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Abstract

The detection of the sources is a mathematical problem that can find application
in all that fields in which a mixture of different signals is available: it is widely used
in acoustics [16], where different sounds can be received by multiple microphones,
in decoding communication signals taken by antennas [4], in separation of seismic
data [20] and in image processing [18], just to name a few.

In biomedical signal processing, the source detection can help in decoding the
complex brain activity from electroencephalographic (EEG) data, in studying mus-
cle activation from electromyographic (EMG) recordings and also finds some inter-
esting applications in electrocardiography (ECG), where maternal and foetal ECG
were considered as two distinct sources and thus were separated [24].

The term blind source separation (BSS) arises from the fact that the solution is
recovered with a blindly approach: limited or no a priori information is assumed on
the sources and on the propagating medium in which the signals travel to reach the
receiver. With this approach, also useful information on the interposed medium
can be obtained.

In the following, an introduction on BSS and on the most used methods will
be given. Subsequently, some biomedical applications in the electroencephalogra-
phy and in the electromyography will be discussed with examples and simulation
results.
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Chapter 1

Blind Source Separation

1.1 Introduction

An interference signal can be described as a combination generated from the con-
tributions of several sources. If different observations are available, each of them is
a mixture of the sources that are weighted by the communication medium and by
the distance from the detection point. The most classical example is the cocktail
party problem, where many people (the sources) are talking simultaneously in a
room and a listener (the observer) is trying to follow one of the discussions: the
propagating medium is in this situation the air and the listener’s central nervous
system (CNS) makes a source reconstruction when he focuses on a single discussion.
As will be described in the following, the mathematical methods that have been
developed in the field of signal processing require many observations: thus many
microphones are used to record the conversations (Figure 1.1).

Referring to the biomedical field, a typical interference signal is the surface
electromyogram (EMG), where the sources are the different motor units, the ob-
servations are the electrodes placed on the skin and the propagating medium are
the interposed tissues. Another example, that is also treated in the following, is
the electroencephalogram (EEG), where different sources in the brain in different
spatial locations can contribute to the scalp potential.

Source detection can find application in many other situations, from the audio
signal processing, where different sources are recorded in acoustic mixtures, to radio
communication, where antennas receive different communication signals.

In all the previously mentioned cases, this is an inverse mathematical problem.
To solve the inverse problem, different observations are needed: if their number
exceeds the number of sources, the model is over-determined and can be solved
with linear techniques, otherwise it is an under-determined problem and recovering
the solution is a more difficult task.

The term blind source separation (BSS) refers to the source reconstruction based
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1 – Blind Source Separation

only on the available observations, assuming limited or no a priori information
about the sources and about the communication medium. In the literature different
algorithms and approaches have been proposed, to solve both the over-determined
and the under-determined case [22], [19]. They all try to recover the sources up
to some indeterminacies: in the following, the mathematical model to tackle the
problem will be presented and the most popular methods to perform BSS will be
discussed.

+

+

Source 2

Source 1

Source 3

Observation 1

Observation 2

Figure 1.1: The cocktail party problem, with many speakers talking at the same
time and producing different source signals. Two microphones are used to obtain
two observations, on which BSS methods can be applied.

1.2 Methods

To solve the inverse problem of source separation, a mathematical model is needed.
The most general is the nonlinear model, where the contributions of the sources
add up in a nonlinear way, so they don’t follow the superposition principle: as it
impossible to solve the inverse problem for such a model, it will not be treated in
this work.

Referring to the linear models, for whom the superposition principle holds, they
can be classified in two types.

� Instantaneous linear models: this model supposes the mixtures x(t) as
linear combinations of the different sources s(t). The problem is defined as
x(t) = As(t), with mixing weights defined in the matrix A, called mixing
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1 – Blind Source Separation

matrix:

x(t) =

x1(t)
...

xm(t)

 =

a11 . . . a1n
...

. . .
...

am1 . . . amn


s1(t)

...
sn(t)

 = As(t) (1.1)

This model changes the weights in the mixing matrix depending on the dis-
tances between sensors and sources. This leads only to an amplitude scaling,
depending on relative placement of sources and sensors, and does not consider
any filtering effect. Due to these reasons, this model is limited and does not
describe properly all the situations.

� Convolutive linear models: the model can be written by means of a causal
convolution:

x(t) =

∫
A(t− τ)s(τ)dτ (1.2)

It has therefore memory of the samples received in the past: the sources are
weighted and delayed and contribute to the mixture with multiple samples.
The convolutive mixtures take account of the different paths through which
the source signals reach the observations across the volume conductor.

In order to consider a more realistic situation, a random noise vector n(t) is
usually added to the previous models: it is typically assumed as a zero-mean,
temporally and spatially white process: temporally in the sense that its samples are
independent within the same observation, spatially because the noise realizations
in different channels are not correlated.

As said before, this is an inverse problem, so mixtures are known. The mixing
matrix, the sources and the additive noise are the unknowns. In all the models the
mixing matrix has m rows and n columns, where m is the number of sensors and n
is the number of sources. The ith column of A contains the m weights that indicate
the contribution of the ith source on each of the channels.

There are two indeterminations in the instantaneous linear model.

1. It is impossible to obtain the amplitude of the sources. Infact, an amplitude
scaling of the sources can be corrected with a reciprocal mixing matrix elements
scaling:

kA
s(t)

k
=

ka11 . . . ka1n
...

. . .
...

kam1 . . . kamn



s1(t)
k
...

sn(t)
k

 = As(t) (1.3)

Exploiting this property, sources are considered with unitary variance by con-
vention: the range of the sources in each mixture is accounted for by the
magnitude of the corresponding columns of the mixing matrix A [2].
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1 – Blind Source Separation

2. It is impossible to know the order of the sources. An exchange of place of two
sources can be compensated by an exchange of the respective mixing matrix
columns.

Given the model, it is then possible to solve the problem. To complete this task,
a distance between the estimated sources should be defined and maximized. There
are several distance definitions and one of these must be chosen considering prior
knowledge about the sources and on the problem formulation.

One of the most used decomposition techniques is the principal component anal-
ysis (PCA), which assumes that the sources are not correlated each other, i.e. they
are orthogonal. PCA does not belong exactly to the BSS family because it does
not reconstruct the original signals, but it is useful for data compression as it man-
tains the powers of the observations and maximizes the energies of the sources.
Another widely used BSS method is the independent component analysis (ICA),
which assumes that the sources are statistically independent and minimizes the
mutual information between the reconstructed signals. The two approaches are
discussed in the following.

1.2.1 Principal Component Analysis

Principal Component Analysis (PCA), also known in the signal processing as dis-
crete Karhunen–Loève transform (KLT), is a statistical procedure based on prior
knowledge that the sources are orthogonal between each other: the signal is seen as
a linear combination of orthonormal functions, called principal components. Source
reconstruction is then performed by minimizing the mean square error (MSE) be-
tween the signals xk(t) and their reconstructions through the principal components:

MSEi =
1

T

m∑
k=1

∫ T

0

|xk(t)− ckisi(t)|2 dt (1.4)

where ckisi(t) is the ith approximation of the kth observation by means of the
ith principal component si(t). This technique is based on a measure of variance:
the data are decorrelated in a second order sense and the new axes result to have
a zero dot-product.

For example, given a zero-mean multivariate Gaussian distribution, the two
directions of maximum variance, called principal directions, could be identified
(Figure 1.2, on the left). The PCA finds them and projects the original observations
on these directions in a way that better explains the variance in the data. The
distribution after axes rotation is represented in the right on Figure 1.2.

An iterative procedure to reconstruct the principal components is defined from
their definition:

1. Compute the first principal component by minimizing Equation (1.4).
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1 – Blind Source Separation

Figure 1.2: Zero-mean multivariate Gaussian distribution before (left) and after
(right) a rotation of the axes performed by the PCA.

2. Compute the second principal component with the constraint of its orthogo-
nality to the first one.

3. Repeat step 2 until all the m principal components have been reconstructed.

As said before, the principal directions are the directions of maximum variance.
Given a set of observations x(t) and being w1 a unit norm vector of weights rep-
resenting the direction of maximum variance, the first principal component is the
projection of the data on the first principal direction, i.e. y = wT1 x. The vector w1

can then be obtained:

w1 = arg max
‖w‖=1

E[(wTx)2] (1.5)

Maximum variance corresponds to maximum energy. Computed this direction, it
is possible to eliminate its information and see the mixtures residual, by subtract-
ing the mixtures projected on the principal component direction from the original
mixtures x. Removed the component of the first direction, the second direction of
maximum energy can then be obtained by repeating the same procedure, as well
as the kth principal direction:

wk = arg max
‖w‖=1

E[wT (x−
k−1∑
i=1

wiw
T
i x)2] (1.6)

It is then possible to do this operation iteratively ending with finding all the direc-
tions orthonormal between each other. Now the sources are in order of maximum
energy content: if only the first sources are considered, the information is compacted
and dimension reduced. As said before, the PCA is not a true source reconstruc-
tion technique, but it can be useful when large datasets with many features have to
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1 – Blind Source Separation

be processed: by applying the PCA on a training set for a classifier, for example,
only the features with higher variance on the new axes can be preserved; this can
improve the performances, as features with higher variance are expected to give
more information to discriminate between classes. This and many other applica-
tions make the PCA a very useful and versatile technique in data processing and
machine learning.

