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Orlando Giulio

Abstract

The aeronautics sector in that it is facing increasingly difficult challenges for which the keyword

at the base of each principle is ”Security”. Security does not mean an absence of errors but the

maximum limitation of them. This is because the percentage of error cannot be eliminated, and

this statement is further legitimized if also human factor acts in transactions. The process of

implementing a damage identification strategy for aerospace engineering infrastructure is referred

to as structural health monitoring (SHM). The damage can be defined as changes introduced

into a system that adversely affect its current or future performance. The term damage does

not necessarily suggest a total loss of system functionality, but rather that the system is no

longer operating in its optimal manner. So, as the damage grows, it will reach a point where

it influences system operation to a point that is no longer acceptable to the user. This point

is referred to as a failure. The Engine, compressor, in this case, is one of the most stressed

parts of an Aircraft because high rotational speed creates a field of vibration that it needs to

be controlled and checked. This project of the thesis will develop an analysis of a dynamic

structure of a section of a Rotor wheel of a compressor. This analysis will be treated through

the chapters in order to show all the main faceting of the theme. The section of the compressor

is an axisymmetric structure and this helps computer programs on the analysis. But The

Rotor part of turbomachinery is a very complex structure. The FEM analysis required a high

computational cost of calculation so is needed a model simplification without any loss of accuracy.

It is possible to reach this target using the cyclic symmetry of a rotationally periodic structure

that lets to analyze only one sector generalizing the results to all the structure. These types of

elements are always characterized by the presence of double natural frequencies, corresponding

to the twin mode shape counter-rotating along with the system. These characteristics will be

discussed. Compressor rotors are dynamical systems designed to have identical blades but,

in reality, there are random deviations among the blades caused by material defectiveness,

manufacturing tolerances, wear and other causes. This destroys the cyclic symmetric conditions

of the structure and is called Mistuning. The rotation of the bladed disk in turbomachines are

exposed to large static and dynamic stresses. Static loads mainly arise from centrifugal forces

and thermal strains while forced vibrations are caused by actuating air pressures and rotor

imbalances. Mistuning caused an unexpected increase in maximum stresses that can lead to

premature high cycle fatigue of the blades and failure problems. The main purpose of the thesis

will be to find a way how to predict and evaluate these effects. Chapter 1 shows an introduction

of the symmetric full structure of which a dynamic analysis will be performed with two methods:

full structure and one sector following the theory of Thomas. To do it a simplified lumped model
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will be created. A study of nodal diameter will be performed investigating the main difference

between the two methods. In Chapter 2 the study will continue by applying an external force in

the structure and monitoring the force response on it. This will be done in both ways to better

understand the behavior of the structure and how the vibration process will change. In Chapter

3 the Mistuning Condition will be applied. But first of all, a simplified 3D model will be created

on Ansys in order to obtain Stiffness and Mass matrices of the structure. The results than could

be expanded to a complex model. After this, the percentage error between the normal case and

the mistuned one will be analyzed. Chapter 4 will be introduced two new simpler methods to

predict the mistuning effect in an easy way. Then a comparison between the two methods will

be done.

2
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1 Chapter 1

Dynamic Analysis of Bladed disk of Compressor

The subject of the thesis will be a bladed disk or general rotor wheel of a compressor. The main

goal will be to analyze the behavior of physical structure when subjected to force that generates

a vibration in all the structure. The Force could be a load of different nature that acts on the

structure with different accelerations. This acceleration is compared to the natural frequency

of the structure. First of all, it’s important to define what is a natural frequency. Briefly, the

bladed disk structure vibrates in a natural way without any damping forced. The frequency at

which vibrates is the natural frequency. The analysis will be a static one if the load’s acceleration

is sufficiently slowly in comparison with the natural frequency. In the opposite case, such as

in the presence of dynamics loads, it should be applied a dynamic analysis of the structure.

This second approach will be used. This type of analysis is used to find out the dynamic

displacements, the time history and the modal analysis. The modal analysis lets to study the

dynamic characteristics in the frequency domain. This process identifies modal properties. To

better understand the bladed disk behaviour a very important step is to specify these modal

properties such as natural frequencies and modal shapes. A modal shape is a standing wave

state of excitation, in which all the components of the system will be affected sinusoidally

under a specified fixed frequency. Of corse, in reality is not possible to have a system that

perfectly fits under a standing wave framework, so the modal shape is a concept used for a

general characterization of specific states of oscillation.In general to indicates a Mode Shape it

is used the notation DxC where D is the number of Nodal Diameter and C the number of Nodal

Circle.An example is showed in the next paragraph.

Figure 1: Rotor Wheel Examples

3
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Any point of the structure that doesn’t move from its position during vibration, it means where

the displacement is zero at all times, is called node. The mode shape in these points is zero.

When the subject treated is a two dimensional system, the nodes became a straight line called

nodal diameter or a circle line called nodal circle. In base of the value of frequency, it is possible

to have different mode shapes related to the different number of diameters or circles. To a more

valuable understanding of this dynamics characteristics of the structure, it is possible to consider

the rotor wheel as a circular membrane although it doesn’t represent a three-dimensional body.

Solving the dynamic problem of the structure allows to calculate eigenvalues and eigenvectors

of the system. To be clear, the eigenvalues are the natural frequencies of vibration, and the

eigenvectors are the shapes of these vibrational modes.

Going forward, a structure has a cyclic symmetry when the geometry, parameters, constraints

and results of a partial model can be copied around an axis in order to give the complete model.

The rotor wheel has a cyclic symmetry in the theory. So is possible to isolate and study just

one sector,and then expand the results for all the structure. This will be done later.

Figure 2: Cyclic Symmetry Examples

4
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The symmetric property gives symmetric matrices that create the system’s equation showed

later in the chapter. As a solution of a system with symmetric matrices, it should exist a couple

of eigenvalues at which the structure assumes the same mode shape but rotated of an angle to

form its complementary. This due to the “mutually orthogonal properties of eigenvectors”. In

the following image are showed two examples of the mode shape with one nodal diameter that

occur for low frequencies of vibration.

Figure 3: Examples of Orthogonal mode shape for a couple of frequencies on a membrane for 1x0 Mode Shape

and 3x0 Mode Shape

It’s more simple to understand the node’s concept looking to the following figure. It represents

the sinusoidal shape of eigenvectors that appears plotting the amplitude of these ones over the

Number of Sectors of the structure. From the figure is clear that the red points are opposite

and related to the second eigenvector and the yellow ones to the third. At these points, the

structure never changes its position from the zero amplitude. This example shows the case of

Mode Shape 1x0 so with one nodal diameter.

5
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Figure 4: Example Sinusoidal trend of eigenvectors for one nodal diameter

It’s important to denote that for low frequency is achievable to study only the presence of

nodal diameter. It’s possible to see this from the direction of the two sinusoids of a couple of

eigenvectors that in this case are in concordance. On the other hand, to a more higher frequency,

it is revealed the presence of a nodal circle too. To discover this, the two sinusoids are in opposite

direction. This fact is shown in the following figures.

The following example is about the Mode Shape 1x0 for a frequency f1 = 97.9933 Hz and about

the Mode Shape 1x1 for a frequency f2 = 306.4267 Hz.

Figure 5: Example of opposite sinusoidal for f1 = 97.9933 Hz on the left and f2 = 306.4267 Hz on the right.

To evaluate the consistency of the nodal circle must do another analysis in a radial direction

but this matter is not treated on this paper.
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As said, the structure could be divided into a number N of equal sectors in respect of cyclic

symmetry. It’s possible to find a relation between the number of sectors N and the number of

nodal Diameters. First of all, the choice of the sector will coincide with the position of one blade

plus the corresponding part of the disk below it. This allows matching the number of sectors

with the number of blades. It will be shown that the relation with nodal diameters is associated

with the nature of the integer number N, it means if it is even or odd.

Figure 6: Sector of a disk

The relation between sectors and nodal diameter can be explained through the expression below:

- 0 ≤ N ≤ N
2 if N is even;

- 0 ≤ N ≤ N−1
2 if N is odd.

