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Abstract

The aim of this thesis is the 3D rotordynamic analysis of a flywheel with passive mag-

netic supports. The thesis is developed starting from a rigid body model and its relative

Campbell diagram is analysed in real coordinates. The already known simulation result

can be generalised by formulating a 3D finite elements analysis, building the elemen-

tary matrices of a cylindrical rod to study the gyroscopic behaviour in conservative

and dissipative systems, with related computations of eigenvalues and eigenvectors. A

3D FEM rotordynamic model is developed based on an existing device, previously de-

signed and built, of a parametric test-rig (variable rotating mass) on passive magnetic

supports with minimum resistance to rotation. The model is built with a real coor-

dinates approach of flexible rotordynamics. A comparison between the predictions for

the rigid and the 3D flexible models is proposed using parametric analysis and Camp-

bell diagrams. The numerical results assess the method robustness and the feasibility

to pass in simulation from a rigid to a rigid-flexible behaviour. This model is suitable

to provide a prediction for the next step of experimental validation on the parametric

test-rig.
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Introduction

The discipline concerning rotors has been intensely studied in the last century, in partic-

ular after World War II when aeronautical turbines were developed. With the advent

of computers, the study of this subject has been extended to complex rotors, this

thanks to the computational power available. An overview of the researches performed

in this field, which have given a contribution to the actual knowledge, is presented in

the first part of Chapter 1. Then, the discussion proceeds on the stability criterion

for a rotating structure on magnetic supports. Chapter 2 is focused on the analysis

of a rotating structure using the Finite Element Method. The rod element, used to

discretise the assembly, is presented and the formulation of its elementary matrices

with Euler-Bernoulli and Timoshenko approach are reported. The procedure followed

to build the global matrices of the structure and the application of the proper con-

straints is explained. The method to solve the eigenproblem, both for a conservative

and classical dissipative structure, with the Duncan formulation, is proposed at the

conclusion of the section. The parametric test bench is presented in Chapter 3, where

particular attention is given to the variable mass components and the passive magnetic

bearings. It follows the description of the 3D discretised model built with FEM and

the presentation of its related matrices. Chapter 4 starts showing the modes of the

3D rigid model, that have been derived from the analysis previously explained. Then,

a comparison of the Campbell diagram of the rigid model with the four degrees of

freedom rotor described in literature is reported. Since the rigid model results to be

reliable, a flexible model of the rotor is then presented. In conclusion, the Campbell

diagrams for the 3D FE rigid and flexible model are reported and their stability dis-

cussed. Conclusions and next steps of the project are, finally, stated and discussed.
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Chapter 1

Overview on rotordynamics

Rotordynamics is a specialised branch of applied mechanics dealing with the study

of the behaviour and diagnosis of rotors, mechanical devices, eventually supported by

bearings or hinges, which rotate about a fixed axis. At the design stage of any rotating

machine, a rotordynamic analysis is required to predict the possible dynamic problems.

During testing, it is used to compare the experimental results with the theoretical be-

haviour and it is very important for balancing procedures and diagnostics.

In a plant, it is possible to distinguish rotating components and static ones: the part

of the machine that does not rotate is called stator. Rotors constrained with bearings

to spin around a fixed axis are referred to as fixed rotors, whereas those that are not

constrained in any way are defined free rotors. This general definition states that, aside

from the artificial rotors built by human technology, rotordynamics is able to describe

the behaviour of natural rotors, such as spinning celestial bodies.

In the field of mechanics, rotating systems such as turbines, jet engines have to be stud-

ied, so the attention is mainly focused on fixed rotors. These devices are unbalanced:

due to manufacturer precision, for which the centre of rotation never coincides with the

barycentre (static unbalance), or due to mounting errors, for which the principal axis

of inertia is not coinciding with the rotation axis (dynamic unbalance). Usually both

the situations come into play, so the expression couple unbalance is used. Unbalanced

rotors experience two types of rotation: they spin about their axis and whirl about the

deformed axis line, this second motion is called precession.

The study of rotors is focused on the precession, which is a form of vibration analogous

11
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to the oscillating phenomena occurring in static structures. The main difference holds

in the fact that when vibration is produced in a rotating structure, it is transported

from the spinning motion, thus resulting in an overlapping of rotation and vibration,

which shows itself as a precession. Depending on the properties of the structure and

the excitation, it is possible to identify different kind of precession: cylindrical or con-

ical trajectory, forward or backward and synchronous or asynchronous way of rotation

with respect to spinning.

An example of a simple model of a rotating shaft on isotropic supports, showing forward

synchronous whirling motion, is shown in Figure (1.1):

Figure 1.1: Rotor whirling at speed ω and spinning at speed Ω [1].

Similarly to a static structure, a rotating one is characterized by some natural

frequencies, representing the whirling motion, that can be determined analysing the

eigenvalue problem and have the particularity to depend on the spin speed. The orbit

of the rotor changes according to its natural frequencies, so for any rotor it can be

defined a critical speed, at which corresponds the maxima of the trajectory, and the

threshold of instability, speed at which the orbit starts growing exponentially. Once

determined the properties of the rotating structure and the external excitations applied

on it, analytical procedures can be adopted to determine these parameters, fundamental

information to study the behaviour of the rotor in operating conditions.

Chapter 1 12
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1.1 History of rotordynamics

The starting point in the study of rotors is commonly dated in 1869 when Rankine

delivered to the scientific community his work “On The Centrifugal Force of Rotating

Shafts”[2]. In this publication, the author introduced the concept of critical speed for

a rotating structure, such as the speed at which the rotor experiences large amplitude

vibrations. Moreover, he wrongly stated the impossibility to run the machine beyond

the critical speed without experiencing its failure.

This assertion was invalidated in 1895, when De Laval experimentally demonstrated

that a turbine can operate in the supercritical range.

In the meanwhile, the studies of Dunkerley [3] and Föppl [4], gave important results:

it was discovered that a rotor, depending on its size, elasticity and supports, may have

more than one critical speed. Nevertheless, it was determined the existence of some

critical speeds equal to the natural frequencies of a non rotating system with the same

properties. In particular, Föppl’s work, demonstrated the behaviour of a two degrees

of freedom model of rotor, but this did not have relevance in the following few years.

In 1919, Jeffcott [5] proposed the first model of a rotor that could be studied with a

lumped parameters approach. Also known as De Laval rotor, it consists of an axial-

symmetric isotropic disc, rotating on a massless shaft, supported by axialsymmetric

isotropic bearings, shown in Figure (1.1.1). The disc is analysed reducing it to a point

mass only excited by the elastic restoring force of the shaft. This model is useful to

explain some characteristic phenomena of rotors: the growing of the orbit in correspon-

dence to a critical speed and the self-centring of the disc in the supercritical field. On

the other hand, this model does not approximate very well the behaviour of real rotors.

A further step in this domain was obtained with the introduction of the four degrees

of freedom rotor model, which is basically a Jeffcott rotor where the disc is assumed

to be a rigid body. A rigid body has six degrees of freedom in space, but this model

reduces them to four because it does not consider the axial and torsional behaviour.

This assumption does not lead to a loss of generality, since the main phenomena taking

place in rotating systems, differently from translational systems, are of flexural nature.
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Figure 1.1.1: Jeffcott rotor: isometric view (left), orthogonal view (right) [6].

