# POLITECNICO DI TORINO

Facoltà di Ingegneria

Corso di Laurea Magistrale in Ingegneria Aerospaziale



Tesi di Laurea Magistrale

Progetto aerodinamico e ottimizzazione 3D di un effusore transonico

Relatore

Prof. Michele Ferlauto

Candidato

Fabrizio Zocca

Un grande ringraziamento va a mia madre Maria Laura, con il suo dolce ed instancabile sostegno, mi ha permesso di crescere e maturare, contribuendo in maniera fondamentale a questo grande traguardo.

Un altro grande ringraziamento va a mio padre Silvio, il quale avrebbe assolutamente voluto essere presente per assistere a questo traguardo, frutto anche del suo grande e perenne sostegno, sia personale che scolastico.

Ringrazio inoltre mio fratello Stefano, collega del Politecnico, per i consigli ed il supporto datomi in questi anni. Accade che siano i fratelli minori, in certi casi, ad essere di esempio ai maggiori, e noi rientriamo in questa categoria. Grazie per l'esempio universitario datomi, facendomi capire che il Politecnico può essere affrontato anche come una bella avventura, e non solo come una montagna da scalare.

Desidero ringraziare la mia fidanzata Maddalena per il supporto e la comprensione datomi in questi anni universitari. Conseguire la Laurea al Politecnico è un'impresa difficile, ma sopportare come compagno uno studente del Politecnico non è da meno, sostenerlo sempre è un impresa.

Ringrazio i miei parenti, chi è presente e chi non c'è più. Tutti, in un modo o nell'altro, hanno contribuito a questo risultato.

Ringrazio infine i miei amici, senza i quali probabilmente non mi troverei alle soglie di questo traguardo, per i continui sostegni, consigli ed esempi, che mi hanno aiutato durante questi duri anni universitari. Amici nuovi e vecchi, tutti quanti, hanno contribuito ad aiutarmi in questo cammino, ed a loro va un sentito ringraziamento.

# INDICE

- INDICE DELLE FIGURE
- NOMENCLATURA
  - Simboli utilizzati
- Costanti
- 1. Introduzione
  - 1.1 Condizioni ambientali
  - 1.2 Motore
- 2. Complementi teorici
  - 2.1 Equazioni di governo
    - 2.1.1 Equazione di continuità
    - 2.1.2 Equazione di conservazione della quantità di moto
    - 2.1.3 Equazione di conservazione dell'energia
    - 2.1.4 Equazione di stato dei gas
  - 2.2 Condotto convergente-divergente
  - 2.3 Fluido viscoso teoria dello strato limite
    - 2.3.1 Regime laminare
    - 2.3.2 Regime transitorio
    - 2.3.3 Regime turbolento
    - 2.3.4 Studio dello strato limite
    - 2.3.5 Strato limite in un condotto
  - 2.4 Modello di turbolenza
- 3. Grandezze termodinamiche e geometria
  - 3.1 Grandezze termodinamiche ottimizzate
  - 3.2 Profilo 2D
    - 3.2.1 Tratto convergente
    - 3.2.2 Area di gola
    - 3.2.3 Raccordo
    - 3.2.4 Tratto divergente
    - 3.2.5 Condotto Completo
  - 3.3 Profilo assialsimmetrico
    - 3.3.1 Tratto convergente
    - 3.3.2 Area di gola
    - 3.3.3 Raccordo
    - 3.3.4 Tratto divergente
    - 3.3.5 Condotto Completo
  - 3.4 Lamina Piana
  - 3.5 Grandezze termodinamiche lungo i profili
- 4. OpenFOAM
  - 4.1 Introduzione
  - 4.2 Installazione del programma
  - 4.3 Struttura del programma
  - 4.4 Analisi delle cartelle
    - 4.4.1 System

- 4.4.1.1.1 blockMeshDict
- 4.4.1.1.2 controlDict
- 4.4.1.1.3 fvSchemes
- 4.4.1.1.4 fvSolutions
- 4.4.1.1.5 decomposeParDict
- 4.4.2 Constant
  - 4.4.2.1.1 thermophysicalProperties / thermodynamicProperties
  - 4.4.2.1.2 turbolenceProperties
- 4.4.3 0
  - 4.4.3.1.1 U
  - 4.4.3.1.2 T
  - 4.4.3.1.3 P
  - 4.4.3.1.4 alphaT
  - 4.4.3.1.5 nut
  - 4.4.3.1.6 nuTilda
- 4.4.4 File di testo
- 4.5 ParaView
- 5. Pre-Processing
  - 5.1 Profilo 2D fluido inviscido
  - 5.2 Profilo assialsimmetrico fluido inviscido
  - 5.3 Profilo assialsimmetrico fluido inviscido fancurve
  - 5.4 Lamina piana fluido viscoso
  - 5.5 Profilo assialsimmetrico fluido viscoso
- 6. Verifica funzionamento del programma
  - 6.1 Flusso unidimensionale
  - 6.2 Condizione di stabilità CFL
  - 6.3 Sensibilità del programma
  - 6.4 Ortogonalizazione griglia di calcolo
  - 6.5 Griglia di calcolo in presenza di punti di discontinuità del profilo
- 7. Solving
- 8. Post-Processing
  - 8.1 Profilo 2D fluido inviscido
  - 8.2 Profilo assialsimmetrico fluido inviscido
  - 8.3 Profilo assialsimmetrico fluido inviscido fancurve
  - 8.4 Lamina piana fluido viscoso
  - 8.5 Profilo assialsimmetrico fluido viscoso
- 9. CONSIDERAZIONI FINALI
- 10. ALLEGATI
- 11. SITOGRAFIA
- 12. BIBLIOGRAFIA

#### **INDICE DELLE FIGURE**

- Immagine 1 Tipologie di droni: militare e civile.
- Immagine 2 Andamento della densità al variare della quota.
- Immagine 3 Andamento della pressione al variare della quota.
- Immagine 4 Motore SAITO-FG11.
- Immagine 5 Condotto convergente-divergente.
- Immagine 6 Andamento della pressione lungo un condotto convergente-divergente.
- Immagine 7 Andamento del numero di Mach lungo un condotto convergente-divergente.
- Immagine 8 Strato limite: 1) Laminare, 2) Transizione, 3) Sottostrato laminare, 4) Punto di separazione, 5)Strato separato, 6) Strato turbolento.
- Immagine 9 Strato limite laminare.
- Immagine 10 Strato limite turbolento.
- Immagine 11 Vista laterale e frontale del profilo 2D.
- Immagine 12 Rappresentazione del profilo su Paraview, frontalmente e lateralmente.
- Immagine 13 Vista laterale e frontale del condotto assialsimmetrico.
- Immagine 14 Rappresentazione del condotto su Paraview, frontalmente e lateralmente.
- Immagine 15 Lamina piana.
- Immagine 16 Panoramica della struttura di OpenFOAM.
- Immagine 17 Interfaccia di Paraview.
- Immagine 18 File fanCurve di funzionamento del fan.
- Immagine 19 Andamento del numero di Reynolds lungo la lamina piana.
- Immagine  $21 u + f(\log(y+))$  ottenuto dal database NASA.
- Immagine 22- Andamento C<sub>f</sub> lungo la lamina piana.
- Immagine 23 Andamento del numero di Reynolds locale lungo il la lamina piana.
- Immagine 25 Variazione della curvatura delle superfici di input e output.
- Immagine 26 Griglia di calcolo nella sezione convergente, divergente e di gola.
- Immagine 27 Comportamento mesh in caso di presenza di una punto di discontinuità.
- Immagine 28 Visione del profilo e distribuzione del numero di Mach.

- Immagine 29 Andamento del numero di Mach lungo il profilo.
- Immagine 30 Griglia di calcolo del profilo 2D.
- Immagine 31 Andamento della densità lungo il profilo.
- Immagine 32 Andamento della pressione lungo il profilo.
- Immagine 33 Andamento della temperatura lungo il profilo.
- Immagine 34 Visione del profilo assialsimmetrico e distribuzione del numero di Mach.
- Immagine 35 Andamento del numero di Mach ricavato da OpenFOAM, comparato con l'andamento del numero di Mach teorico.
- Immagine 36 Andamento della densità ricavato da OpenFOAM, comparato con l'andamento teorico.
- Immagine 37 Andamento della pressione ricavato da OpenFOAM, comparato con l'andamento teorico.
- Immagine 38 Andamento della temperatura ricavato da OpenFOAM, comparato con l'andamento teorico.
- Immagine 39 Andamento del numero di Mach ricavato da OpenFOAM tramite la funzione fanCurve, comparato con l'andamento del numero di Mach teorico.
- Immagine 40 Calcolo valore di  $\tau$  tramite la scomposizione della derivata.
- Immagine  $41 u + f(\log(y+))$  per una mesh di  $10^{-4}$ .
- Immagine  $42 u + f(\log(y+))$  per una mesh di  $10^{-6}$ , comparazione valori numerici e teorici.
- Immagine  $43 u + f(\log(y+))$  per una mesh di  $10^{-6}$ , comparazione valori numerici e valori NASA.
- Immagine  $44 u + f(\log(y+))$  comparazione valori numerici a tre diverse postazioni.
- Immagine 45 Andamento della velocità lungo lo strato limite, dato un infittimento mesh di  $10^{-6}$ .
- Immagine 46 Profilo assialsimmetrico con fluido viscoso.
- Immagine 47 Andamento del numero di Mach (profilo assialsimmetrico, fluido viscoso).
- Immagine 48 Andamento della pressione (profilo assialsimmetrico, fluido viscoso).
- Immagine 49 Andamento della temperatura (profilo assialsimmetrico, fluido viscoso).
- Immagine 50 Andamento della densità (profilo assialsimmetrico, fluido viscoso).
- Immagine 51 Andamento della pressione (profilo assialsimmetrico, fluido viscoso) per diverse quote.
- Immagine 52 Andamento della temperatura (profilo assialsimmetrico, fluido viscoso) per diverse quote.
- Immagine 53 Andamento della densità (profilo assialsimmetrico, fluido viscoso) per diverse quote.

# NOMENCLATURA

# Simboli utilizzati

| Α           | Area                | [cm <sup>2</sup> ] |
|-------------|---------------------|--------------------|
| D           | Diametro            | [cm]               |
| r           | Raggio              | [cm]               |
| Р           | Pressione           | [Pa]               |
| U           | Velocità            | [m/s]              |
| Т           | Temperatura         | [K]                |
| ρ           | Densità             | [kg/m³]            |
| М           | Mach                |                    |
| R           | Costante dei gas    | [J/kg*K]           |
| Re          | Numero di Reynolds  |                    |
| Pr          | Numero di Prandtl   |                    |
| t           | Тетро               | [s]                |
| Ср          | Calore specifico    | [J/kg*K]           |
| h           | Altitudine          | [m]                |
| Р           | Potenza             | [W], [CV]          |
| m           | Massa               | [kg], [g]          |
| F           | Forza               | [N]                |
| 'n          | Portata massica     | [kg/s]             |
| $\dot{m}_v$ | Portata volumetrica | [m³/s]             |
| Kn          | Numero di Knudsen   |                    |
| $ec{q}$     | Vettore velocità    |                    |
| Ε           | Energia             | [J]                |

# Costanti

$$\label{eq:response} \begin{split} &\mathsf{R} = 287.05 \; \mathsf{J/kg^*K} \\ &\mathsf{Cp} = 1005 \; \mathsf{J/kg^*K} \\ &\varphi = 1.4 \\ &\mu = 1.81 \; ^*10^{-5} \; \mathsf{Pa^*s} \\ &\nu = 1.7 \; ^*10^{-5} \; \mathsf{m^2/s} \end{split}$$

# 1. Introduzione

In questi ultimi anni si è assistito ad uno sviluppo esponenziale delle tecnologie legate al mondo dei droni. Nati sul finire della prima guerra mondiale per scopi bellici, erano strumenti rudimentali e con funzionalità estremamente limitate. In quasi un secolo di vita hanno subito una trasformazione radicale ed al giorno d'aggi svolgono lavori e funzioni in un'infinità di settori, civili e militari. La miniaturizzazione e il crollo dei costi hanno fatto si che nell'ultimo decennio potessero nascere varie tipologie di droni.



Immagine 1 - Tipologie di droni: militare (a sinistra) e civile (a destra).

In questo elaborato verranno presi in considerazione i droni ad uso civile, i quali sono sempre più utilizzati in ambito lavorativo. Gli ambienti in cui si trovano ad operare sono molteplici, sotto molti punti di vista, e ciò influisce in maniera significativa sulle prestazioni. Di conseguenza, lo studio e lo sviluppo dei droni non potrà che tenere conto dell'ambiente in cui queste macchine si troveranno ad operare. Uno scenario in cui vi è un sempre maggior utilizzo di questo tipo di tecnologia è quello montano, caratterizzato da quote elevate, le quali hanno un impatto molto significativo sulle prestazioni dei motori dei droni. Con l'aumentare dell'altitudine, vi è una diminuzione della densità dell'aria, la quale inciderà negativamente su molti fattori. Di conseguenza, nella fase di test, un drone, o meglio, i suoi motori, andranno testati assolutamente in condizioni di densità, pressione e temperatura uguali a quelle che incontrerà durante la sua vita operativa. Ciò può essere effettuato in due modi:

- Ambiente isolato
- Condotto convergente divergente

Ricreando un ambiente isolato, ad esempio una camera stagna, si possono ottenere le condizioni richieste, tenendo sotto controllo i tre parametri enunciati prima. Tuttavia, tale soluzione può essere molto problematica e non di facile attuazione. I costi e gli spazi per i macchinari richiesti possono essere elevati, per cui è preferibile ricorrere alla seconda soluzione.

Utilizzando un condotto convergente-divergente di opportuna geometria abbinato ad un fan possono essere ricavate le medesime condizioni ambiente, variando opportunamente la potenza della ventola.

Quest'ultima soluzione sarà l'oggetto principale di questo elaborato. Questo studio si propone di ricreare, nella sezione di gola di un condotto convergente-divergente, le condizioni termodinamiche proprie della quota prescelta, così che una frazione di questo flusso possa essere spillata ed utilizzata per il funzionamento di un motore. Si andrà quindi inizialmente a svolgere un lavoro preliminare di calcolo della grandezze termodinamiche e conseguente rapporto di aree. Dopo di che, conoscendo questo rapporto,

saranno calcolate le geometrie del problema, per poi esportarle sul software di calcolo OpenFOAM, di cui si rimanda in seguito la spiegazione. Inizialmente si effettuerà uno studio su di un fluido inviscido in un condotto bidimensionale, analizzandone i risultati e verificando il funzionamento del software di calcolo. In un secondo momento, sarà testato un condotto assialsimmetrico, mentre successivamente sarà necessario ottimizzare le geometrie ricavate in precedenza, per avere valori di potenze del fan reali. Durante questa fase verranno effettuate anche brevi simulazioni di prova, per verificare in che modo lavora il programma OpenFOAM. Nella parte finale, sarà preso in considerazione un fluido viscoso ed un appropriato modello turbolento, i quali saranno inizialmente testati su di una lamina piana. Si è scelto questo profilo per poterne paragonare i risultati con quelli teorici ed i valori concessi dalla NASA. Infine, il modello viscoso e turbolento sarà esportato nel condotto progettato in precedenza, andando a verificare se il flusso separa o meno.

Per lo svolgimento di questo elaborato sono stati utilizzati un sistema operativo Windows10, un sistema operativo Linux su virtual machine e, nella fase finale, un sistema operativo Linux nativo. Eventuali differenze grafiche negli schemi e nei diagrammi derivano unicamente da questa diversità.

# 1.1. Condizioni ambientali

Come specificato in precedenza, all'aumentare della quota, vi è una variazione delle grandezze fondamentali dell'aria (densità, pressione, temperatura).

Nella successiva tabella vengono riportati i valori dell'atmosfera standard a quota 0:

| P°        | T°    | ρ°                      |
|-----------|-------|-------------------------|
| 101325 Pa | 288 K | 1,225 kg/m <sup>3</sup> |

Le variabili con pedice 0 si riferiscono alle condizioni "sea level", ossia a livello del mare (quota 0 m), e sono pari alle grandezze totali.

In questo elaborato, verranno studiate le condizioni di funzionamento di un drone alla quota di 4000 metri. La variabile più importante di cui tenere conto è la densità, la quale varia in funzione della quota (espressa in chilometri) seguendo la formula:

$$\rho = \rho_0 \times \left(1 - \frac{6.5}{T_0} \times h\right)^{4.255}$$

Prendendo in considerazione le tabelle dell'atmosfera standard, si può avere un'idea dei valori della densità a varie quote.



Immagine 2 - Andamento della densità al variare della quota

Come si evince dall'immagine soprastante, considerando una quota di 4000 metri, la discrepanza tra la densità e la densità a livello del mare non è trascurabile. Con una variazione circa del 30%, ciò influisce non poco sulle prestazioni dei motori, ed è necessario tenerne conto in fase di progetto. Il valore della densità a tale quota sarà fondamentale per il calcolo successivo delle prestazioni.

Anche la temperatura, nonostante sia di minore importanza ai sensi di questo elaborato, varia con la quota. Il gradiente termico verticale, pur subendo notevoli variazioni in base alla geografia del terreno, alle stagioni e alle coordinate geografiche, verrà assunto pari a -6.5 °C ogni 1000 metri.

La pressione atmosferica, ultimo parametro preso in considerazione al variare della quota, può essere descritto efficacemente tramite le tabelle dell'atmosfera standard, oppure tramite la formula seguente:



$$P = 0.9877^{\left(\frac{m}{100}\right)} * 101325$$

Immagine 3 - Andamento della pressione al variare della quota

Come si può evincere dalla tabella precedente, ad un'altezza di 4000 metri la pressione atmosferica è circa il 60% della pressione atmosferica al livello del mare.

# 1.2. Motore

Il drone preso in considerazione avrà un certo numero di motori, i quali dovranno garantire adeguate prestazioni anche alle condizioni ambientali descritte nel capitolo precedente. Il motore oggetto di studio è un SAITO-FG11.



Immagine 4 - Motore SAITO-FG11

Le cui caratteristiche sono le seguenti.

|                               | SAITO-FG11 |
|-------------------------------|------------|
| MASSA                         | 465 g      |
| POTENZA [CV]                  | 0,95       |
| CILINDRATA [cm <sup>3</sup> ] | 10,9       |
| N° CILINDRI                   | 1          |
| DURATA CICLO                  | 4 tempi    |
| COMBUSTIBILE                  | Benzina    |

La portata necessaria al funzionamento del motore è estremamente bassa, pari a 0,0006 kg/s.

Questo valore, cioè la portata in massa necessaria al funzionamento del motore, sarà anche la portata spillata dalla sezione di gola del condotto convergente – divergente, come accennato nel capitolo introduttivo. Il condotto dovrà quindi garantire una portata minima, pari a questo valore. Ovviamente, se la quantità di aria passante per la gola del condotto fosse pari alla quantità di aria necessaria al motore, questa verrebbe totalmente assorbita, non permettendo un regolare funzionamento sia del condotto che del fan. Come si vedrà più avanti, il valore della portata sarà aumentato enormemente, così che lo spillamento non comporti modifiche sostanziali al flusso.

# 2. Complementi teorici

#### 2.1. Equazioni di governo

Le equazioni di governo sono un sistema di equazioni differenziali alle derivate parziali, le quali descrivono il comportamento di un fluido dal punto di vista macroscopico, la sua struttura e la sua evoluzione nel tempo. La premessa fondamentale è che il fluido possa essere considerato come un continuo (numero di Knudsen Kn<<1).

E' possibile enunciare queste equazioni dal punto di vista lagrangiano (il quale segue la traiettoria di ogni singola particella del fluido), sia dal punto di vista euleriano (il quale analizza le variazioni delle grandezze termodinamiche in un definito volumetto fluido). Nell'elaborato verranno enunciate, ma non ricavate, queste ultime, tralasciando le prime.

#### 2.1.1. Equazione di continuità

Questa equazione viene anche detta "equazione di bilancio della massa". Dal punto di vista euleriano, questo principio può essere espresso come: "la variazione di massa contenuta in un volume fisso eguaglia la differenza tra i flussi di massa entranti ed i flussi di massa uscenti".

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{q}) = 0$$

Il primo termine è legato al tempo, per cui, per flussi stazionari, si annulla. Il secondo termine, detto termine convettivo, descrive il flusso di massa attraverso il volume considerato.

#### 2.1.2. Equazione di bilancio della quantità di moto

La quantità di moto è una grandezza vettoriale che si conserva nelle tre direzioni dando luogo ad una equazione vettoriale, ovvero a tre equazioni scalari. Dal punto di vista euleriano, il principio della conservazione della quantità di moto, derivato della seconda legge di Newton, può essere espresso come: "la variazione, nel tempo, della quantità di moto del fluido contenuto in un certo volume di controllo, sommata al flusso netto di quantità di moto attraverso la superficie, uguaglia la risultante delle forze esterne agenti sul fluido contenuto nel volume stesso".

$$\frac{\partial(\rho\vec{q})}{\partial t} + \nabla \cdot (\rho\vec{q}\vec{q}) = \nabla \cdot \overline{\overline{\sigma}} + \rho f_e$$

Il termine  $\nabla \cdot \overline{\sigma}$  può essere ulteriormente scomposto, ed i suoi termini contengono la viscosità, parametro nullo nelle equazioni di Eulero, ma rilevante in quelle di Navier-Stokes.

Le equazioni di conservazione della quantità di moto sono note come equazioni di Navier-Stokes, N-S, e per un fluido Newtoniano la cui viscosità non dipenda dalla posizione, possono essere scritte nella forma vettoriale:

$$\rho \frac{D\vec{q}}{Dt} = -\nabla p + \mu \nabla^2 \vec{q} + \frac{1}{3} \mu \nabla (\nabla \cdot \vec{q}) + \rho f_e$$

 $con \frac{D\vec{q}}{Dt}$  derivata sostanziale.

#### 2.1.3. Equazione di bilancio dell'energia

Questa equazione, dal punto di vista euleriano, può essere espressa come: " la variazione nell'unità di tempo dell'energia totale del fluido contenuto nel volume di controllo sommata al flusso netto di energia totale attraverso le facce del volume di controllo uguaglia la somma della potenza delle forze agenti sull'elemento di fluido e del flusso netto di energia termica trasmessa all'elemento di fluido per conduzione".

$$\frac{\partial(\rho E)}{\partial t} + \nabla \cdot (\rho E \vec{q}) = \nabla \cdot \left(\overline{\overline{\sigma}} \vec{q}\right) - \nabla \cdot q_t + \rho f_e \vec{q}$$

#### 2.1.4. Equazione di stato dei gas

L'equazione di stato di un gas ideale è la seguente:

$$pV = nRT$$

Quest'ultima rappresenta un'importante relazione tra bilancio di energia e equazione di continuità, per i fluidi compressibili.

E' possibile correggere questa equazione, inserendo delle opportune costanti, così da descrivere anche il comportamento dei gas reali. La legge di Van der Waals enuncia che:

$$\left(p + \frac{a}{V_m^2}\right)(V_m - b) = RT$$

con  $V_m = \frac{V}{n}$  volume molare e le costanti "a" e "b" dette costanti di Van der Waals.

La costante "a" è caratteristica di ogni gas ed esprime l'intensità delle interazioni tra le molecole del gas, mentre la costante "b" esprime il volume che occupa un gas quando lo spazio a sua disposizione tende all'infinito, e può essere espressa come  $b = 16\pi \frac{r^3}{3}$ , con r raggio atomico.

# 2.2. Condotto convergente-divergente

La conoscenza del funzionamento di un condotto convergente-divergente è fondamentale ai fini della comprensione di questa tesi.

Un condotto convergente-divergente, anche detto "Ugello de Laval", assume la seguente geometria.



Immagine 5 - Condotto convergente-divergente

In questo tipo di condotto, data una certa pressione all'inlet p<sub>1</sub> superiore alla pressione all'outlet p<sub>2</sub>, il fluido in questione (in questo caso aria) subirà modifiche di velocità. Inizialmente il flusso verrà accelerato, sino al raggiungimento della sezione di gola. Nella parte convergente del condotto, il Mach resterà sempre inferiore all'unità. Nel caso il Mach superasse il valore unitario, si innescherebbero urti tali da riportare in condizione subsonica il flusso. Quest'ultima ipotesi non verrà presa in considerazione ai fini dello sviluppo di questa tesi, ed anzi, si cercherà di evitare l'innesco di urti, estremamente dannosi. Nella sezione di gola è possibile raggiungere la condizione critica, con un Mach pari a 1. Dopo di che, nella parte divergente del condotto, possono verificarsi due condizioni:

- Flusso sovra espanso;
- Flusso sotto espanso.

Nel primo caso, il Mach continuerà a salire, mentre nel secondo si avrà una ricompressione, con conseguente diminuzione di velocità. Nel caso di flusso sovra espanso la pressione continuerà a diminuire, diventando inferiore alle condizioni ambiente in cui il flusso scaricherà. Il flusso sotto espanso, invece, resterà ad una pressione maggiore di quella ambiente. Quale di queste due condizioni sarà verificata dipende dal salto di pressione che si ha tra l'inlet e l'outlet del condotto.