After this general introduction of basic concepts of the dynamic system, the next step will be

to study a dynamic behavior on the model of the structure that summarises the Bladed disk

configuration. A Modal analysis will be done comparing the different response of disk and

blades. As the first approach, no external force will be treated but only the difference between

a study of the Entire structure and a study of only one sector to expand, at a later time, the

analysis to all the structure.

7
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1.1 Entire Structure

The Entire Structure of the Rotor Wheel model was represented as a group of masses concentrated

in two points as is possible to observe in Fig. 1. This allows considering the system as lumped.

This condition grants to ignore the deformation of each element and, furthermore, creates a

diagonal mass matrix and negates the need to integrate mass across the deformed element. It

approximates the behavior of the distributed system under certain assumptions. In one point is

concentrated the mass of the disk md and, on the other point, the mass of the blade mb. In this

case, must be taken into account their mutual connections and their connections to the structure

due to different stresses environment. These connections are considered through three stiffness

elements such as kb that link the mass of blade and the mass of disk, kc that link one mass of disk

with the following one and kd that link the mass of disk to the shaft(the ground). In general,

the stiffness is the resistance offered by an elastic body to deformation. This deformation occurs

mainly in the disk part so the results is that kb should be lower than kc and kd. These last two

stiffnesses were considered equal for a simplification in the system. In this specific case, it was

chosen a value of stiffness from an initial value of frequencies. So both for masses and stiffness,

the values for disks are three times the values of the disk.

Figure 7: Model of Entire Structure

8
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The way to represent the Entire Structure can be different. The one in Fig. 7 is just a simplified

case that it was used to better proceed in the resolution of the dynamic process. The Degrees of

Freedom (Dof) of this model are two for each sector, so in total 2N if the number of the sector is

N. The Dofs are linked to the two masses described before. It means that for the two elements

there are a set of parameters that may vary independently.[3]

After this initial description, is possible to determine the system equation that will bring to the

modal analysis. In this chapter, the case considered is without the action of external forces so

the Force Response will be equal to zero. Even the damping is generally ignored. The general

form of eigensystem is:

[M ]{ẍ}+ [K]{x} = [0] (1.1)

where {x} represents the displacement of the masses and {ẍ} is its acceleration. [M ] and [K] are,

respectively, 2N x 2N mass matrix and stiffness matrix of the structure. As a general rule, the

construction of the master mass matrix [M ] largely parallels of the master stiffness matrix [K].

Mass matrices for individual elements are formed in local coordinates, transformed to global,

and merged into the master mass matrix following exactly the same techniques used for [K]. To

help for the comprehension of the process of merging, the matrices of individual elements are

showed below [2]:

Mb =

mb 0

0 mb

 Md =

md 0

0 md



Kb =

 kb −kb
−kb kb

 Kc =

 kc −kc

−kc kc

 Kd =

 kd −kd
−kd kd


After identifying the matrices of single elements, another important step is the enumeration of

the Dofs of the structure. Even the enumeration is arbitrary. In this case, it was considered

that the first
N

2
Dofs are related to the disk and the second one to the blades.

Exists a verification that lets to check if the Matrices are good or not. For the Mass Matrix,

it should have:(1) matrix symmetry, (2) physical symmetries(such as element symmetries must

be reflected), (3) positivity. For Stiffness Matrix, its properties are: (1) Stiffness matrix is

symmetric and square, (2) In stiffness matrix, all diagonal elements are positive, (3) it is positive

definite.

9
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The Global Mass and Stiffness Matrices of the Entire Structure are built in this way:

[M ] = diag(md1 ...mdN ,mb1 ...mbN ) (1.2)

[
K
]

=



ks −kc 0 ... 0 −kc −kb 0 ... ... ... 0

−kc
. . .

. . . 0 ... ... 0
. . . 0 ... ... 0

0
. . .

. . .
. . . 0 ... ... 0

. . . 0 ... 0
... 0

. . .
. . .

. . . 0 ... ... 0
. . . 0 0

0
... 0

. . .
. . . −kc 0 ... ... 0

. . . 0

−kc
...

... 0 −kc ks 0 ... ... ... 0 −kb

−kb 0
...

... 0 0 kb 0 ... ... ... 0

0
. . . 0

...
...

... 0
. . . 0 ... ... 0

... 0
. . . 0

...
...

... 0
. . . 0 ... 0

...
... 0

. . . 0
...

...
... 0

. . . 0 0
...

...
... 0

. . . 0
...

...
... 0

. . . 0
0 0 0 0 0 −kb 0 0 0 0 0 kb



(1.3)

where ks = kd + 2kc + kb

Due to the enumeration {x} = xi where i ∈ {1, N} for disk and i ∈ {N + 1, 2N} for blades.

From Fig. 4 and Fig. 5 it has been anticipated that the solution of the system as the general

shape:

{x} = {X0}cos(ωt+ φ) (1.4)

with {X0} ∈ Rn where {X0} is the Amplitude that determines the height of sinusoid(this

parameter varies if an external force is applied), φ is the phase of the solution and ω is the

frequency.

To get the eigenvectors and eigenvalues solution from the system is needed to derivatives two

times the general solution:

{ẋ} = {X0}ωsin(ωt+ φ)

with {X0} ∈ Rn.This represents the velocity of the system and:

{ẍ} = −{X0}ω2cos(ωt+ φ)

with {X0} ∈ Rn. This represents the acceleration of the system. Substituting the acceleration

to the system equation is possible to obtain:

([K]− ω2[M ]){X0} = 0 (1.5)

10
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If the determinant of this equation is set equal to zero, the eigenvalue ωi
2 is obtained with

i = 1, . . . , 2N(note that the cosine has been omitted from the equation). At this point it is

easy to obtain the natural frequencies of the system, only the square root of the eigenvalues is

required:

ωi =
√
ωi2 with i = 1, . . . , 2N

Substituting the variable ωi into the (1.5) is possible to find the eigenvectors of the system.[4]

After implementing of this system on MATLAB it was possible analyse the results. It was used

for example a model with N=146 sectors. The eigenvectors {ψi} found, can be divided in two

categories related to the nodal diameter. The nodal diameter 0 and
N

2
are called stationary

mode shapes that corresponds to the Umbrella mode, showed in the figure Fig. 9. In the Umbrella

mode all the sectors move in the same direction at the same time, the amplitudes however are

different. Note that the results are divided in Dofs of Disk and Dofs of blades.

Figure 8: Umbrella mode for {ψ0} on the left and {ψN/2} on the right

Figure 9: Umbrella mode in 3D [6]

11



Orlando Giulio

The second type of eigenvectors is rotating. They are associated with the couples of natural

frequency. The rotation of them is linked to their orthogonal properties expressed through

sin(nθ) or cos(nθ) functions. Is possible to note that the two sinusoids have the same wavelength

and the Blades recorded a much higher amplitude values of displacement(eigenvector). This

phenomenon is quite physical understandable. In the next figures will be shown two examples

of Rotating Mode for the corresponding Mode Shape 1x0 with one nodal diameter and Mode

Shape 4x0 with 4 nodal diameters. Both for Disk Dofs and Blade Dofs.