Thus, this model is able to provide a more realistic analysis with respect to the Jef-

fcott rotor, because it takes into account the presence of the moments of inertia of

the structure and their effect on the dynamic behaviour. In particular, they can pro-

duce gyroscopic effects, which play an important role in flexural vibrations, causing

the natural frequencies of bending modes to depend on the spin speed of the rotor.

Referring to a principal reference system, the moments of inertia of the rotor are the

polar moment of inertia about the rotating axis, usually called Jp , and the transversal

moment of inertia about any axis in the rotation plane, usually called Jt . Structures

where Jp > Jt are referred to as discs, on the contrary if it holds Jp < Jt they are called

long rotors. In the particular case of Jp = Jt, the ellipsoid of inertia becomes a sphere

and this situation is similar to the Jeffcott rotor model.

For what concerns complex rotors, multi degrees of freedom models are required and

generally they can be described with cylindrical rod elements. The dynamic evolution

of this element, dependent on axial, torsional and flexural behaviour, is described with

partial differential equations, which can be directly solved only for easy shapes and

under some boundary conditions.

Moreover, the equations of motion are formulated under some assumptions related to

the geometry of the model. The two main approaches are the Euler-Bernoulli beam

theory, which dates back to 1750, and the Timoshenko theory, presented in 1921 [7].

Chapter 1 14
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As it is well known, the first one is a particular case of the second because it does

not consider the shear effect due to the deformation. The validity of this assumption

depends on the geometry of the rotor: for long rotors the shear effect is negligible with

respect to the flexural behaviour of the structure, while for discs it has an important

impact. It could be stated that in general one theory is not better than the other,

therefore the one that better model the rotor should be used.

Since the continuum approach leads to problems in the analytical solutions, numerical

techniques have been adopted. Different approaches have been applied: first the re-

duction of the structures to a numerical model to find the analytical solution has led

to some results, but general cases can only be faced using discretisation methods.

Fundamental contributions to the topic have been given in 1944 by Nils Otto Mykel-

stad [8], who developed a technique for the dynamic study of a cantilever aircraft wing.

Later in 1945, Prohl [9] extended the formulation to rotating systems including also

gyroscopic moments, leading to the complete definition of the Transfer Matrix Method

(TMM).

This method is suitable for in-line systems, where each station is connected by two

links to only two other stations, a leading and a following station. The computation

starts at the first station, also called left station, it proceeds following the line and

ends at the right station. When no automatic computing machines were available,

two applications of this approach were very widely used: Holzer’s method for torsional

vibrations of shafts and Myklestadt’s method for flexural vibrations of beam-like struc-

tures. At the beginning, these methods were adopted for tabular computations, then,

with the advent of computers, they were implemented writing strings of code. The

main drawback of TMM is that the systems to which it can be applied is limited to

inline structures, with neither branches or any multiple connections, making it im-

possible to write a general code to deal with different geometries. Due to this strong

limitation, nowadays this method is no longer in use, because it has been replaced by

Finite Element Method (FEM).

The finite element method is used to get a numerical solution, describing the behaviour

of a complex system. It consists in meshing the structure, so discretising the model

into elements connected by nodes, describing their stiffness and inertia properties with
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matrices, reducing the system to a set of ordinary differential equations. The study of

finite element method for modelling rotating systems started in 1970, when Ruhl [10]

in his PhD dissertation “Dynamics of distributed parameter rotor systems: transfer

matrix and finite element techniques” defined an element with the properties of trans-

lational inertia and bending stiffness. In 1972, Ruhl and Booker [11] published a more

detailed work on this research. Thorkildsen [12] improved this model two years later,

including also rotatory inertia and gyroscopic moments. In 1974, Polk [13] published

his study on the analysis of natural whirl speeds and critical speeds using a Rayleigh

beam finite element; the appendix of the paper contained the first Timoshenko beam

finite element, but without any numerical example. In 1976 Nelson and McVaugh [14]

published a work with a Rayleigh beam rotating shaft element, similar to Polk’s one

and presented the element equations in both fixed and rotating reference frame.

Later in 1977, Zorzi and Nelson [15] made the formulation more general, introducing

the expression of internal viscous and hysteretic damping, earlier discussed by Dimarag-

onas [16] and Gasch [17] in 1976.

In 1980, Nelson [18] presented numerical studies assessing the validity of the elements

developed by Polk.

The discretization of a structure is of a great importance in the solution of practical

problems because it directly affects the accuracy of the results, in other words, how

much it is possible to rely on the model that approximate the real system.

The size of the discrete model should be large enough to give a good representation

of the structure, so it is common to have systems of hundreds or even thousands of

degrees of freedom. This was a problem before the advent of computers, because only

small order matrices could be elaborated. Many methods were developed to reduce to

the minimum of size the eigenproblem, or to transform it in an expression that could

be solved with particular algorithms.

Nowadays, with the great computational power available, all those techniques are dis-

used and this is one of the reason why the FE method has gained so much importance.

Once discretised the rotating structure with finite elements, the analysis of its be-

haviour is related to the resolution of a system of second order ordinary differential

equations.

Chapter 1 16
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In 1947 Duncan published the work “Mechanical admittances and their applications

to oscillation problems” [19], where a procedure to reduce the order of a system of

differential equations related to a non rotating structure is presented. In 1957, Frazer,

Duncan and Collar dealt with the eigenvalue problem for spinning system, presenting

the gyroscopic problem [20]. Later in 1966, Lancaster stated the imaginary conjugate

nature of the eigenvalues of an undamped gyroscopic system [21], while Meirovitch and

Nelson tackled a damped gyroscopic eigenvalue problem, still solving it numerically

[22]. Finally, Meirovitch in 1974 presented a systematic procedure to find eigenvalues

and eigenvectors of a complete rotating structure, by reducing the system of n second

order ordinary differential equations in a system of 2n first order ordinary differential

equations [23].

This method is a systematic procedure to solve the eigenproblem and it shows to be

computationally very efficient. Nevertheless it has not gained so much popularity with

respect to Duncan formulation, so nowadays it is rarely used in computer codes.

1.2 Stability of a rotating structure

The system of second order differential equations can be simplified, obtaining one of

first order differential equations with double dimension, to be solved with a modern

software. The purpose of the resolution of the set of equations is to find the eigenval-

ues and eigenvectors of the system, fundamental information to predict the behaviour

of the structure at different rotating speeds. Eigenvalues represent the natural fre-

quencies of the rotating system, they depend on the spin speed and their evolution

gives the possibility to determine if there are any critical speeds or field of instability.

Eigenvectors, or modal shapes, are the mathematical expression of the physical mo-

tion of the rotor. It is worth to underline that critical speed and instability threshold

are physically different. The first is the spin speed at which the orbit of the rotor is

maximum, while the second, if it exists, is the speed at which the orbit starts growing

exponentially leading to the failure of the structure. The particular case in which the

two numerical values are coincident takes place only for undamped rotating systems,

theoretical situation that has no match in reality.
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As previously stated, the rotor orbit is related to the spin speed through the natural

frequencies, the function describing its evolution in time is reported in Eq. 1.2.1:

δ(t) = δ0eSt (1.2.1)

where:

• δ0 is the initial radius of the orbit;

• S = Re(S) + i Im(S) is the complex eigenvalue describing the system.

The imaginary part of the solution is the whirl frequency, which gives an information

on the direction of whirling of the rotor with respect to spinning. Backward whirling

motions take place for negative whirling speed, while forward whirling motions corre-

spond to positive whirling speed.

