Indice

1 Introduzione 3

1.1 Idea 3
1.2 Ragioni etiche e sociali 3
1.3 Salute 4
1.4 Target di vendita 4
1.5 Requisiti voluti 4
1.6 Ricerca di mercato 4
1.6.1 Sondaggio 7
1.7 Brevetto e punti di rafforzamento 11
1.8 Miglioramento dei punti deboli 12
1.9 Normative e Leggi da rispettare 13
1.10 Progetto 15
1.10.1 Composizione 15
1.10.2 Funzionamento 16

2 Progettazione 17

2.1 Dati preliminari 17
2.1.1 Masse in gioco 17
2.1.2 Dimensioni delle ruote 17
2.2 Studio della dinamica del velocipede 17
2.2.1 Attrito radente 20
2.2.2 Attrito volvente 20
2.2.3 Caso 1 salita 21
2.2.4 Caso 2 velocità massima in piano 21
2.2.5 Caso 3 accelerazione massima in piano alla partenza 22
2.2.6 Dati di targa senza spinta del ciclista 22
2.3 Studio della bicicletta 23
2.4 Geometria caratteristica 25
2.4.1 Generale 25
2.4.2 Rapporto di trasmissione 26
2.4.3 Molla a gas 27
2.4.4 Calcolo angolo di pressione 27
2.4.5 Guida 32
2.5 Dimensionamento 33
2.5.1 Motore 33
2.5.2 Variatore 36
1 Introduzione

1.1 Idea
Il progetto che ho sviluppato nasce da una profonda passione per la bicicletta che mi accompagna fin da quando ero ragazzo, e si è fortificata vivendo in città e vedendo come un mezzo così semplice e funzionale potrebbe migliorarne moltissimo la vivibilità.

Con il crescente sviluppo delle bici elettriche le distanze che una persona comune può percorrere in bici sono aumentate moltissimo e la fatica per spostarsi è diminuita molto.

Solo che in commercio la maggioranza dei kit per elettrificare le biciclette vengono venduti: assieme al mezzo stesso (a mio avviso un enorme spreco dato che moltissime persone posseggono già una bici che funziona perfettamente) o devono essere montati con grossa difficoltà.

La mia idea è stata quella di creare un Kit che potesse trasformare qualsiasi bicicletta in una bici-elettrica.

1.2 Ragioni etiche e sociali
Il principale mezzo di trasporto nei paesi industrializzati è l’automobile, che è un mezzo a mio avviso comodo, ma ingombrante, avendo un’inserenza elevata e un ingombro ampio rispetto ai mezzi a due ruote. Questo provoca lo sfruttamento di un’ampia zona per poter circolare velocemente, tuttavia in città si ha comunque un’ostrozione sistematica tra di esse provocando rallentamenti e congestioni; indifferenamente dall’ampiezza della superficie destinata al transito di questi veicoli.

Questa considerazione è facilmente verificabile negli orari di punta che corrispondono agli orari di entrata e uscita dalla maggior parte dei posti lavorativi: 7:00-9:00 e 17:00-19:00

Oltretutto i veicoli odierni hanno un rendimento molto basso e utilizzano carburanti fossili aumentando l’inquinamento dovuto a polveri sottili, che soprattutto nella Pianura Padana è molto dannoso, dato il poco vento che potrebbe diluirle rendendole meno dannoso.
Il progetto propone quindi di migliorare il problema della viabilità cittadina, ridurre l’inquinamento nell’atmosfera e avere un’aria più respirabile nel luogo che maggiormente ne necessita, dove si ha una densità media di popolazione più elevata.

1.3 Salute
Questo permetterebbe, inoltre, di fare un minimo di movimento quotidiano in un sistema sempre più ossessionato dalla massimizzazione del proprio tempo, dal cibo e dalla forma fisica. Si concilierebbe bene nel mettere assieme tutti questi bisogni che sempre più ci attanaglio nella vita di tutti i giorni.

1.4 Target di vendita
Per le ragioni dette in precedenza il target di vendita scelto è quello della classe lavorativa che deve spostarsi o all’interno della città o nelle immediate vicinanze, in particolare deve essere pensato per un tragitto casa lavoro di circa 20 Km.

1.5 Requisiti voluti
- Si immagina che la batteria possa essere ricaricata dopo ogni viaggio, la ricarica può avvenire comodamente a qualsiasi presa di corrente, data la facilità di rimozione del kit.
- Deve essere leggero per poter essere trasportato e non appesantire troppo il mezzo.
- Deve dare un aiuto, ma rispettare comunque le norme vigenti che sono chiare in materia.
- Avere una sensibilità adeguata capendo la spinta data dal ciclista e l’aiuto necessario.

1.6 Ricerca di mercato
A questo punto si è cercato tra i prodotti già esistenti sul mercato e i brevetti se ci potesse essere qualcosa di simile già esistente.
I primi incontrati sono state ruote che contengono motore e batteria collegabili alla bicicletta, di seguito alcuni esempi:
- Copenaghen wheel

![Copenaghen wheel](image1)

- UrbanX

![UrbanX](image2)
Idea molto valide, ma non universali. La prima di fatto non dà la possibilità di avere un deragliatore posteriore e entrambe sono legate al tipo di ruota, quindi non possono essere montate su qualsiasi mezzo indifferentemente.

Per esempio, potrebbe essere scomodo per una coppia che ha una bici da donna e una da uomo.

Con una ricerca più approfondita si è individuato un kit che aveva caratteristiche simili a quelle volute:

- Rubbee

![Figura 1.III](image)

![Figura 1.IV](image)
È parso subito un punto di partenza ideale, è adattabile a tutti i tipi di bici, semplice, portatile e di facile installazione.

Questo progetto è stato elaborato da alcuni ragazzi Lituani che dopo vari anni di progettazione e prototipazione sono riusciti a creare un buon oggetto, tanto che inserendolo in kickstarter sono riusciti velocemente a raggiungere la cifra desiderata per avviare la produzione.

Il progetto è stato brevettato, il brevetto è riportato nell’allegato A.

1.6.1 Sondaggio

Si è creato un sondaggio esteso a tutti per:

- Capire se il progetto fosse appetibile e per quale fascia di persone.
- Confrontare Rubbee con il Copenaghen wheel per capire quale potesse piacere di più esteticamente e funzionalmente.
- Sapere se vi sono molte persone che vorrebbero cambiare il proprio modo di spostarsi verso una mobilità più sostenibile e se le biciclette elettriche possano essere una soluzione o un prodotto per le passeggiate domenicali.

Si sono quindi ottenuti i seguenti risultati su un campione a maggioranza studenti che vivono in città:

-

![Diagramma dei risultati del sondaggio](image)
Il 70% delle persone sarebbe interessato alle e-bike, ma il 30% le reputa troppo costose.

Preferiresti comprare una bicicletta elettrica completa o un kit per trasformare qualsiasi bici in e-bike in meno di 20 secondi? (a parità di prestazioni finali)

Di questi:

Il 53% acquisterebbero il kit se meno costoso e il 31% lo acquisterebbe se fosse immediatamente disponibile.

Si può dedurre quindi che:

- il 12% delle persone che ha risposto al sondaggio acquisterebbe il kit immediatamente.
- Il 37,1% reputa le bici elettriche troppo costose, ma acquisterebbe il kit se avesse un prezzo inferiore.
- Il 6% acquisterebbe subito una bicicletta elettrica completa.
Il 90% delle persone pensa che le e-bike possano essere il futuro della mobilità cittadina, quindi che possano avere uno sviluppo crescente.

Pensi che le biciclette elettriche possano essere il futuro sistema di spostamento in città?

- 62,8% Sì
- 27,7% Si, ma ho paura che la rubino
- 5,6% Si, ma ho paura che si scarichi
- 2,8% No

Ti interesserebbe andare a lavoro/scuola con una e-bike?

- 37,2% Sì
- 26,6% No
- 13,8% Sì, ma ho paura che si scarichi
- 22,3% Sì, ma ho paura che la rubino
L’80% sarebbe disposto ad utilizzarla per andare a scuola o a lavoro, ma il 40% pensa che si possano scaricare facilmente o che sia un buon business per i ladri. Tuttavia, solo il 10% di queste persone utilizza la bicicletta più di 4 volte la settimana, il 60% delle altre persone la utilizzerebbe maggiormente se fosse una e-bike.

Questa discordanza tra quello che uno farebbe e quello che si immagina che l’intera comunità potrebbe fare ci permette di capire la direzione verso cui si vorrebbe andare e la velocità di questo mutamento che probabilmente sarà più lento di quanto ci si aspetti.

3. Quale tra i due kit preferiresti?*

Scelgli una risposta

Copenhagen wheel, kit specifico per alcune bici e integrato nella ruota

Rubbee, kit universale ed esterno alla bici

A questa domanda il 60% preferisce il Rubbee, che è a mio avviso esteticamente meno bello, ma funzionalmente migliore. Il che è promettente per il progetto elaborato nella tesi.
1.7 Brevetto e punti di rafforzamento

Il progetto Rubbee è stato brevettato, si è quindi analizzato il brevetto per capire bene il funzionamento e cercare dei punti da migliorare.

Come si vede dall’immagine ha un aggancio rapido che va direttamente ad attaccarsi al canotto, una molla a gas 7 che preme tutto il sistema contro la ruota della bicicletta per garantire la forza di contatto. Batterie nella parte centrale e nella parte posteriore il ruotino con all’interno il motore ruota, come si vede nell’immagine successiva.
Figura 1 VI

Questa è una sezione della parte posteriore dove si vede il motore, i cuscinetti e il telaio che sorregge il tutto.

A mio avviso però Rubbee presenta dei punti deboli, che sono:

- L’esposizione delle parti più delicate agli urti della ruota.
- La mancanza di utilizzare il kit anche come portapacchi.
- La coppia limitata dalle piccole dimensioni del motore.
- Perdita di aderenza sulla ruota.
- Rumorosità
- L’aggancio

1.8 Miglioramento dei punti deboli

Per cercare di migliorare questi punti l’idea è stata quella di utilizzare la coppia del motore per aumentare l’aderenza sulla ruota, in sostanza un braccio allungabile e una guida mantengono l’angolo di contatto voluto.

Questo fa sì che la forza del motore sia proporzionale alla forza di schiacciamento per cui maggiore è la forza che deve dare il motore maggiore è la pressione sullo pneumatico.
Si ha quindi minore probabilità di slittamento. Come verrà discusso più approfonditamente nel paragrafo 2.4.2.

Dividendo il sistema motrice da quello di controllo si ha inoltre il vantaggio di riparare il cervello del kit dagli urti dovuti a gradini buche e imperfezioni del manto stradale. L’aggancio del Rubbee è stato poi migliorato nelle versioni più recenti, non essendo adatto a tutti i tipi di canotto reggisella e non essendo abbastanza alta la forza di serraggio. Tuttavia, non essendo l’aggancio un punto fondamentale del progetto si è preferito costruirlo in modo molto semplice per non generare ulteriori problemi.

1.9 Normative e Leggi da rispettare

Le norme in materia impongono per le bici a pedalata assistita le seguenti limitazioni:

- Motore con potenza nominale non superiore ai 250W (la potenza del motore in affaticamento per brevi periodi può essere superiore a questo valore)
- La diminuzione della potenza erogata dal motore con l’aumentare della velocità fino ad arrivare a 0W a 25 Km/h
- Velocità erogata dal motore nulla nel caso in cui il ciclista non stia pedalando

I velocipedi che non rispettano queste restrizioni sono suddivisi in due diverse categorie, che sono:

- **L1eA**: che comprende i cicli a due o tre ruote progettati con la trazione a pedale ed equipaggiati con motore elettrico ausiliario di potenza nominale inferiore a 1000 W e in grado di esprimere velocità non superiori a 25 km/h.
- **L1eB**: in cui sono inclusi i cicli a due o tre ruote dotati di motore elettrico con potenza nominale continua massima sino a 4000 W e velocità di costruzione non superiore ai 45 km/h

La categoria L1eB si deve assimilare ai “ciclomotori” e viene regolata dalle norme sul loro impiego (uso obbligatorio del casco, limite di età, obbligo di assicurazione, ecc...). La L1eA definisce i cosiddetti “motocicli a prestazioni ridotte” e su di essa ci sono varie scuole di pensiero per definirne gli obblighi di legge. In generale, si tende a prevedere l’uso del casco anche per questa categoria, perché, come si legge sul sito dell’ANCMA
(Associazione Nazionale Ciclo e Motociclo e Accessori) sono considerati motorini e “come tali soggetti a targatura, assicurazione ed obbligo di casco”.

Quel che è certo è che da questo quadro normativo sono escluse da ogni forma di omologazione le biciclette a pedalata assistita con “motore ausiliario di potenza nominale continua fino a 250 W e velocità massima 25 km/h, per le quali vige lo standard europeo EN 15194”.

In molti paesi europei, però, è stata lasciata ai costruttori la possibilità di autocertificare la rispondenza dei loro prodotti.

In senso stretto e dal punto di vista normativo, quindi, l’e-bike è una bicicletta a tutti gli effetti, che non ha bisogno di assicurazione obbligatoria e per la quale non esiste un requisito minimo di età e né è necessaria la patente.

Le super e-bike, categoria L1eA e L1eB (“Speed Pedelec” o S-pedelec), è la versione ad alta velocità della e-bike, con un motore che può raggiungere fino a 45 km/h, specchietto retrovisore, clacson e cavalletto.

In Italia, la legge ricalca il regolamento europeo in vigore dal 1° gennaio 2017 che considera le super e-bike al pari dei ciclomotori, obbligando chi le utilizza a patentino o patente e all’uso del casco.

Le super e-bike devono essere omologate, immatricolate e assicurate. Chi le usa deve avere almeno 16 anni, è obbligato a rispettare i limiti di velocità e assicurarsi che le caratteristiche dei pezzi di ricambio siano corrispondenti a quelle indicate nel libretto di circolazione.
1.10 Progetto
Il progetto svolto darà vita ad un prototipo che potrebbe essere in futuro commercializzato.

1.10.1 Composizione
Il prototipo è costituito come segue:
1) Struttura portante
2) Motore
3) Ruota di trasmissione
4) Cavi sensori Hall
5) Braccio telescopico
6) Guida
7) Aggancio per molla a gas
8) Molla a gas

Figura 1.VII
La guida mantiene la ruota frizionante nella posizione desiderata in modo da avere la giusta pressione sullo pneumatico. Permette però il sollevamento di quest’ultimo in caso di urto, è compito della molla a gas riportare il sistema nella giusta posizione e smorzare l’urto. La molla a gas verrà collegata ai due supporti arancioni.
La batteria e la centralina di comando, che verranno mostrate successivamente, saranno installate nella parte superiore separate l’una dall’altra per permettere il raffreddamento adeguato.

