝐴𝐼𝐿,𝑙 (at 640s and 643s, 

respectively), since prototypical component failures of clusters 5 and 1 are still CP, 

CV and BV. In practice, the responsible component failures, i.e., the LOFA 

precursor CV, has been timely and correctly identified. 



40 
 

 

 

In summary, in the present case the LOFA is detected 2s earlier than the actual 

𝑡𝐿𝑂𝐹𝐴,𝐶1,j whereas the LOFA precursor is identified 10s later than the real 

misfunctioning with high uncertainty on the failed component, because only a CV 

is actually failed, whereas CP and BV works correctly. In other words, the number 

of failed components is slightly overestimated. 

In Table 3.1, the results of the extensive analysis on the 𝑁𝑡𝑒𝑠𝑡 = 38 scenarios are 

summarized. 

Table 3.1 Results on 𝑁𝑡𝑒𝑠𝑡 = 38 scenarios 

 

 

 

 

 

Among these, 32 scenario entail a LOFA to occur, whereas 6 do not. For the former 

ones, LOFA is detected before 𝑡𝐿𝑂𝐹𝐴,𝐶1,j in 26 scenarios and later in the other 6; 

however, in these last 6 scenarios the LOFA often occurs during the D phase, when 

no heat is produced by the CSM, and the CSM is not endangered. On the other hand, 

for the latter, in 2 scenarios no LOFA precursors are discovered, while in the other 

4 LOFA is detected even though it does not occur (namely, “false positives”). 

Generally, LOFA is predicted in advance in most scenarios with a presence of 

Scenarios with LOFA  32 

LOFA predicted in advance 26 

LOFA not predicted in advance 6 

Scenarios with NO LOFA  6 

Correct identification NO LOFA 2 

False positive LOFA 4 

Figure 3.16 LOFA precursors identification for scenario “complete closure of CV1 
at 623s” 
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LOFA precursors, but there is a significant number of false positives in scenarios 

without LOFA precursors. 

In Table 3.2, the results for the precursor identification of the 32 scenarios with 

LOFA are presented with respect to 

• Correct precursor identification: the component is failed and correctly 

identified as precursor. 

• False negative: the component is failed, but not identified as precursor. 

• Correct identification of normal operation: the component is not failed along 

the scenario. 

• False positive: the component is not failed, but wrongly identified as 

precursor. 

Table 3.2 Results of the precursor identification approach for 𝑁𝑡𝑒𝑠𝑡 = 38 scenarios  
 

Correct precursor 
identification 

False 
negative 

Correct identification 
of normal operation 

False 
positive 

CP 22 1 0 9 
CV1 16 0 0 16 
CV2 15 0 0 17 
BV 12 4 1 15 
SV1 1 1 17 13 
SV2 4 0 18 10 

It can be seen that most of the precursors are identified correctly by the OSSC 

algorithm, despite the large number of false positives, that, however, do not 

endanger the SMCCC, because conservatively overestimating the number of failed 

components. 
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4 Development of Kriging metamodels for 

improving the LOFA precursors identification 

algorithm 

The dataset for LOFA precursors identification needs to be enriched with more 

simulations (i.e., with a larger number of exemplary transients), in order to generate 

more detailed maps (to be employed by the algorithm) and to possibly reduce the 

number of false positives found in Section 3.4. The information contained in these 

maps has to be “classified” according to the 𝐶 = 9 clusters described in Section 3.2: 

in other words, new scenarios (i.e., new time-varying signals/outputs 𝑦𝑖
𝑘(𝑡)) must 

be assigned to one of the C = 9 clusters by means of the Supervised method of 

Appendix B (which employs Spectral Clustering, described in Appendix A). On the 

other hand, the generation of new scenarios by standard random sampling and their 

simulation by the long-running 4C code may entail prohibitive computational costs.  

For this reason, Kriging metamodels are here employed as “surrogate” models able 

to mimic – at a reduced computational cost – the behaviour of the original, detailed 

4C code (in other words, able to quickly reproduce/approximate the nonlinear 

relationship between the code inputs 𝓧 and the code outputs 𝓨, described in 

Section 3.1). A generic metamodel ℳℳ is built using a so-called Design Of 

Experiment (DOE) (or training set), i.e., a set of examples/realizations (𝓧𝑖, 𝓨𝑖) 

(𝑖 = 1,… ,𝑁𝑘𝑟𝑖𝑔) of the input-output relationship underlying the original 4C code. 

The procedure for constructing a metamodel that optimally interpolates/fits the 

training data is not reported here for brevity: the interested reader is referred to 

Appendix C for details. The choice of Kriging metamodels has been made for the 

following reasons: (i) their proven ability to approximate and reproduce complex 

nonlinear functions (also characterized by sudden, abrupt changes in their trend); 

(ii) their capability of providing an estimate of the uncertainty associated to their 

predictions on new, unknown inputs (Wang et al., 2007; Simpson et al., 2001).  

The use of Kriging metamodels can be described in three steps. In the first, the 

Adaptive Kriging – Monte Carlo Sampling (AK-MCS) algorithm (Turati et al., 
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2017 & 2018a) is employed to intelligently and adaptively enrich our training 

dataset with “interesting” scenarios in proximity of the system failure region (i.e., 

in proximity of system LOFA configurations), while reducing the number of calls 

to the original 4C code and the related computational burden (see Section 4.1). In 

the second step, the dataset thereby generated (constituted by 𝑁𝑘𝑟𝑖𝑔 > 𝑁𝑡𝑟𝑎𝑖𝑛 = 83 

scenarios and enriched in proximity of the failure configurations) is used to 

construct a Proper Orthogonal Decomposition (POD)-based Kriging metamodel. 

The main feature of this metamodel is that it is able to simulate transients (i.e., time-

varying signals): thus, it is here employed for approximate/reproduce the behaviour 

of the 4C code outputs 𝑦𝑖
𝑘(𝑡) for new inputs configurations (i.e., accident 

scenarios), without employing the original, long-running 4C code. In this way, we 

can generate a very large amount (𝑁𝑑𝑎𝑡𝑎 ≫ 𝑁𝑡𝑟𝑎𝑖𝑛 = 83) of new scenarios, with a 

sharp decrease in the computational cost with respect to the 4C code. These new 

“approximate” (metamodel-based) transients are added to the LOFA precursor 

identification algorithm of Chapter 3, in order to refine the maps of Figure 3.4 and 

Figure 3.5 (Section 4.2) . Finally, the LOFA precursor identification algorithm is 

modified to include these new maps (Section 4.3) and the results of its application 

to 𝑁𝑡𝑒𝑠𝑡 scenarios are shown (Section 4.4). 

4.1 The AK-MCS algorithm 

In this part, the AK-MCS algorithm (Turati et al., 2017 & 2018) is tailored to 

explore the state-space of the component failures of the SMCCC: in extreme 

synthesis, the idea is to intelligently drive/push the exploration towards the system 

configurations of our interest (in this case, the failure configurations leading to a 

LOFA): this allows enriching the number of examples of system behaviour in these 

regions, while intelligently allocating the computational resources (i.e., the number 

of “heavy” simulations) This algorithm is applied to each k-th output (i.e., safety-

critical) variable of interest and a proper DOE must be accordingly defined. 

In particular, with reference to the system safety criteria described in Section 2.3, 

we are looking for the maximum value of each 𝑦𝑖
𝑘(𝑡) (𝑘 = 1,… ,𝑁𝑘) along the 
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transient (i.e., over time): thus, for each input configuration 𝓧𝑖 the recorded output 

is 𝓨𝑖 = [(𝑦𝑖
1(𝑡) )𝑚𝑎𝑥, (𝑦𝑖

2(𝑡) )𝑚𝑎𝑥 , (𝑦𝑖
3(𝑡) )𝑚𝑎𝑥] = [𝒴𝑖

1, 𝒴𝑖
2, 𝒴𝑖

3]. These output 

values need to be compared with the safety thresholds 𝓨𝑡ℎ𝑟 = [𝒴𝑡ℎ𝑟
1 , 𝒴𝑡ℎ𝑟

2 , 𝒴𝑡ℎ𝑟
3 ] =

[𝑝𝑙𝑖𝑚 = 1.8 𝑀𝑃𝑎, 𝑇𝑐𝑠 = 7.3 𝐾, (𝐼/𝐼𝑐𝑟)𝑙𝑖𝑚 = 0.5] to understand whether that 

scenario leads to system failure or to a “safe” state. The DOE (employed for the 

construction of the Kriging metamodel) includes all the inputs 𝓧̅ =

{𝓧1, 𝓧2, … ,𝓧𝑁𝑘𝑟𝑖𝑔
} and the corresponding outputs 𝓨̅ = {𝓨1, 𝓨2, … ,𝓨𝑁𝑘𝑟𝑖𝑔

}. 

However, more scenarios should be included in the DOE to improve the accuracy 

of the meta-models that we need to build. To this aim, an AK-MCS procedure is 

adopted, exploiting an adaptive procedure shown in the flow chart of Figure 4.1 

(Turati et al., 2018). 

 

 

 

 

 

 

 

 

 

 

Step 1) Each ℳℳ𝑘 meta-model is trained with the DOE, resorting to UQLab 

Toolbox of Matlab, and the meta-model adopted is the Kriging one, described in 

Appendix C (Lataniotis et al., 2015). Considering a generic input 𝓧 (in this case, a 

DOE: (𝓧̅, 𝓨̅) 

Step 1) Train a meta-model 
ℳℳ𝑘 with DOE 

Step 2) Sample new 𝑁𝑀𝐶𝑆 = 100000 inputs 
with Monte Carlo and evaluate their output 

with ℳℳ𝑘: 
 𝓧̅𝑀𝐶𝑆 = {𝓧1, 𝓧2, … ,𝓧𝑁𝑀𝐶𝑆

} ; 
𝒀̂𝑀𝐶𝑆

𝑘 = ℳℳ𝑘(𝓧̅𝑀𝐶𝑆). 
 

Step 3) Chose 𝑁∗ = 12 best candidates 
𝓧̅∗ between the 𝓧̅ ∈ 𝑆𝕄

(𝑘) scenarios near 
the fault line within a confidence 
interval, using learning function: 

𝓧̅∗ ⊂ 𝑆𝕄
(𝑘)

⊂ 𝓧̅𝑀𝐶𝑆 

Step 5) Include the 𝓧̅∗ scenarios in 
DOE: 

(𝓧̅, 𝓨̅) = (𝓧̅, 𝓨̅) ∪ (𝓧̅∗, 𝓨̅∗) 

Is ℳℳ𝑘 enough 
accurate? 

Stop 

Step 4) Evaluate with the real 4C code 
the outputs 𝓨̅∗  of the 𝓧̅∗ scenarios 

YES 

NO 

Figure 4.1  Flowchart of a sequential adaptive training strategy (AK-MCS) 
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randomly sampled combination of components failure times and magnitudes), the 

properly trained “surrogate” model will let us to predict – in a negligible 

computational time - the corresponding k-th element of the output 𝑌̂𝑀𝐶𝑆
𝑘 =

ℳℳ𝑘(𝓧). The parameters of these metamodels are “tuned” according to the 

guidelines given in (Turati et al., 2017) (see also Appendix C for details). In 

particular, ordinary Kriging metamodels are developed, which means that the trend 

basis 𝜷𝑘
𝑇𝓱(𝓧) is considered constant [𝜷𝑘

𝑇𝓱(𝓧) = 𝛽𝑘,1𝒽1(𝓧) = 𝛽𝑘,0,

with 𝒽1(𝓧) = 1]. The correlation function ℛ(𝓧,𝓧′; 𝜽𝑘) used in the model is 

“ellipsoidal” and “anisotropic” like in Eq.(4.1): 

ℛ(𝓧,𝓧′; 𝜽𝑘) = ℛ(𝜉𝑘) (4.1) 

                                       𝑤𝑖𝑡ℎ    𝜉(𝓧,𝓧′; 𝜽𝑘) = √∑ (
𝒳𝓂 − 𝒳𝓂

′

𝜃𝓂
𝑘

)
2𝑀

𝑚=1

 (4.2) 

where 𝜉 is an ellipsoidal function.  