The real part of the solution is the decay rate, which gives an information on the mod-

ulus of the orbit of the rotor. This is the main parameter to assess the stability: for

negative values the orbit slowly decreases, while for positive values of the decay rate

the orbit grows exponentially. This will result in strong excitation of the structure

and could lead to its failure therefore, to avoid this, stability studies have always to be

performed before setting the rotor in operation.

In particular, Lancaster synthetises the concept of stability in [24] stating that a ro-

tating system is:

• stable if all eigenvalues are in the open left half of the complex plane. This

condition is also referred to as strong stability ;

• weakly stable if all the eigenvalues are in the closed left half of the complex plane

and there is at least one pure imaginary eigenvalue. The term marginal stability

refers to the extreme case of weak stability in which all eigenvalues are pure

imaginary;

• unstable if it is neither stable nor weakly stable, so that there is at least one

eigenvalue which is either in the open right half-plane, or is pure imaginary.

A useful way to visualise the analytical study related to stability is the so called Camp-

bell diagram, which takes its name from Wilfred Campbell, English engineer, who first

Chapter 1 18
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proposed this graph.

It is a plot of real and imaginary part of the eigenvalues of the system versus the rotor

spin speed. Since for a rotating structure the eigenvalues are complex and conjugate,

very often the graph reporting the imaginary part is reduced to the first quadrant. This

is done by plotting the absolute value of the imaginary part versus the rotating speed

and does not lead to any loss of information. Two examples of Campbell diagram are

reported in Figure 1.2.1:

Figure 1.2.1: Forward and backward modes (left) and stability of a rotor (right) [25].

1.3 Stability of a magnetic structure

The stability of a magnetic rotor is not only related to the rotational dynamics, but also

to the behaviour of magnetic supports. In this case study, passive magnetic bearings

are used to keep the shaft in the correct rotating position. In the field of rotordynamics,

they have several advantages with respect to common rolling bearings. First, levitation

results in the absence of lubricant, which is a source of friction, and this reflects in no

mechanical wear. This is a big issue in systems with traditional supports, because

they require constant maintenance in order to avoid damage of the structure. On

the contrary, the main issue of magnetic bearings is the need to be located in the

right position on the assembly, to maintain the stability conditions on the directions

of action.

These devices, which will be later discussed in Sec. (3.1.2), are regulated by the laws
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of electromagnetism. The forces exerted on the rotor due to magnetism can be seen as

actions of elastic nature, so a linearized model is used and three stiffness can be defined,

one for each direction in space. These properties are dependent on the magnetic force

and inversely proportional to the distance between the rings, as expressed in Eq. (1.3.1),

Eq. (1.3.2) and Eq. (1.3.3).

kxx = −dFx
dx

(1.3.1)

kyy = −dFy
dy

(1.3.2)

kzz = −dFz
dz

(1.3.3)

The elasticity constants have an important role on the stability of the system. This

study can be developed referring to Earnshaw’s theorem [26], which gives important

relations on the magnetic induction vector B reported in Eq. (1.3.4) and (1.3.5):

∇2B = 0 (1.3.4)

∂2Bx

∂x2
+
∂2By

∂y2
+
∂2Bz

∂z2
= 0 (1.3.5)

From this formulation it is possible to derive the relation of Eq.(1.3.6) among the

magnetic stiffness in the three directions:

kxx + kyy + kzz = 0 (1.3.6)

Consequently, at least the stiffness on one direction should be positive and it is possible

to demonstrate that the condition for the stability holds for negative elastic constant.

Therefore, the instability range could be identified with the vertical axis, where a

positive stiffness is present, while the other directions are stable holding negative elastic

constants.

The magnetic rotor is set to be radially stable and axially unstable.

Chapter 1 20



Chapter 2

Finite element model

A system can be analysed using FEM starting with its discretisation. The structure

is subdivided in a series of rod elements, cylindrical objects with inertia and stiffness

properties and with negligible internal damping. Springs and dampers of the structure

can be modelled with a lumped parameters approach. Spring can be accounted as an

elastic element, positioned between two nodes acting on the specified degrees of free-

dom. Similarly, a damper can be modelled as a damping element, positioned between

two nodes acting on the specified degrees of freedom. For both of them, the application

point has to be identified with a node and the direction of action has to be specified to

link the correct degrees of freedom. Moreover, elasticity and damping constant have

to be defined according to the phenomena that are generating them.

Once discretised the structure, the consecutive elements have to be connected and the

proper constraints have to be applied. In the case of a rigid structure, the links should

be defined in order to reduce the model to a six degrees of freedom system.

2.1 Rod element

The rod element, shown in Figure 2.1.1, is a circular or elliptical pipe located in a

reference frame and its axis of rotation coincide with the x-axis.

According to the tutorial of the software used for the numerical simulations [27], it is

defined as an object between two nodes, where each node is a geometrical point de-
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scribed by a 1× 4 vector containing the node identification and the three translational

coordinates x, y, z.

Figure 2.1.1: Rod in a local reference frame

Each node is characterised by six degrees of freedom, reported in Table (2.1.1),

consequently the rod behaviour in space is described by twelve degrees of freedom,

referred to two nodes.

Generalized DOF Behaviour

x axial

y transversal

z transversal

rx torsional

ry flexural

rz flexural

Table 2.1.1: Generalized DOF and behaviour

The cross-section of the element can be solid or annular:

(a) (b)

Figure 2.1.2: Rods with solid (a) and annular (b) cross-section [27].
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In order to describe completely the rod element, all the information about its prop-

erties have to be defined:

• Starting node and ending node of connection of the rod;

• Diameters of the cross-section in y and z directions, to account for circular or

elliptical cross-sections;

• Thickness of the rod cross-section for annular cases;

• Density of the rod constitutive material;

• Young modulus of the rod constitutive material;

• Poisson ratio of the rod constitutive material;

• Normal preload on the rod, traction if positive, compression if negative, that

produces the pre-stressed stiffness matrix.

Once defined the geometry and the material properties, the dynamic behaviour of a

rotating rod with negligible internal damping is described by Eq. 2.1.1:

Mr ẍ + ΩGr ẋ + (Kr + ∆Kr)x = f (t) (2.1.1)

where:

• Mr, Kr, ∆Kr are real 12 × 12 symmetric matrices describing inertia, stiffness

and internal stress properties;

• Gr is a real 12× 12 skew-symmetric matrix describing gyroscopic properties;

• Ω is a scalar representing the rotational speed;

• x is a 12× 1 vector containing the real coordinates of the nodes.

The geometry has an important role in the determination of rod elementary matrices

because it affects the behaviour of the structure under stress.

Beam theory states that an elastic object can be defined beam if it has a dimension that

is much longer than the other two, but this does not explain the different evolutions of
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a slender and a solid beam.

The easiest approach is the so called Euler-Bernoulli theory, which assumes the shear

deformation and rotational inertia of the cross section of the rod to be negligible with

respect to bending deformation and translational inertia. The derived formulation

is suitable to describe slender beam. A structure in which two dimensions become

comparable can still be analysed with the beam theory, but the shear deformation and

rotational inertia cannot be neglected anymore. A Timoshenko approach accounts for

these phenomena, so it is more suitable to describe solid beams. The two approaches

are developed under different assumptions, to describe the same type of object whose

behaviour changes according to geometrical parameters, so it is not correct to state

that one method is better than the other. Anyway, the Euler-Bernoulli formulation

can be seen as a particular case of the Timoshenko one, where the shear correction

factor is set to zero.