1.10.2 Funzionamento

Il sensore di pedalata capta la rotazione dei pedali e dà il via libera alla centralina, la centralina legge la tensione data dall’acceleratore e dà la potenza necessaria al motore. I sensori Hall del motore brushless danno la misura di velocità in ogni istante che serve alla centralina per il controllo di velocità e come limite per annullare la potenza erogata dal motore.
Come si vede nell’immagine precedente il motore è direttamente collegato alla ruota di trasmissione che va a contatto diretto per frizione con la ruota della bicicletta trasferendo la coppia desiderata.
2 Progettazione

2.1 Dati preliminari

2.1.1 masse in gioco

Utilizzando una stima preliminare e dopo una ricerca di mercato sui kit già esistenti in commercio si è dimensionato il sistema per le seguenti masse di progetto:

<table>
<thead>
<tr>
<th>Masse</th>
<th>Simbolo</th>
<th>Valore</th>
<th>Unità</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massa persona</td>
<td>Mp</td>
<td>85</td>
<td>kg</td>
</tr>
<tr>
<td>Massa bici</td>
<td>Mb</td>
<td>20</td>
<td>kg</td>
</tr>
<tr>
<td>Massa kit</td>
<td>Mk</td>
<td>6,5</td>
<td>kg</td>
</tr>
</tbody>
</table>

Per un totale di:

| Massa totale | Mtot | 111,5 | kg |

2.1.2 Dimensioni delle ruote

Come riferimento sono state prese le ruote di dimensione 26 e 28 pollici, circa 65 e 70 cm di diametro.

Che rappresentano la quasi totalità delle biciclette in commercio, fanno eccezione le MTB da 27 pollici, le quali sono comprese in queste due misure.

Tuttavia, la dimensione della ruota non influenza la velocità del mezzo, ma la velocità angolare della ruota e la sua coppia. Con ruote da 28” avremo coppie maggiori e minori velocità angolari essendo il rapporto di trasmissione più grande e di conseguenza con ruote da 26” avremo coppie minori e maggiori velocità angolari.

2.2 Studio della dinamica del velocipede

Per ottenere la potenza necessaria per il movimento si è fatto uno studio preliminare sugli attriti presenti durante il moto.

Si è considerato di fatto:

- L’attrito dell’aria sul ciclista
- L’attrito volvente della ruota
In tre casi limite:

- Salita massima riscontrabile in territorio urbano
- Velocità massima raggiungibile
- Accelerazione massima alla partenza

Dinamica del veicolo:

![Diagramma](image)

Dove \ddot{x} è l’accelerazione nella direzione parallela al piano, α l’angolo di inclinazione del piano di rotolamento, m indica la massa totale, ossia: bici, persona, Kit; verrà individuata studiando la dinamica della ruota.
Dinamica della ruota:

La ruota posteriore è soggetta alla forza data dal precedente schema, F, che tende a trascinarla verso il basso; la forza del ciclista che dà un momento positivo, F_c (questa forza è stata considerata nulla per il dimensionamento del motore, per studi successivi sulla sensibilità di pedalata dovrà essere considerata); la forza data dal motore anche quest’ultima positiva, F_m; infine la forza di attrito radente calcolata come il momento dato dall’intera forza di reazione del terreno, N, per il raggio d’attrito δ.

Si è quindi combinato lo studio della dinamica del veicolo e della dinamica della ruota, seguendo gli schemi figura 2.1 e 2.2 ottenendo le formule relative seguenti:

$$F = mgsen(\alpha) + m\ddot{x} + R_{ata}$$ \hspace{1cm} (2.1)

$$F \left(\frac{D}{2} \right) + F_c \left(\frac{D}{2} + \frac{d}{2} \right) + F_m D = \ddot{\theta} I + N \delta$$ \hspace{1cm} (2.2)

La 2.1 è un bilanciamento di forze, invece la 2.2 è un bilanciamento di momenti.

Dove D è il diametro della ruota, d il diametro della corona utilizzata dal ciclista, $\ddot{\theta}$ l’accelerazione angolare della ruota e I l’inerzia della ruota, calcolata come segue:

$$I_x = \frac{2m_r d^2_m}{8}$$ \hspace{1cm} (2.3)
Si è moltiplicato per 2 per il fatto che vi sono due ruote, \(m_r \) è la massa della ruota e \(d_m \) è il diametro medio del cerchione; si è considerato solo il cerchione per il diametro medio perché è la parte più pesante della ruota.
La misura trovata non ha una precisione elevatissima, infatti cambia da ruota a ruota e bisognerebbe avere un riscontro sperimentale, tuttavia sono calcoli di dimensionamento preliminare e ci si può accontentare di questa bassa accuratezza.

Combinando la 2.1, la 2.2 e le equazioni descrittenti gli attriti, descritti di seguito, si è ottenuto la seguente formula generale:

\[
F_m = \frac{\dot{\theta} I}{D} - \frac{F_c (\frac{D}{2} + \frac{d}{2})}{D} + mg \sin(\alpha) + m \ddot{x} + R_{ata} + N \delta
\]

Grazie a questa equazione si è potuto calcolare la potenza che il motore dovrebbe erogare senza l’apporto della spinta del ciclista, che ci permetterà di calcolare la spinta richiesta al ciclista in ogni situazione.

2.2.1 Attrito radente

L’attrito radente è stato calcolato utilizzando la seguente formula:

\[
R_{ata} = \frac{1}{2} C_r \rho S_f V^2
\]

Dove \(R_{ata} \) è la forza risultante di attrito dovuta all’aria, \(C_r \) è il coefficiente d’attrito che è stato individuato sul manuale dell’ingegnere meccanico, \(\rho \) è la densità dell’aria, \(S_f \) la superficie frontale del ciclista e il mezzo, infine \(V \) è la velocità massima.

2.2.2 Attrito volvente

Per calcolare l’attrito si è utilizzata la seguente formula:

\[
R_{atv} = N \delta
\]

Dove \(R_{atv} \) è la risultante dell’attrito volvente, \(N \) l’azione normale al terreno e \(\delta \) il raggio d’attrito che è stato calcolato in funzione della velocità massima e di un coefficiente ruota asfalto di 0.015

\[
\delta = 0,015 \times \left(1 + \frac{V}{44,8}\right)
\]
2.2.3 Caso 1 salita

In questo caso:

- α è stata posta pari a 5.7°, una salita del 10% di inclinazione.
- v, la velocità di spostamento è di 12km/h
- \ddot{x} è stato posto pari a 0, essendo una situazione di regime

Utilizzando l’equazione 2.4 si sono calcolati i seguenti dati per il caso 1:

<table>
<thead>
<tr>
<th>Dimensionamento motore</th>
<th>Simbolo</th>
<th>Valore</th>
<th>Unità</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forza motore sulla ruota</td>
<td>F_m</td>
<td>74,2</td>
<td>N</td>
</tr>
<tr>
<td>Coppia motore</td>
<td>C_m</td>
<td>3,0</td>
<td>Nm</td>
</tr>
<tr>
<td>Velocità angolare motore</td>
<td>ω_m</td>
<td>166,7</td>
<td>rad/s</td>
</tr>
<tr>
<td></td>
<td>n_m</td>
<td>1591,5</td>
<td>rpm</td>
</tr>
<tr>
<td>Potenza motore</td>
<td>P_m</td>
<td>494,7</td>
<td>W</td>
</tr>
</tbody>
</table>

Tabella 2.3

Dove P_m è data semplicemente dalla moltiplicazione della coppia motore con la velocità angolare del ruotino.

La coppia è stata individuata moltiplicando la forza esercitata dal motore per il braccio, cioè il raggio del ruotino frizionante.

2.2.4 Caso 2 velocità massima in piano

In questo caso:

- α è stata posta pari a 0°, essendo in piano.
- v, la velocità di spostamento è di 25km/h, massima consentita dalla legge
- \ddot{x} è stato posto pari a 0, essendo una situazione di regime

Utilizzando la l’equazione 2.4 si sono calcolati i seguenti dati per il caso 2:

<table>
<thead>
<tr>
<th>Dimensionamento motore</th>
<th>Simbolo</th>
<th>Valore</th>
<th>Unità</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forza motore sulla ruota</td>
<td>F_m</td>
<td>83,5</td>
<td>N</td>
</tr>
<tr>
<td>Coppia motore</td>
<td>C_m</td>
<td>3,3</td>
<td>Nm</td>
</tr>
<tr>
<td>Velocità angolare motore</td>
<td>ω_m</td>
<td>347,2</td>
<td>rad/s</td>
</tr>
<tr>
<td></td>
<td>n_m</td>
<td>3315,7</td>
<td>rpm</td>
</tr>
<tr>
<td>Potenza motore</td>
<td>P_m</td>
<td>1160,4</td>
<td>W</td>
</tr>
</tbody>
</table>

Tabella 2.4
2.2.5 Caso 3 accelerazione massima in piano alla partenza

In questo caso:
- \(\alpha \) è stata posta pari a 0°, essendo in piano.
- \(v \), la velocità di spostamento è di 0km/h
- \(\ddot{x} \) è stato posto pari a 2m/s\(^2\), accelerazione tipica di un ciclista medio

Utilizzando la l’equazione 2.4 si sono calcolati i seguenti dati per il caso 3:

<table>
<thead>
<tr>
<th>Forza motore sulla ruota</th>
<th>(F_m)</th>
<th>130,6</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coppia motore</td>
<td>(C_m)</td>
<td>5,2</td>
<td>Nm</td>
</tr>
<tr>
<td>Velocità angolare motore</td>
<td>(\omega_m)</td>
<td>0,0</td>
<td>rad/s</td>
</tr>
<tr>
<td></td>
<td>(n_m)</td>
<td>0,0</td>
<td>rpm</td>
</tr>
<tr>
<td>potenza motore</td>
<td>(P_m)</td>
<td>0,0</td>
<td>W</td>
</tr>
</tbody>
</table>

Tabella 2.5

2.2.6 Dati di targa senza spinta del ciclista

Con coppia nulla data dai pedali si ottengono i seguenti dati necessari per il movimento con i parametri imposti:

<table>
<thead>
<tr>
<th>motore</th>
<th>Simbolo</th>
<th>Valore</th>
<th>U.m.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potenza motore massima</td>
<td>(P_{\text{max}})</td>
<td>494,7</td>
<td>W</td>
</tr>
<tr>
<td>Velocità angolare massima</td>
<td>(n_{\text{max}})</td>
<td>3315,7</td>
<td>rpm</td>
</tr>
<tr>
<td>Coppia massima</td>
<td>(C_{\text{max}})</td>
<td>7,5</td>
<td>Nm</td>
</tr>
</tbody>
</table>

Tabella 2.6

Questi valori sono molto alti rispetto a quelli che può raggiungere un motore da 250W richiesto da normativa.

Tuttavia, se raggiungesse questi valori sarebbe comparabile ad un ciclomotore di bassa cilindrata, e si può notare che il motore scelto riesce a dare metà della potenza richiesta, che è una condizione non disdegnabile essendo una bici a pedalata assistita e non un veicolo puramente a motore.
2.3 Studio della bicicletta

Per renderlo universale il primo lavoro svolto è stato quello di studiare tutte le possibili misure delle diverse tipologie di velocipedi, si è scelto due tipologie principalmente: City bike e bici da donna. Questo proprio per il target di persone a cui è rivolto il nostro progetto, per muoversi da casa al lavoro queste tipologie di bicicletta sono le più comode e comuni da utilizzare.

City bike:

![City bike](image1)

Bici da donna:

![Bici da donna](image2)
Si è quindi preso un campione di 5 city bike e altrettante da donna, per capire la dimensione massima e minima possibile. Inoltre, sono stati fondamentali i manuali sulle biciclette classiche per capire l’evoluzione dei telai e gli angoli tra le diverse parti, che sono rimasti praticamente inalterati anche nelle biciclette odierne.

Le principali misure considerate sono:

- Lunghezza tubo verticale dal centro del movimento centrale fino all’attaccatura della sella.
- Inclinazione del tubo verticale rispetto alla verticale reale.
- Lunghezza forcellino posteriore orizzontale.
- Inclinazione del forcellino rispetto all’orizzontale.

Si è scelto queste misure perché l’obiettivo è quello di individuare come varia la posizione del kit rispetto alle diverse bici. Le due parti del telaio considerate collegano il sistema alla ruota posteriore.

<table>
<thead>
<tr>
<th>Bicicletta</th>
<th>City bike</th>
<th>Donna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distanza movimento centrale attacco kit (cm)</td>
<td>60</td>
<td>51</td>
</tr>
<tr>
<td>Angolo tubo verticale asse verticale (°)</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>Lunghezza forcellino (m)</td>
<td>43</td>
<td>45</td>
</tr>
<tr>
<td>Inclinazione forcellino (°)</td>
<td>7,7</td>
<td>8</td>
</tr>
<tr>
<td>Diametro ruota (cm)</td>
<td>70</td>
<td>65</td>
</tr>
<tr>
<td>Larghezza ruota (cm)</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Tabella 2.7

I dati presenti in tabella sono la media delle misure effettuate.

Come si può vedere la diversità di angoli e lunghezze tra una e l’altra tipologia non è elevatissimo.

Questo fatto è molto favorevole per il progetto che con piccoli spostamenti può adattarsi alla maggior parte dei casi più comuni.
Si è quindi scelto di creare una guida che posizionasse il ruotino frizionante in modo da avere un angolo di 60° tra la tangente delle due ruote e il braccio telescopico. Il motivo della scelta di quest’angolo verrà spiegato nel capitolo successivo.

2.4 Geometria caratteristica

2.4.1 Generale

Si è modellizzato quindi la geometria della bicicletta in modo semplificato su un piano di riferimento, il piano di riferimento è quello che taglia la ruota longitudinalmente, come si vede nella figura seguente.

Nella figura 2.5 viene rappresentata la ruota posteriore con il cerchio maggiore e il ruotino frizionante con il cerchio minore, il braccio telescopico è stato rappresentato con il segmento di lunghezza 21cm e la struttura di sostegno di lunghezza 36cm.
2.4.2 Rapporto di trasmissione

Dopo la ricerca di mercato sui motori da 250W imposti da normativa, si è individuato un motore con le caratteristiche desiderate (che verrà descritto dettagliatamente in seguito).

Avendo questo motore una velocità angolare nominale di 3240rpm si è preso come riferimento tale valore per calcolare il rapporto di trasmissione in modo tale da ver una velocità del massima del mezzo di 25Km/h.

Nello schema si vede il ruotino che trasmette la coppia sulla ruota, la velocità dei due elementi nel punto di contatto, assumendo che non ci sia strisciamento, deve essere uguale.

Allora visto che il centro di istantanea rotazione è posizionato nel punto di contatto tra ruota e asfalto si avrà che la velocità del mezzo è la metà di quella della ruota.

\[V_r = V \times 2 \quad 2.8 \]
\[r = \frac{\omega \pi}{30V_r} \quad 2.9 \]
\[\tau = \frac{R}{r} \quad 2.10 \]
Si è ottenuto così un diametro del ruotino frizionante di 82mm, che si è arrotondato a 80mm perché con questo valore si raggiungono i 24.4km/h.
Tuttavia, il motore riesce tranquillamente a raggiungere i 25km/h di progetto visto che a quel valore la coppia deve essere nulla.

Il rapporto di trasmissione è stato calcolato dividendo il diametro della ruota per quello del ruotino:

<table>
<thead>
<tr>
<th>Raggio ruotino</th>
<th>(r) [m]</th>
<th>0,04</th>
<th>0,04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raggio ruota</td>
<td>(R) [m]</td>
<td>0,35</td>
<td>0,325</td>
</tr>
<tr>
<td>Rapporto di trasmissione</td>
<td>(\tau)</td>
<td>8,75</td>
<td>8,125</td>
</tr>
</tbody>
</table>

Tabella 2.8

Si è in seguito verificato che la coppia erogata dal motore fosse sufficiente.

2.4.3 Molla a gas
Per mantenere il contatto tra ruota e ruotino anche in caso di urti viene installata una molla a gas, viene scelta questo tipo di molla per la facilità di posizionamento e per il fattore di smorzamento che in caso di urti è fondamentale.
Per conoscere la lunghezza della molla a gas necessaria è stata utilizzata la stessa geometria di riferimento che ha permesso di individuare l’inclinazione della guida, che verrà illustrata nel punto successivo.