Precisely, a “3/2 Matérn” correlation function (4.3) is used in the Gaussian Process: 

ℛ(𝜉) = (1 + 𝜉√3)𝑒−𝜉√3 (4.3) 

A Kriging optimization method is needed to calculate the hyperparameters 𝜽𝑘 

necessary for the definition of 𝜎𝑘
2. For this purpose, the K-fold cross validation 

embedding the Hybrid Genetic Algorithm (HGA) is adopted to find the minimum 

value of the optimization function (4.4): 

𝜽𝑘 = argmin
𝒟𝜃

∑ (ℳℳ𝑘(𝓧𝑖) − 𝜇𝑌̂𝑘,(−𝑖)(𝓧𝑖))
2

𝑁𝑘𝑟𝑖𝑔

𝑖=1

 (4.4) 

where 𝜇𝑌̂𝑘,(−𝑖)(𝓧𝑖) is the mean value at the point 𝓧𝑖 of the Kriging predictor built 

with all the DOE excepting for the couple (𝓧𝑖 , 𝓨𝑖). 

Once the HGA find the optimum value of each 𝜃𝓂
𝑘  (𝓂 = 1,2,… ,𝑀) in the range 

[0.001,10], the variance 𝜎𝑘
2 is defined as in Eq.(4.5): 
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𝜎𝑘
2 =

1

𝑁𝑘𝑟𝑖𝑔
∑

(ℳℳ𝑘(𝓧𝑖) − 𝜇𝑌̂𝑘,(−𝑖)(𝓧𝑖))
2

𝜎
𝑌̂𝑘,(−𝑖)
2 (𝓧𝑖)

𝑁𝑘𝑟𝑖𝑔

𝑖=1

 (4.5) 

where 𝜎
𝑌̂𝑘,(−𝑖)
2 (𝓧𝑖) is the variance at the point 𝓧𝑖 of the Kriging predictor built with 

all the DOE excepting for the couple (𝓧𝑖, 𝓨𝑖). 

For each k-th output, the meta-model ℳℳ𝑘 is trained 𝑁𝑖𝑡𝑒𝑟 = 100 times and the 

one with the lowest Leave-One-Out (LOO) error will be the ℳℳ𝑘 chosen to mimic 

the behaviour of the k-th output. The LOO error is evaluated with Eq.(4.6): 

𝐿𝑂𝑂 =
1

𝑁𝑘𝑟𝑖𝑔
∑

(ℳℳ𝑘(𝓧𝑖) − 𝜇𝑌̂,(−𝑖)(𝓧𝑖))
2

𝜎2

𝑁𝑘𝑟𝑖𝑔

𝑖=1

 (4.6) 

Step 2) Once the metamodel is trained, new 𝑁𝑀𝐶𝑆 = 100000 (input) scenarios 

(different from the 𝑁𝑘𝑟𝑖𝑔 ones) are generated by resorting to standard Monte Carlo 

Sampling (MCS). 

Once the 𝓧̅𝑀𝐶𝑆 = {𝓧1, 𝓧2, … ,𝓧𝑁𝑀𝐶𝑆
} inputs are defined, their corresponding 

predictions will be 𝒀̂𝑘
𝑀𝐶𝑆(𝓧̅𝑀𝐶𝑆) = ℳℳ𝑘(𝓧̅𝑀𝐶𝑆) = {ℳℳ𝑘(𝓧1),…, 

ℳℳ𝑘(𝓧𝑁𝑀𝐶𝑆
)}, to which the mean Kriging values 𝝁𝑌̂𝑘(𝓧̅𝑀𝐶𝑆) =

{𝜇𝑌̂𝑘(𝓧1),… , 𝜇𝑌̂𝑘(𝓧𝑁𝑀𝐶𝑆
)} and the Kriging variances 𝝈

𝑌̂𝑘
2 (𝓧̅𝑀𝐶𝑆) =

{𝜎𝑌̂𝑘(𝓧1),… , 𝜎𝑌̂𝑘(𝓧𝑁𝑀𝐶𝑆
)} are associated. Notice that these evaluations (i.e., 

approximations of the code outputs) are obtained by the metamodel, so at reduced 

computational cost. 

Step 3) The 𝑁𝑀𝐶𝑆 scenarios are analyzed to find the ones that lie “in proximity” of 

the system failure region , which is identified by the threshold in Eq.(4.7) (Schöbi 

et al., 2017): 

𝜇𝑌̂𝑘(𝓧) = 𝒴𝑡ℎ𝑟
(𝑘) (4.7) 

where  𝜇𝑌̂𝑘(𝓧) is the mean value of Kriging predictor ℳℳ𝑘(𝓧) for input 𝓧 

(whose Kriging variance is 𝜎
𝑌̂𝑘
2 (𝓧)). The area that lies “close” to the system failure 

region is indicated as 𝑆𝕄 and is defined as follows by means of a confidence 

interval. 
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The upper boundary of the confidence interval of the failure line is  

𝜇𝑌̂𝑘(𝓧) − 𝜀 ∙ 𝜎𝑌̂𝑘(𝓧) = 𝒴𝑡ℎ𝑟
𝑘  (4.8) 

and the lower bound is  

𝜇𝑌̂𝑘(𝓧) + 𝜀 ∙ 𝜎𝑌̂𝑘(𝓧) = 𝒴𝑡ℎ𝑟
𝑘  (4.9) 

where 𝜀 is the confidence level set to 1.96 (according to the properties of the Normal 

distribution): actually, if 𝜀 = 1.96, there is a probability of 97.5% that 𝒴𝑘 ∈

[𝜇𝑌̂𝑘(𝓧) − 𝜀 ∙ 𝜎𝑌̂𝑘(𝓧), 𝜇𝑌̂𝑘(𝓧) + 𝜀 ∙ 𝜎𝑌̂𝑘(𝓧)] with 𝒴𝑘 being the k-th output 

evaluated with the real code for a 𝓧 input (Schöbi et al., 2017). 

Considering the ensemble of all the inputs 𝓧̅𝑀𝐶𝑆, the ones that belong to 𝑆𝕄
(𝑘) are 

expressed in Eq.(4.10): 

𝑆𝕄
(𝑘)

≡ {𝓧: (𝓧 ∉  𝑆
𝑓+
(𝑘)

) ∩ (𝓧 ∈  𝑆𝑓−
(𝑘)

)} (4.10) 

with  

𝑆
𝑓+
(𝑘)

≡ {𝓧 ∈ 𝓧̅𝑀𝐶𝑆: 𝜇𝑌̂𝑘(𝓧) − 𝜀 ∙ 𝜎𝑌̂𝑘(𝓧) ≥ 𝒴𝑡ℎ𝑟
𝑘 } (4.11) 

and 

𝑆𝑓−
(𝑘)

≡ {𝓧 ∈ 𝓧̅𝑀𝐶𝑆: 𝜇𝑌̂𝑘(𝓧) + 𝜀 ∙ 𝜎𝑌̂𝑘(𝓧) ≥ 𝒴𝑡ℎ𝑟
𝑘 }. (4.12) 

The sets defined in (4.11) and (4.12) contain the inputs 𝓧̅𝑀𝐶𝑆 with a mean Kriging 

value (i.e., output) exceeding the upper and lower boundaries of the confidence 

interval of the failure line, respectively. 

Once 𝑆𝕄
(𝑘) is defined, a set of 𝑁∗ = 12 (value between 𝑀 and 2𝑀) input 

configurations belonging to 𝑆𝕄
(𝑘) are identified and selected to be added to the 

current DOE (these new configurations will update and enrich the current DOE 

with “interesting” scenarios that will likely lead the system to failure). To this aim, 

the Learning function 𝒰𝑘(𝓧) shown in Eq.(4.13) is used: 

𝒰𝑘(𝓧) =
|𝜇𝑌̂𝑘(𝓧) − 𝒴𝑡ℎ𝑟

𝑘 |

𝜎𝑌̂𝑘(𝓧)
 (4.13) 
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The main idea is the following: the lower is the value of the Learning function 

𝒰𝑘(𝓧), the more “interesting” is the system configuration 𝓧 to add to the current 

DOE. Actually, a low value of the Learning function means that: (i) the system 

configuration 𝓧 is close to the failure region (i.e., the system response 𝜇𝑌̂𝑘(𝓧) is 

close to the failure threshold 𝒴𝑡ℎ𝑟
𝑘 ); and/or (ii) the uncertainty 𝜎𝑌̂𝑘(𝓧) associated 

to the Kriging prediction 𝜇𝑌̂𝑘(𝓧) is high (this is typically due to the scarcity of 

training examples around 𝓧, which prevents the metamodel from producing precise 

estimates: in this view, adding new training examples in that area would improve 

the precision of the metamodel). In addition to this main driving criterion given by 

the Learning function (4.13), we would like the 𝑁∗ = 12 additional configurations 

to be “evenly distributed” in the confidence region 𝑆𝕄
(𝑘) around the failure line. 

Step 4) The resulting 𝑁∗ = 12 input configurations 𝓧̅∗ are simulated by the original 

4C code, finding the new corresponding outputs 𝓨̅∗.  

Step 5) The new (input-output) training examples (𝓧̅∗, 𝓨̅∗) are added in the current 

DOE. 

After Step 5, Step 1 and 2 are repeated with a larger and richer DOE and, if the 

ℳℳ𝑘 meta-model is still not accurate enough, the AK-MCS continues to find new 

scenarios to include in the DOE repeating steps 3, 4 and 5; otherwise, the algorithm 

is stopped. 

4.1.1 Application of the AK-MCS to one of the safety-critical variables 

For the sake of illustration, the results of the AK-MCS algorithm described above 

are shown only for the output (𝐼/𝐼𝐶𝑅)𝑚𝑎𝑥(𝑘 = 3). Indeed, from the AK-MCS 

iterations it turns out that (𝐼/𝐼𝐶𝑅)𝑚𝑎𝑥(𝑘 = 3) is the most safety-critical variable, 

whereas 𝑝𝐶𝑆𝑀,𝑖𝑛,𝑚𝑎𝑥 (𝑘 = 1) and 𝑇𝐻𝑆,𝑚𝑎𝑥 (𝑘 = 2) are far from the corresponding 

failure threshold. 

In Figure 4.2, mean values of (𝐼/𝐼𝐶𝑅)𝑚𝑎𝑥 for the 𝑁𝑀𝐶𝑆 scenarios and their 

corresponding value of the learning function are shown for four iterations of the 

AK-MCS algorithm. 
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Figure 4.2 AK-MCS iterations 

A progressive decrease in the number of configurations contained in 𝑆𝕄
(3) is evident 

at each step of the AK-MCS (they were halved after 4 iterations of the adaptive 

algorithm). In practice, this means that the area of the 𝑆𝕄
(3) region is reduced, i.e., 

that the precision (resp., uncertainty) of the Kriging metamodel in the 

characterization of the failure domain is increased (resp., decreased). On its turn, 

this demonstrates an improvement in the representativity of the abnormal (failure) 

scenarios in the dataset (in other words, a better coverage of the failure domain by 

the training dataset). 