Figure 10: ”Disk Dofs” on the left and ”Blades Dofs” on the right

Figure 11: ”Disk Dofs” on the left and ”Blades Dofs” on the right

12
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1.2 Single Sector

One of the goals of this dynamic analysis of bladed disk is to take advantage of the cyclic

symmetry of the structure to obtain much less computer time and storage of calculation. It

is possible to do it by considering only one substructure(one sector)and applying appropriate

complex constraints at its boundary with the following substructure that has a constant phase

difference. Obtaining so a complete analysis of the structure. This method is more convenient

more are the number of sectors N [1]. For do this, a new model is proposed on this subsection

in order to restrict the dynamic analyses only to the single sector as showed in the following

figure:

Figure 12: Model of single sector

It is possible to note that, in this case, the mass was split in half in order to respect the cyclic

symmetry. This brings also to define a new set of parameters that represents the new model and

then impose some constraints for the cyclic symmetry. There is always the mass of the blade

mb and then two times half mass of the disk
md

2
. The mass of the blade is linked to one-half

mass of the disk through the stiffness element kb. While kc links the two half mass of the disk

and kd links half mass of the disk to the ground. So for the cyclic symmetry was imposed:

{x} = {xd,L, xb, xd,R}T

where xd,L and xd,R are the disk sector Dofs, respectively, of Left and Right position and xB

is the Dof of the Blade. The mathematical variables now are three. The purpose is to find a

mathematical relation that lets to reduce to two these variable. At this point is possible to define

the dynamic system equation for the substructure without external forces applied that should be:

13
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[Ms]{ẍ}+ [Ks]{x} = [0] (1.6)

where:

[
Ms

]
=


md

2
0 0

0 mb 0

0 0
md

2

 (1.7)

[
Ks

]
=


(kd + kc + kb) −kb −kc

−kb kb 0

−kc 0 kc

 (1.8)

As in the previous chapter, [Ms] and [Ks] represent, respectively, Mass matrix and Stiffness

matrix of the sector. (the subscript s is for sector). In this model, they assume the shape of 3x3

Matrices due to the 3 Dof explained.

In the next step, a boundary condition will be introduced in order to reduce the number of Dof

of the new model. This will let to consider also all the other sectors that, as said, are related to

the main one through a harmonic function but with a different phase. The difference of phase

will be called inter-blade phase angle ψn. The boundary condition could be, for example, impose

that the right Dof is a function of the left one through a parameter linked to ψn. It means:

{xd,R} = eiµ{xd,L} (1.9)

Thanks to this condition the number of Dof of the system pass from three to two and the new

parameter of the system become:

{x′} = {xd,R, xb}T (1.10)

To obtain the initial parameter {x} it is used a proper transformation matrix T that gives:

{x} = [T ]{x′} (1.11)

[
T
]

=


1 0

0 1

eiµ 0

 (1.12)

With the same procedure of the entire structure is possible to derive two times {x} and substitute

the results to the (1.6). Then multiply and pre-multiply, respectively, by [T] and by [T ]T the

14
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Mass Matrix [Ms] and the Stiffness Matrix [Ks] obtaining the final system:

[M ′s(µ)]ẍ′ + [K ′s(µ)]x′ = 0 (1.13)

with [M ′s(µ)] = [T ]T [Ms][T ]

and [K ′s(µ)] = [T ]T [Ks][T ]

Note that the value of µ can assume both positive or negative values of inter-blade phase angle

ψn such as:

µ = ±ψn = ±2π

N
n;

The inter-blade phase angle ψn depends on nodal diameters n =

[
0, . . . ,

N

2

]
with N even number.

It was assumed only positive values of ψn.

After performing the modal analysis of the system (1.13), two frequencies and a couple of

eigenvectors for each sector has been found. They are listed in the modal matrix [ψs(µ)]2x2. For

example,nodal diameter is equal to 1 should be obtained the same eigenvalues and eigenvectors of

the Entire Structure analysis for nodal diameter equal to 1. It’s possible to make a mathematical

comparison between the two methods by expanding the modal matrix [ψs(µ)]2x2 through a

matrix of expansion [Tψs ]2x2 that is 2Nx2 because expands the study of eigenvectors to all the

sectors with two Dof each. The procedure is shown below:

[ψexp(µ)] = [Tψs ][ψs(µ)] (1.14)

[
T
]

=


. . .

eikµ[I]

. . .

 (1.15)

with [I] as 2x2 matrix and k = [0, . . . , N − 1] for each µ.

It’s clear that the eigenvalue problem gives complex eigenvectors and any complex mode shape

of the structure can be expressed in terms of the deflected shape of just one substructure, by

use of the appropriate value of ψn.

In the following graphics are showed some example of eigenvectors values obtained thanks to

this method about Mode Shape 4:

15



Orlando Giulio

Figure 13: Mode Shape 4x0 without nodal circles

Figure 14: Mode Shape 4x1 with nodal circles
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To sum up, it was shown how for a given value of ψn, it is possible to evaluate all the

corresponding rotating mode shapes of one substructure and thence of the whole structure, from

the mass and stiffness matrices of one substructure without any approximation. By repeating

this for every possible value of ψn, it is possible to obtain all the mode shapes of the complete

structure [1].

More are the Dofs of the system, more are the time and storage required from the processor of a

computer. This analysis of single substructure with complex constraints demonstrates that time

and storage are reduced, especially for those eigenvalues subroutines that take a lot of central

processing time(CPU time) once [K] and [M] have been set up. This CPU time is proportional

to the number of Dof cubed for this reason reduce the Dof was one of the main purposes of the

new system. So it was reduced the starting system of the single sector from three degrees of

freedom to two. This method of analysis of rotationally periodic structure is implemented in a

lot of modern software like Ansys that has been used for the analysis of the next chapter.

The next chapter will take into account the presence of a Force Response in the general system

that lets to analyze the Frequency Response that better represents the real behavior of the

Bladed disk. This one, as it will be explained, suffers the presence of a mix of forces more or

less strong that generate stresses on the blades and on the disk and they must be considered.
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2 Chapter 2

Forced Response Analysis

As explained, during the start procedure and when it is operating, an engine generates several

vibration frequencies caused by its rotation. The vibrations are applied to all the elements of the

engine and especially on the bladed-disks which composed the compressor and the turbine. It

is important to gain an early understanding of the dynamic behaviour of bladed-disk assemblies

to prevent extremely dangerous resonant conditions for turbo-machinery stages. Even if, at

present, bladed-disk vibrations are not involved in any incidents, turbo-machine failures show

the necessity to predict them. The stress on the bladed disk born due to forces that act on from

the airflow to the blade adding on the rotational speed.

When an engine rotates, it emits a response(vibration) at a certain amplitude. As the speed of

rotation changes, the response changes too. The relation between this response, the rotational

speed and the frequency of rotation are expressed by a new parameter called Engine Order (EO).

In general, it aids in the analysis of noise and vibration signals in rotating machinery. In this case,

it will be useful to understand how blade or disk contributes to the overall level of vibration.

So the EO excitation is a periodic force. The sources of excitation could be self-excitation

or flatter, general unsteadiness and random turbulence or non-uniformities in working fluid

pressure. Angular non-uniformity in pressure causes dynamic excitation of rotating blades at

frequencies that are multiples of the rotation speed and with spatial distributions that match

nodal diameter modes.[7]

The frequency fi of the harmonics at which the engine is operating depends on the speed

turbine:

fi =
EO ∗ Ω

60
(2.1)

where Ω is the rotational speed (rpm).

With the variation of the rotation speed, is possible to draw for each value of EO the nth EO line.

If the time and revolutions can be related to a rotating system, then the same phenomenon

can be expressed as either a frequency or an order. Thus knowing the revolutions per minute

(rpm) of a rotating system allows frequency and order to be related to each other.
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Figure 15: Frequency and Engine Order comparison

Note that for bladed-disk assemblies only certain engine orders can be exited. These are defined

as:

EOα,ND,p = αN +ND (2.2)

where:

−α = 0, 1, 2, ..., N

−p corresponds to the sign ” + ” or ”–”.

−ND corresponds to the number of nodal diameters

Example: EO5,4,− = 5N − 4.

After this dissertation about what is the Engine Order is time to analyze the Force that acts

on the engine. This force is showed as axial in the following pictures but from theory is known

that its direction is arbitrary because it has a component in all three direction axial, radial

and tangential. For this step of analysis is not important the direction but just the meaning of

this force and how to use it for the calculation of frequency response in the 2D model that was

created.
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The excitation force vector {F} that acts on the blade is shown below:

Figure 16: Excitation Force

It can be expressed as a harmonic function:

F = {F0}e(iωt) (2.3)

This function has ω as excitation frequency and {F0} as amplitude. This amplitude results in a

complex value due to the relation with the inter-blade phase angle and the position of the blade

m.