Figure 2.1.3: Effect of shear deformation on bending for Euler Bernoulli beam (a) and

Timoshenko beam (b) [1].

Both shear deformation and rotational inertia result in lowering the value of natural

frequencies and their effect is increasingly strong with increasing order of the modes.

Even if these two approaches are largely used, it has to be underlined that they are

formulated under the approximations of the beam theory, so the model is no more

suitable when the slenderness becomes too low. Since the beam behaves as solid with

increasing order of the modes, high-order modes can be analysed with this theory only

if the slenderness is high enough.
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2.1.1 Euler-Bernoulli rod element

For an Euler-Bernoulli rod approach, the following coupled mass Mr, stiffness Kr, pre-

stressed stiffness ∆Kr and gyroscopic matrices Gr are taken into account in a Local

Coordinate System (LCS):

Mr =
ρrlr
420
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0 156Ar 0 0 0 22lrAr 0 54Ar 0 0 0 −13lrAr

0 0 156Ar 0 −22lrAr 0 0 0 54Ar 0 13lrAr 0

0 0 0 140Ir,O 0 0 0 0 0 70Ir,O 0 0

0 0 −22lrAr 0 4l2rAr 0 0 0 −13lrAr 0 −3l2rAr 0
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(2.1.1.1)
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(2.1.1.2)

25 Chapter 2



Rigid and flexible 3D models for rotors with passive magnetic supports

∆Kr =
N

30lr
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0 3lr 0 0 0 −l2r 0 −3lr 0 0 0 4l2r


(2.1.1.3)

Gr = − ρr
30lr



0 0 0 0 0 0 0 0 0 0 0 0

0 0 −72Ir,z 0 6lrIr,z 0 0 0 72Ir,z 0 6lrIr,z 0

0 72Ir,y 0 0 0 6lrIr,y 0 −72Ir,y 0 0 0 6lrIr,y

0 0 0 0 0 0 0 0 0 0 0 0

0 −6lrIr,y 0 0 0 −8l2rIr,y 0 6lrIr,y 0 0 0 2lr
2Ir,y

0 0 −6lrIr,z 0 8l2rIr,z 0 0 0 6lrIr,z 0 −2l2rIr,z 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 72Ir,z 0 −6lrIr,z 0 0 0 −72Ir,z 0 −6lrIr,z 0

0 −72Ir,y 0 0 0 −6lrIr,y 0 72Ir,y 0 0 0 −6lrIr,y

0 0 0 0 0 0 0 0 0 0 0 0

0 −6lrIr,y 0 0 0 2lr
2Ir,y 0 6lrIr,y 0 0 0 −8lr

2Ir,y
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(2.1.1.4)

where the following rod (r) geometrical properties are:

• ρr, Er, Gr are rod material properties and respectively density [kg/m3], Young

modulus [Pa] and tangential modulus [Pa];

• lr is the rod length [m];

• Dy, Dz, t are respectively the diameters along rod local y and z directions and

the rod thickness [m]; it is worth noting that 0 < 2 t ≤ min (Dy, Dz);
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Figure 2.1.1.1: Rod cross-section parameters [27].

• Ar = Ar,ex−Ar,in = π
4

[DyDz − (Dy − 2 t) (Dz − 2 t) ] is the cross-section area

[m2] computed as the difference between external and inner area;

• Ir,y = π
64

[
DyDz3 − (Dy − 2 t) (Dz − 2 t)3],Ir,z = π

64

[
Dy3Dz − (Dy − 2 t)3 (Dz − 2 t)

]
are the second moments of area with respect to cross-section axes y or z [m4] ;

• Ir,O = Ir,y + Ir,z = 1
16

{
(Dy2 +Dz2) Ar,ex −

[
(Dy − 2 t)2 + (Dz − 2 t)2] Ar,in}

is the polar moment of area of the cross-section [m4];

• both for circular or elliptical, solid or annular cross-section, the torsional polar

moment of area [m4] is evaluated through the expression:

Jr =
π

16

(
1−m4

) Dy3Dz3

Dy2 +Dz2
=

π

16
ψrDyDz

3 (2.1.1.5)

where 0 ≤ m = 1 − 2 t
min(Dy,Dz)

< 1 and in the following Dy ≥ Dz is assumed.

The coefficient for the torsional behaviour results ψr = 1−m4

1+(DzDy )
2 is valid especially

also to thick-walled annular cross-section.
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2.1.2 Timoshenko rod element

For a Timoshenko rod approach, the following coupled mass Mr, stiffness Kr, pre-

stressed stiffness ∆Kr and gyroscopic matrices Gr are taken into account in a Local

Coordinate System (LCS):

Mr =
ρr lr
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+

+
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(2.1.2.2)
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∆Kr = ∆K0 + ∆KΦ + ∆KΦ2 (2.1.2.3)

where:

∆K0 =
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Gr = G0 + GΦ + GΦ2 (2.1.2.7)

where:

G0 = −
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GΦ = −
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Φz0− 30lrIr,y

(1+Φz)2
Φz 0 0 0

10lr
2Ir,y

(1+Φz)2
Φz

0 0
30lrIr,z

(1+Φy)2
Φy0

10l2rIr,z

(1+Φy)2
Φy 0 0 0 − 30lrIr,z

(1+Φy)2
Φy0− 10l2rIr,z

(1+Φy)2
Φy 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0
30lrIr,z

(1+Φy)2
Φy 0 0 0 0 0

30lrIr,z

(1+Φy)2
Φy 0

0 0 0 0 0
30lrIr,y

(1+Φz)2
Φz 0 0 0 0 0

30lrIr,y

(1+Φz)2
Φz

0 0 0 0 0 0 0 0 0 0 0 0

0
30lrIr,y

(1+Φz)2
Φz 0 0 0

10lr
2Ir,y

(1+Φz)2
Φz 0− 30lrIr,y

(1+Φz)2
Φz 0 0 0 − 10lr

2Ir,y

(1+Φz)2
Φz

0 0
30lrIr,z

(1+Φy)2
Φy0− 10lr

2Ir,z

(1+Φy)2
Φy 0 0 0 − 30lrIr,z

(1+Φy)2
Φy0

10lr
2Ir,z

(1+Φy)2
Φy 0


(2.1.2.9)

G
Φ2 = −

ρr

30lr



0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 − 20lr
2Ir,y

(1+Φz)2
Φz

20 0 0 0 0 − 10lr
2Ir,y

(1+Φz)2
Φz

2

0 0 0 0
20l2rIr,z

(1+Φy)2
Φy

2 0 0 0 0 0
10l2rIr,z

(1+Φy)2
Φy

2 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 − 10lr
2Ir,y

(1+Φz)2
Φz

20 0 0 0 0 − 20lr
2Ir,y

(1+Φz)2
Φz

2

0 0 0 0
10lr

2Ir,z

(1+Φy)2
Φy

2 0 0 0 0 0
20lr

2Ir,z

(1+Φy)2
Φy

2 0



(2.1.2.10)

The rod (r) geometrical properties are the same of the Euler-Bernoulli formulation and:

