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Abstract

Machine learning algorithms need carefully-annotated datasets, these are not always
available for medical images. When it is possible the annotations, such in mammog-
raphy, need the presence of experts and it is much more costly than general object
detection task. Moreover, the opinion of the experts may not be unanimous. As a
consequence, in many cases may happen that it is not feasible having scrupulously-
annotated datasets. One alternative solution is to use the annotations that are
already available in clinics or hospitals, which may not be particularly made for
research. These annotations are usually bigger than the actual size of the lesions.
This enlargement can be considered as noise, which is been modeled and injected in
a publicly available dataset. By further exploring the behavior of the Faster R-CNN,
it has been observed that the matching criterion used for labeling anchor/bounding
boxes plays an important role. It has been observed this model tends to overfit with
small datasets. For this reason, an alternative samples selection has been proposed,
which shows a significant improvement. The noise injected produces a decrease in
the quality of the detection which proves the lack of robustness of the Faster R-CNN.
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Chapter 1

Introduction

The breast cancer, according to the American Cancer Society, is the most diagnosed
cancer with more the 250 thousand cases per year in the USA and more than 2
million all over the world. Latest statistics show that it is the leading cause of
death in the less developed countries whereas it becomes the second in countries
with higher income [10]. According to the National Cancer Institutes SEER, the
5-year survival rate varies at different diagnosis stages as illustrated in Figure 1.1.
Even though almost 100 % of the cases can be healed at the early stages, the risk
becomes significantly higher by the time cancer propagates. In the last year, there
have been numerous signs of progress, both at the medical research level and in
terms of computer-aided diagnosis that had a great consequence on the survival
rate.

5-years breast cancer survival rate

100%
90%
80%
70%
60%
50%
20%
30%
20%

10% I
0%

Stage O Stage 1 Stage 2 Stage 3 Stage 4

Figure 1.1: 5-year survival rates at different stages of breast cancer

The first CAD systems that are able to detect lesions on mammograms were de-
veloped in the 70s. The earliest methods were based on image processing, using
hand-crafted features like the lesion shape, distribution that are evaluated also by
the medical experts in traditional diagnosis. Since this process is based on the
human knowledge of diagnosing a lesion, the performance is limited to the expert
definition. These restrictions of the traditional methodologies together with the
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1 — Introduction

increase of the availability of digital data, booster calculation systems, led to de-
veloping Machine Learning algorithms, increasing computational power motivated
researchers to apply artificial intelligence solutions in the medical imaging field.
Even though AT algorithms could reach human-level performance on several medical
tasks especially in recent years, there is still a lot to discover in this field. In this
thesis, I investigated the robustness and the performance of deep learning algorithms
in medical applications, in particular, I will focus on an object detection system for
the detection of breast masses. The aim of this study is analyzing the effects of label
noise injected on the available dataset, trying to model the real doctor detentions
during medical trials to verify the system with real data.

1.1 Problem and motivation

Survival rates of breast cancer greatly vary worldwide. In high-income countries
like North America, Sweden, and Japan, 80 % of the patients could be success-
fully healed whereas this rate is around 60% in middle-income countries and falls
below 40% in low-income countries. Recent studies show that the availability of
advanced screening systems increases the early detection rate and this fact could be
an explanation for this variation among countries [16].

Historically, the diagnosis of breast cancer has been accomplished by experts as ra-
diologists and physicians. However, this decision was bounded to human knowledge
and experience and the visual capabilities of the medical expert. This human factor
involves numerous variability, the greater is the reduction in performance with the
increase in the weariness of the operator. The second factor of weakness is the time
available to doctors to analyze a mammogram and its cost.

In most medical imaging tasks, besides diagnosis, finding the location of potential
lesions is of high importance, that was the main purpose of the CAD system. Nowa-
days, the evolution of neural networks and in particular object detectors based on
deep neural networks led to the overcoming of CAD systems. It should be em-
phasized that most of the systems on the market are not based on neural network
systems, therefore the major field of this work is for research purposes.

The use of deep learning models is increasingly favored by the amount and quality of
training data. There is a widespread sentiment that data starvation is holding back
the development of machine learning applications in the field of medical imaging [23].
A possible solution that requires minimum manual effort is to harvest lesion anno-
tations retrospectively from existing picture archiving and communication systems
(PACS) and reading workstations [47].

Nowadays, most of the radiologist’s workflow is digitalized and much information is
available in the form of free-text reports.

More interestingly, radiologists routinely annotate clinically meaningful findings in
medical images, using several types of bookmarks such as bounding boxes, arrows,
lines or diameters to bookmark and measure disease patterns [47] [23]. Such an-
notations are recorded in PACS or reporting software and have proven a viable
alternative to collect large scale training data at a modest cost [47].

The aim of this work is to analyze such retrospective data, particularly, focusing on

2



1 — Introduction

the annotation, which may be noisier than those collected specifically for research
and development purposes. Furthermore, there are no requirements that all the
reported lesions should be explicitly annotated on the image [47]. The machine
learning research radiologist, generally are used to annotate the lesion using two- or
three dimensional bounding boxes, as close as possible to the lesion [32], or even to
provide segmentation [3], bookmarks collected in clinical practice do not need to be
as precise, and may serve additional purposes other than annotating the lesion (e.g.,
bookmarking the area selected for biopsy or further workup). Moreover, radiolog-
ical features are inherently ambiguous, and radiologists reports are not definitive
expressions of ground truth [23] [33]. As previously quoted, reporting workstations
commonly offer drawing tools such as bounding boxes (ellipses or squares), arrows,
lines or diameters, that radiologists can use to bookmark and measure specific le-
sions [32,47]. A study conducted at a leading US institution found that the number
of CT scans with such bookmarks skyrocketed after 2015; bookmarks often pre-
sented in the form of ellipses (8.4%) or lesion diameters (46%) [47]. The recently
released DeepLesion dataset, which includes over 32,000 lesions identified on CT
images based on diameter measurements, shows the potential of this approach [47].

Such mining strategies are attractive, but necessarily inject some level of noise in the
reference standard. It is consequently crucial to study the effect of various sources
of noises on the performance of deep learning and developing possible strategies to
reduce it.

In this work, we refer to object detection techniques, as they are the most flexible. At
the state of the art, image segmentation architectures such as U-NET [29] requires
pixel-level annotation. The effect of noise on lesions is still poorly explored, so I
try to fill this cap on this work. In particular, two complementary sources of noise
are identified: one is due to changes in the ground truth labels (e.g. missing or
mislabelled lesions), and another is due to imprecision in the bounding box (e.g.
the bounding boxes are larger than the actual lesion size). I present a model of the
noise and a set of experiments based on the second type, which seems particularly
relevant for annotation mining. This is attained by comparing the predicted and
ground truth bounding boxes based on matching criterion: usually, the Intersection
over Union (IoU) is calculated, and a threshold is used to determine if two boxes are
a match. If the ground truth is inaccurate (e.g., the bounding boxes are larger than
the actual object), the matching may be incorrect, thus the classification modules
will be trained on noisy labels and detection performance may suffer. It is precisely
this phenomenon, applied on mammography, that I will explore in this thesis.

Numerous object detection architectures available present common feature: one or
more classification modules is included to classifies region of interest (ROI), identified
by bounding box, as one of possible object classes or background. These modules
are trained by selecting examples of bounding boxes containing objects (positive
examples) and background (negative examples).

For this purpose, the CBIS-DDSM dataset, a public high-quality screen-film mam-
mography dataset, is utilized to provide the clean labels. In order to conduct a
controlled experiment, noise is manually injected by varying the bounding boxes.
The reference architecture is Faster R-CNN, which was shown to perform quite well
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for breast mass detection [20,39]. From previous experiments based on different
matching criteria, a class imbalance has been highlighted, which caused overfit, that
I tried to reduce suggesting a new hard mining strategy, which decreases the prob-
lem but doesn’t solve it. In the end, this work focus on the effects of different noise
levels and different matching criteria on the performance of the Faster-RCNN. The
results show that, as the bounding box increase in size, the number of bounding
boxes labelled as positive increases, which is most likely due to background being
incorrectly labelled as foreground. Hence, the performance of the detector gradually
decreases.

1.2 Breast Cancer

The US National Cancer Institute defines breast cancer as "Cancer that forms in
tissues of the breast. The most common type of breast cancer is ductal carcinoma,
which begins in the lining of the milk ducts (thin tubes that carry milk from the
lobules of the breast to the nipple). Another type of breast cancer is lobular carci-
noma, which begins in the lobules (milk glands) of the breast. Invasive breast cancer
is breast cancer that has spread from where it began in the breast ducts or lobules
to surrounding normal tissue'.

Breast cancer does not usually show any sign in the initial stages when it is easily
treatable. For this reason, it is important to periodically check the breast region.
BI-RADS describes the mammography assessment with seven categories with a score
between 0 and 6:

0-incomplete

e l-negative

e 2-benign findings

e 3-probably benign

e 4-suspicious abnormality

 5-highly suspicious of malignancy

6-known biopsy with proven malignancy

Breast cancer does not have the highest mortality rate, thanks to the fact that
millions of women in the world undergo screening tests. Despite this, the risk of
mortality remains very high, especially in the case of late diagnosis. These facts illus-
trate the importance of periodical screening of the breast region especially starting
from 40 years old to make it possible to detect potential cancer before it is too late.
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1.3 Breast screening

"The object of screening for disease is to discover those among the apparently well
who are in fact suffering from disease. They can then be placed under treatment
and, if the disease is communicable, steps can be taken to prevent them from being a
danger to their neighbors" (World Health Organization (WHO) in 1968). In theory,
therefore, screening is an admirable method of combating disease, since it should
help detect it in its early stages and enable it to be treated adequately before it
obtains a firm hold on the community [45].

Even if screening may lead to an earlier diagnosis, not all screening tests have been
shown to benefit the person being screened. Indeed some potential adverse effects of
screening are overdiagnosis, misdiagnosis, and creating a false sense of security. For
these reasons, a test used in a screening program, especially for a disease with low
incidence, must have good sensitivity in addition to acceptable specificity. The most
common screening breast test include x-rays, ultrasound or magnetic resonance.
In this section, the most common techniques are evaluated that have been in use
for breast cancer screening purposes together with the methods used in case of
symptoms or positive screening exam.

o Mammography: Mammography is the most popular technique used to moni-
tor breast selection. It uses low-dose x-rays to visualize the structure of the
breast on two images. When there is an anomaly detected during the clinical
examination, diagnosis mammography is used to evaluate the area of interest.
Screening mammography helps detect potential cancer by showing the historic
change in the breast region for up to two years. Breast is pressed between two
plates to produce a better view of the breast and it is a common practice to
irradiate the breasts from different angles by changing the position of the x-ray
source.

o Tomosynthesis: Tomosynthesis is a method for performing high-resolution
limited-angle tomography at radiation dose levels comparable with projec-
tion radiography. It is also called 3D mammography and it improves the
weaknesses of the conventional mammography. It is approved by the Food
and Drug Administration (FDA) for use in breast cancer screening. A three-
dimensional volume is constructed merging these screenings using a computer
algorithm which also generates thin ‘slices’ of images. This layer-wise imaging
helps to display a potential lesion hidden behind surrounding breast tissues
and structures.

« Breast Computed Tomography (CT): CT is an x-ray technique where the
source/detector makes at least a complete 180-degree rotation about the sub-
ject obtaining a complete set of data from which images may be reconstructed.
The scans are used to construct a three-dimensional image of the breast.

o Breast Ultrasound: Emitting a sequence of US pulses along a predetermined
scan line and listening to the return echoes it is possible to reconstruct an image
that reflects the spatial distribution of discontinuities in irradiated fabrics.
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Even though mammography is considered as the most representative screening
method, in cases like a breast with high density it becomes difficult to visualize
the internal structure. In such cases, ultrasound breast screening may be used
as a supplementary examination.

1.3.1 Mammography

Since the 70s the mammography has been the gold standard for breast screening.
Until a few years ago, The mammograms consisted of a series of images on a film,
impressed by x-rays. Digital mammography is the standard nowadays, thanks to
the use of digital sensors and display software. Digital mammography is found to be
more useful for radiologists since they can capture and enhance the films digitally in
order to make better decisions. Additionally, the information loss and noise caused
by the printing and scanning process are also eliminated by directly storing the
mammograms. The mammogram test consists of irradiating the breast with an x-
ray dose, this dose is lower compared to normal x-ray radiology. The x-ray impresses
a film, in the traditional mammography, a sensor, in the digital one, this, through
the use of equipment and the software suitable, generates the final digital image.
There are several advantages of digital mammography over film mammography. For
example, it is also unquestionably more practical to save and share the images
between institutions and experts. In this way, the experts also have access to raw
values which means that the information loss is either very low or zero. Typically a
total of four images are recorded in a mammography exam from craniocaudal (CC)
and mediolateral oblique (MLO) views for right and left breasts. The CC view is
the image taken from the above of the breast and the whole breast is captured. The
nipple is usually clearly visible in the CC view. The MLO view, instead, screens the
breast from the side with an angle and typically the pectoral muscle is also visible
in the mammogram.

Mammography can be used both for diagnosis and screening of breast health. The
first case occurs when there are detected symptoms, like a lump on the breast, and
further evaluation is required for a better diagnosis. Breast screening is a periodical
process that starts between the ages of 40 and 50 and continues until around 75 years
in most of the Western countries. The interval varies from 1 to 3 years depending
on the age and country.

1.3.2 Characteristics of the lesions

When a radiologist evaluates a mammogram, there is a lot of information that
he takes into consideration. Even though there are predefined findings that are
considered as strong evidence of breast cancer, generally also historical data, if
available, of a patient is considered to define an abnormality as cancer. To evaluate
an exam the shape, size, and edges of suspicious regions have been considered. A
stable finding detected in previous mammograms are generally unlikely to be cancer
and might not require a follow-up. However, there are several signs generally further
investigated which can be listed as follows [§]:
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Figure 1.2: Example of a mammographic exam, on the left side of the image, there
are the Right and Left MLO views, on the right side the CC views .

o Masses or soft tissue lesions: Masses are also called tumors or lumps. They
can be either benign or malignant. Most of the tumors found in the breast
are benign lesions that generally do not cause a health risk and they do not
propagate or change size. The malignant mass is the most obvious sign of
breast cancer. The most important parameters to define how likely that a
mass is a cancer, are the size, the shape, and the margins.

o Calcifications: Microcalcifications are smaller deposits and they might be a
sign of cancer depending on their distribution and shape which generally re-
quires a biopsy for the final decision. They are generally linked to ductal
carcinoma in situ(DCIS) and therefore might be an early sign of breast can-
cer.

o Breast density: Breast density is related to how the fibrous and glandular
distribution in the breast is. In other words, higher the fat percentage means
lower breast density. Even though having a dense breast is not an abnormality,
there has been found a strong relationship between high breast density and
high risk of breast cancer. On the other hand, high density also causes difficulty
in mammography screening since it is more difficult to visualize the details
present in the breast region which generally results in the necessity for further
evaluation.