Algebraic Method

The covariance matrix Cxx, that is symmetric and positive, is defined as:

Cxx =

 c11 . . . c1M
...

. . .
...

cM1 . . . cMM

 (1.7)

where each element is the covariance between the ith and the jth observations and
the diagonal elements are the variances of each observation.

The mixing matrix A, defined in the previous sections, can be decomposed with
eigenvalues and eigenvectors (see APPENDIX):

A = VL1/2VT (1.8)

where V is a N×N matrix of eigenvectors and VVT is the identity matrix because
V is a unitary matrix. L1/2 is a square matrix that contains the eigenvalues of A
on the diagonal in descending order. The diagonal form of the covariance matrix
then becomes:

Cxx = E[xxT ] = (As + n)(sTAT + n) = AAT + In = VLVT + In (1.9)

where In is the identity matrix multiplied for the covariance of the noise, indicating
that it is independent from the channels and has the same power in each observation.
The eigenvectors, i.e. the columns of V, correspond to the principal components
and the eigenvalues indicate the corresponding power of the sources.

If M /= N , A is not a square matrix and can be factorized with singular value
decomposition (SVD, see APPENDIX):

A = VΛ1/2UT (1.10)

where Λ is a M × N diagonal matrix containing the singular values of A. The
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1 – Blind Source Separation

diagonalized covariance matrix then assumes the following form:

Cxx = E[xxT ] = (As + n)(sTAT + n) = AAT + In =

= VΛ1/2UTUΛ1/2VT + In = VΛVT + In
(1.11)

By considering the eigenvalues or the singular values in descending order, the prin-
cipal components can then be recovered. It has to be noticed that, for completely
recovering A, the matrix U, known as rotation matrix, is needed (the problem will
be discussed in more detail in the following).

1.2.2 Independent Component Analysis

Independent component analysis (ICA) is based on the identification of the sources
that maintain most of the information. Note that this means that exist directions
along which to project the mixtures in order to recover sources that are statistically
independent. Given the model x = As, where x are the available observations, s
and A are respectively the sources and the mixing matrix, both unknown, the goal
is to obtain a demixing matrix such that:

ŝ = Wx (1.12)

where W = A−1 is the inverse of the mixing matrix. If the number of channels
m differs the number of sources n, the matrix A is not invertible and W is assumed
to be its pseudoinverse A# (see APPENDIX).

As said before, in the BSS model only the observations x(t) are available: the
basic idea is then to apply some operations to the original data and measure the in-
dependence between the obtained signals in order to reconstruct an approximation
of the sources ŝ.

According to the central limit theorem, the distribution of a sum of independent
random variables tends toward a Gaussian distribution: thus, to separate inde-
pendent sources, gaussianity should be minimized. Different methods have been
proposed to obtain a measure of gaussianity.

� Kurtosis, which is the fourth statistical moment standardized by the square
variance:

K(x) = E

[(x− µ
σ

)4
]

=
µ4

σ4
(1.13)

where µ4 is the fourth central moment and σ is the standard deviation. Heavy-
tailed distributions, called supergaussian, will have higher kurtosis, while flat-
ter distributions, called subgaussian, will have negative kurtosis (see Figure
1.3).
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1 – Blind Source Separation

Equation (1.13) can be rewritten as:

K(x) = E[x4]− 3(E[x2])2 (1.14)

For a Gaussian distribution, the fourth moment equals to 3(E[x2])2 and Equa-
tion (1.14) goes to 0. It is clear that the higher the value of kurtosis, the more
the considered variable is distant from a Gaussian distribution.

Kurtosis is a good indicator to discriminate non-gaussian distributions but it
is very sensitive to outliars and it is not well suited in noisy measurements.

Figure 1.3: Gaussian, subgaussian and supergaussian distributions.

� Negentropy, that is the difference between the entropy of a Gaussian distri-
bution and that of the considered variable, with the two distributions sharing
the same covariance matrix:

N(v) = H(G)−H(v) (1.15)

whereH(v) = −
∫
p(v) ln p(v)dv is the entropy of a continuous random variable

v, being p(v) its probability density, i.e. the probability at each sample that
the random variable could assume that value.

Negentropy vanishes for a Gaussian distribution and has positive values for all
the other distributions, as the normal distribution is the one with the highest
entropy.

This measuring system is more accurate because it considers all the statistical
moments, while kurtosis uses only the fourth one. This difference, however,
leads to a greater computational burden for negentropy based algorithms com-
pared to those based on kurtosis.
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1 – Blind Source Separation

� Mutual information: this measure is based on entropy, which is an infor-
mation measure. For a set of random variables vi, i = 1, . . . ,m, mutual in-
formation is defined as the difference between the entropy of a single variable
and the total entropy H(v):

I([v1, . . . , vm]) =
m∑
i=1

H(vi)−H(v) (1.16)

where I(v) is always positive and equals 0 only when the m variables are
independent: it is straightforward that in order to separate the sources, mutual
information has to be minimized. Suppose having 2 independent variables v1

and v2. The entropy is defined:

H(v1, v2) = −
∫
p(v1, v2) ln p(v1, v2)dv1dv2 =

= −
∫
p(v1)p(v2) ln (p(v1)p(v2))dv1dv2 =

= −
∫
p(v1)p(v2) ln p(v1)dv1dv2 −

∫
p(v1)p(v2) ln p(v2)dv1dv2 =

= −
∫
p(v1) ln p(v1)dv1 −

∫
p(v2) ln p(v2)dv2 = H(v1) +H(v2)

(1.17)

Total entropy is the sum of two integrals. If v1 and v2 are independent, the
integrals are their entropies, meaning that there is any cross term: as expected,
the mutual information defined in (1.16) would be equal to 0. This measure
tells how much information is mutual, which in this case means redundant, as
result of the difference between entropies sum and total information.

� Maximum likelihood estimation, that it is equivalent to minimize the
mutual information. In this sense, latent variables are used to describe the
probability distribution of the observations.

Being W the unmixing matrix, the log-likelihood is the logarithm of the prob-
ability distribution of x, given W. It has the following form:

L =
T∑
t=1

n∑
i=1

log
{
pi[(w

T
i x(t)]

}
+ T log |det W| (1.18)

where T is the duration of the timeseries, wi is the ith row of matrix W and
pi is the probability density of the ith source signal.

Due to the properties defined above, the greater limitation of ICA is clear: Gaussian
sources cannot be separated, even if they are independent. The separation with
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1 – Blind Source Separation

ICA can be performed only if at most one source in the mixture has a Gaussian
distribution. In fact, if all the sources have a Gaussian distribution, any linear com-
bination of them still have a Gaussian distribution, so it is impossible to separate
them by trying to make them non Gaussian. In this situation PCA can be used,
imposing the sources to be uncorrelated, which is enough for Gaussian variables to
be also independent.

ICA can find many applications, for example to remove artifacts from EEG
data. A simple simulated example is illustrated in the following (Figure 1.4). Three
mixtures, represented in the left of the panel, are generated by applying a mixing
matrix to two uniformly distributed sources that simulate EEG recordings and
to a low-frequency source that represents an artifact (for example, it can be an
ocular artifact generated on electrodes placed in the frontal part of the scalp). The
estimated sources, obtained by applying ICA, are superimposed to the simulated
ones in the center of the panel. Since the ICA approach contains indeterminacies
on the order and on the sign of the sources, the estimated sources were paired with
the simulated ones relying on their correlation. On the right the estimated mixtures
without the artifact are showed: they were obtained by applying to the sources the
estimated mixing matrix with the column corresponding to the source with lowest
frequency, that is the artifact, set to zero.