Si è scelto di utilizzare le molle a gas prodotte dalla ditta Stabilus, per questo successivamente si utilizzerà molla a gas e Stabilus come sinonimi.

2.4.4 Calcolo angolo di pressione
Per calcolare l’angolo di pressione si è disegnato uno schema delle forze e momenti agenti sul braccio telescopico e sul ruotino frizionante.
Figura 2.VII

Come per la figura 2.5 il cerchio maggiore rappresenta la ruota della bicicletta sulla quale va a premere il ruotino frizionante che è rappresentato dal cerchio minore; collegato alla struttura (l’asta orizzontale) da un braccio telescopico rappresentato dal segmento inclinato; la linea blu rappresenta la molla a gas che mantiene in posizione il sistema.

Schema di equilibrio del ruotino:

Figura 2.VIII
Dove N è l’azione normale data dal contatto con la ruota, F_m L’azione motrice, R_o e R_v sono rispettivamente le reazioni orizzontali e verticali che agiscono sui cuscinetti.

Schema di equilibrio del braccio telescopicò:

Dove R_{op} e R_{vp} sono le reazioni al perno che permette l’aggancio del braccio alla struttura portante; F_s la forza data dalla molla a gas, (dipendente dalla sua estensione come si può vedere nel paragrafo 2.5.6 riguardante il dimensionamento della molla) che è stata scomposta nelle azioni F_{vs} e F_{os} per essere parallela alle altre forze.

Combinando le varie equazioni di equilibrio si è individuata l’equazione dell’azione normale.
\[R_v = \frac{F_{vs}L_s + F_{os}h_s + R_oh_b}{L_b} \] \hspace{1cm} 2.11

\[R_v = N \] \hspace{1cm} 2.12

\[R_o = F_m \] \hspace{1cm} 2.13

Otteneendo:

\[N = \frac{F_{vs}L_s + F_{os}h_s + F_{a}h_b}{L_b} \] \hspace{1cm} 2.14

La forza normale calcolata, N, deve essere maggiore del valore minimo:

\[N_{\text{min}} = \frac{F_m}{f} \] \hspace{1cm} 2.15

Dove \(F_m \) è la forza data dal motore vista in precedenza, \(f \) è il coefficiente d’attrito tra copertone e ruotino, è stato scelto pari a 0,55 seguendo quanto scritto nel manuale dell’ingegnere.

\(N_{\text{min}} \) è la minima forza che bisogna esercitare per ottenere la trasmissione di coppia voluta, si è cercato di mantenere un coefficiente di sicurezza per non aver strisciamento in nessun caso.

Si è quindi calcolato, per iterazioni successive, l’angolo del braccio telescopico per avere la forza risultante N voluta.

Si sono ottenuti i seguenti risultati:

<table>
<thead>
<tr>
<th>Forza per trasmissione</th>
<th>Simbolo</th>
<th>Valore</th>
<th>Unità</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forza di trasmissione minima</td>
<td>Nmin</td>
<td>71,6</td>
<td>N</td>
</tr>
<tr>
<td>Forza di trasmissione</td>
<td>N</td>
<td>166,7</td>
<td>N</td>
</tr>
<tr>
<td>angolo di incidenza forze</td>
<td>(\beta)</td>
<td>60,0</td>
<td>°</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,0</td>
<td>rad</td>
</tr>
</tbody>
</table>

Tabella 2.9

Dove \(\beta \) è calcolato come l’arcotangente di \(\frac{h_b}{L_b} \).
Come si può notare N è molto maggiore di N_{min} questo nel caso migliore dove si riesce ad ottenere un angolo di 60°, tuttavia per alcuni velocipedi non è possibile dato lo spazio ridotto.

Si è studiato un caso limite di una bici da donna con la sella quasi del tutto in battuta, si è ottenuto così un angolo limite β di 30°.

Figura 2.X

Con questo angolo si ottiene la seguente forza di contatto:

<table>
<thead>
<tr>
<th>Forza per trasmissione</th>
<th>Simbolo</th>
<th>Valore</th>
<th>Unità</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forza di trasmissione minima</td>
<td>N_{min}</td>
<td>71,6</td>
<td>N</td>
</tr>
<tr>
<td>Forza di trasmissione</td>
<td>N</td>
<td>77,0</td>
<td>N</td>
</tr>
<tr>
<td>angolo di incidenza forze</td>
<td>β</td>
<td>65,0</td>
<td>°</td>
</tr>
</tbody>
</table>

Tabella 2.10

Che è appena sufficiente alla trasmissione della massima coppia del motore, questo giustifica l’utilizzo di una molla a gas da 100N di forza invece che da 50N.
2.4.5 Guida

Il braccio telescopico viene lasciato libero di cambiare lunghezza a piacimento e vengono imposte le seguenti relazioni:

- Angolo tra il braccio telescopico e la tangente delle due ruote pari a 60°
- Distanza tra il punto di rotazione del braccio e il canotto 36cm
- Braccio 21cm

Grazie a questo modello imponendo gli angoli voluti e facendo variare l'altezza della struttura rispetto al centro della ruota si è potuto tracciare la traiettoria del punto di aggancio del ruotino alla guida. La quale si è rivelata essere una retta inclinata di 65,6° e spostata rispetto al fulcro di rotazione del braccio telescopico di 3,7cm. Come si vede nella figura sottostante.
Il braccio telescopico è stato necessario proprio per mantenere queste relazioni di angolo per qualsiasi bicicletta.

2.5 Dimensionamento

2.5.1 Motore
Conoscendo quindi i palletti imposti dalle leggi e le potenze necessarie si è deciso di utilizzare un motore con la massima potenza consentita. Tuttavia, per questioni di ingombro e peso si è scelto un motore con una potenza di 200W. Dopo un’ accurata ricerca di mercato si è deciso di utilizzare il motore costruito da Maxon motor, affidabile casa Svizzera che progetta e realizza motori anche per la Formula1.
Nello specifico il motore EC60 flat della Maxon:

Figura 2.XIII

Questo motore è autoventilato per garantire prestazioni elevate e massima compattezza.

Ha le seguenti caratteristiche:

<table>
<thead>
<tr>
<th>Caratteristica</th>
<th>Valore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensione nominale</td>
<td>24 V</td>
</tr>
<tr>
<td>Velocità a vuoto</td>
<td>4300 rpm</td>
</tr>
<tr>
<td>Corrente a vuoto</td>
<td>497 mA</td>
</tr>
<tr>
<td>Velocità nominale</td>
<td>3240 rpm</td>
</tr>
<tr>
<td>Coppia nominale</td>
<td>536 mNm</td>
</tr>
<tr>
<td>Corrente nominale</td>
<td>9.28 A</td>
</tr>
<tr>
<td>Coppia di stallo</td>
<td>4300 mNm</td>
</tr>
<tr>
<td>Efficienza max.</td>
<td>85 %</td>
</tr>
<tr>
<td>Numero di paiafoli</td>
<td>7</td>
</tr>
<tr>
<td>Numero di fasi</td>
<td>3</td>
</tr>
<tr>
<td>Numero di cicli in autoclave</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabella 2.11
Il motore in questione è un motore DC brushless dotato di sensori Hall molto precisi e ventola di raffreddamento.

Questi tipi di motori garantiscono un’elevata compattezza, leggerezza e affidabilità. Infatti, sono molto simili ai motori in corrente continua ad eccitazione permanente, ma la sostanziale differenza è la mancanza del collettore; questo è permesso da una commutazione di polarizzazione elettronica, fatta attraverso un controllore e un inverter. Questi due elementi nel nostro caso si trovano nella scheda di controllo.

Per non rovinare il motore è permesso utilizzare continuativamente la macchina fino alla coppia nominale e fino al 50-60% della coppia di stallo per intervalli di tempo molto piccoli, cioè 2150mNm.
Come vedremo nei due sotto capitoli successivi è la batteria a limitare la corrente massima erogabile a 30A che garantisce una coppia massima di 1575mNm ben al di sotto della coppia che potrebbe rovinare il motore.

Il raffreddamento di questi motori è molto importante perché una temperatura elevata crea una diminuzione del flusso magnetico, quindi una diminuzione di coppia fornita dal motore. Per questo motivo il motore scelto è dotato auto raffreddamento tramite ventola e la copertura del motore è pensata per poter far entrare l’aria bloccando le impurità e l’acqua proveniente dall’esterno.
Il motore acquistato ha la seguente caratteristica di coppia/corrente e velocità angolare:

![Diagramma](image)

Dove la zona bianca è quella nominale in cui non vi è rischio di rovinare il motore, come si vede all’aumento della velocità si riduce drasticamente la coppia erogabile dal motore. Tuttavia, nel nostro caso la maggiore coppia si ha a velocità nulla e alla massima velocità la coppia è praticamente nulla, quindi non vi è alcun tipo di problema.

Si è quindi pensato di sfruttare questo fatto ponendo un rapporto di trasmissione variabile tra il motore e il ruotino frizionante tramite un variatore.

2.5.2 Variatore

Analizzando i tre casi prima discussi si è notato che le coppie massime necessarie si avevano con velocità basse, con velocità alte servivano coppie minori.

Un variatore avrebbe permesso di avere questa caratteristica in modo semplice ed automatico.
Come si può vedere una molla tiene in posizione i due dischi conici garantendo un certo rapporto di trasmissione, con l’aumento della velocità angolare i dischi si allontanano per effetto della tensione della cinghia che aumenta all’aumentare della velocità angolare. Dall’altro lato succede esattamente l’opposto, i due dischi che inizialmente sono distanti tra loro per la tensione della cinghia vengono avvicinati dalla spinta data dalle sfere in verde che per azione centrifuga si muovono verso l’esterno.
Si ha quindi un rapporto elevato a velocità basse e un rapporto piccolo a velocità elevate.

Questa soluzione costruttiva è stata abbandonata in seguito per considerazioni di ordine pratico. Avrebbe aggiunto una complessità non indifferente al sistema, aumentando peso, costo e rischio di rottura. Si potrebbe utilizzarla per una miglioria futura.

Si è preferito adottare un collegamento diretto del motore al ruotino.
2.5.3 Batteria

Per dare un tempo adeguato di utilizzo si è dimensionata la batteria come se il motore assorbisse sempre il valore di corrente nominale, cioè 10A.

<table>
<thead>
<tr>
<th>Batterie</th>
<th>Simbolo</th>
<th>Valore</th>
<th>Ammis.</th>
<th>U.m.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potenza da fornire</td>
<td>P_{mn}</td>
<td>200</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>Tensione da mantenere</td>
<td>V_{mn}</td>
<td>24</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Amper da fornire</td>
<td>A_{mn}</td>
<td>10</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Tempo di utilizzo</td>
<td>t</td>
<td>1</td>
<td></td>
<td>h</td>
</tr>
<tr>
<td>Capacità batteria necessaria</td>
<td>C_b</td>
<td>10</td>
<td></td>
<td>Ah</td>
</tr>
</tbody>
</table>

Si è così ottenuta la capacità necessaria per avere un’ora di autonomia, il tempo di compiere il tragitto casa-lavoro e viceversa. Se il tempo è maggiore di un’ora la maggior parte delle persone non utilizza la bici.

Si è così svolta una ricerca di mercato e la batteria migliore individuata è quella della Femak, azienda collocata nei pressi di Vigevano.

Utilizza celle di qualità: Femak o Panasonic, per comporre una batteria con le seguenti caratteristiche:

<table>
<thead>
<tr>
<th>Caratteristica</th>
<th>Valore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso</td>
<td>1.8Kg</td>
</tr>
<tr>
<td>Corrente di picco massimo</td>
<td>15A continuativa</td>
</tr>
<tr>
<td>Corrente di auto spegnimento</td>
<td>30A per 5"</td>
</tr>
<tr>
<td>Cicli vita</td>
<td>800 cicli</td>
</tr>
<tr>
<td>Periodo di garanzia</td>
<td>12 mesi</td>
</tr>
</tbody>
</table>

Inoltre, la batteria in questione è dotata di BMS che la protegge dalle eccessive temperature e sovraccarichi di corrente.
2.5.4 Centralina

Come sistema di controllo si è utilizzata la scheda concepita per il motore Maxon acquistato.

La scheda si chiama: **ESCON 70/10**.

![Figura 2.XVI](image)

Che è la centralina Maxon che riesce a fornire maggiore corrente. Infatti, riesce a fornire una corrente di 30A per 20s, ma la corrente nominale è di: 10A.

Tuttavia, come visto in precedenza la massima corrente erogabile dalla batteria è 30A per 5s, che è il nostro collo di bottiglia.

Questo ci dà la massima coppia erogabile dal motore, infatti la caratteristica coppia corrente del motore è praticamente lineare, la costante di coppia è quindi: 52.5 mNm/A.

Si hanno quindi i seguenti dati di progetto:

Raggio ruotino	R	0,04	m
veloceità sulla ruota esterna	v	0,018	m/s
Velocità mezzo	V	0,032	Km/h
Rapporto di trasmissione	τ	8,125	
Costante di coppia	C_{cop}	52,5	mNm/A
Coppia massima al motore	C_{maxm}	1,575	Nm
Coppia reale massima alla ruota	C_{max}	12,797	Nm
Coppia nominale alla ruota	C_{n}	4,3	Nm

Tabella 2.14
Nei tre casi la coppia massima necessaria alla ruota è:

- **Salita:**

 | Coppia necessaria alla ruota | Cr | 24,1 Nm |

- **Velocità massima:**

 | Coppia necessaria alla ruota | Cr | 9,1 Nm |

- **Accelerazione massima (Partenza)**

 | Coppia necessaria alla ruota | Cr | 42,5 Nm |

Come si può vedere la situazione più critica è alla partenza dove la coppia necessaria è maggiore.

Il motore può fornire di in questo caso solo 1/4 della coppia realmente necessaria al movimento (con il sensore di pedalata utilizzato prima che il motore dia un reale contributo il ciclista deve eseguire 1/6 dell’intera pedalata).

Confrontandolo con il sistema commerciale Bosch Active Line, che produce 40Nm di massima coppia alla ruota per un tempo molto limitato.

Questo ci fa capire l’utilità che potrebbe avere il variatore e un motore su misura di 250W.

Come detto in precedenza tuttavia per questioni di prototipazione e facilità costruttiva si è optato per una prima versione low power.
2.5.5 Sensori

I sensori utilizzati sono principalmente:

1) Sensore di pedalata
2) Sensore di accelerazione
3) Sensore di frenata

1) Il sensore a pedalata attualmente in commercio può essere di due diversi tipi: sensore di rotazione dei pedali, sensore di torsione.

- Il sensore di pedalata è un dispositivo composto essenzialmente da due parti, un anello con una serie di magneti che viene agganciato al pedale (anello nero in figura 2.17) e un sensore che legge la variazione di induttanza causata dalla rotazione dei magneti del primo anello, questo dispositivo viene posto sul movimento centrale molto prossimo al primo anello (dispositivo a sinistra in figura 2.17).

![Figura 2.XVII](image)

Questo sensore inizia a rilevare la pedalata dopo una certa rivoluzione del pedale, dipendente dall’accuratezza del sensore e dal numero di magneti.