It is also important to be aware of the most common findings that are often confused
with cancerous lesions. These benign abnormalities can be classified as follows:

o Cysts: Cysts are common findings in mammography. They are sacs filled with
fluid. The majority of cysts are usual findings with a thin wall and they are not
cancer. However, cysts indicate a potential risk to develop breast cancer. It is
not easy to distinguish cysts from solid lesions and patients are unnecessarily
called for a follow-up in such cases.
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Figure 1.3: Mammograms with increasing breast density from left to right 2.

» Breast arterial calcifications: BACs are calcium deposits on the vein walls of
the breast that are benign and not a known sign of breast cancer. However,
they are generally considered as a potential abnormality in the heart. BACs
are usually confused with cancerous calcifications.

e Scar tissue: Scar tissues that are often caused by breast surgery or radia-
tion therapy appear as white regions in mammography. They might take the
attention of the radiologist as a potentially suspicious region.

1.3.3 Breast masses

A breast mass, known as breast lump too, is a space occupying 3D lesion seen in
two different projections. A possible mass observable only in a single projection is
named "asymmetry" until its three-dimensionality is confirmed. The shape of a mass
is either round, oval or irregular. The density of a mass is related to the expected
attenuation of an equal volume of fibroglandular tissue, a high density is associated
with malignancy. It is incredibly rare for breast cancer to be of low density.

The shape of best masses may be large or small, and may feel hard or spongy. Some
lumps can hurt, while others go undetected until determined during an imaging test.
There are different types of breast lumps, they could be a benign malignant tumor.

Benign tumor

Although any masses formed by the body cells can technically be referred to as a
tumor. Not all tumors are cancerous (malignant). Most breast nodules, 80% of
those undergoing biopsy, are benign (non-cancerous).

« Fibrocystic changes: This condition affects 50-60 % of all women, but it is not
a disease, but rather a benign condition (not cancer). The fibrous mammary
tissue, the mammary glands, and the ducts react excessively to the normal
hormones produced during ovulation, causing the generation of fibrous lumps
or smaller cysts, full pockets filled with liquid or "pockets". Fibrocystic al-
terations are the most usual non-cancerous breast condition. They are most
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common in women between the ages of 20 and 50. Medical viewpoint is still
divided over whether fibrocystic disease enhances the risk of breast cancer. Fi-
brosis refers to a large amount of fibrous tissue, the same tissue that ligaments
and scar tissue are made of. Areas of fibrosis feel rubbery, firm, or hard to the
touch.

The cysts are filled with liquid, round or oval sacs inside the breast. The
women in their 40s are the most common affected by cysts, but they can occur
in women of any age. The cysts begin when the liquid begins to accumulate
inside the mammary glands. Microcysts (tiny and microscopic cysts) are too
small to be perceived and are only found when the tissue is examined under a
microscope. If the fluid continues to grow, macrocytes (large cysts) can form.
These can be felt easily and can be as large as 25 mm or 50 mm in diameter.

o Fibroadenomas: These benign tumors are solid lumps of fibrous and glandular
tissue. They occur most frequently in women between 18 and 35 and account
for nearly all breast tumors in women under 25. Most fibroadenomas are about
1-3cm in size and are called simple fibroadenomas. Simple fibroadenomas
don’t increase the risk of developing breast cancer in the future.

Some fibroadenomas are called complex fibroadenomas. When these are stud-
ied with microscopy techniques, some of the cells have different characteristics.
Having a complex fibroadenoma may slightly increase the risk of developing
breast cancer in the future. Occasionally, a fibroadenoma can grow up to more
than 5 cm and can be called a giant fibroadenoma.

It’s not known what causes a fibroadenoma. The fibroadenomas develop from
a lobule. The glandular tissue and the ducts grow above the lobule and form a
solid mass. In most cases, the woman won’t need any follow-up or treatment
if you have a fibroadenoma.

Figure 1.4: Example of breast Figure 1.5: Example of fibroade-
cyst on mammogram image . noma on mammogram image 4.

o Papillomas: These small warts like lumps grow in the lining of the mammary
ducts, near the nipple. Intraductal papillomas generally don’t increase the risk
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of developing breast cancer. Some intraductal papillomas contain cells that
are abnormal but not cancer (atypical cells). This has been shown to slightly
increase the risk of developing breast cancer in the future.

Malignant tumor

Malignant breast tumors, however, if not detected and treated early, will continue
to grow, invading and destroying adjacent normal tissue. Most malignant tumors
appear first as single, hard limps or thickenings that are frequently, but not always,
painless.

Breast cancer is broadly classified as ductal (originating from the milk ducts inside
the breast) or lobular (originating from the breast tissue surrounding the ducts).
Breast cancer is preceded by a series of stages of cellular change; normal breast
cells take an abnormal shape (atypical hyperplasia), develop into localized areas of
cancerous cells (carcinoma-in-situ) and then into frank breast cancer that can spread
to other areas of the body.

1.4 Computer-Aided Detection System for mam-
mography

Computer-aided detection systems are intended to assist radiologists in diagnosing
subtle abnormalities appear in the screening that might not be obvious to the eye
otherwise. CAD automatically highlights regions appear to be a potential sign of
cancer to take the radiologist’s attention there for further inspection.

The first CAD for mammography was produced by R2 Technology Inc. for the first
time and it was approved by the US Food and Drug Administration (FDA) in June
1998. In the US, about 70% of all screening process in hospitals and 85% in private
institutions exploit CAD as an additional decision supporting system in 2010 and
these rates are expected to increase with the latest improvements [35].

Despite the challenges in CAD system design, there are several scenarios for us-
ing these systems for mammography that are currently in use and being actively
developed for the near future usage. We can list the most trending use cases as
follows:

o The original main purpose of CAD system was to reduce the false negative
rate by highlighting the regions with detected lesions on the image.

» A second use is an interactive decision supporting mechanism rather than full
analysis visualization. In this setting, the decisions made by the radiologists
are queried to decrease oversight errors.

o An alternative future usage of a CAD for mammography is using them as a
second or third reader independent from the prior decisions made by a radiolo-
gist. This would serve to simulate what is now practically done with different
radiologists. In this scenario, an additional check is performed by a CAD
system, or alternatively, a CAD system replaces the second reader.
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Although a high percentage of medical institutions adapted CAD systems, there
is an ongoing debate about the clinical value. There are studies claiming that
using CAD showed a potential improvement in sensitivity from 64% to 95% over
independent double reading. Conversely, other studies support that there is no
finding of performance improvement shown by CAD usage over decisions taken by
a number of radiologists [28]. The performance of a CAD depends on the algorithm
implemented in the system. Using a method that produces a significant number of
false positives might no surprisingly decrease decision precision. The state of the
art solutions using deep learning algorithms reached very promising results which
eventually will succeed to increase the value of CAD systems.

1.5 Outline of this thesis

The purpose of this thesis is to analyze the effects of label noise, injected on the
screening masses mammography data-set, on the Faster R-CNN network. In Chap-
ter 2, it will be given an overview of Artificial intelligence, Machine learning, and
Deep learning world, focusing on object detection networks. In Chapter 3 the state
of the art will be analyzed, exploring the object detection systems developed for the
medical world, especially for mammography. What the label noise is and how it
interacts with object detection system will be explained too. The Chapter 4 will
explain the model of label noise created. The methods used in this work will be
described in Chapter 5. In Chapter 6 the tune of the network will be analysed.
The Chapter 7 will explore the problem of overfitting, giving the results obtained
during our experiments and the solutions proposed. The results of the experiments
about the effect of labeling noise are commented in Chapter 8. Limitations of the
model, future developments and the conclusions will be presented in Chapter 9.
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Chapter 2

Background

In the chapter, it will explain the evolution of artificial intelligence, fundamental
concepts of deep learning architectures and the fundamental background knowledge
required to understand this research. In particular, it is going to focus on the
evolution of computer vision and object detection networks, in order to understand
completely the choices that will be done during this work.

2.1 Artificial intelligence

The human perception system is able to perform many functions that we do not
even notice. However, even the easiest tasks could be very complex to perform for
the machines. Artificial Intelligence is born with the aim to create computers able
to think as a human and able to learn from their experiences. Al researchers design
algorithms that mimic how human perception works by gathering knowledge from
different science branches such as mathematics, philosophy, biology, and psychology
besides computer science.

The first Al’s applications included diagnosing disease or errors in machines by
monitoring them. One of the most successful Al achievement was the watershed
victory of IBM’s Deep Blue, a computer that learned to play chess, over the world
champion Gary Kasparov in 1996. Later on, an even more complex game Go which
has many more possible moves was taught to a computer.

The machines are very good at carrying out monotonous physical actions with which
people struggle. The new era of intelligent machines is very powerful since they
also overcome mankind like collecting and storing data in memory, solving complex
problems.

In the second half of the 90s, the limits of the symbolic Al algorithms lead Al experts
to develop nature-inspired algorithms such as neural networks that are not based
on grammatical rules but mathematical statistics and computational neuroscience.

2.1.1 Machine learning

Machine learning is a specific field of artificial intelligence (AI). Machine learning
algorithms try to understand the structure of the date and fit them into models that
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Figure 2.1: An overview of important branches of Artificial Intelligence

‘1 Vision

are useful and usable by people.

Machine learning has a different approach from the traditional fields of computer
science. In traditional computer science, algorithms are a set of specifically pro-
grammed instructions that are used by computers to compute and solve problems.
At the same time, machine learning algorithms permit computers to train on data
inputs and use statistical analysis with the aim of having output values that fall
within a specific range. For this reason, machine learning facilitates computers in
modeling in order to automate decision-making processes based on data inputs.
The traditional machine learning algorithms have a prior step called feature extrac-
tion where the data is made more representative by eliminating irrelevant informa-
tion to support the learning process. The main reason for this is the number of
data to be processed that would be too high, so the number of parameters to be
tuned would be problematic. The common solution is deriving representative fea-
tures with domain experts and only this information is considered by the network.
For example, in the medical world, a radiologist makes a decision after evaluating
the shape, the size, the intensity of a lesion. Pure machine succeed to detect lesions
given that these descriptors are extracted apriori.

Two of the most significantly foster machine learning methods are supervised learn-
ing which trains models based on example input and output data that are labeled
by humans, and unsupervised learning which finds structure in the data without
providing labeled data for the trains.

In supervised learning, the network is provided with example inputs that are labeled
with their desired outputs. The purpose of this method is that the algorithm is able
to "learn" by comparing its actual output with the "taught" outputs to find the errors
and modify the model accordingly.
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In unsupervised learning the algorithm needs to find independently commonalities
among its input data because the input data are unlabeled. There data are more
abundant than labeled ones, machine learning methods that promote unsupervised
learning are particularly helpful. The goal of unsupervised learning can be as simple
as recognizing hidden patterns within a dataset, but it may also have a function
learning goal, which permits to automatically identify the representations required
to classify the raw data.

Despite the results deriving from feature extraction based systems are satisfactory
they are very dependent on human knowledge and causes an evident bias towards
how our brains think that a task is handled. These weaknesses of traditional ML so-
lutions led to invent the "Deep Learning" which is still an ML solution but eliminates
the feature extraction, thanks to a much more advanced learning process.

2.1.2 Deep learning

The rise of "Deep Learning" era started in 2006 when a famous research paper [19]
was published. It proved the possibility of training networks without a complex
pre-processing procedure by only using the labels provided with the actual data.
This era defines the state of art solutions in machine learning algorithms.

Deep learning, also thanks to the spread of different companies, is considered a
sort of panacea able to solve complex problems. One of the reasons why it has
been a great success is the simultaneous increase in computational power and the
availability of large and well-organized data sets. For example, the most popular
data set ImageNet [6] was prepared for visual object recognition task and it contains
14,197,122 images belonging to 1,000 classes. The best performances in 2011 were
around 25% error rate, whereas the most recent algorithms dropped it to 4% just
after a few years of research in this relatively new field and recently these artificial
networks achieve even better results than human performance. At the same time, the
computational power has been significantly improved with advanced GPUs which
enabled the possibility to perform very complex algorithms in a reasonable time.

2.2 Convolutional Neural Network

The class of deep neural network that concerns the visual imagery analysis and Com-
puter Vision is called Convolutional Neural Network (CNN). It is one of the main
categories of a neural network to do images recognition, images classifications, ob-
jects detection, recognition faces, etc. CNN broke state-of-the-art results in several
fields and excited researchers to move towards machine learning solutions.

Being specifically designed for images, some specific properties are encoded in the
design of CNN architectures which makes them more efficient to implement the
forward function and drastically reduce the number of parameters used to train the
network.
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2.2.1 Architecture

CNN image classifications takes an input image, process it and classify it under
certain categories. In principle, deep learning CNN models to train and test, each
input image will pass it through a series of convolution layers with filters (Kernals),
Pooling, fully connected layers (FC) and Softmax function which classify an object
with probabilistic values between 0 and 1. Figure 2.3 is a complete flow of CNN to
process an input image and classifies the objects based on values.
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FEATURE LEARNING CLASSIFICATION

Figure 2.3: Neural network with many convolutional layers?

Different than ordinary neural networks, CNNs exploit specific properties of images
such as local connectivity of the pixels values. The layers of a CNN architecture
have three dimensions: width, height, and depth. The fully connected layers are
replaced with partially connected layers where neurons of a layer are connected to a
part of the neurons in the previous layer. This mechanism drastically decreases the
number of parameters in the network and reduces the risk of over-fitting.

The main layers used in the CNN architecture design could be listed as follows:

« Pooling layers (usually either average pooling or max pooling) down-samples
the image to decrease the number of parameters by reducing the redundancy.
This kind of layers do not have any parameters, a fixed function is imple-
mented.
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o Convolutional layer applies a dot product between the small region that is
under evaluation and the weights associated with this region. Activation func-
tions are typically placed after convolutional layers to add element-wise non-
linearity by mapping the activation maps to an interval depending on the
function. The volume remains unchanged after this operation.

o Fully-connected layers are the same as in the ordinary neural networks. They
gather the outcomes of the training procedure and output the class scores.
Each neuron in this layer is connected to all the neurons in the previous layer
as the name implies.

2.2.2 Convolutional Layer

Convolutional layers are the main novelty that CNNs introduce that significantly
decrease the computational load of the ordinary neural networks. The feature ex-
traction from the an input image is firstly done by the convolution. The relationship
between pixels is preserved by convolution which learns image features using small
squares of input data.

Convolutional layers consist of filters where each filter is spatially small but large in
depth. During the forward pass, these filters are moved along the input and the dot
product (the convolution) is calculated in a sliding window approach. Intuitively,
an activation map is calculated, which represents the responses of the filter at each
position. The filters generate the response, the higher ones are used by the network
to learn. A two-dimensional activation map is created for each filter and a stack
of these maps becomes the output of each layer. During back-propagation, instead,
the convolution operation is applied again but with spatially-flipped filters.