Figure 1.4: Application of ICA to remove a simulated ocular artifact: on the left the
three corrupted mixtures, in the center the estimated sources (in red) superimposed
to the simulated ones and on the right the three mixtures after the removal of the
artifact.
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1 – Blind Source Separation

In this simple situation, the same solution could have been obtained with a high-
pass filter, by removing the low-frequency components. In more complex cases and
in the application on real EEG data, however, a filtering approach would bring to
a loss of information, as the signal could contain also low-frequency components
that are of interest. Moreover, some artifacts are superimposed also in the typical
frequency band of the EEG (from 0.01 to around 100 Hz) and this make impossible
the use of classical filtering methods without a loss of information [23].
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Chapter 2

Inverse Problem in

Electroencephalography

2.1 Neurophysiologic introduction of the EEG

The electroencephalogram (EEG) is a monitoring method used to detect electrical
activity from the brain. It is typically performed non-invasively with electrodes
placed on the scalp, but invasive methods in which electrodes are placed on the
cortex, like electrocorticography, are also used.

The EEG is a measure of the difference in voltage between two cerebral locations,
plotted over time: it has therefore a good temporal resolution on the electrical
changes inside of the brain. In reverse, it has not a high spatial resolution, as it
records the contribution of thousands of neurons located in different regions of the
brain. The main contribution to the scalp EEG comes from the pyramidal neurons,
that are large and have vertically oriented axons.

Neurons generate two types of electrical activity.

� Action potentials (AP), that are brief spikes with a duration of about 1
ms travelling along the neuron axon with great speed (1 − 100 m/s). They
are involved in neurotransmitters release at the synaptic cleft, which activates
the following neuron, called postsynaptic neuron.

� Post synaptic potentials (PSP), that occur when neurotransmitters bind
to the receptors in the postsynaptic neuron. PSPs summate both spatially and
temporally at the axon hillock and can increase or decrease the probability that
the postsynaptic neuron will produce an action potential: in the first case they
are named excitatory postsynaptic potentials (EPSP), in the second they are
inhibitory postsynaptic potentials (IPSP).

The main contribution to the scalp EEG is given by PSP, as they have longer
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2 – Inverse Problem in Electroencephalography

duration and can summate. In fact, the dendrites of the postsynaptic neurons are
parallely oriented between each other and they are generally perpendicular to the
cortical surface on which electrodes are located.

APs can be recorded only if individual neurons fire at exactly the same time,
bringing to their summation. Since it’s rare for two neurons to fire at the same
time and since axons have generally a random orientation, APs usually cancel each
other with no contribution to the EEG.

As said before, the EEG has high temporal resolution, but it is poor in spatial
resolution: this suggests the benefit of the blind source separation approach, which
can bring the information of the main involved areas of the brain when electrical
activity is detected, with the excellent resolution of the time activation already
provided by the EEG.

2.2 EEG Inverse Problem

Given the measurements at various locations on the scalp, the objective is to find
the current sources in the brain that best fit the data. As a limited amount of
data is available to reconstruct a model with many unknowns, this is an ill-posed
problem: this means that it has not a unique solution and different models can fit
equally well the electrode observations. In addition to this, the number of sources is
generally much greater then the number of channels, thus the inverse problem is an
underdetermined problem. On the contrary, recovering the electrode potentials on
the scalp from a given model has a unique solution and it is referred as modelization
problem or forward problem.

Different approaches have been proposed in the literature to recover the solution
of the inverse problem (a more detailed explanation of the proposed methods can
be found in [12]), but they can be summarized in three main types.

� Equivalent current dipoles (ECD), where the electrical activity is thought
as the product of a discrete number of dipoles. The basic idea is to compute
the potential distribution on the scalp for different positions in the brain of
hypothetical current dipoles and try to fit it to the original data.

� Distributed sources, where all source locations are considered simultane-
ously. This model is more accurate, as the activity is in general spread through-
out the brain and not only in discrete points.

� Beamformers, that consider time-varying dipoles and perform a spatial fil-
tering trying to mantain only the signals that come from the sources of interest.

The forward problem, i.e. the potential distribution on the scalp due to some
known source positions, is therefore computed, once or many times depending on
the used approach, and then it is used to derive the true source locations by fitting
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2 – Inverse Problem in Electroencephalography

the potential to the electrode measurements at specified positions. In order to solve
such a problem, a proper head model, that takes account of the different tissues
in which the potential propagates, is needed, as well as the electrode positions on
the scalp. Note that also small errors in the head or in the source modelling and
the presence of noise can bring to wrong results in the inverse problem. When
are available, anatomical headmodels based on a patient magnetic resonance image
(MRI) can highly improve the goodness of the solution.

Another important step in approaching to the inverse problem are the constraints
on the sources, that simplify the search for a solution and make it solvable. An
interesting example is the use of functional magnetic resonance imaging (fMRI) in
order to detect the activation areas in the brain during a certain task [7]. The fMRI
has high spatial resolution but poor temporal resolution, thus its combination with
source reconstruction allows to obtain high resolution spatio-temporal maps of the
neural activation.

The main steps to perform source reconstruction from EEG data are summarized
in Figure 2.1, while an example of headmodel and electrode positions are showed
in Figure 2.2. The headmodel was created with a three-shell mesh containing the
brain (in red), the skull and the scalp, while the electrodes (corresponding to a
standard 10-20 placement) were plotted on the scalp layer.

Figure 2.1: Typical procedure for source reconstruction from EEG data.

Source detection in the EEG can find many applications, from artifact removal
(e.g. ocular artifacts that result to be located in the anterior part of the scalp and
are then easily recognized) to surgical intervention in the focus of seizure activity.
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2 – Inverse Problem in Electroencephalography

Figure 2.2: Mesh of a three shell head model (left) and electrodes plotted on the
cortical surface (right).

The knowledge of the position of a given source can also provide a better under-
standing of the complex dynamics of the brain areas involved in different cognitive
tasks.

2.2.1 Mathematical Formulation

Suppose that k electrode measurements are available in the matrix M:

M = GD + n (2.1)

where each row of G describes the current flow through the jth electrode caused
by each one of the different dipoles and is called lead-field, D contains the dipole
moments at different time instants and n is additive noise. The dipole moment
mentioned before is composed by two angles that define the orientation in the space
and by a scalar that defines its strength. By neglecting the noise, the problem can
then be written in the following extended matrix form:

M(r, t) =

m(r1, t)
...

m(rk, t)

 =

g(r1, rdip1) . . . g(r1, rdipp)
...

. . .
...

g(rk, rdip1) . . . g(rk, rdipp)


d1e1

...
dpep

 (2.2)

where di = (dix, diy, diz) is a vector of the magnitude components of the considered
dipole and ei = di

|di| defines its orientation. Note the dependence on time and on the

electrode locations given by rj and the six unknowns that are the three spatial co-
ordinates of rdipi , the two orientation angles θ and ψ that define the dipole moment
and the scalar d = |di| that defines its strength. Under these assumptions, recov-
ering the solution is a very complex task: as said before, different approximations
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2 – Inverse Problem in Electroencephalography

and constraints were then proposed in order to simplify the problem. For exam-
ple, since the apical dendrites that generates the field are normally oriented to the
scalp surface, dipole orientation can be constrained to such direction: thus, once
discrete positions in the brain are assumed, only the dipole strengths di will vary
in the formulation of Equation (2.2). Since the EEG inverse problem is ill-posed,
a regularization is needed: this means to use some a priori constraints about the
sources in order to reduce the vagueness and recover the solution. This balance the
fidelity to the data with spatial and temporal smoothness, depending on the priors.
Different regularization approaches were proposed, for example maximum entropy
metrics, L1 norm and L2 norm: the correct choice depends on the particular con-
ditions and on the characteristics of the sources (for example, the use of L1 norm
favors the detection of sparser solutions).

Now that the model has been defined and the variables that play a role in the
EEG inverse problem have been shown, two of the main methods to recover the
solution are discussed in more detail.

2.2.2 Equivalent Current Dipoles

The equivalent current dipole (ECD) approach is based on the assumption that if
the activity is early and not spread in the brain, an equivalent current dipole is a
reasonable approximation. Therefore the ECD formulation, also known as dipole
fitting, assumes that an equivalent current dipole is able to describe the measured
scalp topography [21]. Given the electrode measurements and the head model, as
described in the previous, the inverse problem can then be solved by discretizing
the brain with a point-grid, where at each point the forward solution is computed
for a dipole placed at that location.

It is clear that a higher resolution of the grid increases the performance of the
source detection, but also increases the processing time. This also suggests why
only a single dipole could be fitted to a considered scalp topography: by using for
example a grid with 5000 points, if for each computed forward solution the presence
of another dipole should be taken into account, there would be 5000 ·5000 = 25 ·106

possible combinations for which the solution has to be computed! If more than one
dipole is needed, the only way is then to place a constraint on the second dipole by
imposing its symmetry to the first one.