{F0} = {F0}e(iφm) (2.4)

where

- {F0} amplitude vector of forcing function (F0 ∈ R)

- ψ inter-blade phase angle (ψ =
2π

N
n)

- m position of the blade (m = 1, . . . , N)

After the definition of Force Excitation is possible to define the system of equation for both

models of the Entire Structure and Single Sector as it was done in the previous chapter.
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2.1 Entire Structure

For the entire structure, the presence of External Force brings to a new parameter that should

be considered in the main equation of the model such as a damping matrix [C]. as known,

Damping is the dissipation of energy from a vibrating structure. From the theory, it is known

that the dissipation is the transformation of the energy into the other form of energy and this

means that there is a removal of energy from the vibrating system. The type of energy into

which the mechanical energy is transformed is dependent on the physical mechanism that causes

the dissipation. In the most common case, this energy is converted into heat. It is true also for

the compressor’s rotor wheel.

It is correct to say that any mathematical representation of the physical damping mechanism

in the equations of motion of the vibrating system has a generalization and approximation

and generalization of the true physical situation because the specific ways in which energy is

dissipated in vibration are depended upon the mechanism that acts on the structure. It means

that the type of damping that is present in the structure depends on the predominant mechanism

in each situation. For example, the Flight Phase could affect the operating condition.[5]

The main equation of the system should be:

[M ]{ẍ}+ [C]{ẋ}+ [K]{x} = {F} (2.5)

It was assumed that the damping phenomena has only viscous nature even if any causal model

which makes the energy dissipation functional non-negative is a possible candidate for a damping

model.To obtain the modal damping matrix it is necessary pre-multiply and post-multiply the

modal damping matrix [cr] by, respectively, the inverse of transpose modal matrix ([Ψ]T )
−1

and

the inverse of the modal matrix [Ψ]−1:

[C] = ([Ψ]T )
−1

[cr][Ψ]−1 (2.6)

For the definition of [cr] is necessary to establish a modal damping ratio ζr for each mode.To

be clear, the damping ratio is a dimensionless measure describing how oscillations in a system

decay after a disturbance. It depends from:

[cr] = diag(2ζr
√
krmr)

Is it clear that in the main equation the matrix [M ] and [K] are now modal matrix obtained

also by pre-multiply and post-multiply, respectively, with the inverse of transpose modal matrix

([Ψ]T )
−1

and the inverse of the modal matrix [Ψ]−1. So the value of kr and mr corresponds to
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the diagonal of respective modal mass and stiffness matrix.

Analyzing the differential equation, the solution obtained is a harmonic function as:

{x} = {X0}e(iωt) (2.7)

Taking the derivatives of {x} and substituting into (2.5) is possible to derive the value of

Response Amplitude {X0} as:

{X0} = [Kdyn]−1{F0} (2.8)

The dynamic stiffness matrix {Kdyn} in the formula corresponds to:

[Kdyn] = [K]− ω2[M ] + iω[C]

This matrix is a 2Nx2N matrix. Each solution of the system is listed for different Engine Order.

It is showed now an example of Force Response for the second nodal diameter that is present for

a range of frequency around the value of f = 98 for a system with N=146 sectors and a modal

damping ratio of 0.005.

Figure 17: Example of Force Response with EO=2 for disk
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Another Example that could be done, concerns the variation of modal damping ratio. It is

expected that more is the damping force acting on the system, less should be the force response.

It was demonstrated in the following picture where it’s clear how the amplitude of the force

became fainter. This example is always related to the second Mode Shape.

Figure 18: Example of Force Response for EO=1 for disk with different Modal Damping Ratio/

When the structure is excited by a frequency that concerns the disk, it doesn’t mean that

the blade doesn’t feel this Changement. Even the blade will have a little response from that

frequency that excites the disk, as results of a resonance phenomenon. In general, this influence

is neglectable because very small. It’s curious to note that this small response is different for

disk and blade cases. Analyzing the small blade resonance, it has just the same shape as the

general one with a peak of amplitude in the center. While for the small resonance of the disk

it as an unusual shape with a reverse amplitude that indicates that the disk vibrates in two

opposite directions under the blade’s frequency excitation. This due do the born of the nodal

circle at higher frequencies. The two cases are shown below and in addition, there is a zoomed

figure of the small disk response to note the reverse direction of the amplitude.
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This phenomena is showed in the following figures:

Figure 19: Example of Force Response for EO=1 for Disk.

Figure 20: Example of Force Response for EO=1 for Blade.
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Figure 21: Zoom of Resonance in the Disk at EO=1.

Higher is the EO, lower should be the amplitude of this small resonance in the other element

that not concerns that frequency range studied. This is true until the reaching of EO=73 that

is half of the number of sectors. And the same rule is valid for the Blade Dof for which this

value is EO=219. The figures will make clear this rule:

Figure 22: Diminuition of Resonance in the Disk at different EO.
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This happened only because the structure is symmetrical.

As explained the Engine Order determines the relationship between the response of the engine

at a certain rotational speed. So an analysis of the Force response to different values of Engine

Order lets to understand better the contributes of Blade and disk to the overall vibration that

affects the rotating engine. As an example is showed the case of the Force Response of the blade

at different EO for the First Mode Shape with a nodal circle too.

Figure 23: Force Response at different EO.

In this case, higher is the EO value and lower is the amplitude of the Force Response. This is

not a general rule and depends form different factors such as, for example, the number of sectors

of the structure. The next subsection will be showed the study of how is possible to use the

cyclic symmetry of the structure to success in the dynamic analysis of the overall structure just

studying the single sector.
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2.2 Single Sector

It is possible to apply the theory of Thomas even with a Force Response system thanks to the

cyclic symmetry of the structure. So the number of Dof will decrease. It will pass from three

to free, like for Chapter 1, due to the boundary condition that links the right side with the left

one.

{x′} = {xd,R, xb}T (2.9)

The excitation force will be applied on the Dof of the blade and is:

{F0s} = {0, F0}T (2.10)

The presence of the excitation force introduces in the main equation of the system the damping

matrix that is possible to obtain in the same way of the Entire Structure.

[M ′s(µ)]ẍ′ + [C ′s(µ)]ẋ′ + [K ′s(µ)]x′ = {F0s}(iωt) (2.11)

To confirm the value of this method is possible to compare the two ones in the following graph:

Figure 24: Comparison of Full-System and Cyclic Symmetry Response for EO=2
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3 Chapter 3

Mistuning Analysis

The present chapter will introduce the concept of mistuning on a bladed disk. After the short

introduction of the basic concepts, a simplified model will be analyzed to which a mistuning

condition will be simulated. After this process comparison between the 2D and 3D calculation

will be done in order to confirm that the method works and to expand the study to a more

complex model nearer to reality. To predict correctly the random phenomena of the mistuning

should need hundreds of degrees of freedom that will make the computational process very long.

The goal of this chapter is also to try to reduce this number applying the mistuning to a model

with a lumped degree of freedom applied in the main point that will be discussed later.

3.1 What is the Mistuning?

As several times said, the compressor is a periodic structure consisting of a finite number of

identical substructures or sectors that create the closed circular shape. It was demonstrated

that it is possible to study only one sector in order to represent the whole bladed disk dynamics

by applying the cyclic symmetry constraint at the sector interfaces. After expanding the results

performed for the single sector to the whole structure, as a result it is possible to obtain a

calculation thanks to what it’s showed the amplitude at which each sector vibrates. But as the

sectors are all equals even the results are perfectly in concordance. This is not true in reality.

There are small differences between sectors that destroys the cyclic symmetry of the bladed

disk. This fact let to an unpredictable force response of the structure of the system where such

a blade, for example, can vibrate with a larger amplitude than the nominal one. This random

disorder affecting the structure is called Mistuning. [9]

The reasons that let Mistuning to appear are several.

• The material with which the blades are build could have a nanostructure that presents

some irregularities very difficult to find.

