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ABSTRACT 

Structural Health Monitoring (SHM) has been one of the main research 

topics in the area of civil, mechanical and aerospace engineering for the 

past few years. Modal parameters and their evolution in time can be used 

as features and indicators of the damage which a structure is subjected to 

and might also allow for a prediction of the residual useful life of the same. 

SHM needs of long time-series of data to be efficient. For this reason, 

output-only techniques of system identification, which can record data 

continuously and without the constant supervision of an operator, are 

particularly suitable for this aim and are typically referred to as Operational 

Modal Analysis (OMA).  

In the output-only techniques, the knowledge of the input is replaced by 

the assumption that the input is a realisation of a stochastic process (white 

noise). The determination of a model that fits the measured data is named 

stochastic system identification. Despite the existence of a large number 

of OMA algorithms developed during the last decades, this work is 

exclusively focused on the Covariance-driven Stochastic Subspace 

Identification (SSI-COV). SSI-COV needs the definition of a model order 𝑛 

which is directly linked to the number of modes identified in the analysis 

(𝑛/2). Because of the uncertainty of the SSI method, it’s necessary to 

conduct this analysis considering a range of model orders which has, as 

result, the identification of several modes, generally called poles. The 

poles identified for a certain model order may have similarities or 

dissimilarities with the poles identified for a different model order. These 

are evaluated in function of the modal parameters which characterise each 

pole. The poles which show a low variation of the modal values with the 

changing of the model order are defined as stable (physical modes). On 

the other hand, the poles with high variation of the modal parameters with 

the changing of the model order are defined as unstable (spurious 

modes). This evidence has led to the ideation of stabilisation diagrams 

which show the variation of modal parameters in function of the model 
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order. In a stabilisation diagram the stability can be estimated by a visual 

analysis with the aim of determining a model order where the poles 

manifest a low variation of parameters. The adoption of a stabilisation 

diagram results in a manual identification of modal parameters which can 

lead to results affected by user experience. 

In this study, an automated identification method is proposed with the aim 

of providing a process which is completely independent from the user 

experience, objective and based on the latest statistical methods of 

analysis. Consequently, a multistage cluster process is developed on the 

basis of the definition of the physical parameters characterising the modal 

properties.  

The proposed method is tested on a numerical case considering the 

influence of the model order and the dimensions of the Hankel matrix on 

the results. Once all the parameters which control the process are 

validated, two experimental cases are analysed with the aim of verifying 

and quantifying the performance of the proposed method. In the first case 

a helicopter blade is used as a simplified experimental case; then, a scale 

reproduction of a masonry arch bridge is analysed as a complex 

application on a Civil Engineering structure. 

 

Keywords:  

Structural Health Monitoring, Operational Modal Analysis, Stabilisation 

diagram, Machine Learning, Clustering Analysis, Statistical Analysis, 

Masonry Arch Bridge, Helicopter Blade. 
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1 INTRODUCTION 

1.1 Problem Statement 

Structural Health Monitoring is one of the most discussed topics of the 

latest years. This is because of the sensibilisation of the public opinion on 

the importance of the maintenance of historical and cultural heritage 

buildings and the safeguarding of the human life. As a matter of fact, more 

often than not people interact with old infrastructures, and the 

modernisation of these is not as quick as the increasing of transport flows 

and the request of new buildings. 

A constant monitoring of structures can give some important information 

about the possible damages which may arise during their life. Moreover, 

an assessment of the residual life can be estimated, and maintenance 

strategies may be planned in time in order to avoid risks to human life and 

structural failure which may generate damages to other buildings. 

In order to have parameters which characterise the behaviour of a 

structure or the changing of this with the time, different methods of 

investigation are conducted on the structures. The choice of these 

methods and the planning of study strategies depend on the typology of 

the object of study, the budget and other factors.  

One of the most used analyses in SHM is taking information from the 

dynamic response of a structure. The dynamic response is evaluated on 

the basis of accelerations which may be generated by impulsive actions or 

by environmental vibrations. In case of recording of actions and reactions 

of the structure, the methods are defined as input-output methods. 

Otherwise, if the response of the structure is the only signal that is 

recorded, these are named as output-only methods. In the latest case, the 

most used method for extracting the modal parameters is the Stochastic 

Subspace Identification (SSI) method. This was conceived by Van 

Overschee and De Moor in 1996. 
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SSI method allows to obtain the modal parameters of a structure: 

frequencies, damping ratios and modal shapes. Due to the uncertainty of 

the results, the user is forced to conduct the SSI analysis for a range of 

model orders and try to identify which results are repeated for different 

orders. The parameters that present a high number of repetitions have a 

higher probability to be characterising the structure while the parameters 

that show a low number of repetitions are probably due to the uncertainty 

of the model. 

For this reason, in the last few years, charts were conceived in order to 

show how the parameters computed by the algorithm change with the 

increasing of the model order. It is not always possible to understand from 

a chart if a parameter is stable using only a visual analysis. Therefore, 

some criteria were adopted in order to compare the variation of the 

parameters which characterise a mode identified for a certain model order 

with those identified for a different model order. It means the necessity to 

define limits a priori on the base of these parameters. Moreover, the 

results gotten in a chart may not be as clear as the initial prospects and 

more visual analysis may be needed. This means the user has to take 

some important decisions about the definition of thresholds and qualitative 

analyses. Consequently, the evaluation of the behaviour of the object of 

study is strongly influenced by the experience of the user. 

The present dissertation treats only the SSI method and try to give a better 

interpretation of its results.  

1.2 Aims and Objectives 

In this dissertation an automatic operational modal analysis is proposed 

following a machine learning approach. The aim is to present a method 

that is completely autonomous, does not requires the supervision of the 

user, considers comparison criteria as numerous as possible and tries to 

give a statistical interpretation in all its steps. 
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In order to obtain these characteristics, a detailed study is carried out on 

different topics and the achievement of the aforementioned goals was 

possible keeping these objectives in mind: 

• A literature review about similar cases of study which allows to 

identify comparison parameters, clustering algorithms and statistical 

tools helpful to conceive the final method; 

• Implementation of an automatic operational modal analysis; 

• Validation of the performance of the proposed method on a 

numerical case where the modal parameters of the structure are 

known in advance; 

• Test on a simplified experimental case, a helicopter blade; 

• Test on a complex experimental case, a scale reproduction of a 

masonry arch bridge. 

1.3 Thesis Outline 

This dissertation is organised in seven chapters as follows: 

• Chapter 1: an introduction where the motivations which drive this 

work are explained with the goal to achieve a set of objectives. 

• Chapter 2: a literature review. In this chapter several articles are 

analysed in order to define the bases of this work and to examine 

the methods which can be improved or developed differently. The 

chapter is divided in three main sections which represent the three 

primary topics for the definition of an AOMA: 

- Comparison parameters 

- Clustering algorithms 

- Statistical tools 

• Chapter 3: in this chapter the methodology of the AOMA is 

discussed following the same steps of the algorithm with its logical 

pattern: 

- SSI algorithm; 

- Hard Criteria; 
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- Soft Criteria; 

- Clusters-Modes identification; 

- Removing outliers; 

- Choice of representative modes; 

• Chapter 4: a numerical case of a simple building with 9 degrees of 

freedom is analysed in order to validate the AOMA and to discuss 

important aspects of the SSI algorithm which affect the final result 

such as the range of the model orders and the Hankel matrix 

dimension. The aim of this chapter is to set the SSI parameters with 

the objective of obtaining the best performance of the AOMA 

• Chapter 5: the AOMA is carried out on a simple experimental case 

of a helicopter blade. In this chapter the methodology 

mathematically explained in Chapter 3, is applied and the results of 

the process are showed with a step-by-step approach. The 

objective is to clarify the weight of each step of the proposed 

method on the final result. Then the results are compared with a 

FEM analysis and with a classical experimental modal analysis 

which is carried out on a stabilisation diagram with the user 

intervention. 

• Chapter 6: a complex experimental case, a scale reproduction of a 

masonry arch bridge, is analysed showing the modal shapes 

identified by the AOMA and comparing them with the modal shape 

computed in an FE model. 

• Chapter 7: in this chapter the conclusions are explained 

summarising the steps of the thesis, the objectives achieved and 

the further challenge with the aim of improving the quality of the 

results.  
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2 LITERATURE REVIEW 

In the last few years, several studies have been carried out on the 

research of a method which can solve the aforementioned problems. 

Finding a universal technique is a challenge which has not been overcome 

yet.  

In this chapter, a brief excursus is provided about the methods proposed 

by other authors. The followed strategy is of thematical type which tries to 

trace the logical path of the proposal algorithm. 

In first, the comparison parameters are discussed. Successively, the 

clustering analyses are argued, considering the different typologies and 

the definitions of additional useful conditions. Then, the choice of the 

representative parameters of the identified modal clusters is examined. 

Finally, a brief conclusion is exposed, trying to understand which 

techniques are the most efficient and which methods may influence the 

algorithm in a negative way. 

2.1 Comparison parameters 

The parameters which influence the modal identification analysis are 

relative to the modal variables such as: 

• Frequency 

• Damping ratio 

• Modal shape 

Frequencies and damping ratios are computed starting from the 

identification of the eigenvalues. Therefore, the eigenvalues can be 

considered as a further parameter which characterises the modes. 

The stability of these parameters can be estimated by the variations 

between two quantities which characterise modes belonging to two 

different model orders. As is known, the variation of a system can be 

evaluated by the computing of the relative or the absolute difference 
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among its variables. This computing is possible both between two 

consecutive model orders (𝑛 and 𝑛 + 2) and two general model orders (𝑛 

and 𝑛 + 2𝑘). In this sense, the stability of the parameters belonging to a 

certain model order can be evaluated with reference to the only 

consecutive order or to a greater number of consecutive orders. 

With regards to the eigenvectors, the Modal Assurance Criterion (MAC) is 

one of the most used methods to quantify the similarity between two 

vectors. 

The evaluation of the modal shape leads to a complex eigenvector: its 

complexity is estimable through the phase deviation and the mean phase 

deviation. 

2.1.1 Frequency, damping ratio and eigenvalue 

The variation of frequency, damping ratio and eigenvalue can be 

computed as the absolute or the relative difference between two poles 

belonging to two different orders. 

If 𝑋 is the variable considered, and 𝑖 and 𝑗 are generical orders, both the 

above distances may be calculated as follows: 

 

absolute distance Δ𝑋 = |𝑋𝑖 − 𝑋𝑗| 

relative distance 
Δ𝑋𝑟 =

|𝑋𝑖 − 𝑋𝑗|

max⁡(𝑋𝑖, 𝑋𝑗)
 

 

Many authors choose the relative difference as the reference parameter to 

obtain all the variations in a scale of values between 0 and 1 where: 

• 0 represents the perfect similarity between the two considered 

poles 

• Vice versa, the value 1 is a sign of the complete dissimilarity. 
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This normalization allows to obtain a huge advantage: in fact, in this way 

the difference does not have a unit of measurement and all the variations 

may be considered with the same weight. 

However, evaluating a variation with a relative distance leads to a new 

problem. Let us consider the values 𝑎1, 𝑎2, 𝑏1, 𝑏2 belonging to the same 

generic variable. 

If the absolute distances between 𝑎1, 𝑎2 and 𝑏1, 𝑏2 are the same 

Δ𝑎 = Δ𝑏 = |𝑎1 − 𝑎2| = |𝑏1 − 𝑏2| 

And if 𝑎1, 𝑎2 present values much smaller than 𝑏1, 𝑏2, it is obvious that 

relative distances are different from the absolute distances and therefore: 

for       𝑎1, 𝑎2 ≪ 𝑏1, 𝑏2⁡     and      Δ𝑎 = Δ𝑏 = |𝑎1 − 𝑎2| = |𝑏1 − 𝑏2| 

Δ𝑎𝑟 =
|𝑎1 − 𝑎2|

max⁡(𝑎1, 𝑎2)
≫ Δ𝑏𝑟 =

|𝑏1 − 𝑏2|

max⁡(𝑏1, 𝑏2)
 

As a consequence, if we consider a threshold for the maximum relative 

distance among entities of a variable, this may be stricter for small values 

than for bigger ones. 

The problem of assigning the same scale to each variable may be 

overcome considering a normalisation of the difference vector trough the 

use of appropriate techniques such as the “standard score normalization” 

or the “min-max normalization”. 

This step is necessary in order to analyse the data with a clustering 

algorithm which considers different variables in the same process. 

Both methods will be explained in the following chapters. 

2.1.2 Modal Assurance Criterion 

The similarity of two eigenvectors can be seen with the Modal Assurance 

Criterion. This parameter is often used by many authors and it’s 



Vezio Mugnaini. “A Machine Learning Approach for Automatic Operational Modal Analysis”. 
 

8 

considered a well-established method to evaluate the stability of the modal 

shapes. 

2.1.3 Mean Phase and Mean Phase Deviation 

The complexity of a mode shape can be measured by using the mean 

phase and the mean phase deviation. 

Both these entities may have a big role in a stabilisation algorithm as is 

suggested by many authors. Reynders [1] uses the MPD for rejecting the 

poles where this parameter shows a high value (close to 1). Neu [2] 

considers the variation of MPD among poles belonging to different model 

orders. 

In this dissertation, the values of MPD are used with the same 

interpretation of the latter author. The reason for this choice is given by 

visual results obtained during the k-means clustering. In fact, as will be 

showed later, the variation of MPD, indicated with the symbol dMPD, is 

correlated to the variations of the other parameters used in the cluster 

analysis. 

2.2 Clustering algorithms  

The clustering algorithms used in most of the works carried out on the 

automated identification systems are two: 

• K-means clustering 

• Hierarchical clustering 

The former is used to separate the poles which show high stability from 

the poles with low stability. 

The latter one is used in order to create clusters of poles with similar 

features. 

2.2.1 K-means clustering 

The authors chose this method with the aim of splitting the poles into two 

groups. The first one contains the poles which present low variation of the 
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parameters while the second one is the cluster of the poles which show 

high variations of the variables. 

The variations considered in this work are in terms of frequency, damping 

ratio, eigenvalue, modal shape (MAC) and mean phase deviation. As 

recommended by Reynders [1], the parameters which must be considered 

in the computing of the similarity, should be as many as possible. The 

problem is finding entities that help us to characterise the poles and their 

stability. The addition of new parameters to the k-means clustering is not 

always possible. 

The variations are usually computed between the most similar poles 

belonging to two consecutive orders. This similarity can be chosen 

considering the value 𝑑𝑓𝑟 + (1 −𝑀𝐴𝐶), as suggested by Neu [2]. 

As previously discussed, in order to process more variables at the same 

time in a k-means analysis, the variations of the parameters must be 

scaled with the aim of obtaining the same weight for each one of them. 

This leads many authors to consider the relative distances as reference, 

allowing to obtain values between 0 and 1 for the variations of each 

parameter. In this dissertation a different approach will be adopted in order 

to establish an equal weight for the variables. 

A further consideration may be made on the pre-processing data before 

the k-means clustering. This method requires the distribution of the data 

object of analysis to follow a gaussian distribution, as recommended by 

Neu [2]. 

The gaussianisation process can be computed in different ways: one of 

the methods which allows a redistribution of the variables to a normal 

distribution is the Box-Cox transformation. This method is used by Neu 

and adopted in this work. 
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2.2.2 Hierarchical clustering 

The hierarchical clustering allows to obtain clusters containing poles with 

similar features. This process needs of the definition of the following 

parameters: 

• distance among poles 

• linkage method 

• choosing a threshold 

For the distance among the poles, Reynders and Neu chose 𝑑𝑓𝑟 + (1 −

𝑀𝐴𝐶). As mentioned, in this work the distances will be considered in 

absolute value but the necessity to give the same weight to the variation of 

frequency and modal shape is a problem that persists. To cope with this, 

the variables 𝑑𝑓 and (1 − 𝑀𝐴𝐶) will be scaled in an appropriate way. 

The linkage method is a personal choice but the average method may be 

considered as one of the most efficient for this kind of analysis. 

The choice of a threshold is a challenge for every hierarchical clustering. 

The algorithm tends to collect the poles in a unique cluster. An important 

step analysed in this work starts from the consideration that the poles 

belonging to the same model orders can’t be within the same cluster. This 

allowed to obtain a maximum number of cluster but, as evidenced by the 

results, this approach is necessary but insufficient to obtain the right 

number of clusters. 

Therefore, the choose of a threshold is adopted as suggested by Neu. 