Dipole fitting finds the current dipole that best fit the data in a least square
sense. This means that the obtained solution only partially explain the measured
potential, since it always has a residual variance.

Due to the limitations discussed above, the most common approach is to obtain
a large number of event-related potentials (for example from a task related activity)
and then apply the dipole fitting to the average of the trials. Another useful method
in this situation is the ICA: by decomposing the original EEG data into independent
components, each of them can then be fitted with an equivalent current dipole
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[26]. This is reasonable because the timecourse of an independent component could
generally be thought as the product of a small number of sources in the brain with
a well localized spatial activity [9].

Figure 2.3 shows a simulated example on a standard MRI headmodel. Four
signals were generated: three of them were random noise, while the fourth was
obtained by computing the forward solution for a dipole placed in the left prefrontal
cortex. With the application of ICA, the four components were separated and the
one containing the signal of interest could then by fitted with an ECD.

Figure 2.3: Reconstruction of an equivalent current dipole in the left prefrontal
cortex.

2.2.3 Distributed Source Models

If the measured scalp activity cannot be traced with a single dipole, a more robust
approach is needed in order to fit a distributed activation pattern to the data. Most
of the methods used to fit distributed sources derive from the Bayesian framework,
that consists in finding an estimator that maximizes the posterior probability of
the sources s, given the measurements M:

ŝ = max
s

[p(s|M)] (2.3)

where p(s|M) is the conditional probability of the sources for the set of observations.

By exploiting Bayes’ law, this conditional probability can be rewritten as:

p(s|M) =
p(s)p(M|s)

p(M)
=

exp [−Fα(s)]/z

p(M)
(2.4)

where z is the partition function (i.e., a normalization constant), Fα(s) = U1(s) +
αL(s) where U1(s) and L(s) are energetic functionals associated to p(M|s) and
p(s) respectively and α is a regularization parameter. Specifically, U1(s) can be
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written as ‖Ks −M‖2, where K is a compact linear operator representing the
forward solution and L(s) is chosen to introduce spatial (anatomical) and temporal
constraints. The sources are then estimated by minimizing Fα(s) = U1(s) +αL(s):

ŝ = min
s

(‖Ks−M‖2 + αL(s)) (2.5)

By using the notation with which the inverse problem was described, the following
equation is obtained:

U(D) = ‖M−GD‖2 + αL(D) (2.6)

where the first term reflects fidelity to the data and the second one introduces spatial
and anatomical priors. Different choices of the regularization function L(D) were
proposed, bringing to different approaches.

Minimum norm estimates (MNE) perform a search for the solution with mini-
mum power. This corresponds to Tikhonov regularization and it is well suited for
sources that are distributed in some areas of the cortical surface. This approach
considers the following regularized problem:

U(D) = ‖M−GD‖2 + α‖D‖2 (2.7)

which leads to the following solution:

DMNE = (GTG + αIN)−1GTM (2.8)

Another possibility is choosing:

L(D) = ‖AD‖2 (2.9)

where A is a linear operator (e.g., for sampled data, it is a matrix, which could
discretize different operators; for example, if it samples the derivative operator, the
solution is constrained to be smooth; if only the energy of the solution should be
penalized, A = I). In this case, the solution is:

DMNE = (GTG + αATA)−1GTM (2.10)

An example of source reconstruction with MNE is represented in Figure 2.4,
where a small number of dipoles in the right prefrontal cortex were simulated by
computing the forward solution for nearby locations. The signals were then summed
up on the electrodes in order to produce a distributed activity. Note that the
obtained map contains the power of the activity in each point of the grid. The
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solution perfectly fits the measured potential and since the non-uniqueness of the
inverse problem, it is that with lower energy (minimum norm).

Another choice of the linear operator A brings to the low resolution electri-
cal tomography (LORETA), which combines the lead-field normalization with the
Laplacian operator: by normalizing the columns of G it gives all the sources the
same importance, then deeper sources have the same possibility to be recostructed
as the more superficial ones. Note that the Laplacian operator gives smoothness in
the inverse solution: this type of regularization can then bring to problems due to
spatial blurring, with lower spatial resolution.

Figure 2.4: MNE source reconstruction of a simulated activity in the prefrontal
cortex.
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Chapter 3

EMG Decomposition

3.1 The Surface Electromyogram

Muscle contraction is performed in response to stimuli from the central nervous
system (CNS). The neural drive passes from the spinal circuitries to the peripheral
nervous system (PNS), where thousands of motor neurons interact in the generation
of the motor commands. Each motor neuron (MN) projects the electrical activity
on several muscle fibers, thus this activity is amplified at the muscle level. The
electrical signals propagate along nerve fibers and reach the neuromuscolar junction
(NMJ), where they excite the innervated muscle fibers: the depolarization of each
of these fibers is called single fiber action potential (SFAP). The summation of all
the SFAPs belonging to the same MN gives rise to the motor unit action potential
(MUAP).

As said before, a single neural command from the CNS generates a widespread
electrical activity at the muscle level: it is therefore possible to study the neural
activation directly and non-invasively from the surface of the skin through high
density measurements, as the surface electromyogram (sEMG). Surface EMG is a
high resolution acquisition techinique that allows to arrange multiple electrodes in
two-dimensional arrays, providing high information on the spatial variability of the
electrical activity. A large number of observations (mixtures) is then available and
the signals can be investigated at different levels.

� Muscle synergies: the CNS coordinates the motor activation in a task re-
lated manner, as the number of muscles largely exceeds the number of joints.
Hence, a group of muscles can be recruited to perform the same movement.
Therefore, by detecting the primitive signals entailed in the activation of mul-
tiple muscles, the complex activation pattern that generates a movement could
be better understood.

� Single muscles: the muscle of interest can be isolated from the activity of
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3 – EMG Decomposition

the other muscles. Thus cross-talk, i.e. the interference of the nearby muscles,
can be avoided by considering each muscle as an independent source and by
applying a BSS method, like ICA or PCA.

� Motor unit (MU): MUs are the smallest functional units in a movement task
and are composed by a motor neuron and the muscle fibers it innervates with
its axonal terminals. The MUAPs that they generate superimpose in space
and in time: thus they can be viewed as the sources and their timecourses can
be recovered from the interference EMG of a muscle.
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Figure 3.1: Multi scale model of movement generation: from the left, the signals
arising from the CNS are taken as input from different motor neurons. Each MN
innervates a large number of fibers of a muscle with multiple spike trains, giving
rise to different motor units. The contribution of different MUAP trains is picked
up by the electrodes weighted by the conduction medium, as can be seen in the right
of the figure.

Depending on the prior assumptions and on the sources of interest, the surface
EMG signals can be viewed both as linear instantaneous or convolutive mixtures.
For example, for the separation of individual MUAPs, a convolutive mixing model
is assumed, as the instantaneous model is not well suited for taking account of the
orientation of the muscle fibers and of the low-pass filtering effect of the volume
conductor that modifies the shapes of the MUAPs. Conversely, if the interest is
focused on the separation of single muscles and on the cross-talk, the instantaneous
mixing model is a good approximation and has been successfuly used to describe
the problem [11].

In the following sections, three applications of the blind source separation in
the decomposition of EMG signals will be showed: the first one is related to the
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separation of the contributes of nearby muscles, thus reducing cross-talk, while the
last two are methods to decompose the surface EMG at the motor unit level.

3.2 Separation of Single Muscles

When the EMG signal is acquired with electrodes placed on a muscle, also the
contribution of nearby muscles is detected (Figure 3.2). By using a proper spatial
filter, as single differential (SD), double differential (DD) or the Laplacian operator,
selectivity can be increased, but it leads to a reduced spatial detection with a smaller
contribution also of the motor units of the considered muscle.

The cross-talk, i.e. the contribution of a muscle that is not the one of interest,
is still an open problem that highly affects the EMG acquisition: as the source
signals are in general overlapped both in time and in frequency, linear filtering
techniques are not suitable to separate them. The BSS approach, instead, can help
to overcome the problem: the two muscles can be treated as independent sources
and their contributions can be separated.

SENSOR 1

SENSOR 2

Figure 3.2: EMG acquisition on two muscles. Each sensor detects the contribution
both of the muscle on which it is placed on and of the nearby muscle.