To provide few physical considerations on the results obtained, the characteristic 

component failures of the scenarios belonging to the 𝑆𝕄
(3) region are reported in 

Figure 4.3 (the frequencies of component failures in the Kriging-based simulated 

scenarios is plotted versus time). This information is of paramount importance, 

since it suggests the combinations of component failures that most likely lead the 

system to failure (or near-failure) conditions. 
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Figure 4.3 Characteristic Failures in 𝑆𝕄
(3) 

CV2 fails in 89% of the simulated transients, remaining partially open in 61% of 

the cases (𝑚 = 2): this failure does not involve a LOFA detection by the C1 

controller alone, but it leads to a lower pressure at the CP upstream for the 

increasing pressure drop between the inlet and the outlet of the valve. CV1 and BV 

fail mostly with magnitudes 𝑚 = 2 and 𝑚 = 1, indicating that they remain stuck at 

their nominal position or partially open, while the CP provide at least more than 

50% of the nominal flow in 85% of the scenarios (failures with low magnitude): in 

case of LOFA due to a cryoline obstruction (i.e., a CV closure), the complete 

closure of at least one CV and the complete opening of the BV are necessary to 

prevent the inventory decrease of helium at the suction of the pump and an 

additional pressure drop there. In addition, the QT communicates with the SMCCC 

for at least one SV failed with 𝑚 > 1 in 71% of the cases, contributing for a further 

pressure decrease at the CP upstream. 

If pressure reach a value below 0.23 MPa inside the SMCCC, the He is no more 

Supercritical and bi-phase occurs, but the 4C code is not able to operate in this 

condition and in real case the CP is not able to operate with such low pressure, so 

most of the 𝑆𝕄
(3) region might remain unexplored. 
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4.2 Proper Orthogonal Decomposition-based Kriging 

metamodels 

In this section, an algorithm (still based on Kriging metamodels) is proposed to 

simulate a large number of new (time-varying) outputs 𝑦𝑗
𝑘(𝑡) at a reduced 

computational cost, i.e., without resorting to the 4C code. These “new” 

(approximate) transients will be employed to enrich the database in the LOFA 

precursor identification algorithm of Chapter 3, with the aim of enhancing its 

performance. 

The starting point of this analysis is represented by 𝑁𝑘𝑟𝑖𝑔 = 119 training scenarios 

(simulated by the 4C), available from the previous step of the analysis (i.e., from 

the AK-MCS iterations of Section 4.1). As mentioned before, the important feature 

of these exemplary training scenarios is that they provide a good coverage of the 

failure region of our interest. Each i-th scenarios is decomposed resorting to POD 

with truncation at the 𝐻𝑘 element like in Eq.(4.14) (Marrel et al., 2014): 

𝑦𝑖
𝑘(𝑡) = ∑ 𝑎𝑖ℎ

𝑘 ∙ 𝜑ℎ
𝑘(𝑡)

𝐻𝑘

ℎ=1
 (4.14) 

Where 𝜑ℎ
𝑘(𝑡) (depending only on time 𝑡) is the orthogonal basis function of the k-

th variable for the h-th base valid for all the 𝑁𝑘𝑟𝑖𝑔 scenarios, and 𝑎𝑖ℎ
𝑘  (depending 

only on the input configuration 𝓧𝑖) is its coefficient for the i-th scenario. 

Each orthogonal function 𝜑ℎ
𝑘(𝑡) is characterized by the property shown in 

Eq.(4.15): 

∫ 𝜑ℎ1

𝑘 (𝑡) ∙ 𝜑ℎ2

𝑘 (𝑡) ∙ 𝑑𝑡
𝑡= 𝑡𝑚𝑖𝑠𝑠

𝑡=0𝑠

= 𝛿ℎ1ℎ2
= {

  0    if ℎ1 = ℎ2

  1    if ℎ1 ≠ ℎ2
 (4.15) 

Thanks for this property, each 𝑎𝑖ℎ
𝑘  coefficient can be easily estimated with 

Eq.(4.16): 

𝑎𝑖ℎ
𝑘 = ∫ 𝑦𝑖

𝑘(𝑡) ∙ 𝜑ℎ
𝑘(𝑡) ∙ 𝑑𝑡

𝑡= 𝑡𝑚𝑖𝑠𝑠

𝑡=0𝑠

         𝑖 = 1,… ,𝑁𝑘𝑟𝑖𝑔;  ℎ = 1, … , 𝐻𝑘   (4.16) 
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In order to employ this strategy for the simulation of new scenarios, the following 

procedure is performed for each k-th output variable. 

Step 1: The 𝑌̿𝑘𝑟𝑖𝑔
𝑘 [𝑁𝑘𝑟𝑖𝑔, 𝐿] matrix is updated with new scenarios computed in 

Section 4.1, containing the 𝑦𝑖𝑙
𝑘 value of the k-th variable of the i-th training scenario 

at the l-th time point at i-th row and l-th column. 

Step 2: Single Value Decomposition (SVD) (Wall et al., 2003) is adopted to 

decompose 𝑌̿𝑘𝑟𝑖𝑔
𝑘  like in Eq.(4.17): 

𝑌̿𝑘𝑟𝑖𝑔
𝑘 [𝑁𝑘𝑟𝑖𝑔, 𝐿] = Ψ̿𝑘[𝑁𝑘𝑟𝑖𝑔, 𝑁𝑘𝑟𝑖𝑔] ∙ Λ̿𝑘[𝑁𝑘𝑟𝑖𝑔, 𝐿] ∙ Φ̿𝑘[𝐿, 𝐿] (4.17) 

Where Ψ̿𝑘 and Φ̿𝑘 are matrixes that contains in their column left-singular vectors 

and right-singular vectors, respectively, and Λ̿𝑘 is a diagonal matrix containing the 

nonnegative Λℎ
𝑘  singular values in decreasing order. 

Step 3: Λℎ
𝑘  (ℎ = 1, … , 𝑁𝑘𝑟𝑖𝑔) are employed to identify the best number 𝐻𝑘 of  basis 

to use with Eq.(4.18): 

Γℎ
𝑘 =

∑ Λ𝑗
𝑘ℎ

𝑗=1

∑ Λℎ
𝑘𝑁𝑘𝑟𝑖𝑔

ℎ=1

 (4.18) 

Γℎ
𝑘 indicates the percentage of the variability of the real 𝑁𝑘𝑟𝑖𝑔 transients that can be 

“explained” by the POD decomposition truncated at h-th basis. In this work, 𝐻𝑘 is 

the number of (ordered) basis for which Γℎ
𝑘 reaches a value of 0.99 (i.e., for which 

the POD decomposition is able to explain the 99% of the variability of the real 

transients). The Φ̿𝑘[𝐿, 𝐻𝑘] matrix is then truncated at the 𝐻𝑘-th column and its 

generic element at l-th row and h-th column is 𝜑𝑙ℎ
𝑘 , corresponding to the value of 

the orthogonal basis 𝜑ℎ
𝑘(𝑡) of the h-th base at l-th time. 

Step 4: Each 𝑎𝑖ℎ
𝑘  coefficient is contained in the i-th row and the h-th column of the 

matrix A̿𝑘[𝑁𝑘𝑟𝑖𝑔, 𝐻𝑘], calculated as in Eq.(4.19): 

𝐴̿𝑘 = 𝑌̿𝑘 ∙ Φ̿𝑘𝑇
 (4.19) 

with Φ̿𝑘𝑇
[𝐻𝑘, 𝐿] the transposal of Φ̿𝑘. This equation corresponds to the Eq.(4.16), 

but in discretized form. 
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Step 5: For each h-th base a Kriging metamodel ℳℳℎ
𝑘 is developed, where the 

training set (DOE) includes all the inputs 𝓧̅ = {𝓧1, 𝓧2, … ,𝓧𝑁𝑘𝑟𝑖𝑔
} and the 

corresponding coefficients 𝒂ℎ
𝑘 = {𝑎1ℎ

𝑘 , 𝑎2ℎ
𝑘 , … , 𝑎𝑁𝑘𝑟𝑖𝑔ℎ

𝑘 } as outputs: each metamodel 

ℳℳℎ
𝑘 will be the one with the lowest LOO error between 𝑁𝑖𝑡𝑒𝑟 = 100 attempts of 

training. In this way, for a new input 𝓧 we can predict each coefficient of the POD 

decomposition 𝑎̂ℎ
𝑘(𝓧) = ℳℳℎ

𝑘(𝓧) (for each coefficient we have the mean 

Kriging value 𝜇
𝑎̂ℎ

𝑘(𝓧) and the Kriging variance 𝜎
𝑎̂ℎ

𝑘(𝓧)). 

Step 6: Each time-varying output 𝑦𝑗
𝑘(𝑡) of the 𝑁𝑀𝐶𝑆 = 100000 scenarios 

(generated resorting to MCS to be simulated with metamodels) is approximated at 

l-th time step as in Eq.(4.20): 

𝑦̃𝑗𝑙
𝑘 = ∑ 𝜇

𝑎̂ℎ
𝑘(𝓧𝑗) ∙

𝐻𝑘

ℎ=1

𝜑𝑙ℎ
𝑘  ,      𝑗 = 1,… ,𝑁𝑀𝐶𝑆; 𝑙 = 1,… , 𝐿 (4.20) 

Where 𝑦̃𝑗𝑙
𝑘  is the approximated value of 𝑦𝑗𝑙

𝑘 , resulting from the metamodel-based 

POD decomposition 

In this way, by resorting to multiple Kriging metamodels instead of the 4C code, 

the computational time for simulating a single new scenario is reduced from an 

average of two days to about 1.1s per simulation. 

4.2.1 LOFA occurrence time estimation 

The same procedure described in the previous Section is also adopted to 

approximate 𝐺𝑚𝑎𝑥(𝑡), that will be employed in the estimation of 𝑡𝐿𝑂𝐹𝐴,𝐶1,𝑗 (i.e., of 

the time when a LOFA is detected by C1) for a new j-th scenario. The quantity 

𝐺𝑚𝑎𝑥(𝑡) is defined in Eq.(4.21): 

𝐺𝑚𝑎𝑥(𝑡) = max (𝐺𝐶𝑆𝑀,𝑖𝑛(𝑡), 𝐺𝐶𝑆𝑀,𝑜𝑢𝑡(𝑡)) (4.21) 

Where 𝐺𝐶𝑆𝑀,𝑖𝑛(𝑡) is the inlet flow to the CSM and 𝐺𝐶𝑆𝑀,𝑜𝑢𝑡(𝑡) the outlet flow.  

In the original 4C code, these two variables are controlled by component C1: when 

𝐺𝐶𝑆𝑀,𝑖𝑛(𝑡) < 0.032 𝑘𝑔/𝑠  and 𝐺𝐶𝑆𝑀,𝑜𝑢𝑡(𝑡) < 0.032 𝑘𝑔/𝑠 for more than the 

validation time (𝜏𝑣𝑎𝑙 = 1𝑠), a LOFA takes place and is detected by controller C1 
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(see Section 2.3.1 for details). Instead, for a generic j-th scenario among the 𝑁𝑀𝐶𝑆 

simulated, 𝐺𝑚𝑎𝑥,𝑗(𝑡) is approximated at each l-th time step by computing 𝐺̃𝑚𝑎𝑥,𝑙𝑗 

with POD-based Kriging metamodels and, then, 𝑡̃𝐿𝑂𝐹𝐴,𝐶1,𝑗 (i.e., the approximation 

of 𝑡𝐿𝑂𝐹𝐴,𝐶1,𝑗) is identified and stored, when 𝐺̃𝑚𝑎𝑥,𝑙𝑗 < 0.032 𝑘𝑔/𝑠 for more than 

𝜏𝑣𝑎𝑙 = 1𝑠 (thus, mimicking the operation of the controller C1). 