Immagine 6 - Andamento della pressione in un condotto convergente-divergente

Prendendo in esame il grafico soprastante, considerando come asse orizzontale la lunghezza del condotto (con "t" che indica la sezione di gola) e come asse verticale il rapporto tra le pressioni di inlet e outlet, si valutano i vari casi.

- Nel caso "a", le due pressioni agli estremi del condotto sono identiche, per cui non si sviluppa nessun movimento del fluido.
- Nel caso "b", la pressione all'outlet viene diminuita, per cui si ha inizialmente un accelerazione del flusso nel tratto convergente, sino alla sezione di gola. Diversamente, nel tratto divergente, si ha una ricompressione del fluido, con un conseguente diminuzione di velocità e aumento di pressione rispetto alla gola, pur rimanendo inferiore al valore dell'inlet.
- Nel caso "d", dopo l'accelerazione del tratto convergente, viene raggiunta la condizione critica in gola, con un valore del Mach pari a 1. Nel tratto divergente si ha una ricompressione in maniera del tutto similare ai casi precedenti, raggiungendo il valore di pressione dell'outlet.
- Nel caso "e", infine, si ha un andamento uguale al caso "d" sino alla gola. Dopo di che, al posto di avere una ricompressione, il flusso continuerà ad espandere, raggiungendo valori di pressione estremamente bassi rispetto al valore iniziale, con conseguenti valori di Mach elevati nella sezione di uscita.

L'andamento del Mach specificato nei casi soprastanti può essere schematizzato dell'immagine seguente.



*Immagine 7 - Andamento del Mach in un condotto convergente-divergente* 

Ai sensi di questo elaborato, si dovranno ottenere condizioni termodinamiche fissate nella sezione di gola. Ciò comporterà la necessità di ottenere un certo numero di Mach nella sezione di gola, leggermente inferiore all'unità, e per ottenerlo si andrà a porre tramite un fan nella sezione di outlet. Ciò determinerà una depressione in tale sezione, non eccessivamente elevata, ponendosi nel caso "c" dell'immagine 6.

# 2.3. Fluido viscoso – teoria dello strato limite

In questo elaborato verrà considerato un fluido reale, il quale, a differenza di un fluido ideale, possiede una viscosità, ossia sono presenti all'interno del fluido forze di tipo viscoso che si manifestano come resistenza ai cambiamenti di forma della massa fluida.

Nel 1904 Prandtl introdusse uno dei concetti più importanti per lo studio delle correnti fluide ad alto numero di Reynolds: la teoria dello strato limite. Per alti numeri di Reynolds (Re>>1) il flusso attorno a un corpo è caratterizzato da:

- Linee di corrente e di velocità che si discostano di poco da quelle ottenute con un calcolo del flusso potenziale di un fluido inviscido;
- Il fluido non scivola lungo le pareti ma aderisce su di esse.

La transizione della velocità da valore nullo ad uno vicino a quello predetto dalla teoria potenziale avviene in un sottile strato denominato strato limite dove gli sforzi viscosi sono importanti e lo spessore dello strato limite  $\delta \ll L$  (con L lunghezza caratteristica del corpo). All'esterno non si hanno gradienti di velocità elevati e l'influenza della viscosità è trascurabile: in questa regione si applica l'approssimazione di corrente potenziale di un fluido inviscido.



Immagine 8 - Strato limite: 1) Laminare 2) Transizione 3) Sottostrato laminare 4) Punto di separazione Strato separato 6) Strato turbolento

Tutto ciò si traduce nel fatto che ad un alto numero di Reynolds l'influenza della viscosità attorno a un corpo è confinata in uno strato molto sottile nei pressi della parete solida: lo strato limite. In questa zona le particelle sono soggette ad un elevato gradiente di velocità lungo la normale alla superficie. Si ha una

5)

transizione da velocità nulla sulla parete, per la condizione di aderenza, ad un valore dell'ordine della velocità della corrente indisturbata. Di conseguenza in questa regione gli effetti viscosi non sono trascurabili per effetto del gradiente di velocità, anche se la viscosità è piccola. Al di fuori di questa regione gli effetti viscosi diventano trascurabili. Nello strato limite, il valore degli sforzi viscosi tangenziali può essere espresso come:

$$\tau = \mu \, \frac{du}{dy}$$

Per la trattazione dello strato limite, si utilizzerà l'esempio noto della lamina piana.

Il moto nello strato limite può essere suddiviso in tre regimi: laminare, transizione e turbolento.



#### 2.3.1. Regime Laminare



Il flusso viene considerato laminare quando si ha un numero di Reynolds  $Re < 10^5$ .

Come nell'immagine soprastante, il fluido scorre da sinistra con una velocità di flusso libero u<sub>0</sub> e, a causa della condizione di aderenza, rallenta vicino alla superficie della piastra. Quindi, uno strato limite inizia a formarsi al bordo d'attacco. Quando il fluido procede più a valle, si sviluppano grandi sollecitazioni di taglio e gradienti di velocità all'interno dello strato limite. Procedendo ancora più a valle, la velocità del fluido aumenta e quindi aumenta lo spessore  $\delta$  dello strato limite. Poiché non vi è alcuna linea netta che divide lo strato limite dal flusso libero, l'ipotesi tipicamente fatta è che lo strato limite si estenda sino al punto in cui la velocità del fluido raggiunge il 99% della corrente libera. In ogni momento, e a qualsiasi distanza x dal bordo anteriore, lo spessore dello strato limite  $\delta$  è piccolo rispetto alla lunghezza del profilo. Considerando la soluzione di Blasius, lo spessore dello strato limite è:

$$\delta = 4,91 \times \frac{x}{\sqrt{Re}}$$

Vicino al bordo d'attacco il flusso è interamente laminare, il che significa che il fluido può essere immaginato diviso in strati, o lamine, che non si mescolano. In sostanza, gli strati di fluido scivolano uno sull'altro senza alcun interscambio di particelle di fluido tra strati adiacenti. La velocità di flusso all'interno di ogni lamina immaginaria è costante e aumenta con la distanza dalla superficie. Lo sforzo di taglio

all'interno del fluido è quindi interamente una funzione della viscosità e dei gradienti di velocità. Secondo Blasius, è pari a:

$$\tau = \frac{0,332 \times \rho \times {u_0}^2}{Re^{0,5}}$$

## 2.3.2. Regime Transitorio

La transizione è il processo attraverso il quale un flusso laminare diventa turbolento. Nella maggior parte dei casi, un flusso diventerà turbolento quando il numero di Reynolds aumenta oltre un certo valore, pari a Re=5\*10<sup>6</sup>.

La transizione è un processo molto complesso e la sua previsione rimane un argomento molto studiato ancora oggi. La transizione può essere innescata da vari tipi di disturbi del flusso, tra cui i più comuni sono ruvidità del muro, variazioni superficiali di temperatura del muro e curvature.

# 2.3.3. Regime Turbolento

All'aumentare del numero di Reynolds l'effetto smorzante della viscosità diminuisce e la corrente assume l'aspetto turbolento, nel caso della lamina piana in assenza di gradienti di pressione la transizione avviene a  $Re = 3,5*10^5 \div 5*10^6$  la cui variabilità dipende dalle influenze esterne allo strato limite. L'azione smorzante della viscosità non è più sufficiente ad impedire la crescita in ampiezza delle perturbazioni, le quali si intensificano ed iniziano la transizione alla turbolenza. La turbolenza è caratterizzata dalla presenza di fluttuazioni, sia spaziali, sia temporali, da vorticità, da alti livelli di dissipazione e diffusività e l'estrema non linearità del moto. Le fluttuazioni turbolente rendono il moto turbolento non stazionario e tridimensionale anche quando le condizioni al contorno sono stazionarie e/o bidimensionali.



Immagine 10 - Strato limite turbolento

Come si può evincere dall'immagine soprastante, lo strato limite turbolento mantiene un sottostrato laminare, in cui vigono le leggi e le condizioni dello strato limite laminare. Quest'ultimo strato ha uno spessore di molto minore a quello turbolento soprastante.

Lo spessore dello strato limite turbolento è superiore a quello laminare, così come diversi, sempre rispetto al caso laminare, gli sforzi viscosi  $\tau$ . Secondo Blasius, questi valori sono pari a:

$$\delta = 0,377 \times \frac{x}{Re^{0,2}}$$
$$\tau = \frac{0,029 \times \rho \times u_0^2}{Re^{0,2}}$$

Nel caso la velocità del flusso aumenti ancora, oppure che la parete presenti brusche variazioni di geometria, può verificarsi il distacco della vena fluida. Anche nel caso si venisse a creare un punto in cui il gradiente di pressione risulta avverso, vi sarebbe la separazione del flusso. La separazione è un punto di singolarità delle equazioni di Prandtl, le quali cessano di essere valide: negli strati limite separati la pressione sul corpo non è più indipendente dalla viscosità. Questo caso è da scongiurare nella progettazione argomento di questo elaborato, poiché porterebbe ad un mal funzionamento del condotto. In aeronautica, si utilizzano varie metodologie per evitare la separazione dello strato limite, tra cui l'aspirazione del flusso e l'utilizzo di superfici il meno rugose possibili.

#### 2.3.4. Studio dello strato limite

Per lo studio dello strato limite, ci si è serviti di diversi modelli, andando a compararli per verificare quale approssima meglio i case con il flusso viscoso ricavati con il programma OpenFOAM. Questi modelli avranno il principale merito di ricavare il valore degli sforzi viscosi a parete  $\tau$ , così da poter ottenere a cascata tutti gli altri parametri.

Si immagini di sezionare una lamina piana, o un condotto, andandone ad estrapolare un singolo piano, ortogonale alla superficie, sull'intero volume. Su tale piano la variazione di velocità avrà un valore diverso, a seconda della distanza dalla superficie di contatto. Inoltre, questi valori dipendono anche da quale piano è stato scelto, se nei pressi del punto d'attacco della lamina o meno. Si ipotizzi di studiare un piano posto ad una certa distanza dal bordo d'attacco della lamina, nel quale si sviluppano un sottostrato laminare ed uno strato turbolento.

Prima di annunciare i modelli, è necessario definire alcune variabili caratteristiche per lo studio dello strato limite. Innanzitutto si definisce:

$$u_{\tau} = \sqrt{\frac{\tau}{
ho}}$$

Detta velocità di attrito, attraverso il quale si andranno ad analizzare i valori.

Si ricavano, successivamente, i valori:

$$y_{+} = \frac{y}{\sqrt{\frac{\tau}{\rho}}} = \frac{y}{u_{\tau}}$$
$$u_{+} = \begin{cases} -3,05 + 5 \times \ln(y_{+})\\ 5,5 + 2,5 \times \ln(y_{+}) \end{cases}$$

Andando a porre sull'asse delle ascisse  $\log(y_+)$  e sull'asse delle ordinate  $u_+$ , è possibile ricavare un andamento teorico del modello.

Lo spessore dello strato limite  $\delta$  dipende dal piano della lamina piana ortogonale alla superficie in cui si effettua l'analisi (f(x)), per cui varierà in funzione del parametro x. Di conseguenza, anche il parametro  $\tau$  sarà caratteristico di ogni sezione del profilo.

E' assolutamente necessario evitare il distacco della vena fluida all'interno del profilo. Ciò è estremamente dannoso, e porterebbe diversi svantaggi, tra cui:

- Diminuzione della sezione del condotto disponibile per il flusso, con conseguente variazione della grandezze termodinamiche.
- Problemi con il fan presente all'outlet, il quale avrebbe a che fare un flusso distaccato.

#### 2.3.5. Strato limite in un condotto

In un condotto, valgono le medesime considerazioni fatte per il caso della lamina piana. Tuttavia, le formule per l'ottenimento del numero di Reynolds sono diverse. La formula per l'ottenimento del numero di Reynolds locale è:

$$R_e = \frac{U * D}{\nu}$$

con D il diametro del condotto, espresso in metri.

Anche i valori del numero di Reynolds che determinano se uno strato limite è laminare o turbolento sono diversi:

- Re < 2300: strato limite laminare;
- Re>2300: strato limite turbolento.

#### 2.4. Modello di turbolenza

Avendo a che fare con un fluido viscoso, è necessario scegliere quale un modello di turbolenza, il quale permetterà di rendere più verosimile la simulazione, mostrandone il corretto comportamento dello strato limite del flusso. Innanzitutto, verrà fatto un breve cenno alle caratteristiche di questo tipo di moto, per poi scendere nel dettaglio del modello di risoluzione scelto.

Un fluido in moto turbolento è caratterizzato, come espresso nel capitolo precedente, da fluttuazioni temporali e spaziali delle componenti di velocità, pur conservando, nel caso di moto stazionario, valori medi costanti nel tempo. La turbolenza può essere spesso descritta come il risultato di fenomeni di instabilità che avvengono durante il moto di un fluido.

Nel caso di una parete, la transizione avviene per un range di numeri di Reynolds (dovuti a fattori esterni allo strato limite) pari a Re= $3.5 \times 10^5 / 10^6$ .

All'aumentare del numero di Reynolds l'effetto smorzante della viscosità diminuisce, superato il valore limite, non è più sufficiente ad impedire la crescita in ampiezza delle perturbazioni, le quali si intensificano ed iniziano la transizione alla turbolenza.

Il modello scelto è quello di Spalart-Allmaras, a basso costo computazionale, il quale si basa sulla soluzione di una sola equazione differenziale di trasporto, per un parametro  $\tilde{\nu}$  detto eddy-viscosity. Si tratta di un modello RANS (Reynolds Averaged Navier-Stokes equations), il quale si comporta in maniera egregia in presenza di flussi con gradienti di pressione elevati e si basa sulle grandezze medie.

I metodi RANS dividono tutte le variabili del caso in due parti: una media ed una fluttuante.

$$\Phi = \overline{\Phi} + \Phi'$$

La parte media è calcolata come:

$$\overline{\Phi} = \frac{1}{T} \int_{T} \Phi(x, t) dt$$

Inoltre, per i flussi compressibili, è necessaria un'altra decomposizione, detta di Favre. In questo caso, si ha:

$$\theta = \tilde{\bar{\theta}} + \theta^{\prime\prime}$$

Con  $\tilde{\theta}$  calcolato come:

$$\tilde{\bar{\theta}} = \frac{\overline{\rho \theta}}{\bar{\rho}}$$

Il termine dipendente dal tempo, invece, non include le fluttuazioni turbolente, ma sono quelle dovute alla densità. Dopo che questo tipo di decomposizione ha ricavato un valore standard per le parti dipendenti dal tempo di  $\rho$  e p, sono risolte le seguenti equazioni:

$$\frac{\partial \bar{\rho}}{\partial t} + \frac{\partial \bar{\rho} \bar{u}_i}{\partial x_i} = 0$$

$$\left(\frac{\partial \bar{\rho} \tilde{u}_i}{\partial t} + \frac{\partial \bar{\rho} \bar{u}_i \tilde{u}_j}{\partial x_j}\right) = -\frac{\partial \bar{p}}{\partial x_i} + \frac{\partial}{\partial x_j} \left(\overline{\tau_{ij}} - \overline{\rho u''_i u''_j}\right)$$

22

 $\operatorname{con} \tau_{ij} = \mu \left( \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) - \frac{2}{3} \mu \frac{\partial u_k}{\partial x_k} \delta_{ij} \ \mathrm{e} \ \overline{\tau_{ij}} = \widetilde{\tau_{ij}} + \overline{\tau_{ij}''}.$ 

In maniera del tutto similare, viene posta l'equazione dell'energia:

$$\left(\frac{\partial \bar{\rho}\tilde{E}}{\partial t} + \frac{\partial \bar{\rho}\tilde{u}_{j}\tilde{E}}{\partial x_{j}}\right) = -\frac{\partial \bar{p}\tilde{u}_{j}}{\partial x_{j}} + \frac{\partial \overline{u_{\iota}\tau_{\iota j}}}{\partial x_{j}} - \frac{\partial \bar{q}_{j}}{\partial x_{j}} - \frac{\partial \overline{u''_{J}p}}{\partial x_{j}} - \frac{\partial \overline{\rho u''_{J}E''}}{\partial x_{j}} - \frac{\partial \bar{\rho u''_{J}E''}}{\partial x_{j}} - \frac{\partial \bar{\rho u''_{J}E''}}{\partial x_{j}} - \frac{\partial \bar{\rho u''_{J}P}}{\partial x_{j}} - \frac{\partial \bar$$

Questa è la decomposizione per i flussi compressibili.

Per quanto riguarda il modello di Spalart-Allmaras, l'equazione di trasporto è la seguente:

$$\frac{\partial(\rho\tilde{\nu})}{\partial t} + \nabla \cdot \left(\rho\tilde{\nu}\vec{V}\right) = \frac{1}{\sigma_{\nu}}\nabla \cdot \left[\left(\mu + \rho\tilde{\nu}\right)\nabla\tilde{\nu} + C_{b2}\frac{\partial\tilde{\nu}}{\partial x_{k}}\frac{\partial\tilde{\nu}}{\partial x_{k}}\right] + C_{b1}\rho\tilde{\nu}\,\overline{\Omega} - C_{w1}\rho\left(\frac{\tilde{\nu}}{ky}\right)^{2}f_{w}$$

I termini contenuti nell'equazione differenziale rappresentano, in ordine:

- $\frac{\partial(\rho \tilde{\nu})}{\partial t} \rightarrow$  variazione di  $\overline{\nu}$  nel tempo;
- $+\nabla \cdot (\rho \tilde{v} \vec{V}) \rightarrow$  trasporto per convezione;  $\frac{1}{\sigma_v} \nabla \cdot \left[ (\mu + \rho \tilde{v}) \nabla \tilde{v} + C_{b2} \frac{\partial \tilde{v}}{\partial x_k} \frac{\partial \tilde{v}}{\partial x_k} \right] \rightarrow$  trasporto per diffusione;
- $C_{b1}\rho\tilde{\nu}\overline{\Omega} \rightarrow$  produzione;
- $C_{w1}\rho\left(\frac{\overline{\nu}}{k\nu}\right)^2 f_w \rightarrow \text{distruzione.}$

La viscosità turbolenta  $\mu_T$  viene ricavata come:

$$\mu_T = \rho \overline{\nu} f_{\nu 1}$$

con  $f_{v1}$  funzione di smorzamento, la quale serve per ridurre la viscosità turbolenta in prossimità della parete.

Il termine  $\overline{\Omega}$  è definito come:

$$\overline{\Omega} = \Omega + \frac{\widetilde{\nu}}{(ky)^2} f_{\nu 2}$$

con  $\Omega$  che rappresenta la vorticità e  $f_{\nu 2}$  un'ulteriore funzione di smorzamento.

Inoltre, l'equazione di trasporto contiene una serie di costanti, ricavate sperimentalmente, pari a:

$$\sigma_{v} = 2/3$$

$$k = 0,4187$$

$$C_{b1} = 0,1355$$

$$C_{b2} = 0,622$$

$$C_{w1} = C_{b1} + k^{2} \frac{1 + C_{b2}}{\sigma_{v}} = 0.56203$$

## 3. Grandezze termodinamiche e geometria

Per quanto riguarda lo studio preliminare delle condizioni da ottenere e del profilo, si è deciso di utilizzare i fogli di calcolo Excel. L'utilizzo del software Matlab sarebbe stato altrettanto utile ma si è preferito, per comodità di utilizzo, di ricorrere al primo. Il software di calcolo OpenFOAM richiede l'inserimento di della geometria del caso in oggetto in due modi: tramite l'utilizzo di funzioni o inserendo punto a punto i contorno della geometria. Saranno utilizzati entrambi i metodi. Il più semplice, e quindi utilizzato inizialmente, è l'inserimento punto a punto del profilo, definendolo tramite una serie di punti nelle tre direzioni spaziali. Queste ultime sono state ricavate tramite fogli di calcolo Excel. La creazione di un programma Excel ha notevolmente semplificato le modifiche successive del profilo. La variazione di un numero molto limitato di parametri ha permesso modifiche immediate ed accurate delle grandezze termodinamiche e del profilo, senza l'ausilio di ulteriori calcoli. A causa di alcune problematiche enunciate in seguito, la definizione dello stesso tramite funzioni di OpenFOAM.

#### 3.1. Grandezze termodinamiche ottimizzate

Innanzitutto, si sono studiate le condizioni atmosferiche ad una quota di 4000 m. Come enunciato precedentemente, temperatura, pressione e densità variano con la quota mediante leggi ben definite. Prendendo in considerazione un valore della densità dell'aria a tale quota pari a 0,8190 kg/m<sup>3</sup>, è possibile ricavare, come spiegato nella teoria, un valore di Mach corrispondente, tramite la formula:

$$\rho^{\circ} = \rho \times \left(1 + \frac{\gamma - 1}{2}M^2\right)^{\frac{1}{\gamma - 1}} \rightarrow M = \sqrt{\frac{2}{\gamma - 1} \times \left[\left(\frac{\rho^{\circ}}{\rho}\right)^{\gamma - 1} - 1\right]}$$

Il valore di Mach ricavato, per la condizione di densità sopra riportata, è di M = 0,93.

Dato questo valore, è necessario calcolare la funzione del Mach f(M) nella sezione di gola, tramite la formula:

$$f(M_t) = \sqrt{\frac{\gamma M_t^2}{\left(1 + \frac{\gamma - 1}{2} M_t^2\right)^{\frac{\gamma + 1}{\gamma - 1}}}} = 0,681828$$

Partendo dal valore del Mach ricavato precedentemente, è ora necessario decidere la grandezza della sezione di gola. Nelle fasi preliminari sono state scelti valori non realizzabili a livello di progetto, mentre in questo paragrafo verranno ricavati i valori già ottimizzati, tenendo conto di alcune limitazioni. Questa scelta è influenzata da fari fattori di varia natura, i quali vanno assolutamente considerati per evitare complicazioni successive.

In primo luogo, dato che la portata in massa si conserva lungo il condotto, la sezione di gola deve essere abbastanza grande da permettere una portata elevata, così che l'aspirazione di una percentuale di flusso per il motore non influisca sui risultati.

Si è deciso, come già accennato nel capitolo dedicato al motore, di avere una portata di 200 volte superiore alla portata necessaria, così che l'aspirazione non provochi problemi al flusso. Di conseguenza, la portata minima prodotta sarà pari a  $\dot{m} \cong 0.125 \ kg/s$ . Noto questo valore minimo, la sezione di gola va scelta di conseguenza. Tuttavia, vanno fatte alcune ulteriori considerazioni riguardo i possibili vantaggi e svantaggi:

- Una sezione di gola molto piccola, pur avendo il vantaggio di contenere dimensioni e potenza del compressore, potrebbe avere problematiche per quanto riguarda la rumorosità e la lunghezza del condotto;
- Una sezione di gola molto grande, pur garantendo una lunghezza del condotto contenuta, richiederebbe potenze troppo grandi, ingombri eccessivi e problematiche di utilizzo in un ambiente chiuso.

Si considera quindi il compressore che verrà utilizzato per azionare il flusso, e le sue caratteristiche.

| AEROSERVICE S.R.L. |        |                |      |  |
|--------------------|--------|----------------|------|--|
| Mod. CFC200        |        | ID 34543-28/10 |      |  |
| Matricola:         | 013337 | Anno prod.     | 2008 |  |
| Tens.(V)           | 230    | Freq.(Hz)      | 50   |  |
| Pot.(W)            | 100    | Corr. Nom. (A) | 0,5  |  |
| F                  | 1      | IP             | 44   |  |
| C(uF)              | 2,5    | Cl. Is.        | В    |  |
| Giri/min           | 2500   | Portata (mc/h) | 500  |  |
| Pst(Pa)            | 100    | Peso (kg)      | -    |  |

Tenendo conto della potenza massima generata (100 W) ed il salto di pressione massimo possibile (100 Pa), si decide di optare per un area di gola pari a  $A_t = 5,3 \text{ cm}^2$ . Questo valore è stato ricavato per tentativi, svolgendo tutti i calcoli e verificandone l'attinenza alle varie limitazioni.

Data quindi l'area di gola  $A_t$  ed il Mach, è possibile ricavare la portata in massa nella sezione di gola, costante lungo tutto il condotto.

$$\dot{m} = \frac{P^{\circ} \times A_t}{\sqrt{R \times T^{\circ}}} \times f(M) = 0,12731 \ kg/s$$

Questo valore è leggermente superiore a 200 volte il valore della portata minima richiesta dal motore, per cui è accettabile.

Successivamente, è necessario analizzare come si comporta il flusso al variare dell'area del condotto, mantenendo fissa la sezione di gola. E' ora possibile, dati  $A_t$  e f( $M_t$ ), ricavare la funzione del Mach f(M) per varie aree, tramite la formula:

$$A_i \times f(M_i) = A_t \times f(M_t) \rightarrow f(M_i) = f(M_t) \times \frac{A_t}{A_i}$$

I dati sono disponibili per la visione nell'allegato 9.1.

A questo punto, utilizzando l'inversa della formula precedentemente esposta  $f(M) = \sqrt{\frac{\gamma M^2}{\left(1 + \frac{\gamma - 1}{2}M^2\right)^{\frac{\gamma + 1}{\gamma - 1}}}}$ , si

ricava il valore del Mach M per ogni sezione del condotto (allegato 9.1).

Si può notare che i valori di Mach, per ogni sezione, sono due. Questi due valori si riferiscono alla condizione di flusso supersonico e flusso subsonico, già descritte nel precedente capitolo.