• There could be the possibility that during the assembling of the engine some wrong steps

let to an asymmetric final product.

• The asymmetry could also occur after a long time due to aging or due to wear especially in

that part of contact condition such as blade root joint, snubbers, shrouds, under platform

dumpers.
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• The Maintenance or repair process could be dangerous in this case because could introduce

new elements that need to interfaces with the old one that could be changed their integrity

during their life-time.

• There could be the possibility of Foreign Object Damage.

The mistuning study began in the 1960s when researches like Tobias and Arnolds, Whitehead

[2] and Ewins [3] started to study the physics of the mistuning phenomenon. Their studies laid

the foundations for the next generation of analysis. They tried to find a solution to avoid the

negative effect that a phenomenon of vibration has in the structure of the bladed disk. Their

studies where mainly concerned about the forced response analysis of the system in order to catch

information about structural stability. Different scientist started to change the point of view of

the treatment staying on focus on the aerodynamics aspects for turbo-machinery applications

like for example flutter or buffeting that generate instability on the structure. Even if Technology

got increasingly sophisticated, the main problems related to the mistuning properties remained

unsolved until the 1990s. In these years, different approaches were used in order to better

understand the behavior of this phenomenon. One of these approaches was the use of lumped

parameters model that let to reduce considerably the number of degrees of freedom of the system

and so to make easy the test of the analysis. Crossed to this concept, the “Reduced-Order

Models” method grew up thanks to personalities like Yang and Griffin, Wang and Ewins. More

recently, Chan and Ewins studied the probability of extreme vibration levels due to mistuning.

However, due to differences of the built dynamics model and the adopted analysis methods,

there is no solid consensus about the maximum mistuning amplification factor. Furthermore, it

is important to note that the adopted analysis methods rely on different assumptions, based on

these assumptions, which may further limit their usefulness.[10]
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3.2 Simplified model

To start the analysis of mistuning it was created a simplified model on which the experimentation

was executed. This step was done due to simplifying the time of calculation of computer and if

the mistuning method will work for a simplified model, it will be possible to expand the procedure

also for a more complex model. The 3D simplified model was created on Ansys-Workbench

Software.

This model represents a Blisk such us a blade and a sector of disk together but it is an analysis

that could be expanded to other types of structure. In total, the sectors are 24 so the opening

angle of the sector is about 15 degrees. The height of the blade is more or less one-third of

the height of the sector. The main goal is to study a way to apply the mistuning so the detail

in the shape of the model in this step is not so crucial. It is enough that it simulates a bladed disk.

Figure 25: The Simplified Model for the analysis

30



Orlando Giulio

In order to define the nodes of the FEM Analysis, a coarse Mesh was created. A little number of

nodes will help the software on the generation of Matrix K and M. In this case, it was on focus

the number of nodes in the interfaces between each sector because it is there that the components

will be defined. After this step, a dynamic analysis is done on the 3D model obtaining some

frequencies that will be discussed later. Once that the nodes are defined, it was imported the

model on the Mechanical APDL platform where a reduced model will be created. It means that

from all the nodes only some of them will be taken into account.

Figure 26: Mesh of the Simplified Model
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To Start the modal analysis it is needed to have the matrices M and K. To get them a lumped

component was defined on the simplified model. To be exactly 4 components were created. Two

of them represent the two interface surfaces right and left of the sector of the disk. They took

around 45 nodes. And the other two represent the point of force applying(on the right) and the

point of Force Response(on the left) that took only one node. Some routines on Matlab were

used to get the matrices M and K. This lets to start the modal analysis on Matlab, such as on

the 1D reduced model. Some frequencies were obtained. It is interesting to compare the results

from the 3D simplified model on Ansys and the results from the 1D reduced model on Matlab.

As a sample, the first 25 frequencies have been compared.

Figure 27: Definition of Lumped Component
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3D Model 1D Model Error %

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 1394.82 1395.16528 0.00025

8 1872.16 1873.20679 0.0056

9 3190.11 3195.29184 0.00163

10 3221.10 3228.65387 0.00235

11 3535.74 3548.96097 0.00374

12 4710.53 4724.75905 0.00302

13 5069.76 5080.10419 0.00204

14 5694.31 5715.84849 0.00378

15 6305.58 6370.02887 0.01022

16 7164.46 7304.22894 0.01951

17 7955.97 8017.16444 0.00769

18 8457.51 8526.79711 0.00819

19 9097.56 9279.9884 0.02005

20 10368.16 10819.2903 0.04351

21 10673.64 10899.2959 0.02114

22 11195.10 11598.2542 0.03601

23 12677.57 12839.037 0.01274

24 12848.97 13394.8074 0.04248

25 12896.4 13440.186 0.04217

From a general overview is possible to say that the frequencies are almost the same. The 1D

Model follows the augmentation of the frequencies in a divergent way. It starts from the first

six frequencies that are zero. From the 7th frequency, some difference starts to be present and

is monitored through the calculation of the percentage error showed in the third column of the

table. It grows up but the value that it reaches is neglectable because too small. This error is

easy to understand because in the passage from the 3D model to the 1D model some properties

of the Structure have been lost.
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The main purpose is to create again the complete structure with all 24 sectors liked. To do it was

implemented a Matlab script in which one is able to match the stiffness and mass matrix of every

single sector. To start two-sector were matched as showed in the figure. It will be monitored the

trend of errors between the 3D and 1D model to better understand if the procedure is correct

or not. It is fundamental that the nodes of the interfaces of the right of the first sector matched

exactly with the nodes of the interfaces of the left of the second sector.

Figure 28: two sectors
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3D Model 1D Model Error %

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 1218.65 1219.564 0.00075252

8 1404.02 1404.46238 0.00031532

9 1526.43 1529.08774 0.00152945

10 2191.65 2195.00017 0.00174021

11 2773.60 2776.98575 0.00121994

12 3181.57 3184.91957 0.00105357

13 3212.51 3219.13541 0.00175162

14 3999.02 4003.25378 0.00105962

15 4006.29 4017.1678 0.00271529

16 4978.69 4988.99897 0.00207063

17 5145.66 5166.90871 0.00412979

18 5273.73 5311.64616 0.00718954

19 5374.61 5396.83792 0.00413627

20 5817.96 5843.38315 0.00437004

21 5995.05 6013.64018 0.00310159

22 6895.98 6938.47991 0.00616316

23 7503.77 7597.59344 0.01250369

24 8012.9 8112.72847 0.01245906

25 8256.71 8334.81523 0.00945998

Looking to the third column is possible to see that the error is decreasing respect of the table

for the single sector. It is expected that the 1D model presents more consistency in results

matching two or more sectors. It will be shown just for more comprehension in the case of three

and twenty-three sectors and how the error will change.
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Figure 29: three sectors
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3D Model 1D Model Error %

1 0.00 0.00 0.00

2 0.00 0.00 0.00

3 0.00 0.00 0.00

4 0.00 0.00 0.00

5 0.00 0.00 0.00

6 0.00 0.00 0.00

7 1040.58 1041.243165 0.00063818

8 1050.22 1051.109471 0.00084309

9 1422.93 1423.499289 0.00040003

10 1473.65 1475.89823 0.00152357

11 1577.66 1581.518303 0.00244538

12 2171.35 2175.710276 0.00200979

13 2398.87 2401.307164 0.00101504

14 2412.22 2415.347677 0.00129783

15 3234.06 3239.785086 0.00176982

16 3371.62 3375.162192 0.00105046

17 3885.81 3890.297223 0.00115560

18 4050.25 4056.569782 0.00156152

19 4105.90 4115.19841 0.00226433

20 4356.99 4366.125143 0.00209755

21 4470.20 4485.311388 0.00338144

22 4710.21 4718.908838 0.00184626

23 5083.99 5106.983553 0.00452199

24 5219.66 5264.939322 0.00867563

25 5489.40 5502.236638 0.00233884
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Figure 30: Twenty-three Sectors
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3D Model 1D Model Error %