Questo fa sì che non sia immediata l’accensione del motore, ma che debba attendere la rotazione dei pedali. Una volta dato il segnale il motore inizia a funzionare e il ciclista può pedalare senza dare un vero contributo, “pedalata finta”, chiaramente questo riduce di molto l’autonomia della bicicletta che deve caricarsi di tutto lo sforzo.
• Sensore di coppia viene posizionato direttamente all’interno del movimento centrale, come si vede in figura 2.18

![Figura 2.XVIII](image)

Questo sensore rileva quindi la coppia data dal ciclista, ha pertanto una sensibilità maggiore rispetto al primo e permette di dosare la coppia data dal motore in modo molto fluido evitando la “pedalata finta”. Infatti, percepisce immediatamente la pressione sui pedali e manda alla centralina il segnale, che è maggiore quanto più è maggiore la forza esercitata dal ciclista, questo permette di dosare la coppia esercitata dal motore e leggere le intenzioni dell’utente.

Il secondo sistema è complesso da installare su una bici qualsiasi e non necessario ai nostri fini dove non si prevedono salite complicate e dissestaste come su un terreno sterrato da MTB. Inoltre, più costoso del primo.

Ai nostri fini è migliore il primo che permette di dare una spinta minore in caso sia una giornata molta calda e non si voglia sudare o faticare più del necessario.

2) Il sensore d’accelerazione utilizzato è un comunissimo acceleratore a manopola, che in sostanza è un potenziometro che manda un segnale a diverso voltaggio a seconda della rotazione della manopola.
Come verrà specificato nelle conclusioni questo tipo di sensore dovrà essere sostituito da sensori automatici.

3) Sensore di frenata, ottiene dal movimento della leva del freno un movimento di un interruttore che manda un segnale alla centralina, la quale impedisce l’alimentazione del motore.
2.5.6 Molla a gas

Come già detto si necessita di una molla a gas. Per affidabilità e sicurezza ci si è rivolti a Stabilus che sul sito fornisce il catalogo completo delle proprie molle. La lunghezza massima e la forza minima sono state scelte in base ai dati elaborati in precedenza, in particolare dalla geometria caratteristica e in modo tale che N_{min} fosse maggiore di N, vedi capitolo 2.44.

Si è quindi scelto la molla con le seguenti caratteristiche:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke Hub</td>
<td>Extended length Ausgesch. Länge</td>
</tr>
<tr>
<td>80</td>
<td>226,5</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabella 2.15
Che garantisce la curva visibile in basso:

Avente le caratteristiche seguenti:

<table>
<thead>
<tr>
<th>D1 [mm]</th>
<th>D2 [mm]</th>
<th>Force of extension Ausschubkraft F_t [N]</th>
<th>Stroke max. Hub [mm]</th>
<th>x (ω)</th>
<th>F_r max. [N]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>15</td>
<td>50 - 400</td>
<td>150</td>
<td>1,30</td>
<td>50</td>
</tr>
</tbody>
</table>

Lo Stabilus nel nostro caso funziona da ammortizzatore, la posizione di riposo è quella totalmente esteso, quando viene compresso il gas al suo interno si comprime aumentando la pressione.Questo permette di avere un funzionamento del tutto simile a quello di una molla.
2.5.7 Meccanismo centrale

In verde si vede il ruotino frizionante, in grigio la chiavetta di trasmissione, in rosso i cuscinetti, in grigio chiaro i distanziali tra il ruotino e i cuscinetti per mantenere il sistema in posizione (questi ultimi nel prototipo sono stati sostituiti con molle per permettere di rimediare ad eventuali giochi o imprecisioni) e in marrone chiaro l’albero.
2.5.7.1 Albero

Pensato il meccanismo di trasmissione e il supporto dell’albero principale, a cui verrà innestato il motore e agganciato il ruotino frizionante, si è proceduto al dimensionamento di quest’ultimo che si vede nella figura sottostante.

![Figura 2.XXIV](image)

Si è utilizzato come materiale l’acciaio C40 ricotto, con le seguenti caratteristiche:

<table>
<thead>
<tr>
<th>Caratteristiche materiale</th>
<th>Simbolo</th>
<th>Valore</th>
<th>Unità</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denominazione</td>
<td>C40-ricotto</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensione ammissibile</td>
<td>σ_{amm}</td>
<td>558,3</td>
<td>N/mm²</td>
</tr>
<tr>
<td>Tensione di rottura</td>
<td>σ_r</td>
<td>770,5</td>
<td>N/mm²</td>
</tr>
<tr>
<td>Tensione di snervamento</td>
<td>σ_y</td>
<td>670,0</td>
<td>N/mm²</td>
</tr>
<tr>
<td>Modulo elastico</td>
<td>E</td>
<td>210000,0</td>
<td>N/mm²</td>
</tr>
<tr>
<td>Tensione di di fatica</td>
<td>σ_{D-1}</td>
<td>345,0</td>
<td>kg/m³</td>
</tr>
</tbody>
</table>

Come prima operazione si è modellizzato l’albero, come trave inerte su due appoggi, una cerniera e un carrello. Che è abbastanza ragionevole dato che l’albero è composto con materiale uniforme e sezione quasi costante, inoltre i cuscinetti sono stati montati in modo tale da garantire l’isostaticità della struttura.
2.5.7.1.1 Verifica statica

Utilizzando lo schema riportato sopra si è arrivati al calcolo del momento flettente e momento torcente agente sull’albero. Da questi ultimi si è potuto calcolare la tensione ideale, agente sulla sezione critica, in questo caso la sezione centrale, utilizzando il metodo di Von Mises. Infine, si è rapportato questo valore al limite di snervamento per il materiale ottenendo il coefficiente di sicurezza, utilizzando le seguenti formule:

\[
M_f = b \times F
\] \hspace{1cm} 2.16

\[
\sigma_f = \frac{M_f}{I_{zz}} \times \frac{y}{2}
\] \hspace{1cm} 2.17

\[
\sigma_n = \frac{N}{A}
\] \hspace{1cm} 2.18

\[
\sigma = \sigma_f + \sigma_n
\] \hspace{1cm} 2.19

\[
\sigma_{id} = \sqrt{\sigma^2 + 3\tau^2}
\] \hspace{1cm} 2.20

\[
CS = \frac{\sigma_{amm}}{\sigma_{id}}
\] \hspace{1cm} 2.21

Dove \(M_f\) è il momento flettente, \(b\) il braccio \(F\) la forza applicata e \(N\) la forza normale alla sezione; \(\sigma_f\) tensione dovuta al momento flettente, \(I_{zz}\) inerzia sezione \(y\) la distanza
tra il centro della sezione e il punto critico lungo \(y \); \(\sigma \) la somma della tensione flessionale e quella normale alla sezione, \(\tau \) la tensione di taglio nel punto critico, normalmente data dalla torsione; \(CS \) coefficiente di sicurezza, \(\sigma_{amm} \) tensione ammissibile del materiale, \(\sigma_{id} \) tensione ideale.

Si è cercato di mantenere un coefficiente alto per rientrare in sicurezza nella verifica a fatica.

<table>
<thead>
<tr>
<th>Verifica statica perno</th>
<th>Simbolo</th>
<th>Valore</th>
<th>Unità</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>A</td>
<td>454,0</td>
<td>mm²</td>
</tr>
<tr>
<td>Lunghezza perno</td>
<td>l</td>
<td>120,0</td>
<td>mm</td>
</tr>
<tr>
<td>Inerzia polare</td>
<td>(I_p)</td>
<td>8199,7</td>
<td>mm⁴</td>
</tr>
<tr>
<td>Inerzia diametrale</td>
<td>(I_d)</td>
<td>4099,8</td>
<td>mm⁴</td>
</tr>
<tr>
<td>Momento flettente verticale</td>
<td>(M_{fv})</td>
<td>10000,8</td>
<td>Nmm</td>
</tr>
<tr>
<td>Tensione verticale</td>
<td>(\sigma_x)</td>
<td>10,4</td>
<td>N/mm²</td>
</tr>
<tr>
<td>Momento flettente orizzontale</td>
<td>(M_{fo})</td>
<td>5080,0</td>
<td>Nmm</td>
</tr>
<tr>
<td>Tensione orizzontale</td>
<td>(\sigma_z)</td>
<td>9,4</td>
<td>N/mm²</td>
</tr>
<tr>
<td>Momento torcente</td>
<td>(M_t)</td>
<td>4300,0</td>
<td>Nmm</td>
</tr>
<tr>
<td>Tensione di torsione</td>
<td>(\tau)</td>
<td>4,5</td>
<td>MPa</td>
</tr>
<tr>
<td>tensile ideale</td>
<td>(\sigma_{id})</td>
<td>21,2</td>
<td>N/mm²</td>
</tr>
<tr>
<td>Tensione ammissibile</td>
<td>(\sigma_{amm})</td>
<td>558,3</td>
<td>N/mm²</td>
</tr>
<tr>
<td>verifica resistenza statica</td>
<td>(CS=\sigma_{amm}/\sigma_{id})</td>
<td>26,3</td>
<td>OK</td>
</tr>
</tbody>
</table>

Tabella 2.17

Per la verifica statica si è tenuto conto anche di un possibile momento causato dal disallineamento del cerchione con il piano mediano, dovuto a: un bloccaggio debole della ruota al telaio, una caduta rovinosa a terra.

Non è stata volutamente tenuta in considerazione un eventuale disallineamento della ruota dovuto a una scarsa manutenzione perché inficerebbe troppo le prestazioni del progetto e darebbe vita a un sovradimensionamento non in linea con le caratteristiche di leggerezza del sistema.

Dunque, il sistema non è pensato per lavorare con ruote troppo poco simmetriche, ma permette comunque di arrivare in un luogo idoneo per la riparazione (casa, ciclista) senza alcun problema.
2.5.7.1.2 Verifica a fatica

Per la verifica a fatica si è utilizzato un metodo iterativo:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>de</td>
<td>mm</td>
<td>11,82</td>
<td>16,62</td>
</tr>
<tr>
<td>di</td>
<td>mm</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>A</td>
<td>Nmm</td>
<td>47215,63</td>
<td>131272,45</td>
</tr>
<tr>
<td>B</td>
<td>MPa</td>
<td>28,57</td>
<td>28,57</td>
</tr>
<tr>
<td>C</td>
<td>Nmm</td>
<td>3,57</td>
<td>3,57</td>
</tr>
<tr>
<td>Mt</td>
<td>Nmm</td>
<td>0,44</td>
<td>0,44</td>
</tr>
<tr>
<td>Mf</td>
<td>Nmm</td>
<td>4635,00</td>
<td>4635,00</td>
</tr>
<tr>
<td>σd</td>
<td>MPa</td>
<td>57,14</td>
<td>57,14</td>
</tr>
<tr>
<td>σR</td>
<td>MPa</td>
<td>670,00</td>
<td>670,00</td>
</tr>
<tr>
<td>Kf</td>
<td></td>
<td>1,00</td>
<td>2,78</td>
</tr>
<tr>
<td>q</td>
<td></td>
<td>0,00</td>
<td>0,89</td>
</tr>
<tr>
<td>ρ</td>
<td></td>
<td>0,00</td>
<td>0,08</td>
</tr>
<tr>
<td>Kt</td>
<td></td>
<td>3,00</td>
<td>3,00</td>
</tr>
<tr>
<td>r</td>
<td>mm</td>
<td>0,40</td>
<td>0,40</td>
</tr>
</tbody>
</table>

Tabella 2.18

Dove:

- de è il diametro esterno dell’albero
- di diametro interno
- A un coefficiente che tiene conto del momento flettente momento torcente e del coefficiente di intaglio a fatica
- B è lo stato limite, in sostanza il coefficiente di resistenza a fatica diviso per il coefficiente di sicurezza
- C è un coefficiente del grafico di Woober che tiene conto della tensione di snervamento rapportata al limite di fatica.
- q, ρ e Kt vengono utilizzati per calcolare il coefficiente di intaglio a fatica Kf
- σd è la tensione limite di fatica.
Le equazioni utilizzate sono le seguenti:

\[
A = \frac{16\sqrt{3} M_t + 32K_f M_f}{\pi} \quad 2.22
\]

\[
B = \frac{\sigma_D}{CS} \quad 2.23
\]

\[
C = \frac{16\sqrt{3} M_t}{\pi} \left(1 - \frac{\sigma_D}{\sigma_R}\right) \quad 2.24
\]

\[
d_e = \sqrt[3]{\frac{A - C}{B}} + d_i^3 \quad 2.25
\]

Questa equazione tiene conto sia della tensione media sia della tensione alternata, che in questo caso sono date rispettivamente dal momento torcente e dal momento flettente.

Si è quindi ottenuta una dimensione dell’albero minima di:

| de minimo | 17 mm |

2.5.7.2 Accoppiamento Motore meccanismo

L’albero motore non ha la sede per la linguetta, ed è troppo piccolo per calettare l’albero principale del sistema.

Allora si è deciso di incollare i due alberi. Le coppie in gioco sono poco elevate, quindi basta un incollaggio con la Loctite 638.

Figura 2.XXVI
Questa colla fatta appositamente per il fissare cuscinetti ad alberi o mozzi ad alberi ha le seguenti caratteristiche:

![Diagrama de curva de adherencia](image)

Figura 2.XXVII

Raggiunge quindi la massima tenuta dopo 168h sull’acciaio, che è proprio il nostro caso.

![Diagrama de curva de adherencia con tolerancias](image)

Figura 2.XXVIII

Ha la massima tenuta dove il gioco dei due alberi è 0.05mm, visto che la tolleranza sull’albero del motore è -0.007, -0.014mm si è posto una tolleranza sul mozzo di: 0,1mm.
2.5.7.3 Accoppiamento Albero principale ruotino

L’accoppiamento tra questi due elementi è stato realizzato tramite una linguetta, per la grande facilità di montaggio e smontaggio.

La lunghezza minima della linguetta è stata calcolata attraverso la seguente formula:

\[I_{MIN} = \frac{4C_{MAX}}{bhP_{MAX}} \]

<table>
<thead>
<tr>
<th>Dimensionamento linguetta</th>
<th>Simbolo</th>
<th>Valore</th>
<th>Unità</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coppia massima da trasmettere</td>
<td>(C_{MAX})</td>
<td>1575</td>
<td>Nmm</td>
</tr>
<tr>
<td>Larghezza linguetta</td>
<td>(b)</td>
<td>5</td>
<td>mm</td>
</tr>
<tr>
<td>Altezza linguetta</td>
<td>(h)</td>
<td>5</td>
<td>mm</td>
</tr>
<tr>
<td>Tensione massima supportata</td>
<td>(P_{MAX})</td>
<td>14</td>
<td>MPa</td>
</tr>
<tr>
<td>Lunghezza minima linguetta</td>
<td>(l_{MIN})</td>
<td>18</td>
<td>mm</td>
</tr>
</tbody>
</table>

La pressione ammissibile tiene conto di un coefficiente di sicurezza 4.

Essendo una linguetta standard le sedi e le tolleranze sono date da tabella, fornita dal corso di costruzione di macchine.