To this aim, new basis functions 𝜑𝐺,𝑙ℎ (𝑙 = 1,… , 𝐿; ℎ = 1,… ,𝐻𝐺) and their 

coefficients 𝑔𝑖ℎ (𝑖 = 1,… ,𝑁𝑘𝑟𝑖𝑔) are determined. Then, each metamodel ℳℳℎ
𝐺  is 

trained with 𝒈ℎ = {𝑔1ℎ, 𝑔2ℎ, … , 𝑔𝑁𝑘𝑟𝑖𝑔ℎ} coefficients as outputs to predict 𝑔̂ℎ(𝓧) =

ℳℳℎ
𝐺(𝓧) in correspondence of a new input 𝓧 (the mean Kriging value is 𝜇𝑔̂ℎ

(𝓧) 

and its Kriging variance is 𝜎𝑔̂ℎ
(𝓧)). Mean Kriging values will be employed to 

estimate 𝐺̃𝑚𝑎𝑥,𝑙𝑗 such as in Eq.(4.22): 

𝐺̃𝑚𝑎𝑥,𝑙𝑗 = ∑ 𝜇𝑔̂ℎ
(𝓧𝑗) ∙

𝐻𝐺

ℎ=1

𝜑𝐺,𝑙ℎ ,      𝑗 = 1,… ,𝑁𝑀𝐶𝑆; 𝑙 = 1,… , 𝐿 (4.22) 

4.2.2 Scenarios discarded 

For some scenarios, the estimated coefficients of the POD bases may have large 

Kriging variance, due to the limited-size of the training set, containing only 119 

transients (this value is extremely small, if we consider that the dimensionality of 

the input space is 12). The transients characterized by “large uncertainty” have been 

discarded in order not to invalidate the information contained in each map built for 

LOFA precursors identification. 

For this reason, for each j-th scenario (𝑗 = 1,… ,𝑁𝑀𝐶𝑆) the absolute error 𝜎𝑎𝑏𝑠
𝑘 (𝓧𝑗) 

of all the 𝐻𝑘 basis coefficients is determined as in Eq.(4.23): 

𝜎𝑎𝑏𝑠
𝑘 (𝓧𝑗) =

∑ 𝜎
𝑎̂ℎ

𝑘(𝓧𝑗) ∙ Λℎ
𝑘𝐻𝑘

ℎ=1

∑ Λℎ
𝑘𝐻𝐺

ℎ=1

 (4.23) 

In this way, each h-th Kriging variance is weighted according to its associated 

singular values Λℎ
𝑘 , containing the information of how the 𝜑ℎ

𝑘(𝑡) basis signal is 

important in output estimation. 



55 
 

Similarly, 𝑎𝑚𝑎𝑥
𝑘  and 𝑎𝑚𝑖𝑛

𝑘  are calculated in Eq.(4.24) and Eq. (4.25), respectively, 

to determine the order of magnitude of 𝜎𝑎𝑏𝑠
𝑘 , employing 𝒂ℎ

𝑘  coefficients of training 

scenarios of each h-th base: 

𝑎𝑚𝑎𝑥
𝑘 =

∑ max (𝒂ℎ
𝑘) ∙ Λℎ

𝑘𝐻𝐺
ℎ=1

∑ Λℎ
𝑘𝐻𝐺

ℎ=1

 (4.24) 

𝑎𝑚𝑖𝑛
𝑘 =

∑ min (𝒂ℎ
𝑘) ∙ Λℎ

𝑘𝐻𝐺
ℎ=1

∑ Λℎ
𝑘𝐻𝐺

ℎ=1

 (4.25) 

Finally, a general information of the relative error 𝜎𝑟𝑒𝑙
𝑘 (𝓧𝑗) for the j-th scenario 

approximated is evaluated in Eq.(4.26): 

𝜎𝑟𝑒𝑙
𝑘 (𝓧𝑗) = 𝜎𝑎𝑏𝑠

𝑘 (𝓧𝑗)/(𝑎𝑚𝑎𝑥
𝑘 − 𝑎𝑚𝑖𝑛

𝑘 ) (4.26) 

If 𝜎𝑟𝑒𝑙
𝑘 (𝓧𝑗) is above 10%, 𝓧𝑗 will be discarded. 

At the end of this step, 𝑁𝑃𝑂𝐷 = 694 scenarios of the 𝑁𝑀𝐶𝑆 = 100000 (simulated 

with metamodels) satisfying the condition of 𝜎𝑟𝑒𝑙
𝑘 < 10% are retained and added to 

the database of the LOFA precursor identification algorithm already available 

(constituted by 𝑁𝑘𝑟𝑖𝑔 = 119 scenarios simulated by the real 4C code). 

4.3 Amendments to the LOFA precursors identification 

algorithm 

Now the dataset is composed by 𝑁𝑑𝑎𝑡𝑎 = 𝑁𝑘𝑟𝑖𝑔 + 𝑁𝑃𝑂𝐷 = 813 scenarios, 

including those simulated with 4C in Section 4.1 and the ones approximated with 

POD in Section 4.2 to those described in Section 3.2. 

For each i-th element of the dataset (𝑖 = 1,2, … ,𝑁𝑑𝑎𝑡𝑎), different variables are 

available: 

• Magnitudes and timings of failures in 𝓧𝑖 input; 

• trend of each k-th critical variable 𝑦𝑖
𝑘(𝑡) (𝑘 = 1,… ,𝑁𝑘); 

• The LOFA detection time 𝑡𝐿𝑂𝐹𝐴,𝐶1,𝑖 by the C1 controller. 
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These data are collected to build new maps in Section 4.3.1 and, then, LOFA 

precursors identification algorithm is modified in Section 4.3.2 to employ these new 

maps. 

4.3.1 New dataset description 

The 𝑁𝑑𝑎𝑡𝑎 − 𝑁𝑡𝑟𝑎𝑖𝑛 scenarios must be associated to one of the 𝐶 = 9 clusters to 

produce a new LOFA occurrence map and new failure maps. To this aim, the OSSC 

of Section 3.3 is applied to each i-th scenario to obtain each 𝑀𝐿,𝑐𝑖 membership to 

the c-th cluster at the L-th time step using its 𝑁𝑘 critical variables. Each i-th scenario 

belongs to the c-th cluster if 𝑀𝐿,𝑐𝑖 > 𝑀𝑙𝑖𝑚 = 0.7 like in (Bellaera et al., 2018). 

The trends of the critical variables 𝑝𝐶𝑆𝑀,𝑖𝑛, 𝑇ℎ𝑠 and 𝐼/𝐼𝑐𝑟 for the 𝑁𝑑𝑎𝑡𝑎 scenarios, 

grouped in cluster, are sketched in Figure 4.4, Figure 4.5 and Figure 4.6 in dotted 

lines: these lines are compared to the prototypical one, drawn with continuous line, 

of their reference cluster. 

 
Figure 4.4 Prototypical behaviour of 𝑝𝐶𝑆𝑀,𝑖𝑛   for each cluster with 𝑁𝑑𝑎𝑡𝑎  
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Figure 4.5 Prototypical behaviour of 𝑇ℎ𝑠   for each cluster with 𝑁𝑑𝑎𝑡𝑎 

 
Figure 4.6 Prototypical behaviour of 𝐼/𝐼𝑐𝑟   for each cluster with 𝑁𝑑𝑎𝑡𝑎 

It can be noted that each cluster is enriched with respect to Figure 3.1, Figure 3.2 

and Figure 3.3. 



58 
 

In order to produce the LOFA occurrence map, the LOFA probability 𝑃𝐿𝑂𝐹𝐴,𝑙(𝑐) at 

l-th time for each c-th cluster is determined as in Eq.(4.27), by counting the number 

of occurrences of this event at each o-th interval of 300s and dividing it by the 

number of transients 𝑁𝑑𝑎𝑡𝑎,𝑐 in that cluster: 

𝑃𝐿𝑂𝐹𝐴,𝑙(𝑐) =
∑ 𝛩(𝑡𝐿𝑂𝐹𝐴,𝐶1,𝑖𝜖[𝑡𝑜 , 𝑡𝑜+1])

𝑁𝑑𝑎𝑡𝑎,𝑐

𝑖=1

𝑁𝑑𝑎𝑡𝑎,𝑐
 (4.27) 

                  where     𝛩(𝑥) = {
0     if 𝑥 false
 1     if 𝑥 true  

 (4.28) 

[𝑡𝑜 , 𝑡𝑜+1] is the o-th interval, where the l-th time belongs, and 𝛩(𝑥) is the Heaviside 

function used to count the phenomena. With respect to the algorithm of Chapter 3, 

in this case the calculation of the probability 𝑃𝐿𝑂𝐹𝐴,𝑙(𝑐) of having a LOFA at time l 

in a transient of cluster c can be computed exploiting the “richer” statistical 

information available thanks to the numerous metamodel-based simulations. 

Results of this procedure are shown in Figure 4.7 

 
Figure 4.7 Probability distribution of LOFA occurrence time for each cluster 
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Like for the old dataset (see Figure 3.4), LOFA is not characteristic of Cluster 2 and 

7 and it is more frequent during the B phase [130s,516s] in Cluster 4, during the R 

phase [516s,975s] in Cluster 5, between the R phase and the D phase [975s,1490s] 

in Cluster 1, at the end of the D phase in Cluster 8 and in the M phase [1490s,1800s] 

and after the first pulse in Cluster 8. The LOFA event is distributed along the entire 

time horizon in Cluster 3 and 9, but there are two peaks in R and M phase, 

respectively, for the former and a peak at D phase for the latter, similarly to Figure 

3.4(left).  

The failure map is constructed by calculating the probability of failure of each e-th 

component in a defined c-th cluster by counting the times that the e-th component 

fails (𝑚𝑒 ≠ 0) at 𝜏𝑒 time in intervals of 300s and dividing it by 𝑁𝑑𝑎𝑡𝑎,𝑐, as in 

Eq.(4.29): 

𝑃𝐹𝐴𝐼𝐿,𝑙(𝑒|𝑐) =
∑ 𝛩(𝜏𝑒,𝑖𝜖[𝑡𝑜 , 𝑡𝑜+1] ∧  𝑚𝑒,𝑖 ≠ 0)

𝑁𝑑𝑎𝑡𝑎,𝑐

𝑖=1

𝑁𝑑𝑎𝑡𝑎,𝑐
 (4.29) 

Applying the equation above to all the components and for all the clusters, Figure 

4.8 is obtained. The Figure shows the probability that a component fails in a 

particular time interval, given that the transient under analysis belongs to a specified 

cluster. 
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Figure 4.8 Probability Failure occurrence for each cluster and component 

As before, the higher level of detail with respect to the algorithm of Section 3 (e.g., 

the possibility to  distinguish the different CVs and the different SVs) was possible 

thanks to the higher number of transients available in each cluster. Comparing this 

map with that of Figure 3.5, there are several similarities: SV1 and SV2 fail mostly 

in Cluster 2, 3, 8 and 9; failures of the CP, the CVs and the BV are present in all 

clusters, but their 𝑃𝐹𝐴𝐼𝐿,𝑙(𝑒|𝑐) is distributed differently. On the other hand, the BV 

failure is present in Cluster 3 and Cluster 7 is also characterized by failures of the 

CVs and the BV with low magnitude, differently from Figure 3.5, where they do 

not occur. 
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Generally, each 𝑃𝐿𝑂𝐹𝐴,𝑙(𝑐) and 𝑃𝐹𝐴𝐼𝐿,𝑙(𝑒|𝑐) “extend” the old maps providing 

important additional information, such as the distributions of LOFA times and 

components failures, differently from the information contained in ℒ̿ and ℱ̿ matrix, 

described in Section 3.2. Moreover, the OSSC procedure in Section 3.3, in 

particular the 9th step, must be properly modified to employ 𝑃𝐿𝑂𝐹𝐴,𝑙(𝑐) and 

𝑃𝐹𝐴𝐼𝐿,𝑙(𝑒|𝑐) instead of the ℒ̿ and ℱ̿ matrix. 