Each neuron is connected to a small region in the previous layer. This local region
is called the receptive field of the neuron and it is also equal to the filter size at
the first layer. This volume is always local in terms of spatial dimension (width
and height) but the depth is equal to the depth of the input volume. Each layer
in the network learns a feature and the complexity of the learned features typically
increases from earlier layers through the last ones. Another important property
that is worth mentioning here is parameter sharing that is designed to decrease
the number of parameters. The key behind these networks is that is a feature is
found useful in one position, it is potentially also useful in other positions in the
same volume. This assumption may sometimes be an issue when different features
should be learned from the input volume. The proposed solution for such problems
is placing a less constrained layer called “Locally-Connected Layer” instead of a
convolutional layer.

2.2.3 Pooling layer

The pooling layer’s purpose is to reduce the dimensionality of each map but retains
the important information. Thus, it decreases the number of parameters when the
images are too large, thanks to subsampling or downsampling. There are many
types of spatial pooling: Max Pooling, Average Pooling, Sum Pooling. Max pooling
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take the largest element from the rectified feature map. Taking the largest element
could also take the average pooling. The average polling takes the average value of
all the merged cells. (Figure 2.4).
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Figure 2.4: Pooling operation in CNN architectures

The Pooling Layer downsamples each input slice independently from each other.
The most common filter size used in the literature is 2x2, with a stride of 2 that
decreases the size of the input image by 2 in each dimension. Consequently, around
75% of the activations are discarded. It is also important to note that the depth of
the image never changes after pooling operation?.

2.2.4 Normalization layer

To implement the inhibition mechanism in the biological brain, many normaliza-
tion layers are presented in the literature. In neurobiology, a neuron is capable to
dominate its neighbors by creating a contrast in an area. Normalization layers aim
to allow faster and more resilient training procedure by imitating this mechanism.
Normalization layers are usually discarded in recent studies since their impact is
found to be insignificant. Instead, other regularization techniques (i.e, batch nor-
malization and dropout), better initialization, and training methods are preferred
to improve the performance of the networks.

2.2.5 Fully connected layer

Neurons of a fully connected layer have connections to all of the activations of the
previous layer as in regular neural networks. Thus, their activations are calculated
as a linear operation consisting of the multiplication of the input matrix with the
weights and then adding the result to the bias matrix.

While the rest of the network is responsible for extracting useful features, FC layers
perform the classification task. They are often followed by a non-linear function due
to high connectivity between the neurons. Even though FC layers provide high-level
reasoning, they are computationally highly expensive. This is the reason why they
are used only at the end of the network to learn from upper layer features.
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2.2.6 Resnetb0

The Deep learning era started in 2012 when AlexNet [24] was presented. This
architecture has been more successful than learning traditional and artisanal features
on ImageNet. AlexNet presented 8 layers of neural network, 5 convolutional and
3 fully connected. This prepare the ground for traditional CNN, a convolutional
layer followed by an activation function followed by a maximum grouping operation.
These additional layers have been accredited for fortune of Deep Neural Networks.
Thus, the idea that deeper networks would be able to learn more complex feature
came out. This did not occur and the only way to alleviate these problems was the
creation of a new neural network layer: The Residual Block (Figure 2.5).

The essential concept of ResNet is based on the so-called “identity shortcut connec-
tion” which skips one or more layers, as shown in Figure 2.5. [17] hypothesize that
letting the stacked layers fit a residual mapping is easier than letting them directly
fit the desired underlying mapping. The residual block above explicitly allows it to
do precisely that. The authors of ResNet avoided these problems down to a single
hypothesis: direct mappings are hard to learn. They proposed a fix: instead of
trying to learn an underlying mapping from x to H(z), learn the difference between
the two, or the “residual.” Then, to calculate H(z), we can just add the residual to
the input [17].

Say the residual is F'(x) = H(z) — z. Now, instead of trying to learn H(x) directly,
our nets are trying to learn F'(x) + x. This gives rise to the famous ResNet (or
“residual network”), Figure 2.5
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Figure 2.5: Residual block of ResNet network?.

Each “block” in ResNet consists of a series of layers and a “shortcut” connection
adding the input of the block to its output. The “add” operation is performed
element-wise, and if the input and output are of different sizes, zero-padding or
projections (via 1x1 convolutions) can be used to create matching dimensions. The
gradient signal in ResNets could travel back directly to early layers via shortcut
connections, it is suddenly possible to build 50-layer, 101-layer, 152-layer, and even
(apparently) 1000+ layer nets that still performed well [17].
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2.2.7 VGG16

Oxford’s VGG group invented this architecture. VGGNet include 16 convolutional
layers and it is very appealing thanks to its very uniform architecture. Thanks to the
replace of the large kernel-sized filters (11 and 5 in the first and second convolutional
layer, respectively) with multiple 3X3 kernel-sized filters one after another VGG
shows better results than AlexNet [24]. It contains 138 million parameters, which
may be a bit challenging to handle.

2.2.8 Optimizer algorithms
Adam optimizer

Adam is an optimization algorithm that can be used instead of the classical stochas-
tic gradient descent procedure to update network weights iterative based in training
data [22]. The name Adam is derived from adaptive moment estimation.

Adam has shown great benefits on non-convex optimization problems, which can be
summarized as follows:

o Straightforward to implement

o Computationally efficient

o Low memory requirements

« Invariant to diagonal rescale of the gradients

« Well adapted for problems that are large in terms of data and/or parameters
« Suitable for non-stationary objectives

e Suitable for problems with very noisy/or sparse gradients

o Hyper-parameters have intuitive interpretation and typically require a little
tuning

Adam differentiate from classical stochastic gradient descent because the learning
rate is maintained for each network weight and separately adapted as learning un-
folds. Stochastic gradient descent maintains a single learning rate for all weight
updates and the learning rate does not change during training. The predictions of
the theoretical analysis was proved by Adam experimentally. Using large models
and datasets,Adam can efficiently solve practical deep learning problems [22].

Stochastic gradient descent (SGD) optimizer

Stochastic gradient descent (SGD), also known as incremental gradient descent, is
an iterative method for optimizing a distinguishable objective function, a stochastic
approximation of gradient descent optimization.

After screening only a single or a few training examples SGD focus both of these
problems by following the negative gradient of the objective. The main reason for
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the use of SGDin neural network setting is the high cost of running back propagation
over the full training set. SGD gets over this cost and leads to fast convergence.
SGD’s fluctuation allows it to jump to new and potentially better local minima.

2.3 Overfit and Underfit

Overfitting describe a model that specializes its training data too well. It happens
when a model learns the details and noise in the training data to the extent that it
negatively impacts the performance of the model on new data. This means that the
model learns also noise or random fluctuations in the training. The problem is that
these information does not apply to new data and negatively impact the models
ability to generalize (Figure 2.6).

Underfitting refers to a model that can neither model the training data or generalize
to new data. These kinds of algorith are appropriate and obviously the have low
performance on the training data (Figure 2.6).
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Figure 2.6: Two examples of overfitting and underfitting model’s behavior.

2.4 Deep Learning Algorithms for Object Detec-
tion

The applications of computer vision are widely spread in the last years, starting from
CNN to auto-guided cars to medical imaging processing. One of the last purpose
of computer vision is the detection of objects. Object detection helps in estimating
poses, vehicle tracking, surveillance, etc. The difference between object detection
algorithms and classification algorithms is that the detection algorithms try to draw
a box or a marker around the object of interest to locate it within the image. Also,
they can not necessarily draw a single bounding box in an object detection case,
there could be many bounding boxes representing different objects of interest, it
depends on the number of objects presents in the image and the number of classes
which are included in the specific application.

In terms of model’s design, the dependence on the number of objects presents in the
images does not allow to create a standard a fully connected convolutional network,
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because the length of the output layer is variable and not constant since the number
of occurrences of the objects of interest is not constant. An artless procedure to
solve this problem would be to take different regions of interest from the image and
use a CNN to classify the presence of the object within that region. The different
spatial positions within the image and different aspect ratios are the limitations of
the approach . So, the algorithm should select a huge number of regions and this
could increase irreversibly the computational time. Therefore, algorithms such as
R-CNN;, Fast R-CNN, Faster R-CNN, and YOLO have been developed to find these
occurrences and find them quickly.

The final purpose is to provide a background on object detection systems developed
in recent years both in general and specific cases for medical applications. It will
try to describe in a clear and concise way the networks mentioned above.

2.5 R-CNN

To overcome the issue of selecting a huge number of regions, [14] proposed a new
method which apply a selective search to extract just 2000 regions from the image
and these areas were named region proposals. This architecture is called Region-
based Convolutional Network or R-CNN. The R-CNN is an object detection and
segmentation system that use multi-layer convolutional networks to compute highly
discriminate features. These features are used to classify image regions, that could
be the output of the system as detected bounding boxes or segmentation masks at
a pixel level.

R-CNN: Regions with CNN features
Wamid region ,

____________________
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image  proposals (~2k) CNN features regions

Figure 2.7: Object detection system overview. (1) takes an input image, (2) extracts
around 2k bottom-up region proposal, (3) computes feature for each proposal using
a large CNN, and then (4) classifies each region using class-specific linear SVMs [14]

The R-CNN, Figure 2.7, takes an input image, extracts around 2000 bottom-up
region proposals, a large convolutional network (CNN) computes features for each
proposal and then it classifies each region using class specific linear SVMs [14].

To analyze the system more deeply the object detection can be divided into three
modules: the first generates category-independent region proposals, the second is
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a convolutional network, the third a set of class-specific linear SVMs. The object
proposals or region proposals are regions of the image (boxes or pixel segments)
that are hypothesized to contain significant objects in the image. The R-CNN
supports all types of region proposals, in [14] was used selective search. The feature
extraction of each region proposals is computed by a CNN, as showed in Figure 2.8,
in particular, a fixed-length vector was extracted. The CNN utilized in [14] was
TorontoNet by [25]. The features are estimated using the mean-subtracted S x S
RGB image forward propagation through the network and reading off the values
output by the penultimate layer (the layer just before the softmax classifier).
Firstly, the network convert the image data in the regional proposals into a form this
is compatible with CNN and then extract the corresponding features. Regardless
of the size or proportions of the candidate region, all the pixels are deformed in a
narrow selection rectangle around it to the required size.

Bbox reg || SVMs

Bbox reg || SVMs

Bbox reg SVMs

Conv
Conv Net
Net

Figure 2.8: R-CNN feature extraction network [14]

A pre-trained CNN was used in the original R-CNN, it was trained on a large
auxiliary dataset (ILSVRC2012 classification) using image-level annotations. Only
warped region proposals were utilized to fit the CNN to the detection task and to
the warped proposal windows with the stochastic gradient descent (SGD) training
of the CNN parameters. [14] treats all region proposals with > 0.5 IoU overlap with
a ground-truth box as positives for that box’s class and the rest as negatives. It
starts SGD at a learning rate of 0.001 (1/10th of the initial pre-training rate), which
allows fine-tuning to make progress while not clobbering the initialization. In each
SGD iteration, 32 positive windows (over all classes) was sampled [14].

The object category classifiers were binary and to deal with the label that catheter-
ized overlapping cases a [oU overlap threshold was used. Once features are extracted
and training labels are applied, one linear SVM per class was optimized [14].
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R-CNN has many limitations: one concern the training time of the network, indeed
it has to classify 2000 region proposals per image, which is extremely high time cost;
the second is that it is not possible to implement a real time because the R-CNN
takes around 47 seconds for each test image. The last regards the selective search
algorithm, which is a fixed algorithm. Therefore, there is not learn at that stage.
For these reasons a bad candidate region proposals may lead.

2.6 Fast R-CNN

The Fast R-CNN was born from the same author of the network just described
previously, it solves some of the drawbacks of R-CNN to construct a faster object
detection algorithm. The approach is similar to the R-CNN algorithm, but instead
of feeding the CNN’s proposals to the CNN, the input image was fed to the CNN
to generate a convolutional feature map. From the map of the convolutional char-
acteristics, it determines the region of the proposals and it deforms them in squares
and using a level of Rol pooling, it modifies them in a fixed dimension so that it can
be inserted in a completely connected level. From the Rol feature vector, a softmax
layer was used to predict the class of the proposed region and also the offset values
for the bounding box [13]. The reason Fast R-CNN is faster than R-CNN is that it
is not necessary to feed 2000 region proposals to the convolutional neural network
every time. Instead, the convolution operation is done only once per image and a
feature map is generated from it [13]. The Fast R-CNN [13] has several advantages:

o Better detection precision than R-CNN
» Single-stage training, thanks to multitask loss
o All network layers can be updated during training

o Feature caching does not required disk storage

Outputs: bbox
- \Deep softmax regressor
|ConvNet = ‘
- Rol FC
pooling
Rol layer |
- - ——
prOJectlon\
Conv X Rol feature
feature map VECtOI' For each Rol

Figure 2.9: Fast R-CNN architecture [13]
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Form a technical point of view, the Fast R-CNN network takes as input an entire
image and a set of object proposals. Initially, the models first elaborates the all
image with many convolutions and max pooling layers to produce a convolutional
feature map. After that, a fixed-length feature vector from a feature map is obtained
for every object proposal a region of interest (ROI) pooling layer. Each feature
vector is added into a fully connected layer, that in the end branch off into two
levels of sibling output layers: one that provides softmax probability estimates over
the classes of objects plus a "background' class, another layer that transmits four
numbers to real values for each of the classes of objects. Each series of 4 the refined
code the positions of the bounding box for one of all classes [13].

Rol Pooling

The region of interest pooling (also known as Rol pooling) is an operation largely
used in object detection tasks thanks to convolutional neural networks.

For every Rol from the input list, it takes a section of the input feature map that
corresponds to it and scales it to some pre-defined size (e.g., 7x7). The scaling is
done by:

« Dividing the region proposal into equal-sized sections (the number of which is
the same as the dimension of the output) [13]

 Finding the largest value in each section [13]
» Copying these max values to the output buffer [13]

The scaling allows to have a list of feature maps with a fixed size related to a list
of rectangles with different sizes. Notice that the input feature map and the size
of the region proposals do not influenced the dimension of the Rol pooling. It’s
defined solely by the number of sections which splits the proposal into. One of
the benefits of Rol pooling is the processing speed. If there are multiple object
proposals on the image (and usually there’ll be a lot of them), it is possible to use
the same input feature map for all of them. This approach is extremely time saving
because the convolutions are computed at early stages of processing, which is very
time-expensive.

The Rol pooling layer uses max pooling to convert the features inside any valid re-
gion of interest into a small feature map with a fixed spatial extent of H x W where
H and W are layer hyper-parameters that are independent of any particular Rol.
A Rol is considered as a rectangular window into a convolutional feature map [13].
Pooling is applied independently to each feature map channel.

Training all network weights with back-propagation is an important capability of
Fast R-CNN. [13] propose a more efficient training method that takes advantage of
feature sharing during training. In Fast R-CNN training, stochastic gradient descent
(SGD) mini-batches are sampled hierarchically, first by sampling N images and then
by sampling R/N Rols from each image. Fundamentally, Rols from the same image
share computation and memory in the forward and backward passes. Reducing the
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number of images the mini-batch computation decreases. In addition to hierarchi-
cal sampling, Fast R-CNN uses a streamlined training process with one fine-tuning
stage that jointly optimizes a softmax classifier and bounding-box regressors, rather
than training a softmax classifier, SVMs, and regressors in three separate stage [13].
A Fast R-CNN network has two sibling output layers. The first outputs, computed
by the sofmax layer, a discrete probability distribution (per Rol), over K + 1 cate-
gories. The second sibling layer outputs bounding-box regression off for each of the
K object classes.