• Φy = 12Er Ir,z
Ar Gr kr,y l2r

,Φz = 12Er Ir,y
Ar Gr kr,z l2r

are the ratios between the shear and the flexural

flexibility of the beam in y and z direction;

• all the masses, used in the consistent mass matrix reported in Eq. (2.1.2.1), are

the following:

m1 = 156+294 Φ+140 Φ2, m2 = 22+38.5 Φ+17.5 Φ2, m3 = 54+126 Φ+70 Φ2,
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m4 = 13 + 31.5 Φ + 17.5 Φ2, m5 = 4 + 7 Φ + 3.5 Φ2,

m6 = 3 + 7 Φ + 3.5 Φ2, m7 = 36, m8 = 3− 15 Φ,

m9 = 4 + 5 Φ + 10 Φ2, m10 = 1 + 5 Φ− 5 Φ2;

• kr,y, kr,zare the shear correction factors in y and z directions;

• for circular or elliptical, solid or annular cross-section, the shear factors kr,y, kr,z
are equal to kr and evaluated through the expression [28]:

kr =
12 (1 + νr)

(
3 + n2

)
40 + 37 νr + (16 + 10 νr) n2 + νr n4

5π
(
1 +m2

)2

(
1.495− 0.192 νr + 0.078 ν2

r

) (
3πm4 + (8m3 + 4m)

√
1−m2 + 13πm

)
+ 16m2 sin−1 (m)− 4 sin−1 (m) + 5π

(2.1.2.11)

where:

0 ≤ m = 1−
2 t

min (Dy, Dz)
< 1 , 1 ≤ n =

max (Dy, Dz)

min (Dy, Dz)
< +∞

2.2 Assembly of the structure

2.2.1 From local to global reference frame

The equations of motions of a rod element are written in a Local Coordinate System.

It follows that all the elementary matrices expressed in Sec. (2.1) are referred to a

reference frame integral with the cylinder. In order to describe the behaviour of the

whole structure, another reference frame is defined, called Global Coordinate System

(GCS). The procedure to pass from a local to a global definition of the elementary

matrices consists in applying the proper rotations.

For each rod it is possible to define α, a vector containing the rotations of each element

around the x-axis of the GCS, β, a vector containing the rotations of each element

around the y-axis of the GCS, and γ, a vector containing the rotations of each element

around the z-axis of the GCS.

Three independent rotations of angles α, β, γ are performed to locate the rod, aligned

to the x-axis, to its end node:

Rxyz = RxRyRz =

1 0 0

0 cosα sinα

0 sinα cosα


cos β 0 − sin β

0 1 0

sin β 0 cos β


 cos γ sin γ 0

− sin γ cos γ 0

0 0 1

 (2.2.1.1)
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Txyz =


Rxyz 0 0 0

0 Rxyz 0 0

0 0 Rxyz 0

0 0 0 Rxyz

 (2.2.1.2)

By applying the transformation matrix to the elementary matrices, it is possible to

find their expressions in the global coordinate system:

Mr,GCS = TT
xyzMrTxyz (2.2.1.3)

Gr,GCS = TT
xyzGrTxyz (2.2.1.4)

Cr,GCS = TT
xyzCrTxyz (2.2.1.5)

Kr,GCS = TT
xyz(Kr + ∆Kr)Txyz (2.2.1.6)

The operation to pass from local to global coordinates is a composition of rotations,

therefore the values contained inside the matrices are not changed but just moved in

another position. It is evident that having neglected the internal damping of the rod

results in having a zeros matrix in the GCS, as it was in the LCS.

Once defined the rod matrices in the GCS, the matrices describing the whole structure

have to be built. This step is performed by placing all the element matrices in a global

matrix in the proper position according to the GCS. An example of this procedure for

a structure discretized in five elements is shown in Figure 2.2.1.1:

Figure 2.2.1.1: Assembling of global matrices [29].

The next step consists in adding the contributions of the lumped elements defined

in the model. Lumped springs and dampers have to be introduced in the matrix: this
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is done in the same way as explained for the rod elements, adding their contribution

in the position corresponding to the degree of freedom they are acting on.

At the end of this procedure, the system will be described by Mg, Cg, Kg, g × g

real symmetric mass, damping and stiffness matrices and Gg, g × g skew-symmetric

gyroscopic matrix, where g is the global number of degrees of freedom of the structure.

2.2.2 Application of the constraints

Every rotating system has some constraints applied on it to guarantee the proper mo-

tion, which have to be accounted in the finite element model. They are very important

not only for the coherent discretization of the model, but in particular because they

limit the degrees of freedom of the system in motion and are fundamental to derive the

real behaviour of the rotor. The reduction of the degrees of freedom is set up dividing

them in masters and slaves depending if their motion is free or imposed. After that, the

same procedure is applied to the nodes, which have to be divided in masters and slaves

depending if their motion is free or imposed by other nodes. Then, the constraints can

be represented with:

• Rigid Body Elements (RBE) used to link some DOFs between independent nodes

to represent constraints, such as hinges, sliders or pins and stored in a matrix

TRBE;

• Rigid Joint Elements (RJs) used to relate translational and rotational DOFs of

nodes which maintain a constant distance in operation and are stored in a matrix

TRJs.

Furthermore, boundary conditions have to be defined for the model, to account for

external constraints applied on the structure, and are stored in a matrix TBCs.

The transformation matrices are condensed in a n×g matrix T, where n is the number

of active dofs and g is the global number of DOFs, defined in Eq.(2.2.1.1):

T = TRBE TRJs TBCs (2.2.2.1)

Then, the matrix is applied on the global matrices as follows:

M = TTMgT (2.2.2.2)
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C = TTCgT (2.2.2.3)

G = TTGgT (2.2.2.4)

K = TTKgT (2.2.2.5)

obtaining the reduced mass, damping, gyroscopic and stiffness matrices of order n,

which fully describe the rotor.

In some particular cases a further reduction is required and this is performed applying

a Guyan technique, which assumes some nodes to have a displacement that can be

computed directly from others. It consists in dividing the nodes in masters andslaves

in the same way as it was done to apply RBE, RJs and BCs, then neglecting inertia

forces and external forces applied on slaves. Consequently, the displacement of slaves

is computed as a function of the master displacement properly scaled with the stiffness

matrix. This method introduces an approximation in the computation, but the error

is usually very small if the choice of slave degrees of freedom is appropriate, in fact the

inertia forces are not completely neglected, as their contribution is accounted in the

kinetic energy as a function of the master.

2.3 Gyroscopic formulation

2.3.1 Conservative and real matrices

The following dynamic problem is considered:

M ẍ + ΩG ẋ + K x = 0 (2.3.1.1)

where:

• M, K are real n×n symmetric matrices describing inertia and stiffness properties;

• G is a real n× n skew-symmetric matrix describing gyroscopic properties;

• Ω is a scalar representing the rotational speed;

• x is a n× 1 vector containing the real coordinates of the nodes.
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The eigenproblem results:

[
K + iωrΩ G− ω2

rM
]

Ψr = 0 (2.3.1.2)

or

K Ψ = −i Ω G Ψ diag (ωr) + M Ψ diag
(
ω2
r

)
(2.3.1.3)

with the properties:

• eigenproblem with real and symmetric mass M and stiffness K matrices, with

real and skew-symmetric gyroscopic matrix G;

• purely imaginary non-conjugate eigenvalues Sr and complex non-conjugate eigen-

vectors Ψr. There may be null eigenvalues if det(K) = 0

This is a second order problem in ωr , so it is computationally convenient to solve

the equivalent first order problem using Duncan formulation.