Conoscendo ora questi valori per ogni sezione, è possibile ricavarne le grandezze termodinamiche. Ai fini di questo elaborato verranno considerate solamente le grandezze derivate dal flusso subsonico, trascurando invece quelle legate al flusso supersonico. I valori statici di pressione, temperatura e densità derivano dalle grandezze totali prima enunciate, e sono legati al valore del Mach tramite le seguenti formule.

$$P^{\circ} = P\left(1 + \frac{\gamma - 1}{2}M^{2}\right)^{\frac{\gamma}{\gamma - 1}} \rightarrow P = \frac{P^{\circ}}{\left(1 + \frac{\gamma - 1}{2}M^{2}\right)^{\frac{\gamma}{\gamma - 1}}}$$
$$T^{\circ} = T\left(1 + \frac{\gamma - 1}{2}M^{2}\right) \rightarrow T = \frac{T^{\circ}}{\left(1 + \frac{\gamma - 1}{2}M^{2}\right)}$$
$$\rho^{\circ} = \rho\left(1 + \frac{\gamma - 1}{2}M^{2}\right)^{\frac{1}{\gamma - 1}} \rightarrow \rho = \frac{\rho^{\circ}}{\left(1 + \frac{\gamma - 1}{2}M^{2}\right)^{\frac{1}{\gamma - 1}}}$$

Anche in questo caso, si rimanda all'allegato 9.1 per la visione dei risultati.

Dati questi valori, tramite una semplice sottrazione si ricava il valore del salto di pressione tra le aree e la pressione esterna. Un ulteriore valore ricavabile è la portata volumetrica  $\dot{m}_v$ , ottenuto moltiplicando la portata massica per la densità dell'aria in ogni singola sezione.

Le tabelle ricavate saranno necessarie, una volta ricavati tutti i valori, per la scelta della sezione di uscita.

L'ultimo dato fondamentale per decidere quale area di uscita sia la più adatta a questo caso, è la potenza richiesta. Per calcolarla, è necessario ricavare precedentemente il lavoro richiesto, tramite la seguente formula.

$$L = C_P \times T^{\circ} \left[ \left( \frac{P^{\circ}}{P} \right)^{\frac{\gamma-1}{\gamma}} - 1 \right]$$

Una volta ricavato il lavoro richiesto, con un semplice calcolo si può giungere al valore di potenza necessario.

$$P = L \times \dot{m}$$

Infine, avendo ricavato tutti i dati richiesti per poter compiere la scelta più opportuna, si è deciso di scegliere come area di uscita  $A_e = 90 \text{ cm}^2$ . Ciò è stato dettato dalla fattibilità costruttiva, in termini di potenza, del fan.

Tale scelta è stata dettata dai requisiti precedentemente esposti, ed assicura le seguenti caratteristiche.

| ΔP    | L          | Р      |
|-------|------------|--------|
| 81 Pa | 66,77 J/kg | 8,50 W |

Il ragionamento fatto sin ora è valido per i successivi case, escluso quello del profilo 2D. Quest'ultimo, infatti, è stato svolto in un momento antecedente il ragionamento sopra esposto, e non ha subito il processo di ottimizzazione legato alle potenze utilizzabili. Per questo motivo, gli unici dati necessari per lo svolgimento della simulazione sul profilo 2D sono:

| $M_t$ | $f(M_t)$ |
|-------|----------|
| 0.93  | 0,681828 |

Tutti gli altri parametri, tra cui il salto di pressione tra inlet e outlet, non avendo limitazioni, saranno estremamente fuori scala, e non utilizzabili ai fini pratici.

# 3.2. Profilo 2D

Come già accennato nella fase introduttiva, per la simulazione dell'ambiente operativo, si è ricorso ad un condotto convergente – divergente.

Inizialmente, la scelta è ricaduta su un profilo quadrangolare 2D. Nonostante fosse chiaro che la soluzione ottimale sarebbe stata quella assialsimmetrica, si è deciso ugualmente di testare questo profilo.



Immagine - Vista laterale e frontale del profilo

Tramite il programma Excel sopra citato, è stato possibile, dopo aver sviluppato un semplice programma, inserendo un numero limitato di parametri, sviluppare un profilo facilmente esportabile su OpenFOAM. Si sono ricavate le coordinate nelle tre dimensioni dei punti che compongono il profilo, distanziandole tra loro lungo l'asse del condotto (asse X) di 0,1 cm. Questo sarà fondamentale in seguito, poiché il profilo sarà inserito punto per punto in OpenFOAM. Inoltre, sapendo già che il test con questo profilo sarebbe stato inviscido, non c'è stato bisogno di definire una geometria più accurata del decimo di millimetro.

Si è scelto di dividere la trattazione in quattro parti, tante quante sono state le variazioni della geometria del condotto. Durante tutto lo studio, si è cercato di mantenere la lunghezza del condotto inferiore a 1 metro per facilità di utilizzo, per cui molte scelte rispecchieranno questa esigenza.

Essendo il primo profilo progettato e testato, questo non ha subito il processo di ottimizzazione proprio dei case successivi, per cui alcune grandezze, tra cui la potenza, saranno assolutamente fuori scala. Ciò renderà il profilo non realizzabile dal punto di vista pratico.

# 3.2.1. Tratto convergente

Per quanto riguarda il tratto convergente del condotto, si è deciso di ricorrere ad un arco di cerchio. Soluzioni più complesse quali forme ovali o simili sarebbero state altrettanto efficaci, se non superiori, ma si è deciso questo approccio a causa della facilità costruttiva.

I dati da inserire nel programma Excel per lo sviluppo di questo tratto sono le coordinate del centro della circonferenza "C" ed il valore del raggio "r".

La pendenza del condotto non deve essere eccessiva, per non favorire urti. Questa sezione è lunga 0,15 m.

# 3.2.2. Tratto di gola

La gola dell'ugello è stata allungata, formando un tratto di area costante. Ciò è necessario per l'inserzione degli aspiratori collegati al motore. L'area della sezione di gola dovrà essere sufficientemente grande da permettere una portata abbastanza elevata da non essere eccessivamente modificata dall'aspirazione. Si è scelto di imporre, come lunghezza del tratto di gola, 0,05 m, valore che rimarrà costante per tutti i case.

# 3.2.3. Raccordo

Il raccordo è ottenuto, come l'arco di cerchio iniziale, tramite un arco di circonferenza. Ciò è necessario poiché il flusso, qualora si trovasse davanti una brusca variazione di inclinazione, si distaccherebbe. E' necessario quindi rendere il flusso tangente alla direzione del profilo, tramite una variazione lieve di inclinazione, e questo determina la lunghezza del raccordo.

# 3.2.4. Tratto divergente

La parte finale del condotto deve avere un'inclinazione non eccessiva, sempre per evitare il distacco del fluido. L'angolo massimo ammissibile  $\gamma$  è di 7°, anche se sarebbe preferibile un'inclinazione leggermente inferiore. Questa grandezza è determinata in base all'area di uscita da ottenere per ricavare le condizioni termodinamiche ricercate. Dato l'angolo di inclinazione massimo ammissibile, è possibile calcolare la variazione massima del raggio della sezione.

# **3.2.5. Condotto completo**

*Immagine 12 - Rappresentazione del condotto su ParaView, frontalmente e lateralmente.* 

Un ultimo parametro fondamentale per la costruzione del profilo è lo spessore. Essendo un analisi 2D, contrariamente a quanto mostrato nella figura 9 si è scelto uno spessore infinitesimale, pari a 0,1 cm, trascurabile rispetto alle altre grandezze del condotto, il che fa apparire il profilo, come si può vedere nell'immagine soprastante, molto schiacciato.

#### 3.3. Profilo assialsimmetrico

La soluzione di un profilo assialsimmetrico è ritenuta più efficiente rispetto a quella di un profilo quadrangolare. Innanzitutto, non vi è il problema del distacco della vena fluida agli angoli, come invece si avrebbe per il profilo descritto in precedenza. Inoltre, questo tipo di geometria è di più semplice realizzazione, ed è quindi preferibile rispetto al precedente.

E' stata studiata una sezione pari a 4° del condotto totale, così da poter essere considerato uno studio quasi bidimensionale. Così facendo, si è aggiunta una variazione del valore dello spessore del profilo, cosa assente nel profilo quadrangolare, in cui era considerato costante. Lo spessore, in direzione dell'asse z, è stato calcolato, dato  $\alpha$ , come:

$$z = y * \sin\frac{\alpha}{2}$$

Anche la portata, ricavata precedentemente e pari a  $\dot{m} = 0,127315 kg/s$ , è modificata. La parte che passa nella porzione di circonferenza considerata è pari a:

$$\dot{m'} = \dot{m} \frac{4}{360} = 0,001415 \ kg/s$$



Immagine 13 - Vista laterale e frontale del profilo assialsimmetrico

Assumendo un angolo  $\alpha$  molto piccolo, la differenza tra il profilo reale, semplificato come rettilineo, e quello ideale, curvilineo, sono praticamente trascurabili.

Come per il caso precedente, si è scelto di dividere la trattazione in quattro parti, tante quante sono state le variazioni della geometria del condotto. In quest'ottica, si è mantenuto il limite di lunghezza di 1 metro.

Tutti i valori numerici dei vertici sono disponibili nell'allegato 9.3.

#### 3.3.1. Tratto convergente

Per quanto riguarda l'apertura del condotto, o inlet, si è deciso di ricorrere ad un arco di cerchio, in maniera del tutto similare alla trattazione precedente. Soluzioni più complesse quali forme ovali o simili sarebbero state altrettanto efficaci, se non superiori, ma si è deciso questo approccio a causa della facilità costruttiva.

La trattazione e la lunghezza di questo tratto ricalcano esattamente quelli utilizzati per il caso quadrangolare, a cui si rimanda per ulteriori spiegazioni. A differenza del case precedente, è stato necessario determinare la profondità lungo l'asse z di ogni punto.

# 3.3.2. Tratto di gola

Non vi sono variazioni nello sviluppo di questo tratto rispetto al caso quadrangolare, tranne l'aggiunta di uno spessore variabile. La lunghezza resta immutata, sempre pari a 5 cm, per le ragioni indicate in precedenza.

# 3.3.3. Raccordo

Analogamente al punto precedente, non vi sono mutazioni, eccetto per quanto riguarda lo spessore, rispetto al caso precedente. Questa è probabilmente la zona più delicata dell'intero profilo, poiché brusche variazioni di geometria determinerebbero, nel caso viscoso, la separazione dello strato limite. Per ovviare questo problema, si è deciso di infittire la geometria, determinandola non più ogni 0,1 cm, ma ogni 0,01 cm. Ciò ha determinato tempi computazionali più lunghi, ma una maggiore precisione. I vertici di questo tratto devono avere tangente comune con i tratti adiacenti, per evitare brusche variazioni di direzione al flusso.

# 3.3.4. Tratto divergente

La parte finale del condotto deve avere un'inclinazione non eccessiva, sempre per evitare il distacco del fluido. L'angolo massimo ammissibile è di 7°, anche se sarebbe preferibile un'inclinazione leggermente inferiore. L'angolo scelto è stato quindi 5°, così da mantenere un certo valore di sicurezza. Fissata a 0,75 m la lunghezza totale del condotto, e a 0,52 m la lunghezza di questo singolo tratto, e dato l'angolo di inclinazione massimo ammissibile, è possibile calcolare la variazione massima del raggio della sezione.

$$Y = X \times \tan 7^{\circ} = 0.52 \times \tan 7^{\circ} = 0.0638 m$$

Considerando che l'angolo utilizzato è 5°, inferiore all'angolo massimo, si può ricavare che:

$$Y = X \times \tan 7^{\circ} = 0.52 \times \tan 5^{\circ} = 0.0455 m$$

Tenendo conto che la lunghezza massima accettabile per l'intero condotto, dal punto di vista costruttivo, è di 1 metro, come specificato prima, è necessario che il condotto raggiunga l'area di uscita desiderata con una pendenza massima limitata.

#### 3.3.5. Condotto completo



Immagine 14 - Rappresentazione del condotto assialsimmetrico su ParaView, frontalmente e lateralmente.

Come si può notare, è stato necessario approssimare la curva della sezione di circonferenza con una retta. Questa approssimazione è valida se si ha a che fare con angoli molto piccoli, comportando un errore praticamente irrilevante. Per angoli più grandi non si otterrebbero risultati attinenti a quelli teorici.

# 3.4. Lamina Piana

Il profilo della lamina piana è estremamente semplice, poiché consiste in un unico segmento posto di lunghezza L. Innanzi a questo profilo è posta un area senza parete, ma simmetrica. Ciò è necessario per avere la certezza che lo strato limite inizi nel bordo d'attacco della lamina, rendendo inutili successivi calcoli per capire dove si trovi l'origine.



Immagine 15 - Lamina piana

Si è deciso di testare questa tipologia di profilo così da prendere confidenza con i modelli viscosi su OpenFoam e verificando l'attinenza dei risultati numerici con quelli teorici per un caso semplice. Sono state prese le misure e le condizioni della lamina piana proposte dalla NASA sul proprio sito, ossia:

- Inviscid wall = 0,3 m;
- Viscous wall = L = 2 m;
- Outflow = Inflow = 1 m;
- Mach = 0,2.

L'altezza del profilo è assunta pari a 1 m, tuttavia questo valore non è molto influente ai fini del calcolo, e potrebbe essere ridotto per diminuire i tempi di calcolo.

# 3.5. Grandezze termodinamiche lungo i profili

Una volta ricavate le grandezze termodinamiche, in particolar modo il valore di pressione all'outlet per ottenere i parametri desiderati, e le geometrie, è stato svolto uno studio su di questi. In particolar modo, sempre tramite Excel, sono stati calcolati i valori delle grandezze termodinamiche lungo i profili, con particolare riferimento alla pressione P, alla temperatura T ed alla velocità U. Conoscendo l'andamento della geometria ed i valori iniziali all'inlet e all'outlet sono state ricavate P, T ed U. Ciò è stato

indispensabile, poiché successivamente questi valori teorici verranno comparati con i valori numerici estrapolati con il software di calcolo OpenFOAM, così da comparare le due soluzioni.

Si sono ottenute quindi le grandezze in ogni singola sezione del profilo. Queste grandezze varieranno unicamente in direzione assiale al profilo.

# 4. OpenFOAM

Per completezza espositiva, verrà fatta una breve introduzione del programma OpenFOAM. Data l'estensione e la complessità del programma, non potranno essere trattati tutti gli aspetti, ma solamente quelli propedeutici allo comprensione ed allo svolgimento di questo elaborato. Per ulteriori dettagli si rimanda a tesi precedenti ed al sito ufficiale del programma, menzionate nella sezione sitografia e bibliografia.

# 4.1. Introduzione

Nel seguente capitolo viene presentato il software di calcolo utilizzato per lo studio del condotto convergente-divergente. Verranno inizialmente riportati alcuni cenni storici riguardanti OpenFOAM, mentre successivamente si andranno a visionare le cartelle ed i file in esse contenuti. Infine, si andrà ad analizzare il caso argomento di questa tesi, descrivendo da dove si è partiti, le modifiche apportate ed il risultato finale ottenuto.

OpenFOAM, acronimo anglosassone di "Open Field Operation And Manipulation", è un programma open source scritto nel linguaggio di programmazione C++ . Fu originariamente sviluppato negli anni 80' nell'Imperial College di Londra, con l'obiettivo di creare una piattaforma di calcolo più versatile e flessibile rispetto a quella che allora rappresentava l'unica alternativa (Fortran). Da allora il programma è stato rivisitato più volte, venendo aggiornato con cadenza semestrale. Prima di divenire un software open source nel 2004 veniva venduto con il nome di FOAM dalla compagnia inglese "Nabla Ltd".

Le procedure per l'installazione di questo software sono dettagliatamente fornite online, sui siti https://www.openfoam.org (utilizzato al fine di questa tesi) e https://www.openfoam.com. OpenFOAM, per essere utilizzato, necessita del sistema operativo Ubuntu. Per lo svolgimento dell'elaborato è stato utilizzato un computer personale con sistema operativo Windows10. Purtroppo non è stato possibile installare la versione di OpenFOAM direttamente si "Ubuntu for Windows" poiché, nonostante i molti vantaggi che ciò avrebbe comportato, vi erano numerosi problemi di funzionamento. E' stata quindi necessaria l'installazione di "ORACLE VM Virtual Box" per emulare il sistema operativo Linux, sul quale è stato successivamente installato Ubuntu ed infine OpenFOAM. Questa operazione ha fatto si che il sistema Linux risultasse particolarmente lento nei tempi di calcolo, rallentando inoltre anche l'utilizzo dei programmi su Windows. Durante lo svolgimento di questo elaborato è parso evidente che le capacità di calcolo della Virtual Machine non potevano essere accettabili, in particolar modo per lo studio dei modelli viscosi. Per sopperire a questa mancanza, si è deciso di installare la versione nativa di Ubuntu, ottenendo risultati in tempi molto più brevi.

OpenFOAM è dunque una library del linguaggio C++, usata principalmente per creare file eseguibili, noti come applications. Le applications possono dividersi in due categorie: le solvers, concepite con lo scopo di risolvere problemi di meccanica continua, e le utilities, progettate per risolvere problemi in cui sia necessario manipolare più dati. L'utente può sia creare sia nuove applications che nuovi solvers, ovviamente sono necessarie le conoscenze di alcuni prerequisiti sul software e sulle tecniche di programmazione dei problemi fisici. Nel problema trattato in questa tesi, si è scelto di modificare un caso già esistente, andando a manipolarne gli input, la geometria ed alcuni altri parametri.

#### 4.2. Installazione del programma

Come detto precedentemente, per l'installazione di questo software si è ricorsi alla guida dettagliata presente sul sito https://www.openfoam.org. Per l'installazione di OpenFOAM è opportuno disporre di un computer con sistema operativo Linux. In questo caso, disponendo soltanto di un sistema operativo Windows, si è deciso inzialmente installare una macchina virtuale che emuli il funzionamento del sistema operativo desiderato. La guida presentava tre diverse opportunità, la prima delle quali prevedeva l'utilizzo di OpenFOAM direttamente su Windows tramite "Ubuntu for Windows". Ciò non è tuttavia stato possibile, per cui si è ricorsi alla macchina virtuale. Si osservi che questa operazione, essendo virtuale, non necessita di un partizionamento fisico del computer. Per quanto riguarda l'istallazione della macchina virtuale si rimanda al seguente link: https://www.virtualbox.org/wiki/Downloads. Successivamente è necessario scaricare la versione di Ubuntu desiderata e supportata. La procedura di installazione è rapida e si è scelto di emulare Ubuntu 16 04 LTS. Ora si formatta il sistema operativo e si impostano il nome e la password dell'utente. È importante che il PC non vada mai in standby poiché l'esecuzione dei programmi è eseguita dal terminale; una sospensione di quest'ultimo si tradurrebbe infatti nell'arresto dei programmi stessi. Una specifica su come effettuare la distribuzione del sistema operativo virtuale sui processori a disposizione nel computer materiale è inoltre necessaria. Un'indicazione generale per l'emulazione è di ripartire Ubuntu sulla metà dei processori a disposizione. Se si tentasse di aggiungerne più di metà si verificherebbero continui crash del software di emulazione. Queste specifiche, che riguardano le esigenze dell'utente, possono essere indicate seguendo il percorso: VirtualBox  $\rightarrow$  Setting System $\rightarrow$  Processors, qui si specificano i processori dei quali si vuole disporre a fronte di quelli disponibili. Successivamente all'installazione si procede come se si possedesse un sistema operativo Ubuntu, semplicemente aprendo la macchina virtuale dal menu Start. In una seconda parte, è stato utilizzato un sistema operativo Linux nativo, per cui la parte precedente di installazione della Virtual Machine è stata saltata. Ora è necessario installare il programma OpenFOAM. Per il download del pacchetto open source si rimanda al seguente link: https://openfoam.org/download/3-0-1-ubuntu/. Per l'installazione dei programmi, in Linux, è necessario procedere da terminale. Questo si traduce nel compilare dall'interfaccia del terminale le stringhe di comandi che sono riportate nel precedente link.

#### 4.3. Struttura del programma

A seguito dell'installazione del programma vengono scaricate, all'interno della cartella principale "OpenFOAM ", altre due cartelle, le quali dovranno essere estratte per essere leggibili. Una cartella è denominata "OpenFOAM" e l'altra "ThirdParty-v-1712". La desinenza v-1712 specifica la versione che si sta impiegando. All'interno della cartella ThirdParty-v-1712 vi sono tutte le istruzioni che vengono richiamate dal programma nella fase di pre e post processing con i rispettivi comandi, che saranno illustrati nel seguito. Nella cartella OpenFOAM sono invece raccolte tutte le cartelle contenenti le equazioni, le costanti, i moduli e i file necessari per l'esecuzione dei programmi in OpenFOAM. Di particolare utilità è la cartella "tutorials", all'interno della quale sono riportati, in sottocartelle, esempi di vario genere per rispondere alla necessità di descrivere fenomeni disparati. Per esempio, si possono studiare fenomeni in cui si parli di combustione, di elettromagnetismo, di trasferimento di calore, di fluidi comprimibili o incomprimibili e molti altri. Nello specifico, parlando dell'interazione tra aria e acqua, si possono usare dei modelli che sono raccolti nella cartelle "multiphase". Importantissimi ai fini di questa tesi saranno le cartelle "incompressible" (fase iniziale di comprensione del funzionamento del programma) e "compressible". In questa relazione, come si vedrà

nel seguito, a partire da un caso esistente se ne creerà uno nuovo per comprendere come modificare il dominio, la sua forma, la sua mesh e la procedura di calcolo in generale.

In OpenFOAM sono presenti due ambienti: uno di pre-processing e l'altro di post-processing ed entrambi sono delle utilities dello stesso. La struttura del programma può essere così schematizzata:



Immagine 16 - Panoramica della struttura di OpenFOAM

Le fasi seguite sono dunque riassumibili come:

- I. <u>Pre-processing</u>: fase nella quale viene generata la mesh, vengono assegnate tutte le caratteristiche del problema e sono definite le condizioni iniziali e le condizioni contorno;
- II. <u>Solving</u>: fase durante la quale, a partire dalle equazioni che si intende risolvere, si avviano le computazioni del problema. A seconda delle caratteristiche di quest'ultimo vengono create tante cartelle quante sono gli step temporali di salvataggio richiesti dall'utente nel pre-processing. All'interno di queste cartelle sono raccolte le soluzioni numeriche del problema in forma matriciale. Per averne una rappresentazione grafica si rimanda al passo successivo;
- III. <u>Post-processing</u>: con l'ausilio del software di visualizzazione ParaView , anch'esso un programma open source sul quale si appoggia OpenFOAM, è possibile condurre visualizzazioni scientifiche statiche e di tipo interattivo.

# 4.4. Analisi della cartelle

Ogni caso specifico è diviso in più sottocartelle, all'interno delle quali si troveranno i file che descrivono la geometria, le condizioni al contorno e tutte le proprietà del condotto. Nonostante possano esistere diverse tipologie, è solito che per ogni caso vi siano tre cartelle: "system", "0", "constant".

Verranno ora prese in rassegna le principali cartelle presenti nei vari case di OpenFOAM, descrivendone le funzioni ed i parametri da inserire. Questo aiuterà la comprensione dei vari file, inseriti negli allegati.

# 4.4.1. system

Questa cartella contiene le specifiche per la simulazione, e al suo interno si trovano quattro file: "blockMeshDict", "controlDict", "fvSchemes", "fvSolution", "decomposeParDict".

#### 4.4.1.1. blockMeshDict

All'interno di questo file sarà necessario specificare la geometria del condotto in questione, definirne le facce e la mesh, ossia la suddivisione della griglia di calcolo.

Innanzitutto, andrà definita la grandezza del profilo in rapporto ai metri. Se si pone uguale ad 1, significa che si stanno utilizzando i metri, mentre ponendola pari a 0,01 significa che si stanno utilizzando i centimetri.

Successivamente, è necessario definire i vertici del profilo, specificandone la posizione lungo le tre direzioni X,Y,Z.

Questi vertici definiranno successivamente i blocchi, ossia le porzioni in cui andrà diviso il profilo. Maggiori saranno i blocchi, maggiori saranno le condizioni al contorno imponibili su ogni faccia. Tuttavia, l'aumento del numero di blocchi provoca un aumento del costo computazionale del problema. Per ogni singolo blocco è necessario definire una mesh, o griglia, specificandone il numero di punti lungo ogni direzione e la legge con cui questi punti vengono distribuiti.

Nella direzione di "z" (profondità) è solito imporre un'unica cella, così da simulare un caso quasi bidimensionale.

E' anche possibile definire dei punti intermedi tra vertice e vertice, tramite il comando "edges". Questi punti intermedi andranno definiti sempre lungo le tre direzioni, come nel caso dei vertici, oppure andranno utilizzate funzioni pre costituite, le quali generano un certo numero ed una certa distribuzione di punti.

Infine, è necessario definire, tramite i vertici, le facce ed i loro nomi, sui cui successivamente andranno imposte le condizioni al contorno.