Back-propagation routes derivatives through the Rol pooling layer. For clarity, we
assume only one image per mini-batch (N = 1), though the extension to N > 1
is straightforward because the forward pass treats all images independently [13].
The Rol pooling layer’s backwards function computes partial derivative of the loss
function with respect to each input variable by following the argmax switches.

The fully connected layers used for softmax classification and bounding-box regres-
sion are initialized from zero-mean Gaussian distributions with standard deviations
0.01 and 0.001, respectively.

The Fast R-CNN is significantly faster in training and testing sessions over R-CNN.
The performance of Fast R-CNN during testing time, including region proposals,
slows down the algorithm significantly when compared to not using region proposals.
Therefore, region proposals become bottlenecks in Fast R-CNN algorithm affecting
its performance.

2.7 Faster RCNN

The Faster R-CNN network is born to improve the computational time of the pre-
vious networks, described in the antecedent sections. In particular [37] tried to
avoid the bottleneck of the exposing region proposal computation, introducing a
Region Proposal Network (RPN) that shares full-image convolutional features with
the detection network.

Faster R-CNN has two networks: RPN (region proposal network) for generating
regional proposals and a network that uses these proposals to detect objects. The
main difference compared to Fast R-CNN is that the convolution operation is done
only once per image and a feature map is generated from it. The time cost for pro-
ducing regional proposals is much lower in RPN than in selective search, when the
RPN shares the highest number of computations with the object tracking network.
RPN ranks region boxes (called anchors) and proposes the ones most likely con-
taining objects. The entire system is a single, unified network for object detection
(Figure 2.10).

2.7.1 Region Proposal Networks

Following the flowchart in Figure 2.11 (left) and the Figure 2.10, the RPN receives
an image (of any size) as input and outputs a set of rectangular object proposals, [37]
models this procedure with a fully convolutional network, for example, VGG-16. To
generate regional proposals, a small network is slide over the convolutional feature
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Figure 2.10: Faster R-CNN is a single, unifield network for object detection. The
RPN module serves as the "attention" of this unifield network [37]
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Figure 2.11: Two charts of Region Proposal Network in Training (RPN) [37].

map from the last shared convolutional layer. This network, Figure 2.11 (right)
takes as input an n x n spatial window of the input convolutional feature map.
Each sliding window is mapped to smaller features [37]. This feature is fed into two
sibling fully-connected layers: a box-regression layer and a box-classification layer.
The fully connected layers are shared across all spatial locations.
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Anchors

At each sliding-window location, it is simultaneously predicted multiple region pro-
posals, where the number of maximum possible proposals for each location is iden-
tified as k. So the box-regression layer has 4k outputs encoding the coordinates of k
boxes, and the box-classification layer outputs 2k scores that evaluate the probabil-
ity of object or not object for each proposal 4. The k proposals are parameterized
relative to k reference boxes, which are called anchors (Figure 2.12. An anchor is
centered at the sliding window in question, and is associated with a scale and aspect
ratio (Figure 2.11, right). By default 3 scales and 3 aspect ratios are used, yielding
k =9 anchors at each sliding position. For a convolutional feature map of a size W
x H (typically around 2,400), there are W Hk anchors in total [37].
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Figure 2.12: Anchors at (320, 320)

Translation-Invariant Anchors

A significant improvement of [37] method is the translation invariant, for the anchors
and the functions that compute proposals relative to them. If an object will be
translated in an image, the proposal should translate and the same function should
be able to predict the proposal in either location [37]. This propriety has another
important feedback, as it reduces the model size.

2.7.2 Loss Function

To train the RPN a binary class label, being an object or not, is set to each anchor.
The positive labels are assigned according to two conditions: anchor/anchors with
highest Intersection over Union (IoU) with ground-truth (GT), or anchor that has
an IoU higher than a threshold set at 0.7 with any GT box. The negative labels
are assigned to the anchors that have an IoU lower than 0.3 with any GT box, the
anchors which don’t satisfy these conditions are not considered during the train [13].
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With these definitions, the Faster R-CNN minimizes an objective function following
the multi-task loss in Fast R-CNN [13]. The loss function for an image is defined as:

L(pi, ti) = ZLcls(pi7pi ) + )\N— sz‘ Liyeg(tis ti") (2.1)

Ncls i reg ;

Here, i is the index of an anchor in a mini-batch and p; is the predicted probability
of anchor ¢ being an object. The ground-truth label p;* is 1 if the anchor is positive,
and is 0 if the anchor is negative. t; is a vector representing the 4 parameterized
coordinates of the predicted bounding box, and ¢;* is that of the ground-truth box
associated with a positive anchor. The classification loss L. is log loss over two
classes (object vs not object). For the regression loss, [37] used Li,.4(t;,t}) = R(t;
- t7) where R is the robust loss function (smooth L) defined in [13]. The term p}
L,., means the regression loss is activated only for positive anchors ( p;* = 1) and
is disabled otherwise ( p;* = 0). The outputs of the cls and reg layers consist of p;
and ¢; respectively. The two terms are normalized by Ny, and N,., and weighted
by a balancing parameter A [37].

The bounding-box regression is performed on features pooled from randomly sized
Rols, and the regression weights are shared by all region sizes. In [37] formulation,
the features used for regression are of the same spatial size (3 x 3) on the feature
maps. To account for varying sizes, a set of £ bounding-box regressors are learned.
Each regressor is responsible for one scale and one aspect ratio, and the k regressors
do not share weights. Therefore, it is still possible to predict boxes of various sizes
even though the features are of a fixed size/scale, thanks to the design of anchors [37].

2.7.3 Training RPNs

End-to-end back-propagation and stochastic gradient descent (SGD) are used by
Shaoqing et al.to train the RPN. The "image-centric' sampling strategy, used in
the Fast R-CNN [13], is followed. It is possible to optimize for the loss functions
of all anchors, but this will bias towards negative samples as they are dominate.
Instead, the number of anchors are randomly sampled in an image to compute the
loss function of a mini-batch. [37].

2.8 YOLO - You Only Look Once

Previous detection systems repurpose classifiers or detectors to perform detection
apply the model to an image in multiple positions and scales regions with a high
image score are considered surveys.

The YOLO model [36] introduces a completely different approach. It applies a single
neural network to the entire image. The images is divided into regions and the
network provides bounding boxes and probabilities for each region. These bounding
boxes are weighted according to the expected probabilities. Taking the entire image
gives a fundamental role to the the global context in the image. It also makes
forecasts with a single evaluation of the network unlike systems like R-CNN that
require thousands for a single image. YOLO model processes images in real-time
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at 45 frames per second. YOLO makes more localization errors but is less likely to
predict false positives on background [36] and it learns very general representations
of objects.

YOLO reframes objects recognition as a single regression issue, directly from the im-
age pixels to the bounding box coordinates and class probabilities. The architecture
of YOLO is simple enough, as shown in Figure 2.13.

> ! <=3

1. Resize image.
2. Run convolutional network.
3. Non-max suppression.

Figure 2.13: The YOLO detection system [36].

A single CNN predicts the bounding boxes and the class probabilities for the whole
image and automatically optimizes the detection performance.

This extremely simple network makes YOLO very fast and usable for both image
and video analysis. It reasons globally about the image when making predictions.
The network uses features from the entire image to predict each bounding box. It
also predicts all bounding boxes across all classes for an image simultaneously, this
means that it considers the image in its entirety. The image is divided into a SxS
grid. If the center of an object falls into a grid cell, that grid cell is responsible
for detecting that object. Each grid cell predicts B bounding boxes and confidence
scores for those boxes. These confidence scores reflect how confident the model is
that the box contains an object and also how accurate it thinks the box is that it
predicts. Formally the confidence is defined as Pr(Object) « IOU! " [36]. Each
bounding box consists of 5 predictions:x,y,w,h,and confidence. The (x,y) coordinates
represent the center of the box relative to the bounds of the grid cell. The width and
height are predicted relative to the whole image. Finally, the confidence prediction
represents the IOU between the predicted box and any ground truth box. Each grid
cell also predicts C' conditional class probabilities, Pr(Class;|Object) [36]. These
predictions are encoded as an SxSx(B * 5 + (') tensor Figure 2.14.

YOLO network is inspired by the GoogLeNET model for images classification [43].
It has 24 convolutional layers followed by 2 fully connected layers. Alternating 1 x
1 convolutional layers reduce the features space from preceding layers. [36] pre train
the convolutional layers on the ImageNet classification task at half the resolution (
224 x 224 input image) and then double the resolution for detection Figure 2.15.
YOLO imposes strong spatial constraints at the bounding box predictions because
each cell in the grid has only two panes and can only have one class. The model pre-
diction of the number of nearby objects is limited by this spatial constraint. YOLO
struggles with small objects that appear in groups. Another limitation is the capa-
bility of generalization to objects in new or unusual aspect ration or configurations.
The last weakness is that a small error in a large box is generally benign but a small
error in a small box has a much greater effect on IOU [36]. All these limitations
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Figure 2.14: YOLO system models detection [36].
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Figure 2.15: The YOLO'’s architecture [36].

are particularly relevant in mammography applications, especially because in mam-
mograms you are dealing with very small object compare to the size of the image.
For these reason and the presence of the previous studies with Faster R-CNN in
radiological field, this thesis will consider the Faster R-CNN as its standard model.
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Chapter 3

State of the Art

In this chapter, the state of the art concerning the use of artificial intelligence in the
world of medical images will be discussed. It will also explain what the label noise
consists, how it affects the performance of a network and what studies have been
performed on it in the medical field. The goal of this Chapter is to give an overview
of the state of the art helping to understand the world in which this work is going
through, highlighting the difficulties and trying to contextualize the results the will
be explained.

3.1 Deep learning in medical image

In medical fields, the researchers have always tried to automate image analysis,
even since it was possible to scan and load medical images into a computer. When
it was possible to have sufficient computing power, the first supervised techniques
were developed, starting to become popular in medical image analysis. The first
uses mainly concerned segmentation, feature extraction and the use of statistical
classifiers for computer detection and diagnosis. Hence, it has observed a relocation
from systems that are entirely developed by humans to systems that are trained by
computers using example data from which feature vectors are extracted. Computer
algorithms establish the optimal decision boundary in the high-dimensional feature
space. The goal is to let computer learn the features that that ideally describe the
data for the problem at hand. This concept is the basis for many deep learning
algorithms: models (networks) composed of many layers that transform input data
(e.g. images) to outputs(e.g. disease present/absent) while learning increasingly
higher level features. The most used model to perform this feature extraction from
images are the CNNs. The medical image analysis community has taken notice of
these crucial innovations. However, the transition from systems that use handcrafted
features to systems that learn features from the data has been gradual.

The tasks for which deep learning in medicine is most used are:

e Classification
e Detection
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o Segmentation

e Registration

3.1.1 Classification

Image/exam classification

The fist areas of interested in medical for the application of deep learning are the
image or exam classification. Exams classification typically has one or multiple
images (an exam) as input with a single diagnostic variable as output (e.g.,disease
present or not). In this kind of setting, every diagnostic exam is a sample, and the
dataset sizes are typically small compared to those in computer vision.

The applications of deep learning algorithms in medical need the use of pre-trained
networks to try to workaround the requirement of large data sets. In the literature
there are two main transfer learning strategies: (1) using a pre-trained network as
a feature extractor and (2) fine-tuning a pre-trained net-work on medical data [29].
Concerning this aspect [2] and [21] got contradictory results. In the first one [2],
feature extraction is clearly outperformed by the fine-tuning, achieving 57.6% ac-
curacy in multi-class grade assessment of knee osteoarthritis versus 53.4%. of the
second [21], however, showed that using CNN as a feature extractor outperformed
fine-tuning in cytopathology image classification accuracy (70.5% versus 69.1%).
With respect to the type of deep networks that are commonly used in exam classi-
fication, a timeline comparable to computer vision is showed. The medical imaging
community, initially centred on unsupervised pre-training and network architectures,
started considering CNNs as the state of the art networks for classification tasks.
There are several implementation areas of these methods, ranging from brain MRI
to retinal imaging and digital pathology to lung computed tomography (CT). CNNs
pre-trained on natural images have shown surprisingly strong results, challenging
the accuracy of human experts in some tasks [29].

Object or lesion classification

Object classification generally concerns to the classification of a small (earlier iden-
tified) part of the medical image into two or more classes. These tasks necessitate
both local information on lesion appearance and global con-textual information on
lesion location. Almost all the last studies choose the use of end-to-end trained
CNNs or integrate with a multiple instance learning (MIL). Usually, less pre-trained
networks are used for object classification tasks than for exam classification, mostly
due to the need for incorporation of contextual or three-dimensional information. It
can be expected that deep learning will become even more remarkable for this task
in the near future.
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3.1.2 Detection
Organ, region and landmark localization

Anatomical object localization such as organs or landmark was one of the most
studied fields for pre-processing step in segmentation or clinical workflow for therapy
planning and surgeries. The most challenging applications are in the detection of
landmark and anatomical regions in 3D images, many studies have been done and
the most promising use CNNs. The most interesting results were obtained in 2D
cardiac MRI and ultrasound (US) and 3D head/neck CT [29].

CNNs have also been used for the localization of scan planes or key frames in tem-
poral data [29].

Localization through 2D image classification with CNNs appear to be the most used
strategy to identify organs, regions and landmarks, with good performance. How-
ever, several recent papers expand on this concept by modifying the learning process
such that accurate localization is directly emphasized, with promising results. RNNs
have shown promise in localization in the temporal domain, and multi-dimensional
RNNs could play a role in spatial localization as well [29].

Object or lesion detection

In diagnosis, the detection of objects of interest or lesions in images are the most
labor-intensive parts for clinicians. The CAD systems were developed to reduces
the time consuming part of these tasks, and they are designed to automatically
detect lesions, improving the detection accuracy or decreasing the reading time of
human experts [29]. CNNs are the most used networks for object detection and
they perform pixel or voxel classification, after which some type of post-processing
is applied to obtain the candidates. The inclusion of contextual or 3D information
is also handled using multi-stream CNNs.

There are some aspects which are significantly different between object detection and
object classification. An important aspect is that, since each pixel is classified, the
class balance is typically severely tilted towards the non-object class in a training set.
To include insult to injury, most non-object samples are usually easy to discriminate
by preventing the in-depth learning method from focusing on stimulating samples.

3.1.3 Segmentation
Organ and substructure segmentation

The segmentation of organs and other substructures in medical images allows quan-
titative analysis of clinical parameters related to volume and shape, as, for exam-
ple, in cardiac or brain analysis. Moreover, it is often an important first step in
computer-aided detection pipelines. The task of segmentation is generally distinct
as identifying the set of voxels which make up either the contour or the interior of the
object(s) of interest. Segmentation is the most common subject of papers applying
deep learning to medical imaging, and as such has also seen the widest variety in
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methodology, including the development of unique CNN-based segmentation archi-
tectures and the wider application of RNNs.The most well-known, in medical image
analysis, of these novel CNN architectures, is U-net [40].