2.3 Statistical tools 

Statistical investigations are used with two aims: 

• To give a gaussian distribution to the variables analysed during the 

k-means clustering; 

• To remove outliers from the final identified clusters. 
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The Box-Cox transformation is used for the former objective, as 

recommended by Neu. 

For the latter aim, the method adopted is different and simpler than the 

method used by Neu.  

2.4 Conclusions 

In the present dissertation, the steps followed for the identification of the 

modal parameters are the same used by many other authors. The 

changes made to the process try to give a better interpretation to the 

results and overcome some limits showed in the literature approaches. 

This is computed with few adjustments which don’t overturn the well-

established methods. 
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3 METHODOLOGY 

Before showing the methodology used in the automated identification 

code, a brief presentation of the SSI [3] algorithm will be introduced in 

order to clarify the problems faced. 

Subsequently, the steps of the process of identification will be explained in 

the same order pursued in the code. 

The code is outlined as follows. 

• K-means clustering 

• Hierarchical clustering 

• Removing outliers within the final clusters 

• Choosing of the representative parameters for each final cluster 

3.1 SSI algorithm 

Stochastic Subspace Identification (SSI) is an algorithm which allows to 

identify the modal parameters of a structure starting from the accelerations 

recorded by sensors located on the object of study. 

Usually SSI is adopted in cases where the input signal is unknown and, for 

this reason, it is defined as an output-only method. The typical example of 

application is on the structure where the excitation arises from the 

environmental vibrations. SSI, other than the accelerations array, needs of 

two parameters: 

• The model order 

• The dimension of the Hankel matrix 

The theory at the base of the SSI algorithm is taken from a Technical 

Paper on the Stochastic Subspace Identification Techniques [4]. 

In output-only modal analysis, the two main assumptions are that the 

underlying physical system behaves linearly and it is time-invariant. 

The model structure can be expressed with two equations: 
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𝑥𝑡+1 = 𝐴 ∙ 𝑥𝑡 + 𝑤𝑡⁡ 3-1 

𝑦
𝑡
= 𝐶 ∙ 𝑥𝑡 + 𝑣𝑡 3-2 

The equation 3-1 is called the state equation and models the dynamic 

behaviour of the system. In other words, this equation transforms the state 

vector 𝑥𝑡 (dimension 𝑛 ∙ 1) in a new state 𝑥𝑡+1 (𝑛 ∙ 1). The dimension 𝑛 of a 

state vector, is called the state space dimension. The state vectors, 𝑥𝑡 and 

𝑥𝑡+1, contain the displacement and the velocity respectively at the instant 𝑡  

and 𝑡 + 1. The time is discretised by the sampling frequency 𝑓𝑠 with the 

relation 𝑓𝑠 = 1/(𝑡 − (𝑡 + 1)). The matrix 𝐴 is a squared matrix 𝑛 ∙ 𝑛 and it 

models the dynamic of the physical system. The vector 𝑤𝑡, which 

represents the contribution of the input excitation to the state vector, is 

considered as a stochastic process (random noise). 

The second equation (3-2) is called the observation equation. The vector 

𝑦𝑡 of dimension 𝑝 ∙ 1, is the observable vector and contains the measured 

output. The matrix 𝐶 is the observation matrix which links the state vector 

to the observable one. The vector 𝑣𝑡 is considered as a stochastic 

process, as 𝑤𝑡, and it represents the contribution of the input to the output. 

Another important assumption in the model system is that the system 

response is modelled by a stochastic process. Consequently, if 𝐸 is the 

expectation operator, the moments of 𝑦𝑡 are expressed by: 

𝐸[𝑦
𝑡
] = 0⁡ 3-3 

𝐸[𝑦
𝑡+𝑖
𝑦
𝑡
𝑇] = Λ𝑖 3-4 

Where 𝑖 denotes the time lag 𝑖Δ𝑡 and Λ𝑖 indicates the covariance function. 

Since the system response of the linear state space model is a Gaussian 

stochastic process, it follows that 𝑥𝑡, 𝑤𝑡 and 𝑣𝑡 all are Gaussian stochastic 

processes as well. The input processes 𝑤𝑡 and 𝑣𝑡 are unknown and, for 

this reason, it is only possible to adopt some assumptions about their 
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statistical properties: they are two correlated zero-mean Gaussian white 

noise processes. 

Defining 𝐺 as the covariance matrix between system response 𝑦𝑡 and the 

updated state vector 𝑥𝑡+1 

𝐸[𝑦
𝑡
⁡𝑥𝑡+1

𝑇] = 𝐺⁡ 3-5 

the covariance function can be written as follows: 

𝐸[𝑦
𝑡+𝑖
⁡𝑦
𝑡
𝑇] = ⁡ {⁡⁡⁡⁡

Λ0 = 𝐶

Λ𝑖 = 𝐶𝐴
𝑖−1𝐺

⁡⁡⁡⁡⁡⁡⁡⁡⁡
𝑖 = 0
𝑖 ≠ 0⁡

 
3-6 

There are two additional system matrices that turn out to play an important 

role: 

Γ𝑖 =

[
 
 
 
 
𝐶
𝐶𝐴
⋮

𝐶𝐴𝑖−2

𝐶𝐴𝑖−1]
 
 
 
 

 

3-7 

Δ𝑖 = [𝐴
𝑖−1𝐺⁡𝐴𝑖−2𝐺 … 𝐴𝐺 𝐺] 3-8 

Where Γ𝑖 is the extended observability matrix and Δ𝑖 is the reversed 

extended stochastic controllability matrix. 

Correlations of the data with respect to a subset of reference sensor 

channels computed at a sequence of different time lags may be 

assembled into a block-Hankel matrix as follows: 

𝐻𝑖 = [
Λ𝑖 ⋯ Λ1
⋮ ⋱ ⋮

Λ2𝑖−1 ⋯ Λ𝑖

] = Γ𝑖Δ𝑖 
3-9 

The Singular Value Decomposition (SVD) technique is then used to 

reduce the block-Hankel matrix into suitable factors as follows: 

𝐻𝑖 = 𝑈𝑆𝑉
𝑇 = [𝑈1 𝑈2] [

𝑆1 0
0 0

] [
𝑉1
𝑇

𝑉2
𝑇] = 𝑈1𝑆1𝑉1

𝑇 
3-10 

The observability and controllability matrices are then computed using the 

equations 3-9 and 3-10: 
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Δ𝑖 = 𝑈1𝑆1
1/2 3-11 

Γ𝑖 = 𝑆1
1/2𝑉1

𝑇 3-12 

The matrix can be obtained as follows: 

𝐴 = Δ𝑖(1: 𝑝(𝑖 − 1), ∶)
+Δ𝑖(𝑝 + 1: 𝑝𝑖, ∶) 3-13 

Where 𝑝 is the number of output channels, 𝑖 is the number of block rows of 

the Hankel Matrix and ∗ + indicates the pseudo-transpose. 

Then the modal parameters, are computed knowing the relation of the 

eigenvalues and the eigenvectors with the matrix 𝐴. 

𝐴 = ΨΜΨ−1 3-14 

Where Ψ is the matrix which contains the eigenvectors and Μ is a diagonal 

matrix containing the discrete-time eigenvalues 𝜇𝑗. The values 𝜇𝑗 are 

directly related to the eigenvalues of the system with the following 

equation: 

𝜆𝑗 =
ln𝜇𝑗

Δ𝑡
 

3-15 

The time lag 𝑖Δ𝑡 is a user choice as the dimension of the state vector 

which is related to the model order. The value of 𝑖 affects the dimension of 

the Hankel Matrix and, consequently, the results of the modal 

identification. The choice of this parameter is a challenge which will be 

discussed in the following chapters. 

The number of the model order should be chosen in function of the 

quantity of sensors used for the recording and the degrees of freedom of 

the structure. For continuous structures, the degrees of freedom are 

infinite and for this reason it is not possible to define the number of 

significant modes to consider in the analysis a priori. Consequently, the 

model order is not an assured quantity and therefore not definable a priori. 
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For this reason, the model order considered is not unique and a range of 

orders may be adopted and applied to the same case of study.  

The modes identified in a model order are called poles. These are 

characterized by eigenvalues and eigenvectors which should appear as 

couple of conjugate complex entities. From the identification of complex 

eigenvalues, the determination of the frequency and the damping ratio are 

computed as follows: 

𝜆 = 𝛼 + 𝑖𝛽 3-16 

𝑓 = √𝛼2 + 𝛽2 3-17 

𝑑𝑟 =
−𝛼

√𝛼2 + 𝛽2
 3-18 

Furthermore, the SSI is affected by imprecisions and the poles identified 

for a certain model order may show dissimilar parameters from the poles 

established for a different model order. This evidence is explicated with 

the following meaning: 

• The poles which show similar parameters by the variation of the 

model order are considered stable  

• Vice versa, the poles which present high variation of parameters 

with the changing of the model order are considered unstable 

The concept of similarity and dissimilarity is not always clear and for this 

reason the adoption of rigid limits on the variation of the parameters is not 

often suitable for different analyses. A statistical approach is more 

appropriate and allows to obtain different limits for different qualities of 

results. 

3.2 Hard Criteria 

The “Hard Criteria” are defined as the criteria for which it is necessary to 

adopt a boundary condition for the identification of modes considered as 

mathematics and not physics. 
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The poles identified for a certain model order may show parameters with a 

no physical meaning. In fact, for structural cases, the damping ratio that is 

expected in a mode should have positive values and however not higher 

than 10-25% (Cabboi [5], Ceravolo [6], Demarie [7]). 

For this reason, a boundary condition is adopted as follows: 

0 < 𝑑𝑟 < 0.2 3-19 

All the poles identified with values of damping ratio exceeding these limits 

are considered as mathematical modes. 

Furthermore, in the SSI algorithm, the eigenvalues and the eigenvectors 

computed for a certain model order should present themselves as couples 

of conjugate complex values. If this is not the case, the poles are 

discarded (Reynders [1]). 

3.3 Soft Criteria 

The term “Soft Criteria” is used to refer to all the methods adopted for 

discarding the poles with comparison parameters among these. 

In this work, the comparison parameters are computed among the two 

most similar poles belonging two consecutive orders. 

If 𝑗 is a generic pole identified for a model order 𝑛, a comparison n-

dimensional vector 𝑝𝑗 is associated to this pole. As mentioned, the 

components 𝑝𝑗𝑖 are computed between the parameters of 𝑗 and those of 

the most similar pole belonging the consecutive model order 𝑛 + 2. 

After the connection of the comparison vectors to all the poles, a k-means 

clustering is conducted on these, defining two clusters where: 

• In the first cluster (𝐶1) the poles which show low variation of 

variables with the increasing of the model order are distinct 

• In the second cluster (𝐶2), on the contrary, the poles which have 

variables with a large difference are selected. 
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Therefore, the poles which fall within 𝐶2 are discarded as considered 

“unstable” while the poles belonging to 𝐶1 are taken as stable and 

successively processed as explained in 3.4. 

3.3.1 Comparison parameters 

In this dissertation, the comparison parameters analysed are the following: 

• Absolute difference of eigenvalue 𝑑𝜆 

• Absolute difference of frequency 𝑑𝑓 

• Absolute difference of damping ratio 𝑑𝑑𝑟 

• Modal Assurance Criterion 𝑀𝐴𝐶 

• Absolute difference of Mean Phase Deviation 𝑑𝑀𝑃𝐷 

For each pole 𝑗 belonging to a model order 𝑛, the previous entities are 

calculated compared to all the poles 𝑘 belonging the consecutive model 

order 𝑛 + 2 as follows. 

𝑑𝜆𝑗
𝑛 = |𝜆𝑗

𝑛 − 𝜆𝑘
𝑛+2| 3-20 

𝑑𝑓𝑗
𝑛 = |𝑓𝑗

𝑛 − 𝑓𝑘
𝑛+2| 3-21 

𝑑𝑑𝑟𝑗
𝑛 = |𝑑𝑟𝑗

𝑛 − 𝑑𝑟𝑘
𝑛+2| 3-22 

𝑑𝑀𝐴𝐶 = 1 −𝑀𝐴𝐶(𝜙𝑗
𝑛, 𝜙𝑘

𝑛+2) 3-23 

𝑑𝑀𝑃𝐷 = |𝑀𝑃𝐷(𝜙𝑗
𝑛) − 𝑀𝑃𝐷(𝜙𝑘

𝑛+2)| 3-24 

 

where⁡ 

𝑀𝐴𝐶(𝜙𝑗
𝑛, 𝜙𝑘

𝑛+2) = 1 −
[(𝜙𝑗

𝑛)∗(𝜙𝑘
𝑛+2)]2

[(𝜙𝑗
𝑛)∗(𝜙𝑗

𝑛)] ∙ [(𝜙𝑘
𝑛+2)∗(𝜙𝑘

𝑛+2)]
 

3-25 

with ∎∗ that denotes the conjugate transpose of the vector. 
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For the computation of the Mean Phase Deviation, the steps followed are 

the same as suggested by Phillips and Allemang [8] and they are 

described in the 7A.1. 

In this way, a matrix of dimensions 𝑙, 𝑚 is obtained for each comparison 

parameter, where 𝑙 is the number of poles belonging to the order 𝑛 and 𝑚 

is the number of poles belonging to the order 𝑛 + 2. 

3.3.1.1 Finding the neighbour  

The next step is finding the poles of the order 𝑛 which are more similar to 

each pole of the model order 𝑛 + 2. To reach this goal, the only variables 

𝑑𝑓 and 𝑑𝑀𝐴𝐶 are used. As known, these have two different units of 

measure and two different scales: 

•  𝑑𝑀𝐴𝐶 is a pure number and assumes values between 0 and 1, 

where 0 denotes the perfect similitude of the eigenvectors and 1 the 

complete difference 

• 𝑑𝑓 has a unit in 𝐻𝑧 and may assume any positive value, 0 included 

To give an equal scale and pure numbers to both the entities, the matrices 

of 𝑑𝑀𝐴𝐶 and⁡𝑑𝑓 are normalized using a “min max normalization”. 

[𝑑𝑀𝐴�̂�] =
[𝑑𝑀𝐴𝐶] − min⁡([𝑑𝑀𝐴𝐶])

max([𝑑𝑀𝐴𝐶]) − min⁡([𝑑𝑀𝐴𝐶])
 

3-26 

 

[𝑑�̂�] =
[𝑑𝑓] − min⁡([𝑑𝑓])

max([𝑑𝑓]) − min⁡([𝑑𝑓])
 

3-27 

After this transformation, the values assumed in the generic position of 

both the matrices are with certainty between 0 and 1. 

At this point, the two matrices may be added in order to obtain a matrix of 

similarity [𝑆]: 
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[𝑆] = [𝑑𝑀𝐴�̂�] + [𝑑�̂�] 3-28 

For each row, the minimum value can be found and the logical number 1 

is associated with this position while for the other elements of the row the 

logical 0 is given. In this way, a logical matrix [𝑃] is computed which 

presents only one element of the row with value equal to 1. The position 

𝑃𝑖,𝑗 = 1 indicates that pole 𝑗 of the order 𝑛 + 2 is the neighbour of the pole 

𝑖 of the order 𝑛. 

3.3.1.2 Associating the comparison vector to each pole 

Multiplying the matrix [𝑃] for each comparison matrix, element by element, 

5 vectors of dimension 𝑙 are found, where 5 is the number of comparison 

methods considered in this case of study and 𝑙 the number of poles within 

the order 𝑛. 

{𝑑𝜆} = [𝑃].∗ [𝑑𝜆] 3-29 

{𝑑𝑓} = [𝑃].∗ [𝑑𝑓] 3-30 

{𝑑𝑑𝑟} = [𝑃].∗ [𝑑𝑑𝑟] 3-31 

{𝑑𝑀𝐴𝐶} = [𝑃].∗ [𝑑𝑀𝐴𝐶] 3-32 

{𝑑𝑀𝑃𝐷} = [𝑃].∗ [𝑑𝑀𝑃𝐷] 3-33 

The new matrix of comparison [𝐶] can be assembled as follows 

[𝐶] = [{𝑑𝜆}⁡⁡{𝑑𝑓}⁡⁡⁡{𝑑𝑑𝑟}⁡⁡⁡{𝑑𝑀𝐴𝐶}⁡⁡⁡{𝑑𝑀𝑃𝐷}] 3-34 

The row 𝑖 of the matrix [𝐶] contains the comparison parameters 

associated to the pole 𝑖. 