1 0.00 0.00 0.00

2 0.00 0.00 0.00

3 0.00 0.00 0.00

4 0.00 0.00 0.00

5 0.00 0.00 0.00

6 0.00 0.00 0.00

7 56.50 56.54152456 0.000783611

8 117.35 117.4469923 0.000835377

9 173.68 173.830403 0.000855743

10 216.46 216.6160197 0.000715841

11 238.32 238.5306039 0.00087575

12 332.61 332.8613465 0.000760601

13 363.50 363.7567992 0.000695955

14 402.27 402.6844372 0.001021932

15 478.14 478.45261 0.000661376

16 517.79 518.1708174 0.000732869

17 595.77 596.1525845 0.000636943

18 663.83 664.2364225 0.000619284

19 745.73 746.2342822 0.000678484

20 764.51 764.9865888 0.00062045

21 800.37 801.194668 0.001027262

22 850.49 851.0637867 0.000669269

23 901.69 902.2926848 0.000666339

24 948.05 948.7149208 0.000700467

25 976.07 976.7643237 0.000712758
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Figure 31: Twenty-four Sectors

Twenty-four sectors were matched. It was important the last one had the nodes of the interface

of right matched with the nodes of the interfaces of the left of the first sector. This let to create

the full Global Stiffness and Mass Matrices as 3960x3960 matrices. It is possible to examine the

shape of these matrices in the following figures:
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Figure 32: Global Stiffness Matrix K

Figure 33: Global Mass Matrix M
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3D Model 1D Model Error %

1 0.00 0.00 0.00

2 0.00 0.00 0.00

3 0.00 0.00 0.00

4 0.00 0.00 0.00

5 0.00 0.00 0.00

6 0.00 0.00 0.00

7 161.0263407 161.1496696 0.000765892

8 161.0263407 161.1496696 0.000765892

9 283.4317844 283.7195517 0.001015296

10 366.7925858 367.045568 0.000689715

11 366.7925858 367.045568 0.000689715

12 570.2851532 570.601381 0.000554508

13 570.2851532 570.601381 0.000554508

14 570.6330038 571.1073454 0.000831255

15 570.6330038 571.1073454 0.000831255

16 749.5862966 750.0290154 0.000590618

17 749.5862966 750.0290154 0.000590618

18 895.4937878 896.0629978 0.000635638

19 895.4937878 896.0629978 0.000635638

20 919.6852119 920.6338952 0.00103153

21 919.6852119 920.6338952 0.00103153

22 978.5351992 979.2941458 0.000775595

23 978.5351992 979.2941458 0.000775595

24 1007.596531 1008.355477 0.000753225

25 1007.596531 1008.355477 0.000753225

For the complete structure appear again the double frequencies as studied in the first two

chapters. Even for the 1D model, this happened and the error between the two models decreased

a lot. the difference is about the 0.0007%. This means that it is possible to work on the 1D

model without making a big mistake. Let’s apply the Mistuning Condition.

The Mistuning condition could be applied for mass or for stiffness. This study lets to analyze

what happens if the Mistuning condition is applied in the stiffness matrix K. It will be shown

only the case of one sector and full structure. In the detail, it was modified the first element of

the stiffness matrix k11.
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This element is modified of 5%. This means:

k11 = 1.05 ∗ k11 (3.1)

After this modification, the eigenvalues were calculated again to analyze the percentage error.First

of all it is showed the differences for the single sector and then for the complete structure.

Table 1: Single Sector

Frequencies [Hz] Mistuned Frequencies [Hz] Error %

1 0.00 0.00 0.000

2 0.00 0.00 0.000

3 0.00 0.00 0.000

4 0.00 0.00 0.000

5 0.00 0.00 0.000

6 0.00 0.00 0.0000

7 1395.165281 1400.00 0.0035

8 1873.21 1879.00 0.0031

9 3195.29 3201.00 0.0018

10 3228.65 3229.00 0.0001

11 3548.96 3555.00 0.0017

12 4724.76 4725.00 0.0001

13 5080.10 5088.00 0.0016

14 5715.85 5722.00 0.0011

15 6370.03 6377.00 0.0011

16 7304.23 7305.00 0.0001

17 8017.16 8022.00 0.0006

18 8526.80 8532.00 0.0006

19 9279.99 9285.00 0.0005

20 10819.29 10820.00 0.0001

21 10899.30 10907.00 0.0007

22 11598.25 11604.00 0.0005

23 12839.04 12839.00 0.0000

24 13394.81 13395.00 0.0000

25 13440.19 13440.00 0.0000
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Table 2: Complete Structure

Frequencies [Hz] Mistuned Frequencies [Hz] Error %

1 0.00 0 0

2 0.00 0 0

3 0.00 0 0

4 0.00 0 0

5 0.00 0 0

6 0.00 0 0

7 161.1496696 161.13 0.00093

8 161.1496696 203.38 0.25970

9 283.7195517 296.35 0.04328

10 367.045568 367.03 0.00012

11 367.045568 368.59 0.00260

12 570.601381 571.60 0.00070

13 570.601381 571.62 0.00070

14 571.1073454 571.1 0.00019

15 571.1073454 574.83 0.00506

16 750.0290154 750.04 0.00004

17 750.0290154 750.05 0.00004

18 896.0629978 896.07 0.00007

19 896.0629978 897.2 0.00007

20 920.6338952 921.64 0.00040

21 920.6338952 962.03 0.04493

22 979.2941458 979.30 0.00030

23 979.2941458 979.61 0.00030

24 1008.355477 1008.34 0.00035

25 1008.355477 1008.78 0.00035

As a consequence of Mistuning, the couple for the frequencies has been lost. This is the

discrepancy between theory and practice that is occurred in reality when an engine is operating.

The fact that the frequencies are not anymore in a couple, means that the structure lost its cyclic

symmetry properties in little percentage. The main purpose of a Structural Health Monitoring

of the system is to predict these changes during the design of the engine. So, now, the main

question is if it is possible to estimate the variation of difference using a difference easier and

more immediate method? It will be seen in the next Chapter.
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4 Chapter 4

Simplified Calculation of Eigenvalues Derivatives

In chapter 3, the Mistuning condition where applied modifying directly the Mass or Stiffness

matrices. Then new eigenvalues of the modified matrices were calculated to find the differences

between the non-modified ones. In this chapter is presented an alternative and simpler procedure

for the determination of the derivatives of the eigenvalues of nth order algebraic eigensystems.

This paper will treat only the case of Derivatives of Eigenvalues. The input elements of this

method are one eigenvalue and its right and left eigenvectors. The matrices of the system could

be symmetric or non-symmetric. In this procedure, the nth-order (n-1) rank system of equations

is directly and simply modified to form a system of equations of rank n. This method is exposed

by Nelson [11] and Ojalvo [12] respectively for Non-repeated roots and repeated roots condition.

First of all, the Nelson procedure will be explained.[13]

4.1 Non-repeated roots

If λi is not a repeated root, there are numerous ways for obtaining the eigenvalue gradients.

Nelson presents one of the most efficient non-modal expansion methods that preserve the

bandwidth of the original system matrices. In the case of the bladed disk of this paper, the

case of no-repeated roots coincides with the analysis of the single sector. To start let analyze

the eigenvalue equation of finite element analysis of a structure:

([K]− λi[M ]){Xi} = 0 (4.1)

where λi represents the natural frequencies and {Xi} represents the eigenvectors. The next step

is to derive this equation such as:

(
δ
δp

)
([K]− λi[M ]){Xi} = {0}

This brings to the following equation:

([K]− λi[M ])
(
δXi
δp

)
= −

[(
δK
δp

)
−
(
δλi
δp

)
M − λi

(
δM
δp

)]
{Xi}

From this equation, the derivation of mass matrix is neglectable because the mass matrix is a

constant. Furthermore, The eigenvalue derivative is obtained by pre multiplying the equation

by {Xi}T , as follows:

{Xi}T ([K]− λi[M ])
(
δXi
δp

)
= −{Xi}T

[[
δK
δp

]
−
(
δλi
δp

)
[M ]

]
{Xi}
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This could be done because, in this case, left eigenvectors {Yi} and right eigenvectors {Xi}

coincide.