Si è quindi scelto la seguente linguetta standard:

<table>
<thead>
<tr>
<th>Caratteristiche linguetta</th>
<th>Simbolo</th>
<th>Valore</th>
<th>Unità</th>
</tr>
</thead>
<tbody>
<tr>
<td>Larghezza</td>
<td>(b)</td>
<td>5</td>
<td>mm</td>
</tr>
<tr>
<td>Altezza</td>
<td>(h)</td>
<td>5</td>
<td>mm</td>
</tr>
<tr>
<td>Lunghezza</td>
<td>(l)</td>
<td>20</td>
<td>mm</td>
</tr>
</tbody>
</table>

Con le seguenti sedi sull’albero e sul mozzo:

<table>
<thead>
<tr>
<th>Dimensioni cava albero</th>
<th>Simbolo</th>
<th>Valore</th>
<th>Unità</th>
</tr>
</thead>
<tbody>
<tr>
<td>Larghezza</td>
<td>(b)</td>
<td>5</td>
<td>mm</td>
</tr>
<tr>
<td>Tolleranze</td>
<td>(s_i)</td>
<td>0</td>
<td>mm</td>
</tr>
<tr>
<td>Tolleranze</td>
<td>(s_e)</td>
<td>0,043</td>
<td>mm</td>
</tr>
<tr>
<td>Altezza</td>
<td>(h)</td>
<td>3</td>
<td>mm</td>
</tr>
<tr>
<td>Tolleranze</td>
<td>(s_i)</td>
<td>0</td>
<td>mm</td>
</tr>
<tr>
<td>Tolleranze</td>
<td>(s_e)</td>
<td>0,1</td>
<td>mm</td>
</tr>
<tr>
<td>Lunghezza</td>
<td>(l)</td>
<td>20</td>
<td>mm</td>
</tr>
<tr>
<td>Raccordo massimo</td>
<td>(R)</td>
<td>0,25</td>
<td>mm</td>
</tr>
</tbody>
</table>
2.5.7.4 Cuscinetti

2.5.7.4.1 Primo dimensionamento

I cuscinetti sono stati dimensionati secondo quanto riportato nel catalogo dell’SKF essendo il fornitore utilizzato.

Si è eseguito come prima operazione la scelta del tipo di cuscinetto. Si è scelto deep groove ball bearing perché le forze in gioco non sono elevatissime, ma si hanno alte velocità a regime. Inoltre, le spinte sono maggiormente radiali.

Si è optato per cuscinetti in acciaio inossidabile, dato che il sistema deve lavorare all’aria aperta e a contatto con l’acqua. Inoltre, sono stati scelti cuscinetti lubrificati a vita in modo tale da non dover essere cambiati o riingrassati per la vita utile del prodotto.

Da manuale dell’SKF si è calcolato:

\[P = F_r \quad \text{se} \quad \frac{F_a}{F_r} \leq \epsilon \quad \text{(2.27)} \]

\[P = X F_r + Y F_a \quad \text{se} \quad \frac{F_a}{F_r} > \epsilon \quad \text{(2.28)} \]

Dove \(P \) è L’azione dinamica equivalente sul cuscinetto, \(F_r \) è l’azione radiale, \(F_a \) è l’azione assiale, \(\epsilon \), \(X \), \(Y \) sono coefficienti che variano in funzione del fattore \(\frac{f_a F_a}{C_0} \), \(f_0 \) e \(C_0 \) sono dati caratteristici del cuscinetto scelto, in particolare \(f_0 \) è un fattore di calcolo e \(C_0 \) è il tasso di carico statico.

La forza radiale minima da esercitare sul cuscinetto è stata calcolata con la seguente equazione:

\[F_{rm} = K_r \left(\frac{vm}{1000} \right)^2 \left(\frac{dm}{100} \right)^2 \quad \text{(2.29)} \]
Dove K_r è il minimo fattore di carico, dm diametro medio del cuscinetto, v viscosità dell’olio e n è la velocità angolare in rpm.

Normalmente la forza esercitata eccede rispetto a quella minima, ma in caso non eccedesse servono delle azioni di precarico. Nel nostro caso eccede l’azione minima.

Si è quindi calcolato la vita utile del cuscinetto in milioni di cicli, secondo la ISO 281, come:

$$L_{10} = \left(\frac{C}{P}\right)^{p}$$

Dove C è il tasso di carico dinamico dipendente dal cuscinetto e p è un esponente che dipende dalla tipologia di cuscinetto ($p=3$ per cuscinetti a sfere, $p=10/3$ per cuscinetti a rulli).

A questo valore vengono moltiplicati dei fattori diminutivi per tenere conto della fatica del materiale e delle caratteristiche del lubrificante.

$$L_{nm} = a_1 a_{SKF} L_{10}$$

Dove a_1 è il fattore di affidabilità, più si vuole un’affidabilità alta minore sarà questo valore, a_{SKF} è un coefficiente studiato dall’SKF empiricamente e dipende dal lubrificante.

Per calcolare a_{SKF} bisogna calcolare la viscosità del lubrificante alla temperatura di utilizzo, si è scelto il lubrificante ISOVG 68 e una temperatura di utilizzo di 60°C.

Ottenendo la viscosità ν_1 alla temperatura di utilizzo si è potuto calcolare il fattore k

$$k = \frac{\nu}{\nu_1}$$

Dove k è il rapporto di viscosità, ν è la viscosità alla temperatura di utilizzo e ν_1 è la viscosità dipendente dal diametro medio del cuscinetto e dalla velocità di rotazione.

Vengono riportati di seguito i calcoli per un solo cuscinetto perché l’altro è perfettamente identico.

Essendo il valore di $k>1$ il valore di a_{SKF} non è affidabile, si è quindi preferito porlo pari a 1 per essere più conservativi.
Figura 2.XXX

Estimation of the minimum fluid film velocity of operating temperature.
Tabella 2.23

<table>
<thead>
<tr>
<th>Cuscinetto A</th>
<th>Simbolo</th>
<th>Valore</th>
<th>unità di misura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipologia</td>
<td>Cuscinetto groove bearing</td>
<td>w61903-2RS1</td>
<td></td>
</tr>
<tr>
<td>Forza radiale</td>
<td>(F_r)</td>
<td>0,064125</td>
<td>KN</td>
</tr>
<tr>
<td>Forza assiale</td>
<td>(F_a)</td>
<td>0,1</td>
<td>KN</td>
</tr>
<tr>
<td>Carico equivalente sul cuscinetto</td>
<td>(P)</td>
<td>0,17291</td>
<td>KN</td>
</tr>
<tr>
<td>Capacità di carico del cuscinetto</td>
<td>(C)</td>
<td>3,97</td>
<td>KN</td>
</tr>
<tr>
<td>carico limite di fatica</td>
<td>(P_u)</td>
<td>1,080</td>
<td>KN</td>
</tr>
<tr>
<td>Carico statico equivalente</td>
<td>(C_0)</td>
<td>1,27</td>
<td>KN</td>
</tr>
<tr>
<td>Esponente dipendente dal tipo di cuscinetto</td>
<td>(p)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>fattore discriminante</td>
<td>(f_0F_a/C_0)</td>
<td>1,181102362</td>
<td></td>
</tr>
<tr>
<td>Fattore di carico radiale</td>
<td>(X)</td>
<td>0,56</td>
<td></td>
</tr>
<tr>
<td>Fattore di carico assiale</td>
<td>(Y)</td>
<td>1,37</td>
<td></td>
</tr>
<tr>
<td>limite del livello di carico</td>
<td>(e)</td>
<td>0,32</td>
<td></td>
</tr>
<tr>
<td>Diametro esterno</td>
<td>(D)</td>
<td>30</td>
<td>mm</td>
</tr>
<tr>
<td>Diametro interno</td>
<td>(d)</td>
<td>17</td>
<td>mm</td>
</tr>
<tr>
<td>Forza radiale</td>
<td>(F_r [KN])</td>
<td>0,064125</td>
<td>KN</td>
</tr>
<tr>
<td>Forza assiale</td>
<td>(F_a [KN])</td>
<td>0,1</td>
<td>KN</td>
</tr>
<tr>
<td>rapporto tra le due</td>
<td>(F_a/F_r)</td>
<td>1,559454191</td>
<td></td>
</tr>
<tr>
<td>Diametro medio</td>
<td>(D_m)</td>
<td>23,5</td>
<td>mm</td>
</tr>
<tr>
<td>Carico statico</td>
<td>(C_0)</td>
<td>1,27</td>
<td></td>
</tr>
<tr>
<td>Carico equivalente statico</td>
<td>(P_0)</td>
<td>0,088475</td>
<td>kN</td>
</tr>
<tr>
<td>Fattore radiale</td>
<td>(X_0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fattore assiale di carico</td>
<td>(Y_0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coefficiente di sicurezza statico</td>
<td>(s_0)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Fattori relativi ai cuscinetti per il calcolo della resistenza</td>
<td>(f_0)</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(k_r)</td>
<td>0,02</td>
<td></td>
</tr>
<tr>
<td>Forza radiale minima</td>
<td>(F_{r\text{MIN}})</td>
<td>0,0263</td>
<td>KN</td>
</tr>
<tr>
<td>Forza assiale massima</td>
<td>(F_{a\text{MAX}})</td>
<td>0,635</td>
<td>KN</td>
</tr>
<tr>
<td>Viscosità a 40°C</td>
<td>(\nu_1)</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Fattore relativo alla viscosità</td>
<td>(k)</td>
<td>2,33</td>
<td></td>
</tr>
<tr>
<td>Fattore del lubrificante dato da normativa</td>
<td>(a_1)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Fattore del lubrificante dato da SKF</td>
<td>(a_{\text{SKF}})</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Rendimento relativo alla pulizia</td>
<td>(\eta / c)</td>
<td>0,3</td>
<td></td>
</tr>
<tr>
<td>Fattore per il calcolo</td>
<td>(\eta / c (P_u/P))</td>
<td>0,187380718</td>
<td></td>
</tr>
<tr>
<td>Vita in milioni di cicli</td>
<td>(L_{\text{min}})</td>
<td>3289</td>
<td>(10^6) cicli</td>
</tr>
</tbody>
</table>

Ottenendo quindi i seguenti risultati di durata in milioni di cicli e ore di lavoro:

Velocità angolare	\(\omega_1 \)	3240	rpm
Vita minima in ore	\(L_h \)	5475	h
Vita minima in milioni di giri	\(L_{\text{min}, \text{minima}} \)	1064,34	\(10^6 \) cicli
Vita in ore	\(L_h \)	16919,4205	h

Tabella 2.24
2.5.7.4.2 Verifica approfondita

Per una verifica più approfondita si è utilizzato un software fornito dall’SKF: Sim Pro Quick.
Questo programma permette di disegnare l’albero e i cuscinetti nella vista 2D (figura 2.31) e di scegliere i vincoli e il lubrificante. Inoltre, dà la possibilità di fare cicli di fatica a piacimento, si è così ottenuto una vita utile dei cuscinetti più affidabile. Si riporta di seguito il report dell’analisi:

Figura 2.XXXI

Si è rappresentato l’albero con sezione maggiore all’interno per facilità di utilizzo del programma, ma in realtà il diametro rimane costante, sono le molle e il ruotino che mantengono la distanza tra i due cuscinetti. Infatti, questo Software può anche essere utilizzato per dimensionare l’albero, ma nel nostro caso non era necessario. Si è in seguito scelto e posizionato i cuscinetti vincolando quello di destra in modo fisso e quello di sinistra labile all’esterno, come verrà posizionato nella realtà. Questo permette di avere facilità nel montaggio e isostaticità.
Si sono poi inserite le varie forze rappresentate dalle frecce blu, una radiale e l’altra assiale, poi si è aggiunto il momento di trasposizione visto che nella realtà quella assiale va ad agire sul ruotino frizionante.

Per la scelta del lubrificante si è utilizzato il catalogo dei lubrificanti dell’SKF e una consulenza con un concessionario di questa ditta.

Si è deciso di utilizzare il lubrificante generico per multius.

I parametri presi in considerazione per la scelta sono:

<table>
<thead>
<tr>
<th>Parametri scelta lubrificante</th>
<th>Simbolo</th>
<th>Estremi</th>
<th>Valore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura</td>
<td>T</td>
<td>50-100°C</td>
<td>80°C</td>
</tr>
<tr>
<td>Carico</td>
<td>C/P</td>
<td>>=15</td>
<td>38</td>
</tr>
<tr>
<td>Velocità</td>
<td>n*dm</td>
<td><100 000</td>
<td>76140</td>
</tr>
</tbody>
</table>

Tabella 2.25

Per questi valori si riscontra nel catalogo che il grasso più adatto è LGMT2.

Il lubrificante in questione ha le seguenti caratteristiche:

<table>
<thead>
<tr>
<th>Caratteristiche lubrificante</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Addensante</td>
<td>Litio</td>
</tr>
<tr>
<td>Colore</td>
<td>Rosso bruno</td>
</tr>
<tr>
<td>Temperatura di lavoro</td>
<td>da -30 a +120°C</td>
</tr>
<tr>
<td>punto di goccia</td>
<td>>180°C</td>
</tr>
<tr>
<td>Viscosità olio 40°C</td>
<td>110</td>
</tr>
<tr>
<td>Viscosità olio 100°C</td>
<td>11</td>
</tr>
<tr>
<td>resistenza all’acqua</td>
<td>3ore a 90°C</td>
</tr>
<tr>
<td>Separazione olio</td>
<td>7giorni a 40°C</td>
</tr>
</tbody>
</table>

Tabella 2.26

Applicazioni tipiche:

- Attrezzature agricole
- Autovetture
- Trasportatori
- Piccoli motori elettrici
- Ventilatori industriali

Questo tipo di lubrificante lavora bene anche in presenza di sporco e acqua per un tempo limitato.
Si sono poi analizzati i tre casi di utilizzo principali facendo variare le velocità e le forze in gioco, come si vede nella tabella seguente:

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ic_1</td>
<td>3240</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ic_2</td>
<td>1500</td>
<td>0</td>
<td>-110</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ic_3</td>
<td>50</td>
<td>0</td>
<td>-220</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Figura 2.XXXII

Ottenendo quindi la seguente vita utile:

<table>
<thead>
<tr>
<th>Case</th>
<th>Bearing</th>
<th>Basic rating life (L10h) [h]</th>
<th>SKF load based method (SKF rating life, GBLM) [h]</th>
<th>ISO/TS 16281:2008 (L10mrh) [h]</th>
<th>Static safety s0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ic_1</td>
<td>SKF_bearing_1</td>
<td>> 10^5</td>
<td>> 10^5</td>
<td>> 10^5</td>
<td>21.29</td>
</tr>
<tr>
<td></td>
<td>SKF_bearing_2</td>
<td>8200</td>
<td>58700</td>
<td>26500</td>
<td>7.51</td>
</tr>
<tr>
<td>ic_2</td>
<td>SKF_bearing_1</td>
<td>> 10^5</td>
<td>> 10^5</td>
<td>> 10^5</td>
<td>14.63</td>
</tr>
<tr>
<td></td>
<td>SKF_bearing_2</td>
<td>30200</td>
<td>> 10^5</td>
<td>63800</td>
<td>8.97</td>
</tr>
<tr>
<td>ic_3</td>
<td>SKF_bearing_1</td>
<td>> 10^5</td>
<td>> 10^5</td>
<td>> 10^5</td>
<td>21.29</td>
</tr>
<tr>
<td></td>
<td>SKF_bearing_2</td>
<td>57500</td>
<td></td>
<td>45400</td>
<td>7.51</td>
</tr>
</tbody>
</table>

Figura 2.XXXIII

Quindi superano pienamente la vita utile richiesta di 5480h, un utilizzo quotidiano di 1 ora per 15 anni. Si consideri che la situazione analizzata è una situazione limite, perché si richiede che il mezzo su cui viene installato il sistema abbia la ruota diritta, questo aumenta di un ordine di grandezza la vita utile dei cuscinetti.