This method consists in rearranging the terms of Eq. (2.3.1.1) in a particular state

space form, passing from a system of n second order equations to a system of 2n first

order equations, where n is the number of degrees of freedom of the structure.

The dynamic problem is reduced to:

Aẏ + By = f̃ (2.3.1.4)

where:

• y, ẏ are respectively the generalised displacements and velocities 2n × 1 of the

first order problem

y =

{
x

ẋ

}
, ẏ =

{
ẋ

ẍ

}
(2.3.1.5)

• A is a 2n× 2n real, symmetric and indefinite matrix

A =

[
ΩG M

M 0

]
(2.3.1.6)

• B is a 2n× 2n real, symmetric and indefinite matrix

B =

[
K 0

0 −M

]
(2.3.1.7)
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• f̃ is the generalised force vector 2n× 1;

• the second block of equations of Eq. (2.3.1.4) is the identity:

Mẋ−Mẋ = 0 (2.3.1.8)

Neglecting static generalised external forces, Eq. (2.3.1.4) results:

Aẏ + By = 0 (2.3.1.9)

To evaluate a non-null stationary oscillating behaviour, a generalised exponential

solution is assumed:

y = y0eSt (2.3.1.10)

ẏ = Sy0eSt (2.3.1.11)

since time is separable and erasable from the equation:

(B + SA) y0eSt = 0 (2.3.1.12)

(B + SA) y0 = 0 (2.3.1.13)

Beside the trivial solution

y0 = 0

that corresponds to the static non deformed condition, the eigenproblem can be solved

to find the eigenvalues vector and the eigenvectors matrix:

(B + SrA)
{

Ψ̃r

}
= {0} (2.3.1.14)

finding the non-null solutions by means of:

det (B + SrA)
{

Ψ̃r

}
= 0 (2.3.1.15)

From the equation, the eigenvalues are obtained:

S = Sr = [S1, S2, ..., S2r]
T (2.3.1.16)

then for each obtained eigenvalue, Eq. (2.3.1.14) can be solved obtaining the related

complex eigenvector space:

Ψ̃ =
[{

Ψ̃1

}
,
{

Ψ̃2

}
, ...,

{
Ψ̃2r

}]
(2.3.1.17)
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Where the relationship between the complete eigenvector Ψ̃ and the first half Ψ

and the corresponding eigenvalues Sr is:

Ψ̃ =

[
Ψ

Ψdiag(Sr)

]
(2.3.1.18)

The gyroscopic matrix has a stiffening effect on the structure, having important

repercussions on the stability. In particular the system is:

• marginally stable if det(K) > 0 independently on the magnitude of G;

• unstable if det(K) < 0.

2.3.2 Classical dissipative and real matrices

The following dynamic problem is considered:

M ẍ + (C + ΩG) ẋ + K x = 0 (2.3.2.1)

where:

• M, C, K are real n × n symmetric matrices describing inertia, damping and

stiffness properties;

• G is a real n× n skew-symmetric matrix describing gyroscopic properties;

• Ω is a scalar representing the rotational speed;

• x is a n× 1 vector containing the real coordinates of the nodes.

The eigenproblem results:

[
K + iωr (C + Ω G)− ω2

rM
]

Ψr = 0 (2.3.2.2)

or

K Ψ = −i (C + Ω G) Ψ diag (ωr) + M Ψ diag
(
ω2
r

)
(2.3.2.3)

with the properties:

• eigenproblem with real and symmetric mass M, damping C and stiffness K

matrices, with real and skew-symmetric gyroscopic matrix G;
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• complex and non-conjugate eigenvalues Sr and complex and non-conjugate eigen-

vectors Ψr.

This is a second order problem in ωr , so it is computationally convenient to solve the

equivalent first order problem using Duncan formulation.

This method consists in rearranging the terms of Eq. (2.3.2.1) in a particular state

space form, passing from a system of n second order equations to a system of 2n first

order equations, where n is the number of degrees of freedom of the structure.

The dynamic problem is reduced to:

Aẏ + By = f̃ (2.3.2.4)

where:

• y, ẏ are respectively the generalised displacements and velocities 2n × 1 of the

first order problem

y =

{
x

ẋ

}
, ẏ =

{
ẋ

ẍ

}
(2.3.2.5)

• A is a 2n× 2n real, symmetric and indefinite matrix

A =

[
C + ΩG M

M 0

]
(2.3.2.6)

• B is a 2n× 2n real, symmetric and indefinite matrix

B =

[
K 0

0 −M

]
(2.3.2.7)

• f̃ is the generalised force vector 2n× 1;

• the second block of equations of Eq. (2.3.2.4) is the identity:

Mẋ−Mẋ = 0 (2.3.2.8)

Neglecting static generalised external forces, Eq. (2.3.2.4) results in:

Aẏ + By = 0 (2.3.2.9)

Then, following the same procedure as in Sec. (2.3.1) the eigenvalue problem can be

solved to find the eigenvalues Sr and the eigenvectors Ψ.
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For a classical damped gyroscopic system, the eigenvalues Sr are complex non-conjugate,

leading to complex non-conjugate eigenvectors Ψ. Moreover, damping plays an impor-

tant role in the nature of eigenvalues because more than changing the imaginary part,

it affects the real part, making it different in a couple of frequencies.

It is important to remark that a system which shows to be stable for C = 0 and G = 0,

marginally stable according to the previous definition, still keeps its stability after the

introduction of arbitrary gyroscopic and dissipative forces.
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Chapter 3

Testbench

3.1 Description of the parametric test-rig

The parametric test-rig, of which a 3D FE model is built, is shown in Figure 3.1.1:

Figure 3.1.1: Model of vertical magnetic rotor.

A magnetic rotor is a rotating structure in which the traditional cylindrical bear-

ings are substituted by magnetic supports. These devices are able to sustain moving

parts without physical contact and their functioning principle is based on the laws of

electromagnetism.

Moreover, similarly to conical rolling bearings, magnetic supports are able to produce

forces in all directions in space, the intensity of which depends not only on the material

their made of, but also on the quantity and position of the rings.
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In the case study, the magnetic rotor has supporting bearings made of an alloy of

neodymium, iron and boron. The choice of these permanent magnets is due to the fact

that they are the strongest commercially available, although they are still relatively

fragile and can be easily damaged.

One of the peculiarities of this magnetic rotor is the minimum contribution of weight

force on the vertical axis. This situation takes place because the stator rings produce

two axial magnetic forces on the rotor rings that are in the opposite direction with

respect to weight, pushing up the whole rotor.

In order to obtain a relevant reduction of the weight on the thrust bearing, it is nec-

essary to work on axial instability and radial stability. The decrease of the weight of

the rotor on the floor is an important goal to achieve, since it results in lower resis-

tance actions, developed at the base. Friction does not occur in any location of the

structure, thanks to the absence of lubricant and of physical contact of the parts, so

it is fundamental to reduce it as much as possible in the contact point with the thrust

bearing.

The rotor is composed by the main shaft, made of an aluminium alloy, that shows

characteristic stiffness properties to be considered a rigid body. The mass distribution

is not homogeneous due to the presence of a flange, required for the mounting of the

brass hubs. These discs are positioned in the middle of the shaft and represent the

mass of the assembly, their material is properly chosen to avoid the generation of eddy

current in operating conditions.