#### 4.4.1.2. controlDict

In questo file è innanzitutto necessario esplicitare quale tipo di solutore sceglieremo per il nostro caso. Per tutti i case presi in esame in questo elaborato, il solutore scelto è "rhoCentralFoam", a cui si rimanda al capitolo dedicato per la spiegazione.
Inoltre, andranno specificate le condizioni, dal punto di vista temporale, per il calcolo del case. Un parametro importante da imporre è il numero di Courant ed il passo temporale  $\Delta t$ , a cui si rimanda al capitolo successivo per la spiegazione.

E' anche possibile, in questa cartella, specificare ogni quanti step la soluzione andrà salvata, e quante soluzioni mantenere, all'avanzare della simulazione.

Infine, possono essere espresse delle funzioni, le quali hanno molteplici utilizzi, il più importante dei quali è aumentare il numero di variabili calcolate, tra cui il Mach.

#### 4.4.1.3. fvSchemes

Come può suggerire il nome, è necessario scegliere gli schemi ai volumi finiti per i diversi componenti delle equazioni modellate.

Per il tempo è necessario scegliere tra:

| Euler                 | First order, bounded, implicit                  |  |
|-----------------------|-------------------------------------------------|--|
| localEuler            | Local-time step, first order, bounded, implicit |  |
| CrankNicholson $\psi$ | Second order, bounded, implicit                 |  |
| backward              | Second order, implicit                          |  |
| steadyState           | No solving of time derivatives                  |  |

Come si può evincere dagli allegati, quello utilizzato è lo schema di Eulero.

I possibili schemi di interpolazione sono:

| linear          | Linear interpolation                          |  |
|-----------------|-----------------------------------------------|--|
| cubicCorrection | Cubic scheme                                  |  |
| midPoint        | Linear interpolation with symmetric weighting |  |

I gradienti possono essere discretizzati come mostrato nella tabella successiva:

| ${\it Gauss < interpolationScheme} >$ | Second order, Gaussian integration               |
|---------------------------------------|--------------------------------------------------|
| leastSquares                          | Second order, least squares                      |
| fourth                                | Fourth order, least squares                      |
| cellLimited <gradscheme></gradscheme> | Cell limited version of one of the above schemes |
| faceLimited <gradscheme></gradscheme> | Face limited version of one of the above schemes |

Per la discretizzazione dei termini di divergenza, le possibili opzioni sono:

| upwind       | First order bounded                              |
|--------------|--------------------------------------------------|
| linearUpwind | First/second order linear upwind scheme, bounded |
| QUICK        | First/second order bounded                       |
| TVD schemes  | First/second order bounded                       |
| SFCD         | Second order bounded                             |
| NVD schemes  | First/Second order bounded                       |

Infine, per i termini laplaciani:

| corrected      | Explicit non-orthogonal correction |  |
|----------------|------------------------------------|--|
| uncorrected    | No non-orthogonal correction       |  |
| limited $\phi$ | Limited non-orthogonal correction  |  |
| bounded        | Bounded correction                 |  |
| fourth         | Fourth order                       |  |

#### 4.4.1.4. fvSolution

In questo file vengono assegnati i risolutori lineari per le equazioni differenziali. Qui vengono assegnate anche la tolleranza del risolutore lineare e il numero massimo di iterazioni.

#### 4.4.1.5. decomposeParDict

In questo file le mesh sono decomposte in un assegnato numero di parti, così da avere simulazioni parallele. Questo velocizza di molto i tempi di calcolo dei vari case. E' necessario specificare il numero di processori che si desidera che lavorino in parallelo.

#### 4.4.2. 0

In questa cartella è necessario specificare le condizioni iniziali, nel dominio interno e su ogni faccia, delle grandezze termodinamiche.

#### 4.4.2.1. U

La velocità, definita come m/s, viene definita, innanzitutto, all'interno del profilo.

Successivamente, viene specificato come si comportano le singole facce rispetto a questa variabile. Alcune facce garantiranno un flusso a velocità costante, altre si comporteranno come muri (wall), altre ancora come piani di simmetria. La lista delle possibili opzioni è lunga, e si rimanda al sito di OpenFOAM per una dettagliata spiegazione.

Si specifica che, oltre all'imposizione della velocità, tramite appositi comandi è possibile imporre anche la portata, sia essa massica o volumetrica.

#### 4.4.2.2. T

La temperatura viene definita in gradi Kelvin K. E' necessario, come specificato per la velocità, descrivere il comportamento di ogni singola faccia, e definirla nella regione di spazio interna al condotto. Quest'ultima verrà imposta considerando le condizioni di temperatura dell'atmosfera standard, quindi 288 K.

### 4.4.2.3. P

La pressione è probabilmente il parametro più importante di tutti, considerando il nostro caso. Viene definita la pressione interna, la pressione all'inlet ed all'outlet, la cui differenza è fondamentale per l'innesco del flusso. Anche in questo caso, è necessario definire il comportamento delle singole facce, specificando la loro permeabilità o impermeabilità, oltre ad una serie di altre possibili opzioni.

#### 4.4.2.4. Alfat

File necessario unicamente se si sta trattando un caso viscoso, con modello di turbolenza di Spalart-Allmaras. Definisce la diffusività termica turbolenta.

#### 4.4.2.5. Nut

File necessario unicamente se si sta trattando un caso viscoso, con modello di turbolenza di Spalart-Allmaras, ed è il parametro che definisce i valori ed i comportamenti della varie facce in relazione alla viscosità turbolenta.

#### 4.4.2.6. Nutilda

File necessario unicamente se si sta trattando un caso viscoso, con modello di turbolenza di Spalart-Allmaras

## 4.4.3. Constant

Questa cartella contiene le specifiche per le turbolenze e le proprietà dei fluidi. A seconda del risolutore scelto, è necessario specificare file diversi. Per il risolutore comprimibile rhoCentralFoam la dipendenza dalla temperatura è determinata nei file thermodynamicProperties (incompressibile) e thermophysicalProperties (compressibile).

#### 4.4.3.1. thermophysicalProperties / thermodynamicProperties

thermophysicalProperties o thermodynamicProperties a seconda del caso trattato, rispettivamente viscoso o inviscido. Vengono definiti i modelli riguardanti l'energia, il calore e le proprietà fisiche.

```
thermoType
{
  type hePsiThermo;
  mixture pureMixture;
  transport const;
  thermo hConst;
  equationOfState perfectGas;
  specie specie;
  energy sensibleEnthalpy;
}
```

#### 4.4.3.2. turbulenceProperties

In questo file è necessario definire il modello di turbolenza utilizzato. Nei casi inviscidi, sarà posto un regime laminare, mentre, come specificato nei capitoli precedenti, è imposto il modello di Spalart-allmaras per i casi viscosi.

### 4.4.4. File di testo

All'aumentare della complessità del profilo, il numero di vertici e conseguenti variazioni della griglia di calcolo aumentano. Ciò rende i file estremamente confusionari, per cui è necessario porvi rimedio. Tramite il comando #include è possibile richiamare un file di testo esterno, in cui sono elencati tutti i dati necessari, senza che questi vengano scritti direttamente nei file dedicati. Ciò è molto utile anche per quanto riguarda le modifiche successive, poiché cambiando il valore in una singola cartella, questo a cascata viene modificato in tutti i file.

## 4.5. ParaView

Attraverso l'esecuzione del comando paraFoam, una volta che la procedura di calcolo è stata ultimata, è possibile aprire, direttamente dalla shell dei comandi, ParaView. Quello che si vede all'apertura del programma è la schermata che segue nell'immagine sottostante. In particolare, si fa riferimento ad uno dei casi presenti nei tutorials di OpenFOAM.



Immagine 17 – Interfaccia di ParaView

Il caso in esame può essere controllato dal pannello di sinistra. Esso contiene un accesso diretto ai casi che sono aperti con ParaView, nel presente esempio *forwardStep*. In questa regione si può attivare e disattivare la visualizzazione dei casi che sono stati caricati. Vi è poi un pannello che contiene i dettagli dei dati d'input chiamato properties dove si riportano: tempo, regioni e campi. Un altro pannello consente di modificare la scala di colori di rappresentazione dei risultati e in ultimo vi è un pannello in cui sono riportate le

informazioni riguardanti la mesh e la geometria del problema. Attraverso ParaView è inoltre possibile, a partire dai dati elaborati dal software, estrapolare grafici delle grandezze lungo le facce del profilo, effettuare sezioni del dominio, modificare il punto di vista e registrare quanto si vede sullo schermo. Tutti i valori possono essere rappresentati mediante opportuni grafici, valutandone l'evoluzione nel tempo o la correlazione tra due valori. I risultati che verranno riportati in seguito saranno dunque estratti con questo programma.

# 5. Pre - Processing

Le varie geometrie studiate in precedenza, ed i casi inviscidi e viscosi, saranno studiati in questo capitolo. Per le cartelle, si rimanda agli allegati specifici, mentre in questo capitolo verranno affrontate le spiegazioni dei vari file. Inoltre, i grafici dei risultati teorici delle grandezze termodinamiche ottenuti con Excel non verranno esposti in questo capitolo, bensì nel capitolo "postprocessing", così da poterli comprare con i risultati ottenuti con OpenFOAM.

## 5.1. Profilo 2D – fluido inviscido

Questo profilo, essendo stato studiato per primo, non ha subito il processo di ottimizzazione al quale è andato in contro il profilo assialsimmetrico. Ciò significa che i valori di gola saranno corretti, ma i valori di potenza e salto di pressione non saranno moderati ed assumeranno valori non realmente utilizzabili. Inoltre, si ricorda che si tratta di un caso inviscido. Per la visione delle cartelle, si rimanda all'allegato 10.2.

Si tratta di un case inviscido in cui sono state definiti come valori inziali solo tre variabili: velocità U, temperatura T e pressione P, e nei piani di inlet e outlet saranno imposti i seguenti valori:

|        | U     | Р         | Т     |
|--------|-------|-----------|-------|
| INLET  | 0 m/s | 101325 Pa | 288 k |
| OUTLET | 0 m/s | 84794 Pa  | 288 k |

La geometria è stata definita punto a punto, non ricorrendo all'uso di funzioni e tutto il profilo è stato contenuto in un unico blocco, con una griglia pari a 120 x 80. Trattandosi di un flusso inviscido, questo non ha comportato problemi. Sulla parete del profilo è stata imposta, dato il fluido inviscido, la condizione di tangenza della velocità a parete, tramite la condizione "slip".

## 5.2. Profilo assialsimmetrico – fluido inviscido

Le cartelle di questo tipo di profilo sono del tutto identiche a quelle del caso 2D, visionabili nell'allegato 10.2. L'unico file modificato è "blockMeshDict", ossia quello riguardante la geometria (ottimizzata rispetto le condizioni del fan), della quale è stato già trattato nel capitolo appropriato, e visionabile nell'allegato 10.3. Anche in questo caso, il profilo è stato definito da un unico blocco, come nel caso bidimensionale.

Durante lo svolgimento della simulazione sul profilo 2D, ci si è accorti che la griglia utilizzata era eccessiva per la trattazione di un caso inviscido, appesantendo inutilmente i tempi di calcolo. Per questo motivo, il profilo è sempre suddiviso in un unico blocco, ma con una griglia di calcolo pari a 60 x 40, con un certo infittimento nelle regioni centrali del condotto.

In questo caso, data l'ottimizzazione della geometria rispetto al caso 2D, i valori delle tre grandezze termodinamiche imposti al sistema sono:

|        | U                        | Р         | Т     |
|--------|--------------------------|-----------|-------|
| INLET  | Imposta la               | 101325 Pa | 288 k |
| OUTLET | portata:<br>0,001415kg/s | 101225 Pa | 288 k |

Anche in questo caso è stata imposta la condizione di tangenza della velocità a parete (tramite la condizione "slip"), a causa del fluido inviscido. Avendo calcolato in un momento precedente la portata affinché si abbiano determinati valori di potenza, questa è stata imposta come condizione iniziale nel profilo.

### 5.3. Profilo assialsimmetrico – fluido inviscido – fancurve

Questo tipo di profilo non si discosta da quello esaminato nel caso precedente (profilo assialsimmetrico – inviscido, stesso numero di blocchi e stessa griglia di calcolo), se non per un singolo file. Infatti, al posto di imporre un salto di pressione tra inlet e outlet, andando ad inserire una depressione sul secondo, si è deciso di porre, come condizione all'outlet, FACURVE. Questa funzione rimanda ad un file dedicato, nel quale è inserita la curva di funzionamento del fan, in questo caso:

```
fanCruve
5
(
(0.00115560 99.71)
(0.00115610 161.80)
(0.00115704 276.35)
(0.00115949 575.81)
(0.00117025 1869.61)
)
```

Immagine 18 - File fanCurve di funzionamento del fan.

Questa curva richiede che siano fissati i valori di portata volumetrica e salto di pressione all'outlet. Per ricavare tali dati, ci si è affidati ai calcoli su Excel. Per la definizione di una curva di lavoro del fan sono necessari come minimo tre coppie di valori. Ne sono stati fissati cinque, ma sarebbe stato possibile metterne molti di più. Si è notato, tuttavia, che l'aumento del numero di coppie di valori provocava problemi di calcolo, con continui malfunzionamenti del sistema, per cui si è deciso di limitare il numero, mantenendolo comunque sempre maggiore al numero minimo. I file differenti dal caso assialsimmetrico trattato in precedenza sono enunciati nell'allegato 10.4.

#### 5.4. Lamina piana – fluido viscoso

Come specificato precedentemente, per rendere più veritiera la simulazione del condotto, si è svolta una simulazione con un fluido reale viscoso e con il modello turbolento Spalart Allmaras. Inizialmente è stato deciso di testarlo sul case di una lamina piana, così da comprenderne meglio il funzionamento e poter validare i risultati, comparandoli con risultati già noti, prima di applicarlo al nostro caso di interesse. Non essendoci nessun caso predefinito di lamina piana con il modello turbolento di Spalart Allmaras, si è dovuto modificare il case "turbulentFlatPlate". Inizialmente si sono eliminati i riferimenti ai modelli turbolenti precedentemente inseriti, mentre successivamente si sono inserite le variabili (alphat, nut, nuTilda, già descritte in precedenza) ed i dati attinenti al modello scelto. Quest'ultimi sono strati presi dal case "pump2D" ed opportunamente modificati, così da rispecchiare il caso in questione. Dato che questo case trattava un flusso incompressibile, si è utilizzato il solutore "simpleFoam" per l'ottenimento dei primi risultati. I risultati di questo studio iniziale saranno omessi.

Dato che il case oggetto di questa tesi tratta un flusso compressibile, si è modificato ulteriormente il case della lamina piana. Dopo aver inserito il modello turbolento adatto, si sono apportate modifiche per rendere il flusso compressibile, innanzitutto inserendo il valore della temperatura T. Per il fluido compressibile, il solutore utilizzato è "rhoCentralFoam".

Il sito ufficiale della NASA mette a disposizione i risultati di uno studio analogo, per cui si sono utilizzati questi dati per effettuare una comparazione e una validazione dei risultati.

Un numero di Mach pari a 0,2 comporta una velocità indisturbata del flusso pari a 69,5 m/s. Il valore del numero Reynolds assunto dalla NASA è pari a 5\*10<sup>6</sup>, di conseguenza si effettuerà questo studio assumendo un valore identico. Affinché ciò sia esatto, è necessario agire sui valori che determinano il numero di Reynolds del profilo preso in considerazione. Si è calcolato il numero di Reynolds del nostro profilo per le condizioni sopra riportate, tramite la formula:

$$Re = \frac{U}{v} = 4,7 * 10^6 / m$$

Il valore è simile a quello assunto dalla NASA, con una variazione di  $0,3*10^6$  /m. Di conseguenza, per ottenere un valore di Reynolds al metro identico a quello considerato in precedenza, si andrà a modificare il valore di  $\nu$  (viscosità cinematica), utilizzando la formula inversa, e ponendolo pari a  $\nu = 1,36*10^{-5}$ . Sarà necessario modificare questo valore nelle condizioni iniziali di OpenFOAM.

Questo parametro permetterà di calcolare il numero di Reynolds locale su ogni sezione Re(x), moltiplicandolo semplicemente per il punto considerato del profilo.

Scegliendo la sezione desiderata, potranno essere ricavati i grafici degli andamenti di  $y_+$  e  $u_+$ , per il tratto laminare e per quello turbolento, tramite la formula di Blasius.

Si è deciso di testare il programma usufruendo di una delle griglie di calcolo precostruite, messe a disposizione da OpenFOAM, utilizzando una griglia identica a quella utilizzata dalla NASA. Per verificare l'adeguatezza o meno della griglia di calcolo utilizzata, è necessario calcolare lo spessore dello strato limite teorico lungo la lamina piana. Come già specificato, lo spessore dello strato limite aumenta all'aumentare del numero di Reynolds locale, il quale, a sua volta, aumenta con la lunghezza del profilo.



Immagine 19 - Andamento del numero di Reynolds locale lungo la lamina piana

In questo caso, lo spessore è  $\delta \approx 10^{-4}$ . Di conseguenza, lo spessore lungo la coordinata verticale della cella di calcolo più prossima alla parete non deve essere superiore a questo valore, anzi, è necessario che sia più piccolo, in mondo da far ricadere un maggior numero di punti all'interno di questa sezione, per poter estrapolare più valori. Inizialmente si era utilizzata una griglia di calcolo con spessore a parete pari a  $y \approx 10^{-4}$ , tuttavia, nonostante il suo spessore fosse inferiore allo spessore dello strato limite, comportava che quest'ultimo venisse compresso in pochi punti, ed il tratto laminare presentava andamenti rettilinei. Di conseguenza, si è passati a griglie di calcolo dallo spessore  $y \approx 10^{-6}$ , sia aumentando il numero di punti, sia aumentando in maniera significativa lo stretching verticale della griglia. Ciò ha comportato un maggior numero di punti all'interno dello strato limite, e i valori hanno assunto un andamento in linea con quanto ci si sarebbe aspettato.

Sono stati ricavati successivamente i valori teorici ed i grafici di  $u_+ = f(log(y_+))$ , con le formule specificate nell'apposito capitolo, i quali verranno comparati ai valori sperimentali in fase di post processing.

Inoltre, si è preso come riferimento valori presenti sul sito della NASA, sul quale è stato analizzato il medesimo caso.



Immagine 21 -  $u_+ = f(\log(y_+))$  ottenuto dal database NASA.

Andando ad analizzare i valori di infittimento della griglia di calcolo utilizzata dalla NASA per l'ottenimento dei risultati, si è riscontrato che i valori massimi di aspect ratio (rapporto tra le due dimensioni x e y di una singola cella di calcolo) sono nell'ordine delle migliaia. La versione di OpenFOAM utilizzata per lo sviluppo di questa tesi permette valori di aspect ratio massimi pari a 1000, segnando un warning in caso questi non vengano rispettati per ogni singola cella. Per ovviare a questo problema, si è testata una lamina piana con due tipologie di mesh:

- Aspect Ratio minore di 1000, ma con un numero maggiore di celle, così da garantire un ∆y a parete pari a 10<sup>-7</sup>;
- Aspect Ratio maggiore di 1000, con un numero minore di celle rispetto al precedente, garantendo sempre un  $\Delta y$  a parete pari a  $10^{-7}$ .

Si è notato che, a parte i warning da parte del programma in fase di check, non vi si riscontravano problematiche o errori nei risultati. Appurato ciò, si è deciso di ignorare il parametro dell'aspect ratio, seguendo la linea della NASA, poiché il minor numero di celle di calcolo garantisce tempi di calcolo più contenuti. Di conseguenza, si è scelta infine una griglia di calcolo pari a 140 x 200, con infittimento nel verso del bordo di attacco della lamina piana.

Si è anche ricavato l'andamento teorico del valore di Cf lungo il profilo, tramite la formula:

$$C_f = \frac{0,026}{(R_e)^{\frac{1}{7}}}$$

I risultati ottenuti sono:



Immagine 22 – Andamento Cf lungo la lamina piana.

La visione di tutti i file è disponibile nell'allegato 10.5.

## 5.5. Profilo assialsimmetrico – fluido viscoso

La progettazione di un condotto e l'analisi del relativo flusso interno non può non tenere conto degli effetti viscosi. Ciò è necessario principalmente per verificare che la vena fluida non si distacchi in nessun punto del profilo. Ciò ovviamente è estremamente dannoso per il funzionamento del condotto, ed è assolutamente necessario evitarlo. Durante la fase di studio della geometria si è già tenuto conto di questo fattore, imponendo angoli e direzioni teoricamente accettabili affinché il flusso non separi (angolo di discesa e tangenza raccordo-tratto divergente).

Calcoli preliminari hanno evidenziato il distacco della vena fluida per angoli di apertura del tratto divergente paria quello assunto in fase di progetto della geometria. Ciò ha reso necessaria una variazione postuma di geometria. Il punto critico è stato evidenziato nel raccordo tra la sezione di gola e il tratto divergente, per cui si è deciso di rendere più morbido questo tratto, aumentando il raggio di curvatura del raccordo e diminuendo l'angolo di apertura del divergente, il quale è stato portato ad un valore inferiore ai 4°. Ciò ha richiesto, per poter ottenere le stesse condizioni di uscita, l'aumento della lunghezza del condotto. I nuovi risultati sono:

| Lunghezza condotto          | 1 m    |
|-----------------------------|--------|
| Lunghezza tratto divergente | 0,76 m |

Per rendere più semplici future modifiche della geometria, si è deciso di creare un file dedicato esterno alle cartelle prima menzionate, in cui inserire i specifici valori richiesti, richiamati successivamente nelle cartelle tramite il comando #include. Ciò comporta che non sarà più necessario modificare ogni singola cartella, ma la modifica di un valore all'interno del suddetto file modificherà a cascata i valori in tutte le cartelle. I file utilizzati sono quelli della lamina piana viscosa, con una geometria opportunamente modificata, disponibile nell'allegato 10.6.

Conoscendo i valori del numero di Mach, e di conseguenza della velocità, lungo tutto il profilo, è stato possibile ricavare l'andamento del numero di Reynolds locale:



Immagine 23 - Andamento del numero di Reynolds locale lungo il condotto.

Conoscendo i valori del numero di Reynolds locale lungo tutto il profilo, è stato possibile ricavare lo spessore dello strato limite lungo tutta la lunghezza del condotto. A differenza del caso della lamina piana, in cui lo spessore dello strato limite aumentava lungo il profilo, in questo caso avrà un andamento variabile lungo il condotto. Prendendo in considerazione lo spessore dello strato limite nella zona terminale del tratto di gola, ossia nella zona più critica del condotto, si avrà un valore pari a  $8*10^{-4}$  m. Di conseguenza, come già enunciato nel caso della lamina piana, la griglia di calcolo necessaria per un'adeguata analisi del condotto dovrà avere, a parete, un valore di  $\Delta y$  minore o uguale a  $10^{-4}$ . E' consigliato avere un valore di un ordine di grandezza più basso, così da avere inclusi nello strato limite un adeguato numero di punti, senza tuttavia appesantire eccessivamente i calcoli con spessori ancora inferiori. Di conseguenza, si è utilizzato un numero di punti ed uno stretching pari a garantire un valore di  $\Delta y$  della griglia a parete pari a  $10^{-5}$ . Inoltre, è necessario infittire la griglia di calcolo in direzione del tratto di gola e del raccordo. Di conseguenza, la griglia scelta è composta da 200 x 90 celle.

Infine, si è verificato che il programma potesse essere utilizzato per la simulazione di anche altre quote di volo, andando a modificare unicamente il salto di pressione tra inlet e outlet, e di conseguenza il numero di Mach in gola. I vari parametri sono:

| Quota | Mt   | ΔΡ   |
|-------|------|------|
| [m]   |      | [Pa] |
| 1000  | 0,45 | 40   |
| 2000  | 0,64 | 63   |
| 3000  | 0,8  | 77   |

Possiamo notare che sono state prese in considerazione solo quote inferiori rispetto ai 4000 metri scelti inizialmente. Ciò è dovuto al fatto che già a tale quota ci si trova in campo transonico.

## 6. Verifica funzionamento del programma

Data la conoscenza iniziale limitata della logica dietro la quale opera il programma OpenFOAM, sono stati fatti alcuni test, così da confermare o smentire alcune ipotesi. Inoltre, durante lo svolgimento di questo elaborato, e dopo aver svolto alcune simulazioni iniziali, è stato necessario modificare alcuni parametri geometrici.

### 6.1. Flusso unidimensionale

Innanzitutto, si è posto il problema di come il programma considerasse la portata. Non era chiaro, inizialmente, se la portata venisse considerata unidimensionale, oppure venissero presi in considerazione moti in almeno due dimensioni, se non addirittura in tre dimensioni. Data la legge della portata:

$$\dot{m} = \rho \times A \times \vec{q}$$

è necessario capire se il termine  $\vec{q}$  sia monodimensionale o meno.

Per la verifica, si sono ripetute quattro simulazioni, due per il caso quadrangolare, ed altrettante per il caso assialsimmetrico. In entrambi i casi, si sono successivamente raddoppiate le profondità dei profili, raddoppiando quindi le aree prese in considerazione. Per il caso quadrangolare si è passati da uno spessore lungo l'asse z di 0.1 cm ad uno di 0.2 cm, mentre per il caso assialsimmetrico è stato raddoppiato l'angolo della sezione di circonferenza presa in considerazione, rispettivamente da 4° a 8°. Si è notato che, in entrambi i casi, le portate, raddoppiando le aree, raddoppiavano a loro volta. Le piccole discrepanze tra valore teorico e valore ricavato dal programma possono, al di la di ogni ragionevole dubbio, essere addebitate ad approssimazioni di calcoli, essendo inferiori al 5%.