One of the first approaches to the blind separation for cross-talk reduction was
proposed in [2]. The method, called second order blind identification (SOBI), ex-
tends the PCA by applying a whitening transformation and then by recovering the
rotation matrix U. In order to obtain a better estimate of U, a set of covariance
matrices (for different delays τ) is jointly diagonalized instead of a single covariance
matrix. Another approach, derived from the SOBI, is to perform the joint diago-
nalization to a set of spatial time-frequency distributions (STFD), that are defined
as the Fourier transform in the delay τ of the covariance matrices [3]. The latter,
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by exploiting the information given by the non stationarity of the sources, can over-
come some limits of the first approach in separating signals with the same spectral
shape, since the spectral contents can have different locations in the time-frequency
plane.

Concerning the SOBI method, it is based on the following steps:

� Whitening: as in the application of the PCA, a whitening matrix W is
constructed such that:

E[Wy(t)y(t)TWT] = WCy(0)WT = WAATWT = I (3.1)

where y(t) is the signal part of the observations, i.e. x(t) without the noise
contribute and Cy(0) = AAT because the sources are assumed to be uncorre-
lated (i.e. Cs(0) = I). The matrix W is a whitening matrix (see APPENDIX),
then WA = U is a N ×N unitary matrix (i.e. UTU = UUT = I) such that:

A = W#U (3.2)

where W# is the Moore-Penrose pseudoinverse of W (see APPENDIX).

Then, if a noise estimate is available and with the previously mentioned as-
sumption that the sources are uncorrelated, the matrix W can be computed
directly by the covariance matrix of the observations at zero lag:

AAT = Cx(0)− σ2
nI (3.3)

where σ2
n can be estimated from the average of the M−N smallest eigenvalues

of the covariance matrix. Note that this procedure extends the PCA by scaling
the whitened components by a factor (λi−σ2

n)1/2, where λi are the eigenvalues
of the covariance matrix Cx.

� Determination of the rotation matrix. It is clear that for completely
recovering the mixing matrix A, the rotation matrix U is needed. Considering
the whitened covariance matrices for different delays τ /= 0:

Ĉ(τ) = WCx(τ)WT = WACs(τ)ATWT (3.4)

and then by using the (3.2), the previous relation becomes:

Ĉ(τ) = UCs(τ)UT (3.5)
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It is then clear that for recovering the unitary matrix U, the whitened covari-
ance Ĉ has to be diagonalized for some delay τ . This can be done as:

Cs(τ) = UTĈ(τ)U (3.6)

In principle, it could be diagonalized for any delay τ , even if more stable
alternatives were obtained by sampling more time lags and choosing the matrix
providing their best joint diagonalization under some optimality condition. A
proper choice of the delay can be satisfied for example by minimizing the
sum of the non-diagonal elements of the source covariance matrices obtained
by performing the diagonalization in (3.5). The choice of different delays is
justified by the fact that it improves the robustness of the algorithm and avoids
that an unlucky selection of a single delay could bring to wrong results.

In the example of Figure 3.3, two distinct muscles were simulated with respec-
tively 20% and 60% maximal voluntary contraction (MVC). Three mixtures were
available, taken from two electrodes placed on each one of the two muscles (with the
cross-talk contribution of the other source) and from an electrode placed between
them: the SOBI method was applied to the mixtures in order to recover the original
signals of the two muscles. Note the partially overlapped spectra, that would make
very complicated the separation with classical filtering techniques.

Figure 3.3: SOBI method applied to reduce cross-talk between two muscles with
partially overlapping spectra. The simulated monopolar signals with their power
spectral densities are showed in the left portion of the panel, the three mixtures
are in the middle and the result of the reconstruction (in red) superimposed to the
muscles original signals is showed on the right.

27



3 – EMG Decomposition

3.3 Separation of Motor Unit Action Potentials

MU decomposition is the process of recovering individual MU activities from the in-
terference EMG, where they are superimposed both spatially and temporally. The
investigation at MU level can provide both physiological and diagnostic under-
standing on neuromuscular activity, for example in the detection of neuromuscular
disorders.

Since the number of motor units largely exceeds the number of available obser-
vations, MU decomposition is a challenging task, even for a manual expert editing.
Early work also involved template-matching approaches, that focus on the shape of
the MUAP waveforms. All previous methods could only detect a limited number of
MUs, as it is difficult to resolve the superposition of a large number of waveforms.

Since MUAPs are generated from different motor units, they discharge with a
small degree of synchronicity in case of low or moderate levels of force: the hypoth-
esis of independence is then satisfied, so the EMG decomposition at the MUAP
level can be successfully carried out with BSS. Independent component analysis,
for example, can be used to separate the contibutions from different MUAPs in or-
der to detect they discharge timings [5]. Other methods have been proposed in the
literature, as the convolution kernel compensation [13], where the mixing matrix A
is compensated in order to recover the source trains only.

In the next sections, the convolutive model used for the surface EMG data is
presented. Subsequently, a brief introduction on the convolution kernel compensa-
tion will be given and a new algorithm, based on ICA [5], will be explained with
simulation results.

3.3.1 Data Model

The convolutive model is here explained in the case of the surface EMG: the elec-
trode observations can be thought as linear weighted sums of different source sig-
nals, where each signal is a firing train belonging to a different MU. As said in the
first chapter, the model results in a causal convolution (Equation 1.2), where each
MUAP train is described as the convolution of the MUAP with a pulse train (that
is in general a series of Dirac deltas indicating the MU firing times).

Assuming M discrete-time observations, each of them being a mixture of N
different sources of L samples length, the convolutive mixture can be extended to
the following matrix form:

x(t) = As(t) + n(t) (3.7)

where x(t) = [x1(t), x2(t), . . . , xM(t)]T is a vector containing all the mixtures, as
taken by each of the M electrodes, s(t) = [s1(t), s1(t−1), . . . , s1(t−L), s2(t), s2(t−
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1), . . . , s2(t − L), . . . , sN(t), . . . , sN(t − L)]T is a vector containing the N sources,
each of them with L delayed replicas in order to allow matrix multiplication and
n(t) is zero-mean white Gaussian noise. The mixing matrix A contains the different
MUAP waveforms as picked up by each electrode:

A =

 a11 . . . a1N
...

. . .
...

aM1 . . . aMN

 (3.8)

where aij = [aij(1), aij(2), . . . , aij(L)] is the waveform of the jth muap, as detected
by the ith electrode.

The surface EMG recordings were simulated through the convolutive model ex-
plained above. Randomly generated firing trains, composed by 0 or 1, the second
standing for MU discharge times, were convoluted with different MUAP waveforms
that take account of the scaling between each electrode observation and of the dif-
ferent shapes of the MU spikes. Different contraction levels can be simulated by
increasing the number of active MU (spatial recruitment) and the number of spikes
in each train (the firing rate, that reflects temporal recruitment). The MUAP
discharge patterns, resulting in a M × T × N matrix, where M are the available
observations, T is the length in time of the signals and N is the number of active
MUAPs, were then summed to obtain the mixtures on the electrodes (a matrix
with 63 electrodes was assumed, see Figure 3.4).

Figure 3.4: The 9× 7 electrode grid with a single MUAP waveform, as detected by
each one of the electrodes.
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3.3.2 Convolution Kernel Compensation

As said before and based on the proposed model, the MUAP trains can be consid-
ered as uncorrelated pulse sequences. With this assumption, the convolution kernel
compensation (CKC) focuses on the pulse trains only and tries to compensate the
contribution of the mixing matrix A, with no interest in the reconstruction of the
last one. The MUAP waveforms, i.e. the kernels, could be subsequently obtained
by spike triggered averaging, after recovering the pulse trains.

The original observations are extended with K − 1 delayed replicas, such that
the extended matrix x̄ contains M ·K rows. The mixing matrix of Equation (3.8)
then becomes a KM ×N(L+K − 1) block matrix, where each block Aij is called
convolution kernel and is defined as:

Aij =


aij(0) aij(1) . . . aij(L− 1) 0 . . . 0

0 aij(0) . . . aij(L− 2) aij(L− 1) . . . 0
...

. . . . . . . . . . . . . . .
...

0 . . . 0 aij(0) . . . aij(L− 2) aij(L− 1)

 (3.9)

Each convolution kernel contains the contribution of the jth source and its K − 1
delayed replicas, since by extending the ith electrode observation, also the sources
are extended.

The method is here explained in the overdetermined case, assuming that the
number of observations exceeds the number of sources, but it can be extended to
the underdetermined case mantaining good performances if the extension factor is
large enough to guarantee N(L+K − 1)/KM < 2.

