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Abstract

Energy harvesting from natural sources using fluid-elastic phenomena is a new fo-
cus of engineering fields, those both industrial than to academic. Several studies,
conducted in recent times, indicate as scope of vibration-based energy harvesting
the power supply of small devices, like micromechanical systems and sensors.
This thesis aims to analyze and simulate the Fluid-Structure Interaction of two
possible harvester designs based on , the Vortex-induced vibrations (VIVs) and
the Galloping of prismatic structures. The interaction between a bluff body with-
out streamline shape and the flow field in which is immersed cause self-excited
phenomena, the separation occurs arising excitation forces, the behavior concerns
Fluid-Structure Interaction. From a classical engineering point of view, these sce-
narios are considered as problems that have to predict in order to be avoided. The
opposite perspective is to exploit these excitations to collect energy from a natural
and renewable source, it has to be considered that the potential of such a kind of
energy collecting is a debate.
Within this framework, VIVs and Galloping are introduced in the first section of
this work. Furthermore, an analysis of the physical models and the parameters in-
volved was carried out. The focus is the Computational Fluid Dynamics simulation
of the flow field whose forces due to pressure and shear shall be the external forces
of the structure, simulated by FEM-aided analysis.



Chapter 1

Introduction

Any body or structure subjected to the fluid flow might be affected by exitations
and vibrations, whether they are large or negligible. In case of excessive vibrations,
engineers’ purpose is avoiding these to suppress damage or failure or even to pre-
vent fatigue phenomena. From the energy harvesting point of view, the scope is to
profit by, converting vibrations into usable electric energy.

It is common to bestow the first documentation of vortex shedding upon the
sketches of Leonardo Da Vinci (14th century), the first example of a tool based
of these vibrations is perhaps the aeolian harp, a musical instrument of ancient
Greece (which was solved in a paper by Lord Rayleigh). The scientific and modern
studies of vortex shedding started with Strouhal (1878) and von Karman (1912),
whereas the vortex-induced vibrations with Bishop & Hassan (1964) [5]. In the
previous historical overview, one must pay tribute to the works of Zdravkovich,
whose activity leads to the publication of two volumes(1997 [31], 2003 [32]) for a
total of more than 1200 pages.
The very first approach to Vortex Induced Vibrations, hereinafter referred as VIVs,
was aimed to their suppression to avoid damage and failure of civil structures, in
this sense the prime example is the Tacoma Bridge collapse due to vortex-induced
vibrations as proven by von Karman tests realized in the wind tunnel at Caltech in
the Daniel Guggenheim Aeronautical Laboratory with a model of the entire span
constructed to 1/234 scale [2].
The energy harvesting approach is much more recent as shown by Abdelkefi’s review
(2016) [1] and though years led to the development of various harvesters.
The VIVs based generators are wind power harvesters and they are placed on the
energy segment market as competitors of solar technologies, this odd placement will
be deepened subsequently. Traditional horizontal axis wind turbine are becoming
bigger as show in Fig. 1.2, to maximize performances in terms of annual energy
output that varies almost with the cube of the wind speed, so HAWTs became
taller, and the square of the rotor diameter.
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1 – Introduction

Betz Limit The theoretical maximum efficiency for a wind turbine is the Betz
limit and it represents the maximum kinetic energy obtainable from wind that can
be used to spin rotor, hence the turbine, in order to generate electricity. Considering
the schematic of fluid flow through the rotor in Fig.1.1.

Figure 1.1: Actuator disc model of airstream flow through turbine

If the continuity law holds, and it does, the mass flow rate ṁ is:

ṁ = ρV1A1 = ρV2A2 = ρV A (1.1)

Where ρ is air density, subscripts 1 and 2 refers respectively to backward and for-
ward fluid flow, while A and V are the rotor’s area and airstream velocity through.
The impulse is equal to momentum variation:

Ft = m(V1 − V2) (1.2)
F = ṁ(V1 − V2) (1.3)

Power delivered to the rotor is:

P = FV = ṁV (V1 − V2) (1.4)

On the other hand P can be obtained considering the power balance through the
disc:

P = ṁ

(
V 2

1 − V 2
2

2

)
(1.5)

Hence the velocity at disc is:
V = V1 + V2

2 (1.6)

Defining an interference coefficient a as:

a = 1− V

V1
(1.7)

so V = V1(1− a) (1.8)
and V2 = V1(1− 2a) (1.9)
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1 – Introduction