## 6.2. Condizione di stabilità CFL

E' necessario fare alcune considerazioni per quanto riguarda la stabilità del modello. Innanzitutto, bisogna specificare il numero di Courant scelto nel file "controlDict". Questo valore influisce in maniera significativa sulle mesh e sul  $\Delta$ t di avanzamento temporale. Questo è un numero adimensionale interpretabile come il tragitto percorso dall'informazione nell'unità di tempo rispetto alla dimensione delle celle spaziali, esprimibile tramite la formula:

$$Cour \approx \frac{\Delta t}{\Delta x}$$

con:

- *Cour* : numero di Courant;
- $\Delta t$  : passo temporale;
- $\Delta x$  : lunghezza della mesh di calcolo.

Perché il metodo sia stabile è necessario imporre la condizione di Courant-Friedrich-Lewy, detta condizione di stabilità CFL, ossia Cour < 1.

Tramite questa condizione si ha la certezza che all'interfaccia tra due celle arrivino solamente informazioni dalla cella che precede, ed è una condizione assolutamente necessaria affinché il modello arrivi a convergenza.

In conseguenza di ciò, durante lo svolgimento delle simulazioni, ogni volta che si è andati ad infittire la griglia di calcolo, diminuendo, anche in maniera drastica, il valore di  $\Delta x$ , è stato necessario variare anche il valore di  $\Delta t$ , così da conservare la condizione di CFL. Per quanto riguarda le prime simulazioni, con griglie di calcolo rade e conseguenti valori di  $\Delta t$  abbastanza elevati, i tempi computazionali erano contenuti. Con l'infittimento delle griglie, necessario per lo svolgimento delle simulazioni sul fluido viscoso, i valori di  $\Delta t$  sono diventati estremamente piccoli, arrivando sino a 10<sup>-7</sup> m. Ciò ha determinato tempi di calcolo incredibilmente lunghi.

## 6.3. Verifica sensibilità del programma OpenFoam

Per verificare il grado di sensibilità del programma di calcolo OpenFoam, si è considerato il profilo assialsimmetrico descritto in precedenza. Sono stati calcolati i risultati imponendo una certa differenza di pressione  $\Delta P_1$  tra l'inlet e l'outlet del profilo. Successivamente, questo valore di pressione è stato leggermente modificato, ottenendo  $\Delta P_2$ ,  $\Delta P_3$ ,  $\Delta P_4$ . Tutti questi valori discostano tra di loro di poche unità. Calcolando nuovamente i risultati con i gradienti di pressione menzionati, si è notato un problema di programma. Infatti OpenFoam, per un valore di  $\Delta P$  esiguo, non riesce a riconoscerne la differenza, mostrando i medesimi risultati per diversi valori di  $\Delta P$ . Si è notato inoltre che, mentre per alcuni valori di  $\Delta P$ i risultati sono identici, per altri vi è una variazione a gradino, con variazioni di valori eccessive rispetto a quanto ci si aspetterebbe. Per variazioni di anche solo 1 Pa possono o essere ignorate dal programma, o comportare variazioni che ci si aspetterebbe con  $\Delta P$  di molto maggiori. Queste problematiche computazionali si verificano solo in presenza di pressioni basse, poiché il procedimento menzionato è stato ripetuto per pressioni elevate, mantenendo gli stessi  $\Delta P$ , ed il programma fornisce risultati in linea con quanto ci si aspetterebbe.

## 6.4. Ortogonalizazione griglia di calcolo

Un secondo test è stato effettuato sulla creazione delle mesh. Innanzitutto, per avere risultati corretti, è necessario che le mesh siano, con buona approssimazione, ortogonali alla superficie del profilo, in ogni punto. Se ciò non è possibile, si deve almeno avere ortogonalità nelle zone di interesse ai fini del calcolo, ossia nella gola ed in corrispondenza del raccordo. Si è notato, in una fase preliminare, che le mesh tangenti ai profili curvilinei tendevano ad assumere una pendenza nella direzione del profilo, mantenendo questa caratteristica anche in zone rettilinee. Per ovviare a questo problema, saranno introdotte curvature iniziali opposte sulla faccia riguardante l'inlet. Nell'immagine sottostante viene mostrato il profilo corretto:



Immagine 25 - Variazione della curvatura delle superfici di input e output.

Si può osservare che l'inlet è stato modificato, anticipando il punto appartenente all'asse di simmetria, e collegandolo ai restanti punti della faccia iniziale tramite due archi di cerchio. Così facendo le celle saranno leggermente più ortogonali al profilo, garantendo ortogonalità soprattutto nel tratto di gola. Discorso analogo vale per l'outlet, a cui è stata imposta una deformazione così da avere celle leggermente più

ortogonali alla parete. Di seguito sono riportati gli zoom di alcune parti del profilo, con le rispettive celle di calcolo:



Immagine 26 - Griglia di calcolo nella sezione convergente (sopra), divergente (in mezzo) e nella gola (sotto).

Questo metodo, seppur grezzo, si è rivelato utile, pratico e corretto per ovviare al problema, garantendo mesh approssimativamente ortogonali in ogni punto.

## 6.5. Griglia di calcolo in presenza di punti di discontinuità del profilo

E' necessario fare una breve spiegazione sul funzionamento delle mesh nelle zone del profilo in cui la geometria varia. Nella figura sottostante vi è rappresentato un profilo (in nero) in cui vi è una brusca variazione di incidenza.



Immagine 27 - Comportamento mesh in caso di presenza di un punto di discontinuità.

Si può notare che la cella di calcolo si trova a cavallo dello spigolo. Ciò può comportare dei problemi, soprattutto se si sta trattando un case viscoso. Il programma, infatti, approssima il profilo considerando i vertici della cella di calcolo, per cui lo spigolo viene approssimato seguendo la linea rossa. Questo metodo comporta angoli di apertura del profilo errati, e può portare, nel caso di flusso viscoso, alla separazione dello strato limite. La definizione punto a punto dei profili ha creato un'enormità di segmenti che, seppur fitti, avrebbero comportato problemi di questo tipo nel case viscoso. Per ovviare a questo problema, si può ricorrere a due diversi metodi:

- Cercare di far coincidere lo spigolo del profilo con il limite della cella di calcolo, aumentando anche il numero di celle per semplificare il compito. Questo metodo può essere utilizzato nel caso di uno spigolo singolo, ma diventa di non facile attuazione quando questi diventano numerosi;
- Evitare la definizione del profilo punto per punto, privilegiando l'utilizzo di funzioni che approssimano bene i tratti curvilinei, tra cui la funzione "arc".

Per quanto riguarda il profilo assialsimmetrico, si è optato per la seconda opzione. Per poter utilizzare più funzioni, in base ai tratti del profilo considerati, il condotto è stato diviso in più blocchi. Inoltre, l'utilizzo di un maggiore numero di blocchi comporta anche un altro vantaggio: al termine di ogni blocco vi si trova anche il termine della griglia di calcolo. Di conseguenza, un eventuale cambio di geometria, quindi un punto di singolarità, non cadrà sicuramente a cavallo di una cella di calcolo.

Per ultimo, l'utilizzo di funzioni, rispetto alla definizione del profilo punto a punto, accelera leggermente la velocità di calcolo computazionale.

### 7. Solving

Come risolutore, è stato utilizzato "rhoCentralFoam". In questo risolutore le equazioni di governo non sono risolte come un unico sistema, ma vengono considerate separatamente. Inoltre utilizza uno schema upwind centrato di Kurganov. Si tratta di un risolutore per flussi compressibili.

Innanzitutto viene risolta l'equazione di continuità, ottenendo un valore  $\rho$  per la densità. Successivamente, viene risolta l'equazione della quantità di moto, divisa in due parti: la prima per la parte inviscida, la seconda per la parte compressibile. L'equazione dell'energia, invece, viene risolta inizialmente senza considerare il flusso del calore, il quale viene aggiunto solo in un momento successivo. L'equazione della continuità

$$\frac{\partial \rho}{\partial t} + \frac{\partial (u_i \rho)}{\partial x_i} = 0$$

viene risolta utilizzando il primo valore della velocità.

Successivamente, è risolta la parte inviscida dell'equazione di conservazione della quantità di moto.

$$\left(\frac{\partial \widehat{u}_i}{\partial t}\right)_I + \frac{\partial}{\partial x_j} \left(u_i \widehat{u}_j\right) + \frac{\partial p}{\partial x_i} = 0$$

Da questa equazione, viene ricavato esplicitamente il valore della variabile  $\hat{u}_i$ . La derivata temporale si riferisce unicamente al contributo inviscido. La nuova velocità  $u_i$  è trovata tramite la relazione  $u_i = \hat{u}_i / \rho$ . Ora è possibile risolvere l'equazione di conservazione della quantità di moto comprendente i termini viscosi.

$$\left(\frac{\partial(\rho u_i)}{\partial t}\right)_V - \frac{\partial}{\partial x_j} \left(\mu \frac{\partial u_i}{\partial x_j}\right) - \frac{\partial}{\partial x_j} \mu \left(\frac{\partial u_j^{exp}}{\partial x_i} - \frac{2}{3} \frac{\partial u_k^{exp}}{\partial x_k} \delta_{ij}\right) = 0$$

In questo caso la derivata temporale è il contributo viscoso. Le velocità  $u_j^{exp}$  sono prese dalla soluzione dell'equazione inviscida.

Un procedimento analogo è svolto per l'equazione dell'energia. Inizialmente, il valore di  $\hat{E}$  al passo temporale successivo è trovato esplicitamente, tramite l'equazione:

$$\left(\frac{\partial \hat{E}}{\partial t}\right)_{I} + \frac{\partial}{\partial x_{k}} \left[u_{k}(\hat{E}+p)\right] - \frac{\partial}{\partial x_{i}} \mu u_{j}\left(\frac{\partial u_{j}}{\partial x_{i}} + \frac{\partial u_{i}}{\partial x_{j}} - \frac{2}{3}\frac{\partial u_{k}}{\partial x_{k}}\delta_{ij}\right) = 0$$

La temperatura T è calcolata tramite:

$$T = \frac{1}{C_V} \left( \frac{\hat{E}}{\rho} - \frac{u_k u_k}{2} \right)$$

Infine si includono i valori diffusivi alla temperatura:

$$\left(\frac{\partial(\rho C_V T)}{\partial t}\right)_V - \frac{\partial}{\partial x_k} \left(k \frac{\partial T}{\partial x_k}\right) = 0$$

Il valore di T viene utilizzato per il calcolo al tempo successivo, nel quale verranno calcolati i nuovi valori di k e  $\mu$  riferiti alla nuova temperatura.

Anche la pressione P=  $\rho$ RT è calcolata.

# 8. Post – Processing

I risultati sono stati implementati con il software ParaView. Attraverso il ricorso alla funzione "spline" si è riusciti, dove necessario, ad estrapolare singole sezioni dei profili, valutandone le grandezze su tali sezioni. Si sono poi estrapolati i dati punto a punto (o di singola cella), trasportandoli su tabelle Excel. Grazie a questo si è riusciti, per alcune simulazioni, ad interpolare risultati teorici e sperimentali, riscontrando e spiegando eventuali differenze.

Nel caso di profili con fluido inviscido, si sono ricavate le grandezze a parete. Ciò non è stato possibile nel caso di fluido viscoso, a causa della presenza dello strato limite. Di conseguenza, sono state diagrammate le grandezze poste su di una linea immaginaria, parallela all'asse di simmetria, distanziata leggermente dalla parete.

## 8.1. Profilo 2D – fluido inviscido



Questo primo profilo trattato non è stato ottimizzato, come già spiegato in precedenza.

Immagine 28 - Visione del profilo e distribuzione del numero di Mach.

Nell'immagine sottostante, può essere visionato l'andamento del mach nel profilo.



Immagine 29 – Andamento del numero di Mach lungo il profilo 2D.

Come si può evincere, il mach di gola si posiziona all'incirca, in maniera costante, a 0,90 nella sezione di gola. Questo differisce leggermente dal valore ricavato sperimentalmente, pari a 0,93. La motivazione è da imputarsi, ad errori di approssimazione, sia per quanto riguarda i dati teorici, sia per quanto riguarda il calcolo computazionale di OpenFOAM. Infatti, come è stato spiegato nel sotto capitolo dedicato, il programma reagisce in maniera non sempre lineare alle variazioni delle condizioni iniziali. Un meccanismo simile sarà anche visibile nel condotto assialsimmetrico.

I picchi di mach si posizionano all'inizio ed al termine del tratto di gola a sezione costante. Questo va imputato alla definizione della geometria e delle mesh di calcolo in tali zone. Come sarà visibile anche nel condotto assialsimmetrico, anche se in misura minore, la mesh di calcolo non si posiziona esattamente all'interfaccia tra le due aree, comprendendo sia una parte della circonferenza iniziale (o del raccordo), sia una parte della sezione ad area costante. Un eventuale infittimento della griglia di calcolo andrebbe ad eliminare questi picchi.



Immagine 30 - Griglia di calcolo del profilo 2D

Ciò determina un angolo di inclinazione errato del profilo percepito dal programma, e determina questi due picchi di mach. Ciò si ripercuote su tutte le grandezze statiche prese in esame, determinando diminuzioni di queste in corrispondenza dei picchi di mach. Tuttavia, se si prendono in esame i valori di gola e finali, questi sono in linea con i risultati teorici predetti. Vi sono leggere discrepanze, imputabili ad errori di approssimazione sia della macchina, che teorici.

E' necessario affermare che questo profilo non ha nessuna rilevanza ai fini pratici, poiché non ha subito il processo di ottimizzazione che hanno subito i condotti assialsimmetrici successivi, trattandosi di una simulazione iniziale. Ciò ha comportato, come su può evincere dal grafico successivo relativo alla pressione, valori di P all'outlet compresi tra 80000 Pa e 85000 Pa. I conseguenti valori di potenza del fan necessari per arrivare a tali risultati sono dell'ordine di decine di kW, di molto superiori ai valori massimi disponibili. Anche i valori di densità e temperatura seguiranno un andamento analogo. Tuttavia, considerando unicamente il tratto di gola, le grandezze rispecchiano i valori teorici.



Immagine 32 – Andamento del valore della pressione lungo il profilo 2D.



Immagine 33 – Andamento del valore della temperatura lungo il profilo 2D.

### 8.2. Profilo assialsimmetrico – fluido inviscido



Il profilo assialsimmetrico inviscido mostra i seguenti risultati:

Immagine 34 - Visione del profilo assialsimmetrico e distribuzione del numero di Mach.

I valori ricavati successivamente si riferiscono a quelli in prossimità della parete.

Si analizza inizialmente il comportamento del Mach, rispetto ai dati teorici calcolati con Excel:



Immagine 35 - Andamento del numero di Mach ricavato da OpenFOAM, comparato con l'andamento del numero di Mach teorico.

Come si può notare, le due curve differiscono di alcuni decimali. Ciò è facilmente spiegabile, poiché, dato che si stanno utilizzando salti di pressione molto piccoli (inferiori ai 100 Pa), il software OpenFOAM può incorrere in errore.

Si è provato ad aumentare o diminuire la pressione di poche unità, ed il risultato è stato che, in alcuni casi, ad un aumento/diminuzione del salto di pressione non è corrisposto un aumento/diminuzione del valore del Mach. Tuttavia, si è anche notato che, in altri casi, un aumento irrisorio del salto di pressione (1 Pa) ha portato a modifiche significative ( all'incirca di 0.05) del Mach. Detto questo, si può giungere alla conclusione che il programma OpenFOAM funzioni molto bene per salti di pressione significativi, come già sostenuto in precedenza, mentre può cadere in errore se questi salti sono vicini allo zero.

Un ulteriore appunto è che i risultati estrapolati dal programma presentano un massimo nel punto di collegamento tra l'arco di cerchio iniziale e la gola. Questo è dovuto all'infittimento delle mesh di calcolo, in maniera analoga a quanto riferito nel caso del profilo 2D. Evidentemente , una cella di calcolo è posta a cavallo delle due regioni, e non termina esattamente nel punto di separazione. Questo porta il programma a rilevare una pendenza diversa da quella reale, sfalsando leggermente il risultato. Ciò sarebbe facilmente risolvibile utilizzando mesh con un grado di stretching più alto, un maggior numero di celle oppure dividendo il profilo in più blocchi, come poi è stato fatto nel caso viscoso.

Nei grafici presenti in questo capitolo si trovano comparati i risultati teorici ed i risultati numerici.



Analizzando ora la densità:

Immagine 36 - Andamento della densità lungo il condotto ricavato da OpenFOAM, comparato con l'andamento della densità teorica.

Questo risultato è una conseguenza del numero di Mach leggermente sfasato, ricavato nell'immagine precedente. Un valore del Mach inferiore, come si verifica nel caso di OpenFOAM, determina valori statici di grandezze leggermente più elevati. Ciò è facilmente visionabile anche nel caso di pressione e temperature.



Immagine 37 - Andamento della pressione lungo il condotto ricavato da OpenFOAM, comparato con l'andamento della pressione teorica.

L'andamento della pressione lungo il profilo rispecchia l'andamento teorico, e la piccola discrepanza deriva da quanto enunciato in precedenza. Si nota che il valore di pressione all'outlet è di poco inferiore al valore di pressione indisturbato, per cui i valori di potenze per il funzionamento del fan risultano in linea con i risultati teorici.



Immagine 38 - Andamento della temperatura lungo il condotto ricavato da OpenFOAM, comparato con l'andamento della temperatura teorica.

Il picco dei valori nella sezione di collegamento tra il convergente e la gola è legato al picco del Mach, già descritto ad inizio capitolo.

## 8.3. Profilo assialsimmetrico – fluido inviscido – fanCurve

Nonostante questo case si prefigurasse l'obiettivo di raggiungere gli stessi risultati del caso precedente, con l'aggiunta della curva di funzionamento del fan, non è stato così. Nei test di prova iniziali, quando ancora il profilo non era stato ottimizzato, il fan si comportava nello stesso modo dell'imposizione di un salto di pressione. Tuttavia, ottimizzando il profilo, si sono adottati valori di pressione molto bassi, pari a quelli ottimizzati del caso precedente, inferiori ai 100 Pa. Ciò ha mostrato il limite del programma OpenFOAM, il quale, avendo a che fare con valori molto bassi e non esageratamente dissimili tra loro, non è riuscito a produrre soluzioni accettabili.

Μ 0.11 Ma (top) 0.1 0.09 0.08-0.07-0.06-0.05-0.04 0.03-0.02-0.01-망 X 10 20 30 40 50 60

L'andamento del mach, lungo il condotto, è il seguente:

Immagine 39 - Andamento del numero di Mach ricavato da OpenFOAM lungo il condotto tramite la funzione fanCurve.

Si può notare che i valori restano estremamente bassi, non compatibili con una data geometria per un dato fan. Ad un valore previsto di 0.93 corrisponde un valore ricavato di 0.11. Ciò significa che il programma, dati valori molto piccoli, non riesce ad innescare il flusso, giungendo a soluzioni non fisicamente corrette.

Il medesimo case è stato testato, come verifica, a dimensioni e salti di pressione molto elevati. In quel caso, nonostante i dati non siano utilizzabili a cause delle potenze troppo elevate, il funzionamento della funzione "fanCurve" è accurato, mostrando risultati in linea con i valori teorici.

Appurato il fatto che, sotto tali condizioni, il programma non produce risultati accettabili, è inutile procedere con la valutazione di altre variabili termodinamiche all'interno del profilo.

### 8.4. Lamina piana – fluido viscoso

Inizialmente, sono stati ricavati i valori teorici della soluzione, per poi confrontarli con quelli estrapolati dal programma.

Tramite il programma ParaView, sono stati estratti i valori numerici di ogni vertice di cella, e sono stati inseriti in tabelle Excel per poter essere analizzati.

E' stato necessario estrapolare il valore sperimentale degli sforzi viscosi  $\tau$  da valori numerici, sviluppandone la derivata:

$$\tau = \mu \, \frac{du}{dy} = \mu \, \frac{(u_1 - u_0)}{(y_1 - y_0)}$$

Conoscendo il valore di  $\mu$  ed i valori nei punti 0 e 1, è possibile ricavare il valore  $\tau$ . Sono stati fatti alcuni tentativi per il calcolo di questo valore, assumendo come valore 0 sempre il vertice a parete, mentre il valore 1 ha assunto i valori dei vertici delle celle soprastanti.



Immagine 40 - Calcolo valore di  $\tau$  tramite la scomposizione della derivata.

In questo modo si è ricavato il valore di  $\tau$ , basandosi anche su valori forniti dalla NASA come mezzo di paragone per l'assunzione del valore corretto.

Successivamente, si ricava il valore  $u_{\tau}$  già descritto nel capitolo 2.3.4. Il valore di  $y_{+}$  sarà ricavato con la stessa formula espressa precedentemente:

$$y_{+} = \frac{y}{\sqrt{\frac{\tau}{\rho}}} = \frac{y}{u_{\tau}}$$

I valori di  $y_+$  verranno diagrammati in scala logaritmica.

Per quanto riguarda il valore sperimentale di  $u_+$ , verrà ricavato tramite i valori sperimentali di velocità, come:

$$u_{+} = \frac{u}{\sqrt{\frac{\tau}{\rho}}} = \frac{u}{u_{\tau}}$$

63

Inoltre, come già detto in precedenza, sono stati scaricati e diagrammati i risultati NASA, così da avere un mezzo di paragone per la verifica della veridicità dei risultati.

Inizialmente, come specificato nel capitolo di preprocessing, si è utilizzata una griglia con un  $\Delta y$  a parete pari a 10<sup>-4</sup>. Ciò tuttavia comportava che tutto lo strato limite laminare venisse compresso in pochissime celle, dando un andamento lineare, come visibile nel grafico sottostante:



Immagine  $41 - u_{+} = f(\log(y_{+}))$  per una mesh di  $10^{-4}$ .

Di conseguenza, si è passati ad una griglia con sensibilità  $\Delta y$  pari a 10<sup>-6</sup> a parete. Avendo inoltre ricavato i risultati teorici, è stato possibile compararli con i valori numerici. Prendendo il punto a x = 0,97 m dal bordo d'attacco, l'andamento del grafico è:



Immagine 42 -  $u_+ = f(\log(y_+))$  per una mesh di 10<sup>6</sup>, comparazione valori numerici e teorici.

Si può notare che i valori numerici ricavati dal programma seguono lo stesso andamento dei valori teorici, per cui possono essere considerati corretti.

Avendo a disposizione i valori calcolati dalla NASA, questi sono stati diagrammati insieme a quelli numerici, ricavando un andamento quasi identico tra loro, sempre per il punto x = 0,97 m.



Immagine 43 -  $u_{+} = f(log(y_{+}))$  per una mesh di 10<sup>6</sup>, comparazione valori numerici e valori NASA.

Si nota che i valori numerici seguono bene l'andamento dei valori proposti dalla NASA. Vi sono leggere discrepanze, imputabili ad errori di approssimazione del software di OpenFOAM. Nella zona terminale dello strato limite, vi è una lieve diversità tra la soluzione NASA e quella ricavata dal programma. Tuttavia, dato che questa zona ha bisogno di più tempo per svilupparsi completamente, si può affermare che ciò è dovuto ad una non ancora totale convergenza del sistema.

Dato che ogni singola sezione ortogonale al profilo ha un andamento dello strato limite diverso dalla precedente e dalla successiva, si è deciso di comparare i valori a tre diverse distanze, pari a x = 0.5 m, x = 0.97 m e x = 1.9 m. I risultati non differiscono di molto, anzi tendono a sovrapporsi per tutta la parte iniziale del grafico, distaccandosi solamente in coincidenza dello strato limite turbolento.



Immagine 44 -  $u_{+} = f(\log(y_{+}))$  per una mesh di 10<sup>6</sup>, comparazione valori numerici a tre diverse postazioni.

L'andamento è in linea con quanto sostenuto dai dati NASA, ossia che avanzando lungo il profilo il valore di u+ tenda ad aumentare.



Immagine 45 - Andamento della velocità lungo lo strato limite per un infittimento mesh di 10<sup>-6</sup>.

Il valore di velocità tende al valore all'infinito con andamento tanto più regolare quanto più è fitta la griglia di calcolo. Per griglie di calcolo molto diradate, invece, la curva assumerebbe la forma di una spezzata, per cui non è possibile diminuirne eccessivamente l'infittimento. La coordinata in cui la velocità arriva al 99% del valore indisturbato viene assunto come punto di di confine dello strato limite.

Dato l'andamento teorico di Cf ricavato nel capitolo 5.4, si sono ricavati i valori di tale valore per le tre sezioni considerate. Comparando i risultati teorici con quelli numerici, si ha:

|       | 0,50 m                 | 0,97 m                 | 1,90 m                 |
|-------|------------------------|------------------------|------------------------|
| Cf th | $3 * 10^{-3}$          | 2,9 * 10 <sup>-3</sup> | 2,6 * 10 <sup>-3</sup> |
| Cf    | 2,8 * 10 <sup>-3</sup> | $2,7 * 10^{-3}$        | 2,5 * 10 <sup>-3</sup> |

Si è deciso infine di diagrammare l'andamento di velocità lungo il piano ortogonale scelto, per una distanza dall'inlet pari a 1.5 m. L'andamento è convergente, e la velocità tende al valore indisturbato. L'andamento ricavato è il seguente:

## 8.5. Profilo assialsimmetrico – viscoso

Il profilo si presenta come:

Immagine 46 - Profilo assialsimmetrico con fluido viscoso.