The convolution kernels are compensated by computing the activity index, that
can be seen as a global indicator of the pulse train activity:

γ(t) = x̄T (t)C−1
x̄x x̄(t)

= s̄T (t)AT (AT )−1C−1
s̄s A−1As̄(t)

= s̄T (t)C−1
s̄s s̄(t)

(3.10)

where C−1
x̄x and C−1

s̄s are the inverse of the correlation matrices respectively of the
extended observations and of the extended sources, the first being calculable from
the original data as Cx̄x = E[x̄(t)x̄T (t)]. Then, being t0 a time instant when only
a single train is active, its timecourse can be reconstructed by using x̄T (t0) as
premultiplying vector in Equation (3.10).

Since finding a time instant with no overlapping pulses is not an easy task, a
probabilistic approach is used by starting from the median argument of the activity
index γ and by computing all the possible products combinations between a number
R of reconstructed trains and finding the pulses that exceed a predefined threshold.
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The CKC is an iterative procedure, as after a MUAP has been reconstructed,
its discharge timings are set to 0 in the activity index and the method is applied
again in this way until all the MUAP trains have been reconstructed.

3.3.3 ICA Decomposition

Individual motor unit discharge timings were reconstructed through the applica-
tion of ICA and k-means clustering, as described in [5]. The following ICA-based
algorithms were evaluated.

� Infomax, that is based on the maximization of mutual information between
the input and the output of a neural network. The method minimizes the
mutual information between the sources [1].

� FastICA, that minimizes gaussianity through a measure of negentropy [14].

� RobustICA, that uses a kurtosis contrast function [25].

The three algorithms are available in EEGLAB [8], an open source toolbox that pro-
vides a graphical user interface and built-in functions that can be easily integrated
in custom made Matlab scripts.

The k-means clustering was used after the application of ICA because each inde-
pendent component does not necessarily contain a single MU discharge sequence, as
the number of sources could be much higher than the number of electrodes (under-
determined case). In order to obtain a valid value for the number of clusters, the
algorithm requires as input the approximate mean number of spikes of the MUAP
trains. An example of ICs probably containing more then a single MUAP time-
course is shown in Figure 3.5, where ICs 2 and 4 do not present a single and distinct
pattern in the peaks distribution: in these situations the application of a clustering
algorithm is crucial in order to correctly detect at least a MUAP train. For each
IC, the value of kurtosis is also showed: as expected, ICs 2 and 4 have the smallest
values, indicating that they are closer to a Gaussian distribution. This is consistent
with what was said in Chapter 1, as the sum of more variables is more Gaussian
then a single variable, thus reflecting in a smaller value of kurtosis. Note also the
small delay of IC 5 with respect to IC 6, indicating that they contain the same
MUAP with a few samples of delay. This is caused by the extension factor, that
by increasing the number of observations, also increases the number of sources.

The main steps of the decomposition are here summarized:

1. Extend the EMG signals by adding K − 1 delayed replicas to each row, such
that the matrix x is now composed by M blocks of K observations.

2. Whiten the signals using singular value decomposition (SVD). This means
applying a premultiplying matrix T to the data such that the obtained obser-
vations xw = Tx have a covariance matrix equal to the identity matrix I. The
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IC 1

Kurt=48.9

IC 2

Kurt=10.4

IC 3

Kurt=50.5

IC 4

Kurt=8.8

IC 5

Kurt=54.2

IC 6

Kurt=52.9

Figure 3.5: Example of portions of ICs obtained by applying ICA. For each IC the
value of kurtosis is indicated. ICs 1, 3, 5 and 6 clearly show a single MUAP shape
repeated over time, while in ICs 2 and 4 is more difficult to find a single MUAP
train.

rows of x are then decorrelated (see APPENDIX).

3. Apply one of the ICA algorithms to the whitened signals.

4. Given the M ·K obtained independent components, identify the discharge tim-
ings through peak detection and classify them through k-means. This is an
iterative operation, where for each iteration the independent components are
scanned one by one and their peaks, both positive and negative, are detected
and given as input to k-means. The number of obtained clusters is defined
as k = n/spike th rounded to the smallest interger, where n is the number of
detected peaks and spike th is the threshold on firing events provided as input
to the decomposition algorithm. Only the most homogeneous cluster is man-
tained and added to the output. Before starting the next iteration searching
for another possible firing pattern, the peaks in the detected discharge timings
are subtracted from the corresponding IC.

5. Remove the duplicate trains, as the presence of the delayed replicas could
bring to the identification of the same MU discharge pattern, only delayed of
a few samples. This is done by computing the cross-correlation between all
the detected trains: if two or more trains exceeds a similarity threshold, only
the train resulted from the more homogeneous cluster is mantained.

6. Given the discharge timings and the original data, recover the MUAP time-
courses through spike-triggered averaging.
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Simulation Results

The algorithm was tested in different situations with a variable number of MUAPs,
depending on the force level.

The evaluation of the decomposition is not an easy task in case of experimental
EMG data. Intramuscular recordings able to isolate single MUAPs are needed, even
if also their reliability should be validated. Conversely, in the case of simulated data,
the ground truth was available, thus the performances of the algorithm could be
evaluated precisely. It has to be said, however, that the simulations are only a
model of reality (for example, they do not take account of the possible change of
shape of the MUAP waveforms during time), so the reliability of the decomposition
algorithm on experimental data should be further investigated.

The number of correctly recovered MUAPs was evaluated by computing a nor-
malized maximum of the cross-correlation between the reconstructed and the orig-
inal trains:

XCi,j =
2 ∗max

( ∫
ŝi(t)sj(t+ τ)

)∑T
k=1 ŝi(k) +

∑T
w=1 sj(w)

(3.11)

where si are the simulated firing trains and ŝj are the reconstructed ones. The
values of XC ranges from 0 to 1, the latter indicating perfect reconstruction. For
all the reconstructed trains with XC > 0.9, the timecourses of the MUAPs on
the electrodes were recovered with a spike triggered averaging. A 2-D correlation
coefficient (CC) was then computed between the original MUAP timecourses and
the reconstructed ones on all the 63 channels in order to have an overall index of
the goodness of the reconstruction for every single MUAP.

The reconstructed trains on all the channels were then summed to obtain the re-
constructed interference signal, that was used to evaluate the overall decomposition
yield:

DY (%) = 100− 100 ∗ RMS(x− x̂)

RMS(x)
(3.12)

where x is the original matrix containing the EMG signal and x̂ is the reconstructed
one, obtained as the sum of all the reconstructed MUAPs. RMS is the root mean
square, that is a useful parameter to determine the strength of contraction of a
muscle from the sEMG and is dependent from the number and from the size of the
MUAPs.

In order to provide a simple example of decomposition, two simulations were
carried out with respectively 5 and 10 MUAPs with a matrix of 32 channels and
an extension factor K = 2. Since the resulting signals were very simple, a spatially
white Gaussian noise (that is a reasonable approximation of EMG noise) with signal
to noise ratio (SNR) of 30 dB was also added to the observations. In the first case,
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all the three ICA algorithms correctly reconstructed the 5 MUAPs, with a mean
decomposition yield of 68,76%. In the second simulation, the dectected MUAPs
were 4 for robustICA and infomax and 5 for fastICA, with a mean decomposition
yield of 55,1%, indicating that as the number of motor units increases, the algorithm
has some limitation in detecting the MUAPs with lower frequency or with a smaller
waveform, as can be seen in Figure 3.6, where a 1-second portion of the original
and reconstructed signals on channel 10 is shown as example. Moreover, the ICA
approach highly suffers the presence of Gaussian sources, so the presence of the
noise on each channel, even of small amplitude, causes a loss of performances of the
ICA algorithms. The EMG decomposition on real data with ICA is then performed
with the assumption that not too many Gaussian sources are present.

Figure 3.6: Example of a portion of simulated and reconstructed signals on channel
10. On the left, a simulation with 5 MUAPs and a mean decomposition yield of
68,76%, on the right a simulation with 10 MUAPs and a mean decomposition yield
of 55,1%.

In order to test the performances in a more realistic condition, three different
levels of force were considered: 3%, 20% and 50% MVC, with a number of MUAPs
ranging from 80 (3% MVC) to 286 (50% MVC). Moreover, with the increase of the
force level, the frequency of the discharge timings of the MUAPs highly increased.
Five simulations were performed for each force level and for each of the three ICA
algorithms. The results are showed in Figure 3.7 and Figure 3.8. The number of
correctly reconstructed sources, the correlation coefficient obtained by comparing
them with the simulated trains and the decomposition yield are showed; on the
top right of each panel, a portion of the timecourse from electrode 10 with the
superimposed reconstructed signal is also reported.