4.3.2 Settings of the new LOFA precursors identification algorithm 

The 9th step of OSSC procedure of Section 3 is the one that analyses at each l-th 

time step the 𝑀𝑟𝑒𝑙,𝑙,𝑐𝑗 and 𝑉𝑟𝑒𝑙,𝑙,𝑐𝑗 values, corresponding to each c-th cluster, reached 

by the j-th scenario, and it is here modified as follows. 

In step 9a, 𝑉𝑟𝑒𝑙,𝑙,𝑐𝑗 [𝑐 = 1,… , 𝐶] is compared to 𝑉𝑙𝑖𝑚,𝐿𝑂𝐹𝐴,𝑙 with a different pseudo 

code, described in Figure 4.9. In extreme synthesis, if at least two values of 𝑉𝑟𝑒𝑙,𝑙,𝑐𝑗 

overcome the threshold 𝑉𝑙𝑖𝑚,𝐿𝑂𝐹𝐴,𝑙 at time l, 𝑃𝐿𝑂𝐹𝐴,𝑙,𝑗 assumes a value different from 

zero and, if it exceed 𝑃𝐿𝑂𝐹𝐴,𝑙𝑖𝑚, the algorithm identifies the LOFA precursors. 

 

𝑃𝐿𝑂𝐹𝐴,𝑙,𝑗 is calculated employing each 𝑃𝐿𝑂𝐹𝐴,𝑙(𝑐) as in Eq.(4.30): 

𝑃𝐿𝑂𝐹𝐴,𝑙,𝑗 =
𝑃𝐿𝑂𝐹𝐴,𝑙(𝑐1𝑠𝑡,𝑙) + 𝑃𝐿𝑂𝐹𝐴,𝑙(𝑐2𝑛𝑑,𝑙)

∑ 𝑃𝐿𝑂𝐹𝐴,𝑙(𝑐)
𝐶=9
𝑐

 (4.30) 

At l-th time 
Calculate 𝑉1𝑠𝑡 = max

𝑐
(𝑉𝑟𝑒𝑙,𝑙,𝑐𝑗) ; 

Calculate 𝑐1𝑠𝑡 = arg (max
𝑐

(𝑉𝑟𝑒𝑙,𝑙,𝑐𝑗)); 
Calculate 𝑉2𝑛𝑑 = max

𝑐≠𝑐1𝑠𝑡

(𝑉𝑟𝑒𝑙,𝑙,𝑐𝑗); 

Calculate 𝑐2𝑛𝑑 = arg ( max
𝑐≠𝑐1𝑠𝑡

(𝑉𝑟𝑒𝑙,𝑙,𝑐𝑗));  

If (𝑉1𝑠𝑡 > 𝑉𝑙𝑖𝑚,𝐿𝑂𝐹𝐴,𝑙 & 𝑉2𝑛𝑑 > 𝑉𝑙𝑖𝑚,𝐿𝑂𝐹𝐴,𝑙)  
 Calculate 𝑃𝐿𝑂𝐹𝐴,𝑙,𝑗  with Eq.(4.30) 
Else 
 𝑃𝐿𝑂𝐹𝐴,𝑙,𝑗 = 0; 
End 
If 𝑃𝐿𝑂𝐹𝐴,𝑙,𝑗 > 𝑃𝐿𝑂𝐹𝐴,𝑙𝑖𝑚 
 LOFA precursor is identified; 
Else 
 LOFA precursor does not exist;  
End 

Figure 4.9 New Pseudo code for 𝑉𝑟𝑒𝑙,𝑙,𝑐𝑗 analysis 
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𝑉𝑙𝑖𝑚,𝐿𝑂𝐹𝐴,𝑙 and 𝑃𝐿𝑂𝐹𝐴,𝑙𝑖𝑚 are values determined from training data employing the 

𝑁𝑘𝑟𝑖𝑔 = 119 scenarios and not all the 𝑁𝑑𝑎𝑡𝑎 = 813 ones. Indeed, the remaining 

𝑁𝑃𝑂𝐷 = 694 scenarios are not accurate near LOFA occurrence, because their 

critical variables are approximation of the real trends derived from the real code.  

𝑉𝑙𝑖𝑚,𝐿𝑂𝐹𝐴,𝑙, displaced in Figure 4.10, was updated with 𝑁𝑘𝑟𝑖𝑔 scenarios instead of 

𝑁𝑡𝑟𝑎𝑖𝑛 ones, following the pseudo-code of Figure 3.12. 

 

Figure 4.10 New 𝑉𝑙𝑖𝑚,𝐿𝑂𝐹𝐴,𝑙  trend in logarithmic scale (blue line) and 𝑉𝑙𝑖𝑚,𝑖  point used to evaluate 
it (green points) 

𝑃𝐿𝑂𝐹𝐴,𝑙𝑖𝑚 was set in order to reduce the number of false positives in LOFA detection 

as sketched in Figure 4.11: points in red depict the maximum values reached by 

𝑃𝐿𝑂𝐹𝐴,𝑙 from 0s to 𝑡𝐿𝑂𝐹𝐴,𝐶1 in scenarios where a LOFA occurs, whereas points in 

green represents the maximum values reached by 𝑃𝐿𝑂𝐹𝐴,𝑙 during the entire time 

length in scenarios where a LOFA does not occurs. Imposing 𝑃𝐿𝑂𝐹𝐴,𝑙𝑖𝑚 = 19%, 10 

to 25 scenarios with no LOFA will be below 𝑃𝐿𝑂𝐹𝐴,𝑙𝑖𝑚, reducing consequently the 

number of possible false positives in LOFA identification. 

 
Figure 4.11 Maximum 𝑃𝐿𝑂𝐹𝐴,𝑙,𝑖 for scenarios with LOFA (red) and with NO LOFA (green) and 

representation of 𝑃𝐿𝑂𝐹𝐴,𝑙𝑖𝑚 
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In step 9b, the new pseudo code shown in Figure 4.12, is followed. At each l-th 

time, 𝑓𝐶𝑙,𝑙,𝑗(𝑐) and, then, 𝑃𝐶𝑙,𝑙(𝑐) are calculated with Eq.(4.33) and Eq.(4.32), 

respectively, for each c-th cluster: the former assume a value equal to 𝑃𝐿𝑂𝐹𝐴,𝑙(𝑐) 

[see Eq.(4.27)] only if the corresponding membership 𝑀𝑟𝑒𝑙,𝑙,𝑐𝑗 overcomes the limit 

value 𝑀𝑙𝑖𝑚,𝐹𝐴𝐼𝐿.𝑙 and the latter indicate how much the c-th cluster is responsible of 

the failure. Afterword, 𝑃𝐹𝐴𝐼𝐿,𝑙,𝑗(𝑒) is determined with Eq.(4.31) for each e-th 

component: its terms are composed by the values assumed by 𝑃𝐹𝐴𝐼𝐿,𝑙(𝑒|𝑐) 

(estimated with Eq.(4.29)), that indicates the probability of failure of the e-th 

component respect to the c-th cluster at l-th time, times 𝑃𝐶𝑙,𝑙(𝑐) with the information 

of the c-th cluster responsible at l-th time for the j-th scenario. If 𝑃𝐹𝐴𝐼𝐿,𝑙,𝑗(𝑒) 

overcomes 𝑃𝐹𝐴𝐼𝐿,𝑙𝑖𝑚(𝑒), the e-th component is considered failed. 

𝑃𝐹𝐴𝐼𝐿,𝑙,𝑗(𝑒) = ∑ 𝑃𝐹𝐴𝐼𝐿,𝑙(𝑒|𝑐) ∙ 𝑃𝐶𝑙,𝑙,𝑗(𝑐)
𝐶=9

𝑐
 (4.31) 

 where       𝑃𝐶𝑙,𝑙(𝑐) =
𝑓𝐶𝑙,𝑙,𝑗(𝑐)

∑ 𝑓𝐶𝑙,𝑙,𝑗(𝑐)
𝐶=9
𝑐

                                          (4.32) 

     and    𝑓𝐶𝑙,𝑙,𝑗(𝑐) = {
  𝑃𝐿𝑂𝐹𝐴,𝑙(𝑐)   if  𝑀𝑟𝑒𝑙,𝑙,𝑐𝑗 > 𝑀𝑙𝑖𝑚,𝐹𝐴𝐼𝐿.𝑙

  0                    if  𝑀𝑟𝑒𝑙,𝑙,𝑐𝑗 ≤ 𝑀𝑙𝑖𝑚,𝐹𝐴𝐼𝐿.𝑙
    (4.33) 

 

 

Figure 4.12 New Pseudo code for 𝑀𝑟𝑒𝑙,𝑙,𝑐𝑗  analysis 

𝑀𝑙𝑖𝑚,𝐹𝐴𝐼𝐿.𝑙 trend and each 𝑃𝐹𝐴𝐼𝐿,𝑙𝑖𝑚(𝑒) are determined from 𝑁𝑘𝑟𝑖𝑔 = 119 scenarios 

with same rules explained in Section 3.3. The 𝒮 coefficient found to calculate 

𝑀𝑙𝑖𝑚,𝐹𝐴𝐼𝐿,𝑙 as in Eq.(3.8) is increased to 𝒮 = 9.81 × 10−8 𝑠−1. 

At l-th time 
For c-th cluster 

  Calculate 𝑓𝐶𝑙,𝑙,𝑗(𝑐) with Eq. (4.33) 
  Calculate 𝑃𝐶𝑙,𝑙(𝑐) with Eq.(4.32)  
 End 
 For each e-th component 
  Calculate 𝑃𝐹𝐴𝐼𝐿,𝑙,𝑗(𝑒) with Eq.(4.31) 

If 𝑃𝐹𝐴𝐼𝐿,𝑙,𝑗(𝑒) > 𝑃𝐹𝐴𝐼𝐿,𝑙𝑖𝑚(𝑒) 
  e-th component is failed 

End 
End 
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Each 𝑃𝐹𝐴𝐼𝐿,𝑙𝑖𝑚(𝑒) was set in order to reduce the number of false positives in LOFA 

precursors identification as sketched in Figure 4.13. In each e-th graph, where the 

e-th component fails (red points) and where it works in normal condition (green 

points), the maximum  value reached by 𝑃𝐹𝐴𝐼𝐿,𝑙,𝑖(𝑒) between “0s” and 

“𝑡𝐿𝑂𝐹𝐴,𝐶1,𝑖 +30s” (30s is the time of the rump down of the current after a LOFA 

after which the belonging cluster of i-th scenario become clear) for every i-th 

training scenarios (𝑖 = 1,… ,𝑁𝑘𝑟𝑖𝑔) are reported with the suggested value for 

𝑃𝐹𝐴𝐼𝐿,𝑙𝑖𝑚(𝑒): imposing 8%, 10%, 3%, 5%, 25% and 8% for 𝑃𝐹𝐴𝐼𝐿,𝑙𝑖𝑚(𝐶𝑃), 

𝑃𝐹𝐴𝐼𝐿,𝑙𝑖𝑚(𝐶𝑉1), 𝑃𝐹𝐴𝐼𝐿,𝑙𝑖𝑚(𝐶𝑉2), 𝑃𝐹𝐴𝐼𝐿,𝑙𝑖𝑚(𝐵𝑉), 𝑃𝐹𝐴𝐼𝐿,𝑙𝑖𝑚(𝑆𝑉1), 𝑃𝐹𝐴𝐼𝐿,𝑙𝑖𝑚(𝑆𝑉2), 

respectively, we decrease the number of green points (potential false positives) 

above the 𝑃𝐹𝐴𝐼𝐿,𝑙𝑖𝑚(𝑒), but limiting red points below it (potential false negatives). 