La sostituzione del lubrificante è stata calcolata dal programma:

<table>
<thead>
<tr>
<th>Case</th>
<th>Bearing</th>
<th>Catalogue grease life [h]</th>
<th>Catalogue relubrication interval [h]</th>
<th>Grease relubrication quantity from the side [gr]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ic_1</td>
<td>SKF_bearing_1</td>
<td>N/A</td>
<td>30000</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>SKF_bearing_2</td>
<td>N/A</td>
<td>29400</td>
<td>1.1</td>
</tr>
<tr>
<td>ic_2</td>
<td>SKF_bearing_1</td>
<td>N/A</td>
<td>30000</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>SKF_bearing_2</td>
<td>N/A</td>
<td>30000</td>
<td>1.1</td>
</tr>
<tr>
<td>ic_3</td>
<td>SKF_bearing_1</td>
<td>N/A</td>
<td>30000</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>SKF_bearing_2</td>
<td>N/A</td>
<td>30000</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Figura 2.XXXIV

Che è molto oltre la vita pensata per l’intero prodotto, quindi sostanzialmente non vi sarà bisogno di sostituire il grasso lubrificante.
2.5.7.4.3 Posizionamento e bloccaggio:

Per il posizionamento si è voluto gioco sull’albero e interferenza nella sede per agevolare il montaggio e per motivi pratici; di fatto, essendo di diametro maggiore la sede, è più facile ottenere l’interferenza e il calettamento del cuscinetto. Infatti, per inserire il cuscinetto, con dimensioni così piccole, il metodo più facile è a pressione.

L’anello superiore del cuscinetto di sinistra è stato bloccato contro la sede, quello inferiore invece viene bloccato da un seeger e dalla molla che va a contatto con il ruotino.

L’anello esterno del cuscinetto di destra invece viene bloccato contro la sede; quello interno va in battuta contro la molla che tiene in posizione il ruotino.

Il tappo rappresentato in figura ha due scopi, bloccare il cuscinetto in caso dovesse uscire dalla sede e collegare la guida alla forcella in modo tale da mantenere l’angolo
geometrico desiderato che si è visto nel paragrafo 2.4.5, la ghiera in rosso ha la funzione di bloccare il tappo in posizione.

![Figura 2.XXXVI](image)

2.5.8 Dimensionamento ruotino frizionante

2.5.8.1 Calcolo preliminare analitico

Per dimensionare lo spessore del ruotino si è utilizzata la formula derivante dalla teoria delle ruote dentate, a denti elicoidali, imponendo β come $\tan\left(\frac{F_A}{F_N}\right)$ e un rapporto di trasmissione pari a 1.

Il materiale utilizzato è alluminio della serie:

<table>
<thead>
<tr>
<th>Materiale</th>
<th>$\sigma_{F,UM}$</th>
<th>σ_S</th>
<th>σ_D</th>
<th>E [Gpa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6060</td>
<td>120</td>
<td>60</td>
<td>57,14</td>
<td>70000</td>
</tr>
</tbody>
</table>

Tabella 2.27
Utilizzando i seguenti parametri:

<table>
<thead>
<tr>
<th>Numero di denti</th>
<th>Modulo statico</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{1,2})</td>
<td>(M_T)</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>(\sigma_R)</td>
</tr>
<tr>
<td>(\beta)</td>
<td>(\sigma_{LIM})</td>
</tr>
<tr>
<td>(\alpha_{RAD})</td>
<td>(\lambda_{MIN})</td>
</tr>
<tr>
<td>(\beta_{RAD})</td>
<td>(\lambda)</td>
</tr>
<tr>
<td>(x)</td>
<td>(Y_L)</td>
</tr>
<tr>
<td>(Z_{1,CIN})</td>
<td>(Z_{1,V})</td>
</tr>
<tr>
<td>(Z_{1,COE})</td>
<td>(m_{1,2})</td>
</tr>
<tr>
<td>(Z_1)</td>
<td>(m_{1,2,R})</td>
</tr>
<tr>
<td>(Z_2)</td>
<td>(\tau_{1,2-R})</td>
</tr>
<tr>
<td>(\Delta \tau)</td>
<td>(Z_{2,V})</td>
</tr>
</tbody>
</table>

Tabella 2.28

Si è ottenuto uno spessore minimo del ruotino di:

| B_{1,2} | 8,00 | mm |

2.5.8.2 Simulazione FEM

Si è generato un punto sopra il ruotino per poter applicare le forze di contatto, questo punto è volutamente spostato rispetto al centro dell’oggetto per valutare il caso più critico.

Si è vincolata la parte centrale come cerniera, dove effettivamente andrà posizionato l’albero, la parte che rimane a contatto con i distanziali visibili nella figura 2.37 e la sede della linguetta sono state vincolate come carrelli.
Si sono quindi ottenuti i seguenti grafici degli spostamenti:

![Grafico degli spostamenti](image1)

Figura 2.XXXVII

Il punto più deformato è la parte superiore del ruotino, ma la deformazione è accettabile essendo $37 \mu m$ nel caso più critico.

Il grafico degli sforzi usando il criterio di Von Mises:

![Grafico degli sforzi](image2)

Figura 2.XXXVIII
Si può notare che la tensione di snervamento è maggiore di quella ideale massima e che la tensione ideale maggiore si ha in un punto irreale, generato solo per applicare la forza. Nella realtà la forza è distribuita su una maggiore superficie si hanno quindi delle tensioni ideali massime minori da quelle presenti in figura.

Il grafico del fattore di sicurezza è il seguente:

![Grafico del fattore di sicurezza](image)

Figura 2.XXXIX

Il fattore di sicurezza minimo statico è 1,8, fatto accettabile nel nostro caso dato che è la situazione più critica, normalmente lavorerà a fatica, ma con carichi minori e centrati.
2.5.9 Dimensionamento forcella

2.5.9.1 Dimensionamento analitico

La forcella è una parte fondamentale che deve sostenere la spinta di contatto del ruotino e mantenere la posizione.

Come materiale si è scelto l’alluminio 6060 per avere una buona leggerezza e costi ridotti. Si è deciso di partire da una piastra che sarà lavorata e piegata formando le tre parti del pezzo. A questa verranno poi saldate le due boccole che costituiscono le sedi dei cuscinetti, come si vede nella figura seguente.
Si è prima dimensionata analiticamente la parte posteriore della staffa che collega le due laterali.

Utilizzando lo schema seguente:

![Figura 2.XLI](image)

In questo caso la parte posteriore è sollecitata in modo simmetrico, allora si è studiato solo metà del particolare e lo si è modellizzato come una trave incastrata soggetta a metà dello sforzo normale e tutta la coppia assiale, data dalla forza assiale per il braccio, cioè la distanza dalla piastra posteriore al centro della boccola saldata.

<table>
<thead>
<tr>
<th>Dimensioni piastra</th>
<th>Simbolo</th>
<th>Valore</th>
<th>Unità</th>
</tr>
</thead>
<tbody>
<tr>
<td>Larghezza</td>
<td>L<sub>api</sub></td>
<td>100,000</td>
<td>mm</td>
</tr>
<tr>
<td>Altezza</td>
<td>h<sub>pi</sub></td>
<td>50,000</td>
<td>mm</td>
</tr>
<tr>
<td>Spessore</td>
<td>s<sub>pi</sub></td>
<td>4,000</td>
<td>mm</td>
</tr>
<tr>
<td>Coefficiente di sicurezza materiale</td>
<td>V<sub>M0</sub></td>
<td>1,050</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Azioni</th>
<th>Simbolo</th>
<th>Valore</th>
<th>Unità</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forza diretta lungo j</td>
<td>F<sub>j</sub></td>
<td>164,037</td>
<td>N</td>
</tr>
<tr>
<td>Forza assiale</td>
<td>F<sub>k</sub></td>
<td>127</td>
<td>N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Caratteristiche materiale</th>
<th>Simbolo</th>
<th>Valore</th>
<th>Unità</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denominazione</td>
<td></td>
<td>6060,000</td>
<td></td>
</tr>
<tr>
<td>Tensione ammissibile</td>
<td>σ<sub>amm</sub></td>
<td>57,14</td>
<td>N/mm²</td>
</tr>
<tr>
<td>Tensione di rottura</td>
<td>σ<sub>r</sub></td>
<td>120</td>
<td>N/mm²</td>
</tr>
<tr>
<td>Tensione di snervamento</td>
<td>σ<sub>y</sub></td>
<td>60</td>
<td>N/mm²</td>
</tr>
<tr>
<td>Modulo elastico</td>
<td>E</td>
<td>70000</td>
<td>N/mm²</td>
</tr>
<tr>
<td>Tensione di fatica</td>
<td>σ<sub>D-1</sub></td>
<td>0</td>
<td>kg/m³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nervatura</th>
<th>Simbolo</th>
<th>Valore</th>
<th>Unità</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forza di flessione che agisce sulla nervatura</td>
<td>F<sub>r</sub></td>
<td>76,39</td>
<td>N</td>
</tr>
<tr>
<td>Lunghezza nervatura</td>
<td>L</td>
<td>10,000</td>
<td>mm</td>
</tr>
<tr>
<td>angolo nervatura</td>
<td>a</td>
<td>45,000</td>
<td>°</td>
</tr>
<tr>
<td>spessore nervatura</td>
<td>s<sub>n</sub></td>
<td>3,000</td>
<td>mm</td>
</tr>
<tr>
<td>Momento flettente attorno a i nervatura</td>
<td>M<sub>fin</sub></td>
<td>763,896</td>
<td>N·mm</td>
</tr>
<tr>
<td>Tensione dovuta al momento flettente</td>
<td>σ<sub>fim</sub></td>
<td>30,56</td>
<td>N/mm²</td>
</tr>
</tbody>
</table>

verifica resistenza statica

Cf = σ_{amm} /σ_{id}

| Tabella 2.29 | | |

67
Si è utilizzato il criterio di Von Mises per ottenere il coefficiente di sicurezza.

La parte più critica però è la piegatura tra le tre parti, perché è uno dei punti più sollecitati ed essendo all’interno il volume è occupato dalla ruota frizionante e non è possibile inserire delle nervature, vi è stato quindi bisogno di verificarla tramite analisi FEM.

Il programma tiene conto automaticamente della piegatura e permette di estrarre la posizione della linea di piega e la dimensione della lamiera da piegare.
2.5.9.2 Simulazione FEM

Si è proceduto a vincolare la piastra centrale in posizione fissa si è quindi studiato le due parti piegate della staffa come travi a sbalzo, il punto a cui sono state applicate le forze è la sede del cuscinetto.

Si sono così ottenuti i seguenti grafici:
Sollecitazioni usando il criterio di Von Mises:

Essendo una lamiera piegata Solidwork la tratta come tale e non dà uno spessore, anche se nella realtà sono spesse 4mm.
Come si può vedere la massima tensione ideale, 27MPa che è al di sotto della tensione di snervamento 55MPa.
Il punto più sollecitato è in corrispondenza della piega, per questa ragione l’angolo di piegatura è stato posto ampio, infatti la massima resistenza del materiale si ha quando l’angolo di piegatura corrisponde allo spessore della lamiera.
Grafico coefficiente di sicurezza:

Come si può vedere il coefficiente di sicurezza è pari a due in quasi tutta la struttura. Visto che non è soggetto a forti cicli di fatica è soddisfacente questo risultato.

Grafico della massima deformazione:
Il massimo spostamento è inferiore al millimetro, questo è abbastanza piccolo da permettere comunque un buon funzionamento del sistema. Inoltre, la forza assiale è assorbita da alcune molle poste sull’albero che mantengono in posizione il ruotino, quindi la forza considerata è la massima possibile. Normalmente si hanno forze minori.

2.5.10 Giunzione forcella braccio telescopico
Per il collegamento tra il braccio telescopico e le altre parti della struttura si è pensato di utilizzare collegamenti meccanici per facilitare il montaggio. Si è quindi scelto/ optato per un bloccaggio tramite bulloni come quello rappresentato in figura.

Come si vede dalla figura, si sono utilizzati 4 bulloni M5 a testa esagonale per fissare il supporto alla forcella. Per bloccare il giunto al profilato esterno si è utilizzata 1 vite passante che collega il braccio telescopico al supporto. L’oggetto arancione fa da collegamento tra lo Stabilus e la forcella.
2.5.11 Giunzione braccio telescopico perno

Per collegare le due parti è stata dimensionata una testa fresata e alesata.

La parte in questione è la seguente:

![Giunzione braccio telescopico perno](image)

Nelle immagini sovrastanti si vedono a destra il particolare da solo e a sinistra il particolare nell’assieme.

Viene collegato al braccio telescopico tramite una vite passante con testa a brugola.

Le bronzie sono state scelte anche esse dal catalogo SKF in modo tale che possano lavorare all’esterno e alle intemperie e abbiano una resistenza sufficiente a supportare il carico. Servono a ridurre l’attrito nel momento dell’apertura e dalla chiusura del prodotto e a non rovinare il perno o la giunzione.

2.5.11.1 Analisi FEM

Essendo un particolare difficilmente riconducibili a modelli della meccanica strutturale classica si è preferito utilizzare un’analisi agli elementi finiti tramite Solidwork.

Per semplicità si è creato un braccio fittizio sul quale si sono impostate le azioni.

Si è quindi proceduto al calcolo dei carichi che si hanno sul particolare che sono: l’azione di spinta normale e il momento dato dall’azione assiale all’albero centrale.

Riportati di seguito:

<table>
<thead>
<tr>
<th>Dettaglio</th>
<th>Valore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forza di trasmissione</td>
<td>N 70 N</td>
</tr>
<tr>
<td>Forza assiale</td>
<td>Fa 127 N</td>
</tr>
<tr>
<td>Momento sul particolare</td>
<td>Mf 26670 Nmm</td>
</tr>
</tbody>
</table>

Tabella 2.30
Si è poi vincolato il particolare come cerniera nel foro alesato e come carrello sugli altri due lati per impedire il movimento e poter eseguire lo studio. Questi vincoli non si distanziano troppo dai vincoli realmente adottati.

Si è così ottenuto il grafico degli sforzi con metodo di Von Mises:

![Figura 2.XLIX](image)

Si può vedere che i punti più critici sono quelli di raccordi e giunzioni, per questo motivo si è pensato di partire dal pezzo pieno e fresare lasciando dei raccordi abbastanza ampi per non avere grossi problemi di intaglio, soprattutto per la fatica.
Di seguito il grafico degli spostamenti:

Come si può vedere gli spostamenti sono molto piccoli, dell’ordine di 10^{-7} mm, non è quindi il fattore discriminante della progettazione.

Il coefficiente di sicurezza è il seguente:

Figura 2.1
Abbastanza uniforme a 1.36.