As said before, with the increase of the force level, the spikes highly increased
with it: expecially at high levels of force, the new recruited motor units have high
discharge frequency. Moreover, the interference signal becomes highly complex
and the problem, having only 63 available observations, becomes more and more
underdetermined. As can be seen, the performances of the algorithm were very
affected fom this fact. Note that the extension with the K − 1 delayed replicas
does not seems to help in this sense, since with the replicas also the independent
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Figure 3.7: Simulations with 3% MVC (left) and 20% MVC (right). The number
of correctly reconstructed MUAPs, the correlation coefficient, the overall yield of
decomposition and a portion of simulated and reconstructed signals are showed.

sources increased with a factor K − 1. The extension factor can then be seen as a
trick to obtain an higher number of independent components and then to increase
the probability to detect an higher number of different MUAPs. Moreover, it
allows to keep the assumptions of ICA valid in case of small delay between the
sources in different channels (for example due to propagation if the electrode array
is parallely oriented to the muscle fibers). In fact, without the extension factor, a
source contribution with a small delay on a channel with respect to the same source
contribution on another channel would be treated as an independent source.

Figure 3.8: Simulation with 50%
MVC. The number of correctly re-
constructed MUAPs, the correla-
tion coefficient, the overall yield of
decomposition and a portion of sim-
ulated and reconstructed signals are
showed.

It is important to stress that a complete decomposition recovering all the MUAPs
cannot be reached, even with small levels of force. In the literature one can find
that state of the art methods can detect no more then 50% of the MUAPs [6], with
a number of simulated trains equal to 86 (that are similar to the previous simulated
force level 3%) and with higher extension factors, that requires higher computa-
tional power and increased time for the decomposition. Moreover, if the threshold
of similarity between the reconstructed and the simulated trains is lowered, more
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MUAPs can be considered as correctly reconstructed, even if they possess only a
partial match with the simulated ones.

By comparing the three ICA algorithms, infomax seems to reach the best re-
sults, with the higher number of reconstructed MUAPs and a good decomposition
yield. However, the reconstruction is less accurate for infomax (as can be seen from
the lower correlation coefficient), while robustICA provides high accuracy in the
reconstructed trains and mantains the more stable results in all the simulations.
With high levels of force, the MUAP trains have very different numbers of spikes,
so the method has some limitations due to the k-means clustering, that needs to
know in advance an approximate value for the number of discharge events in order
to compute the number of clusters. Different methods to discriminate between the
spikes of the independent components can be further investigated, in order to ob-
tain good performances even if the trains have very different number of discharge
timings.
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Chapter 4

An Alternative Method for

Crosstalk Reduction

4.1 The Problem of Crosstalk

Crosstalk is still an open problem in the EMG acquisition. As discussed in the
previous chapter, it limits the applications of surface EMG and it is impossible
to remove with simple linear filtering, as also part of the signal of interest would
be removed. Moreover, it is also difficult to assess and evaluate its contribution,
as the crosstalk signal can assume a different waveform with respect to the signal
recorded on the muscle that produces it because of the propagating medium and
of the position of the electrodes. This makes unreliable the crosstalk quantification
by using the correlation between the signals, that would be the more simple and
intuitive way to evaluate its contribution. In fact, an higher value could mean
only a correlation in motor units discharge pattern in adjacent muscles, rather then
a common electrical source [15]. This means that also co-activation of adjacent
muscles can be erroneously confused with crosstalk.

The techniques discussed in the previous, such as the SOBI method, are based
on assumptions that are not always valid in experimental conditions: for example,
the mixing matrix could change during the recording, so it should be calculated
many times for each new portion of data. This limits real-time applications of BSS
techniques, as they are usually computational expensive.

The method proposed in the following is based on an adaptive filter, that fits
to the anatomical and experimental conditions (e.g. conductivity of the tissues,
position and type of the electrodes) and is stable and suitable for real-time appli-
cations. It mantains the energy of the muscle of interest, by reducing that from
other sources, by filtering both in time and among the channels [17].
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4.2 Optimal Spatio-Temporal Filter

An Optimal Spatial Filter (OSF) can be designed with a linear combination of the
data from different channels weighted by the coefficients wi, such that it maximizes
the signal to crosstalk ratio (SCR):

SCR = 10log10

∥∥∥∥∥
M∑
i=1

wiSi(t)

∥∥∥∥∥
2

∥∥∥∥∥
M∑
i=1

wiCi(t)

∥∥∥∥∥
2 (4.1)

where Si(t) is the portion of signal from the muscle of interest in the ith channel
at time t and Ci(t) is the crosstalk contribution. The log-function can be maximized
by maximizing its argument, that can be rewritten as:

J(w) =

∥∥∥∥∥
M∑
i=1

wiSi(t)

∥∥∥∥∥
2

∥∥∥∥∥
M∑
i=1

wiCi(t)

∥∥∥∥∥
2 =

wTSTSw

wTCTCw
=
wTRSw

wTRCw
(4.2)

where RS and RC are the autocorrelation matrices of the signal and of the
crosstalk.

The optimization problem can be solved by maximizing the numerator, such
that wTRCw equals 1. The study of the Lagrangian:

LP =
1

2
wTRSw +

1

2
λ(1− wTRCw) (4.3)

brings to the following equation, that is an eigenvalue problem:

RSw = λRCw −→ R−1C RSw = λw (4.4)

However, the matrix R−1C RS is not symmetric, but a change of variable and the

introduction of the vector v = R
1/2
S w brings to:

R
1/2
S R−1C R

1/2
S v = λv (4.5)

The eigenvalues λk are then positive and the eigenvectors vk are orthogonal. There-
fore, the maximization of the SCR is performed with the detection of the largest
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eigenvalues, as the associated eigenvectors correspond to the optimal weights for
the filter.

The OSF can be generalized by considering also past values of the EMG: this
brings to the Optimal Spatio-Temporal Filter (OSTF), that selects the weights of
a linear combination of present and past values from different channels in order to
maximize the SCR. This is done by including the correlation matrices of the delayed
data in the eigenvalue problem of Equation 4.5. The optimal weights can then be
selected by providing to the filter a portion of data (the training set) containing
selective activations of the muscles.

The OSTF has two parameters that can be changed: the delay τ between subse-
quent samples and the order of the temporal filter. This can be done, for example,
by evaluating the performances on a validation set, in order to select the best
parameters and avoid overfitting on the training data.

4.2.1 Experimental Signals

The signals were acquired at LISiN, Politecnico di Torino, with the MEACS system,
by using two linear adhesive electrode arrays. Each array had 32 channels and was
connected to a sensor unit that performed conditioning, sampling and wireless
transmission of the 32 monopolar signals. The sample frequency was 2048 Hz.

One array was placed on the Tibialis Anterior (TA), the other on Peroneus
Longus (PL), that are two antagonist muscles of the lower leg. The TA is involved in
dorsiflexion and inversion of the foot, while PL participates in the plantarflexion and
eversion. Figure 4.1 shows the electrode placement and summarizes the movements
performed by TA and PL.

Figure 4.1: Position of the two electrode arrays (left) and movements in which TA
and PL are involved (right).

39



4 – An Alternative Method for Crosstalk Reduction

The protocol consisted in the selective activation of the two muscles, by perform-
ing isometric dorsiflexions and eversions at three different levels of force. For each
muscle, four trials were performed, with a low, medium and high level of force. By
recording the signal on the muscle that was not active, the crosstalk contribute was
evident, as no signal was expected on that channels. An example of a portion of
the recorded signals during the dorsiflexion task is showed in Figure 4.2, where TA
is active and propagation of the potentials starting from the innervation zone (IZ)
can be appreciated. PL is expected to be inactive in this situation. However, small
amplitude signals are visible also on this muscle: they don’t show a clear direction
of propagation and are expected to be crosstalk from the TA. Note that, in order
to make clearer the visualization, the signals were normalized with the maximum
value of each muscle: the signals detected on PL are an order of magnitude smaller
than those detected on TA, as can be seen from the normalization value.

Figure 4.2: Portion of signals recorded on TA and PL during a dorsiflexion task.
The innvervation zone and the directions of propagation are showed on the signals
from TA.

Results

In order to evaluate the performances of the filter, two of the trials were used as
training set, while the other two were used as test set. The training set was build
by concatenating alternative activations of the two muscles, recorded on different
monopolar channels placed both on TA and PL. In this first part, TA was considered
as the muscle of interest, while PL was the source of crosstalk. The signals were
selected from 6 channels: 3 of them were located on TA, the other 3 on PL. The
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selection of the channels for the training set is a critical point, as it influences the
weights of the filter and the subsequent results: after a visual analysis, channels
from 27 to 29 on both the arrays were chosen, as the signals mantained a similar
shape and propagation was evident for TA. The best results on the training set
were obtained with a length of the temporal filter equal to 8 and with a delay
between consequent samples equal to 2: these parameters were then kept fixed in
the following. The obtained weights were applied to the test set: it was composed
by simulating a simultaneous activation of the two muscles. The signals recorded
on TA during the PL activation (i.e. the crosstalk) were summed to the epochs of
TA activations. The same thing was done on PL, where the TA contribute recorded
on it during dorsiflexions was summed. Thus, the test set is similar to the training
set, but the activations are not yet selective, as they overlap in time: infact, the
length of the test set is the half of that of the training set. The obtained signals
are showed in Figure 4.3.