Most recent papers now use Fully Convolutional Neural Networks in preference over
sliding-window-based classification to reduce redundant computation.
Segmentation in medical imaging has seen a large influx of deep learning related
methods. Custom architectures have been designed to directly target the segmenta-
tion task. These have obtained promising results, rivaling and often improving over
results obtained with F-CNNs [29)].

3.1.4 Registration

Registration (i.e. spatial alignment) of medical images is a common image analysis
task in which a coordinate transform is calculated from one medical image to an-
other. Researchers have found that deep networks can be advantageous in getting
the best possible registration performance. Two strategies are frequent in current
literature: (1) using deep-learning networks to estimate a similarity measure for
two images to drive an iterative optimization strategy, and (2) to directly predict
transformation parameters using deep regression networks.

In contrast to classification and segmentation, the research community seems not
have yet settled on the best way to integrate deep learning techniques in registration
methods [29].

3.1.5 Anatomical application areas

This section exhibit an overview of the deep learning contributions to the various
anatomical areas of application in medical imaging.
The anatomical application areas most affected are:

1. Brain
2. Eye
3. Chest and Breast

4. Digital pathology and microscopy

Brain

The type of images used for this anatomic region derived from the MR images. DNNs
have been considerably used to address classification of Alzheimer’s disease and
segmentation of brain tissue and anatomical structures. Other important aspects
are detection and segmentation of lesions, as tumors, white matter lesions, lacunes,
micro-bleeds. Most methods learn mappings from local patches to representations,
and afterwards from representations to labels. Nevertheless, the local patches might
lack the contextual information required for tasks where anatomical information is
paramount. In the near future it is hoped for that the use of Deep neural networks
will also include image types such as US and CT.
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Eye

Ophthalmic imaging has became a important tool for the analysis of color fundus
imaging (CFI). The most used networks are the end-to-end CNNs utilize for diabetic
retinopathy detection.

Chest and Breast

Thoracic image analysis of both radiography and computed tomography, it is mainly
used for the study of different breast pathologies. Generally, CNNs are used to
classify regions of interest. Being the chest radiology the most common exam, the
availability of data is theoretically very wide, so this is certainly a field of great
interest for future developments.

3.2 Label noise

In classification, it is both expensive and difficult to obtain reliable labels, yet tra-
ditional classifiers assume and expect a perfectly labeled training set [11]. Well-
annotated datasets can be time-consuming and expensive to collect, lending in-
creased interest to larger but noisy datasets that are more easily obtained. This
problem is even more crucial in the medical field, given that the annotation quality
requires great expertise.

Sukhbaatar et al. divides in two category the real-world label noise:

 label flips: an example has erroneously been given the label of another class
within the dataset.

o outliers: the image does not belong to any of the classes under consideration,
but mistakenly has one of their labels.

Label ﬂlp n01se Outlier noise

] | ol OSSR

horse horse cat horse cat horse cat cat cat

Figure 3.1: A toy classification example with 3 classes, illustrating the two types of
label noise encountered on real datasets. In the label flip case, the images all belong
to the 3 classes, but sometimes the labels are confused between them. In the outlier
case, some images are unrelated to the classification task but possess one of the 3

labels [42].

Benoit et al. [11] splits the types of label noise in three:

o label noise completely at random (NCAR): occurs independently of the true
class and of the values of the instance features.
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o label noise that occurs at random (NAR): depends only on the true label.
This can be used to model situations where some classes are more likely to be
mislabelled than others.

« label noise not at random (NNAR): is the more general case, where the mis-
labelling probability also depends on the feature values [11].

(a) (b) (c)

Figure 3.2: Statistical taxonomy of label noise: (a) noisy completely at random
(NCAR), (b) noisy at random (NAR) and (c) noisy not at random (NNAR). Squares
and circles correspond to observed and unobserved variables respectively. Arrows
represent statistical dependencies between the observed features X, the true class Y
, the observed label Y and E indicating whether a labelling error occurred. The
complexity of dependencies in these models increase from left to right. The link
between X and Y is not shown for clarity [11].

In practical machine learning the labels are not always completely accurate. The
affect of such labeling noise can impact the classifier in the following ways [15]:

o Decreasing the performance of the classifier
o Increasing the complexity of models
» Distortion of observed frequencies

o Affects the feature selection, especially, in cases that we have lower number of
data points i.e. medical tasks

The main problem in medical fields is the annotation quality, which is prone to
experience. This requires years of professional training and domain knowledge.
Despite the problem of label quality, DNNs are prone to other training set biases,
especially class imbalances and difficult sample [9]. This is particularly relevant for
mammograms, where the hard samples are normally ambiguous and hence brings
about extra challenges for identifying wrong-labeled samples. In medical pattern
classification, class noise may originate from several sources, among which the most
possible are:

o Human errors: these may happen quite often, especially when an expert physi-
cian is asked to provide labels for a large number of examples. Mistakes may
occur due to weariness, routine, quick examination of each case, time pressure,
or even due to not paying attention to potential outliers or atypical cases. Ad-
ditionally, especially in the case of highly complex data, we cannot assume
that the physician will be infallible
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o Machine errors: these are especially present in cases, where a machine is re-
sponsible for providing automatic labels. Here some design faults, momentary
error or too similar cases may lead to the presence of erroneous labels.

» Digitalization errors: when creating a digital record of the examined cases,
one may simply incorrectly input a class by a mistake.

o Archiving errors: when using historical recordings, there is a chance of missing
or incorrectly copied information [44]

The study presents by [46] proposed an analysis of different skin lesion classification
task in the presence of NNAR label noise. Their model is based on an online
uncertainty sample mining strategy is proposed to suppress the noisy samples, and
an individual re-weighting module is developed to preserve the hard samples and
minority class. The most interesting aspect of this work is the analysis of the
performance trend according to the increase of the noise level. In terms of train
accuracy, it is proved a trend increasingly worse according to the noise level. The
decrease of the performance is also demonstrated by the test accuracy which changes
from 86.3% to 65.3% with ImageNet, using a level of noise between 5% and 40%.
The label noise in mammography tasks is analyzed only in [7]. It is focused on breast
micro-calcification classification, in particular, they investigate the possibility of
training a benign vs. malignant classifier based only on manual annotation without
having gold standard biopsy results. Their model is based on the concept of the
probability of knowing the actual labels without having a gold standard reference.
Formally, the noise model is defined by a parameter-set 6 such that 0(i,j) = p(z =
y = 1) is the probability of observing label j given that the true label is i [7]. Their
based model showed a decrease of accuracy in the test of 10 % with the increase of
the noise level, showing comparable results with [46].

Other studies about label noise have been computed but not using medical images.
All of them trained the on public datasets as ImageNet or CIFAR-10. According to
their model of label noise [29] and [18], proved that the performance of the networks
tasted decrease with the amount of noise injected. In conclusion, it is possible to
establish that all the studies conducted on the label noise agree in highlighting a
decrease in performance with the increase in noise and focused their researches on
methods to reduce the effects of incorrect labels increasing the robustness of the
networks.

3.3 Technique to reduce the effects of labeling
noise

As described in the section before the labeling noise is a problem to deal with in
many situations. For this reason, the main researches focused on methods and
techniques to reduce the negative effects of the label noise.
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Form a theoretical point of view, [11] proposes three approaches to deal with label
noise: label noise-robust models, data cleansing methods and label noise-tolerant
learning algorithms.

Using label Noise-Robust models should avoid the problem of label noise, in practice,
some of them are more robust than others. For example, bagging achieves better
results than boosting and several boosting methods are known to be more robust
than AdaBoost. For decision trees, the choice of the node splitting criterion can
improve label noise-robustness [11].

Data cleansing methods are based on the removal of the instances that appear to be
mislabelled. Some of them are just based on removing manually the samples that
could be mislabelled, other ones are based on voting filters, KNN-based methods.
Some authors claim that detecting label noise is impossible without making as-
sumptions. For such identifiability issues, prior information is necessary to break
ties. Bayesian priors on the mislabelling probabilities can be used, but they should
be chosen carefully, for the results obtained depend on the quality of the prior dis-
tribution. The label noise-tolerant learning algorithms are investigated with this
purpose.

Following the third strategy [18] created a model based on a Loss Correction. It
started with the assumption that during training the model has access to a small
set of clean labels. This assumption has been leveraged by others for the purpose of
label noise robustness, most notably human-verified labels are used to train a label
cleaning network by estimating the residuals between the noisy and clean labels in a
multi-label classification setting [18]. It is able to select and make usable a trusted
or gold standard labels. They used a trusted dataset to train the model and after
that train with noise dataset to calculate the noise labels. [18] called his method
Gold Loss Correction (GLC), so named because they made use of trusted or gold
standard labels.

To assess the performance of the GLC, they compared it to other loss correction
methods and two baselines: one where the network is trained only on trusted data
without any label corrections, and one where the network trains on all data without
any label corrections. The GLC surpasses previous label noise robustness methods
across various natural language processing and vision domains which [18] showed by
considering several corruptions and numerous strengths, including severe strengths.
These results demonstrate that the GLC is a powerful, data-efficient method for
improving robustness to label noise [18].

As [18], [12] created a loss function noise-tolerant. They started with the hypothesis
that the robustness of risk minimization depends on the loss function used. Their
work is focused on the framework of risk minimization which is a popular method for
classifier learning. The standard backpropagation-based learning of neural networks
is also risk minimization under different loss functions.

In the literature, changing of the learning algorithm is the most of the method
thanks to that the true labels of the training examples can be estimated, and thus
be able to learn under label noise. As opposed to this, it is possible to look for
methods that are intrinsically noise resistant. Such algorithms handle noisy data
and noise-free data the same way but manage noise robustness due to properties of
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the algorithm. Such methods have been mostly examined in the framework of risk
minimization. [12] analyzed the theoretical results on robustness of loss functions in
multi-class classification. Such robust loss functions are helpful because the network
can learn to be good classifier (without any change in the algorithm or network ar-
chitecture) even when training set labels are noisy. Although, there are many works
that analyse the effects of noise in classification and object detection, the literature
lacks an analysis of robustness of an object detection model with respect to bigger
bounding boxes and its mostly focused on flipping labels or outliers. Especially, in
the case of the Faster-RCNN applied to breast mass detection.

In the end, it can be stated that in literature a lot of methods have been proposed to
model the label noise and all are really connected to the specific problems analyzed
in the respective studies. Consequently, the methods proposed to solve this problem
are not general and are not been tested on medical tasks yet.
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Chapter 4

Model of label noise

This chapter explains the label noise model designed for this work. As explained
in Chapter 3, in the literature, no label noise models have been developed for ob-
ject recognition. All the models focus on changing the class labels of the datasets
and no one analyzes the possibility of different sizes of ground truth bounding boxes.

The Faster R-CNN structure shows promising results when it comes to object detec-
tion. Detecting lesion in mammography scan images are is an object detection task,
but there are certain considerations to take into account when it comes to detection
lesions.

In object detection, in order to figure out whether or not an anchor box or a proposed
bounding box corresponds to a certain lesion in the ground truth annotations; they
need to be compared with each other. This comparison is based on a matching
criterion. In a more general sense, for evaluation of CAD systems [34] a set of rules
is used to decide which marks correspond to the targeted abnormalities; this is also
known as Mark Labeling. In this context, consider a matching criterion as a function
which inputs are two boxes and as output it returns a score which is an indicator of
the distance or similarity between the two boxes. Then the rule would be setting a
threshold to distinguish between boxes that contain a lesion and the ones that do
not, these lesions can be marked as positive or negative.

When it comes to training a Faster-RCNN, there are three different places in the
algorithm that a matching criterion is used. First, the anchor boxes that are passed
to train the RPN need to be labeled. Second, the RPN is going to propose a set of
bounding boxes which may or may not contain an object of interest. These bounding
boxes would later be used to train the classifier end. For the first two steps, the
matching is usually based on IoU. For the final part, which is the evaluation of
the final output, centroid inside the bounding box is usually the choice by most
practitioners.

The CBIS-DDSM [26] is one of the biggest public datasets of mammograms available
and the lesions are detected with a semi-automatic CAD system, thus the size of the
bounding boxes drawn are really close to the actual size of the lesions. This may seem
an advantage but in practice mammography, experts tend to validate mammograms
with bounding boxes larger than the visible size of the lesion, furthermore, the
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validation of the same mammography may slightly change between the different
radiologists. The purpose of this model is to change the size of the bounding boxes
by creating a more realistic dataset as close as possible to a hypothetical practical
case. This size’s change causes the onset of label noise, for the reasons explained in
the previous paragraphs. In fact, a modification of the selected area may correspond
to different labeling by the network. The size of the bounding boxes drawn by experts
may be more 4 times bigger than the CBIS-DDSM sizes. Labeling noise is referred
to the set of bounding boxes which could have different labels in case of tighter
bounding box is feasible.

In this study, only the masses are includes, as described more precisely in Chapter
micro-calcification are not included because the segmentation is not available in
CBIS-DDSM, and defining the noise-free model is more arbitrary. Then different
noisy versions of the dataset have been created by enlarging the bounding boxes
based on random normal distribution. The standard deviation in all noisy versions
are the same and only the mean is variable among different datasets.

From here onward, the term noise level refers to the average amount of enlargement
that has been done in the dataset. The higher is the mean, the higher is the noise
level.

As mentioned before, the bounding box b; = (14, Y14, T2;, Y2;), which surrounds the
lesion ¢ € 1,2,...,m; are mostly bigger than the actual size of it. Therefore we
enlarged the bounding boxes to match the real-world situation by injecting random
noise in the dataset. To this end, each b; has been modified by a random factor as
below:

/
= (1 wi ) Wi
wzl (14 nyi)w (4.1)

where:

W; = T4 — T4

hi = Yai — Y1 (4.2)
Noawiy Mhs ~~ N(M’ 1)

(wj, h;) are width and height of b; and (n;, np;) are sampled from N(p, 1) which
denotes a normal distribution with mean p and variance equal to 1. In this context,
this random modification is called noise. According to the above equations, the
noisy bounding box b, with width w) and height h; will be calculated. Note that
some considerations should also be made. First, b, is always greater than or equal
to b;. Next, this study assumes that the size of the bounding box cannot be larger
more than six times with respect to the original one. Last, the size of the bounding
box should not exceed the size of the image. Therefore, the normal distribution has
been truncated in rang [0,5] then if any b, goes out of the image borders, it has
been cropped. The width of the biggest bounding box for the largest lesions covers
near 80% of the total width. Therefore, the width is also limited not to exceed that
amount.
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4.1 Noisy datasets

Based on the noise function, four noisy datasets, with four different levels of noise,
have been generated. As described before, the only parameter that was modified is
the mean, maintaining the standard deviation constant and set to 1.