3.3.2 Data pre-processing 

As known, the k-means algorithm works well with variables which assume 

a distribution close to the Gaussian one [9]. 
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Another important issue is the use of a clustering algorithm on elements 

characterized by a number of parameters larger than 1. In fact, it’s 

necessary to normalise all the variables in order to obtain pure numbers 

belonging the same domain of existence. 

3.3.2.1 Box-Cox transformation 

The Box-Cox transformation [10] is a process which might allow to obtain 

a distribution of the variables close to the Gaussian distribution. 

 

The Box-Cox transformation is a parametric family of transformation 

from⁡𝑦 to 𝑦(𝜆) trough the parameter 𝜆 

𝑦(𝜆) = {
𝑦𝜆 − 1

𝜆
⁡⁡⁡⁡⁡𝑖𝑓⁡𝜆 ≠ 0

log(𝑦)⁡⁡⁡ ⁡⁡⁡⁡𝑖𝑓⁡𝜆 = 0

 
3-35 

The parameter 𝜆 is obtained by a profile log-likelihood maximization. 

This transformation must be conducted for each parameter considering 

the values assumed by all the poles. 

This means there is a necessity to create a vector of the generic 

parameter 𝑝 containing the value of each pole within all the orders 

considered in the analysis. This vector can be assembled as follows: 

{𝑝} =

{
  
 

  
 
{𝑝𝑛𝑚𝑖𝑛}

{𝑝𝑛𝑚𝑖𝑛+2}
⋮

{𝑝𝑛}
⋮

{𝑝𝑛𝑚𝑎𝑥−2}

{𝑝𝑛𝑚𝑎𝑥} }
  
 

  
 

 

3-36 

{𝑝𝑛} =

{
  
 

  
 
𝑝1,𝑛
𝑝2,𝑛
⋮
𝑝𝑖,𝑛
⋮

𝑝𝑙−2,𝑛
𝑝𝑙𝑛,𝑛 }

  
 

  
 

 

3-37 
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Where 𝑝 is the generic parameter (𝑑𝜆, 𝑑𝑓, 𝑑𝑑𝑟, 𝑑𝑀𝐴𝐶, 𝑑𝑀𝑃𝐷), 𝑛𝑚𝑖𝑛 and 

𝑛𝑚𝑎𝑥 are the minimum and maximum order and 𝑙𝑛 is the number of poles 

belonging the generic order 𝑛. 

3.3.2.2 Z-score normalization 

Once a better distribution of the parameters is obtained, it appears that 

they are not in the same scale. For this reason, a z-score normalization 

[11] is used in this work to obtain a mean equal to 0 and a standard 

deviation equal to 1 for each variable. 

The steps for this normalization are the followings: 

𝜇𝑝 =
1

∑ 𝑙𝑛
𝑛𝑚𝑎𝑥
𝑛=𝑛𝑚𝑖𝑛

∑ ∑𝑝𝑖,𝑛

𝑙𝑛

𝑖=1

𝑛𝑚𝑎𝑥

𝑛=𝑛𝑚𝑖𝑛
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𝜎𝑝 = √
1

∑ 𝑙𝑛
𝑛𝑚𝑎𝑥
𝑛=𝑛𝑚𝑖𝑛

∑ ∑(𝑝𝑖,𝑛 − 𝜇)
2

𝑙𝑛

𝑖=1

𝑛𝑚𝑎𝑥

𝑛=𝑛𝑚𝑖𝑛
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𝑧𝑖,𝑛 =
𝑝
𝑖,𝑛
− 𝜇

𝑝

𝜎𝑝
 

3-40 

The vector {𝑧} will be the final transformation of the vector {𝑝} for the 

generical variable and, after that,  {𝑧}  will be processed with the k-means 

clustering. 

3.3.3 k-means clustering 

The “k-means clustering” [12] is a method of data partitioning where the 

elements analysed are grouped in a number of clusters equal to k. For this 

reason, the user must define the value of k a priori. 

This clustering is an iterative process and the main steps may be 

summarised as follows: 

1. The staring centroid 𝐶1, 𝐶2, …𝐶𝑘 of the k clusters can be defined as 

random or with specific values 
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2. For each element analysed the distance among the element and 

the centroids of the k clusters is computed 

3. Each element is assigned to the neighbour cluster according with 

the point 2 

4. For each cluster, a new centroid is calculated as the mean of the 

element’s parameters belonging to the considered cluster 

5. Steps 2 to 4 are repeated until the centroid of the step i is equal to 

the previous one. 

The analysed elements may be characterized by a certain number l of 

parameters. This allows to process more variables in the same analysis. 

The methods used to compute the distance between elements may be of different nature 

and can be summarised in Table 3-1 - list of possible measurements of distance  

. 

 

Squared Euclidean distance 𝑑(𝑥, 𝑐) = (𝑥 − 𝑐)(𝑥 − 𝑐)′ 

Sum of absolute differences 
𝑑(𝑥, 𝑐) =∑|𝑥𝑗 − 𝑐𝑗|

𝑝

𝑗=1

 

Cosine 
𝑑(𝑥, 𝑐) = 1 −

𝑥𝑐′

√(𝑥𝑥′)(𝑐𝑐′)
 

Table 3-1 - list of possible measurements of distance [13] 

In this study, the assumptions are the following: 

• the variables processed are the transformations of the parameters 

𝑑𝜆, 𝑑𝑓, 𝑑𝑑𝑟, 𝑑𝑀𝐴𝐶 and 𝑑𝑀𝑃𝐷, as described in 3.3.1 and 3.3.2 

• the number of clusters is equal to 2 in order to separate the poles 

identified as “stable” to the poles classified as “unstable” 

• the distance adopted is the Squared Euclidean distance as showed 

in Table 3-1, where: 
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o 𝑥 is the vector referred to a certain pole which contains the 

variables 𝑑𝜆, 𝑑𝑓, 𝑑𝑑𝑟, 𝑑𝑀𝐴𝐶 and 𝑑𝑀𝑃𝐷 

o 𝑐 is the coordinate vector of the cluster centroid 

• the starting centroids of the two clusters are placed on the two 

opposite sides of the 5-D space, in particular: 

𝐶10 =

{
 
 

 
 −3
−3
−3
−3
−3}
 
 

 
 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐶20 =

{
 
 

 
 +3
+3
+3
+3
+3}
 
 

 
 

 

• after the cluster analysis, the poles which present 𝑥 within the final 

cluster 𝐶2 are considered as “unstable” and discarded. 

3.4 Clusters-Modes identification 

The poles identified as “stable” are processed all together with a 

hierarchical clustering algorithm, in order to obtain groups of similar poles. 

Therefore, in this step the comparison is not exclusively done among 

poles of consecutive orders and, as consequence, the stability assumes a 

meaning extended to more model orders. 

The linkage among poles needs the definition of a distance vector that is 

computed as established in 3.4.1.  

The hierarchical clustering (3.4.2) starts considering the poles as single 

clusters and links the closest clusters defining new groups. In order to 

create new congregates, the algorithm needs of the definition of a linkage 

method.  

The process is over once it is not possible to link new clusters anymore or, 

by the definition of a threshold �̃�, when the distance among clusters 

overcomes �̃�. The choice of �̃� is computed following a statistical approach 

described in 3.4.3 

The final clusters may present a high number of poles or a lower one: 
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• If a cluster shows several poles, it means there is a high level of 

identification of similar poles for different model orders. This could 

be an evidence of the fact that cluster represents a physical mode. 

• On the contrary, the clusters which contain fewer poles are 

representative of low redundancy of identification and will be 

considered ad mathematical modes. 

The choice of the limit between physical and mathematical modes is 

computed with a k-means clustering, explained in 3.4.4 

Once established which clusters are physical modes, a statistical analysis 

is conducted for each group, in order to reject potential outliers, as 

described in 3.5. 

3.4.1 Distance vector 

The distance is computed among poles belonging to different model 

orders and considering the frequency and modal shape. 

Considering a pole 𝑗 and a pole 𝑘, respectively belonging to a model order 

𝑛𝑗 and 𝑛𝑘, the following distances are computed 

𝑓𝑜𝑟⁡𝑗 ≠ 𝑘 

𝒅𝒇
𝒋𝒌
= |𝒇

𝒋
− 𝒇

𝒌
| 3-41 

𝒅𝑴𝑨𝑪𝒋𝒌 = 𝟏 − 𝑴𝑨𝑪(𝝓𝒋,𝝓𝒌) 3-42 

𝑓𝑜𝑟⁡𝑗 ≠ 𝑘 

𝒅𝒇
𝒋𝒌
= 𝑵𝒂𝑵 3-43 

𝒅𝑴𝑨𝑪𝒋𝒌 = 𝑵𝒂𝑵 3-44 

The definition of these quantities entails that 𝑑𝑓𝑗𝑘 = 𝑑𝑓𝑘𝑗 and 𝒅𝑴𝑨𝑪𝒋𝒌 =

𝒅𝑴𝑨𝑪𝒌𝑗. 

Each entity is recorded inside two vectors {𝑑𝑓} and {𝒅𝑴𝑨𝑪} of dimensions 

𝑚 =
𝑙 ∙ (𝑙 − 1)

2
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Where 𝑙 is the total number of poles considered in the analysis and 𝑚 the 

number of the total possible combinations. The shape of the two vectors is 

showed below 

{𝑑𝑓} =

{
 
 
 
 

 
 
 
 
𝑑𝑓12
𝑑𝑓13
⋮
𝑑𝑓1𝑙
𝑑𝑓23
⋮

𝑑𝑓2𝑙
⋮

𝑑𝑓(𝑙−1)𝑙}
 
 
 
 

 
 
 
 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡{𝑑𝑀𝐴𝐶} =

{
 
 
 
 

 
 
 
 
𝑑𝑀𝐴𝐶12
𝑑𝑀𝐴𝐶13

⋮
𝑑𝑀𝐴𝐶1𝑙
𝑑𝑀𝐴𝐶23

⋮
𝑑𝑀𝐴𝐶2𝑙

⋮
𝑑𝑀𝐴𝐶(𝑙−1)𝑙}

 
 
 
 

 
 
 
 

 

As for point 3.3 a normalization is necessary in order to give the same 

weight to the two variables. Therefore, a min-max normalization is adopted 

for both the vectors. 

𝑑𝑓
𝑗𝑘
̂ =

𝑑𝑓
𝑗𝑘
−min⁡(𝑑𝑓)

max(𝑑𝑓)− min⁡(𝑑𝑓)
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𝑑𝑀𝐴𝐶𝑗𝑘̂ =
𝑑𝑀𝐴𝐶𝑗𝑘 −min⁡(𝑑𝑀𝐴𝐶)

max(𝑑𝑀𝐴𝐶) −min⁡(𝑑𝑀𝐴𝐶)
 

3-46 

In this way, the NO-NaN entities in the two vectors {𝑑�̂�} and {𝑑𝑀𝐴�̂�} 

assume values between 0 and 1. 

The distance vector {𝐷} is computed as the sum of {𝑑�̂�} and {𝑑𝑀𝐴�̂�} 

{𝐷} = {𝑑�̂�} + {𝑑𝑀𝐴�̂�} 3-47 

3.4.2 Hierarchical clustering 

Hierarchical clustering is one of the most popular and easy clustering 

techniques. There are two types of clustering: Bottom-up (agglomerative) 

methods and Top-down (divisive) methods [12]. 

In this work, an agglomerative method is used following the algorithm 

structure proposed in MathWorks [14] and described below: 



Vezio Mugnaini. “A Machine Learning Approach for Automatic Operational Modal Analysis”. 
 

 
 

27 

1. Find the similarity or dissimilarity between every pair of objects in 

the data set, as described in 3.4.1. 

2. Group the objects into a binary, hierarchical cluster tree. In this 

step, pairs of objects that are in close proximity are linked using 

a linkage function. The linkage function uses the distance 

information generated in step 1 to determine the proximity of 

objects to each other. As objects are paired into binary clusters, the 

newly formed clusters are grouped into larger clusters until a 

hierarchical tree is formed. 

3. Determine where to cut the hierarchical tree into clusters, as 

described in 3.4.3. 

The step 2, the linkage method, is described following the “Data Mining - 

The Textbook” [12] approach with a particular attention to the methods 

implemented on MATLAB. 

The two clusters to be merged are denoted by 𝑖 and 𝑗, respectively. The 

distance between two groups of objects is computed as a function of the 

𝑚𝑖 · 𝑚𝑗 pairs of distances among the constituent objects. The different 

ways of computing distances between two groups of objects are as 

showed in Table 3-2 

Single 

The distance is equal to the minimum distance between all 

𝑚𝑖 · 𝑚𝑗 pairs of objects. This corresponds to the closest pair 

of objects between the two groups. 

Complete 

The distance between two groups of objects is equal to the 

maximum distance between all 𝑚𝑖 · 𝑚𝑗  pairs of objects in the 

two groups. This corresponds to the farthest pair in the two 

groups. 

Average 

The distance between two groups of objects is equal to the 

average distance between all 𝑚𝑖 · 𝑚𝑗  pairs of objects in the 

groups. 
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Centroid the closest centroids are merged in each iteration. 

Table 3-2 - Linkage Methods [12] 

 

These methods may be visualized as follows 

 

Single 

 

Complete 

 

Average 

 

Centroid 

 

Table 3-3 - Linkage Methods (figures) 
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The method adopted in this work is the Average Method and the 

measurement of the distance may be computed with the equation 3-48 

𝐷(𝑐𝑖 , 𝑐𝑗) =
1

𝑛𝑖 ∙ 𝑛𝑗
(∑∑𝐷𝑖𝑗

𝑛𝑗

𝑗=1

𝑛𝑖

𝑖=1

) 
3-48 

Where 𝑛𝑖, 𝑛𝑗 are the number of elements within 𝑐𝑖, 𝑐𝑗 and 𝐷𝑖𝑗 is the 

distance between the element 𝑖 belonging 𝑐𝑖 and 𝑗 belonging 𝑐𝑗 according 

with 3-47. 

3.4.3 Choice of a threshold 

The agglomerative hierarchical clustering is a clustering algorithm which 

starts considering the single poles as starting clusters and, linking the 

neighbours, it reaches a cluster which contains all the poles.  

In this study, the aim of using the hierarchical clustering is to obtain as 

many clusters as the identified modes in the analysis. Therefore, the 

choice of a threshold is fundamental in order to cut the dendrogram 

generated by the hierarchical clustering at certain level and, consequently, 

obtain a number of clusters. These clusters should represent a group of 

poles with similar parameters. 

The choice of a threshold cannot always be done using a visual analysis, 

especially in the proposed method where a fully automated method is 

advanced with the aim of getting results not influenced by the user. 

For this reason, the threshold which establishes the number of clusters is 

defined using a statistical approach on the base of distances among the 

most similar poles belonging to two consecutives model orders. 

Consequently, the distribution of these distances is fitted with a Weibull 

distribution and it is used to find the 95th percentile nearest-distances 

between probable physical modes. 
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3.4.3.1 Distance vector 

Starting from the residual poles, a pole 𝑗 belonging to a model order 𝑛 is 

selected and the distances between this and the poles k belonging to the 

model order 𝑛 + 1 are computed with the same steps showed in 3.4.1.  

𝒅𝒇
𝒋𝒌
= |𝒇

𝒋
− 𝒇

𝒌
| 3-49 

𝒅𝑴𝑨𝑪𝒋𝒌 = 𝟏 − 𝑴𝑨𝑪(𝝓𝒋,𝝓𝒌) 3-50 

 

Consequently, the minimum distance is selected both for 𝑑𝑓𝑗𝑘 and 𝑑𝑀𝐴𝐶𝑗𝑘 

finding the nearest distance between a pole belonging to a model order 

and a pole belonging to the consecutive one. If the model order 𝑛 + 1 is 

empty, the distance is not computed. 

Therefore, as mentioned in the previous chapter, the two vectors need of a 

normalization and the min-max method is adopted in this case as well. 

𝑑𝑓
𝑗𝑘
̂ =

𝑑𝑓
𝑗𝑘
−min⁡(𝑑𝑓)

max(𝑑𝑓)− min⁡(𝑑𝑓)
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𝑑𝑀𝐴𝐶𝑗𝑘̂ =
𝑑𝑀𝐴𝐶𝑗𝑘 −min⁡(𝑑𝑀𝐴𝐶)

max(𝑑𝑀𝐴𝐶) −min⁡(𝑑𝑀𝐴𝐶)
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In this way, the NO-NaN entities in the two vectors {𝑑�̂�} and {𝑑𝑀𝐴�̂�} 

assume values between 0 and 1. 