2.5.12 Dimensionamento perno struttura

Per dimensionare il perno della struttura lo si è trattato come una trave di sezione circolare caricata con un’azione puntuale nel centro.

\[N, \text{ la forza normale, agisce sempre perpendicolare essendo questo albero parallelo al precedente, ciò che cambia sono la lunghezza dell’albero e la lunghezza del braccio su cui agisce } F_A, \text{ visto che vi è da considerare anche il braccio telescopico.} \]
Utilizzando le formule classiche della meccanica strutturale viste in precedenza per l’albero si è dimensionato staticamente il perno ottenendo:

<table>
<thead>
<tr>
<th>Dimensioni perno</th>
<th>Simbolo</th>
<th>Valore</th>
<th>Unità</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diametro</td>
<td>D</td>
<td>14,000</td>
<td>mm</td>
</tr>
<tr>
<td>Coefficiente di sicurezza materiale</td>
<td>(\gamma_{M0})</td>
<td>1,050</td>
<td></td>
</tr>
<tr>
<td>Distanza tra i due appoggi</td>
<td>La</td>
<td>260,000</td>
<td>mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Caratteristiche materiale</th>
<th>Simbolo</th>
<th>Valore</th>
<th>Unità</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denominazione</td>
<td>S235JR (Fe360B)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensione ammissibile</td>
<td>(\sigma_{amm})</td>
<td>213,6363636</td>
<td>N/mm²</td>
</tr>
<tr>
<td>Tensione di rottura</td>
<td>(\sigma_{r})</td>
<td>360</td>
<td>N/mm²</td>
</tr>
<tr>
<td>Tensione di snervamento</td>
<td>(\sigma_{y})</td>
<td>235</td>
<td>N/mm²</td>
</tr>
<tr>
<td>Modulo elastico</td>
<td>E</td>
<td>210000</td>
<td>N/mm²</td>
</tr>
<tr>
<td>Peso specifico</td>
<td>G</td>
<td>123,3430121</td>
<td>kg/m³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verifica statica perno</th>
<th>Simbolo</th>
<th>Valore</th>
<th>Unità</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>A</td>
<td>307,876</td>
<td>mm²</td>
</tr>
<tr>
<td>Lunghezza perno</td>
<td>l</td>
<td>288,000</td>
<td>mm</td>
</tr>
<tr>
<td>Inerzia polare</td>
<td>(l_p)</td>
<td>3771,482</td>
<td>mm⁴</td>
</tr>
<tr>
<td>Inerzia diametrale</td>
<td>(l_d)</td>
<td>1885,741</td>
<td>mm⁴</td>
</tr>
<tr>
<td>Momento flettente verticale</td>
<td>(M_{fv})</td>
<td>20462,984</td>
<td>Nmm</td>
</tr>
<tr>
<td>Tensione verticale</td>
<td>(\sigma_x)</td>
<td>37,97999987</td>
<td>N/mm²</td>
</tr>
<tr>
<td>Momento flettente orizzontale</td>
<td>(M_{fo})</td>
<td>-629,542</td>
<td>Nmm</td>
</tr>
<tr>
<td>tensile orizzontale</td>
<td>(\sigma_z)</td>
<td>-1,168450651</td>
<td>N/mm²</td>
</tr>
<tr>
<td>tensile ideale</td>
<td>(\sigma_{id})</td>
<td>36,812</td>
<td>N/mm²</td>
</tr>
<tr>
<td>Tensione ammissibile</td>
<td>(\sigma_{amm})</td>
<td>213,6363636</td>
<td>N/mm²</td>
</tr>
<tr>
<td>verifica resistenza statica</td>
<td>(CS=\sigma_{amm}/\sigma_{id})</td>
<td>5,625</td>
<td>OK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verifica freccia</th>
<th>Simbolo</th>
<th>Valore</th>
<th>Unità</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inerzia polare perno</td>
<td>(l_p)</td>
<td>3771,482</td>
<td>mm²</td>
</tr>
<tr>
<td>Forza radiale</td>
<td>(F_r)</td>
<td>166,680</td>
<td>N</td>
</tr>
<tr>
<td>freccia ammissibile</td>
<td>(f_{amm})</td>
<td>1,000</td>
<td>mm</td>
</tr>
<tr>
<td>freccia</td>
<td>(f)</td>
<td>0,077</td>
<td>mm</td>
</tr>
<tr>
<td>verifica freccia</td>
<td>(f<f_{amm})</td>
<td>7,706%</td>
<td>OK</td>
</tr>
</tbody>
</table>

| Tabella 2.31 |

Si è ottenuto un coefficiente di sicurezza elevato per avere una freccia ridotta, uno spostamento ampio comprometterebbe la funzionalità della struttura diminuendo la forza di contatto tra ruota e ruotino e quindi la coppia trasmissibile.
Si è ottenuto il perno:

![Diagram of the perno](image)

Figura 2.LIII

Il perno è stato bloccato alla struttura tramite due viti M8, in modo tale che sia rigidamente vincolato e siano solo le bronzine a ruotare, permettendo una migliore capacità di movimento.

2.5.13 Dimensionamento telaio

Il telaio è stato dimensionato utilizzando le stesse formule viste sopra per il perno. Si è però scelta una sezione rettangolare che permette una maggior facilità nella saldatura, volendo avere degli angoli ben precisi.

![Diagram of the frame](image)

Figura 2.LIV
Carichi presenti:

<table>
<thead>
<tr>
<th>Carico</th>
<th>Valore</th>
</tr>
</thead>
<tbody>
<tr>
<td>angolo di incidenza forze</td>
<td>β</td>
</tr>
<tr>
<td>azioni verticali con sistema azionato</td>
<td>Vaz</td>
</tr>
<tr>
<td>azioni orizzontali</td>
<td>Ho</td>
</tr>
</tbody>
</table>

Tabella 2.32

Questi carichi sono stati calcolati attraverso la relazione di angoli che li lega alle forze vincolari sull’albero centrale:

\[V_Z = N \sin(\tau) + F_m \cos(\tau) \]
\[H_Z = N \cos(\tau) + F_m \sin(\tau) \]

Dove V_Z è l’azione perpendicolare al suolo e H_Z è l’azione parallela al suolo e τ è l’angolo tra la forza motrice F_m e l’asse verticale. Questo angolo è stato ricavato dalla geometria caratteristica ed è l’angolo massimo che si può avere, perché quello è il caso più critico essendo N maggiore di F_m e l’azione più pericolosa quella dovuta a V_Z.

Si è quindi proceduto a calcolare l’inerzia del profilato, tenendo conto anche dei raggi di raccordo, nelle due direzioni. Per ogni direzione si sono sommati 4 contributi: 2 dovuti ai lati della sezione e 2 dovuti ai raggi di raccordo.

\[J_{yp1} = \frac{(B - 2r_2)s^3}{12} \]
\[J_{yp2} = \frac{(A - 2r_2)^3s}{12} \]
\[J_{yp3} = \frac{r_2^4}{2} \left(\frac{\pi}{8} - \frac{8}{9\pi} \right) \]
\[J_{yp4} = \frac{r_1^4}{2} \left(\frac{\pi}{8} - \frac{8}{9\pi} \right) \]

\[J_y = 2J_{yp1} + 2J_{yp2} + 2(B - 2r_2)s \left(\frac{A}{2} - \frac{s}{2} \right)^2 + 4(J_{yp3} - J_{yp4}) + mr_1^2 \left(x_1 - \frac{A}{2} \right)^2 + mr_2^2 \left(x_2 - \frac{A}{2} \right)^2 \]
<table>
<thead>
<tr>
<th>Caratteristiche portapacchi</th>
<th>Simbolo</th>
<th>Valore</th>
<th>Unità</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensioni lato 1</td>
<td>A</td>
<td>40</td>
<td>mm</td>
</tr>
<tr>
<td>Dimensioni lato 2</td>
<td>B</td>
<td>20</td>
<td>mm</td>
</tr>
<tr>
<td>spessore tubo</td>
<td>(s_t)</td>
<td>3</td>
<td>mm</td>
</tr>
<tr>
<td>raggio di raccordo esterno</td>
<td>(r_1)</td>
<td>4,5</td>
<td>mm</td>
</tr>
<tr>
<td>raggio di raccordo interno</td>
<td>(r_2)</td>
<td>7,5</td>
<td>mm</td>
</tr>
<tr>
<td>Coefficiente di sicurezza materiale</td>
<td>(\gamma)</td>
<td>1,050</td>
<td></td>
</tr>
<tr>
<td>distanza canotto perno braccio</td>
<td>(d_{cp})</td>
<td>0,320</td>
<td>m</td>
</tr>
<tr>
<td>distanza canotto baricentro batteria</td>
<td>(d_{cb})</td>
<td>0,450</td>
<td>m</td>
</tr>
<tr>
<td>distanza canotto centro ruota</td>
<td>(d_{cr})</td>
<td>0,220</td>
<td>m</td>
</tr>
<tr>
<td>distanza canotto perno ruotino</td>
<td>(d_{cpr})</td>
<td>0,253</td>
<td>m</td>
</tr>
<tr>
<td>altezza portapacchi rispetto al centro ruota</td>
<td>(h_{pcr})</td>
<td>0,500</td>
<td>m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Caratteristiche materiale</th>
<th>Simbolo</th>
<th>Valore</th>
<th>Unità</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denominazione</td>
<td>6060,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensione ammissibile</td>
<td>(\sigma_{amm})</td>
<td>57,14</td>
<td>N/mm²</td>
</tr>
<tr>
<td>Tensione di rottura</td>
<td>(\sigma_{r})</td>
<td>120</td>
<td>N/mm²</td>
</tr>
<tr>
<td>Tensione di snervamento</td>
<td>(\gamma)</td>
<td>60</td>
<td>N/mm²</td>
</tr>
<tr>
<td>Modulo elastico</td>
<td>(E)</td>
<td>70000</td>
<td>N/mm²</td>
</tr>
<tr>
<td>Peso specifico</td>
<td>(G)</td>
<td>0</td>
<td>kg/m³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Caratteristiche sezione</th>
<th>Simbolo</th>
<th>Valore</th>
<th>Unità</th>
</tr>
</thead>
<tbody>
<tr>
<td>raggio di curvatura interno</td>
<td>(r_1)</td>
<td>4,5</td>
<td>mm</td>
</tr>
<tr>
<td>raggio di curvatura esterno</td>
<td>(r_2)</td>
<td>7,5</td>
<td>mm</td>
</tr>
<tr>
<td>Area</td>
<td>(A)</td>
<td>293,1</td>
<td>mm²</td>
</tr>
<tr>
<td>inerzia x parziale</td>
<td>(J_{yp1})</td>
<td>11,3</td>
<td>mm⁴</td>
</tr>
<tr>
<td></td>
<td>(J_{yp2})</td>
<td>3906,3</td>
<td>mm⁴</td>
</tr>
<tr>
<td></td>
<td>(J_{yp3})</td>
<td>173,6</td>
<td>mm⁴</td>
</tr>
<tr>
<td></td>
<td>(J_{yp4})</td>
<td>22,5</td>
<td>mm⁴</td>
</tr>
<tr>
<td>raggio di inerzia area lato superiore</td>
<td>(z_1)</td>
<td>35,7</td>
<td>mm</td>
</tr>
<tr>
<td>raggio di inerzia area lato inferiore</td>
<td>(z_2)</td>
<td>34,4</td>
<td>mm</td>
</tr>
<tr>
<td>Inerzia verticale</td>
<td>(J_y)</td>
<td>18707,0</td>
<td>mm⁴</td>
</tr>
<tr>
<td>inerzie y parziali</td>
<td>(J_{zp1})</td>
<td>3906,3</td>
<td>mm⁴</td>
</tr>
<tr>
<td></td>
<td>(J_{zp2})</td>
<td>56,3</td>
<td>mm⁴</td>
</tr>
<tr>
<td></td>
<td>(J_{zp3})</td>
<td>173,6</td>
<td>mm⁴</td>
</tr>
<tr>
<td></td>
<td>(J_{zp4})</td>
<td>22,5</td>
<td>mm⁴</td>
</tr>
<tr>
<td>raggio di inerzi area lato destro</td>
<td>(y_1)</td>
<td>15,7</td>
<td>mm</td>
</tr>
<tr>
<td>raggio di inerzia area lato sinistro</td>
<td>(y_2)</td>
<td>14,4</td>
<td>mm</td>
</tr>
<tr>
<td>inerzia orizzontale</td>
<td>(J_z)</td>
<td>23837,3</td>
<td>mm⁴</td>
</tr>
<tr>
<td>modulo di rigidezza verticale</td>
<td>(W_y)</td>
<td>935,4</td>
<td>mm³</td>
</tr>
<tr>
<td>modulo di rigidezza orizzontale</td>
<td>(W_z)</td>
<td>2383,7</td>
<td>mm³</td>
</tr>
<tr>
<td>Raggio d’inerzia x</td>
<td>(i_y)</td>
<td>8,0</td>
<td>mm</td>
</tr>
<tr>
<td>Raggio d’inerzia y</td>
<td>(i_z)</td>
<td>9,0</td>
<td>mm</td>
</tr>
<tr>
<td>Tensione ammissibile</td>
<td>(\sigma_{amm})</td>
<td>57,1</td>
<td>MPa</td>
</tr>
</tbody>
</table>

Tabella 2.33
Si è pensato dapprima di utilizzare un profilato rettangolare con spessore uniforme e raggi standard.

79
Per motivi di economicità costruttiva, si è poi utilizzato un profilato maggiore, quindi maggiormente verificato che dà la possibilità di sostenere altro peso ed utilizzare il sistema anche come portapacchi.

Si è cercato di distribuire i carichi in modo tale da non avere momento torcente sul tubo che va direttamente a collegarsi al portapacchi che è la parte più debole, avendo anche un gran numero di saldature.

Si è quindi ottenuta la seguente struttura:
3 Prototipazione

3.1 Struttura portante

La prima operazione della prototipazione è stata quella di tagliare i profilati di alluminio della struttura della lunghezza e con le caratteristiche necessarie per l’assemblaggio.

Si è utilizzata una sega per metalli, illustrata nella figura seguente:

Figura 3.I

Figura 3.II
Tale strumento può ruotare dell’angolo desiderato, questo ha permesso di ottenere i tagli da 60° e 30° richiesti. Inoltre, è dotata di olio di raffreddamento che viene spruzzato direttamente sulla lama.

Per un taglio accurato si è poi utilizzata la sega a nastro nella figura seguente:

Figura 3.III
Si sono quindi ottenuti i seguenti particolari che sono stati saldati per ottenere la struttura completa:

Figura 3.IV

Figura 3.V

Figura 3.VI
3.2 Meccanismo centrale

Le parti costituenti il meccanismo centrale, sono state fatte produrre da una ditta specializzata che si occupa di prototipi, l’azienda si chiama Weerg. Questo ha permesso di velocizzare la produzione e di utilizzare tecniche diverse come la stampa 3D per avere un prototipo del ruotino più economico e in tempi molto brevi. Di seguito si vedono i disegni inviati a Weerg per la lavorazione:

Figura 3.VII

moto_braccio_forcella

Lavorazione: CNC
Finitura: Nessuna Finitura (segni utensili visibili)
Tolleranza: ± 0.10 mm
Materiale: Alluminio 7075-T651 (Ergal)

Figura 3.VIII

moto_braccio_testa_tubo_entrante

Lavorazione: CNC
Finitura: Nessuna Finitura (segni utensili visibili)
Tolleranza: ± 0.10 mm
Materiale: Alluminio 7075-T651 (Ergal)

Figura 3.IX
Figura 3.

- **moto_centrale_albero**
 - Lavorazione: CNC
 - Finitura: Nessuna Finitura (segni utensili visibili)
 - Tolleranza: ± 0.05 mm (+2.5%)
 - Materiale: Alluminio 7075-T651 (Ergal)

Figura 3.X

- **moto_centrale_piastra_aggancio_motore**
 - Lavorazione: CNC
 - Finitura: Nessuna Finitura (segni utensili visibili)
 - Tolleranza: ± 0.10 mm
 - Materiale: Alluminio 7075-T651 (Ergal)

Figura 3.XI

- **Boccola_forcella_parte_destra**
 - Lavorazione: CNC
 - Finitura: Nessuna Finitura (segni utensili visibili)
 - Tolleranza: ± 0.05 mm (+2.5%)
 - Materiale: Alluminio 6082-T651 (Anticorodal)

Figura 3.XII
I cuscinetti e le boccole invece sono stati acquistati in un concessionario SKF.