 
Figure 4.13 Maximum 𝑃𝐹𝐴𝐼𝐿,𝑙,𝑖(𝑒) for scenarios where the e-th component is “failed” (red point) 

and where it work at normal condition (green point) and representation of each 𝑃𝐹𝐴𝐼𝐿,𝑙𝑖𝑚(𝑒) 
(dashed line) 
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4.4 Results 

The modified LOFA precursors identification is tested with the same 𝑁𝑡𝑒𝑠𝑡 = 38 

scenarios of Section 3.4, different from the 𝑁𝑑𝑎𝑡𝑎 = 813 scenarios adopted in 

Section 4.3.1 of the new dataset. 

As an example, the scenario “partial closure of BV at 0s, CP speed at 75% at 1s, 

complete closure of CV2 at 71s and complete closure of CV1 at 72s”, whose values 

of 𝑀𝑟𝑒𝑙,𝑙,𝑐𝑗 and 𝑉𝑟𝑒𝑙,𝑙,𝑐𝑗 (𝑐 = 1,… , 𝐶) are drawn in Figure 4.14, is considered: this 

scenario is clearly of Cluster 4, because the rise of 𝑀𝑟𝑒𝑙,𝑙,4𝑗 and 𝑉𝑟𝑒𝑙,𝑙,4𝑗 show an 

affinity to this cluster. 

 

Figure 4.14 𝑀𝑟𝑒𝑙,𝑙,𝑐𝑗 trends (left) and 𝑉𝑟𝑒𝑙,𝑙,𝑐𝑗  trends (right) for scenario “partial closure of BV at 
0s, CP speed at 75% at 1s, complete closure of CV2 at 71s and complete closure of CV1 at 72s” 

M𝑟𝑒𝑙,𝑙,𝑐𝑗 and 𝑉𝑟𝑒𝑙,𝑙,𝑐𝑗 are analysed like shown in Figure 4.15: each 𝑉𝑟𝑒𝑙,𝑙,𝑐𝑗 is treated 

every l-th time to calculate 𝑃𝐿𝑂𝐹𝐴,𝑙,𝑗 (continuous blue line in Figure 4.15(above)), 

that is compared with 𝑃𝐿𝑂𝐹𝐴,𝑙𝑖𝑚 (dashed line); each 𝑀𝑟𝑒𝑙,𝑙,𝑐𝑗 is employed to 

determine each 𝑃𝐹𝐴𝐼𝐿,𝑙,𝑗(𝑒) (marked continuous lines in Figure 4.15(six plots 

below)), that is compared with its 𝑃𝐹𝐴𝐼𝐿,𝑙𝑖𝑚(𝑒) (dashed line). 
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Figure 4.15 𝑃𝐿𝑂𝐹𝐴,𝑙,𝑗 (above) and 𝑃𝐹𝐴𝐼𝐿,𝑙,𝑗(𝑒) (six plots below) values for scenario “complete 

closure of CV1 at 623s” compared with their limits 

At 11.2s, 𝑃𝐿𝑂𝐹𝐴,𝑙,𝑗 overcomes 𝑃𝐿𝑂𝐹𝐴,𝑙𝑖𝑚 with a consequent LOFA identification. At 

72.6s, 𝑃𝐹𝐴𝐼𝐿,𝑙,𝑗(𝐶𝑉2) and 𝑃𝐹𝐴𝐼𝐿,𝑙,𝑗(𝐵𝑉) reaches their limits, so the CV2 and the BV 

are considered as precursors. At 87.2s, also the CP is identified as precursors, 

because 𝑃𝐹𝐴𝐼𝐿,𝑙,𝑗(𝐶𝑃) overcome 𝑃𝐹𝐴𝐼𝐿,𝑙𝑖𝑚(𝐶𝑃). Finally, 𝑃𝐹𝐴𝐼𝐿,𝑙,𝑗(𝐶𝑉1) reaches 

𝑃𝐹𝐴𝐼𝐿,𝑙𝑖𝑚(𝐶𝑉1) at 300s and its failure is in turn identified. Instead, the SV1 and the 

SV2 are considered “safe”, because their failure probability remains below the 

limit. In summary, LOFA is detected 61.9s earlier than 𝑡𝐿𝑂𝐹𝐴,𝐶1,j = 73.11𝑠 whereas 

the CV2, the BV, the CP and the CV1 LOFA precursors are identified 1.6s, 72.6s, 

86.2s and 218s later than the real misfunctioning, respectively. 
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In Table 4.1, the results of the extensive analysis performed with the modified 

LOFA precursors identification on the 𝑁𝑡𝑒𝑠𝑡 = 38 scenarios are listed. 

Table 4.1 New Results on 𝑁𝑡𝑒𝑠𝑡 = 38 scenarios 

 

 

 

 

 

Differently from Table 3.1, LOFA that are identified late are increased from 6 to 8: 

none of these have a LOFA during the B phase, so the CSM is not endangered. On 

the other hand, the correct identifications of scenarios with no LOFA increase from 

2 to 4, reducing the overall false positives. Also in these case, LOFA is predicted 

in advance in several scenarios where the LOFA actually occurs; in addition, most 

of the scenarios, where LOFA does not occurs, are identified as “safe”. 

In Table 4.2, results of precursors identification for the 32 scenarios with LOFA, 

employing the modified algorithm, are reported as done for Table 3.2. 

Table 4.2 New Results of the precursor identification approach for 𝑁𝑡𝑒𝑠𝑡 = 38 scenarios  
 

Correct precursor 
identification 

False 
negative 

Correct identification 
of normal operation 

False 
positive 

CP 21 2 2 7 
CV1 16 0 2 14 
CV2 13 2 9 8 
BV 14 2 3 13 
SV1 1 1 25 5 
SV2 2 2 20 8 

It can be seen that the modified version of LOFA precursor identification continues 

to conservatively overestimate the number of failed components, but false positives 

are consistently reduced with respect to Table 3.2 with a very slight decrease in the 

precursors identified correctly. 

Scenarios with LOFA  32 

LOFA predicted in advance 24 

LOFA not predicted in advance 8 

Scenarios with NO LOFA  6 

Correct identification NO LOFA 4 

False positive LOFA 2 
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5 Conclusion 

The objective of this thesis was to propose an approach to promptly identify the 

precursors of a Loss-Of-Flow Accident (LOFA) in a simplified cryogenic cooling 

circuit (SMCCC), which has the task of keeping one ITER Central Solenoid (CS) 

module cooled. In case of a LOFA, this cooling capability is obviously 

compromised, so that pressure and temperature inside the CS may surge rapidly, 

possibly causing serious damages to the system (for example, the superconducting 

properties of the magnet may be lost).  

To this aim, an On-line Supervised Spectral Clustering (OSSC) method embedding 

the Fuzzy C-Means (FCM) algorithm has been proposed as a novel, original 

strategy to identify LOFA precursors (i.e., combinations of component failures 

leading to a LOFA) from signals of a developing (accident) scenario in a simulated 

case study. The deterministic 4C code has been used to simulate the SMCCC 

behaviour, when coupled with one of the six ITER Central Solenoid Modules 

(CSMs), and to develop signals of the abnormal and accident scenarios.  

A limited-sized set of 𝑁𝑡𝑟𝑎𝑖𝑛 = 83 “exemplary” scenarios is used to “train” the 

proposed LOFA precursor identification algorithm. These scenarios have been 

clustered into the 𝐶 = 9 groups, characterized by similar time behaviour of the 

system safety-critical variables (i.e., the monitored signals), similar components 

failures (i.e., LOFA precursors) and times of LOFA occurrence. This information 

has been employed to build a sort of “map” for LOFA precursor identification. The 

algorithm (together with the corresponding maps) has been then “tested” on 

additional (new, unknown) 𝑁𝑡𝑒𝑠𝑡 = 38 scenarios to verify its robustness. It has been 

shown that the elaborated method recognises timely 82% of the LOFA precursors 

and identifies 87% of the components failed. On the other hand, it (erroneously) 

detects LOFA precursors in 67% of the scenarios with no LOFA and identifies as 

precursors 79% of components that are not actually failed. In other words, on one 

side, this conservatively increases the safety of the SMCCC (by overestimating the 

number of failed components); on the other side, it reduces its availability (due, 

e.g., to unnecessary inspection procedures). 
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In the light of these results, the quality of the “maps” employed in the LOFA 

precursors identification algorithm has been improved by intelligently increasing 

the number of training scenarios (with the main objective of reducing such 

overestimation). In particular, innovative, advanced computational methods based 

on fast-running surrogate regression models (namely, Kriging metamodels) have 

been developed to increase the number of training scenarios available, but at a 

reduced computational cost (i.e., by circumventing the huge computational burden 

of the 4C code). In a first step, the Adaptive Kriging – Monte Carlo Sampling (AK-

MCS) has been built to progressively enrich the (training) dataset in proximity of 

the region of the system state space that is of our interest (i.e., the “failure” region 

containing those components configurations that likely leads the system to a 

LOFA). This approach has allowed reducing the number of calls to the original, 

long-running 4C code by preferentially guiding/pushing the exploration towards 

the abnormal (LOFA) scenarios of our interest, while avoiding a waste of time in 

the simulation of (“useless”) safe scenarios. By so doing, the training dataset has 

been extended to 𝑁𝑘𝑟𝑖𝑔 = 119 transients (characterized by a satisfactory coverage 

of the failure region). Then, a Proper Orthogonal Decomposition (POD)-based 

Kriging metamodel has been developed and trained (by means of the 𝑁𝑘𝑟𝑖𝑔 

scenarios thereby obtained) to simulate quickly (𝑁𝑑𝑎𝑡𝑎 = 813) time-varying signals 

(i.e., to reproduce the transient behaviour of the safety-critical variables of our 

interest). In other words, the POD-based kriging metamodel has been used to fully 

“mimic” the behaviour of the 4C code, but with a sharp drop in the computation 

cost, from an average of two days to ~1.1s per simulation (on an Intel Core i3-7100 

3.90 GHz 3MB Cache). Finally, this new (significantly enlarged) set of scenarios 

has been employed in a modified version of the LOFA precursors identification 

algorithm, which has been “re-tested” on the 𝑁𝑡𝑒𝑠𝑡 = 38 scenarios and compared 

to the previous version. The results have shown a decrease from 67% to 33% in the 

(erroneous) LOFA identifications and a drop from 79% to 56% in the (erroneous) 

precursor identification: in other words, the number of “false positives” has been 

reduced in a consistent way. On the other hand, the rate of LOFA timely 

identifications has slightly diminished from 82% to 75% and the rate of correct 
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precursor identifications has slightly reduced from 87% to 78%, producing a slight 

increase in the “false negatives”. Overall, the percentage decrease of “false 

positives” is much more consistent than the increase of “false negatives”: in other 

words, the safety of the system analysed is still conservatively guaranteed, but its 

unavailability (due, e.g., to unnecessary inspection procedures) is strongly reduced. 