Form an overview of this formula is possible to note that the element on the first side of

the equation {Xi}T ([K] − λi[M ]) is zero because represents again the main equation of finite

elements. The equation becomes:

{0} = −{Xi}T
[
δK
δp

]
{Xi}+ {Xi}T

(
δλi
δp

)
[M ] {Xi}

It is necessary to consider the norm for {Xj} , usually in the form {Xi}T [M ] {Xi} = 1. This

means that the final equation should be:

(
δλi
δp

)
= {Xi}T

[
δK

δp

]
{Xi} (4.2)

This is the equation to obtain the eigenvalue derivative. To compare the solution with the

method in chapter 3 it is needed to derive respect to the same element. It means that the

parameter p corresponds to k11. Such as:

(
δλi
δk11

)
= {Xi}T

[
δK

δk11

]
{Xi} (4.3)

Through a script of Matlab it was possible to compare the two ∆ of the difference between the

two methods. The two delta are:

∆λ = (λm − λ) (4.4)

∆λmistuned =

(
δλi
δk11

)
(0.05 ∗K1,1) (4.5)

The results are displayed below:
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Figure 34: Results of Nelson’s Method
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4.2 Repeated roots

To develop the Ojalvo’s method must follow the same procedure of the Nelson’s Method but

using the global matrices of Mass and Stiffness. After modified the element K11 must care about

re-assembling of the Global matrices and applying the same equation:(
δλi
δk11

)
full

= {Xi}T
[
δKglob

δk11

]
{Xi} (4.6)

Figure 35: Results of Ojalvo’s Method
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The analysis of the data of the two graphs show an error between the two delta listed below:

# Error of Nelson’s Method Error of Ojalvo’s Method

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0.13370107 —

8 0.122298059 0.063628639

9 0.165371843 0.042925821

10 0.049300901 —

11 0.113539144 0.846400336

12 0.154446553 —

13 0.136446583 0.691165108

14 0.123507639 —

15 0.113223659 0.982030555

16 0.124284218 —

17 0.133071572 0.329565806

18 0.119212913 —

19 0.117824633 0.44276883

20 0.243133799 —

21 0.12500031 0.561980694

22 0.114629166 —

23 0.133399562 0.930587701

24 0.168568665 —

25 0.175587786 0.342921357

The Nelson’ method shows an average percentage error of about 8% while Ojalvo’s one shows

an average percentage error of about 4%. It is possible to observe that the error is still little and

this demonstrates that to evaluate the mistuned effect on the structure is possible to use the

method of eigenvalues derivatives that is faster than the first one and give results acceptable.
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5 Conclusion

It is shown in this paper that Modal parameters identified from the measured data represent

the dynamic characteristics of a vibrating system and often serve as input to model updating,

health monitor or damage diagnosis. To identify the modal parameters of a system, both the

excitation force and the response of the system should be measured and the frequency response

function between the excitation and the response needs to be calculated. When performing

modal analysis one of the key decisions that must be upon starting to analyze the data is to

decide how many modes there are in the frequency range of interest.

It was shown how to simulate a Mistuning condition on the bladed disk of a compressor in

order to understand how the structure lost his cyclic symmetry. This phenomenon is very

dangerous in terms of Safety. For this reason, it is important to predict the mistuning’s effects

in an easier way. This way was demonstrated in Chapter 4 were two new methods were treated.

The results confirmed that the discrepancy between the two philosophy of calculation are similar

and this means that is possible to use the fastest methods exposed in Chapter 4, instead of the

one exposed in Chapter 3. To better evaluate the effect of the Mistuning it should be important

to make analysis also related to the eigenvectors derivatives. But this theme was not treated in

this paper.

It was presented that the mistuning jump phenomenon led to significant vibration response

localization in the mistuned bladed disk. From a future perspective, this means that must be

of primary importance to investigate the trend of Mistuning effects to predict the static and

dynamic stresses of the structure in order to avoid the failure of the component.

The tasks reached with this paper could be summed up as:

• To investigate the dynamics of rotationally periodic structure with the FEM benchmark:

natural frequencies, mode shapes, and forced responses;

• To verify that a complete structure mistuned model lost his cyclic symmetric properties;

• To show how it is possible to obtain approximately the same results of Mistuning conditions

with eigenvalues derivatives methods.
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Appendices

A Matlab script

Here is possible to overview the script of matlab that let to obtain the simplified method to

calculate eigenvalues derivatives.

Non-repeated roots

1 c l e a r a l l

2 c l c

3

4 load ( ’KM.mat ’ ) ;

5 load ( ’ Master Nodes . mat ’ ) ;

6 load ( ’Map.mat ’ ) ;

7

8 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

9 [ eigVect , lambda ] = e i g (K,M) ;

10 [ omega n ip ] = so r t ( diag ( sq r t ( lambda ) ) ) ;

11 X = eigVect ( : , ip ) ;

12 perc =5/100;

13

14 K2=K;

15 K2(1 ,1 )=K2(1 ,1 ) ∗(1+perc ) ;

16 [ eigVect2 , lambda2 ] = e i g (K2 ,M) ;

17 [ omega n2 ip ] = so r t ( diag ( sq r t ( lambda2 ) ) ) ;

18 X2 = eigVect2 ( : , ip ) ;

19

20

21 dK = ze ro s (300) ;

22 dK(1 ,1 ) =1; %va r i a z i on e r i s p e t t o a l primo va lo r e d iagona le k11

23 n=25;

24 i =1;

25 f o r i =1:n

26 DELTA1( i )=lambda2 ( i , i )−lambda ( i , i ) ;

27 dlambda ( i )=X(1 , i ) ˆ2 ;

28 DELTA2( i )=dlambda ( i ) ∗(K(1 ,1 ) ∗perc ) ;

29 f p r i n t f (1 , ’%12.0 f %12.0 f %12.0 f %12.0 f \n ’ , lambda ( i , i ) , lambda2 ( i , i ) ,DELTA1( i ) ,DELTA2( i ) ) ;

30 i=i +1;

31 end

Repeated roots

1 c l e a r a l l

2

3 load ( ’KM.mat ’ ) ;

4 load ( ’ Master Nodes . mat ’ ) ;

5 load ( ’Map.mat ’ ) ;

6

7 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

8 % [ eigVect , lambda ] = e i g (M\K) ;

9 [ eigVect , lambda ] = e i g (K,M) ;

10

11 [ omega n ip ] = so r t ( diag ( sq r t ( lambda /1000) ) ) ;

12

13 Psi = eigVect ( : , ip ) ;

51



Orlando Giulio

14 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

15 % se c t o r dof

16 Ndof sec t = length (K) ;

17

18 % i n t e r f a c e dof

19 Ndof int = length ( do f i n tL ) ;

20

21 % Number o f s e c t o r s

22 nsec = 24 ;

23

24 % Number o f modes

25 Nmodes = 24 ;

26

27 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

28 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

29 %

30 % Global s t i f f n e s s matrix tuned d i sk

31 N = nsec ∗( Ndof sec t − Ndof int ) ;

32 K glob = ze ro s (N,N) ;

33 M glob = ze ro s (N,N) ;

34

35 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

36 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

37 % F i r s t s e c t o r unchanged

38 K glob ( 1 : Ndof sect , 1 : Ndof sec t ) = K;

39 M glob ( 1 : Ndof sect , 1 : Ndof sec t ) = M;

40

41 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

42 % Sec to r s from second to the second−l a s t

43 f o r ns = 2 : nsec−1

44

45 map mtrx ( 1 : Ndof int ) = dof intR + ( ns−2)∗( Ndof sec t − Ndof int ) ;

46 map mtrx ( Ndof int +1:2∗Ndof int ) = T dofs + ( ns−1)∗( Ndof sec t − Ndof int ) ;