The weight of the structure is only partially reduced by the magnetic bearings so, as

previously mentioned, a thrust bearing is required along the vertical direction. This

task is covered by a sapphire, material with a high hardness (9 on the Mohs scale),

which is positioned on the base of the structure.

The stator structure sustaining the rotor is made of polytetrafluoroethylene (PTF),

commonly known as Teflon. Its diamagnetic behaviour shows the Teflon to be suitable

for the application, in order to avoid magnetic interaction with the rotor.

As it will be discussed more in details in Sec. (3.1.1) and Sec. (3.1.2), there are many

possible configurations of the structure. The analysis developed in this thesis refers to

one particular configuration with four hubs and six magnets on the vertical rotor, two
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positioned on the upper side of the discs and four on the lower side. This choice is a

trade off to have coherence with the decision to work in axial instability and with a

force pointing upwards. This arrangement of the rotor is shown in Figure 3.1.2:

Figure 3.1.2: Rotor with four hubs and six magnets.

Number

of magnets Mass [kg] Barycentre [m] Moments of inertia [kg m2]

6 4.798
X Y Z

0 0 -0.04

6.677 · 10−3 0 0

0 6.677 · 10−3 0

0 0 6.509 · 10−3

Table 3.1.1: Characteristics of the rotor in the chosen configuration.

3.1.1 Inertial properties

As it was stated in the description of the test rig, the inertial properties of the whole

structure strongly depend on the brass hubs. The particular of one disc is shown in

Figure (3.1.1.1) and the geometrical and inertia properties are summarised in Table

(3.1.1.1):
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Figure 3.1.1.1: Particular of a brass hub.

Characteristic Property Value

Hub Geometry

φext external diameter [mm]

φint internal diameter[mm]

t thickness[mm]

100

44

20

Hub Material

ρ density [kg/m3]

E Young modulus[GPa]

ν Poisson ratio[-]

8500

100

0.35

Table 3.1.1.1: Hub geometric and material characteristics.

The flange of the rotating shaft allows the correct mounting of a number of brass

hubs up to four. This results in the fact that with one bench it is possible to study

different configurations by just changing the number of masses.

Increasing the number of brass hubs leads to a lowering of the position of the struc-

ture barycentre and has a high influence on the weight, since each disc has a mass

m=1.052kg. Moreover, the resultant moments of inertia change according to the quan-

tity of discs present, so the rotating behaviour is very different in the configuration

with no masses with respect to the maximum weight.

However, there is also the possibility to locate, instead of the brass hubs, discs made

of a different material, holding the same insulation properties. Many studies can be

conducted with the same test bench only changing the central masses.
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3.1.2 Magnetic supports

The passive magnetic bearings are located in the upper and lower side of the brass

hubs. It is possible to distinguish rotoric rings, mounted on the shaft, and statoric

rings, mounted on the non rotating support. They are silver-white rings, of which a

particular is shown in Figure (3.1.2.1) and a summary of the geometrical and magnetic

properties is reported in Table (3.1.2.1).

Figure 3.1.2.1: Particular of magnetic rings.

Characteristic Property Value

Geometry 1-Statoric rings

2h height along z magnetization axis[mm]

φext external diameter[mm]

φint internal diameter[mm]

2

37

32

Geometry 2-Rotoric rings

2h height along z magnetization axis[mm]

φext external diameter[mm]

φint internal diameter[mm]

2

29.5

24.5

Material Br residual magnetic induction [T ] 1.2

Table 3.1.2.1: Geometric and material characteristics of the rings.

The number of magnets and the reciprocal position of stator and rotor rings strongly

influence the stability of the system and the amount of weight that can be counter-

balanced. These two parameters affect the intensity of the forces that are generated

on the rotor and their direction of action. Consequently, it is possible to use the same

structure to analyse the behaviour in operating conditions for different configurations,

changing the number of rings and their position.
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3.2 3D finite element model

The rotating system described in Sec. (3.1) is discretised in a series of rod elements.

The vertical elements are connected one to the other with rigid joints to impose a

coherent displacement of the consecutive nodes. The thrust bearing supporting the

bottom part of the rotor is modelled as an elastic element with a proper spring stiffness,

positioned in the node corresponding to the base. The magnetic bearings are accounted

in the model for their elastic and dissipative contributions. Two elastic elements for

each support are located in the related nodes for the translational and transversal

degrees of freedom. Three damping elements for each support are located in the related

nodes for the transversal and torsional degrees of freedom.

Figure 3.2.1: 3D model of the rotor on magnetic supports.

The 3D model contains 111 nodes, each of them defined by 6 degrees of freedom.

This would result in a very large number of equations to solve, but it can be cut down

with the application of the constraints on the elements as explained in Sec. (2.2). Since

the rotor is rigid, the reduction applied to the model leads to a 6 degrees of freedom

expression, 3 translational and 3 rotational.

The discretised structure of the rigid shaft is shown in Figure 3.2.2:
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Figure 3.2.2: Nodes of the discretised rigid shaft and barycentre G.

Consequently, the dynamic problem for the rotor is:

M ẍ + (C + ΩG) ẋ + K x = 0 (3.2.1)

where the matrices obtained with a Timoshenko approach are:

• M, C, K are real 6 × 6 symmetric matrices describing inertia, damping and

stiffness properties;

M=



4.7963 0 0 0 1.5524 · 10−4 0

0 4.7963 0 1.5524 · 10−4 0 0

0 0 4.7963 0 0 0

0 1.5524 · 10−4 0 0.0068 0 0

1.5524 · 10−4 0 0 0 0.0068 0

0 0 0 0 0 0.0065


(3.2.2)
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C=



0.004 0 0 0 −9.6 · 10−6 0

0 0.004 0 9.6 · 10−6 0 0

0 0 0 0 0 0

0 9.6 · 10−601.3947 · 10−5 0 0

−9.6 · 10−6 0 0 0 1.3947 · 10−5 0

0 0 0 0 0 4 · 10−5


(3.2.3)

K=



14200 0 0 0 −104.88 −1.4943 · 10−12

0 14200 0 104.88 0 0

0 0 1 · 107 2.3432 · 10−10 0 0

0 104.882.3432 · 10−10 49.8518 0 0

−104.88 0 0 0 49.8518 2.5002 · 10−14

−1.4943 · 10−12 0 0 0 2.5002 · 10−14−8.6644 · 10−10


(3.2.4)

• G is a real 6× 6 skew-symmetric matrix describing gyroscopic properties;

G =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0.0065 0

0 0 0 −0.0065 0 0

0 0 0 0 0 0


(3.2.5)

• Ω is a scalar representing the rotational speed;

• x is a 6× 1 vector containing the real coordinates of the master node.

The model, tested at a rotational speed Ω = 300 rad/s is solved with the procedure

explained in Sec. (2.2) and shows twelve natural frequencies at which correspond:

• 2 undamped conjugate imaginary modes;

• 8 complex conjugate underdamped modes;

• 2 overdamped modes.