4 Studio sistema di controllo

4.1 Centralina

4.1.1 Cablaggio

Identificazione della necessità di aggiungere un’induttanza esterna perché un’elevata tensione nominale di esercizio +VCC combinata con un’elevata corrente permanente in uscita e con un motore a induttanza molto bassa può avere come conseguenza un ripple di corrente elevato indesiderato.

Ciò comporta un inutile riscaldamento del motore e un comportamento di regolazione instabile.

In questo caso si rende necessario l’impiego di un’induttanza trifase esterna.

Per capire se fosse necessaria l’induttanza esterna si è seguito lo schema seguente:
Sapendo che:

\[L_{\text{motore}} = 0.000279 \, \text{H} \]

\[V_{\text{cc}} = 24 \, \text{VDC} \]

\[I_n = 10 \, \text{A} \]

\[I_{\text{cont}} = 10^\circ \]

Si rileva che non vi è la necessità di un’induttanza supplementare a quella della centralina.
Il cablaggio della centralina nel nostro caso sarà il seguente:

![Diagrama de cablaggio](image)

Il motore viene connesso ai morsetti specifici nel seguente modo:

<table>
<thead>
<tr>
<th>J2 Pin</th>
<th>Segnale</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Avvolgimento motore 1</td>
<td>Motore EC: avvolgimento 1</td>
</tr>
<tr>
<td>2</td>
<td>Avvolgimento motore 2</td>
<td>Motore EC: avvolgimento 2</td>
</tr>
<tr>
<td>3</td>
<td>Avvolgimento motore 3</td>
<td>Motore EC: avvolgimento 3</td>
</tr>
<tr>
<td>4</td>
<td>Schermatura motore</td>
<td>Schermatura cavo</td>
</tr>
</tbody>
</table>

Invece i sensori Hall vengono connessi come specificato nella tabella sottostante:

<table>
<thead>
<tr>
<th>J4 Pin</th>
<th>Segnale</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hall sensor 1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Hall sensor 2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Hall sensor 3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>+5 VDC</td>
<td></td>
</tr>
</tbody>
</table>

88
Tabella 4.2

Ogni sensore Hall ha il seguente schema di ingresso:

![Figura 4.1](image)

che presenta dei filtri per eliminare le frequenze che non ci interessano.

Negli slot J5 vi sono le entrate e uscite digitali, come si vede nell’immagine:

<table>
<thead>
<tr>
<th>J5 Pin</th>
<th>Segnale</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DigiN1</td>
<td>Ingresso digitale 1</td>
</tr>
<tr>
<td>2</td>
<td>DigiN2</td>
<td>Ingresso digitale 2</td>
</tr>
<tr>
<td>3</td>
<td>DigiIN/DigOUT3</td>
<td>Ingresso/uscita digitale 3</td>
</tr>
<tr>
<td>4</td>
<td>DigiIN/DigOUT4</td>
<td>Ingresso/uscita digitale 4</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Messa a terra</td>
</tr>
<tr>
<td>6</td>
<td>+5 VDC</td>
<td>Tensione di uscita ausiliaria (+5 VDC: ≤10 mA)</td>
</tr>
</tbody>
</table>

Tabella 4.3

Il circuito che legge e manda segnali digitali è strutturato nel seguente modo:
Invece i pin J6 sono descritti in figura:

<table>
<thead>
<tr>
<th>J6 Pin</th>
<th>Segnale</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AnIN1+</td>
<td>Ingresso analogico 1, segnale positivo</td>
</tr>
<tr>
<td>2</td>
<td>AnIN1−</td>
<td>Ingresso analogico 1, segnale negativo</td>
</tr>
<tr>
<td>3</td>
<td>AnIN2+</td>
<td>Ingresso analogico 2, segnale positivo</td>
</tr>
<tr>
<td>4</td>
<td>AnIN2−</td>
<td>Ingresso analogico 2, segnale negativo</td>
</tr>
<tr>
<td>5</td>
<td>AnOUT1</td>
<td>Uscita analogica 1</td>
</tr>
<tr>
<td>6</td>
<td>AnOUT2</td>
<td>Uscita analogica 2</td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td>Messa a terra</td>
</tr>
</tbody>
</table>

Il primo pin riceve in entrata il segnale dall’acceleratore, è importantissimo, perché sarà il segnale in entrata che dà il valore di corrente, cioè di coppia del motore, che il controllore dovrà cercare di raggiungere.

Le uscite analogiche invece dovranno essere mandate a schedine che leggono il valore di tensione e danno in uscita un valore riconoscibile di velocità e temperatura interna. Il valore di temperatura può anche essere utilizzato solo come allarme, cioè quando viene superato un certo valore si attiva una spia.
I circuiti dei pin J6 hanno la seguente struttura:

Dopo la dettagliata panoramica dell’hardware, si passa quindi alla descrizione del software.

4.1.2 Software

Il primo passaggio svolto è stato quello di installare il programma di elaborazione del software di comando della centralina.

Questo programma di fatto ha una programmazione grafica ed intuitiva essendo la centralina poco versatile ed appositamente studiata per il controllo dei motori.

All’apertura del programma, dopo aver connesso la centralina si inizia la configurazione di quest’ultima attraverso la procedura guidata.

4.1.3 Parametri caratteristici software

Si impostano quindi i valori del motore:

- velocità nominale
- EC/DC
- numero paiapoli
- costante di tempo termica dell’avvolgimento
Si prosegue decidendo il sistema di controllo, nel nostro caso è stato impostato il sistema di controllo di velocità, mostrato nella figura sottostante.

Il sistema ad anello chiuso in controllo velocità racchiude al suo interno il sistema di controllo coppia in anello chiuso, perché la coppia è strettamente dipendente dalla corrente mandata al motore.

Dove R_v è il valore nominale mandato alla centralina, nel nostro caso dall’acceleratore, questo viene confrontato con il valore proveniente dal trasduttore di velocità, nel caso specifico i sensori ad effetto Hall. La differenza tra i due è l’errore, questo valore viene
integrato per generare il valore nominale di corrente da fornire, \(R_i \). \(R_i \) viene confrontato con il valore di corrente al motore e la differenza è il valore d’errore di corrente, dato questo valore viene comandato il motore in modo tale che diminuisca questo valore secondo guadagni predeterminati.

Come si vede dalla figura 4.5 si è scelto:

- Il segnale di arresto, che nel nostro caso sarà dato dai freni attivo con segnale High.
- il senso di rotazione e il segnale attivatore, dato dal sensore di pedalata, attivo se Low.
- La rampa di accelerazione e quella di decelerazione: 150 rpm/s.
- Il valore minimo di velocità prima del quale non entra in funzione il controllore per evitare che il sistema possa muoversi a scatti, impostato per via sperimentale a 10rpm.
- le uscite del controllore oltre la corrente data al motore, nel nostro caso si sono configurate la corrente al motore e la temperatura per poterle monitorare in modo da dare un segnale di allarme o semplicemente un feedback all’utilizzatore.
4.2 Sensori

4.2.1 Test

Prima dell’installazione sono stati testati i sensori per assicurarcì il corretto funzionamento, per far questo è stata utilizzata la scheda Arduino che è facile da programmare ed ha un costo abbastanza basso, quindi in caso di malfunzionamenti poteva essere sacrificata.

![Arduino](image)

Figura 4.VII

Questa semplice scheda opensource viene collegata al computer da cui viene caricato il programma che imposta il funzionamento del pin che si vuole utilizzare, infatti i pin sia analogici che digitali possono essere impostati come entrate o uscite.

Si è utilizzata la Breadbord per facilità di collegamento dei cavi.

![Breadboard](image)

Nei buchi della breadbord è facile inserire i cavi appositi per creare dei circuiti, Le prime due file di contatti sono collegate tra loro in senso orizzontale, le altre in verticale.
4.2.1.1 Freni

Come mostrato nel capitolo 2.5.5 i sensori dei freni non sono altro che comunissime leve dei freni con un interruttore. Si è quindi creato un circuito per il test dei freni come si può vedere in figura:

![Freni](image)

Viene data corrente all’interruttore, con il cavo rosso, il cavo nero viene collegato a terra tramite una resistenza per evitare il cortocircuito. Il pin da cui Arduino legge il segnale viene collegato dopo il freno, in tal modo se il freno è azionato il circuito si chiude e passa corrente, dando segnale al pin, e se il freno è a riposo, quindi in condizione standard, non passa corrente dando segnale nullo al pin.
4.2.1.2 Acceleratore

Per l’acceleratore il sistema seguito è simile, la differenza maggiore è che sono tre le connessioni: alimentazione 5V, terra e segnale d’uscita, di fatto è un potenziometro che al variare dell’angolo di rotazione della manopola varia il voltaggio del segnale d’uscita.

Come si può vedere il cavo rosso è collegato al polo positivo e quello nero a quello negativo, il cavo bianco che manda il segnale a differente voltaggio è stato collegato al pin analogico di Arduino. Questo pin riceve il segnale e indica il valore sul monitor del computer per capire se realmente varia il voltaggio in uscita dall’acceleratore.
Figura 4.X

Come si vede va da un massimo di 872 a un minimo di 176, poi variando la rotazione della manopola cambia il valore numerico, aumentando all’apertura dell’acceleratore.
4.2.1.3 Sensore di pedalata

Il sensore di pedalata non è altro che un anello metallico accoppiato con un anello di magneti, quando l’anello di magneti viene fatto ruotare cambia l’induttanza dell’altro anello e si ha in uscita un segnale con voltaggio variabile.

Per testarlo si è creato il seguente circuito:

Come si può vedere il sensore è stato collegato nel seguente modo: il cavo rosso è stato collegato all’alimentazione +5V, quello nero alla terra e quello bianco al pin analogico A0.

Tra la terra e il cavo nero è stato connesso un led che fa da resistore, questo serve ad evitare la corto circuitazione e a garantire il giusto funzionamento del circuito.

Si ottiene quindi il seguente grafico di voltaggio all’entrata del pin analogico:
Dal grafico si nota che quando il sensore non viene toccato, che rappresenta la situazione a pedali bloccati, la tensione rimane costante, il valore di questa costante dipende dall’entità della resistenza utilizzata. Quando viene posto in rotazione l’anello con i magneti, che nella figura 4.12 risulta essere quello inferiore si hanno dei picchi e delle valli di voltaggio. Questo segnale viene trasmesso alla centralina che abilita il movimento del motore.

4.3 Banco di prova parte elettrica

Si è quindi assemblato il tutto su un banco di prova con i settaggi descritti nel paragrafo 5.1 per poter capire se funzionasse la parte elettrica o se vi fossero delle modifiche da effettuare.

Si è montato il banco come nella figura sottostante:
I cavi sono stati collegati come illustrato nella figura di cablaggio, sono stati aggiunti solo i resistori, come nei test sui sensori, nella breadboard (numero 8 in figura).

Si è condotto un test per verificare il funzionamento del sistema e del motore. Il test è stato pienamente superato come ci mostra anche il programma evidenziando le barre in verde.
5 Design carcassa

5.1 Copertura motore

Il motore è una delle parti più esposte e delicate del sistema, quindi necessita di un involucro protettivo ben congegnato.

In particolare, deve poter passare l’aria che raffreddi il motore, ma filtrare acqua e impurità.

La parte più importante è il raffreddamento, quindi l’aria deve entrare da dietro entrare nella ventola che la spinge nel motore ed uscire dal rotore aperto nella zona frontale del motore, come nel disegno:

Per fare questo si è pensato di creare due camere separate, una posteriore che convogli l’aria fredda nella ventola e una anteriore che permetta la fuoriuscita dell’aria calda dal motore.

Figura 5.1
Per far questo si è suddiviso il case in tre parti, il primo viene direttamente fissato alla piastra che aggancia il motore alla staffa, il secondo al primo e il terzo al secondo, come si può vedere nella figura 5.2.

Il filtro, che è un filtro poroso utilizzato nelle moto per filtrare l’aria destinata al carburatore, verrà posizionato nella parte posteriore della seconda unità della copertura.
6 Conclusioni

6.1 Risultati

In linea teorica si è ottenuto un dispositivo funzionante capace di integrarsi perfettamente nel mezzo, adatto a qualsiasi tipo di bicicletta e ad alcuni tipi di triciclo. Il sistema segue bene il carico impostogli dall’esterno come si può vedere dai grafici seguenti:

Dandogli un gradino di 5A il sistema come si può vedere dall’andamento è poco smorzato, per le nostre necessità, tuttavia, il sistema non dev’essere molto preciso, ma garantire una rapida variazione di velocità.

Si è visto quindi il perfetto funzionamento dei sensori e del controllo velocità anche al variare del carico, per il primo test è stato variato il carico tenendo costante la velocità, ma si è visto già con chiarezza l’andamento della corrente al motore.
6.2 Punti da migliorare

Il dispositivo progettato è sufficiente ai fini della tesi, ma per essere realmente competitivo sul mercato vi è ancora molto lavoro da svolgere.

I principali punti da migliorare sono:

1. Garanzia di solidità
2. Parte elettronica e di controllo
3. Utilizzo di sensori facilmente removibili
4. Eliminazione di fili e cavi
5. Introduzione della pedalata rigenerativa

1) La garanzia che il prodotto funzioni correttamente viene data dai test che devono essere svolti, per motivi di tempo non si è potuto svolgere i test adeguati; questi test devono durare anni per accertarsi che possa superare il periodo di garanzia senza problemi.

Inoltre, l’oggetto creato è solo un prototipo e deve essere completato e migliorato, quindi si prevede un lavoro di ottimizzazione successivo.

2) Il controllo deve essere il più intelligente e predittivo possibile, deve infatti poter capire le intenzioni del ciclista e lo sforzo fatto dalla persona per dare il
contributo più consono possibile. Questo è essenziale per dare una migliore esperienza all’utilizzatore.

3) Come si è detto nell’introduzione uno dei requisiti principali è quello di essere facilmente removibile ed utilizzabile su ogni bici, per questo motivo l’installazione deve essere molto semplice e soprattutto non richiedere un fissaggio permanente di componenti.

4) Essendo i cavi ingombranti e richiedendo un fissaggio assestante si è cercato e si dovrà cercare in futuro di eliminare quelli non necessari al di fuori del sistema. Si può fare questo ad esempio grazie a sensori Bluetooth o wireless. Ad esempio, mettendo sensori di pedalata Bluetooth eliminando acceleratore e freni ed introducendo altri sensori, come accelerometri o sensori di inclinazione per capire se si sta salendo o scendendo e adeguare i comandi di conseguenza.

5) In caso di frenata può essere utile un recupero di carica, soprattutto in terreni collinari o montani.
7 Bibliografia

- decreto del Ministero delle Infrastrutture e dei Trasporti datato 30 gennaio 2003
- https://www.greenme.it/nuoversi/bici/bici-elettriche-normative-e-bike
- https://eur-lex.europa.eu/legal-content/IT/TXT/?uri=CELEX%3A32013R0168
- https://www.rubbee.co.uk/
- DIN ISO 2176
- DIN 51807
- Lubrificanti SKF
- https://www.maxongroup.it/maxon/view/content/index
- Manuale dell’ingegnere meccanico, Hoepli 2^ edizione