The following nomenclature will be considered for the rest of the work:

« Dataset level 0: Original CBIS-DDSM clean dataset

Noisy dataset level 1: Dataset with mean = 0, std =1

Noisy dataset level 2: Dataset with mean =1, std =1

Noisy dataset level 3: Dataset with mean = 2, std =1

Noisy dataset level 4: Dataset with mean = 3, std =1

To better understand the differences between the different noise levels, the datasets
generated are compared in terms of probability respect to the diameters of the
bounding boxes, Figure 4.1 and Figure 4.2. The DDSN distribution is referred to
the CBIS-DDSM ( Chaper 5 ), the Clinical distribution referred to the noisy datasets
created according to the model described previously. The diameter of a bounding
box is considered as its diagonal.

As can be seen with the increase in the level of label noise, the histogram tends to
flatten out and generate even larger bounding boxes.
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Figure 4.1: Distribution of the diameters of the bounding boxes for the level 1 and
level 2 noisy datasets

Figure 4.7 shows five mammograms from the clean dataset and the four noisy
datasets. It is evident as the size of the bounding boxes increase with increas-
ing noise, also including portions of tissues that are not relevant for object detection
and in some cases even portions of the background.

The histogram of s for level 1 noise dataset is depicted in Figure 4.3.
The histogram of s for level 2 noise dataset is depicted in Figure 4.4.
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Figure 4.2: Distribution of the diameters of the bounding boxes for the level 3 and
level 4 noisy datasets
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Figure 4.3: Histograms of s for the X axis and Y axis with level 1 noisy dataset
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Figure 4.4: Histograms of s for the X axis and Y axis with level 2 noise dataset

The histogram of s for level 3 noise dataset is depicted in Figure 4.5.

The histogram of s for level 4 noise dataset is depicted in Figure 4.6.
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Figure 4.5: Histograms of s for the X axis and Y axis with level 3 noisy dataset
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Figure 4.6: Histograms of s for the X axis and Y axis with level 4 noisy dataset

In order to have a more in depth understanding of the matching criteria and their
attitude toward noise, the number of positive anchor boxes per lesion that are passed
for training the RPN has been calculated. Figure 4.8 shows the number of positive
anchors per lesion on the clean dataset for different lesions. As it is observable, there
is a gap between the number of positive bounding boxes that has been generated for
each criterion which can affect the training, especially for the centroid and overlap
criteria. This means that the training data and the generated ground truth will be
different and as a result it can affect the training procedure. Besides the effect of
matching criterion, next steps aim to study the effect of noise on the number of
positive bounding boxes that are generated. Looking at Figure 4.8, it is observable
that as the bounding boxes become larger the number of positive proposals per
lesion grows significantly. For IoU the number of positives grows up to 8 times in
comparison to the clean dataset while for Centroid inside the bounding box it grows
up to 10 time. As a consequence, the anchor box proposals may contain labeling
noise.
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Figure 4.7: Examples of the ground truth bounding box with different level of noise.
A) Clean dataset; B) Noise dataset level 1; C) Noise dataset level 2; D) Noise dataset

level 3; E) Noise dataset level 4.
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Figure 4.8: The average number of positive anchor boxes per lesion used for training
at the initial step. Note that the scales are logarithmic.
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Chapter 5

Methods

5.1 Dataset

In this work, it has been used the CBIS-DDSM (Curated Breast Imaging Subset
of DDSM) that is an updated and standardized version of the Digital Database
for Screening Mammography (DDSM). The DDSM is a database of 2,620 scanned
film mammography studies. It contains normal, benign, and malignant cases with
verified pathology information. The scale of the database along with ground truth
validation makes the DDSM a useful tool in the development and testing of deci-
sion support systems. The CBIS-DDSM collection includes a subset of the DDSM
data selected and curated by a trained mammographer [27]. The images have been
decompressed and converted to DICOM 8-bit raw binary format. Updated ROI
segmentation, bounding boxes and pathologic diagnosis for training data are also
included. This dataset contains only the cases with abnormalities. The normal
cases that were included in DDSM dataset are eliminated to focus on abnormality
analysis.

The images in CBIS-DDSM dataset are provided as full images and ROIs including
both MLO and CC views for each mammogram. Abnormalities are saved as both
images and binary masks with the associated mammogram.

The CBIS-DDSM dataset includes 2454 images (views) in the training set and 635
in the validation set. There are a total of 2029 lesions annotated, of which 1525 are
visible on both sides (1235 in the training set, 290 in the validation set), and 504
only visible on one side, for a total of 3556 lesion views (CC or MLO).

The lesion types in the CBIS-DDSM dataset are as follows:

Benign | Malignant | Benign w/o callback
Microcalcification 653 673 540
Mass 767 782 141

Table 5.1: Number of patients and lesions in CBIS-DDSM database based on lesion
type.

Only the masses will be the object of this study because they have a better segmen-
tation, therefore, they present more precise data. The data set will be divided into
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1316 images for the train set and 374 for the test set.

5.2 Train and test set

In CBIS-DDSM data set, the split is defined based on BI-RADS category in order
to generalize the algorithms both for CADe and CADx studies [26]. The training
and testing set separation is very important to ensure the performance of a deep
learning algorithm. Specifically, the test set should include samples of different
difficulty levels.

As said before in the work is been considered only the dataset of masses, in par-
ticular, the masses-dataset is been divided between train and test set as showed in
Figure 5.1. To monitor the behavior of the train it is been introduced a validation
test composed of half of the test images randomly sampled.

The entire dataset composition, used for the experiments, is described in Figure 5.2.
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Figure 5.1: Number of images for the train set: 1316, and the test set: 374.
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Figure 5.2: Number of images for the train set: 1316, Number of images for the test
set: 374, Number of images for validation set: 137.

As it is possible to see the validation set is unusual because it is not independent of
the train and test dataset, as it said, the purpose of the split is due to the necessity

47



5 — Methods

to monitor the train performance in real time. The classes and their dimension of
the train set and the test set are described in Figure 5.3.
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Figure 5.3: Train set: Mass benign 575, Mass malignant 637, Mass without callback
99. Test set: Mass benign 192, Mass malignant 145, Mass without callback 37.

o

5.3 Performance and evaluation methods

5.3.1 Sensitivity and Specificity

A common metric in classification performance evaluation is measuring the classi-
fication accuracy that is defined as the ratio between the total number of correctly
classified samples and the total number of samples. However, using classification
accuracy to evaluate the performance is adequate only when the distribution of the
dataset is relatively balanced. Furthermore, the accuracy metric comes with the
assumption that false positive error is equally significant as the false negative error.
When evaluating medical image interpretation systems, this assumption does not
hold. As an alternative, sensitivity and specificity of the classifiers are taken into
consideration. These metrics are based on four categories:

o False Positive (FP): A sample that is originally classified as normal but the
system detects as an abnormal region.

 False Negative (FN): A sample that originally contains an abnormality but
the system classifies as a normal region.

o True Positive (TP): A sample which contains an abnormality and also the
system classifies as an abnormal region.

« True Negative (TN): A sample which does not contain any abnormality and
also the system classifies as a normal region.

The sensitivity (also called as True Positive Rate) is defined as the ratio between
the number of TP predictions and the total number of positive samples:
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TP

T d
TP+ FN (5.1)

The specificity (also called True Negative Rate) is equal to the ratio between the
total number of TN and the total number of negative instances in the test set:

TN

—_— 2
FP+TN (5:2)

It is common to use sensitivity as the main metric in diagnosis system evaluation
where the definition becomes the sensitivity per lesion or sensitivity per view. In
the first case, sensitivity is calculated as the ratio between the number of correctly
classified lesions and the number of total lesions. In other words, if a lesion is
detected in one of the views, it is considered a true positive.

5.3.2 Free-Response ROC (FROC) curve

ROC analysis demonstrates the confidence of the CAD system on either an abnor-
mality is present or not. However, accurate localization of the findings is necessary
for diagnostic screening to apply the appropriate treatment.

The analysis of data from experiments in which some of the cases contain two or
more task-related lesions, or in which the observer indicates two or more suspicious
locations per image is inaccurate with ROC curve [1] . In the FROC curves, it is
not required a priori knowledge of the number of lessons in an image, the reader
can assign any number, even none. This measurement requires the two types of
response: TPs, when an indicated location falls within a specified distance of a true
lesion, and FPs, which are all other events [1].

The ordinate of a FROC plot is defined as the cumulative fraction of lesions rated
above a given confidence level, where this fraction is calculated relative to the total
number of lesions in the image set. The abscissa of the FROC plot, the mean number
of FP responses per image, quantifies the penalty for achieving this detection rate
in terms of the average number of FPs per image. The total number of potential
sites per image that can either contain a lesion or generate an FP response, denoted
here by T, is the image area divided by the area of a typical lesion, often called the
“acceptance area" [1].

Statistical analysis of FROC data conventionally assumes that the average number
of lesions per image, the lesion density, is small compared with T. This perspective
indicates that a FROC curve starts at (0, 0) and increases monotonically to (1, T).
The FROC curve is an important concept as it allows a visual representation of the
outcome of a free response experiment [1].

In a FROC curve, the number of false positive samples is expected to be low at
good sensitivity levels. Therefore, a curve that is closer to the upper left corner is
considered a better classification.
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Free-Response Receiver operating characteristic
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Figure 5.4: FROC curve interpretation

For an object detector, the FROC curve would be the most effective measure. How-
ever, calculating the area directly is not possible as for ROC analysis. One alterna-

tive of a cumulative measure that can be directly compared and plotted could be
the normalized area under the FROC curve (AFROC).

Area Under FROC curve

In this work, the Area Under FROC curve is the area, calculated with the trapezoidal
rule for approximating integrals [31], under the FROC.

[4] demonstrated that the AFROC penalizes the number of erroneous marks, re-
warded for the fraction of detected abnormalities, and adjusted for the effect of the
target size. Geometrically it can be interpreted as a measure of average performance
superiority over an artificial “guessing” free-response process and it represents an
analogy to the area between the ROC curve and the “guessing” or diagonal line.

[48] proved the correlation in mammography between the AFROC and AROC.
The representation of the area under the empirical FROC curve agrees with the
presentation of the FROC curve as a scaled ROC curve under the assumption of
independence of the rated marks within a subject.

5.4 Implementation details

One of the enablers of deep learning algorithms is GPU availability. In the experi-
ments, it is been used Nvidia Geforce GTX 1070 Ti with 8GB memory and Nvidia
Geforce GTX 1080 Titan Xp with 12GB memory.

In addition, accessibility to open source libraries that provide efficient GPU usage is
highly important. Using these resources, a researcher does not need to worry about
efficient implementations of several functionalities such as convolutions in neural
networks. The open source libraries and APIs used in this project are listed below:
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o Keras(v2.1.5): It is a high-level neural networks API developed in Python that
uses Tensorflow, CNTK or Theano backend.

o Tensorflow(v2.2.0): Developed by Google and provides Python and C++ in-
terfaces.

The entire project is developed using Python(v3.6.5) programming language due to
its flexibility and variety of libraries for deep learning algorithms.

The purpose of this work is to evaluate the effects of the noise label on an object de-
tection network such as the Faster R-CNN, described in Chapter 2. Before focusing
on this aspect, it was necessary to evaluate the tuning of the parameters in order
to find the best configuration of the network. This tuning will focus to increase the
network performance and to reduce the overfitting problems, which will be discussed
in the following sections.

The two main aspects that have been analyzed in the early part of this work, are the
number of epochs, the base network (VGG16 or ResNet50) used and the optimizer
(Adam or SGD).

5.5 Network configuration and Hyper-parameters

Based on preliminary experiments with the Faster R-CNN used for mammography
an initial setting is chosen as:

« Images resample: 600

o Data augmentation: Horizontal flipping
 Anchors scales: [56, 128, 256]

o Number of Rols to process at once: 4

o Number of epochs: 30

e Epoch length: 500

o Training loss lambdas:

— Lambda RPN classifier: 1.0
— Lambda RPN regression: 1.0
— Lambda detector classifier: 1.0

— Lambda detector regression: 1.0
o Max number of proposals: 300
o Optimization method: Adam

o Base network to use: ResNetbH0
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Learning rate: 1le-05

Non-maximum suppression criteria: Intersection Over Union

Non-maximum suppression max number boxes train: 300

Threshold of IOU:

— 0.7, max bounding boxes 300 at training time

— 0.1, max bounding boxes 300 at testing time

Starting from the images resample it was decided to use 600 instead of 1200 because
the detection of the masses doesn’t require a high resolution and in so doing the com-
putational time is reduced. Only horizontal flipping is used for data augmentation
since the original images are not all oriented in the same direction.

The anchor’s scales is chosen smaller the standard one because the lesions are gen-
erally small compared with the image size. The Region of Interest used to train the
classifier model. The Rols are obtained from a feature map, as described in Chapter
3. Only 4 Rols are chosen for computation reasons and to be able to compare the
results with other studies that used this hyper-parameter. 32 regions/image are
generated for RPN training, and it is used all ROIs with weighted cross-entropy
loss. These choices were made to reduce the memory requirements and account for
the imbalance.

An epoch is defined as a set of 500 images (epoch length), read in the order provided
by the annotation file. For this reason, the network takes about 3 epochs for a
complete train on the whole dataset. The number of the epoch is set at 30 in
previous experiments to have a faster computational time.

The base network is the CNN used for the feature extraction, it is used ResNet50
to compare with the experiments that have already been done.

Learning rate is a hyper-parameter that controls how much the weights of the net-
work are adjusted with respect to the loss gradient. The lower the value, the slower
it travels along the downward slope.

Non-maximum suppression used to transform a smooth response map that triggers
many imprecise object window hypotheses in, ideally, a single bounding-box for each
detected object. In this project a threshold of 300 boxes is set, with IoU as criteria
with two different thresholds for the train and the test, to be more restrictive during
the first one.

5.5.1 Matching criteria

As mentioned in Chapter 4, the role of the matching criteria is fundamental for
object detection tasks, in particular for the Faster R-CNN. The matching criterion
set a score which should be compare with a threshold to distinguish between boxes
that contain a lesion and the ones that do not.
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Intersection Over Union

In the literature, the most common method is using Intersection over Union(IoU)
metric. The IOU is calculated as the ratio between the intersection area over the
union of the two bounding boxes. Typically in mammograms, if this value is over
0.5, the bounding box is labeled as a positive sample and negative otherwise [38].

LoU- 0.40 IoU: 0.73 IoU: 0.92

Poor Good Excellent

Figure 5.5: Intersection over Union metric examples.

Surface Overlap

In this work, it is assumed to use the overlap coefficient as a similarity measure that
measures the overlap between two sets. It is related to the Jaccard index and is
defined as the size of the intersection divided by the smaller of the size of the two
sets [30].

Centroid distance

The centroid distance is the Euclidean distance between the centroid of the ground
truth bounding box and the centroid of the candidate bounding box.

Bounding box

Y

AN

T Bouding box

Figure 5.6: Centroid distance example.

In particular, the centroid can be used distance as a threshold close to the anatomical
parameters of a breast cancer distribution that could be calculated from the GT’s
segmentation.
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This can be used to set the maxim distance between the GT’s centroids and the
candidate centroids when the IOU results very low. This could make the selection of
positives less exclusive, especially because one of the problems of this work concerns
very small bounding boxes compared to those of the GT.