The distance vector {𝐷} is computed as the sum of {𝑑�̂�} and {𝑑𝑀𝐴�̂�} 

{𝐷} = {𝑑�̂�} + {𝑑𝑀𝐴�̂�} 3-53 

The vector {𝐷} is ready to be processed in order to have the Weibull 

parameters which fit the distribution of the distances. 

3.4.3.2 Weibull distribution 

As suggested by Neu [2], the value where to cut the dendrogram is 

computed from the inverse cumulative distribution function of the Weibull 
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distribution. The 95th percentile is used to find nearest-distances between 

probable physical modes. 

The probability density function of a Weibull random variable is defined as 

follows: 

𝑓(𝑥, 𝜆, 𝑘) = {⁡⁡⁡
𝑘

𝜆
⁡(
𝑥

𝜆
)
𝑘−1

𝑒−(
𝑥
𝜆
)
𝑘

⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝑥 > 0

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝑥 < 0
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Where  

𝑘 > 0 is the shape parameter 

𝜆 > 0 is the scale parameter 

The maximum likelihood estimator for 𝑘 is the solution for 𝑘 of the 

following equation 

0 =
∑ 𝑥𝑖

𝑘 ⁡𝑙𝑛⁡𝑥𝑖⁡⁡
𝑛
𝑖=1

∑ 𝑥𝑖
𝑘𝑛

𝑖=1

−
1

𝑘
−
1

𝑛
∑𝑙𝑛⁡𝑥𝑖⁡⁡

𝑛

𝑖=1
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The maximum likelihood estimator for the 𝜆 parameter given 𝑘 is 

�̂�
𝑘
=
1

𝑛
∑ ⁡𝑥𝑖⁡

𝑘⁡

𝑛

𝑖=1
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The parameter estimation is implemented in MATLAB. 

As mentioned, once the 95th percentile is fixed, the value of the threshold 

is established. 

3.4.4 Physical and Mathematical modes 

Once the dendrogram is cut at a certain level as described in 3.4.3, the 

hierarchical clustering generates a certain number of clusters. These 

https://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/Random_variable
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clusters should represent the identified modes as well as groups of poles 

with similar parameters in terms of frequency and modal shape. 

Some clusters could show a high number of poles belonging to them while 

others could present fewer poles. This evidence can be interpreted as a 

signal of the fact that clusters with few poles are mathematical modes, 

identified by the algorithm but not actually modes of the structure. On the 

contrary, clusters with a high number of poles should be representative of 

the analysed structure and they are defined as physical modes. 

For this reason, the clusters are split in two groups following a 2-means 

clustering based on the number of poles within each cluster. 

3.4.4.1 Addition of empty clusters 

As suggested by Reynders [1], in order to obtain a better solution for the k-

means clustering and to avoid the elimination of physical clusters, empty 

clusters are added to this analysis with a number equal to one fifth of the 

number of the poles belonging to the largest cluster identified by the 

hierarchical clustering. 

3.4.4.2 2-means clustering 

Once the empty clusters are added, the clusters identified by the 

hierarchical clustering are processed with the 2-means clustering using as 

variable the number 𝑚𝑖 of poles belonging to each cluster.  

The starting centroids are placed as follows 

𝐶1 = max⁡(𝑚𝑖) 

𝐶2 = 0 

Once the cluster analysis is over, the clusters with 𝑚𝑖 closest to the final 

centroid 𝐶1 are considered as physical modes while, the others are 

considered mathematical modes and discarded. 
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3.5 Removing outliers 

The process showed in 3.4 leads to a final number of clusters which 

represent the modes identified by the proposed method. The identification 

of the modal parameters from each cluster starts from the parameters 

which each pole present. For this reason, a method of removal of outliers 

within the clusters is necessary in order to avoid any parameter influencing 

the final result. 

For each cluster 𝑖, the centroid is determined as the mean of the 

parameters characterizing the poles 𝑘𝑖 belonging to 𝑖.  

𝑓�̅� =
1

𝑚𝑖
∑𝑓𝑘𝑖

𝑚𝑖

𝑘=1

 

𝑑𝑟̅̅ �̅� =
1

𝑚𝑖
∑𝑑𝑟𝑘𝑖

𝑚𝑖

𝑘=1

 

{�̅�𝑖} =
1

𝑚𝑖

{
 
 
 
 

 
 
 
 
∑𝜓1,𝑘𝑖

𝑚𝑖

𝑘=1

∑𝜓2,𝑘𝑖

𝑚𝑖

𝑘=1

⋮

∑𝜓𝑛,𝑘𝑖

𝑚𝑖

𝑘=1 }
 
 
 
 

 
 
 
 

 

Where 𝑚𝑖 is the number of poles belonging to the 𝑖-cluster and 𝑛 is the 

number of channels (number of components of the eigenvector). 

Consequently, the difference among parameters are computed for each 

pole 𝑘𝑖 in terms of 𝑑𝑓, 𝑑𝑑𝑟 and 𝑀𝐴𝐶. 

𝑑𝑓𝑘𝑖 = |𝑓�̅� − 𝑓𝑘𝑖| 

𝑑𝑑𝑟𝑘𝑖 = |𝑓�̅� − 𝑓𝑘𝑖| 

𝑀𝐴𝐶𝑘𝑖 = 𝑀𝐴𝐶({�̅�𝑖}, {𝜓𝑘𝑖}) 
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Using MATLAB, the outliers are removed with the MAD criterion (appendix 

7A.3). Outliers are defined as the poles which present at least one of the 

three parameters higher than three scaled MAD from the median. 

3.6 Choice of representative modes 

Once the physical modes are identified as the final clusters and the 

outliers are removed, the problem is selecting the representative 

parameters for each cluster. In fact, each cluster contains a certain 

number of poles with similar but not equal parameters. 

It is not simple choosing a unique method for extracting frequency, 

damping ratio and modal shape. Many authors have tried to give a 

personal interpretation of the results; for example, Reynders [1] selected 

the parameters of the pole with the closest damping ratio to the mean of dr 

that characterises the poles which belong to the selected cluster. 

In this work, different methods are proposed and implemented in order to 

give the opportunity to select the best solution for each case by testing 

each method on specific case. 

For each cluster, the modal parameters can be extracted with the following 

methods: 

1. Choosing the mean of frequency, damping ratio and eigenvector of 

the poles belonging to the cluster. 

2. Choosing the pole which presents the minimum distance between 

its damping ratio and the mean of the dr of the poles belonging to 

the analysed cluster. 

3. Choosing the pole which presents the minimum distance between 

its parameters (frequency, damping ratio and eigenvector) and the 

mean of all the parameters of the poles belonging to the analysed 

cluster. 

4. Choosing the pole which presents the minimum value of the sum of 

differences between the components of its eigenvector and the 
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components of the eigenvector computed as the mean of the 

eigenvectors of the poles belonging to the analysed cluster. 
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4 NUMERICAL CASE 

4.1 Description 

The proposed method is tested on a numerical case which is 

representative of a 3-dimensional building with three floors and it presents 

the following features: 

• Each floor is considered as infinitely rigid; the behaviour of the 

building is like a shear type structure which presents three degrees 

of freedom for each floor: two orthogonal displacements and one 

rotation are allowed on the three levels. 

As a result, the building has a total of nine degrees of freedom. 

• An irregular disposition of the vertical elements; for this reason, the 

building has an eccentricity between the centre of mass (CM) and 

the centre of resistance (CR). 

• The acceleration sensors are three per floor and placed as showed 

in  
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𝑋𝑐 = {

𝑋(𝑛+1)/2 𝑓𝑜𝑟⁡𝑛⁡𝑜𝑑𝑑

𝑋𝑛/2 + 𝑋𝑛/2+1

2
𝑓𝑜𝑟⁡𝑛⁡𝑒𝑣𝑒𝑛

 
Error! No text 
of specified 

style in 
document.-10 

MAD is defined as the median of the absolute difference between a vector 

𝑌 and its relative median value 𝑌𝑐. 
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𝑀𝐴𝐷 = 𝑀𝑒𝑑𝑖𝑎𝑛(|{𝑌} − 𝑌𝑐|) Error! No text 
of specified 

style in 
document.-11 

 

The three scaled MAD is obtained by multiplying the MAD by a coefficient 

c defined as follows: 

𝑐 = ⁡−
1

√2 ∗ 𝑒𝑟𝑓𝑐−1(3/2)
≈ 1.4826⁡ 

Error! No text 
of specified 

style in 
document.-12 

Where 𝑒𝑟𝑓𝑐−1 represents the Inverse Complementary Error Function 

which is defined as 

𝑒𝑟𝑓𝑐−1(𝑒𝑟𝑓𝑐(𝑥)) = 𝑥⁡ Error! No text 
of specified 

style in 
document.-13 

The Complementary Error Function (𝑒𝑟𝑓𝑐) is given by the following relation 

𝑒𝑟𝑓𝑐(𝑥) = 1 − erf(𝑥)⁡ Error! No text 
of specified 

style in 
document.-14 

Where erf(𝑥) represents the Error Function of the argument 𝑥 

erf(𝑥) =
2

√𝜋
∫ 𝑒−𝑡

2
𝑑𝑡

𝑥

0
=⁡ 

Error! No text 
of specified 

style in 
document.-15 

•  
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𝑀𝑒𝑑𝑖𝑎𝑛({𝑋}) = 𝑋𝑐 Error! No text 
of specified 

style in 
document.-8 

{�⃗⃗� } = 𝑠𝑜𝑟𝑡𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡−𝑔𝑟𝑒𝑡𝑒𝑠𝑡{𝑋} = 𝑋1, 𝑋2, …𝑋𝑛 

𝑋𝑖 < 𝑋𝑖+1⁡⁡⁡⁡∀⁡𝑖 ∈ ℕ 

Error! No text 
of specified 

style in 
document.-9 

𝑋𝑐 = {

𝑋(𝑛+1)/2 𝑓𝑜𝑟⁡𝑛⁡𝑜𝑑𝑑

𝑋𝑛/2 + 𝑋𝑛/2+1

2
𝑓𝑜𝑟⁡𝑛⁡𝑒𝑣𝑒𝑛

 
Error! No text 
of specified 

style in 
document.-10 

MAD is defined as the median of the absolute difference between a vector 

𝑌 and its relative median value 𝑌𝑐. 

𝑀𝐴𝐷 = 𝑀𝑒𝑑𝑖𝑎𝑛(|{𝑌} − 𝑌𝑐|) Error! No text 
of specified 

style in 
document.-11 

 

The three scaled MAD is obtained by multiplying the MAD by a coefficient 

c defined as follows: 

𝑐 = ⁡−
1

√2 ∗ 𝑒𝑟𝑓𝑐−1(3/2)
≈ 1.4826⁡ 

Error! No text 
of specified 

style in 
document.-12 

Where 𝑒𝑟𝑓𝑐−1 represents the Inverse Complementary Error Function 

which is defined as 
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𝑒𝑟𝑓𝑐−1(𝑒𝑟𝑓𝑐(𝑥)) = 𝑥⁡ Error! No text 
of specified 

style in 
document.-13 

The Complementary Error Function (𝑒𝑟𝑓𝑐) is given by the following relation 

𝑒𝑟𝑓𝑐(𝑥) = 1 − erf(𝑥)⁡ Error! No text 
of specified 

style in 
document.-14 

Where erf(𝑥) represents the Error Function of the argument 𝑥 

erf(𝑥) =
2

√𝜋
∫ 𝑒−𝑡

2
𝑑𝑡

𝑥

0
=⁡ 

Error! No text 
of specified 

style in 
document.-15 

•  
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Figure 4-1 – disposition of the accelerometers 
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• The stiffness matrix is the following  

 

[
 
 
 
 
 
 
 
 
1.8900 −0.8630 −0.0576
−0.8630 1.3600 −0.5740
−0.0576 −0.5740 −0.4410

0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000

−13.4000 6.0900 −0.4060
6.0900 −9.5600 4.0500
−0.4060 4.0500 −3.1100

0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000

1.9300 −0.7780 0.0022
−0.7780 1.3300 −0.5200
0.0022 −0.5200 0.5110

7.4000 −3.1100 0.0293
−3.1100 5.2500 −2.0400
0.0293 −2.0400 2.0300

−13.4000 6.0900 −0.4060
6.0900 −9.5600 4.0500
−0.4060 4.0500 −3.1100

7.4000 −3.1100 0.0293
−3.1100 5.2500 −2.0400
0.0293 −2.0400 2.0300

21.1000 −9.6400 0.4700
−9.6400 15.5000 −6.3700
0.4700 −6.3700 5.4000 ]

 
 
 
 
 
 
 
 

109⁡[𝑁𝑚2] 

 

In accordance with the reference system showed in  

𝑀𝑒𝑑𝑖𝑎𝑛({𝑋}) = 𝑋𝑐 Error! No text 
of specified 

style in 
document.-8 

{�⃗⃗� } = 𝑠𝑜𝑟𝑡𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡−𝑔𝑟𝑒𝑡𝑒𝑠𝑡{𝑋} = 𝑋1, 𝑋2, …𝑋𝑛 

𝑋𝑖 < 𝑋𝑖+1⁡⁡⁡⁡∀⁡𝑖 ∈ ℕ 

Error! No text 
of specified 

style in 
document.-9 

𝑋𝑐 = {

𝑋(𝑛+1)/2 𝑓𝑜𝑟⁡𝑛⁡𝑜𝑑𝑑

𝑋𝑛/2 + 𝑋𝑛/2+1

2
𝑓𝑜𝑟⁡𝑛⁡𝑒𝑣𝑒𝑛

 
Error! No text 
of specified 

style in 
document.-10 

MAD is defined as the median of the absolute difference between a vector 

𝑌 and its relative median value 𝑌𝑐. 

𝑀𝐴𝐷 = 𝑀𝑒𝑑𝑖𝑎𝑛(|{𝑌} − 𝑌𝑐|) Error! No text 
of specified 

style in 
document.-11 

 

The three scaled MAD is obtained by multiplying the MAD by a coefficient 

c defined as follows: 
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𝑐 = ⁡−
1

√2 ∗ 𝑒𝑟𝑓𝑐−1(3/2)
≈ 1.4826⁡ 

Error! No text 
of specified 

style in 
document.-12 

Where 𝑒𝑟𝑓𝑐−1 represents the Inverse Complementary Error Function 

which is defined as 

𝑒𝑟𝑓𝑐−1(𝑒𝑟𝑓𝑐(𝑥)) = 𝑥⁡ Error! No text 
of specified 

style in 
document.-13 

The Complementary Error Function (𝑒𝑟𝑓𝑐) is given by the following relation 

𝑒𝑟𝑓𝑐(𝑥) = 1 − erf(𝑥)⁡ Error! No text 
of specified 

style in 
document.-14 

Where erf(𝑥) represents the Error Function of the argument 𝑥 

erf(𝑥) =
2

√𝜋
∫ 𝑒−𝑡

2
𝑑𝑡

𝑥

0
=⁡ 

Error! No text 
of specified 

style in 
document.-15 

, the previous values are referred to the following stiffness  

 

[

𝑘𝑥𝑥 𝑘𝑥𝑦 𝑘𝑥Θ
𝑘𝑥𝑦 𝑘𝑦𝑦 𝑘𝑦Θ
𝑘𝑥Θ 𝑘𝑦Θ 𝑘ΘΘ

] 

 

• The mass matrix is the following 
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[
 
 
 
 
 
 
 
 

199926 0.0000 0.0000
0.0000 173425 0.0000
0.0000 0.0000 200717

0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000

⁡−1262530 0.0000 0.0000
0.0000 −1095179 0.0000
0.0000 0.0000 −1267529

0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000

199926 0.0000 0.0000
0.0000 173425 0.0000
0.0000 0.0000 200717

⁡762350 0.0000 0.0000
0.0000 659897 0.0000
0.0000 0.0000 772463

⁡−1262530 0.0000 0.0000
0.0000 −1095179 0.0000
0.0000 0.0000 −1267529

⁡762350 0.0000 0.0000
0.0000 659897 0.0000
0.0000 0.0000 772463

⁡19742644 0.0000 0.0000
0.0000 16901864 0.0000
0.0000 0.0000 20166960 ]

 
 
 
 
 
 
 
 

[𝑘𝑔] 

 

In accordance with the reference system showed in  

𝑀𝑒𝑑𝑖𝑎𝑛({𝑋}) = 𝑋𝑐 Error! No text 
of specified 

style in 
document.-8 

{�⃗⃗� } = 𝑠𝑜𝑟𝑡𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡−𝑔𝑟𝑒𝑡𝑒𝑠𝑡{𝑋} = 𝑋1, 𝑋2, …𝑋𝑛 

𝑋𝑖 < 𝑋𝑖+1⁡⁡⁡⁡∀⁡𝑖 ∈ ℕ 

Error! No text 
of specified 

style in 
document.-9 

𝑋𝑐 = {

𝑋(𝑛+1)/2 𝑓𝑜𝑟⁡𝑛⁡𝑜𝑑𝑑

𝑋𝑛/2 + 𝑋𝑛/2+1

2
𝑓𝑜𝑟⁡𝑛⁡𝑒𝑣𝑒𝑛

 
Error! No text 
of specified 

style in 
document.-10 

MAD is defined as the median of the absolute difference between a vector 

𝑌 and its relative median value 𝑌𝑐. 