The eigenvalues and eigenvectors are double with respect to the six degrees of freedom

of the rotor, due to the resolution of the problem with the Duncan method. This

numerical result has no influence on the description of the real behaviour of the rotor,

because only six modes are independent of the twelve modes resulting from the analysis.
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As expected from rigid body theory of a rotating cylinder, the modes are two conical

motions, two cylindrical, one shaking of the base and the rotation of the rotor around

its axis.
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Numerical results

The simulation on the parametric test rig can be run at different spin speed to see how

it will behave in the experimental analysis. The model described in the previous section

is tested and the results in terms of modal shapes are presented. The assumption of

rigid rotor is reasonable if it has to operate at speeds lower than half the first critical

speed, while the more it gets closer to this velocity the higher is the possibility that it

will inflects. A further step to have a complete overview of the behaviour is done by

building a flexible finite element model of the rotor.

4.1 Rigid model

The analysis of the rigid rotor modelled in Sec. (3.2) leads to the prediction of natural

frequencies of the system and modal shapes. In this section are presented the results

obtained from the test of the rigid magnetic rotor at a spin speed Ω = 300 rad/s are

presented. As expected from rigid body theory of a rotating cylinder, the modes are

two conical motions, two cylindrical, one shaking of the base and the rotation of the

rotor around its axis.

The two low frequency modes, taking place at S = 4.184 Hz, describe the same conical

shape. Mode 1 is a counter clockwise rotation, while Mode 2 is a clockwise rotation.

They are reported in Figure (4.1.1).
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Figure 4.1.1: Conical modes at low frequency.

The four cylindrical modes take place at two frequencies that are almost coincident.

They are reported in Figure (4.1.2) and Figure (4.1.3).

Figure 4.1.2: Bounce modes at S = 9.143 Hz.

Figure 4.1.3: Bounce modes at S = 9.168 Hz.
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The two high frequency modes, taking place at S = 49.06 Hz, describe the same

conical shape. Mode 7 is a clockwise rotation, while Mode 8 is counter clockwise. They

are reported in Figure (4.1.4).

Figure 4.1.4: Conical modes at high frequency.

The undamped modes taking place at S = 229.8 Hz are the shaking of the base due

to the presence of the thrust bearing, they are shown in Figure (4.1.5).

Figure 4.1.5: Shaking modes.
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The two overdamped modes, both taking place at around S = 0 Hz, describe the

rigid body motion of the rigid rotor around its axis. They are reported in Figure

(4.1.6).

Figure 4.1.6: Rigid body modes.

4.2 Flexible model

A 3D finite element model of the flexible rotor is built starting from the rigid one

presented in Sec. (3.2). As previously explained, the main aluminium rotor is modelled

subdividing it in rod elements, which have a proper rigidity given by the material.

These elements are connected one to that following by rigid joints, that make it possible

to model the whole shaft.

In order to derive a flexible model from this previous work, it is possible to change the

constitutive material of the rod elements and remove the rigid joints imposed on the

shaft.
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In the work described in this thesis, it was decided to remove the rigidity constraints

and change the Young modulus of the material to better visualise the characteristic

modes, ending with a model presented in Figure (4.2.1).

Figure 4.2.1: Nodes of the discretised flexible shaft and barycentre G.

This model is closer to the actual behaviour of a rotating structure, because no

real system is purely rigid. The deformability of the shaft leads to have 240 degrees of

freedom describing the structure. The dynamic problem is solved following the same

procedure discussed in Sec. (2.3), resulting in the identification of 480 modal shapes.

By sorting them in increasing order of their relative eigenvalue, it is possible to state

that the first twelve modes are referred to rigid motions, while at higher frequencies

the flexible modal shapes occur. The characteristic flexible shapes of the model tested

at a spin speed Ω = 300 rad/s are presented.
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The six modes, taking place at frequencies that are almost coincident, describe the first

flexible shape and are reported in Figure (4.2.2), Figure (4.2.3) and Figure (4.2.4).

Figure 4.2.2: First flexible modes at S = 482.2 Hz.

Figure 4.2.3: First flexible modes at S = 482.6 Hz.

Figure 4.2.4: First flexible modes at S = 483 Hz.
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The modes taking place at S = 607.9 Hz, describe second flexible shape and they

are reported in Figure (4.2.5).

Figure 4.2.5: Second flexible modes at S = 607.9 Hz.
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4.3 Comparison

The analysis of the 3D FE model is performed in real coordinates at different rotating

speeds, obtaining the evolution of the natural frequencies as expected from the theory

of a rigid rotor. It is derived the Campbell diagram showing the variation of the eigen-

values modulus in the range of spin speed Ω = 0÷314 rad/s. The comparison between

the graph known in literature and the one obtained from the numerical procedure is

presented in Figure (4.3.1) and Figure (4.3.2). In the numerical Campbell diagram,

the modes related to shaking of the base are not reported because they are referring

to the specific case study and cannot be compared with the general diagram of a four

degrees of freedom rotor.

(a) (b)

Figure 4.3.1: 4 degrees of freedom rotor [1] (a) and 3D rigid model (b).

The 3D rigid model shows to be reliable since the eigenvalues referred to rigid body

motions are similar to those obtained for the four degrees of freedom rotor model.

Once determined the validity of the rigid model, the analysis is extended to the flexible
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one, which is tested in the range of spin speed Ω = 0÷314 rad/s. The Campbell diagram

for the flexible model is derived and the comparison with the rigid rotor diagram is

proposed in Figure (4.3.3) and Figure (4.3.4).

(a) (b)

Figure 4.3.2: (a) 3D rigid model and (b) 3D flexible model.

The Campbell diagram of the flexible rotor is reduced to the first ten modes, since

they are comparable with the rigid motions. Flexible modes take place at increasingly

high frequencies and they are not influenced by rotating speed, consequently they

correspond to horizontal lines in the diagram above.

The stability of the system can be analysed looking at the evolution of the real part

of the eigenvalues at increasing speed. As explained in Sec. (1.2), the real part of the

eigenvalue determines how the structure, in terms of amplitude of the orbit, behaves

at that rotating speed.

The diagrams for rigid and flexible model are reported in Figure (4.3.5) and Figure

(4.3.6).
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(a) (b)

Figure 4.3.3: Stability for the rigid (a) and flexible (b) rotor.

Both the rigid and the flexible rotor show to be stable in a wide range of velocities,

because the real part of the eigenvalues stays negative. In only a small part of the

diagram the real part of the eigenvalues becomes positive, but the range is so restricted

and the values it assumes are of the order of 10−4, that it could be attributable to

numerical imprecision.

60



Conclusions

This work presents a procedure to perform the gyroscopic analysis with FEM of a

rotor on magnetic supports. As a case study, it was developed a 3D rigid finite element

model of a parametric test rig, already designed and built. The results obtained are

aligned with those present in the literature for a four degrees of freedom model. In

particular, here it is proposed the comparison between the Campbell diagrams for the

analytical and numerical case, to show the similarities in the evolution of eigenvalues

with increasing spin speed. Due to the validity of the rigid model and starting from this,

a 3D flexible finite element model is build, removing the simplifying assumptions made

on the rigidity of the flywheel. The resulting analysis is closer to the real behaviour

of the rotor since, in addition to the rigid body modes, it considers the flexible modes

occurring at higher frequencies. The Campbell diagrams for the rigid and flexible

model are compared, showing that they are matching for the modes describing the

rigid behaviour. Stability is investigated for the two configurations: it is possible

to state that the system is stable for a large range of working speeds, while further

studies are suggested to determine the threshold. Based on the results obtained in the

present study, the model is suitable to predict the behaviour of the flywheel during

experimental tests that are planned in the next future.
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