Centroid inside the ground truth bounding boxes

This criterion considers only the position of the centroid. It is inspired by the eval-
uation criteria used for object detection. It verifies if the centroid of the candidate
bounding boxes are inside the ground truth bounding boxes if it verifies the can-
didate is considered as positive if it does not verify the candidate is considered as
negative.

5.6 Experiments

After fine-tuning and fixing the parameters for training, it is time to analyze the
effects of different noise levels on the model. Since there are 4 levels of noise, the
clean data, and also 3 matching criteria, 15 experiments are needed to be able to
test the robustness of our architecture and its behavior. The noise is injected as
described in the previous paragraphs.

After having found the most realistic model of label noise, we are going to study
which parameters are objectively dependent on the label noise and the one that
could keep fixed during the experiments. The last part of our work is to tune the
parameters and, if it will be necessary, perhaps modify the architecture, as discussed
in the previous sections, to obtain reasonable performances.

The ground truth for evaluation is calculated based on the centroid inside the bound-
ing box criterion for two main reasons. The first is that through the noise injection
the centroid coordinates has been mostly preserved. So this criterion would be more
robust in comparison to the ones which are affected more by the size of the bounding
box, especially, the ones which are based on the intersecting area. The second reason
is that the centroid inside the bounding box is not dependent on any threshold like
the IOU which gives a real number in the range [0, 1]. Therefore, it has been used
for calculating all the FROC curves.

Datasets used:

o Level 0: Clean dataset

e Level 1: Noise dataset with level 1
o Level 2: Noise dataset with level 2
o Level 3: Noise dataset with level 3

e Level 4: Noise dataset with level 4
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Dataset =~ Matching Criteria

Experiment 1 Level 0 IoU
Experiment 2 Level 1 IoU
Experiment 3 Level 2 IoU
Experiment 4 Level 3 IoU
Experiment 5 Level 4 IoU
Experiment 6 Level 0 Overlap
Experiment 7 Level 1 Overlap
Experiment 8 Level 2 Overlap
Experiment 9 Level 3 Overlap
Experiment 10 Level 4 Overlap

Experiment 11  Level 0 Centroid in GT BBoxes
Experiment 12 Level 1  Centroid in GT BBoxes
Experiment 13 Level 2 Centroid in GT BBoxes
Experiment 14 Level 3  Centroid in GT BBoxes
Experiment 15 Level 4 Centroid in GT BBoxes

Table 5.2: List of experiments, the Dataset is the type of noise that we are planning
to inject.
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Chapter 6

Fine tuning of the network

6.1 Hyper-parameters selection

In this section, the changes made to the hyper-parameters to fine tune the network
will be described.

The first hyper-parameter modified was the Anchors scales, it is decided to enlarge
the scale twice, this is due to the fact that the previous configuration was optimized
for the detection of both calcifications and masses. Since this study focuses only
on the masses and that these are on average larger than the calcifications it was
decided to use an Anchors scales of:

 Anchors scales: [128, 256, 512]

The second hyper-parameter analyzed was the Number of epochs, it indicates the
duration of the training and it has been noted, from previous experiments, that they
were not sufficient to completely train the model. To make sure to have a complete
train the Number of epochs is set at:

o Number of epochs: 120

The lambdas are the weighting and balancing parameters, they balance the losses as
showed in 2.1. Exploring the losses from the primary tests it was decided to modify
the training loss lambdas to have a more comparable value between the losses.

o Training loss lambdas:

— Lambda RPN cls: 1.2

— Lambda RPN regr: 10.0

— Lambda classifier cls: 0.8

— Lambda classifier regr: 10.0

The other hyper-parameters on which we focused to fine tune the network are the
optimizer method, the base network used and how the samples to train the classifier
are selected.
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6.1.1 Base Network selection

The choice of reference CNN for the feature extraction was between Resnet50 [17]
and VGG16 [41]. The performance of the two networks was compared in terms
of train’s losses (Figure 6.1) and FROC on the test-set (Figure 6.2). The graphs
show similar behavior, therefore the choice was based on the studies present in
the literature. [5] proved that Resnet50 is a better network than VGG16 in terms of
accuracy, inference time and memory consumption. This is due to the fact that even
though ResNet is much deeper than VGG16, the model size is actually substantially
smaller due to the usage of global average pooling rather than fully-connected layers.
For these reasons, it was decided to use as base network for the feature extraction
Resnet50.
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Figure 6.1: Losses Resnet vs VGG

6.1.2 Optimizer selection

As described in 2.2.8 optimization algorithms are used to update weights and biases
(i.e. the internal parameters of a model to reduce the error). In this work, the
performances were compared using Adam optimizer and Stochastic gradient descent
(SGD) optimizer. The model was trained only on 30 epochs for computational
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Figure 6.2: Loss Resnet vs loss VGG and FROC Resnet vs FROC VGG

reasons and the options were compared in terms of losses for the RPN and the
Detector.

Losses

Loss
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Figure 6.3: Loss SGD vs Adam

The loss shows that the model is not in a stalled phase and that it continues to
decline and to learn. SGD is better generalized adapter than Adam, but in terms of
computational time it is worst, moreover, in this specific case a great capacity for
generalization is not strictly necessary, because a large dataset is not available. For
these reasons, Adam optimizer is chosen.

6.2 Study of the variability

To have the security of reproducible results, a study of the variability has been
performed. The main problem in this project is the comparison and the optimization
of different configuration of a neural network, which is a stochastic process which
does not always converge to the same point. To reduce the variability, the order of
the images is the same for all the experiments for the clean dataset and for the noisy
ones. The order of the spreadsheet containing the reading order of the images was
shuffled only one single time outside of the main code, as opposed to every epoch of
the training set. A constant seed is set for all the python’s libraries which introduce
randomness (Numpy and Tensorflow).
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To analyze the variability the losses for the RPN and the classifier are considered, in
particular, they are evaluated for one epoch in different training, in order to analyze
the network behavior with the same images. Only 200 images were scanned cause
of the computational time. It is possible to see the behavior in Figure 6.4
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Figure 6.4: These graphs indicate the losses of the RPN and the classifier of the
train set for the first 200 images computed two time to have a response of the train’s
behaviour for single images.

The main issue of this analysis concerns the repeatability of the final results, there-
fore in terms of performance. For this reason, the FROC curves and the AUFROC
of three experiments with the same configuration were compared (Figure 6.5 ).
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Figure 6.5: FROC curves and AUFROC of three experiments with the same hyper-
parameters to evaluate the variability of the model. AUFROC Mean: 1.17397 |
AUFROC std: 0.11586.

As it is possible to notice, the results are not strictly the same, this is due to the
fact that the model runs on a GPU. It is possible that when using the GPU to train,
the backend may be configured to use a sophisticated stack of GPU libraries, and
that some of these may introduce their own source of randomness.
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For example, there is some evidence that if it is used Nvidia cuDNN in the stack,
that this may introduce additional sources of randomness and prevent the exact
reproducibility of the results.

In conclusion, the system used in this work can be considered sufficiently stable with
repeatable results. The small variability found in this analysis can be attributed to
the operations performed by the GPU, which are non-deterministic. These processes
can produce a small difference in the results.

6.3 Samples to train the classifier selection

As a starting point, the model has been trained and fine-tuned with the clean dataset
for 120 epochs. It has been observed that the network is overfitting. Farly stopping
proved to be very useful in reducing the overfit but it did not fix the problem
completely.

In addition to fine tuning parameters, a simple heuristic has also been added to
mine hard examples after the non maximum suppression. In this context, the hard
examples are the mislabeled bounding boxes which are proposed by the RPN. The
following score is used to rank all the proposed bounding boxes:

S; = (ﬁz‘ - ]%‘)2 (6-1)

The intuition is if there is an object in ¢; and the RPN gives a very low probability
for that specific ¢; (2.1), it means that the network has a hard time detecting that
object. The same scenario happens for also negatives. Therefore, as s; grows higher
the margin between the probability and the true label grows, meaning that it is a
hard sample. Doing so, the positives and negatives were sorted separately based
on their score. Then the mean values for positives and negatives were calculated.
Following this terminology the samples have been split into 4 categories:

o FEasy positive samples: the positive ones which are smaller than the mean score
of positives.

o Hard positive samples: the positive ones which are greater than or equal to
the mean score of positives.

o FEasy negative samples: the negative ones which are smaller than the mean
score of negatives.

o Hard negative samples: the negative ones which are greater than or equal to
the mean score of negatives.

From each subset a random selection has been made to select positives and nega-
tives by trying to maintain the balance between these 4 categories and also keep the
variety, meaning that the set contains both easy samples and hard samples.

Experimentally, 25 positive samples and 25 negative samples are choosen, since
with lower amounts there is a risk of losing many bounding boxes and with higher
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amounts the results were equal or worse. After this step take into consideration that
there are only 4 ROIs which are passed to the detector, hence, reducing the number
of proposals given by the RPN would give a better chance to select informative
samples in order to better train the network. The performance of the model on the
test set has improved by using this method. Since the dataset is small, the model
tends to overfit, we have also observed that using hard example mining this way
would also decrease the overfitting slightly. The complete results and analysis will
be explained in more detail in Chapter 7.
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Chapter 7

Overfitting analysis

The purpose of the chapter is to examine and determinate whether the model over-
fits. In particular will be explained what is the overfitting in deep learning, how it
is reduced and the effect of different matching criteria and different level of noise
affect this problem.

7.1 Overfitting problem

Overfitting refers to a model that models the training data too well. Overfitting
happens when the network specializes too much on the training set, it becomes too
specific and the performance decreases on the validation set. Overfitting occurs
when a model learns the detail and noise in the training data to the extent that
it negatively affects the performance of the model on new data. This means that
the noise or random fluctuations in the training data is collected and learned as
concepts by the model. The problem is that these notions do not apply to new data
and negatively impact the model’s ability to generalize.

From a study of the results of the first experiments, it was noted that the perfor-
mance of our model did not increase during the train. For this reason, it was decided
to understand if the model was overfitting. To find out if the network was in that
situation the FROC curves obtained from the train-set and the test-set during train-
ing were compared. As it can see from the Figure 7.1, approximately after the 60th
epoch, the performance of the FROC curve of the train set continues to improve,
while those of the test remains unchanged or even worse.

In the following considerations, the network trained with the clean dataset and
intersection over union as matching criterion will be considered as the standard
model. This model was trained for 120 epochs and convergence in a local or absolute
minimum has been verified by comparing the FROC curves for the train and the
test sets. Figure 7.1 shows this comparison and proves the presence of overfitting
from epochs 80.

To try to reduce overfitting, several solutions have been tried:

1. Using a dropout layer for the RPN and the Detector networks, with different
threshold
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Figure 7.1: FROC curve evaluate on train and test clean dataset with matching
criteria iou with the clean dataset at different epochs.

2. Increasing the size of the dataset, considering the calcifications of the CBIS-
DDSM dataset as a background

3. Increase the learning rate

4. Use of an adaptive learning rate for Adam optimizer, which increased during
training

5. Change the number of samples selected after non-maximum suppression

6. New sample selection algorithm for Detector training

None of these solutions has led to significant improvements, except for the new
sample selection algorithm, described in section 6.3. This did not lead to a resolution
of the problem of overfitting but it managed to postpone its beginning, as it is
possible to see in Figure A.1 and in Figure 7.2. It can be noted that, with the
introduction of the early stopping, there is no overfitting in the first 80 epochs with
iou criterion.

All the results about overfitting analysis are showed in Appendix A, where the effects
of the different matching criteria and the effects of the different level of label noise
are reported.

7.2 Effects of the matching criteria
The aim of this section is to understand the effects of the matching criteria on
the overfit, in particular, I will try to understand how they interact with network

training and how they affect performance.
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Figure 7.2: FROC curve evaluate on train and test dataset with matching criteria
iou with the clean dataset at different epochs.

The first matching criterion studied is the IoU, which is the most restrictive one.

The Figure 7.2 shows that the difference between the FROC curves starts only after
the 60 epochs, in particular the variation is considerable only between 0 and 2 false
positive per images (fpr) and tends to be very small after 2 fpr as showed in Figure
A.11, after which the two curves tend to assume the same values in terms of sensitiv-
ity and fpr. Specifically, if the FROCs in Figure 7.1 and in Figure 7.2 are compared,
can be noted that the overfitting is not completely canceled but the behavior can
be considered normal for an object detection model. In other words it is possible
to assert that there is no overfit in the first 80 epochs of the train with the IoU cri-
terion, therefore the new method of selecting samples for the train of the classifier
has led to a marked improvement in performance and the iou is robust to overfitting.

The second matching criterion studied is the centroid inside the ground truth bound-
ing box, Figure 7.3.

From an overall analysis (Figure A.6, it is clear that the model underfits with this
matching criterion, in facts all the FROC curves of the train-set have lower values
than those obtained with the test-set.

This is because the model is unable to capture the relationship between the input
examples and the target values. The main reason is that the centroid inside the
ground truth bounding boxes generates a high numbers of true labels, so the model
results too simple, the input features are not expressive enough, to describe the
target well.

The third matching criteria is the overlap, Figure 7.4, shows a behavior agrees with
expectations. Indeed the overlap criterion is less restrictive than the IoU ones, thus
the number of true labels increases and the possibility of overfitting too. The graphs
indicate a difference not so substantial in the early stages of training, first 40 epochs,

64



7 — Overfitting analysis

FROC centroid criteria ep 30 FROC centroid criteria ep 40 FROC centroid criteria ep 50
e — st e — st e — test
train train train
08 08 08
06

04

True positive fraction
True positive fraction
True positive fraction

02

00 T T T T T T 00 T T T T T T 00 T T T T T
0.00 025 050 075 100 125 150 175 200 0.00 025 050 075 100 125 150 175 200 0.00 025 050 075 100 125 150 175 200
False positive per images False positive per images False positive per images
FROC centroid criteria ep 60 FROC centroid criteria ep 70 : P
T p o p FROC centroid criteria ep 80
— st — ftest 10 =
train train 3t
08 08 i,
08
u &
5 g ¥
g |4 g
£ H g
K
00 T T T T T T 0.0 ¥ T T T T T
0.00 025 050 075 100 125 150 175 200 0.00 025 050 075 100 125 150 175 200 0.0 T T T T T T
False positive per images False positive per images 000 025 050 075 100 125 150 175 200

False pasitive per images

Figure 7.3: FROC curve evaluate on train and test dataset with matching criteria
centroid with the clean dataset at different epochs.

after that the model start to overfit, especially if the range between 0 and 5 fpr is
considered. It may also be that the labels are noisier, hence the overfit is higher.
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Figure 7.4: FROC curve evaluate on train and test dataset with matching criteria
overlap with the clean dataset at different epochs.

7.3 Effects of the label noise on overfitting

The effect of the label noise is the main topic of this work, therefore in this section,
we will analyze how the overfit of the Faster-RCNN reacts in the presence of label
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noise. All the results and the progressive studies concerning the overfitting are
available in Appendix A.