𝑀𝐴𝐷 = 𝑀𝑒𝑑𝑖𝑎𝑛(|{𝑌} − 𝑌𝑐|) Error! No text 
of specified 

style in 
document.-11 

 

The three scaled MAD is obtained by multiplying the MAD by a coefficient 

c defined as follows: 
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𝑐 = ⁡−
1

√2 ∗ 𝑒𝑟𝑓𝑐−1(3/2)
≈ 1.4826⁡ 

Error! No text 
of specified 

style in 
document.-12 

Where 𝑒𝑟𝑓𝑐−1 represents the Inverse Complementary Error Function 

which is defined as 

𝑒𝑟𝑓𝑐−1(𝑒𝑟𝑓𝑐(𝑥)) = 𝑥⁡ Error! No text 
of specified 

style in 
document.-13 

The Complementary Error Function (𝑒𝑟𝑓𝑐) is given by the following relation 

𝑒𝑟𝑓𝑐(𝑥) = 1 − erf(𝑥)⁡ Error! No text 
of specified 

style in 
document.-14 

Where erf(𝑥) represents the Error Function of the argument 𝑥 

erf(𝑥) =
2

√𝜋
∫ 𝑒−𝑡

2
𝑑𝑡

𝑥

0
=⁡ 

Error! No text 
of specified 

style in 
document.-15 

, the previous values are referred to the following mass  

 

[

𝑀𝑥𝑥 𝑀𝑥𝑦 𝑀𝑥Θ

𝑀𝑥𝑦 𝑀𝑦𝑦 𝑀𝑦Θ

𝑀𝑥Θ 𝑀𝑦Θ 𝑀ΘΘ

] 

 

• The damping ratios associated to each mode are 

𝑑𝑟1 = 0.20% 

𝑑𝑟2 = 0.60% 

𝑑𝑟3 = 1.30% 

𝑑𝑟4 = 3.50% 
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𝑑𝑟5 = 0.80% 

𝑑𝑟6 = 1.50% 

𝑑𝑟7 = 0.70% 

𝑑𝑟8 = 2.90% 

𝑑𝑟9 = 2.00% 

 

The geometric case is now known. 

4.2 Modal parameters 

Once the mass matrix, the stiffness matrix and the damping ratios are 

known, the modal parameters can be computed. 

4.2.1 Mode 1 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦:⁡0.7278⁡𝐻𝑧 

𝐷𝑎𝑚𝑝𝑖𝑛𝑔⁡𝑟𝑎𝑡𝑖𝑜:⁡0.20% 

⁡𝑀𝑜𝑑𝑎𝑙⁡𝑠ℎ𝑎𝑝𝑒:⁡⁡⁡

{
 
 
 
 

 
 
 
 
0.41250
0.6716
1

−0.1016
−0.1532
−0.2268
0.0268
0.0393
0.0571 }

 
 
 
 

 
 
 
 

⁡⁡⁡⁡⁡ 
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4.2.2 Mode 2 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦:⁡4.1980⁡𝐻𝑧  

𝐷𝑎𝑚𝑝𝑖𝑛𝑔⁡𝑟𝑎𝑡𝑖𝑜:⁡0.60% 

⁡𝑀𝑜𝑑𝑎𝑙⁡𝑠ℎ𝑎𝑝𝑒:⁡⁡

{
 
 
 
 

 
 
 
 
−0.2416
−0.3263
−0.4572
0.3073
0.6411
1

−0.0735
−0.1461
−0.2256}

 
 
 
 

 
 
 
 

⁡⁡ 

4.2.3 Mode 3 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦:⁡4.8239⁡𝐻𝑧  

𝐷𝑎𝑚𝑝𝑖𝑛𝑔⁡𝑟𝑎𝑡𝑖𝑜:⁡1.30% 

⁡𝑀𝑜𝑑𝑎𝑙⁡𝑠ℎ𝑎𝑝𝑒:⁡⁡

{
 
 
 
 

 
 
 
 
−0.0213
−0.0228
−0.0254
−0.2731
−0.6263
−1

−0.0043
−0.0068
−0.0092}

 
 
 
 

 
 
 
 

⁡⁡ 

4.2.4 Mode 4 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦:⁡11.8675⁡𝐻𝑧  

𝐷𝑎𝑚𝑝𝑖𝑛𝑔⁡𝑟𝑎𝑡𝑖𝑜:⁡3.50% 

⁡𝑀𝑜𝑑𝑎𝑙⁡𝑠ℎ𝑎𝑝𝑒:⁡⁡

{
 
 
 
 

 
 
 
 

−1
−0.9593
0.9555
0.1600
0.1598
−0.1759
−0.0362
−0.0345
0.0410 }

 
 
 
 

 
 
 
 

⁡⁡ 
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4.2.5 Mode 5 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦:⁡12.0137⁡𝐻𝑧  

𝐷𝑎𝑚𝑝𝑖𝑛𝑔⁡𝑟𝑎𝑡𝑖𝑜:⁡0.80% 

⁡𝑀𝑜𝑑𝑎𝑙⁡𝑠ℎ𝑎𝑝𝑒:⁡⁡

{
 
 
 
 

 
 
 
 
0.0390
0.0142
−0.0318
0.9738
1

−0.8089
0.0012
−0.0019
−0.0009}

 
 
 
 

 
 
 
 

⁡⁡ 

4.2.6 Mode 6 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦:⁡12.5996⁡𝐻𝑧  

𝐷𝑎𝑚𝑝𝑖𝑛𝑔⁡𝑟𝑎𝑡𝑖𝑜:⁡1.50% 

⁡𝑀𝑜𝑑𝑎𝑙⁡𝑠ℎ𝑎𝑝𝑒:⁡⁡

{
 
 
 
 

 
 
 
 

−1
−0.8478
0.8843
0.9279
0.8468
−0.7488
−0.2507
−0.2199
0.2000 }

 
 
 
 

 
 
 
 

⁡⁡ 

4.2.7 Mode 7 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦:⁡17.7984⁡𝐻𝑧  

𝐷𝑎𝑚𝑝𝑖𝑛𝑔⁡𝑟𝑎𝑡𝑖𝑜:⁡0.70% 

⁡𝑀𝑜𝑑𝑎𝑙⁡𝑠ℎ𝑎𝑝𝑒:⁡⁡

{
 
 
 
 

 
 
 
 
0.9751
−1

0.1694
−0.3543
0.3574
−0.0621
0.0592
−0.0650
−0.0094}

 
 
 
 

 
 
 
 

⁡⁡ 
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4.2.8 Mode 8 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦:⁡18.3285⁡𝐻𝑧  

𝐷𝑎𝑚𝑝𝑖𝑛𝑔⁡𝑟𝑎𝑡𝑖𝑜:⁡2.90% 

⁡𝑀𝑜𝑑𝑎𝑙⁡𝑠ℎ𝑎𝑝𝑒:⁡⁡

{
 
 
 
 

 
 
 
 
−0.2011
0.2207
−0.0403
−1

0.9095
−0.2261
−0.0044
0.0081
−0.0007}

 
 
 
 

 
 
 
 

⁡⁡ 

4.2.9 Mode 9 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦:⁡20.2295⁡𝐻𝑧  

𝐷𝑎𝑚𝑝𝑖𝑛𝑔⁡𝑟𝑎𝑡𝑖𝑜:⁡2.00% 

⁡𝑀𝑜𝑑𝑎𝑙⁡𝑠ℎ𝑎𝑝𝑒:⁡⁡

{
 
 
 
 

 
 
 
 
0.4842
−0.6372
0.0990
−0.9432

1
−0.2443
0.2837
−0.3039
0.0740 }

 
 
 
 

 
 
 
 

⁡⁡ 
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4.3 Excitation  

In order to obtain an excitation similar to the environmental one, the input 

signal is generated using the function “randn” which is implemented in 

MATLAB. 

In this way, the signal assumes a meaning of white noise. White noise is a 

random signal with a constant power spectral density and without a 

periodicity with the time. The values which the white noise assumes can 

be generated by a standard normal distribution (𝜇 = 0, 𝜎 = 1). 

In first, in order to define the input signal, a time vector 𝑡 is defined as 

follows: 

𝑡 =

{
 
 
 

 
 
 
0
1

𝑓𝑠
2

𝑓𝑠
⋮
𝑛

𝑓𝑠}
 
 
 

 
 
 

 

Where 𝑓𝑠 is the sampling frequency and 𝑛 − 1 is the number of elements 

which compose the time vector. In other words, the value of n is linked to 

the time of sampling 𝑇𝑠 with the following relation: 

𝑇𝑠 =
𝑛

𝑓𝑠
 

In this study the sampling frequency is considered equal to 200⁡𝐻𝑧 and the 

time of sampling equal to 180⁡𝑠. 

The time vector assumes the following values: 

𝑡[𝑠] =

{
  
 

  
 

0
0.005
0.010
0.015
0.020
⋮
180 }
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In order to obtain values of acceleration similar to the ones which can be 

recorded in a real measurement, the random values of the white noise are 

scaled with a coefficient equal to 0.005. This means assuming the 

following variance: 

𝜎 = 0.005 

Then, the white noise can be graphed as showed in Figure 4-2. 

 

Figure 4-2 – White Noise example (𝜇 = 0, 𝜎 = 0.005) 

Therefore, in order to excite each degree of freedom with a different 

intensity, a track array is considered as follows: 

𝑡𝑟𝑎𝑐𝑘 =

{
 
 
 
 

 
 
 
 
0.6761
0.1690
0.1690
−0.5070
0.3380
0.3380
−0.0101
−0.0101
0.0034 }

 
 
 
 

 
 
 
 

 

The signal is applied to the origin 𝑂 of the axes 𝑥, 𝑦 ( 
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𝑀𝑒𝑑𝑖𝑎𝑛({𝑋}) = 𝑋𝑐 Error! No text 
of specified 

style in 
document.-8 

{�⃗⃗� } = 𝑠𝑜𝑟𝑡𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡−𝑔𝑟𝑒𝑡𝑒𝑠𝑡{𝑋} = 𝑋1, 𝑋2, …𝑋𝑛 

𝑋𝑖 < 𝑋𝑖+1⁡⁡⁡⁡∀⁡𝑖 ∈ ℕ 

Error! No text 
of specified 

style in 
document.-9 

𝑋𝑐 = {

𝑋(𝑛+1)/2 𝑓𝑜𝑟⁡𝑛⁡𝑜𝑑𝑑

𝑋𝑛/2 + 𝑋𝑛/2+1

2
𝑓𝑜𝑟⁡𝑛⁡𝑒𝑣𝑒𝑛

 
Error! No text 
of specified 

style in 
document.-10 

MAD is defined as the median of the absolute difference between a vector 

𝑌 and its relative median value 𝑌𝑐. 

𝑀𝐴𝐷 = 𝑀𝑒𝑑𝑖𝑎𝑛(|{𝑌} − 𝑌𝑐|) Error! No text 
of specified 

style in 
document.-11 

 

The three scaled MAD is obtained by multiplying the MAD by a coefficient 

c defined as follows: 

𝑐 = ⁡−
1

√2 ∗ 𝑒𝑟𝑓𝑐−1(3/2)
≈ 1.4826⁡ 

Error! No text 
of specified 

style in 
document.-12 

Where 𝑒𝑟𝑓𝑐−1 represents the Inverse Complementary Error Function 

which is defined as 
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𝑒𝑟𝑓𝑐−1(𝑒𝑟𝑓𝑐(𝑥)) = 𝑥⁡ Error! No text 
of specified 

style in 
document.-13 

The Complementary Error Function (𝑒𝑟𝑓𝑐) is given by the following relation 

𝑒𝑟𝑓𝑐(𝑥) = 1 − erf(𝑥)⁡ Error! No text 
of specified 

style in 
document.-14 

Where erf(𝑥) represents the Error Function of the argument 𝑥 

erf(𝑥) =
2

√𝜋
∫ 𝑒−𝑡

2
𝑑𝑡

𝑥

0
=⁡ 

Error! No text 
of specified 

style in 
document.-15 

) considering the previous track array. 

4.4 Displacements, Velocities and Accelerations 

Once the geometry of the problem and the excitation are established, the 

computing of the displacements of 𝑂 is possible for each floor thanks to 

the following integral 

𝑢𝑖 = −(
Ψ𝑖

√Ψ𝑖
′𝑀Ψ𝑖

)

′

𝑀⁡𝑇𝑟
1

𝜔𝑖√1 − (𝑑𝑟𝑖)
2
∫ 𝑤𝑛𝑖(𝑡) ∙ (𝑒

−𝑑𝑟𝑖⁡𝜔𝑖⁡𝑡 ∙ sin (𝜔𝑖√1 − (𝑑𝑟𝑖)
2⁡𝑡))𝑑𝑡⁡

𝑇

0

 
 

4-1 
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Where  

• Ψ𝑖 , 𝜔𝑖, 𝑑𝑟𝑖 are the eigenvector, the angular frequency and the 

damping ratio associated to the i-mode 

• 𝑀 is the mass matrix 

• 𝑇𝑟 is the track vector 

• 𝑤𝑛𝑖(𝑡) is the white noise, the acceleration which the structure is 

subjected to 

• 𝑡 is the time 

• 𝑇 is the duration of the excitation 

 In this case the time is discrete and for this reason the white noise is 

defined for each time interval 1/𝑓𝑠 where 𝑓𝑠 is the sampling frequency. 

As a consequence, the integral is transformed in a summation. 

The displacements of each accelerometer are computed considering the 

floor as a rigid body. 

Velocities and accelerations are obtained deriving the displacements with 

the time. 

At this point, the output signal is known for each accelerometer. 

4.5 Noise 

The accelerations computed for each sensor are free of any noise. In 

order to create a model close to what is expected of reality, different levels 

of noise are added to the signals with the following approach. 

Where 𝑝𝑝 indicates the percentage of noise level.  

The percentages of noise which are adopted in this chapter are: 1%, 5%, 

10%, 20%, 30%, 50%, 75%, 100%, 150%, 200%. These are used with 

different values in function of the aim of study. 

𝑠𝑖𝑔𝑛𝑎𝑙⁡𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑒𝑑 = 𝑠𝑖𝑔𝑛𝑎𝑙 + 𝑝𝑝 ∗ (𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑⁡𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑠𝑖𝑔𝑛𝑎𝑙)) 4-2 
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4.6 Influence of Model Order and Hankel Matrix dimension 

In this chapter different values of model order and dimensions of the 

Hankel Matrix are considered in order to understand the influence of these 

parameters on the mode identification. Furthermore, percentages of level 

noise are adopted to give more credibility to the signals which are 

processed by SSI. 

In order to quantify the performance of the Automatic Operational Modal 

Analysis, two entities are used as significant parameters: Precision and 

Recall. 

4.6.1 Precision and Recall  

Precision and recall are the measures used in the information retrieval 

domain to quantify how well an information retrieval system retrieves the 

relevant documents requested by a user [15]. 

Processing the signals with SSI and, consequently, applying the proposed 

method to the results of SSI, a certain number of modes are identified. 

These modes may or may not be representative of the modes of the 

numerical case. Furthermore, the number of identified modes can be 

different from the number of modes which represent the structure - in this 

case nine. This evidence may be summarised with the following 

definitions: 

• True Positive (TP): mode identified by the algorithm which matches 

a real mode of the structure. 

• False Positive (FP): mode identified by the algorithm which does 

not match any mode of the structure. 

• Precision: ratio between the number of modes identified as TP and 

the total number of modes identified by the algorithm (TP+FP). 

• Recall: ratio between the number of modes identified as TP and the 

number of modes which are representatives of the structure. 
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Precision and recall can be two useful indices to estimate the performance 

of the proposed method and SSI. In fact, the AOMA is a process which 

elaborates the results of SSI and for this reason the quantity and the 

quality of the identified modes are strongly influenced by the efficiency of 

SSI.  