Therefore, the implementation of advanced computational methods based on 

Kriging metamodels enhance the LOFA precursors identification algorithm, 

overcoming the limitations given by the huge computational cost associated to the 

4C code. In future, additional extension of the database may further improve the 

proposed algorithm. 

From the point of view of the physical analysis of the system and of the LOFA 

precursors identification, the following results have been obtained. Any single 

component failure, such us the rotational speed of the CP at 0%, the complete 

closure of a CVs or the complete opening of the BV, or combinations of at least 3 

failures, among the rotational speed of the CP at 75%, the partial closure of a CVs 

and the partial opening of the BV, cause a LOFA few seconds after the occurred 

event for the consequent drop of the maximum mass flow rate 𝐺𝑚𝑎𝑥 in the CSM 

until 3600s. There are also sequences of failures that lead to a LOFA at the 

beginning of the second pulse of current, such us the fall of the CP speed at 50% or 

25% preceded by the partial opening of the BV or followed by the partial closure 

of the CV2 or combined with the complete opening of SV1: in these cases, 𝐺𝑚𝑎𝑥 is 

less than 10% only for a short period, but more than the validation time (𝜏𝑣𝑎𝑙 =

1𝑠), so the controller C1 detects a LOFA. In addition, there are failures that are not 

LOFA precursors:  the effect of the blocking of a CVs or of the BV at their nominal 

position is felt by the SMCCC after the LOFA occurrence and not before; the stuck 

of a SVs has no consequent effect, because the controller C2 has never acted on the 

SVs in any scenario simulated (i.e., 𝑝𝑙𝑖𝑚 = 1.8MPa has never been reached). 

Finally, the OSSC method embedding the FCM strategy may be tailored to the 

analysis of more complex plants, containing a larger number of components and 

considering more severe operating conditions. Indeed, its deployment may boost 

the reliability, the availability and the maintainability of the plant, representing the 
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basis for undertaking the proper prevention and mitigation strategies in the analysis 

of plants with a large volume of monitored signals. 
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APPENDIX A - Spectral Clustering embedding the 

Fuzzy C-Means 

Spectral Clustering (SC) let 𝑁 objects to be classified in 𝐶 clusters through the 

similarity measure 𝑤 between them (Bellaera et al., 2019; Von Luxburg, 2007). 

Each similarity is calculated using 𝑁𝑘 = 3 trajectories, that are 𝑝𝐶𝑆𝑀,𝑖𝑛(𝑘 = 1), 

𝑇ℎ𝑠(𝑘 = 2) and 𝐼/𝐼𝑐𝑟(𝑘 = 3), of 𝐿 duration and collected in the similarity matrix 

𝑊̿[𝑁,𝑁] from which the Normalized Laplacian matrix 𝐿̿𝑠𝑦𝑚 is computed. Features 

needed to classify the 𝑁 object are extracted from 𝐿̿𝑠𝑦𝑚 and fed to the Fuzzy C-

Means (FCM) code. This algorithm follows different steps (Baraldi et al., 2013): 

Step 1: The matrix 𝑌̿𝑘[𝑁, 𝐿] is built for each k-th variable considered, collecting at 

each row all the 𝑁 transients associated to that variable for the 𝐿 time length and its 

generic element is 𝑦𝑖𝑙
𝑘(𝑖 = 1,2, … ,𝑁; 𝑙 = 1,2, … , 𝐿) referring to the i-th scenario at 

the l-th time. 

Step 2: Each 𝑦𝑖𝑙
𝑘 (𝑖 = 1,2, … ,𝑁; 𝑙 = 1,2, … , 𝐿) is normalized determining 𝑦𝑛,𝑖𝑙

𝑘  as in 

Eq.(A.1): 

𝑦𝑛,𝑖𝑙
𝑘 = 0.2 + 0.6 ∙

𝑦𝑖𝑙
𝑘 − 𝑚𝑖𝑛(𝑌̿𝑘)

𝑚𝑎𝑥(𝑌̿𝑘) − 𝑚𝑖𝑛(𝑌̿𝑘)
, 𝑘 = 1,… ,𝑁𝑘 (A.1) 

Step 3: The Euclidean pointwise distance 𝛿𝑖𝑗 between an i-th object and a j-th one 

(𝑗 = 1,2, … , 𝑁) is determined as in Eq.(A.2).: 

𝛿𝑖𝑗 = ∑ ∑|𝑦𝑛,𝑖𝑙
𝑘 − 𝑦𝑛,𝑗𝑙

𝑘 |

𝐿

𝑙=1

𝑍

𝑘=1

 (A.2) 

Step 4: The generic element 𝑤𝑖𝑗 of the similarity matrix 𝑊̿[𝑁, 𝑁] is obtained from 

𝛿𝑖𝑗 as follows in Eq.(A.3): 

𝑤𝑖𝑗 = 𝑒
−(−

ln(𝛼)
𝛽

𝛿𝑖𝑗
2 )

= 𝑒−𝐹∙𝛿𝑖𝑗
2

 (A.3) 
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Higher " − ln(𝛼)/𝛽” is, closer are the 𝑁 objects and more enhanced the similarity 

between them (Baraldi et al., 2013) [𝐹 = − ln(𝛼)/𝛽 is set to 1.7 ∙ 10−9]. 𝑤𝑖𝑗 can 

assume a value between 0 and 1: if it is close to 1, the i-th and the j-th objects 

considered are very similar; instead, if it is near to 0, the two objects are very 

different. Consequently, each element of the matrix 𝑊̿ in the diagonal is equal to 1, 

because 𝛿𝑖𝑖 = 0. This matrix is also symmetrical, because 𝛿𝑖𝑗 = 𝛿𝑗𝑖. 

Step 5: Each element 𝑑𝑖(𝑖 = 1,… ,𝑁) of the Degree matrix 𝐷̿[𝑁,𝑁], which is a 

diagonal matrix, is determined with Eq.(A.4): 

𝑑𝑖 = ∑𝑤𝑖𝑗

𝑁

𝑗=𝑖

 (A.4) 

Now, it is possible to calculate the Laplacian matrix 𝐿̿[𝑁, 𝑁] by subtracting the 

Similarity matrix to the Degree matrix:  𝐿̿ = 𝐷̿ − 𝑊̿. 

Step 6: The Normalized Laplacian matrix 𝐿̿𝑠𝑦𝑚[𝑁,𝑁]  is computed normalizing 𝐿̿ 

as in Eq.(A.5): 

𝐿̿𝑠𝑦𝑚 = 𝐷̿−1/2𝐿̿𝐷̿−1/2 = 𝐼̿ − 𝐷̿−1/2𝑊̿𝐷̿−1/2 (A.5) 

Step 7: The 𝐶 smallest eigenvalues 𝜆1, 𝜆2, . . . , 𝜆𝐶  and their associated eigenvectors 

𝑢⃗ 1, 𝑢⃗ 2, . . . , 𝑢⃗ 𝐶 of the matrix 𝐿̿𝑠𝑦𝑚 are extracted. All the eigenvalues are between 0 

and 1 with 0 included and the ones stored are very smaller compared to 𝜆𝐶+1. 

Step 8: The matrix 𝑈̿[𝑁, 𝐶] is made associating to each c-th column the 𝑢⃗ 𝑐[𝑁, 1] 

eigenvector obtained by the previous phase. Afterward, this matrix is normalized 

calculating the matrix 𝑇̿[𝑁, 𝐶], whose generic element 𝓉𝑖𝑐 is determined as follow 

in Eq.(A.6): 

𝓉𝑖𝑐 =
𝑢𝑖𝑐

√∑ 𝑢𝑖𝑐
2𝐶

𝑐=1

 ,      𝑖 = 1,2, … ,𝑁  , 𝑐 = 1, 2, … , 𝐶 
(A.6) 

The eigenspace coordinates of the object i-th are contained in each row i-th of the 

matrix 𝑇̿, so 𝑇̅𝑖 = [𝓉𝑖1, 𝓉𝑖2, … , 𝓉𝑖𝐶] is the vector that contains these coordinates. 
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Step 9: The matrix 𝑇̿, which contains the features extracted of the 𝑁 objects, is fed 

to the FCM code to cluster them in 𝐶 groups. 

At the end of this phase, two matrices are generated (Bezdec, 1981) 

• A matrix 𝒜̿[𝐶, 𝐶] containing in each c-th row the eigenspace coordinates of 

the centre of the c-th cluster, so 𝒜̅𝑐 = [𝒜𝑐1, 𝒜𝑐2, … ,𝒜𝑐𝐶] is the vector that 

contains these coordinates. 

• A matrix ℳ̿[𝐶, 𝑁] whose generic element is the 𝑀𝑐𝑖 membership degree of 

the i-th object respect to the c-th cluster: the i-th object belongs to the cluster 

with the highest membership or with the membership above a certain limit 

(𝑀𝑙𝑖𝑚 = 0.7). 

The FCM code follows different steps: 

I. Each 𝑀𝑐𝑖 is initialized with a random value between 0 and 1 and each 

column of 𝑀̿ is normalized: the rule ∑ 𝑀𝑐𝑖
𝐶
𝑐=1 = 1 must be satisfied. 

II. The matrix 𝑀̿ is used to determine the centres of the 𝐶 clusters as in 

Eq.(A.7): 

𝒜̅𝑐 =
∑ 𝑀𝑐𝑖

𝜌
𝑇̅𝑖

𝑁
𝑖=1

∑ 𝑀𝑐𝑖
𝜌𝑁

𝑖=1

, 𝑐 = 1,2, … , 𝐶 (A.7) 

The parameter 𝜌 is the fuzzy partition exponent (Bezdec, 1981) and it is 

higher than 1: normally, it is set to 2. In this way, memberships with higher 

values play a stronger weight in the average procedure in Eq.(15). 

III. All the memberships are recalculated as in Eq.(A.8): 

𝑀𝑐𝑖 =
1

∑ (
‖𝑇̅𝑖 − 𝒜̅𝑐‖

‖𝑇̅𝑖 − 𝒜̅𝜍‖
)

2
𝜌−1

𝐶
𝜍=1

 
(A.8) 

IV. The objective function 𝐽𝑚 is determined and reduced at each iteration as in 

Eq.(A.9): 

𝐽𝑚 = ∑∑𝑀𝑐𝑖
𝜌‖𝑇̅𝑖 − 𝒜̅𝑐‖

2

𝐶

𝑐=1

𝑁

𝑖=1

 (A.9) 
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The minimum improvement between each step is usually set equal to 10-5. 

If this value is not reached, the algorithm is repeated from ii to iv until 𝐽𝑚 is 

improved. 