Considering the noise model described in Chapter 4, it is possible to note for the
IoU criterion that with a low amount of noise (Level 1) the behavior is the same
as with the clean dataset, this is due to the fact that the percentage of increase
of the bounding boxes is not so dramatic, as it possible to see in Figure 4.7. In-
creasing the level of noise the overfit starts earlier during the train, around epoch 50.

Regarding the centroid inside the ground truth bounding box criterion the model
continues to underfit but an improvement trend occurs with the increase of the level
noise. The differences between the FROC curves of the train and test become lower
according with the bounding boxes enlargement. It must be emphasized that, in
any case, the absolute performance of the model worsens with the increase in noise.
The reduction of underfitting could be justified by the fact that, increasing the di-
mension of the bounding box the complexity of the model augments as well.

The third matching criterion, the overlap, doesn’t show a particular trend between
the appearance of the overfitting and the level of the noise. In particular the seems
that in all models there is a small presence of overfit which starts quite early, espe-
cially if a low number of false positive is considered, as in Figure A.12. Surely the
overfit increases with very high noise levels, as can be seen in Figure A.15. However,
it must be emphasized that, in general, the performance of the overlap as matching
criterion is not very high, so it is not possible to conclude that there is a strict
connection between the matching criterion and the amount of overfit.

In conclusion, the Intersection over Union criterion is the most robust to the overfit,
in particular the selection of the new samples, described in 6.3, had shown very
interesting results. Using the early stopping had reduced considerably the onset of
overfitting and it seems the most robust criterion.

The centroid criterion had indicated a trend between the level of the underfit and
the level of noise, so it would be really useful to analyze with deeper studies the
relationships between the different labels, and how they change with the increase of
the noise, and the behavior of this criterion.

The overlap criterion doesn’t show very remarkable results both in terms of robust-
ness for the overfitting and for the label noise related to the first one.

One of the goals for the future developments would be to increase the robustness of
this model maintaining a small dataset. [20]
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Chapter 8

Experiments

The aim of this Chapter is to present the results of the experiments described in
Table 5.2, analyzing the effect of the label noise injected in the dataset to explain
the effect of the matching criteria on the model and the relative robustness to the
noise. Also, some mammograms will be commented on.

8.1 Results

The results presented follow the different matching criteria: Intersection over Union,
Centroid inside the ground truth bounding boxes, Overlap. They are evaluated in
terms of FROC curves and AUFROC with the increase of the level of the label noise.
The nomenclature is described in Chapter 4.

All the experiments results are consulted in Appendix B. Here only the most signif-
icant ones will be considered and, regarding the analysis of the noise, the reference
model is chosen according to the best performance model with the clean dataset and
compared with the noise model of the same epoch.

8.1.1 Matching criterion: Intersection over Union

The network with the IoU criterion shows a strictly link between the performance
and the levels of labeling noise. As highlighted in Figure 8.1, with the clean dataset,
the Faster R-CNN is able to reach more than 0.8 true positive fraction (tpf) and
it almost has the same sensitivity and the same shape with the first level of noise.
Considering the AUFROC and its standard deviation ( Figure 6.5), there is a fast
performance’s reduction with level 4 of label noise. Moreover, the AFROCs re-
garding the first levels of noise can be considered very similar. Another interesting
consideration regards the decrease of the inverse relationship between the level of
noise and the false positive per images.

A close connection between the level of labeling noise and training behavior is high-
lighted also by Figure B.1, Figure B.2, Figure B.3, Figure B.4, and Figure B.5, where
are represented the training losses with different level of noise. All the parameters
have a similar scaling factor connected with the level of noise.
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Figure 8.1: FROC curves evaluated on the test set with different levels of label noise.
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Figure 8.2: AFROC curves evaluated on the test set with different levels of label
noise.

The AFROC showed in Figure 8.2, presets the same trend underlined by the FROCs
and the losses and it seems that the Faster-RCNN with IoU as matching criteria is
robust to the label noise until level 4, where the performance starts to collapse.
Figure 8.3 shows the compere of the same mammogram with the different levels
of noise, as it is evident, training with larger bounding boxes generates equally
large ones. This, for the first levels doesn’t seem a problem because the increase is
comparable to the actual dimension of the box, instead when the level is very high
the proposed bounding box contains the lesion but also other parts of the tissue and
the background.

8.1.2 Matching criterion: Overlap

The model trained with the overlap criterion shows a decrease of the sensitivity
considering even just the clean dataset. Indeed, it is evident that there is a 20% of
sensitivity reduction from the IoU criterion.

Figure B.13 shows an unstable train set, in fact there is not any trend for the loss
classifier. This instability increase with the level of noise (Figures B.14, B.15, B.16,
B.17) and it is reflected with worst performance on the FROCs and AUFROC:.
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Figure 8.3: Masses detection with the clean dataset and the four levels of noise,
model trained with IoU criterion. The green bounding boxes are proposed by the
network to detect the white ones, which are the ground truth.
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Figure 8.4: FROC curves evaluated on the test set with different levels of label noise.

This lack of robustness is also highlighted by the Figure 8.4 and Figure 8.5, which
doesn’t show a strict correlation between the performance and the level of noise.
Despite this, it seems that the system is able to learn, even if not perfectly, as
shown in Figure 8.6, where the lesions are detected with a comparable consideration
as the ones described for IoU.

8.1.3 Matching criterion: Centroid inside the ground truth
bounding box

The model trained with the centroid inside the ground truth bounding box is the
most robust respect to the label noise. The AUFROC in Figure B.12 proves that
the model trained up to the fourth noise level has values included in the variability.
Analyzing the FROC curves the differences are a little bit more evident, underlined
especially in terms of false positive per images. There is strict trend between the
fpi and the level of noise. In terms of performances, particularly considering low
fpi, the curves show the same behavior between the clean dataset and third level of
noise dataset.

In terms of absolute performance the model trained with the centroid criterion is
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Figure 8.5: AFROC curves evaluated on the test set with different levels of label
noise.

Figure 8.6: Masses detection with the five level of noise, model trained with overlap
criterion. The green bounding boxes are proposed by the network to detect the
white ones, which are the ground truth.

comparable with the one trained with IoU criterion. Figure 8.10 and Figure 8.11
indicate the IoU is the most robust to the noise, indeed it has the better performances
in every configuration. The centroid seems a good alternative to the loU, only with
a reduced amount of noise and a low number of false positive per images. It has
a drastically reduction with the last two levels of noise. The overlap criteria have
the worst performance and it is due to the fact that is the one that generates the
highest number of true labels during the training.

The analysis of the Faster R-CNN has shown interesting results. In fact it has shown
a similar behavior to other studies conducted with other architectures [18] [42], [12],
[7].

The Faster R-CNN, applied for mammography tasks, decreases its performance
according to the level of label noise injected. The difference compared to other
studies it’s the amount of the reduction, for example, [46] found a reduction of the
class accuracy between 5% and 40%. The model used in this work has a decrease of
25% between the clean dataset and the highest level of noise. The results presented
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Figure 8.7: FROC curves evaluated on the test set with different levels of label noise.
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Figure 8.8: AFROC curves evaluated on the test set with different levels of label
noise.

here have closer values to [7], indeed a reduction of 10% occurred.

Considering the matching criteria, the most common ones have shown very different
achievements, therefore it can be stated that the Faster R-CNN is strictly influenced
by the matching criteria used. This is due to the fact that these criteria are used to
label the samples, so they are very linked to network training.

In order to have a more in depth understanding of the matching criteria and their
attitude toward noise, the number of positive anchor boxes per lesion that are passed
for training the RPN has been calculated. Figure 4.8 shows the number of positive
anchors per lesion on the clean dataset for different lesions. As it is observable, there
is a gap between the number of positive bounding boxes that has been generated for
each criterion which can affect the training, especially for the centroid and overlap
criteria. This means that the training data and the generated ground truth will be
different and as a result it can affect the training procedure.

Having more positive samples generally helps the algorithm in predicting positives
more accurately, however,by looking at Figure 4.8 and Figure 8.11, it is observable
that the number of positives for IoU and Centroid criterion is increasing but the
AFROC is going down. This is the effect of noisy ground truth which results in
degrading the performance of the model.
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Figure 8.9: Masses detection with the five level of noise, model trained with centroid
criterion. The green bounding boxes are proposed by the network to detect the white

ones, which are the ground truth.
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Chapter 9

Future developments and
Conclusions

Our experiments show that for medical images such as mammograms, where the
objects may be smaller than the actual size of the bounding box, the performance
of the Faster RCNN is very much dependent on the matching criterion. The tradi-
tional way which uses the IoU is not enough noise tolerant, as all the other matching
criteria studied, and the performance is affected by the size of the bounding boxes.
It has also proved that the Faster R-CNN tends to overfit in presence of low number
of training images, but despite this, an extremely simple but effective technique has
been proposed to try to overcome this problem.

The neural network models still have one big limitation, the parts of the networks
which are still unknown. The hyperparameter tuning process is mostly done with
trial and error technique there may also be basic insights. Furthermore, training a
deep neural network requires thousands of data to be able to provide good results.
This is a common problem also in the medical field.

The Faster R-CNN has required a long tuning process, despite this, some hyper-
parameters have not been analyzed. Therefore, a future study may be performed on
the search for the best hyper-parameter configuration to have the best performance
with mammograms.

The problem of the shortage of images resulted particularly relevant, indeed the
model overfits. Only thanks to a new sample selection strategy it was possible to
reduce this problem. A deeper analysis of these limitations is desirable, with the
aim of finding the bottleneck and fixing it. The methods proposed in this thesis
work in this direction.

Considering that the matching criterion has a fundamental role in the Faster R-
CNN;, indeed, it influences most of the training process, and that the ones present in
the literature didn’t show positive results, the creation of a new matching criterion
is desirable. This would be useful both in terms of absolute performance of the
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model but also in terms of relatives one for the robustness of the label noise.

Regarding the datasets and the label noise used, would be interesting to study the
network with a dataset evaluated directly during a clinical practice. This would
verify the goodness of the model created with respect to a real case and would en-
sure performance verification. The creation of a model about the experts’ validation,
would make the datasets, with the bounding boxes created semi-automatically, more
realistic.

Last but not least, the obvious continuation of this project will be to find a method
to reduce the effect of labeling noise. The first steps should follow the solutions
proposed in Chapter 3, trying to fit them to the specific case of the Faster R-
CNN applied in mammography. Where no existed methods would work, creating a
specified one will be the goal of future development.
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Appendix A

Overfitting results

In Appendix A are showed all the results which have been performed to analyze the
overfitting problems. All the FROC curves have been calculated during the train set
and the test with all the datasets described in Chapter 8. The role of the matching
criterion has been taken into account. All these graphs were necessary to come to
the conclusion discussed previously.

A.1 FROC curve on train and test dataset with
matching criterion: Intersection over Union
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Figure A.1: FROC curve evaluate on train and test dataset with matching criteria
iou inside the ground truth bounding box with the clean dataset at different epochs.
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Figure A.2: FROC curve evaluate on train and test dataset with matching criteria
iou with the level 1 noise dataset at different epochs.
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Figure A.3: FROC curve evaluate on train and test dataset with matching criteria
iou with the level 2 noise dataset at different epochs.
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Figure A.4: FROC curve evaluate on train and test dataset with matching criteria
iou with the level 3 noise dataset at different epochs.
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Figure A.5: FROC curve evaluate on train and test dataset with matching criteria
iou with the level 4 noise dataset at different epochs.
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A.2 FROC curve on train and test dataset with
matching criterion: Centroid inside the ground
truth bounding box
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Figure A.6: FROC curve evaluate on train and test dataset with matching criteria
centroid inside the ground truth bounding box with the clean dataset at different

epochs.
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Figure A.7: FROC curve evaluate on train and test dataset with matching criteria
centroid inside the ground truth bounding box with the level 1 noise dataset at

different epochs.
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Figure A.8: FROC curve evaluate on train and test dataset with matching criteria
centroid inside the ground truth bounding box with the level 2 noise dataset at
different epochs.
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Figure A.9: FROC curve evaluate on train and test dataset with matching criteria
centroid inside the ground truth bounding box with the level 3 noise dataset at
different epochs.
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Figure A.10: FROC curve evaluate on train and test dataset with matching criteria
centroid inside the ground truth bounding box with the level 4 noise dataset at
different epochs.
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A.3 FROC curve on train and test dataset with
matching criterion: Overlap
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Figure A.11: FROC curve evaluate on train and test dataset with matching criteria
overlap with the clean dataset at different epochs.
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Figure A.12: FROC curve evaluate on train and test dataset with matching criteria
overlap with the level 1 noise dataset at different epochs.
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Figure A.13: FROC curve evaluate on train and test dataset with matching criteria
overlap with the level 2 noise dataset at different epochs.
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Figure A.14: FROC curve evaluate on train and test dataset with matching criteria
overlap with the level 3 noise dataset at different epochs.
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Figure A.15: FROC curve evaluate on train and test dataset with matching criteria
overlap with the level 4 noise dataset at different epochs.
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Appendix B

Results of the experiments

In Appendix B are reported all the results from the 15 experiments computed,
described in Chapter 8. The losses of the train set have been illustrated to have
clear feedback on the training process, to understand how it changes according to
the noise and the different matching criteria. The AUFROCs calculated during
at different epochs give the idea about the performance of the network during the
training.

B.1 Matching criterion: Intersection over Union

B.1.1 Training losses
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Figure B.1: Losses obtained from the train with the clean dataset with iou as
matching criteria
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Figure B.2: Losses obtained from the train with the level 1 noise dataset with iou
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Figure B.3: Losses obtained from the train with the level 2 noise dataset with iou
as matching criteria
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Figure B.4: Losses obtained from the train with the level 3 noise dataset with iou
as matching criteria
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Figure B.5: Losses obtained from the train with the level 4 noise dataset with iou
as matching criteria
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B.1.2 Performance evaluation
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Figure B.6: AUFROC calculated on the test set at different epochs to select the
best model
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B.2 Matching criterion: Centroid inside the ground
truth bounding box
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Figure B.7: Losses obtained from the train with the clean dataset with centroid as
matching criteria
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Figure B.8: Losses obtained from the train with the level 1 noise dataset with
centroid as matching criteria
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Figure B.9: Losses obtained from the train with the level 2 noise dataset with
centroid as matching criteria
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Figure B.10: Losses obtained from the train with the level 3 noise dataset with
centroid as matching criteria
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Figure B.11: Losses obtained from the train with the level 4 noise dataset with
centroid as matching criteria
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Figure B.12: AUFROC calculated on the test set at different epochs to select the
best model
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B.3 Matching criterion: Overlap

B.3.1 Training losses
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Figure B.13: Losses obtained from the train with the clean dataset with overlap as
matching criteria
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Figure B.14: Losses obtained from the train with the level 1 noise dataset with
overlap as matching criteria
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Figure B.15: Losses obtained from the train with the level 2 noise dataset with
overlap as matching criteria
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Figure B.16: Losses obtained from the train with the level 3 noise dataset with
overlap as matching criteria
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B.3.2 Performance evaluation
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Figure B.18: AUFROC calculated on the test set at different epochs to select the
best model
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