Recall and precision are evaluated in function of frequency and 

eigenvector in two separated charts. 

A mode is considered true positive in terms of frequency if the difference 

of 𝑓 between the real mode and the identified mode is lower than 0.1⁡𝐻𝑧. 

On the other hand, a mode is considered TP in terms of eigenvector if the 

MAC computed on the identified mode and the real mode is higher than 

0.9. These hypotheses are summarised in the following table. 

 

 TRUE POSITIVE FALSE POSITIVE 

Frequency |𝑓𝑟 − 𝑓𝑖| < 0.1⁡𝐻𝑧 |𝑓𝑟 − 𝑓𝑖| ≥ 0.1⁡𝐻𝑧 

Eigenvector 𝑀𝐴𝐶(Ψ𝑖, Ψ𝑟) > 0.9 𝑀𝐴𝐶(Ψ𝑖 , Ψ𝑟) ≤ 0.9 

Table 4-1 – True Positive and False Positive 

 

With the previous consideration, precision and recall can be computed as 

follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑛𝑇𝑃

𝑛𝑇𝑃 + 𝑛𝐹𝑃
 

4-3 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑛𝑇𝑃

9
 

4-4 

Table 4-2 – Precision and Recall 

Where 𝑛𝑇𝑃 is the number of modes identified as True Positive and 𝑛𝐹𝑃 is 

the number of modes identified as False Positive. 



Vezio Mugnaini. “A Machine Learning Approach for Automatic Operational Modal Analysis”. 
 

 
 

55 

4.6.2 Model order, Hankel Matrix and Noise Level 

At first, in this analysis, three different levels of noise are considered in 

order to understand how much of an influence this parameter can have on 

precision and recall of the AOMA. The three levels of noise are: 10%, 30% 

and 50%. 

For each analysis a range of model orders is considered as follows: 

• The minimum order is established equal to 10, which is higher than 

the number of degrees of freedom of the numerical case.  

• The maximum order is variable. It starts from 40 and ends at 140 

with an increasing value of 4. 

The dimensions of the Hankel Matrix for each order are considered 

between 20 and 170 with intervals of 6. 

In this way, Precision and Recall can be computed for the nodes of a grid 

of dimension 26-by-26, where 26 are both the maximum orders and the 

dimensions of the Hankel Matrix which are examined. 

4.6.3 Results 

The results of the analyses described in chapter 4.6 are summarised in 

the following figures. 

Each chart is characterised by these features: 

• The x label represents the maximum order (minimum order fixed 

equal to 10); 

• The y label represents the dimension of the Hankel Matrix; 

• A colour legend is showed in order to assign the values of precision 

or recall to each colour; 

• The values of Precision and Recall are computed for each node of 

the grid; 

• The values of precision and recall which are not in correspondence 

of a node are interpolated. 
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4.6.3.1 Noise level 10% 

 

 

Figure 4-3 – recall in terms of difference of frequency (noise level 10%) 

 

 

Figure 4-4 – precision in terms of difference of frequency (noise level 10%)  
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Figure 4-5 – recall in terms of MAC (noise level 10%) 

 

 

Figure 4-6 – precision in terms of MAC (noise level 10%) 
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4.6.3.2 Noise level 30% 

 

 

Figure 4-7 - recall in terms of difference of frequency (noise level 30%) 

 

 

Figure 4-8 – precision in terms of difference of frequency (noise level 30%) 
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Figure 4-9 – recall in terms of MAC (noise level 30%) 

 

 

Figure 4-10 – precision in terms of MAC (noise level 30%) 
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4.6.3.3 Noise level 50% 

 

 

Figure 4-11 – recall in terms of difference of frequency (noise level 50%) 

 

 

Figure 4-12 – precision in terms of difference of frequency (noise level 50%) 
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Figure 4-13 – recall in terms of MAC (noise level 50%) 

 

 

Figure 4-14 – precision in terms of MAC (noise level 50%) 
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4.6.4 Conclusions 

The proposed method has a high value of Recall for the identification of 

the frequencies. In fact, for a level noise lower than 50%, dimensions of 

the Hankel Matrix between 20 and 170, and considering different ranges 

of model order, the modes identified by the algorithm which are 

representative of the case of study are at least six. 

The values of Precision for the frequency identification are generally 

higher than the values of Recall. This means that in each combination of 

noise level, Hankel Matrix, and model order, the algorithm has found a low 

number of false positive elements. In other words, the process works well 

to discard the poles identified by SSI which are spurious modes. 

The values of Recall and Precision associated with the identification of the 

modal shapes (eigenvectors) are lower than the values associated with 

the frequency identification. This is evidence of the fact that the computing 

of the modal shapes is a process affected by a higher level of uncertainty. 

This problem is related to the identification of the eigenvectors by SSI-

COV and it is not attributable to the AOMA. However, the modal shapes 

which are identified for each analysis are 4-5. 

Having said that, it is necessary to make some considerations about the 

influences of the Hankel Matrix and the maximum model order on the 

AOMA. Considering the Figure 4-3, which represents the Recall of the 

frequency identification for a noise level equal to 10%, the higher values of 

Recall are showed in a range of model orders with minimum value of 10 

and maximum value between 60 and 80. In those analyses, a number of 

25-35 model orders are processed by the AOMA. Furthermore, as shown 

by the Figure 4-4 which is related to the Precision for the same analyses, 

for these values of model order the Precision is equal to 1. The dimension 

of the Hankel Matrix which guarantees a Recall of value 1 should be 

higher than 44. Van Overschee suggested the following dimension for the 

Hankel Matrix: 
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𝑛(𝐻𝑎𝑛𝑘𝑒𝑙⁡𝑀𝑎𝑡𝑟𝑖𝑥) = 𝑒𝑛𝑡(
2 ∗ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚⁡𝑜𝑟𝑑𝑒𝑟

𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟𝑠
) 

In the case of study, the dimension of the Hankel Matrix computed with the 

previous equation, should be between 13 and 18. These values are far 

below the dimension of 44 which is found with the analyses explicated in 

this chapter. It is naturally important to analyse other numerical cases in 

order to reach clear conclusions which demonstrate that the dimension of 

the Hankel Matrix suggested by Van Overschee is underestimated. 

However, in the analyses which will be done in the following chapters, the 

dimension of the Hankel Matrix will be assumed in accordance with the 

following equation: 

 

As a conclusion, the algorithm works well with the following parameters: 

• dimension of the Hankel Matrix computed with the equation 4-5 

• a range of model orders with minimum value equal to the number of 

degrees of freedom of the structure and maximum value higher 

than four times the minimum order, guaranteeing at least 25 model 

orders in each analysis. 

4.7 Influence of noise 

After the conclusions about the model order and the dimension of the 

Hankel matrix discussed in 4.6.4, in this chapter different noise levels are 

applied to the signal with the aim of understanding the influences on the 

results. 

Precision and Recall are computed with the same meaning as explained in 

4.6.1. The analysis is conducted using the following variables: 

• Ranges of model order with: 

𝑛(𝐻𝑎𝑛𝑘𝑒𝑙⁡𝑀𝑎𝑡𝑟𝑖𝑥) = 𝑒𝑛𝑡(
𝟔 ∗ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚⁡𝑜𝑟𝑑𝑒𝑟

𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟𝑠
) 

4-5 
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o Minimum value equal to 10; 

o Maximum value from 60 to 120 with intervals of 4. 

• 10 different noise levels: 1%, 5%, 10%, 20%, 30%, 50%, 75%, 

100%, 150% and 200%. 

As explained in chapter 4.6, Precision and Recall are computed for 

frequency and modal shape. 

4.7.1 Results 

The results are summarised in the following charts. 

Each chart is characterised by these features: 

• The x label represents the maximum order (minimum order fixed 

equal to 10); 

• The y label represents the noise level; 

• A colour legend which assigns the values of precision or recall to 

each colour; 

• The values of Precision and Recall are computed for each node of 

the grid; 

• The values of Precision and Recall which are not in 

correspondence with a node are interpolated. 
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Figure 4-15 – recall in terms of difference of frequency (variable noise levels) 

 

 

Figure 4-16 – precision in terms of difference of frequency (variable noise levels) 
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Figure 4-17 – recall in terms of MAC (variable noise levels) 

 

 

Figure 4-18 – precision in terms of MAC (variable noise levels) 
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4.7.2 Conclusions 

As in the analysis explained in chapter 4.6, the values of Recall and 

Precision computed for the difference of frequency are higher than the 

values calculated for the MAC. This confirms that SSI is more powerful on 

the identification of frequencies than on the identification of the modal 

shapes. 

The values of Recall for the difference of frequency are between 6/9 and 

9/9. As a result, in each analysis at least six modes belonging to the 

numerical case are identified. The influence of the noise level is not 

relevant as it was conceivable. As shown in Figure 4-15, in order to obtain 

high values of Recall, the maximum model order should increase with the 

increase of the noise level. At the same time, high values of the maximum 

order are a probable reason of a lower precision (Figure 4-16) – this 

means the identification of false positive modes. 

The true positive modes identified with the MAC analysis, are between 2 

and 4. 

In conclusion, the influence of the noise level is not relevant. The 

identification of the modal frequencies is exhaustive in most of the case. 

4.8 Comparison between two different noise levels 

In this chapter, two noise levels are applied to the signal in order to 

compare each step of the AOMA and to identify the main differences on 

the results. 

The analyses are conducted considering the following features: 

• Noise levels equal to 5% and 100%; 

• Range of model orders between 10 and 72; 

• Dimension of the Hankel matrix computed with the equation 4-5. 
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4.8.1 Application of Hard Criteria 

The poles which present negative damping ratio or with values higher than 

20% are discarded, as explained in 3.2. 

Noise level 5% 100% 

Number of 

mathematical poles 
112 84 

Table 4-3 – number of mathematical poles identified by Hard Criteria (Noise levels 5% vs. 

100%) 

4.8.2 Application of Soft Criteria 

Following the steps explained in 3.3, the poles which are discarded by the 

soft criteria are showed with a black cross while the poles considered as 

stable are indicated with a red circle in the following figures. 

5% 100% 

  

Table 4-4 – Stabilisation diagram for frequency (noise levels 5% vs. 100%) 

Table 4-5 – number of mathematical poles identified by Soft Criteria (Noise levels 5% vs. 

100%) 

Noise level 5% 100% 

Number of 

mathematical poles 
270 341 
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The poles identified by SSI for a noise level equal to 5% show a higher 

stability than the poles identified for a noise level of 100%. This an 

evidence of the fact that the poles which are discarded in case of noise 

level 100% are 341 while, for a noise level equal to 5%, the poles which 

are removed are 270. 

4.8.3 Clusters-Modes identification 

The Clusters-Modes identification is conducted on the two different noise 

levels following the steps of chapter 3.4. 

The results are showed in the following pictures where a colour is 

assigned to the poles belonging the same cluster. 

 

5% 100% 

  

Table 4-6 – Clusters-Modes identification (Noise levels 5% vs. 100%) 

 

The modes identified by the algorithm are 9 for a 5% of noise level and 6 

for a noise level equal to 100%. The levels of precision and recall can be 

obtained from the Figure 4-15Figure 4-16Figure 4-17Figure 4-18. 

4.8.4 Modal parameters 

The frequencies identified in the two analyses are showed in Table 4-7 – 

frequencies identified for noise levels 5% and 100% Table 4-7. 
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Noise level 5% 100% Target frequency 

𝑓1 0.7836 - 0.7277 

𝑓2 4.1919 4.1915 4.1979 

𝑓3 4.8338 4.8250 4.8239 

𝑓4 11.8482 - 11.8675 

𝑓5 12.0964 - 12.0137 

𝑓6 12.5982 12.5895 12.5996 

𝑓7 17.8093 17.7895 17.7983 

𝑓8 18.3176 18.3171 18.3285 

𝑓9 20.2347 20.2305 20.2294 

Table 4-7 – frequencies identified for noise levels 5% and 100% 

 

We can summarise the results in the following table. 

 

Noise level 5% 100% 

Modes 9 6 

True positive 9 6 

False positive 0 0 

Table 4-8 – true positive and false positive modes for frequency (noise levels 5% vs. 

100%) 
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5 HELICOPTER BLADE 

In this chapter, a helicopter blade is analysed as a simple experimental 

case in order to test the performance of the AOMA. 

5.1 Description 

The analysis is carried out on an Airbus Helicopters H135 bearingless 

main rotor blade. 

The Blade is characterised by a length of 5.1 m and a variable cross 

section. The modal parameters were computed using a Finite Element 

Model. 

9 triaxial acellerometers were placed on the blade but only the flapwise 

and edgewise dicrections and a channel in the blade axis direction were 

recorded with a total of 19 channels. The output signal was recorded with 

a sampling frequency of 2560⁡𝐻𝑧. The measuerements were carried out in 

a controlled laboratory environment. The blade was excited for 600 

seconds using a Random-on-Random (RoR) excitation waveform over a 

frequency range 0-100 Hz. 

 

Figure 5-1 – Airbus Helicopters H135 
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5.2 AOMA application 

SSI-Cov is set with these parameters: 

• Range of model orders with minimum value equal to 20 and 

maximum value of 100 with intervals of 2. 

• Dimension of the Hankel matrix computed with the equation 4-5 

The steps which allow the identification of modal parameters are shown in 

the following chapters. 

5.2.1 Hard Criteria 

The number of poles identified for each model order are equal to half the 

dimension of the model order. Then, considering a range of model order 

between 20 and 100, the number of poles are: 

∑ 𝑖

50

𝑖=10

=
10 + 50

2
⁡ ∙ 40 = 1200 

The modes which show a 𝑑𝑟 negative or higher than 20% are 499. 

The residual poles (701) are then processed with Soft Criteria. 

5.2.2 Soft Criteria 

Following the steps explained in the chapter 3.3, the number of poles 

identified as stable or unstable are shown in Table 5-1.  

Furthermore, the charts which represent the results of the 2-means 

clustering process are shown in Figure 5-2 to Figure 5-6 in order to clarify 

the influences of each comparison parameter on the identification of 

stable/unstable poles. Cluster 1 is representative of the stable poles while 

Cluster 2 groups the unstable poles. 
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Soft Criteria 
Stable Poles 315 

Unstable Poles 386 

Table 5-1 – Poles identified as stable or unstable by Soft Criteria (Helicopter Blade) 

 

 

Figure 5-2 – stable/unstable poles (df-ddr) 
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Figure 5-3 – stable/unstable poles (ddr-dMAC) 

 

 

Figure 5-4 – stable/unstable poles (dλ-dMAC) 
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Figure 5-5 – stable/unstable poles (dMPD-df) 

 

 

Figure 5-6 – stable/unstable poles 3D (df-ddr-dMAC) 
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As it is shown by the previous charts, thanks to the transformations of 

comparison parameters explained in Data pre-processing (3.3.2), the 

contributes of 𝑑𝑓, 𝑑𝑑𝑟, 𝑑𝑀𝐴𝐶, 𝑑𝑀𝑃𝐷 are similar to each other. This 

evidence is highlighted by the shape of the two clusters which is almost 

unchanged despite the different points of view. 

It’s possible to show the results of the Soft Criteria in a stabilisation 

diagram with frequencies on the x label and model order on the y label 

(Figure 5-7). The stable poles are represented with red circles while the 

unstable poles with black crosses. The same chart can be seen by plotting 

the poles in function of damping ratio and frequency (Figure 5-8). 
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Figure 5-8 – stable/unstable poles (frequency vs. damping ratio) 

 

Figure 5-7 and Figure 5-8 can be combined in order to obtain a 3D chart 

which shows the stable and unstable poles in function of frequency, 

damping ratio and model order (Figure 5-9). 

 

Figure 5-9 – 3D stabilisation diagram (f-dr) 
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It’s not possible to clearly identify a model order which establishes 

frequency and damping ratio of the modes computed in this analysis. For 

this reason, further analyses are necessary in order to avoid the influence 

of the user experience on the final result. 

5.2.3 Clusters-modes identification 

As explained in 3.4, the aim of this process is to merge the poles with 

similar parameters in order to obtain groups which represent the number 

of identified modes. 

The linkage of similar poles can be graphed using a dendrogram which 

shows the distances among the merged clusters. The distance is 

computed as described in 3.4.3.1. 

 

 

Figure 5-10 – Dendrogram for hierarchical clustering 
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Figure 5-11 – zoom of a specific part of the three 

The distances among the neighbour poles belonging to two consecutive 

model orders are analysed with a Weibull distribution in order to obtain the 

threshold which defines the number of clusters (Figure 5-12). 