Come si può notare, non si ha nessuna separazione dello strato limite, ed il flusso resta stabile lungo tutto il condotto.

Le grandezze lungo il profilo, rilevate lungo una linea parallela all'asse e posta a poca distanza dalla parete, sono:



Immagine 47 - Andamento del numero di Mach (profilo assialsimmetrico, fluido viscoso).

A differenza del caso inviscido, il numero di Mach di gola raggiunge il valore esatto di 0,93. Di conseguenza, anche tutte le grandezze termodinamiche risulteranno più attinenti ai valori cercati.



Immagine 48 - Andamento della pressione (profilo assialsimmetrico, fluido viscoso).



Immagine 49 - Andamento della temperatura (profilo assialsimmetrico, fluido viscoso).



Immagine 50 - Andamento della densità (profilo assialsimmetrico, fluido viscoso).

Pressione, temperatura e densità raggiungono valori in linea con quanto ci si aspettava. Di conseguenza, vengono raggiunte le condizioni termodinamiche richieste inizialmente, ossia quelle presenti ad una quota di 4000 metri.

E' possibile, partendo dalla soluzione già giunta a convergenza, modificare le condizioni iniziali, per ottenere soluzioni per diverse quote di volo, mantenendo inalterata la geometria. Inserendo i vari salti di pressione proposti al capitolo pre processing, si ottengono i seguenti andamenti delle grandezze termodinamiche:



Immagine 51 - Andamento della pressione (profilo assialsimmetrico, fluido viscoso)per diverse quote.



Immagine 52 - Andamento della temperatura (profilo assialsimmetrico, fluido viscoso)per diverse quote.



Immagine 53 - Andamento della densità (profilo assialsimmetrico, fluido viscoso)per diverse quote.

Ciò significa che il programma è utilizzabile anche per simulare condizioni di lavoro a quote diverse, ma inferiori, della quota considerata inizialmente.

# 9. Considerazioni finali

In questo breve paragrafo si vogliono fare alcune semplici considerazioni su alcune caratteristiche e problematiche emerse in questo studio. E' necessario premettere che per la stesura di questo elaborato è stata utilizzata inizialmente una virtual machine per l'utilizzo di software OpenFOAM, la cui prestazioni non sono sempre state soddisfacenti. Inoltre, la versione di OpenFOAM supportata aveva alcune limitazioni maggiori rispetto alle versioni più aggiornate, per cui l'eventuale utilizzo di macchine migliori potrebbe rendere non necessario quanto segue.

Come emerso più volte in questo elaborato, il software di calcolo OpenFOAM riscontra alcune difficoltà nella risoluzione di problemi in cui vi si trovano gradienti di grandezze termodinamiche piccoli, in questo caso il valore  $\Delta P$  tra inlet e outlet del profilo. Nel capitolo del postprocessing è emerso il fatto che i valori teorici ed i valori numerici ricavati dal programma, pur avendo un errore massimo del 5%, non erano esattamente uguali. Tuttavia, più i valori dei gradienti aumentano, più i risultati numerici rispecchiano quelli teorici.

Per sfruttare questa caratteristica, si potrebbe pensare di progettare lo stesso tipo di condotto in scala, con gradienti di pressione elevati. Questo comporterebbe, per il mantenimento dei valori desiderati nella sezione di gola, aree proporzionalmente di dimensioni maggiori, con conseguenti portate maggiori. Alcuni valori, tra cui la pressione e la potenza necessaria, sarebbero sicuramente non progettualmente realizzabili. Tuttavia, dato che il parametro fondamentale per questo studio è il numero di Mach, questo sarebbe mantenuto inalterato nel condotto, anzi, il suo valore sarebbe leggermente più attinente ai risultati teorici. Questo farebbe ottenere valori e grafici delle grandezze termodinamiche, esclusa la pressione, qualitativamente migliori.
# 10.Allegati

Per evidente motivo di spazio, i file "controlMeshDict" contenenti le spline di punti sono stati tagliati, omettendo la parte riguardante la definizione punto a punto del profilo.

|          | GRAN     | NDEZZE   |          | MA       | ACH      |          | SUBSONICC        | )        |
|----------|----------|----------|----------|----------|----------|----------|------------------|----------|
| Ax [cm2] | At [cm2] | At/Ax    | f(M)     | M1       | M2       | P2       | T2               | ρ2       |
| 5.3      | 5.3      | 1        | 0.681828 | 1.513906 | 0.852757 | 62996.27 | 251.563          | 0.872381 |
| 6        | 5.3      | 0.883333 | 0.602282 | 2.004401 | 0.64408  | 76658.84 | 266.0744         | 1.003685 |
| 6.5      | 5.3      | 0.815385 | 0.555952 | 2.287044 | 0.564482 | 81622.46 | 270.8869         | 1.049687 |
| 7        | 5.3      | 0.757143 | 0.516242 | 2.549282 | 0.506415 | 85052.29 | 274.0915         | 1.081007 |
| 7.5      | 5.3      | 0.706667 | 0.481825 | 2.799658 | 0.461126 | 87581.11 | 276.3956         | 1.103869 |
| 8        | 5.3      | 0.6625   | 0.451711 | 3.042271 | 0.424352 | 89523.18 | 278.1331         | 1.121298 |
| 8.5      | 5.3      | 0.623529 | 0.42514  | 3.279424 | 0.393665 | 91058.29 | 279.4874         | 1.134999 |
| 9        | 5.3      | 0.588889 | 0.401521 | 3.512543 | 0.367538 | 92298.59 | 280.5699         | 1.14602  |
| 9.5      | 5.3      | 0.557895 | 0.380389 | 3.742571 | 0.344949 | 93318.29 | 281.452          | 1.155049 |
| 10       | 5.3      | 0.53     | 0.361369 | 3.970165 | 0.325174 | 94168.74 | 282.1825         | 1.162558 |
| 10.5     | 5.3      | 0.504762 | 0.344161 | 4.195801 | 0.307687 | 94886.62 | 282.7955         | 1.168882 |
| 11       | 5.3      | 0.481818 | 0.328517 | 4.419831 | 0.292091 | 95498.91 | 283.3157         | 1.174265 |
| 11.5     | 5.3      | 0.46087  | 0.314234 | 4.642525 | 0.27808  | 96025.85 | 6025.85 283.7614 |          |
| 12       | 5.3      | 0.441667 | 0.301141 | 4.864093 | 0.265413 | 96482.96 | 284.1467         | 1.182895 |
| 12.5     | 5.3      | 0.424    | 0.289095 | 5.084703 | 0.253898 | 96882.29 | 284.4822         | 1.18639  |
| 13       | 5.3      | 0.407692 | 0.277976 | 5.304489 | 0.243378 | 97233.37 | 284.7764         | 1.189459 |
| 13.5     | 5.3      | 0.392593 | 0.267681 | 5.52356  | 0.233725 | 97543.79 | 285.0358         | 1.19217  |
| 14       | 5.3      | 0.378571 | 0.258121 | 5.742006 | 0.224833 | 97819.68 | 285.266          | 1.194578 |
| 14.5     | 5.3      | 0.365517 | 0.24922  | 5.959903 | 0.216613 | 98066.07 | 285.4711         | 1.196726 |
| 15       | 5.3      | 0.353333 | 0.240913 | 6.177314 | 0.20899  | 98287.05 | 285.6547         | 1.198652 |
| 15.5     | 5.3      | 0.341935 | 0.233141 | 6.394294 | 0.201898 | 98486.05 | 285.8198         | 1.200385 |
| 16       | 5.3      | 0.33125  | 0.225856 | 6.610886 | 0.195283 | 98665.92 | 285.9689         | 1.20195  |
| 16.5     | 5.3      | 0.321212 | 0.219012 | 6.827133 | 0.189098 | 98829.06 | 286.1039         | 1.203369 |
| 17       | 5.3      | 0.311765 | 0.21257  | 7.043066 | 0.1833   | 98977.51 | 286.2266         | 1.20466  |
| 17.5     | 5.3      | 0.302857 | 0.206497 | 7.258717 | 0.177854 | 99112.98 | 286.3385         | 1.205838 |
| 18       | 5.3      | 0.294444 | 0.200761 | 7.47411  | 0.172729 | 99236.96 | 286.4408         | 1.206915 |
| 18.5     | 5.3      | 0.286486 | 0.195335 | 7.68927  | 0.167896 | 99350.73 | 286.5346         | 1.207903 |
| 19       | 5.3      | 0.278947 | 0.190194 | 7.904216 | 0.16333  | 99455.39 | 286.6208         | 1.208812 |
| 19.5     | 5.3      | 0.271795 | 0.185317 | 8.118965 | 0.15901  | 99551.88 | 286.7002         | 1.20965  |
| 20       | 5.3      | 0.265    | 0.180685 | 8.333535 | 0.154916 | 99641.04 | 286.7736         | 1.210423 |
| 20.5     | 5.3      | 0.258537 | 0.176278 | 8.547939 | 0.15103  | 99723.61 | 286.8414         | 1.21114  |
| 21       | 5.3      | 0.252381 | 0.172081 | 8.762189 | 0.147337 | 99800.21 | 286.9044         | 1.211804 |
| 21.5     | 5.3      | 0.246512 | 0.168079 | 8.976298 | 0.143823 | 99871.42 | 286.9628         | 1.212422 |
| 22       | 5.3      | 0.240909 | 0.164259 | 9.190275 | 0.140474 | 99937.73 | 287.0173         | 1.212997 |
| 22.5     | 5.3      | 0.235556 | 0.160608 | 9.40413  | 0.13728  | 99999.58 | 287.068          | 1.213533 |
| 23       | 5.3      | 0.230435 | 0.157117 | 9.617871 | 0.134229 | 100057.4 | 287.1154         | 1.214034 |
| 23.5     | 5.3      | 0.225532 | 0.153774 | 9.831506 | 0.131312 | 100111.4 | 287.1597         | 1.214502 |

## 10.1. Grandezze termodinamiche per geometria ottimizzata

| 24   | 5.3 | 0.220833 | 0.15057  | 10.04504 | 0.128521 | 100162.1 | 287.2012 | 1.214941 |
|------|-----|----------|----------|----------|----------|----------|----------|----------|
| 24.5 | 5.3 | 0.216327 | 0.147498 | 10.25849 | 0.125846 | 100209.7 | 287.2402 | 1.215353 |
| 25   | 5.3 | 0.212    | 0.144548 | 10.47184 | 0.123282 | 100254.3 | 287.2768 | 1.21574  |
| 25.5 | 5.3 | 0.207843 | 0.141713 | 10.68512 | 0.120822 | 100296.4 | 287.3112 | 1.216104 |
| 26   | 5.3 | 0.203846 | 0.138988 | 10.89832 | 0.118458 | 100336   | 287.3436 | 1.216447 |
| 26.5 | 5.3 | 0.2      | 0.136366 | 11.11144 | 0.116186 | 100373.3 | 287.3741 | 1.216771 |
| 27   | 5.3 | 0.196296 | 0.13384  | 11.3245  | 0.114    | 100408.6 | 287.403  | 1.217076 |
| 27.5 | 5.3 | 0.192727 | 0.131407 | 11.5375  | 0.111896 | 100441.9 | 287.4302 | 1.217365 |
| 28   | 5.3 | 0.189286 | 0.12906  | 11.75043 | 0.109868 | 100473.5 | 287.456  | 1.217638 |
| 28.5 | 5.3 | 0.185965 | 0.126796 | 11.96331 | 0.107913 | 100503.3 | 287.4804 | 1.217896 |
| 29   | 5.3 | 0.182759 | 0.12461  | 12.17613 | 0.106027 | 100531.7 | 287.5036 | 1.218141 |
| 29.5 | 5.3 | 0.179661 | 0.122498 | 12.38891 | 0.104206 | 100558.6 | 287.5256 | 1.218374 |
| 30   | 5.3 | 0.176667 | 0.120456 | 12.60163 | 0.102447 | 100584.1 | 287.5464 | 1.218595 |
| 30.5 | 5.3 | 0.17377  | 0.118482 | 12.81431 | 0.100746 | 100608.4 | 287.5663 | 1.218805 |
| 31   | 5.3 | 0.170968 | 0.116571 | 13.02694 | 0.099102 | 100631.5 | 287.5851 | 1.219005 |
| 31.5 | 5.3 | 0.168254 | 0.11472  | 13.23953 | 0.097511 | 100653.5 | 287.6031 | 1.219195 |
| 32   | 5.3 | 0.165625 | 0.112928 | 13.45209 | 0.09597  | 100674.4 | 287.6202 | 1.219377 |
| 32.5 | 5.3 | 0.163077 | 0.11119  | 13.6646  | 0.094477 | 100694.4 | 287.6365 | 1.21955  |
| 33   | 5.3 | 0.160606 | 0.109506 | 13.87708 | 0.093031 | 100713.5 | 287.6521 | 1.219715 |
| 33.5 | 5.3 | 0.158209 | 0.107871 | 14.08952 | 0.091628 | 100731.8 | 287.667  | 1.219873 |
| 34   | 5.3 | 0.155882 | 0.106285 | 14.30194 | 0.090267 | 100749.2 | 287.6812 | 1.220023 |
| 34.5 | 5.3 | 0.153623 | 0.104745 | 14.51432 | 0.088946 | 100765.9 | 287.6948 | 1.220168 |
| 35   | 5.3 | 0.151429 | 0.103248 | 14.72667 | 0.087664 | 100781.8 | 287.7078 | 1.220306 |
| 35.5 | 5.3 | 0.149296 | 0.101794 | 14.93899 | 0.086418 | 100797.1 | 287.7203 | 1.220438 |
| 36   | 5.3 | 0.147222 | 0.10038  | 15.15128 | 0.085207 | 100811.7 | 287.7322 | 1.220564 |
| 36.5 | 5.3 | 0.145205 | 0.099005 | 15.36355 | 0.08403  | 100825.8 | 287.7436 | 1.220686 |
| 37   | 5.3 | 0.143243 | 0.097667 | 15.57579 | 0.082885 | 100839.2 | 287.7546 | 1.220802 |
| 37.5 | 5.3 | 0.141333 | 0.096365 | 15.78801 | 0.081771 | 100852.2 | 287.7652 | 1.220914 |
| 38   | 5.3 | 0.139474 | 0.095097 | 16.00021 | 0.080686 | 100864.6 | 287.7753 | 1.221022 |
| 38.5 | 5.3 | 0.137662 | 0.093862 | 16.21238 | 0.07963  | 100876.5 | 287.785  | 1.221125 |
| 39   | 5.3 | 0.135897 | 0.092659 | 16.42454 | 0.078602 | 100888   | 287.7944 | 1.221224 |
| 39.5 | 5.3 | 0.134177 | 0.091486 | 16.63667 | 0.077599 | 100899.1 | 287.8034 | 1.221319 |
| 40   | 5.3 | 0.1325   | 0.090342 | 16.84878 | 0.076622 | 100909.7 | 287.8121 | 1.221411 |
| 40.5 | 5.3 | 0.130864 | 0.089227 | 17.06087 | 0.07567  | 100919.9 | 287.8204 | 1.2215   |
| 41   | 5.3 | 0.129268 | 0.088139 | 17.27295 | 0.074741 | 100929.8 | 287.8284 | 1.221585 |
| 41.5 | 5.3 | 0.127711 | 0.087077 | 17.485   | 0.073834 | 100939.3 | 287.8362 | 1.221667 |
| 42   | 5.3 | 0.12619  | 0.08604  | 17.69704 | 0.07295  | 100948.4 | 287.8436 | 1.221747 |
| 42.5 | 5.3 | 0.124706 | 0.085028 | 17.90907 | 0.072086 | 100957.3 | 287.8508 | 1.221823 |
| 43   | 5.3 | 0.123256 | 0.084039 | 18.12107 | 0.071243 | 100965.8 | 287.8578 | 1.221897 |
| 43.5 | 5.3 | 0.121839 | 0.083073 | 18.33307 | 0.070419 | 100974.1 | 287.8645 | 1.221968 |
| 44   | 5.3 | 0.120455 | 0.082129 | 18.54504 | 0.069614 | 100982   | 287.871  | 1.222037 |
| 44.5 | 5.3 | 0.119101 | 0.081207 | 18.75701 | 0.068827 | 100989.7 | 287.8773 | 1.222103 |
| 45   | 5.3 | 0.117778 | 0.080304 | 18.96896 | 0.068058 | 100997.2 | 287.8833 | 1.222168 |
| 45.5 | 5.3 | 0.116484 | 0.079422 | 19.18089 | 0.067306 | 101004.3 | 287.8892 | 1.22223  |
| 46   | 5.3 | 0.115217 | 0.078559 | 19.39282 | 0.066571 | 101011.3 | 287.8948 | 1.22229  |

| 46.5 | 5.3 | 0.113978 | 0.077714 | 19.60473 | 0.065851 | 101018   | 287.9003 | 1.222348 |
|------|-----|----------|----------|----------|----------|----------|----------|----------|
| 47   | 5.3 | 0.112766 | 0.076887 | 19.81663 | 0.065147 | 101024.5 | 287.9056 | 1.222404 |
| 47.5 | 5.3 | 0.111579 | 0.076078 | 20.02852 | 0.064458 | 101030.9 | 287.9108 | 1.222459 |
| 48   | 5.3 | 0.110417 | 0.075285 | 20.24039 | 0.063783 | 101037   | 287.9157 | 1.222512 |
| 48.5 | 5.3 | 0.109278 | 0.074509 | 20.45226 | 0.063122 | 101042.9 | 287.9206 | 1.222563 |
| 49   | 5.3 | 0.108163 | 0.073749 | 20.66411 | 0.062475 | 101048.6 | 287.9252 | 1.222613 |
| 49.5 | 5.3 | 0.107071 | 0.073004 | 20.87596 | 0.061841 | 101054.2 | 287.9298 | 1.222661 |
| 50   | 5.3 | 0.106    | 0.072274 | 21.08779 | 0.06122  | 101059.6 | 287.9342 | 1.222707 |
| 50.5 | 5.3 | 0.10495  | 0.071558 | 21.29962 | 0.060611 | 101064.9 | 287.9384 | 1.222753 |
| 51   | 5.3 | 0.103922 | 0.070857 | 21.51143 | 0.060014 | 101070   | 287.9426 | 1.222797 |
| 51.5 | 5.3 | 0.102913 | 0.070169 | 21.72324 | 0.059429 | 101074.9 | 287.9466 | 1.222839 |
| 52   | 5.3 | 0.101923 | 0.069494 | 21.93504 | 0.058855 | 101079.7 | 287.9505 | 1.222881 |
| 52.5 | 5.3 | 0.100952 | 0.068832 | 22.14683 | 0.058293 | 101084.4 | 287.9543 | 1.222921 |
| 53   | 5.3 | 0.1      | 0.068183 | 22.35861 | 0.05774  | 101088.9 | 287.958  | 1.22296  |
| 53.5 | 5.3 | 0.099065 | 0.067546 | 22.57038 | 0.057199 | 101093.3 | 287.9616 | 1.222998 |
| 54   | 5.3 | 0.098148 | 0.06692  | 22.78215 | 0.056667 | 101097.6 | 287.9651 | 1.223035 |
| 54.5 | 5.3 | 0.097248 | 0.066306 | 22.9939  | 0.056145 | 101101.7 | 287.9684 | 1.223071 |
| 55   | 5.3 | 0.096364 | 0.065703 | 23.20566 | 0.055633 | 101105.8 | 287.9717 | 1.223106 |
| 55.5 | 5.3 | 0.095495 | 0.065112 | 23.4174  | 0.05513  | 101109.7 | 287.975  | 1.22314  |
| 56   | 5.3 | 0.094643 | 0.06453  | 23.62913 | 0.054636 | 101113.6 | 287.9781 | 1.223174 |
| 56.5 | 5.3 | 0.093805 | 0.063959 | 23.84086 | 0.05415  | 101117.3 | 287.9811 | 1.223206 |
| 57   | 5.3 | 0.092982 | 0.063398 | 24.05259 | 0.053674 | 101120.9 | 287.9841 | 1.223237 |
| 57.5 | 5.3 | 0.092174 | 0.062847 | 24.2643  | 0.053206 | 101124.5 | 287.987  | 1.223268 |
| 58   | 5.3 | 0.091379 | 0.062305 | 24.47601 | 0.052745 | 101127.9 | 287.9898 | 1.223298 |
| 58.5 | 5.3 | 0.090598 | 0.061772 | 24.68771 | 0.052293 | 101131.3 | 287.9925 | 1.223327 |
| 59   | 5.3 | 0.089831 | 0.061249 | 24.89941 | 0.051848 | 101134.6 | 287.9952 | 1.223355 |
| 59.5 | 5.3 | 0.089076 | 0.060734 | 25.1111  | 0.051411 | 101137.8 | 287.9978 | 1.223383 |
| 60   | 5.3 | 0.088333 | 0.060228 | 25.32279 | 0.050982 | 101140.9 | 288.0003 | 1.223409 |
| 60.5 | 5.3 | 0.087603 | 0.05973  | 25.53447 | 0.050559 | 101143.9 | 288.0028 | 1.223436 |
| 61   | 5.3 | 0.086885 | 0.059241 | 25.74614 | 0.050143 | 101146.9 | 288.0052 | 1.223461 |
| 61.5 | 5.3 | 0.086179 | 0.058759 | 25.95781 | 0.049734 | 101149.8 | 288.0075 | 1.223486 |
| 62   | 5.3 | 0.085484 | 0.058285 | 26.16948 | 0.049332 | 101152.6 | 288.0098 | 1.223511 |
| 62.5 | 5.3 | 0.0848   | 0.057819 | 26.38114 | 0.048936 | 101155.3 | 288.0121 | 1.223534 |
| 63   | 5.3 | 0.084127 | 0.05736  | 26.59279 | 0.048547 | 101158   | 288.0142 | 1.223558 |
| 63.5 | 5.3 | 0.083465 | 0.056909 | 26.80444 | 0.048163 | 101160.6 | 288.0164 | 1.22358  |
| 64   | 5.3 | 0.082813 | 0.056464 | 27.01609 | 0.047786 | 101163.2 | 288.0185 | 1.223602 |
| 64.5 | 5.3 | 0.082171 | 0.056026 | 27.22773 | 0.047415 | 101165.7 | 288.0205 | 1.223624 |
| 65   | 5.3 | 0.081538 | 0.055595 | 27.43936 | 0.047049 | 101168.2 | 288.0225 | 1.223645 |
| 65.5 | 5.3 | 0.080916 | 0.055171 | 27.651   | 0.046689 | 101170.5 | 288.0244 | 1.223666 |
| 66   | 5.3 | 0.080303 | 0.054753 | 27.86262 | 0.046334 | 101172.9 | 288.0263 | 1.223686 |
| 66.5 | 5.3 | 0.079699 | 0.054341 | 28.07425 | 0.045985 | 101175.2 | 288.0282 | 1.223706 |
| 67   | 5.3 | 0.079104 | 0.053936 | 28.28587 | 0.045641 | 101177.4 | 288.03   | 1.223725 |
| 67.5 | 5.3 | 0.078519 | 0.053536 | 28.49748 | 0.045302 | 101179.6 | 288.0318 | 1.223744 |
| 68   | 5.3 | 0.077941 | 0.053143 | 28.70909 | 0.044968 | 101181.7 | 288.0335 | 1.223762 |
| 68.5 | 5.3 | 0.077372 | 0.052755 | 28.9207  | 0.044639 | 101183.8 | 288.0352 | 1.22378  |