47 map mtrx (2∗Ndof int +1:2∗Ndof int+3) = ID F + ( ns−1)∗( Ndof sec t − Ndof int ) ;

48 map mtrx (2∗Ndof int +4:2∗Ndof int+6) = ID R + (ns−1)∗( Ndof sec t − Ndof int ) ;

49 map mtrx (2∗Ndof int +7: Ndof sec t ) = [2∗ Ndof int +7:1: Ndof sec t ]+ ( ns−1)∗( Ndof sec t − Ndof int ) ;

50

51 f o r i = 1 : l ength (map mtrx )

52 irow = map mtrx ( i ) ;

53

54 f o r j = 1 : l ength (map mtrx )

55 j c o l = map mtrx ( j ) ;

56 K glob ( irow , j c o l ) = K glob ( irow , j c o l ) + K( i , j ) ;

57 M glob ( irow , j c o l ) = M glob ( irow , j c o l ) + M( i , j ) ;

58 end

59

60 end

61

62 end

63

64 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

65 % Assembling the l a s t s e c t o r

66 ns = nsec ;

67

68 map mtrx ( 1 : Ndof int ) = dof intR + ( ns−2)∗( Ndof sec t − Ndof int ) ;

69 map mtrx ( Ndof int +1:2∗Ndof int ) = do f in tL ;

70 map mtrx (2∗Ndof int +1:2∗Ndof int+3) = ID F − Ndof int + ( ns−1)∗( Ndof sec t − Ndof int ) ;

71 map mtrx (2∗Ndof int +4:2∗Ndof int+6) = ID R − Ndof int + ( ns−1)∗( Ndof sec t − Ndof int ) ;

72 map mtrx (2∗Ndof int +7: Ndof sec t ) = [2∗ Ndof int +7:1: Ndof sec t ] − Ndof int + ( ns−1)∗( Ndof sec t − Ndof int ) ;

73

74 f o r i = 1 : l ength (map mtrx )

75 irow = map mtrx ( i ) ;

76

77 f o r j = 1 : l ength (map mtrx )

78 j c o l = map mtrx ( j ) ;

79 K glob ( irow , j c o l ) = K glob ( irow , j c o l ) + K( i , j ) ;
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80 M glob ( irow , j c o l ) = M glob ( irow , j c o l ) + M( i , j ) ;

81 end

82

83 end

84 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

85 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

86

87 [ eigVect , lambda ] = e i g ( K glob , M glob ) ;

88

89 % % % lambda = diag ( lambda ) ;

90 % % %

91 % % % [ omega n ip ] = so r t ( diag ( sq r t ( lambda ) ) ) ;

92

93 lambda = diag ( lambda ) ;

94 [ omega n ip ] = so r t ( sq r t ( lambda /1000) ) ;

95 lambda = lambda ( ip ) ;

96

97 Psi = eigVect ( : , ip ) ;

98 f = omega n/2/ pi ;

99

100 f p r i n t f (1 , ’%10.0 f \n ’ , r e a l ( f ( 1 : 2 5 ) ) ) ;

101 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

102 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

103 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

104 %

105 % Global s t i f f n e s s matrix mituned d i sk

106 N = nsec ∗( Ndof sec t − Ndof int ) ;

107 K globMT = zero s (N,N) ;

108 M globMT = zero s (N,N) ;

109

110 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

111 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

112 % F i r s t s e c t o r unchanged

113 K globMT (1 : Ndof sect , 1 : Ndof sec t ) = K;

114 M globMT (1 : Ndof sect , 1 : Ndof sec t ) = M;

115

116 perc= 5/100;

117 K globMT(1 ,1 )=K globMT(1 ,1 ) ∗(1+perc ) ;

118

119 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

120 % Sec to r s from second to the second−l a s t

121 f o r ns = 2 : nsec−1

122

123 map mtrx ( 1 : Ndof int ) = dof intR + ( ns−2)∗( Ndof sec t − Ndof int ) ;

124 map mtrx ( Ndof int +1:2∗Ndof int ) = T dofs + ( ns−1)∗( Ndof sec t − Ndof int ) ;

125 map mtrx (2∗Ndof int +1:2∗Ndof int+3) = ID F + ( ns−1)∗( Ndof sec t − Ndof int ) ;

126 map mtrx (2∗Ndof int +4:2∗Ndof int+6) = ID R + (ns−1)∗( Ndof sec t − Ndof int ) ;

127 map mtrx (2∗Ndof int +7: Ndof sec t ) = [2∗ Ndof int +7:1: Ndof sec t ]+ ( ns−1)∗( Ndof sec t − Ndof int ) ;

128

129 f o r i = 1 : l ength (map mtrx )

130 irow = map mtrx ( i ) ;

131

132 f o r j = 1 : l ength (map mtrx )

133 j c o l = map mtrx ( j ) ;

134 K globMT( irow , j c o l ) = K globMT( irow , j c o l ) + K( i , j ) ;

135 M globMT( irow , j c o l ) = M globMT( irow , j c o l ) + M( i , j ) ;

136 end

137

138 end

139

140 end

141

142 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

143 % Assembling the l a s t s e c t o r

144 ns = nsec ;

145
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146 map mtrx ( 1 : Ndof int ) = dof intR + ( ns−2)∗( Ndof sec t − Ndof int ) ;

147 map mtrx ( Ndof int +1:2∗Ndof int ) = do f in tL ;

148 map mtrx (2∗Ndof int +1:2∗Ndof int+3) = ID F − Ndof int + ( ns−1)∗( Ndof sec t − Ndof int ) ;

149 map mtrx (2∗Ndof int +4:2∗Ndof int+6) = ID R − Ndof int + ( ns−1)∗( Ndof sec t − Ndof int ) ;

150 map mtrx (2∗Ndof int +7: Ndof sec t ) = [2∗ Ndof int +7:1: Ndof sec t ] − Ndof int + ( ns−1)∗( Ndof sec t − Ndof int ) ;

151

152 f o r i = 1 : l ength (map mtrx )

153 irow = map mtrx ( i ) ;

154

155 f o r j = 1 : l ength (map mtrx )

156 j c o l = map mtrx ( j ) ;

157 K globMT( irow , j c o l ) = K globMT( irow , j c o l ) + K( i , j ) ;

158 M globMT( irow , j c o l ) = M globMT( irow , j c o l ) + M( i , j ) ;

159 end

160

161 end

162 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

163 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

164

165 [ eigVectMT , lambdaMT ] = e i g (K globMT ,M globMT) ;

166

167 lambdaMT = diag (lambdaMT) ;

168 [ omega nMT ip ] = so r t ( sq r t (lambdaMT/1000) ) ;

169 lambdaMT = lambdaMT( ip ) ;

170

171 PsiMT = eigVectMT ( : , ip ) ;

172 fMT = omega nMT/2/ pi ;

173

174 f p r i n t f (1 , ’%10.0 f \n ’ , r e a l (fMT(1 : 2 5 ) ) ) ;

175 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

176

177 lambdaMT = r e a l (lambdaMT) ;

178 lambda = r e a l ( lambda ) ;

179

180 f o r i = 7 :25

181 Deltalambda ( i ) = lambdaMT( i )−lambda ( i ) ;

182 der lambda ( i ) = r e a l ( Psi (1 , i ) ˆ2) ;

183 DK11 = K(1 ,1 ) ∗perc ;

184 Dlambda( i )= r e a l ( der lambda ( i )∗DK11) ;

185 f p r i n t f (1 , ’%12.0 f %12.0 f %12.0 f %10.0 f \n ’ , lambda ( i ) , lambdaMT( i ) , Deltalambda ( i ) ,Dlambda( i ) ) ;

186 end

187

188 ip = [1 2 3 4 5 6 8 7 9 11 10 12 13 15 14 16 17 18 19 20 21 22 23 24 2 5 ] ;

189

190 y=[abs ( Deltalambda ’ ) ,Dlambda( ip ) ’ ] ;

191

192 bar (y ( 7 : 1 6 , : ) ) ;
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