Figure 4.3: Mean training signal on the channels placed on TA with superimposed
surrogate (left). Mean test signal with superimposed surrogate (right).

On the left, the mean training signal on the channels placed on TA with the
superimposed surrogate is showed. The epochs containing TA activations are high-
lighted in green. The other epochs correspond to crosstalk, as they contain sig-
nals recorded on TA during PL activations. On these epochs, the reduction of
the crosstalk contribution when computing the surrogate channel is evident. On
the right, the mean test signal with the superimposed surrogate is reported: the
crosstalk reduction is particularly evident for low levels of force.

A second test set was created in the same way as the first showed before, but
moving of one channel towards the innervation zone: thus, channels from 26 to 28
on both muscles were considered. The filter was applied with the same weights
to this second test set. The obtained surrogates from the two test sets were then
used to compute the conduction velocity (CV) of the muscle fibers, by using a
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maximum likelihood estimator [10] and by dividing the signals in epochs of 500 ms.
SD channels obtained from the monopolars used to build the surrogates were used
as reference. The CV was also computed on the test sets with crosstalk and on two
surrogates obtained by applying the filter to two new test sets, built with the same
electrodes of the first but with no crosstalk contribution summed on them. The
error between the couples of estimates was evaluated as:

ERR =
std(CV1 − CV2)

std(CV1)
(4.6)

where CV1 were the CV values computed on the epochs of respectively the original
SDs and the surrogates and CV2 were the values of CV of the epochs of the test sets
corrupted by crosstalk and of the surrogates obtained by the test sets without the
crosstalk. As expected, the error on the surrogate channels was on average lower
then that on the SD channels. This means that the OSTF correctly removed the
crosstalk, by leaving the signals almost unchanged when this was not present. The
crosstalk highly biased the CV estimates on the SD channels, giving rise to unstable
results. The errors on the CV estimation are summarized in Table 4.1, for different
numbers of channels used to train the filter (and then to build the surrogates). For
each number of channels, the three values correspond to a low, medium and high
level of summed crosstalk.

Number of channels Single differentials Surrogate channels

4

0,2364 0,2918

0,4743 0,3763

0,3290 0,2810

6

0,3782 0,2142

0,4324 0,2043

0,6544 0,2902

8

0,2789 0,2965

0,4170 0,2523

0,5526 0,2930

Table 4.1: CV errors on TA for different numbers of channels used for the OSTF
and for low, medium and high levels of summed crosstalk.

The best results were obtained with 6 channels: even if the information given to
the OSTF is less than that provided with 8 channels, the shapes of the waveforms
were more homogeneous and the surrogate channels obtained were probably more
accurate. Note that the CV estimate with SD channels outperformed the surrogate
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estimate in only two cases. They both correspond to a low level of crosstalk: this
means that the difference between the original SD channels and the test signals
with added crosstalk was very low and this brought to a lower bias in the CV
estimates. Moreover, the OSTF was more prone to overfitting in this situation, as
the training data contained higher levels of crosstalk with respect to the test data.

Regarding the peroneus, the eversion tasks turned out to be not selective: a
clear activation of TA could be seen from the signals recorded on this muscle.
This reflected also in a high bias in computing the conduction velocity due to
the crosstalk contribution on PL. In this situation, 3 single differential channels
(obtained offline from the recorded monopolars) were selected on each muscle for
the training of the OSTF. The obtained surrogates and the original SDs used to
generate them were then used to compute the CV, by using epochs of 500 ms.
The CV was also computed for the SD channels corrupted by crosstalk and for the
surrogates generated with noise free data, in the same way used for the dorsiflexion
task explained before. Figure 4.4 shows the results of CV estimates for the different
epochs, with the summation of a high level of crosstalk. Note the higher values for
both the noise free and the SD channels with summed crosstalk, that are out of
the physiological range. By using the surrogate channels, however, the values seem
to be more reasonable. The reduced error between the couples of CV estimates
suggests that the summed crosstalk contribution (for all the three levels) recorded
during the dorsiflexion has not great effect: the OSTF seems to reduce the crosstalk
that was already present on the signals, by making more feasible the CV estimation.
Infact, the filter was trained with the signals recorded on TA during activation, so
it learned to reduce them. This is in line with [17], where the OSTF gave good
results in simulation also with a training set made with few not selective activations
of the muscle of interest.

Figure 4.4: CV estimates on PL for the original SD channels with and without a
summed high level of crosstalk and for the surrogates obtained from them.
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APPENDIX

Eigendecomposition

The eigendecomposition is the factorization of a matrix A in its eigenvalues and
eigenvectors:

Av = Dv (A.1)

where v contains the eigenvectors of A on the columns and D is a diagonal matrix
containing the eigenvalues λi. The equation in the eigenvalues then becomes:

(λI−A)v = 0 (A.2)

Since v is non-zero, the eigenvalues can be obtained by computing det(λI−A).

Note that, in order to perform this decomposition, the matrix A must be diag-
onalizable, i.e. it has to be squared.

Singular Value Decomposition

If the matrix A is not a square matrix, eigendecomposition cannot be performed.
However, it can be factorized with singular value decomposition (SVD), that can
be considered as a generalization of eigendecomposition:

A = UΣVT (A.3)

where A is a M × N matrix, U and V are respectively M × M and N × N
unitary matrices and Σ is a diagonal matrix that contains the singular values σi
in descending order. Note that the singular values are the square roots of the
eigenvalues of the square matrices AAT and ATA , while unitary means that
UUT = I and VVT = I.

44



4 – An Alternative Method for Crosstalk Reduction

The vectors ~ui and ~vi are the eigenvectors of AAT and ATA, respectively. They
are placed on the columns of U and V and are called singular vectors.

Spatial Whitening

Spatial whitening is a procedure to transform the data such that it has an identity
covariance matrix, i.e. the dimensions are uncorrelated and the variance along each
dimension equals to 1.

By considering the covariance matrix:

C = Cov(X) = E[XXT] =
XXT

n
(A.4)

that is symmetric and positive semi-definite, it can be decomposed with eigenvalues
and eigenvectors:

C = EDE−1 (A.5)

where D is a diagonal matrix containing the eigenvalues on the diagonal and E is
the matrix of eigenvectors.

Then, by rearranging (A.5), the covariance matrix can be transformed into the
diagonal matrix D:

E−1CE = D (A.6)

Given a matrix X, the goal is then to find a matrix WD such that:

Y = WDX (A.7)

where Y has a diagonal covariance D:

D = Cov(Y) =
WDX(WDX)T

n
= WDWT

DC (A.8)

then, from Equation (A.6), we obtain:

E−1CE = WDWT
DC (A.9)

by premultiplying by C−1 and since E−1 = ET:
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ETE = WDWT
D (A.10)

then, WD = ET, that is the transpose of the matrix of eigenvectors of the covariance
matrix.

Now the data is uncorrelated. But also a unitary variance is desired such that
D−1D = I, that can be written as:

D−1 = D−1/2ID−1/2 (A.11)

then, by using (A.6), we found the matrix WW that brings to an identity covariance
matrix:

WW = D−1/2ET (A.12)

Note that the whitening procedure can be performed also with SVD, by using
singular values and singular vectors in place of eigenvalues and eigenvectors.

Pseudoinversion

The inverse of a matrix A is defined as:

A−1 =
1

det(A)
adj(A) (A.13)

where adj(A) is the adjoint of A. In order to perform the inversion, the matrix
must be squared and must have non-zero determinant: otherwise pseudoinversion,
that can be considered as a generalization of inversion, is needed.

The pseudoinverse of A can be obtained from its SVD:

A# = VΣ−1UT (A.14)

Note that, given a linear system Ax = b with A being a not-squared matrix, the
solution can be obtained by minimizing:

y = min
x
‖Ax− b‖2 (A.15)

then, by premultiplying by AT and being y orthogonal to Im(A), the solution can
be recovered:
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ATy = AT(Ax− b) = 0 (A.16)

ATAx = ATb

x = (ATA)−1ATb (A.17)

where (ATA)−1AT is the pseudoinverse of A.
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