
 

 

Chapter 1 

 

Introduction  
 

This chapter introduces the reader to the basic fundamentals of Self-Organized Criticality (SOC) 

Theory applied in Neuroscience and tries to put in clear light the most important aspects of 

the matter, based on the knowledge that modern Neuroscience has acquired so far. 

Furthermore, it explains the main purposes of the thesis project along with the description of 

its organization. 

SOC Theory has been initially introduced by Bak et. al [1] and defined as a tendency of 

dynamical systems that share both temporal and spatial degrees of freedom to rearrange 

themselves towards a critical state independently from their initial conditions, i.e., the 

system’s behaviour is attracted to a critical state1. Such systems are “just barely stable with 

respect to further perturbations” that are likely to alter it both at its least scale length – causing 

local changes, typical of very stable states – and at its greatest scale length – causing 

avalanches, typical of very unstable states.  

But how can we define a critical state? The term “critical” has been firstly used in physics to 

indicate the point at which a system is at the edge of two clearly different behaviours – think 

about the critical point of CO2, defined as the pair of critical temperature and pressure above 

which the substance cannot coexist in liquid and vapour phase but changes it to liquid, gas or 

super critic fluid.  

From a dynamical point of view, we may say that a system is in a critical state depending on 

some parameter I when, if I is subjected to small perturbations with respect to some value IC, 

no matter how small they are, the system will jump between two topologically different phase 

portraits, each one of which puts it in the circumstance of potentially showing two qualitatively 

different behaviours, depending on its initial conditions; in other terms, when the system 

expresses a bifurcation [2]. 

The system that is going to be studied is a network of dissociated cultures of rat’s neurons 

manifesting spontaneous activity, i.e., no inputs are given. Such system is dynamical, since it 

can be modelled as a set of N interacting units – the neurons – whose behaviour is determined 

by N-tuples of time-dependent variables, each one capturing the state of the single unit. Any 

healthy and mature neuronal network typically, though not always, exhibits prolonged 

periods of silent activity characterized by few units undergoing action potentials (also known 

as spikes) and sudden moments of bursts of widespread activity that expands throughout all 



the network inducing a considerable amount of units to spike in a quasi-simultaneous fashion 

[3], [4], [5]. The latter phenomenon is called neuronal avalanche.   

 
1- Do not confuse the critical state towards which a system may be attracted to with its attractor(s), namely, 

the equilibrium point(s) of the system where its state variable(s) remain constant in time. The definition 

of critical state will be given just ahead. 

 

The importance that SOC theory’s role plays in these surroundings is that it let us differentiate 

the network’s activity into three different dynamical states, named subcritical, critical and 

supercritical and sustains the idea that a neural network’s optimal performances to storage and 

process information arise when it operates in a critical state [6], [7].  

By studying the avalanche size and lifetime distributions, namely, the number of neurons 

recruited in each avalanche and their temporal duration, as well as other parameters that are 

descriptive of the avalanches’ dynamics, it is possible to discern the three aforementioned 

states. As firstly introduced by Beggs and Plenz [8] in the context of critical branching 

processes, avalanche size distributions share a tendency to follow power law trends whose 

exponents are linearly dependent with their branching parameter. Moreover, a critical 

branching parameter of 1 has been found for exponents close to −3/2 [8], [9]. 

Another key topic we are going to deal with is the concept of functional connectivity (FC). 

Functional connectivity measures a statistical dependence between neurophysiological events 

located at different points of a neural network [10] without giving any clue about causal 

effects, that is, any sign of influence that one point may exert to another and any information 

about the anatomical connectivity, namely, how different points of the network are connected 

together by means of structural links between them. Many studies have proposed that FC may 

be fundamental to understand how different cortical brain areas – often called modules – 

cooperate together in order to exert a precise function [11], [12] and that it can reveal, though 

not generally speaking, the presence of anatomical connectivity between them [13].  

Usually, FC measures are evaluated amongst all possible pairs of signals coming from a  

simultaneous, multi-sites recording system, be it the one used in electroencephalography or a 

micro-electrode array (MEA), by means of cross-correlation statistics [14], [15], but recent 

studies have accessed FC also by adopting multivariate approaches in order to infer all the 

possible direct and indirect effects that neurons or groups of neurons may exert on others [16], 

as well as other measurements that go by the name of synchronization measures [17] and 

spike metrics [18] that don’t require the hypothesis of wide sense stationarity to be true.   

It is necessary to specify, moreover, that functional dependencies may exist for some short 

intervals of time and disappear soon after [19] and that what they can tell us is just an 

approximate description of the network, for the activity of every single unit composing the 

network has to be detected during a prolonged period of time in order to access a full mapping 

of its functional connections [20]. 

In this work, we will try to evaluate FC by making use of a variety of methods – most of which 

are model free methods, i.e., no assumptions about the processes that have generated the data 

are given – amongst pairs of spike trains recorded from spontaneous activity, so we may 

assume that the function wielded is a “resting state function” and try to link it with SOC  



 

Project’s Objectives 

 
This thesis project has born as a mutual collaboration between Politecnico di Torino and 

DIBRIS Genoa’s faculty of engineering (Dipartimento di Informatica, Bioingegneria, Robotica 

e Ingegneria dei Sistemi) under the superintendence of Professor Luca Mesin and Paolo 

Massobrio. Its main purpose is trying to correlate the emergence of dynamical states with 

functional connectivity techniques, a work sustained by the perspective – and the hope – of 

finding some good answers to the fundamental question: ”Which functional connectivity 

measure can better distinguish the three dynamical states?”. To move in response of this query 

we are going to make use of both experimental and simulated data, to-develop and pre-

existing algorithms and past knowledge brought to light by researchers’ experiences.  

All the computational operations and algorithm scripts have been executed and developed on 

a Notebook PC with clock rate of 2.60 GHz and 16 Gb RAM, by means of Matlab 2018b 

software (MathWorks, Natick, MA, USA).  
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