 

Figure 5-12 – Probability plot for Weibull distribution 
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The 95th percentile of the Weibull distribution defines the maximum 

distance between two clusters: 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.1056 

Then, it’s possible to cut the dendrogram (Figure 5-13). 

 

Figure 5-13 – Dendrogram (cut-off) 

The starting 315 poles which were considered as stable are merged in 23 

clusters. 

The Silhouette (7A.2) is computed for each pole belonging to the 23 

different clusters in order to obtain a visual analysis of the quality of 

hierarchical clustering and cut-off processes. 

As shown in Figure 5-14, the silhouette assumes positive values for each 

pole and in the majority of the clusters, the silhouette is between 0.8 and 

1. This is an evidence of the fact that the choice of the threshold allows to 

obtain well separated clusters characterised by different modal 

parameters. 
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Figure 5-14 – Silhouette values for each pole belonging to the identified clusters 

 

 

Figure 5-15 – frequency, damping ratio and model order of the identified modes 
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Then, the dimension of each cluster is analysed in order to avoid modes 

which are represented by fewer poles. In fact, the 23 clusters are 

characterised by a number of internal poles between 1 and 38. The 

dimension of each group is shown in Figure 5-16. 

 

Figure 5-16 – number of poles within each cluster 

 

The process described in 3.4.4 which allows to separate mathematical 

modes into possible physical modes, leads to a threshold of 14.14. In 

other words: 

• clusters with at least 15 poles are considered as physical modes 

• clusters with a number of poles lower than 15 are defined as 

mathematical modes and, consequently, discarded. 

The analysis has identified 10 physical modes which are graphed in the 

following charts. 
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Figure 5-17 – physical modes (frequency – model order) 

 

Figure 5-18 – physical modes (frequency damping ratio) 
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Then, for each cluster, an outlier-analysis is computed in order to discard 

poles which can affect the extraction of the modal parameters. 

 

 

Figure 5-19 – Final clusters (removing outliers) 



Vezio Mugnaini. “A Machine Learning Approach for Automatic Operational Modal Analysis”. 
 

 
 

86 

5.2.4 Modal parameters 

The modal parameters identified by the analysis are computed as 

described in 3.6 and the results are summarised in the following tables. 

 

method 1 2 3 4 FEM 

𝑓1 1.0175 1.0175 1.0174 1.0174 0.88 

𝑓2     3.34 

𝑓3 5.4320 5.4320 5.4319 5.4325 4.88 

𝑓4 15.5487 15.5489 15.5491 15.5481 14.98 

𝑓5 17.8024 17.7995 17.8086 17.8086 22.27 

𝑓6     28.03 

𝑓7 30.0395 30.0392 30.0394 30.0394 29.39 

 49.1636 49.1605 49.1616 49.1616  

𝑓8 51.5098 51.5166 51.5163 51.5163 51.15 

 56.1060 56.0894 56.0959 56.0959  

𝑓9 74.9254 74.9343 74.9135 74.9135 75.12 

𝑓10 81.6667 81.6828 81.6486 81.6486 81.80 

Figure 5-20 – frequency identification for different methods 

 

The choice of a method of extraction of the modal parameters does not 

affect the frequency identification (maximum difference of frequency 

among the methods ~0.03⁡𝐻𝑧). 

The target frequencies are computed with the FEM model. The 

frequencies 3.34 Hz and 28.03 Hz are not identified by the AOMA. This 
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problem should arise because of the model order. In fact, in Figure 5-7 the 

two aforementioned frequencies are identified for model orders higher 

than 70 and, for this reason, a maximum of 15 poles may be established 

for each frequency. This number is not enough. As mentioned in the 

numerical case (Conclusions 4.6.4), the proposed method works well with 

a minimum of 25-35 model orders.  

The frequencies 49.2 Hz and 56.1 Hz are established as physical modes 

but the FEM model cannot confirm these two results. 

The damping ratios identified for each mode are shown in Figure 5-21. 

 

method 1 2 3 4 

𝑑𝑟1 0.2125 0.2128 0.2083 0.2083 

𝑑𝑟2     

𝑑𝑟3 0.3957 0.3923 0.3909 0.3862 

𝑑𝑟4 0.1991 0.1971 0.2021 0.1905 

𝑑𝑟5 0.4971 0.4801 0.4577 0.4577 

𝑑𝑟6     

𝑑𝑟7 0.2330 0.2344 0.2274 0.2274 

 0.0411 0.0446 0.0256 0.0256 

𝑑𝑟8 0.1722 0.1725 0.1709 0.1709 

 1.1410 1.1397 1.1638 1.1638 

𝑑𝑟9 0.8921 0.8982 0.8845 0.8845 

𝑑𝑟10 0.7773 0.7739 0.7302 0.7302 

Figure 5-21 – damping ratio identification for each method 
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Even then, the choice of the method does not lead to considerable 

difference in terms of results. 

5.2.5 Comparison with a manual identification 

A manual identification has been carried out on the SSI results 

considering: 

• A range of model orders between 20 and 100 

• Dimension of the Hankel matrix in accordance with the equation 4-5 

• Comparison parameters equal to 

o 𝑑𝑓 < 0.05% 

o 0% < 𝑑𝑟 < 10% 

o (1 − 𝑀𝐴𝐶) < 5% 

These impositions lead to the following stabilisation diagram. 

 

Figure 5-22 – stabilisation diagram (manual identification) 

As shown in Figure 5-22, it’s not simple to identify a model order through a 

visual analysis. 

The modes identified as representative of the blade by a manual 

identification, which is carried out by an experienced user, present the 

following frequencies: 
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Manual identification AOMA method 1 

𝑓 𝑑𝑟 𝑓 𝑑𝑟 

1.02 0.20 1.02 0.21 

2.63 2.25   

5.43 0.44 5.43 0.40 

15.55 0.17 15.55 0.20 

17.80 1.18 17.80 0.50 

28.17 1.00   

30.04 0.26 30.04 0.23 

51.49 0.31 51.51 0.17 

56.24 1.86 56.11 1.14 

59.21 2.10   

68.15 1.68   

75.12 1.22 74.93 0.89 

81.80 1.09 81.67 0.78 

102.94 2.35   

105.60 0.71   

Table 5-2 – comparison Manual and Automatic identification 

 

The parameters show similar values for the identified modes but the 

number of modes is lower than the modes identified with a manual 

identification. 
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5.2.6 Number of modes in function of the maximum model order 

In this chapter, different ranges of model orders are considered in order to 

analyse the influence on the number of modes identified by the proposed 

method. 

The minimum model order is fixed equal to 20 and the maximum model 

order is considered between 70 and 180 with an interval of 10. The results 

are summarised in the following chart. 

 

Figure 5-23 – number of identified modes in function of the maximum order 

 

The number of modes identified by the AOMA increases with the growing 

of the maximum model order. So, we can assert that the maximum model 

order is one of the most important parameters which affect the process of 

identification. 
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6 MASONRY ARCH BRIDGE 

A scale reproduction of a masonry arch bridge is analysed as a complex 

experimental case of a Civil Engineering structure. 

This chapter is based on the following PhD Thesis: “Application of the 

SHM Methodologies to the Protection of Masonry Arch Bridges from 

Scour”, Gianluca Ruocci, Politecnico di Torino, 2010. [16] 

The features of the scaled model are taken from the Thesis of G. Ruocci 

[16] and from its relative paper [17]. The data are provided by the 

Politecnico di Torino. 

6.1 Description 

The scaled model of the masonry arch bridge shown in Figure 6-1 was 

built in the laboratory of the Structural and Geotechnical Engineering 

Department at the Politecnico di Torino. This model is not a reproduction 

of a real existing bridge but was designed taking masonry arch bridges 

common features, geometric proportions and historical design codes into 

account. 

 

Figure 6-1 – The masonry arch bridge built in laboratory 
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The scale ratio was thought equal to 1:2.  

The model is a twin-arch bridge with a length of 5.90 m, a width of 1.60 m 

and it is 1.75 m high. The two arches have a radius of 2.00 m, an angular 

opening of 30° a thickness of 0.20 m. The distance among the supports is 

equal to 2.00 m. The model was built with handmade clay scaled bricks 

(130x65x30 mm) in order to respect the adopted modelling scale law. Low 

compressive strength elements were chosen and a mortar with poor 

mechanical properties was used to bound them with the aim of 

reproducing the typical materials of a historical construction. The 

geometric details of the model are showed in Figure 6-2. 

 

Figure 6-2 – geometric details of the masonry arch bridge 
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The aim of the whole experimental test was to reproduce the effects of 

scour at the foundation of the central pier of the twin-arch bridge model. 

In order to create the effects of scour, a settlement application system was 

installed under the foundation of the central pier and supported by a 

reinforced concrete slab previously created and fixed to the laboratory 

floor. 

 

Figure 6-3 – the settlement application system: front view (a) and lateral view (b) 

In order to simulate the streambed material surrounding the foundation of 

the central pier, a polystyrene mould was introduced. In this way a 

polystyrene layer interfaces the pier and the settlement application device 

and a polystyrene ring surrounds the pier. 

6.2 Numerical estimation of the modal parameters 

A 3D numerical model of the arch bridge was realized in the ADINA Finite 

Element package [18] to estimate its modal parameters. 

The model consists of about 10000 nodes and 8800 elements, which can 

be distinguished among solid block, spring and shell elements. 

A linear elastic behaviour was selected for all the elements groups. The 

elastic properties of the masonry elements groups were assigned 

according to the results of characterisation tests. The steel settlement 

application system was not modelled but three sets of translational springs 

working along the coordinated axes were used to simulate its flexible 

support. The materials parameters and the springs stiffness coefficients 

used in the FE model are listed in Table 6-1. 
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Table 6-1 – list of materials used in the FE model 

The results of the numerical estimation are summarised in the Figure 6-4. 

 

Figure 6-4 – estimated frequencies and modal shapes (FE model) 
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6.3 Experimental Test Programme 

Several damage steps have been applied to the structure in accordance 

with hydraulic flume tests as shown in Table 6-2.Table 6-2 - Damage 

steps, middle pier settlement, pier rotation, polystyrene removed 

 

Table 6-2 - Damage steps, middle pier settlement, pier rotation, polystyrene removed 

 

Table 6-3 shows the timeline of the experimental tests. Different excitation 

sources were applied to the bridge model but the ambient vibrations (AV) 

source is the only which will be analysed in this work. 

The experimental test involved three different experimental campaigns. 

The first campaign regarded the undamaged structure (October 2008 to 

March 2009). 

The second campaign (April 2009) started after the application of 

additional masses on the central pier, in order to take into account the 

weight of the missing part of the pier. In the same campaign the first four 

settlement steps were applied on the upstream side of the pier. In addition, 

parts of the polystyrene ring were removed at each step to simulate the 

erosion of streambed around the foundation according to the hydraulic 

flume tests.  
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During the latter campaign (September 2010 to October 2010) five further 

settlement steps were applied. In this phase the removal of the 

polystyrene ring continued until all the polystyrene was removed. 

 

Table 6-3 – Experimental test timeline  

6.4 Experimental Setups 

The sampling frequency was fixed to a value of 400 Hz to acquire the 

signals produced by ambient noise and a 180 seconds time lap was 

adopted. The random excitation is fixed in a 10 to 100 Hz band. Two 

setups were used for each vibration test in order to capture the higher 

number of natural modes. Each setup consisted of 18 channels leading to 

36 instrumented positions. 

The selected sensors for the dynamic tests performed on the structure 

were capacitive accelerometers. The employed dynamic acquisition 

system was composed of a set of 18 monoaxial PCB Piezotronics 

accelerometers with a sensitivity of 1 V/g, a measurement range of ±3 g, a 

broadband resolution of 30 μg and a weight of 17.5 g. The accelerometers 
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were connected through coaxial cables to the LMS Difa-Scadas data 

acquisition system which also provided the signal amplification. The 

acquired signals were recorded on the hard drive of a laptop computer 

interfaced with the data acquisition system and running a specific signal 

acquisition software. 

 

Figure 6-5 – Experimental setups 

6.5 AOMA application 

The analysis is carried out on the measurements which were recorded the 

2nd April 2009 in the 2nd campaign of acquisition (DS1). 

SSI is set with the following characteristics: 

• Minimum model: 40 

• Maximum model: 90 

• Number of analysed model orders: 25 

• Hankel matrix computed in accordance with the equation 4-5 

6.5.1 Hard criteria 

The number of identified poles is 793. 

The poles which present a negative damping ratio or higher than 20% are 

154. The remaining 639 poles are processed with the Soft Criteria 

6.5.2 Soft Criteria 

The Soft Criteria analysis leads to the following stabilisation diagram. 
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Figure 6-6 – stabilisation diagram (automatic detection) 

 

Figure 6-7 – stable/unstable poles (frequency-damping) 
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The number of poles which are classified as stable is 345, while the 

unstable poles are 294. 

The maximum values of the comparison parameters which characterise 

the elements belonging to the cluster of the stable poles are showed in 

Table 6-4. 

 

Comparison parameter Maximum value allowed to stable poles 

𝑑𝑓 0.2616 Hz 

𝑑𝑑𝑟 0.83% 

𝑑𝑀𝐴𝐶 0.4467 

𝑑𝑀𝑃𝐷 0.1002 

Table 6-4 – maximum values of comparison parameters for stable poles 

 

The distribution of comparison parameters which characterise the poles 

belonging to the stable cluster might be of particular interest in order to 

understand how many poles reach the upper boundaries of the 

comparison parameters (Figure 6-8). 

In a classical stabilisation diagram, usually the definition of stable poles 

starts from the introduction of rigid limits for the comparison parameters. It 

is possible to assume as example these thresholds: 

 

Comparison parameter Stable poles Unstable poles 

𝑑𝑓 < 0.1⁡𝐻𝑧 > 0.1⁡𝐻𝑧 

𝑑𝑀𝐴𝐶 < 0.05 > 0.05 
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Although the maximum value of (1 − 𝑀𝐴𝐶) which represent the stable 

poles is very high, the elements which show a value of (1 − 𝑀𝐴𝐶) lower 

than 0.05 are more than the 97%. 

For the difference of frequency, the 87% of stable poles presents a value 

of 𝑑𝑓 lower than 0.1 Hz. 

 

 

(a) 𝑑𝑓 

 

(b) 𝑑𝑑𝑟 

 

(c) 𝑑𝑀𝐴𝐶 

 

(d) 𝑑𝑀𝑃𝐷 

Figure 6-8 – comparison parameters distribution for stable poles: difference of frequency 

(a), difference of damping ratio (b), 1-MAC (c), difference of MPD (d) 

 

6.5.3  Clusters-modes identification 

The hierarchical clustering leads to the dendrogram shown in Figure 6-9. 



Vezio Mugnaini. “A Machine Learning Approach for Automatic Operational Modal Analysis”. 
 

 
 

101 

 

Figure 6-9 – dendrogram for hierarchical clustering (masonry arch bridge) 

 

The computing of the threshold which results in the identification of a 

certain number of clusters leads to a high value. This is consequence of 

the fact that there is more distance among poles of this experimental case 

respect to the helicopter blade analysed in chapter 5. 

 

Figure 6-10 – probability distribution (Weibull) – threshold identification 

 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑝95%) = 0.4377 
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Figure 6-11 – cut-off – masonry arch bridge dendrogram  

The number of identified clusters is equal to 25. 

In order to quantify the quality of the hierarchical clustering process and 

the relative choice of the threshold, the silhouette factor (A.2) is computed 

for each pole belonging to the different 25 clusters (Figure 6-12). 

 

Figure 6-12 – Silhouette value (clustering quality) 
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The clusters have a number of poles between 1 and 25. The distribution of 

the poles within each cluster is shown in Figure 6-13. 

 

Figure 6-13 – poles within each cluster 

 

The 2-means clustering is carried out on the number of poles which 

characterise each cluster in order to split mathematical modes from 

physical modes (3.4.4). The result is summarised in the following table. 

 

Clusters Number of poles within the cluster 

Physical modes > 10 

Mathematical modes ≤ 10 

 

The clusters which are identified as physical modes are 16 while the 

mathematical modes are 9. 

Then, the outliers are removed from each cluster using the approach 

explained in 3.5. 
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The final clusters are shown in a frequency – model order diagram and in 

a frequency – damping ratio diagram. 