Step from ii to iv are iterated more times in order to minimize the objective function 

𝐽𝑚. Normally, 100 iterations are set for this optimization.  
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APPENDIX B - Supervised Spectral Clustering: 

Projection in eigenspace  

In OSSC is essential to reprocess the j-th scenario in 𝑇̅𝑙,𝑗[1, 𝐶] eigenspace 

coordinates at l-th time, because each 𝒜̅𝑐[1, 𝐶] center of the c-th cluster, employed 

to determine each membership 𝑀𝑙,𝑐𝑗(𝑙 = 1,… , 𝐿; 𝑐 = 1,… , 𝐶) of the j-th scenario 

to the c-th cluster at l-th time as in Eq.(3.5), is found minimizing the objective 

function 𝐽𝑚 of Eq.(A.9) using eigenspace coordinates 𝑇̅𝑖[1, 𝐶](𝑖 = 1, … , 𝑁𝑡𝑟𝑎𝑖𝑛) of 

𝑁𝑡𝑟𝑎𝑖𝑛 = 83 training scenarios. Therefore, a relation between the 𝑊̅𝑙,𝑗[1, 𝑁𝑡𝑟𝑎𝑖𝑛] 

similarity vector, containing the similarity between the j-th scenario and each i-th 

training scenario, and 𝑈̅𝑙,𝑗[1, 𝐶], from which 𝑇̅𝑙,𝑗[1, 𝐶] is obtained with Eq.(3.4), 

must be found, because we cannot proceed like in Appendix A building a Laplacian 

matrix from 𝑊̅𝑙,𝑗 in order to discover its eigenvectors and proceed with the analysis. 

Anyway, it could be complex finding a this relation between 𝑊̅𝑙,𝑗 to 𝑈̅𝑙,𝑗, so it is 

better to study a law between 𝑊̿[𝑁𝑡𝑟𝑎𝑖𝑛, 𝑁𝑡𝑟𝑎𝑖𝑛] and 𝑈̿[𝑁𝑡𝑟𝑎𝑖𝑛, 𝐶] and adapt it for a 

single row: in this way the link between  𝑊̅𝑖 and 𝑈̅𝑖, which are the i-th row of 𝑊̿ 

and 𝑈̿ respectively, is achieved and it could be used for a new scenario. 

We start from the relation between a 𝜆𝑐(𝑐 = 1,… , 𝐶) eigenvalue and its associated 

𝑢⃗ 𝑐[𝑁𝑡𝑟𝑎𝑖𝑛, 1] eigenvector of the normalized Laplacian matrix 𝐿̿𝑠𝑦𝑚, which is a 

squared matrix, expressed in Eq.(B.1): 

𝐿̿𝑠𝑦𝑚𝑢⃗ 𝑐 = 𝜆𝑐𝑢⃗ 𝑐 (B.1) 

This last matrix could be rewritten using Eq.(A.5): 

(𝐼 ̿ − 𝐷̿−1/2𝑊̿ 𝐷̿−1/2)𝑢⃗ 𝑐 = 𝜆𝑐𝑢⃗ 𝑐 (B.2) 

𝐷̿[𝑁𝑡𝑟𝑎𝑖𝑛, 𝑁𝑡𝑟𝑎𝑖𝑛] is a diagonal matrix and each term of the diagonal is calculated 

from 𝑊̿ using Eq.(A.4), while 𝐼[̿𝑁𝑡𝑟𝑎𝑖𝑛, 𝑁𝑡𝑟𝑎𝑖𝑛] is an identity matrix. 

With some calculation from Eq.(B.2), we find: 

𝑢⃗ 𝑐 − 𝐷̿−1/2𝑊̿ 𝐷̿−1/2𝑢⃗ 𝑐 = 𝜆𝑐𝑢⃗ 𝑐 (B.3) 
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(1 − 𝜆𝑐)𝑢⃗ 𝑐 = 𝐷̿−1/2𝑊̿ 𝐷̿−1/2𝑢⃗ 𝑐 (B.4) 

Finally, a relation between 𝑊̿ matrix and a 𝑢⃗ 𝑐  eigenvector, which is a column of 𝑈̿, 

is expressed in Eq.(B.5): 

𝑢⃗ 𝑐 =
1

1 − 𝜆𝑐
𝐷̿−1/2𝑊̿ 𝑃⃗ 𝑐      𝑐 = 1,2, … , 𝐶 (B.5) 

                                       𝑤𝑖𝑡ℎ       𝑃⃗ 𝑐 = 𝐷̿−1/2𝑢⃗ 𝑐 
 

(B.6) 

Therefore, it is possible to obtain all the  𝑈̿’s columns from Eq.(B.5) knowing 𝑊̿, 

𝐷̿,  𝑃⃗ 𝑐 and 𝜆𝑐(𝑐 = 1, … , 𝐶).  

Eq.(B.5) could be generalized to find a single element 𝑢𝑖𝑐 of the matrix 𝑈̿, using a 

single row 𝑊̅𝑖 of the similarity matrix 𝑊̿, as in Eq.(B.7): 

𝑢𝑖𝑐 =
𝑑𝑖

−1/2

1 − 𝜆𝑐
𝑊̅ 𝑖 𝑃⃗ 𝑐  ,           𝑐 = 1,2, … , 𝐶 (B.7) 

In this way, the row 𝑈̅𝑖 can be found iterating Eq.(B.7) for all the 𝜆𝑐 eigenvalues 

and its 𝑃⃗ 𝑐 vectors, from Eq.(B.6). 

Adapting Eq.(B.7) for 𝑊̅𝑙,𝑗 similarity vector of new j-th scenario at l-th time, 

Eq.(B.8) is obtained: 

𝑢𝑙,𝑗𝑐 =
𝑑𝑙,𝑗

−1/2

1 − 𝜆𝑐
𝑊̅𝑙,𝑗   𝑃⃗ 𝑐 ,        𝑐 = 1,2, … , 𝐶 (B.8) 

                                       𝑤𝑖𝑡ℎ       𝑑𝑙,𝑗 = ∑ 𝑤𝑙,𝑗𝑖

𝑁𝑡𝑟𝑎𝑖𝑛

𝑖=1

 

 

(B.9) 

𝑈̅𝑙,𝑗 is calculated, repeating Eq.(B.8) for each 𝜆𝑐 and 𝑃⃗ 𝑐 from 𝑐 = 1 to 𝑐 = 𝐶. 
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APPENDIX C – Kriging metamodel 

Kriging metamodeling is a stochastic interpolation algorithm which let to predict 

an output 𝑌̂𝑘(𝓧) = ℳℳ𝑘(𝓧) from an input 𝓧 ∈ 𝒟𝒳 ⊂ ℝ𝑀 with 𝑀, the number 

of input elements in 𝓧, and 𝒟𝒳, the domain of 𝓧 (Lataniotis et al., 2015; Turati et 

al., 2017). In Kriging metamodel, residuals are correlated by mean of gaussian 

process like shown in Eq.(C.1): 

ℳℳ𝑘(𝓧) = 𝜷𝒌
𝑇𝓱(𝓧) + 𝜎𝑘

2𝒵(𝓧,𝜔𝑘) = 𝒩(𝜷𝒌
𝑇𝓱(𝓧); 𝜎𝑘

2𝒵(𝓧,𝜔𝑘)) (C.1) 

The first term of ℳℳ𝑘 is the mean value (i.e., trend) of the linear regression model 

and it contains the regression coefficients 𝜷𝑘 = [𝛽𝑘1, 𝛽𝑘2, … , 𝛽𝑘𝑃] and the basis 

function 𝓱 = [𝒽1, 𝒽2, … , 𝒽𝑃] where 𝑃 is the degree of the truncation of 𝓱(𝓧) . 

The second term is constituted by the variance of the gaussian process 𝜎𝑘
2, a 

constant value, and by the zero mean unit variance 𝒵(𝓧,𝜔𝑘) of the gaussian 

process that depends on the input 𝓧 and on the probability space 𝜔𝑘. The value 𝜔𝑘 

relies on the correlation function ℛ(𝓧,𝓧′; 𝜽𝑘), depending on the distance between 

two input samples 𝓧 and 𝓧′ and the hyperparameters 𝜽𝑘. 

Each ℳℳ𝑘(𝑘 = 1,… ,𝑁𝑘) meta-model is built with the DOE made by the 

ensemble of the inputs 𝓧̅ = {𝓧1, 𝓧2, … ,𝓧𝑁𝑘𝑟𝑖𝑔
} and the ensemble of the outputs 

𝓨𝑘 = {𝒴1
𝑘, 𝒴2

𝑘, … , 𝒴𝑁𝑘𝑟𝑖𝑔

𝑘 } both constituted by 𝑁𝑘𝑟𝑖𝑔 elements. Consequently to the 

assumption of the gaussian process, the k-th element output prediction 𝑌̂𝑘(𝓧) =

ℳℳ𝑘(𝓧) for a general 𝓧 input and all the true model responses 𝓨𝑘 of the DOE 

follows the gaussian distribution in Eq.(C.2): 

[
𝑌̂𝑘(𝓧)

 𝓨𝑘 ]~𝒩𝑁𝑘𝑟𝑖𝑔+1 ([
𝜷𝑘

𝑇𝓱(𝓧) 
𝓗𝜷𝑘

] ; 𝜎𝑘
2 [

1 𝓻𝑘
𝑇(𝓧)

𝓻𝑘(𝓧) 𝓡𝑘 ]) (C.2) 

where:  

𝓗 is the information matrix, whose generic term is 

ℋ𝑖𝑝 = 𝒽𝑝(𝓧𝑖),       𝑖 = 1,… ,𝑁𝑘𝑟𝑖𝑔;    𝑝 = 1,… , 𝑃 (C.3) 
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𝓡𝑘 is the correlation matrix, whose generic term is 

ℛ𝑖𝑗
𝑘 = ℛ(𝓧𝑖, 𝓧𝑗; 𝜽

𝑘),       𝑖, 𝑗 = 1, … , 𝑁𝑘𝑟𝑖𝑔 (C.4) 

𝓻𝑘(𝓧) is vector of cross-correlations between the configuration 𝓧 and each one of 

the DOE and its generic term is 

𝓇𝑘𝑖(𝓧)  = ℛ(𝓧,𝓧𝑖; 𝜽
𝑘),       𝑖 = 1, … , 𝑁𝑘𝑟𝑖𝑔 (C.5) 

Consequently, the mean Kriging value 𝜇𝑌̂𝑘 at the 𝓧 point and its Kriging variance 

𝜎
𝑌̂𝑘
2  are estimate with Eq.(C.6) and Eq.(C.7), respectively: 

𝜇𝑌̂𝑘(𝓧) = 𝓱(𝓧)𝜷𝑘 + 𝓻𝑘
𝑇(𝓧)𝓡𝑘−1

(𝓨𝑘 − 𝓗𝜷𝑘) (C.6) 

𝜎
𝑌̂𝑘
2 (𝓧) = 𝜎𝑘

2 (1 − 𝓻𝑘
𝑇(𝓧)𝓡𝑘−1

𝓻𝑘(𝓧) + 𝓾𝑘
𝑇(𝓧) (𝓗𝑇𝓡𝑘−𝟏

𝓗)
−𝟏

𝓾𝑘(𝓧)) (C.7) 

                with           𝓾𝑘(𝓧) = 𝓗𝑇𝓡𝑘−1
𝓻𝑘(𝓧) − 𝓱(𝓧) (C.8) 

                 and              𝜷𝑘 = (𝓗𝑇𝓡𝑘−1
𝓗)

−1

𝓗𝑇𝓡𝑘−1
𝓨𝑘 (C.9) 

In order to obtain the ℳℳ𝑘 Kriging meta-model, some steps are necessary: 

• Choose the trend basis function 𝓱(𝓧) to adopt for ℳℳ𝑘; 

• Choose an opportune correlation function ℛ(𝓧𝑖 , 𝓧𝑗; 𝜽
𝑘); 

• Set the hyperparameters 𝜽𝑘, necessary for the evaluation of the gaussian 

variance 𝜎
𝑌̂𝑘
2  and of the regression coefficients 𝜷𝑘, or choose a method to 

find the optimum 𝜽𝑘. 
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