| 69   | 5.3 | 0.076812 | 0.052372 | 29.1323  | 0.044315 | 101185.8 | 288.0369 | 1.223798 |
|------|-----|----------|----------|----------|----------|----------|----------|----------|
| 69.5 | 5.3 | 0.076259 | 0.051996 | 29.34391 | 0.043995 | 101187.8 | 288.0385 | 1.223815 |
| 70   | 5.3 | 0.075714 | 0.051624 | 29.5555  | 0.04368  | 101189.8 | 288.0401 | 1.223832 |
| 70.5 | 5.3 | 0.075177 | 0.051258 | 29.7671  | 0.04337  | 101191.7 | 288.0416 | 1.223849 |
| 71   | 5.3 | 0.074648 | 0.050897 | 29.97869 | 0.043064 | 101193.6 | 288.0432 | 1.223865 |
| 71.5 | 5.3 | 0.074126 | 0.050541 | 30.19027 | 0.042762 | 101195.4 | 288.0447 | 1.223881 |
| 72   | 5.3 | 0.073611 | 0.05019  | 30.40185 | 0.042464 | 101197.2 | 288.0461 | 1.223896 |
| 72.5 | 5.3 | 0.073103 | 0.049844 | 30.61344 | 0.042171 | 101199   | 288.0475 | 1.223911 |
| 73   | 5.3 | 0.072603 | 0.049503 | 30.82501 | 0.041881 | 101200.7 | 288.0489 | 1.223926 |
| 73.5 | 5.3 | 0.072109 | 0.049166 | 31.03659 | 0.041596 | 101202.4 | 288.0503 | 1.223941 |
| 74   | 5.3 | 0.071622 | 0.048834 | 31.24816 | 0.041314 | 101204   | 288.0517 | 1.223955 |
| 74.5 | 5.3 | 0.071141 | 0.048506 | 31.45972 | 0.041036 | 101205.6 | 288.053  | 1.223969 |
| 75   | 5.3 | 0.070667 | 0.048183 | 31.67129 | 0.040762 | 101207.2 | 288.0543 | 1.223983 |
| 75.5 | 5.3 | 0.070199 | 0.047863 | 31.88285 | 0.040492 | 101208.8 | 288.0555 | 1.223996 |
| 76   | 5.3 | 0.069737 | 0.047549 | 32.09441 | 0.040225 | 101210.3 | 288.0568 | 1.22401  |
| 76.5 | 5.3 | 0.069281 | 0.047238 | 32.30597 | 0.039961 | 101211.8 | 288.058  | 1.224022 |
| 77   | 5.3 | 0.068831 | 0.046931 | 32.51752 | 0.039702 | 101213.3 | 288.0592 | 1.224035 |
| 77.5 | 5.3 | 0.068387 | 0.046628 | 32.72907 | 0.039445 | 101214.7 | 288.0604 | 1.224048 |
| 78   | 5.3 | 0.067949 | 0.046329 | 32.94062 | 0.039192 | 101216.1 | 288.0615 | 1.22406  |
| 78.5 | 5.3 | 0.067516 | 0.046034 | 33.15217 | 0.038941 | 101217.5 | 288.0626 | 1.224072 |
| 79   | 5.3 | 0.067089 | 0.045743 | 33.36371 | 0.038695 | 101218.9 | 288.0637 | 1.224083 |
| 79.5 | 5.3 | 0.066667 | 0.045455 | 33.57525 | 0.038451 | 101220.2 | 288.0648 | 1.224095 |
| 80   | 5.3 | 0.06625  | 0.045171 | 33.78679 | 0.03821  | 101221.5 | 288.0659 | 1.224106 |
| 80.5 | 5.3 | 0.065839 | 0.044891 | 33.99833 | 0.037972 | 101222.8 | 288.0669 | 1.224117 |
| 81   | 5.3 | 0.065432 | 0.044613 | 34.20986 | 0.037737 | 101224.1 | 288.068  | 1.224128 |
| 81.5 | 5.3 | 0.065031 | 0.04434  | 34.4214  | 0.037506 | 101225.3 | 288.069  | 1.224139 |
| 82   | 5.3 | 0.064634 | 0.044069 | 34.63293 | 0.037277 | 101226.5 | 288.0699 | 1.224149 |
| 82.5 | 5.3 | 0.064242 | 0.043802 | 34.84446 | 0.03705  | 101227.7 | 288.0709 | 1.22416  |
| 83   | 5.3 | 0.063855 | 0.043538 | 35.05598 | 0.036827 | 101228.9 | 288.0719 | 1.22417  |
| 83.5 | 5.3 | 0.063473 | 0.043278 | 35.2675  | 0.036606 | 101230   | 288.0728 | 1.22418  |
| 84   | 5.3 | 0.063095 | 0.04302  | 35.47903 | 0.036388 | 101231.1 | 288.0737 | 1.224189 |
| 84.5 | 5.3 | 0.062722 | 0.042766 | 35.69055 | 0.036172 | 101232.3 | 288.0746 | 1.224199 |
| 85   | 5.3 | 0.062353 | 0.042514 | 35.90206 | 0.035959 | 101233.3 | 288.0755 | 1.224208 |
| 85.5 | 5.3 | 0.061988 | 0.042265 | 36.11358 | 0.035748 | 101234.4 | 288.0764 | 1.224218 |
| 86   | 5.3 | 0.061628 | 0.04202  | 36.32509 | 0.03554  | 101235.5 | 288.0772 | 1.224227 |
| 86.5 | 5.3 | 0.061272 | 0.041777 | 36.53661 | 0.035334 | 101236.5 | 288.0781 | 1.224236 |
| 87   | 5.3 | 0.06092  | 0.041537 | 36.74812 | 0.035131 | 101237.5 | 288.0789 | 1.224244 |
| 87.5 | 5.3 | 0.060571 | 0.041299 | 36.95962 | 0.03493  | 101238.5 | 288.0797 | 1.224253 |
| 88   | 5.3 | 0.060227 | 0.041065 | 37.17113 | 0.034731 | 101239.5 | 288.0805 | 1.224261 |
| 88.5 | 5.3 | 0.059887 | 0.040833 | 37.38264 | 0.034535 | 101240.5 | 288.0813 | 1.22427  |
| 89   | 5.3 | 0.059551 | 0.040603 | 37.59414 | 0.03434  | 101241.4 | 288.0821 | 1.224278 |
| 89.5 | 5.3 | 0.059218 | 0.040376 | 37.80564 | 0.034148 | 101242.3 | 288.0828 | 1.224286 |
| 90   | 5.3 | 0.058889 | 0.040152 | 38.01714 | 0.033958 | 101243.3 | 288.0836 | 1.224294 |

|          | PORTATA VOLUMETRICA | LAVORO      | POTENZA       |
|----------|---------------------|-------------|---------------|
| ΔP       | m [m3/s]            | L [J/kg]    | P [J/s] = [W] |
| 38328.73 | 0.145939646         | 36769.97971 | 4681.369588   |
| 24666.16 | 0.126847613         | 22185.98214 | 2824.608087   |
| 19702.54 | 0.121288562         | 17349.37658 | 2208.8357     |
| 16272.71 | 0.117774435         | 14128.77641 | 1798.805023   |
| 13743.89 | 0.11533527          | 11813.15647 | 1503.991894   |
| 11801.82 | 0.113542516         | 10067.03453 | 1281.684397   |
| 10266.71 | 0.112171943         | 8705.865237 | 1108.387143   |
| 9026.414 | 0.111093187         | 7618.029074 | 969.8892931   |
| 8006.707 | 0.110224729         | 6731.457981 | 857.0155035   |
| 7156.261 | 0.109512773         | 5997.326699 | 763.549587    |
| 6438.377 | 0.108920316         | 5381.303941 | 685.1206558   |
| 5826.091 | 0.108421047         | 4858.521202 | 618.5625768   |
| 5299.148 | 0.10799574          | 4410.518945 | 561.525174    |
| 4842.041 | 0.107630027         | 4023.310995 | 512.2277979   |
| 4442.707 | 0.107312958         | 3686.113283 | 469.2974746   |
| 4091.632 | 0.107036052         | 3390.483649 | 431.6593909   |
| 3781.214 | 0.106792637         | 3129.72484  | 398.4608857   |
| 3505.316 | 0.106577403         | 2898.460967 | 369.0175281   |
| 3258.934 | 0.106386073         | 2692.331238 | 342.7741238   |
| 3037.95  | 0.106215166         | 2507.7647   | 319.2760369   |
| 2838.949 | 0.106061823         | 2341.81206  | 298.1477782   |
| 2659.078 | 0.105923677         | 2192.018418 | 279.0768023   |
| 2495.937 | 0.105798753         | 2056.325779 | 261.8010954   |
| 2347.495 | 0.105685391         | 1932.997539 | 246.0995617   |
| 2212.021 | 0.105582187         | 1820.559409 | 231.7845024   |
| 2088.037 | 0.105487947         | 1717.752765 | 218.6956755   |
| 1974.268 | 0.10540165          | 1623.497487 | 206.6955658   |
| 1869.614 | 0.105322416         | 1536.862139 | 195.6655874   |
| 1773.121 | 0.105249487         | 1457.039847 | 185.5030131   |
| 1683.955 | 0.105182204         | 1383.328665 | 176.1184747   |
| 1601.39  | 0.105119993         | 1315.115486 | 167.4339146   |
| 1524.785 | 0.105062352         | 1251.862783 | 159.3808973   |
| 1453.578 | 0.10500884          | 1193.097614 | 151.8992104   |
| 1387.269 | 0.104959069         | 1138.40247  | 144.9356987   |
| 1325.418 | 0.104912695         | 1087.407605 | 138.443288    |
| 1267.632 | 0.104869413         | 1039.784582 | 132.3801634   |
| 1213.561 | 0.104828952         | 995.2408297 | 126.709076    |
| 1162.892 | 0.10479107          | 953.5150098 | 121.3967536   |
| 1115.343 | 0.104755552         | 914.3730825 | 116.4133996   |
| 1070.664 | 0.104722203         | 877.6049354 | 111.7322633   |
| 1028.627 | 0.104690849         | 843.0214923 | 107.3292726   |
| 989.0257 | 0.104661334         | 810.4522238 | 103.1827165   |
| 951.6763 | 0.104633514         | 779.7429959 | 99.2729715    |

| 916.4102 | 0.104607263 | 750.7542061 | 95.58226402 |
|----------|-------------|-------------|-------------|
| 883.0749 | 0.104582464 | 723.3591626 | 92.09446433 |
| 851.5314 | 0.10455901  | 697.4426716 | 88.79490654 |
| 821.6533 | 0.104536806 | 672.8998028 | 85.67023147 |
| 793.3249 | 0.104515765 | 649.6348072 | 82.70824879 |
| 766.4408 | 0.104495805 | 627.5601656 | 79.89781602 |
| 740.904  | 0.104476855 | 606.5957516 | 77.22873187 |
| 716.6257 | 0.104458846 | 586.668092  | 74.69164209 |
| 693.5245 | 0.104441717 | 567.7097124 | 72.27795619 |
| 671.5252 | 0.104425411 | 549.6585573 | 69.97977356 |
| 650.5587 | 0.104409877 | 532.4574741 | 67.78981783 |
| 630.5613 | 0.104395065 | 516.0537545 | 65.70137844 |
| 611.4739 | 0.104380933 | 500.3987248 | 63.70825849 |
| 593.242  | 0.104367438 | 485.4473797 | 61.80472814 |
| 575.8153 | 0.104354543 | 471.1580548 | 59.98548289 |
| 559.1468 | 0.104342212 | 457.4921324 | 58.24560613 |
| 543.1931 | 0.104330414 | 444.4137774 | 56.5805355  |
| 527.9138 | 0.104319117 | 431.8896995 | 54.98603264 |
| 513.2715 | 0.104308294 | 419.8889386 | 53.4581559  |
| 499.231  | 0.104297919 | 408.382672  | 51.99323568 |
| 485.7599 | 0.104287967 | 397.3440384 | 50.58785216 |
| 472.8277 | 0.104278414 | 386.7479804 | 49.23881514 |
| 460.4059 | 0.104269241 | 376.5711001 | 47.94314573 |
| 448.4681 | 0.104260427 | 366.791529  | 46.69805974 |
| 436.9894 | 0.104251954 | 357.3888094 | 45.50095258 |
| 425.9464 | 0.104243804 | 348.3437859 | 44.34938551 |
| 415.3174 | 0.104235961 | 339.6385075 | 43.24107309 |
| 405.0819 | 0.104228409 | 331.2561375 | 42.17387174 |
| 395.2207 | 0.104221135 | 323.1808712 | 41.14576929 |
| 385.7158 | 0.104214125 | 315.3978609 | 40.15487541 |
| 376.5501 | 0.104207366 | 307.8931472 | 39.19941286 |
| 367.7077 | 0.104200847 | 300.6535955 | 38.27770942 |
| 359.1735 | 0.104194556 | 293.6668387 | 37.38819055 |
| 350.9334 | 0.104188482 | 286.9212233 | 36.52937259 |
| 342.974  | 0.104182616 | 280.4057608 | 35.69985655 |
| 335.2826 | 0.104176949 | 274.1100825 | 34.89832233 |
| 327.8474 | 0.104171471 | 268.0243982 | 34.12352349 |
| 320.6571 | 0.104166174 | 262.1394573 | 33.37428231 |
| 313.7011 | 0.10416105  | 256.4465141 | 32.6494853  |
| 306.9691 | 0.104156092 | 250.9372945 | 31.94807907 |
| 300.4519 | 0.104151292 | 245.6039662 | 31.26906642 |
| 294.1401 | 0.104146644 | 240.4391101 | 30.61150283 |
| 288.0255 | 0.104142142 | 235.4356951 | 29.9744931  |
| 282.0997 | 0.10413778  | 230.5870534 | 29.35718833 |
| 276.3551 | 0.104133551 | 225.8868583 | 28.75878304 |

| 270.7843 | 0.104129451 | 221.3291037 | 28.17851256 |
|----------|-------------|-------------|-------------|
| 265.3805 | 0.104125473 | 216.9080844 | 27.61565053 |
| 260.137  | 0.104121615 | 212.6183785 | 27.06950667 |
| 255.0475 | 0.104117869 | 208.4548304 | 26.53942459 |
| 250.1061 | 0.104114234 | 204.4125355 | 26.02477985 |
| 245.307  | 0.104110703 | 200.4868253 | 25.5249781  |
| 240.6448 | 0.104107273 | 196.6732544 | 25.03945335 |
| 236.1145 | 0.10410394  | 192.9675872 | 24.56766637 |
| 231.7109 | 0.104100701 | 189.3657866 | 24.10910317 |
| 227.4295 | 0.104097552 | 185.8640028 | 23.6632736  |
| 223.2658 | 0.10409449  | 182.4585627 | 23.22971003 |
| 219.2154 | 0.104091511 | 179.1459607 | 22.80796614 |
| 215.2744 | 0.104088613 | 175.9228492 | 22.39761573 |
| 211.4388 | 0.104085793 | 172.7860303 | 21.99825167 |
| 207.7049 | 0.104083047 | 169.732448  | 21.60948487 |
| 204.069  | 0.104080374 | 166.7591803 | 21.23094332 |
| 200.5279 | 0.104077771 | 163.8634324 | 20.86227121 |
| 197.0782 | 0.104075235 | 161.0425304 | 20.5031281  |
| 193.7169 | 0.104072764 | 158.2939146 | 20.1531881  |
| 190.4408 | 0.104070356 | 155.6151339 | 19.81213917 |
| 187.2473 | 0.104068009 | 153.0038403 | 19.47968236 |
| 184.1334 | 0.10406572  | 150.457784  | 19.15553121 |
| 181.0966 | 0.104063489 | 147.9748078 | 18.83941113 |
| 178.1344 | 0.104061312 | 145.5528433 | 18.53105875 |
| 175.2443 | 0.104059188 | 143.1899064 | 18.23022145 |
| 172.424  | 0.104057116 | 140.8840926 | 17.9366568  |
| 169.6713 | 0.104055093 | 138.6335742 | 17.65013207 |
| 166.9841 | 0.104053118 | 136.4365956 | 17.37042376 |
| 164.3602 | 0.104051191 | 134.2914707 | 17.09731721 |
| 161.7977 | 0.104049308 | 132.1965792 | 16.83060612 |
| 159.2947 | 0.104047469 | 130.1503635 | 16.57009219 |
| 156.8494 | 0.104045673 | 128.1513263 | 16.31558479 |
| 154.46   | 0.104043918 | 126.1980271 | 16.06690052 |
| 152.1248 | 0.104042202 | 124.2890802 | 15.82386297 |
| 149.8422 | 0.104040526 | 122.4231521 | 15.58630234 |
| 147.6106 | 0.104038886 | 120.5989587 | 15.35405519 |
| 145.4285 | 0.104037284 | 118.815264  | 15.12696412 |
| 143.2945 | 0.104035716 | 117.0708771 | 14.90487752 |
| 141.2071 | 0.104034183 | 115.3646507 | 14.68764932 |
| 139.165  | 0.104032684 | 113.6954791 | 14.47513875 |
| 137.1669 | 0.104031216 | 112.0622963 | 14.26721009 |
| 135.2116 | 0.104029781 | 110.4640744 | 14.06373249 |
| 133.2978 | 0.104028375 | 108.899822  | 13.86457972 |
| 131.4244 | 0.104027    | 107.3685827 | 13.66963    |
| 129.5902 | 0.104025653 | 105.8694334 | 13.47876582 |

| 127.7941 | 0.104024334 | 104.4014831 | 13.29187375 |
|----------|-------------|-------------|-------------|
| 126.0352 | 0.104023043 | 102.9638716 | 13.10884425 |
| 124.3123 | 0.104021778 | 101.555768  | 12.92957156 |
| 122.6246 | 0.104020538 | 100.1763699 | 12.7539535  |
| 120.971  | 0.104019324 | 98.8249018  | 12.58189136 |
| 119.3506 | 0.104018135 | 97.50061431 | 12.41328971 |
| 117.7626 | 0.104016969 | 96.20278303 | 12.24805633 |
| 116.206  | 0.104015826 | 94.93070751 | 12.08610205 |
| 114.6802 | 0.104014706 | 93.68371038 | 11.92734062 |
| 113.1842 | 0.104013608 | 92.46113638 | 11.77168863 |
| 111.7173 | 0.104012531 | 91.26235153 | 11.61906534 |
| 110.2788 | 0.104011475 | 90.08674229 | 11.46939267 |
| 108.8679 | 0.10401044  | 88.9337148  | 11.32259498 |
| 107.4838 | 0.104009424 | 87.8026941  | 11.17859909 |
| 106.1261 | 0.104008427 | 86.69312342 | 11.03733411 |
| 104.7939 | 0.10400745  | 85.6044635  | 10.89873139 |
| 103.4866 | 0.10400649  | 84.53619194 | 10.76272441 |
| 102.2037 | 0.104005549 | 83.48780252 | 10.62924872 |
| 100.9444 | 0.104004624 | 82.45880469 | 10.49824187 |
| 99.70836 | 0.104003717 | 81.44872293 | 10.36964332 |
| 98.49484 | 0.104002827 | 80.45709619 | 10.24339437 |
| 97.30336 | 0.104001952 | 79.48347741 | 10.11943811 |
| 96.13337 | 0.104001094 | 78.52743298 | 9.997719321 |
| 94.98436 | 0.10400025  | 77.58854229 | 9.878184462 |
| 93.85584 | 0.103999422 | 76.66639722 | 9.760781572 |
| 92.74732 | 0.103998609 | 75.76060172 | 9.645460227 |
| 91.65833 | 0.10399781  | 74.8707714  | 9.53217149  |
| 90.58841 | 0.103997025 | 73.99653312 | 9.420867851 |
| 89.53712 | 0.103996253 | 73.13752453 | 9.311503182 |
| 88.50403 | 0.103995495 | 72.2933938  | 9.204032687 |
| 87.48873 | 0.10399475  | 71.46379918 | 9.098412856 |
| 86.4908  | 0.103994018 | 70.64840871 | 8.994601427 |
| 85.50985 | 0.103993298 | 69.84689979 | 8.892557327 |
| 84.54551 | 0.103992591 | 69.05895902 | 8.792240656 |
| 83.59739 | 0.103991895 | 68.28428173 | 8.693612625 |
| 82.66513 | 0.103991211 | 67.52257177 | 8.59663553  |
| 81.74839 | 0.103990539 | 66.77354125 | 8.501272716 |

### 10.2. Profilo 2D - fluido inviscido

```
/*-----*- C++ -*-----
                                                 ----*\
| ========
                   / F ield
                    | OpenFOAM: The Open Source CFD Toolbox
1 \ \
         0 peration
                   | Version: 4.1
  11
      1
         A nd
                    Web:
                            www.OpenFOAM.org
   11
I
         M anipulation |
  \\/
1
                     .
\*-----
                                                         */
FoamFile
{
  version 2.0;
  format
           ascii;
           volScalarField;
  class
  object
           p;
}
   // *
dimensions [1 -1 -2 0 0 0 0];
internalField uniform 101325; //impongo la p atmosferica all'interno
boundaryField
{
   inlet
   {
               totalPressure; //impongo la p atmosferica come p totale
     type
                uniform 101325;
     p0
     gamma
                1.4;
   }
   outlet
   {
      type
              fixedValue;
                          value
              uniform 84794.28;
   }
   bottom
   {
      type
               zeroGradient;
   }
   top
   {
                symmetryPlane;
     type
   }
```

```
//*-----*- C++ -*-----
 | ========
 // / OpenFOAM: The Open Source (
    // / Operation | Version: 4.1
    // / A nd | Web: www.OpenFOAM.org
    /// M anipulation |
.
                                                                  Т
                                                                  1
\*----
                            FoamFile
{
         2.0;
ascii;
   version
   format
   class
            volScalarField;
  object
             Τ;
}
// * * * * * *
                                                    * * * * * * * //
                   * * * * * * * * * * * * * * *
            * * * *
dimensions [0 0 0 1 0 0 0];
internalField uniform 288; //temperatura atmosfera standard
boundaryField
{
   inlet
   {
                   totalTemperature;
      type
      gamma
                   1.4;
                    uniform 288; //temperatura atmosfera standard
      ΤO
   }
   outlet
   {
      type zeroGradient;
   }
   bottom
   {
      type zeroGradient;
   }
   top
   {
      type
               symmetryPlane;
   }
```

```
}
```

```
/*----
         -----*- C++ -*-----
                     _____
T
         Field | OpenFOAM: The Open Source CFD Toolbox
 11
       1
                      Version: 4.1
          0 peration
  11
                      | Web:
                              www.OpenFOAM.org
          A nd
   11
          M anipulation |
L
   \langle \rangle \rangle
\*-----
                            FoamFile
{
         2.0;
   version
  format ascii;
            volVectorField;
  class
  object
            U;
}
// * * * *
                                               * * * * * * * * * //
                  * * * * * * * * * * * * * * *
        4
               * *
dimensions [0 1 -1 0 0 0 0];
internalField uniform (0 0 0);
boundaryField
{
   inlet
   {
      type zeroGradient;
   }
   outlet
   {
            zeroGradient;
     type
   }
   bottom
   {
           slip;
      type
   }
   top
   {
              symmetryPlane;
     type
   }
```

```
-----*- C++ -*-----
/*--
 _____
                   - I
         F ield | OpenFOAM: The Open Source CFD Toolbox
 11
       1
                   Version: 4.1
         0 peration
  11
         A nd
                   Web: www.OpenFOAM.org
   11
         M anipulation |
   \\/
                       \*----
         -----
FoamFile
{
  version
          2.0;
  format
           ascii;
           dictionary;
  class
          "constant";
  location
  object thermophysicalProperties;
}
thermoType
{
             hePsiThermo;
  type
            pureMixture;
sutherland;
hConst;
  mixture
  transport
  thermo
  equationOfState perfectGas;
  specie specie;
             sensibleInternalEnergy;
  energy
}
  specie
   {
     nMoles
                 1;
                28.96;
     molWeight
  }
  thermodynamics
  {
     Ср
                1004.5;
     Hf
                 0;
  }
   transport
   {
     As
                 1.458e-06;
     Τs
                 110.4;
     mu
                 0;
     Ρг
                 1;
  }
}
```

| /*                                                |                        |                                                | *- C+-                                      | L .*                         |         |         |       |       |       | *\   |
|---------------------------------------------------|------------------------|------------------------------------------------|---------------------------------------------|------------------------------|---------|---------|-------|-------|-------|------|
| <br>  \\<br>  \\<br>  \\<br>  \\<br>  \\/         | / F<br>/ O<br>/ A<br>M | ield<br>peration<br>nd<br>anipulation          | <br>  OpenFOAM:<br>  Version:<br>  Web:<br> | The Open<br>4.1<br>www.Openf | Source  | CFD Too | lbox  |       |       |      |
| FoamFile<br>{<br>versi<br>forma<br>class<br>locat | .on<br>it<br>;         | <pre>2.0; ascii; dictionary; "constant":</pre> |                                             |                              |         |         |       |       |       | */   |
| objec<br>}<br>// * * *                            | :t<br>* * *            | turbulencePro                                  | operties;<br>* * * * * *                    | * * * * *                    | * * * * | * * *   | * * * | ; * * | . * . | * // |

simulationType laminar;

```
-----*- C++ -*-----
  ======= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
L
             O peration | Version: 4.1
A nd | Web: www.OpenFOAM.org
   11
    \\ /
             M anipulation |
    \\/
\*-----
             FoamFile
{
               2.0;
    version
   format ascii;
class dictionary;
object blockMeshDict;
   object
}
convertToMeters 0.01; //conversione in centimetri
vertices
(

      (0
      0
      //n1

      (40
      3.75
      0)
      //n2

      (40
      9
      0)
      //n3

      (0
      9
      0)
      //n4

(0 9 0) //n4
//-----
   (0 0 0.1) //n5
(40 3.75 0.1) //n6
(40 9 0.1) //n7
(0 9 0.1) //n8
);
blocks
(
   hex (0 1 2 3 4 5 6 7) (120 80 1)
  simpleGrading
(
//X
(
(0.375 \ 0.4 \ 0.1)
(0.150 \ 0.4 \ 1)
(0.475 \ 0.2 \ 10)
)
//Y
(
(0.2 \ 0.5 \ 10)
(0.8 \ 0.5 \ 2)
//(0.6 0.2 1)
)
//Z
1
)
```