 

 

Figure 6-14 – frequency vs model order and frequency damping ratio (physical modes) 
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The distribution of the values of the eigenvectors might be of particular 

interest in order to have a further diagram which represents the stability of 

the poles. 

In the following figures, the eigenvectors are plotted for each cluster where 

the clusters-modes are sorted from the smallest to the largest frequency 

(Mode 1, Mode 2… Mode 16). 
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Figure 6-15 – eigenvectors within each cluster 

 

Some modes show uncertainty for part of the elements which compose 

the eigenvector. On the other hand, Modes 1, 4, 8 and 14 present a low 

dispersion of the values which will constitute the modal shapes. 

6.5.4 Modal parameters 

The choice of the modal parameters is carried out with the method 1. In 

this way, each value which characterises the mode is computed with the 

mean of the parameters relative to the poles belonging to the respective 

cluster. 

The frequencies and the damping ratios which are identified in this 

computing are showed in the following table. 

 

MODE frequency Damping ratio 

1 19.14 2.46% 

2 23.20 2.72% 

3 25.14 3.21% 

4 31.61 2.22% 

5 34.68 5.44% 
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6 36.23 1.82% 

7 41.38 1.33% 

8 49.45 0.12% 

9 60.08 0.50% 

10 67.41 0.48% 

11 81.87 2.09% 

12 91.55 2.44% 

13 94.55 1.81% 

14 98.95 0.16% 

15 99.82 0.97% 

16 111.31 0.98% 

Table 6-5 – frequencies and damping ratios (automatic identification) 

 

The modal shapes are plotted in the following table. 

 

MODE MODAL SHAPE 

1 
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2 

 

3 

 

4 
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5 

 

6 

 

7 
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8 

 

9 

 

10 
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11 

 

12 

 

13 
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14 

 

15 

 

16 

 

Table 6-6 – Modal shapes (1-16) 
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6.5.5 Influence of model order 

The range of the model orders which was adopted in the previous 

analysis, was established in function of the threshold level and the 

silhouette values. 

In other words, the minimum and the maximum value of the model orders 

which are analysed in the previous analysis are selected in accordance 

with the following objectives:  

• Considering a number of model orders between 25 and 35, as 

suggested in 4.6; 

• Obtaining positive values of Silhouette; 

• Obtaining the minimum value of cut-off; 

In the following chart, the value of the threshold is showed in function of 

minimum and the maximum model order considered in each analysis. The 

minimum model order is considered between 20 and 40 with intervals of 2. 

The maximum model order is between 70 and 90 with intervals of 2. In this 

way the analysis which are computed are 121. 
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Figure 6-16 – influence of the model order on the threshold 

The Figure 6-16 shows the minimum values of the threshold for the model 

orders 20-76, 28-90 and 40-90. This last range was adopted for the 

identification of the modal parameters which are showed in 6.5.4. 

For the 121 combinations of min-max model orders, the modal parameters 

are estimated and analysed with a cluster analysis. The maximum number 

of clusters-modes which are identified in a single analysis is 19. So, a k-

means analysis is carried out considering: 

• A number of clusters k=19; 

• A distance among the modes computed considering the frequency 

as the only comparison parameter.  

The final clusters are showed in the following figure. 
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Figure 6-17 – clusters of the identified modes in the 121 combinations of min-max order 

 

The number of modes within each cluster represents the level of 

identification. The clusters with a high number of internal modes have a 

higher probability to be representative of the structure. 

 

 

Figure 6-18 – number of identifications for frequency 
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As shown by Figure 6-18, most of the frequencies are identified in the 

majority of the analyses. The mode close to 49.5 Hz is identified for a 

number of time higher than 121. This is an evidence of the fact that in 

some analyses the mode is split in two clusters. 

The modes with frequencies around 23.2 Hz, 46.4 Hz, 90.9 Hz and 91.6 

Hz show a low repetition and it is possible that the aforementioned modes 

are mathematical modes.  
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7 CONCLUSIONS 

This Thesis provides a method of Automatic Operational Modal Analysis 

which is able to identify the modal parameters of a structure which is 

analysed by a Stochastic Subspace Identification algorithm. SSI was 

considered as an output-only method where the examined signals were 

generated by an Ambient Vibration Test. 

Starting from the definition of the SSI-Cov algorithm, a Literature Review 

was carried out in order to provide foundation of knowledge on the topic, 

identify the methods which can be adopted in the AOMA and try to give a 

different interpretation to the processes which could show limitations in 

some applications. 

Then, the steps of the proposed method were discussed in order to clarify 

the logical path which starts from the results of the SSI-Cov algorithm and 

culminates with the identification of a finite number of modes and their 

representative modal parameters. 

The numerical case of a simple building with 9 degrees of freedom was 

analysed with the aims of: 

• Verifying the performance of the method  

• Identifying the boundary conditions which help the method to 

achieve the identification of all the modes which characterise the 

structure with modal parameters as closest as possible to the 

numerical values. In this step, it was possible to assert that the 

method works well with a number of model orders between 25 and 

35, and a dimension of the Hankel Matrix equal to 6 times the ratio 

between the maximum model order and the number of channels. 

• Analysing the influence of the noise level which may affect the 

signal quality and influence the final result. 

The simple experimental case of a helicopter blade was considered in 

order to show the performance of each step of the algorithm, clarify the 
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weight of each step on the final result, compare the results with an FE 

model. Furthermore, it showed the difference between the performance of 

a classical experimental identification, carried out manually on the basis of 

a stabilisation diagram, and the AOMA. In the same case, the influence of 

the maximum model order on the number of identified modes was 

analysed in order to start reflecting on the importance of a good choice of 

the minimum and maximum model orders. 

Finally, the AOMA was carried out on the scale reproduction of a masonry 

arch bridge. The modal shapes identified by the proposed method were 

shown establishing a substantial difference with the results of an FE 

model. An important analysis was performed on the influence of the 

minimum and maximum model orders on the threshold level which 

establishes the number of clusters deriving from hierarchical clustering. 

Furthermore, the results of the AOMA for different combinations of min-

max model orders are processed with a cluster analysis in order to show 

the frequency of identification of each mode. 

The implementation of the AOMA results in a process which is completely 

independent from the user experience and it allows to identify the modal 

parameters without the choice of limits for the comparison parameters a 

priori. 

The main achievements can be summarised as follows: 

• The only threshold which is prefixed is the range of the damping 

ratio (0-20%). This range is widely fixed and the modes which are 

identified in the two experimental cases show values of damping 

ratio largely below the upper boundary (20%). This evidence leads 

to considerate that the aforementioned range does not influence in 

a strong way the process of estimation of the modal parameters. 

• The comparison parameters which split the poles into stable and 

unstable poles affect the process with comparable weights. This 

objective is achieved thanks to: 

o A good normalisation of the comparison parameters; 
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o A good transformation of the variables (Box-Cox) that allows 

to redistribute the parameters in order to fit a Standard 

Normal Distribution. 

• The stable and unstable poles are defined with mobile thresholds 

which adapt their values in function of the quality and the quantity of 

analysed poles. This allows to not define limits a priori and, 

consequently, it does not require user intervention. 

• If on one hand the comparison parameters allow to identify the 

stable and unstable poles, on the other hand this analysis is carried 

out among poles belonging to two consecutive model orders and it 

assumes the only meaning of local stability. The hierarchical 

clustering takes part of the process in order to obtain a method 

which overcomes the above mentioned issue. In fact, the HC allows 

to analyse all the poles belonging to the different model orders in a 

single analysis. In other words, the agglomerative clustering and its 

relative and subsequently processes, assume a meaning of global 

stability, merging the poles with similar modal parameters. 

• The removal of outliers allows to obtain a method which gives a 

meaning of internal stability to each cluster. 

• As shown by the helicopter blade analysis, the choice of a method 

which identifies the modal parameters representing each mode-

cluster does not affect the final results strongly. This is an evidence 

of the fact that the final poles within each cluster show a high 

similarity. 

The proposed method works well with a range of model orders between 

25 and 35 but it’s not simple to identify the minimum and maximum model 

order to adopt in an analysis a priori. This challenge may be overcome 

considering: 

• The quality of the Silhouette values which characterise the 

hierarchical clustering process and its relative cut-off. 
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• The value of the threshold which identifies the height of the cut-off - 

low values may mean a good identification of the poles and good 

performances of the analysis with the Soft Criteria. 

The above parameters are difficult to automate and this could be a 

challenge to achieve with further implementations of the proposed method. 

Furthermore, the analysis can be carried out with different ranges of model 

orders, as proposed in the final chapter relative to the masonry arch bridge 

(6.5.5). In this way, the modes which are identified in each analysis are 

then processed with a k-means clustering which groups the modes and 

gives an important information: the number of times that a mode is 

identified considering different ranges of model orders. It might be 

pleonastic to assert that the modes with a high repetition of identification 

are strongly representative of the structure. 
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APPENDICES 

A.1 Mean Phase and Mean Phase Deviation 

The characteristics of a complex vector can be estimated using the mean 

phase and the mean phase deviation. The description of these two 

parameters follows the same explication proposed by Allyn W. Phillips and 

Randall J. Allemang [8]. 

The mean phase (MP) is the average angle between the complex and the 

imaginary part of a vector Ψ and can be computed by the following steps. 

In first, an eigenvalue problem is considered 

[𝐼𝑚(Ψ) 𝑅𝑒(Ψ)]𝑇[𝐼𝑚(Ψ) 𝑅𝑒(Ψ)]⁡⁡{𝑣} = �̅�⁡⁡{𝑣} Error! No 
text of 

specified 
style in 

document.-1 

Then, the eigenvector {𝑣}𝜆𝑚𝑖𝑛 ⁡associated to the smallest eigenvalue 𝜆𝑚𝑖𝑛 is 

selected and the two components used for the computing of MP 

{𝑣}𝜆𝑚𝑖𝑛 = {
𝑣1
𝑣2
} 

Error! No 
text of 

specified 
style in 

document.-2 

𝑀𝑃 = 𝜃𝑀𝑃 = 𝑡𝑎𝑛−1(
𝑣2
−𝑣1

) Error! No 
text of 

specified 
style in 

document.-3 

The above relation returns the principal angle for the vector, bounded by ± 

90°. If it is desired that the angle indicates the direction of largest 

response, it is necessary to pay attention to the sign of the numerator and 

denominator of the inverse tangent function. In general, the mean phase is 
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used to determine whether the modal vector is dominantly real-valued or 

imaginary-valued. A mean phase of 0° means that the vector is oriented 

around the real axis while a mean phase of ± 90° means that the vector is 

oriented around the imaginary axis. 

Mean phase deviation (MPD) represents the scatter of the (modal) vector 

about the mean phase angle on a fraction or percentage basis. MPD can 

be computed as follows: 

𝑀𝑃𝐷 =
||⁡𝐼𝑚 {𝑒−𝑖𝜃𝑀𝑃{Ψ}} ||

||⁡𝑅𝑒{𝑒−𝑖𝜃𝑀𝑃{Ψ}}||
 

Error! No 
text of 

specified 
style in 

document.-4 

A mean phase deviation equal to 0 means that the vector is a normal 

mode oriented about the mean phase angle while a mean phase larger 

than 0 means that the vector is a complex mode oriented about the mean 

phase angle. 

A.2 Silhouette  

The Silhouette coefficient is a criterium used to validate the quality of the 

clustering process. The method provides a graphical representation of 

how well an element is classified in a certain cluster. The definition of the 

Silhouette value starts from the computing of two distances: 

• The average distance among the analysed element 𝑖 within a 

cluster 𝐶𝜄 and the other elements 𝑗 which belong to 𝐶𝜄. 

𝐷𝑖
𝑖𝑛 =

1

𝑛𝜄 − 1
∑𝐷(𝑖, 𝑗)

𝑛𝜄

𝑗=1

 

Error! No 
text of 

specified 
style in 

document.-5 

Where 𝑛𝜄 is the number of poles within 𝐶𝜄 and 𝐷() is the distance 

function adopted in the clustering algorithm. 
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𝐷𝑖
𝑖𝑛 represents the similarity of 𝑖 with the other elements which 

belong to the same cluster. Low values of 𝐷𝑖𝑜𝑢𝑡 establish a good 

closeness among the elements 

• The average distance among the element 𝑖 and the elements 𝑘 

belonging to the closest cluster 𝐶𝜅. 

𝐷𝑖
𝑜𝑢𝑡 =

1

𝑛𝜅
∑𝐷(𝑖, 𝑘)

𝑛𝜅

𝑘=1

= 𝑚𝑖𝑛𝜒≠𝜄 (
1

𝑛𝜒
∑𝐷(𝑖, 𝑥)

𝑛𝜒

𝑥=1

) 𝑓𝑜𝑟⁡𝜒 = 1, 2, …𝑁𝐶  

Error! No 
text of 

specified 
style in 

document.-6 

Where 𝑛𝜒 is the number of elements within a cluster 𝐶𝜒 ≠ 𝐶𝜄 and 𝑁𝐶 

is the total number of clusters identified by the analysis. 

𝐷𝑖
𝑜𝑢𝑡 represents the dissimilarity of 𝑖 with the other elements which 

belong to the closest and different cluster. High values of 𝐷𝑖𝑜𝑢𝑡 

mean a good separation among 𝑖 and the other clusters. 

The Silhouette coefficient related to the element 𝑖 can be computed with 

the following equation: 

𝑆𝑖 =
𝐷𝑖
𝑜𝑢𝑡 − 𝐷𝑖

𝑖𝑛

max⁡(𝐷𝑖
𝑜𝑢𝑡, 𝐷𝑖

𝑖𝑛)
 

Error! No 
text of 

specified 
style in 

document.-7 

This formulation leads to Silhouette coefficients between -1 and 1. Large 

positive values indicate highly separated clustering, and negative values 

are indicative of some level of “mixing” of data points from different 

clusters [12]. 

A.3 MAD criterion 

The Mean Absolute Deviation (MAD) criterion is one of the most used 

method to detect outliers. 
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The definition of MAD starts from the computing of the 𝑀𝑒𝑑𝑖𝑎𝑛. The 

Median of a set of numbers can be found arranging the numbers from the 

smallest to the greatest value and identifying the central value. If the 

number of analysed values is even, the Median is defined as the mean of 

the two central elements. 

𝑀𝑒𝑑𝑖𝑎𝑛({𝑋}) = 𝑋𝑐 Error! No text 
of specified 

style in 
document.-8 

{�⃗⃗� } = 𝑠𝑜𝑟𝑡𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡−𝑔𝑟𝑒𝑡𝑒𝑠𝑡{𝑋} = 𝑋1, 𝑋2, …𝑋𝑛 

𝑋𝑖 < 𝑋𝑖+1⁡⁡⁡⁡∀⁡𝑖 ∈ ℕ 

Error! No text 
of specified 

style in 
document.-9 

𝑋𝑐 = {

𝑋(𝑛+1)/2 𝑓𝑜𝑟⁡𝑛⁡𝑜𝑑𝑑

𝑋𝑛/2 + 𝑋𝑛/2+1

2
𝑓𝑜𝑟⁡𝑛⁡𝑒𝑣𝑒𝑛

 
Error! No text 
of specified 

style in 
document.-10 

MAD is defined as the median of the absolute difference between a vector 

𝑌 and its relative median value 𝑌𝑐. 

𝑀𝐴𝐷 = 𝑀𝑒𝑑𝑖𝑎𝑛(|{𝑌} − 𝑌𝑐|) Error! No text 
of specified 

style in 
document.-11 

 

The three scaled MAD is obtained by multiplying the MAD by a coefficient 

c defined as follows: 
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𝑐 = ⁡−
1

√2 ∗ 𝑒𝑟𝑓𝑐−1(3/2)
≈ 1.4826⁡ 

Error! No text 
of specified 

style in 
document.-12 

Where 𝑒𝑟𝑓𝑐−1 represents the Inverse Complementary Error Function 

which is defined as 

𝑒𝑟𝑓𝑐−1(𝑒𝑟𝑓𝑐(𝑥)) = 𝑥⁡ Error! No text 
of specified 

style in 
document.-13 

The Complementary Error Function (𝑒𝑟𝑓𝑐) is given by the following relation 

𝑒𝑟𝑓𝑐(𝑥) = 1 − erf(𝑥)⁡ Error! No text 
of specified 

style in 
document.-14 

Where erf(𝑥) represents the Error Function of the argument 𝑥 
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erf(𝑥) =
2

√𝜋
∫ 𝑒−𝑡

2
𝑑𝑡

𝑥

0
=⁡ 

Error! No text 
of specified 

style in 
document.-15 

 

 