);

```
edges
(
  polyLine 0 1
 (
. . . . . . . . . .
)
 polyLine <mark>4 5</mark>
(
. . . . . . . . . .
)
);
boundary
(
   inlet
   {
      type patch;
       faces
       (
       (0 4 7 3)
);
   }
   outlet
    {
       type patch;
       faces
       (
(1 2 6 5));
    }
   bottom
    {
       type wall;
       faces
       (
(0 1 5 4)
);
   }
    top
    {
       type symmetryPlane;
       faces
      (3762)
   }
);
mergePatchPairs
(
);
```

```
-----*\ C++ -*----*\
                      _____
          F ield
                     | OpenFOAM: The Open Source CFD Toolbox
  11
        1
          0 peration
                     | Website: <a href="https://openfoam.org">https://openfoam.org</a>
  ۱۱
                     | Version: 6
          A nd
          M anipulation |
    ///
\*----
                    ----*/
FoamFile
{
   version
            2.0;
   format
           ascii;
           dictionary;
"system";
   class
   location
   object
            controlDict;
}
* * * * * * * * //
application
            rhoCentralFoam;
            latestTime;
startFrom
startTime
            0;
stopAt
            endTime;
endTime
            10000000;
deltaT
            0.001;
writeControl timeStep;
writeInterval 300;
purgeWrite 0;
writeFormat ascii;
writePrecision 6;
writeCompression off;
timeFormat general;
timePrecision 6;
runTimeModifiable true;
adjustTimeStep true;
maxCo
            0.3;
//maxAlphaCo 1;
maxDeltaT 1;
functions
{
#includeFunc residuals
#includeFunc flowRatePatch(name=inlet)
#includeFunc flowRatePatch(name=outlet)
#includeFunc MachNo
}
```

```
/*----
      -----*- C++ -*----*\
      === |
/ F ield | OpenFOAM: The Open Source CFD Toolbox
==========
 11
      / O peration | Version: 4.1
/ A nd | Web: www.OpenFOAM.org
  11
   11
         M anipulation |
\\/
/*-----
FoamFile
{
   version 2.0;
  format ascii;
  class dictionary;
location "system";
object fvSchemes;
}
* * * * * * * * //
fluxScheme Kurganov;
ddtSchemes
{
   default Euler;
}
gradSchemes
{
   default Gauss linear;
}
divSchemes
{
  defaultnone;div(tauMC)Gauss linear;
}
laplacianSchemes
{
   default Gauss linear corrected;
}
interpolationSchemes
{
   default linear;
   reconstruct(rho) vanLeer;
   reconstruct(U) vanLeerV;
reconstruct(T) vanLeer;
}
snGradSchemes
{
   default corrected;
}
```

```
-----*- C++ -*-----
 ======= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 _____
н
          O peration | Version: 4.1
A nd | Web: www.OpenFOAM.org
   11
   11
           M anipulation |
    \\/
L
           \*----
FoamFile
{
   version 2.0;
format ascii;
class dictionary;
location "system";
object fvSolution;
}
* * * * * * //
                                      * *
                                         *
                                           *
solvers
{
   "(rho|rhoU|rhoE)"
   {
       solver diagonal;
   }
   U
   {
                  smoothSolver;
GaussSeidel;
2;
       solver
      smoother
      nSweeps
      tolerance
                   1e-09;
      relTol
                    0.01;
   }
   h
   {
       $U;
       tolerance 1e-10;
relTol 0:
       relTol
                    0;
   }
   e
   {
       ŞU;
       tolerance 1e-10;
relTol 0;
   }
}
```

#### 10.3. Profilo assialsimmetrico inviscido

```
/*-----*- C++ -*----*\
| =========
                   1
 \\ / F ield
                   | OpenFOAM: The Open Source CFD Toolbox
     / O peration
                   Version: 4.1
  11
  \\ /
         A nd
                    | Web: www.OpenFOAM.org
  \\/
         M anipulation |
Т
\*----
                      -----
FoamFile
{
  version
           2.0;
           ascii;
  format
           volScalarField;
  class
  object
           p;
}
          // * * * * * *
dimensions [1 -1 -2 0 0 0 0];
internalField uniform 101325;
boundaryField
{
  inlet
  {
     type
           zeroGradient;
  }
  outlet
  {
     type
                fixedValue:
     value
                uniform 101244;
  }
  top
   {
     type
                zeroGradient;
  }
  wedge1
   {
                 wedge;
     type
  }
  wedge2
  {
     type
                wedge;
  }
  defaultFaces
  {
     type
                empty;
  }
}
```

```
/*----
          -----*- C++ -*-----
          F ield
                       - I
 _____
L
                       | OpenFOAM: The Open Source CFD Toolbox
 11
           0 peration
                       | Version: 4.1
  11
           A nd
                        Web:
                                  www.OpenFOAM.org
   11
           M anipulation |
    11/
L
\*----
                                FoamFile
{
            2.0;
   version
   format
            ascii;
             volScalarField;
   class
   object
             Τ;
}
// * * * *
                    * * * * * * * * * * * * *
                                                          * * * * * //
              * * *
dimensions [0 0 0 1 0 0 0];
internalField uniform 288; //temperatura atmosfera standard
boundaryField
{
   inlet
   {
                    totalTemperature;
      type
      gamma
                    1.4;
                    uniform 288; //temperatura atmosfera standard
      Τ0
   }
   outlet
   {
                    inletOutlet;
      type
      inletValue
                   uniform 288;
      value
                    uniform 288;
   }
   top
   {
      type
               zeroGradient;
   }
   wedge1
   {
      type
                    wedge;
   }
   wedge2
   {
                   wedge;
      type
   }
   defaultFaces
   {
      type
                   empty;
   }
```

```
}
```

```
/*---
            -----*- C++ -*-----
                         _____
L
           F ield
                         | OpenFOAM: The Open Source CFD Toolbox
  11
         1
            0 peration
                          | Version: 4.1
   11
            A nd
                          | Web:
                                     www.OpenFOAM.org
    11
            M anipulation |
11/
\*--
                                       . . . . . . . . . . . . . . . . . .
FoamFile
{
   version
              2.0;
             ascii;
   format
              volVectorField;
   class
   object
              U;
}
                     * * * * * * * * * * * * * * * *
11
              * * * *
                                                     * * * * * * * * * //
dimensions [0 1 -1 0 0 0 0];
internalField uniform (0 0 0);
boundaryField
{
   inlet
   {
                      zeroGradient;
       //type
       type
                      flowRateInletVelocity;
       massFlowRate constant 0.001415;
       //extrapolateProfile yes;
       гhо
                      rho;
       rhoInlet
                      1.225;
       value
                      uniform (0 0 0);
   }
   outlet
   {
       type
                   zeroGradient;
   }
   top
   {
                     slip;
       type
   }
   wedge1
   {
                    wedge;
       type
   }
   wedge2
   {
                    wedge;
       type
   }
   defaultFaces
   {
       type
                empty;
   }
```

```
}
```

```
/*----
              -----*- C++ -*----*\
       / F ield | OpenFOAM: The Open Source CFD Toolbox
/ O peration | Website: <u>https://openfoam.org</u>
/ A nd | Version: 6
  _____
  11
   11
     \\ /
               M anipulation |
     \\/
\*-----*/
FoamFile
{
   version 2.0;
format ascii;
class dictionary;
object blockMeshDict;
}
convertToMeters 0.01; //trasformazione in centimetri
vertices
(
     (-2.5 0 0)
                                   //n 0

      (75 0 0)
      //n 1

      (0 8.83169 -0.308221547)
      //n 2

      (75 5.35237 -0.186795)
      //n 3

      (0 8.83169 0.308221547)
      //n 4

      (75 5.35237 0.186795)
      //n 5

);
blocks
(
    hex (0 1 3 2 0 1 5 4) (60 40 1) simpleGrading (1 1 1)
);
edges
(
     polyLine 2 3
  (
. . . . . . . . . .
. . . . . . . . . .
 )
     polyLine 4 5
  (
. . . . . . . . . .
. . . . . . . . . .
  )
      arc 0 2 ( -1.25 4.45744 -0.155562446
                                                         )
     arc 0 4 ( -1.25 4.45744 0.155562446
                                                       )
);
```

```
boundary
(
    inlet
    {
        type patch;
faces
        (
             (0 2 4 0)
        );
    }
    outlet
    {
        type patch;
        faces
        (
             (1 3 5 1)
        );
    }
    top
    {
        type wall;
        faces
        (
             (2 4 5 3)
        );
    }
    wedge1
    {
        type wedge;
        faces
        (
             (0 2 3 1)
        );
    }
    wedge2
    {
        type wedge;
faces
        (
             (0 1 5 4)
        );
    }
);
mergePatchPairs
(
);
```

#### 10.4. Profilo assialsimmetrico inviscido - fanCurve

```
/*-----
           -----*- C++ -*-----
                                                          ----*\
 _____
                       1
L
          F ield
                       | OpenFOAM: The Open Source CFD Toolbox
 11
       1
н
          O peration
                       | Version: 4.1
  11
           A nd
                       | Web:
                                 www.OpenFOAM.org
   //
          M anipulation
Т
    \langle \rangle \rangle
                       \*-----
                          FoamFile
{
   version
             2.0;
   format
             ascii;
   class
             volScalarField;
   object
             p;
}
dimensions [1 -1 -2 0 0 0 0];
internalField
            uniform 101325; //impongo la p atmosferica all'interno
boundaryField
{
   inlet
   {
                  zeroGradient;
      type
   }
   outlet
   {
      type
                   fanPressure;
      patchType
                   totalPressure;
      file
                   "fanCurve";
      outOfBounds
                   clamp;
      direction
                   out;
                   uniform 101325;
      p0
                   uniform 101325;
      value
   }
   top
   {
                   zeroGradient;
      type
   }
   wedge1
   {
      type
                    wedge;
   }
   wedge2
   {
                    wedge;
      type
   }
   defaultFaces
   {
      type
                    empty;
   }
}
```

```
-----*- C++ -*-----
/*---
| =========
         F ield
                     | OpenFOAM: The Open Source CFD Toolbox
 11
       1
          0 peration
                      | Version: 4.1
  11
          A nd
                      | Web:
                               www.OpenFOAM.org
   11
          M anipulation
    11/
L
\*---
                             FoamFile
{
           2.0;
   version
  format ascii;
  class
            volVectorField;
  object
            U;
}
// * * * *
                                                * * * * * * * * //
                  * * * * * * * * * * * * * * *
        4
              4 4
dimensions [0 1 -1 0 0 0 0];
internalField uniform (0 0 0);
boundaryField
{
   inlet
   {
     type zeroGradient;
   }
   outlet
   {
            zeroGradient;
     type
   }
   top
   {
     type
                 slip;
   }
   wedge1
   {
      type
                 wedge;
   }
   wedge2
   {
      type
                  wedge;
   }
   defaultFaces
   {
     type
                 empty;
   }
}
```

#### 10.5. Lamina piana viscosa

```
/*-----*- C++ -*----** (++ -*----*-)/*---**
 M anipulation |
   \langle \rangle \rangle
\*-----
                   */
           -------
FoamFile
{
  version 2.0;
  format ascii;
class volScalarField;
location "0";
  object
           alphat;
}
        // * * *
      4
dimensions [1 -1 -1 0 0 0 0];
internalField uniform 0;
boundaryField
{
  inlet
   {
               calculated;
     type
     value
                 uniform 0;
   }
   outlet
   {
                calculated;
     type
     value
                 uniform 0;
   }
   bottomWall
   {
                 compressible::alphatWallFunction;
     type
     Prt
                 0.85;
     value
                 uniform 0;
   }
   topWall
   {
      type
                 compressible::alphatWallFunction;
     Prt
                 0.85;
                 uniform 0;
     value
   }
defaultFaces
   {
      type
                empty;
   }
}
```

```
/*----
         -----*- C++ -*-----
                      _____
          F ield | OpenFOAM: The Open Source CFD Toolbox
 11
        1
          0 peration
                      Version: v1812
  11
                       | Web:
          A nd
                                www.OpenFOAM.com
   11
          M anipulation |
    11/
\*----
                           _ _ _ _ _ _ _ _ _ _ _
FoamFile
{
   version
            2.0;
   format ascii;
            volScalarField;
"0";
   class
   location
   object
             nut;
}
_____
                                                 * * * * * * * * * //
                                       4
dimensions
           [0 2 -1 0 0 0 0];
nu_inf 1.7e-5;
internalField uniform $nu_inf;
boundaryField
{
   inlet
   {
                 calculated;
$internalField;
      type
      value
   }
   outlet
   {
      type calculated;
value $internalField;
   }
   topWall
   {
             calculated;
$internalField;
      type
      value
   }
   bottomWall
   {
      type
                  nutkWallFunction;
      value
                  $internalField;
   }
   symmetry
   {
      type
                 symmetryPlane;
   }
   frontAndBack
   {
      type
                  empty;
   }
}
```

```
/*---
          -----*- C++ -*-----
 _____
                       F ield
                      | OpenFOAM: The Open Source CFD Toolbox
 11
        1
                       | Version: v1812
           0 peration
                        Web:
                                  www.OpenFOAM.com
           A nd
           M anipulation |
L
    11/
\*--
                                FoamFile
{
   version
             2.0;
   format
            ascii;
   class
             volScalarField;
   object
             nuTilda;
}
                                                  * * * * * * * * * //
             * * * * * * * * * * * * * * * * * * * *
// * * *
dimensions [0 2 -1 0 0 0 0];
#include "globals.h"
internalField uniform 3*$nu_inf; // 3*nu_inf
boundaryField
{
   inlet
   {
      type
                   fixedValue;
      value
                    $internalField;
   }
   outlet
   {
      type
                    inletOutlet;
      inletValue
                    $internalField;
      value
                    $internalField;
   }
   topWall
   {
               zeroGradient;
      type
   }
   bottomWall
   {
                    fixedValue;
      type
      value
                    uniform 0;
   }
   symmetry
   {
                  symmetryPlane;
      type
   }
   frontAndBack
   {
      type
                   empty;
   }
}
```

```
-----*- C++ -*-----
                         F ield
                         | OpenFOAM: The Open Source CFD Toolbox
  11
                          | Version: v1812
            0 peration
                                     www.OpenFOAM.com
            A nd
                          Web:
    11
            M anipulation |
    11/
\*---
                                           . . . . . . . .
FoamFile
{
   version
              2.0;
   format
              ascii;
              volScalarField;
   class
   object
              p;
}
// * * *
                                                           * * * * * * * //
                 * * * * * * * * * * * * * * * * *
        * *
              [1 - 1 - 2 0 0 0 0];
dimensions
#include "globals.h"
internalField uniform $Pex;
boundaryField
{
   inlet
   {
                     totalPressure;
       type
                      гho;
       гhо
       psi
gamma
                      thermo:psi;
                      1.4;
       p0
                      uniform $Pt0;
                      uniform $Pt0;
       value
   }
   outlet
   {
       type
                     fixedValue;
       value
                      uniform $Pex;
   }
   topWall
   {
               zeroGradient;
       type
   }
   bottomWall
   {
               zeroGradient;
       type
   }
   symmetry
   {
                 symmetryPlane;
       type
   }
   frontAndBack
   {
       type
                empty;
   }
}
```

```
*-----*\ C++ -*----*\
 _____
                     F ield
                     | OpenFOAM: The Open Source CFD Toolbox
 11
       1
                     | Version: 4.1
          0 peration
  11
         A nd
                     | Web:
                              www.OpenFOAM.org
   11
          M anipulation |
    \\/
\*--
                            FoamFile
{
   version
           2.0;
   format
           ascii;
   class
            volScalarField;
  object
            Τ;
}
* * * * * * //
dimensions
           [0 0 0 1 0 0 0];
#include "globals.h"
internalField uniform $Tex; //temperatura atmosfera standard
boundaryField
{
   inlet
   {
                 totalTemperature;
      type
      gamma
                 1.4;
      Τ0
                 uniform $Tt0;
      value
                 uniform $Tt0;
   }
   outlet
   {
                  inletOutlet;
      type
     inletValue
                 uniform $Tex;
                  uniform $Tex;
      value
   }
topWall
   {
              zeroGradient;
      type
   }
   bottomWall
   {
      type
                 zeroGradient;
   }
   symmetry
   {
                 symmetryPlane;
      type
   }
   frontAndBack
   {
      type
                 empty;
   }
```

```
-----*- C++ -*-----
                    _____
         F ield
                    | OpenFOAM: The Open Source CFD Toolbox
 11
       1
         0 peration
                    | Version: v1812
  11
                     | Web:
                             www.OpenFOAM.com
         A nd
   ۱۱
         M anipulation |
   11/
Т
\*-
                            FoamFile
{
  version
          2.0;
  format
          ascii;
  class
           volVectorField;
  object
           U;
}
* * * * * * //
dimensions [0 1 -1 0 0 0 0];
#include "globals.h"
internalField uniform $Uex;
boundaryField
{
  inlet
   {
     type
                fixedValue;
     value
                 $Uex;
   }
  outlet
   {
     type zeroGradient;
   }
   topWall
   {
      type slip;
   }
   bottomWall
   {
                 fixedValue;
     type
      value
                uniform (0 0 0);
   }
   symmetry
   {
               symmetryPlane;
     type
   }
   frontAndBack
   {
                empty;
     type
  }
```

```
/*----
      -----* C++ -*----*/
 M anipulation |
   \\/
                           */
\*-----
      FoamFile
{
  version 2.0;
format ascii;
class dictionary;
location "constant";
object thermophysicalProperties;
}
thermoType
{
  type hePsiThermo;
mixture pureMixture;
transport sutherland;
thermo hConst;
  equationOfState perfectGas;
  specie specie;
energy sensibleInternalEnergy;
}
mixture
{
   specie
   {
     molWeight 28.9;
   }
   thermodynamics
   {
     Ср
             1007;
     Hf
              0;
   }
   transport
   {
            1.4792e-06;
116;
     As
     Ts
  }
}
```

```
/*-----*\ C++ -*----*\
      === // F ield // OpenFOAM: The Open Source CFD Toolbox
// O peration // Website: <u>https://openfoam.org</u>
// A nd // Version: 6
 _____
 11
  11
   11
         M anipulation
   \\/
       */
\*-----
FoamFile
{
  version 2.0;
format ascii;
class dictionary;
location "constant";
object turbulenceProperties;
}
simulationType RAS;
RAS
{
   RASModel SpalartAllmaras;
   turbulence
              on;
   printCoeffs on;
}
```

```
/*--
            -----*- C++ -*-----
                        _____
        / F ield
                        | OpenFOAM: The Open Source CFD Toolbox
  11
           0 peration
                        | Version: v1812
   11
                         Web:
           A nd
                                    www.OpenFOAM.com
   11
           M anipulation |
T
    \langle \langle \rangle
        \*----
FoamFile
{
             2.0;
   version
            ascii;
   format
   class
             dictionary;
   object
             blockMeshDict;
}
* * * * * * * * * //
scale 1;
vertices
(
   (-0.3 0 0.1) // n0
   (0 0 0.1) // n1
(2 0 0.1) // n2
(2 1 0.1) // n3
(0 1 0.1) // n4
   (-0.3 1 0.1) // n5
   (-0.3 0 0) // n6
   (0 0 0) // n7
(2 0 0) // n8
(2 1 0) // n9
(0 1 0) // n10
(-0.3 1 0) // n11
```

```
);
blocks
(
    hex (6 7 10 11 0 1 4 5) (25 200 1)
    simpleGrading
(
)/X
(
(1 9 0.15)
(0.1 \ 3 \ 0.9)
)
//Y
(
(0.1 0.5 50000) //100
(0.4 \ 0.3 \ 4)
(0.5 0.2 1.25)
)
.
//Z
1
)
hex (7 8 9 10 1 2 3 4) (115 200 1)
  simpleGrading
(
)/x
(
(0.1 22 1.5)
(0.35 23 7)
(0.515 12 1)
)
```

```
//Y
(
(0.1 0.5 50000) //100
(0.4 0.3 4)
(0.5 0.2 1.25)
)
//Z
1
)
);
edges
(
);
boundary
(
    inlet
    {
         type patch;
         faces
         (
            (6 0 5 11)
         );
    }
    outlet
    {
         type patch;
faces
         (
             (8 9 3 2)
```
```
);
    }
    topWall
    {
       type wall;
       faces
       (
          (11 5 4 10)
           (10 4 3 9)
       );
    }
    bottomWall
    {
       type wall;
       faces
       (
          (7821)
       );
    }
    symmetry
    {
       type symmetryPlane;
       faces
       (
          (6710)
       );
    }
    frontAndBack
    {
       type empty;
       faces
       (
           (0 1 4 5)
           (1 2 3 4)
           (6 11 10 7)
           (7 10 9 8)
       );
   }
);
mergePatchPairs
(
);
                    // *********
```

### 10.6. Profilo assialsimmetrico viscoso

convertToMeters 0.01; //trasformazione in centimetri

#include "points.h"

\$n7 \$n8 \$n9 \$n10 \$n11

vertices ( \$n0 \$n1 \$n2 \$n3 \$n4 \$n4 \$n5 \$n6

);

```
blocks
(
    hex (0 1 3 2 0 1 5 4)($nx1 $ny 1) simpleGrading
    (
    )/X
    $str1
    //Y
    (
        $y1
        $y2
        $y3
    )
    //Z
    1)
    hex (1 6 7 3 1 6 8 5)($nx2 $ny 1) simpleGrading
    (
//X
    $str2
    //Y
    (
        $y1
        $y2
        $y3
    )
    //Z
    1)
    hex (6 9 10 7 6 9 11 8)($nx4 $ny 1) simpleGrading
    (
    )/x
    $str4
    //Y
    (
        $y1
        $y2
        $y3
    )
```

```
//Z
1)
);
edges
(
        $a1
        .
$a2
        Şa3
        Şa4
        $a5
        $a6
        $a7
        $a8
);
boundary
(
    inlet
    {
        type patch;
        faces
        (
           (0 2 4 0)
        );
    }
    outlet
    {
        type patch;
        faces
        (
            (9 10 11 9)
        );
    }
```

```
top
     {
           type wall;
           faces
           (
                (2 4 5 3)
(3 5 8 7)
(7 8 11 10)
           );
     }
     wedge1
     {
           type wedge;
           faces
           (
                (0 2 3 1)
(1 3 7 6)
(6 7 10 9)
           );
     }
     wedge2
     {
           type wedge;
           faces
           (
                (0 1 5 4)
                (1 6 8 5)
(6 9 11 8)
           );
     }
);
mergePatchPairs
(
);
```

### //vertices

| n0  | (-2.6 0 0);                          |
|-----|--------------------------------------|
| n1  | (15 0 0);                            |
| n2  | (0 8.83169 -0.308221547);            |
| n3  | (15 1.29886 -0.045329629);           |
| n4  | (0 8.83169 0.308221547);             |
| n5  | <pre>(15 1.29886 0.045329629);</pre> |
| n6  | (20 0 0);                            |
| n7  | (20 1.29886 -0.045329629);           |
| n8  | (20 1.29886 0.045329629);            |
| n9  | (100 0 0);                           |
| n10 | (99 5.35237 -0.186795);              |
| n11 | (99 5.35237 0.186795);               |
|     |                                      |

### //edges

| a1 | arc 0 2  | ( | - 2  | 4.45744  | -0.155562446 | ); |
|----|----------|---|------|----------|--------------|----|
| a2 | arc 0 4  | ( | - 2  | 4.45744  | 0.155562446  | ); |
| a3 | arc 9 11 | ( | 99.7 | 2.676185 | 0.0933975    | ); |
| a4 | arc 9 10 | ( | 99.7 | 2.676185 | -0.0933975   | ); |
| a5 | arc 4 5  | ( | 7.5  | 2.86867  | 0.100115041  | ); |
| a6 | arc 2 3  | ( | 7.5  | 2.86867  | -0.100115041 | ); |
| a7 | arc 8 11 | ( | 60   | 2.92     | 0.1          | ); |

### //blocks

```
//asse y (numero celle + stretching)
        90;
ny
у1
       (0.5 0.25 0.6);
       (0.4 0.25 1);
(0.1 0.5 0.01);
y2
у3
//asse x (numero celle + stretching)
        //blocco 1
        nx1 40;
        str1 0.1;
        //blocco 2
        nx2 60;
str2 0.4;
        //blocco 3
        //nx3 40;
        //str3 1.4;
        //blocco 4
        nx4 100;
        str4 80;
```

# 11. Sitografia

https://www.openfoam.com

https://openfoam.org

https://www.polito.it

http://openfoamwiki.net

https://www.ubuntu-it.org

https://it.wikipedia.org/wiki/OpenFOAM

https://nasa.gov

https://cfd-online.com

## 12. Bibliografia

- Frederick Nicolaas le Roux (2010) The CFD simulation of an axial flow fan. Master's thesis. University of Stellenbosch.
- Ola Sirevaag (2015) CFD simulation of an offshore air intake and exhaust system. Master's thesis. University of Stavanger.
- Gianluca Fiorito (2018) Studio di fattibilità e progettazione di un minibanco motore 4T per l'analisi delle prestazioni in quota. Tesi di Laurea Magistrale. Politecnico di Torino.
- Giacomo Cipollina Il modello numerico OpenFOAM per lo studio degli tsunami. Relazione di fine tirocinio. Università degli studi Roma Tre.
- Magnus Winter Benchmark and validation of Open Source CFD codes, with focus on compressible and rotating capabilities, for integration on the SimScale platform. Master's thesis. Chalmer University of technology.