It led to write the power as:

P = ρAV1(1− a)
(
V 2

1 − V 2
1 (1− a)
2

)
= (1.10)

= ρAV 3
1 2a(1− a)2 (1.11)

By differentiating P with respect to a, it is found aPmax = 1/3 as the value that
maximize the kinetic power P . Replacing a = aPmax :

P = 8
27ρAV

3
1 (1.12)

Eq.1.12 must be compared with the power in region 1:

P1 = ρAV 3
1

2 (1.13)

The power coefficient is:

CP = P

P1
= 16

27 = 0.593 (1.14)

It represents the is dimensionless ratio of the extractable power P to the kinetic
power P1 available in the undistributed stream.

Performance’s growth leads to reach high efficiency (circa 45%) that is quite
close to the Betz limit of 59.7% (that is the equivalent of Carnot limit efficiency
for thermal machines). Size growth, as shown in Fig.1.2, even carries some draw-
backs which have made traditional wind turbine unpopular. For instance the noise
pollution can reach 60dB at low frequencies, wind turbines are a cause of bird mor-
tality about like airplanes and furthermore aesthetic is a point of the debate. It
is obvious that the wind sector is crucial in the energy landscape, both in global
and national scenarios. The ANEV research “ Il contributo dell’eolico italiano per
il raggiungimento degli obiettivi al 2030 ” [28] estimates a potential of 17,150MW
by 2030, of which 950MW off-shore and 400MW small-scale, with an annual pro-
duction of over 36 TWh. At the end of 2016 the wind farm installed in Italy was
around9.3GW for a production of around 17.5TWh. It cannot be doubted that
the wind energy situation represents an opportunity of economic growth and energy
independence, both considering new sites and revamping of the existing ones, with
bnefits of about 2 billions of euros and thousands of new jobs created [8].
The traditional wind generators cannot be introduced in urban areas, so new con-
cepts of mini wind systems were developed in order to aim a feasible integration.
None of these devices can be considered fully completed, some designs were de-
serted or set aside while other are still in progress.
Two example of concepts are Vortex Bladeless SL and The Saphonian as explained
in next chapter.
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1 – Introduction

Figure 1.2: Size growth of wind turbines over time [9]
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Chapter 2

State of the art

Even though the wind industry sees global investments of about $100 billions, tur-
bine growth and energy conversions are reaching their limits. It should be pointed
that these devices are not intended as substitutes to typical wind turbines, but in
synergy with conventional harvesters.
New trends of development move in the direction of blade-less technologies and the
most important devices are sorted and briefly described in the sections below.

2.1 The Saphonian
The first example of these kind of devices is the Saphonian by Saphon Energy
shown in Fig. 2.1.

Figure 2.1: The Saphonian

7



2 – State of the art

The essential idea is to remove the whole spin system replacing it with a sail-
inspired body that mimics the way sailboats convert wind energy into mechanical
one. Instead of rotation the kinematics is in 3 dimensions, i.e. a motion in a 3D
space without regard to the forces that cause the motion. Developers said the
machine reaches an efficiency at least double than a traditional HAWT with the
same size. The ease of such a minimal concept leads to a cost more than halved
compared to classic turbine with blades.

2.2 O-Wind
O-Wind Turbine is an omnidirectional and single axis turbine developed for urban
areas. The design is kite-inspired and the spherical shape, shown in Fig.2.2, per-
mits to achieve rotation under omnidirectional winds. The physics behind is quite

Figure 2.2: O-Wind Turbine

simple, based on Bernoulli’s principle. The entrance is larger than the exit, so the
pressure difference cause the turbine movement that rotate around the fixed axis
regardless of wind direction.

2.3 Vortex Bladeless
Perhaps the most famous zero-blade device is the Vortex Bladeless, developed by the
namesake Spanish SME. The system is a bladeless cylinder (Fig.2.3) that oscillates
under the effect of vorticity that generates the well-known vortex pattern called
VonKarmann street.

Physics behind the machine is not only due to the vortex pattern but to the
synchronization of the vortex shedding frequency and the natural one the structure’s
vibrations. Structure consists of two parts: the base (i.e. the white part at human
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2.3 – Vortex Bladeless

Figure 2.3: Vortex Bladeless

height in Fig.2.3) that includes the anchoring and the location of power output
system, and the cylindrical shaped mast that is the oscillating element containg
even a tuning system that provides to fit the natural frequency of the structure in
order to allow its resonance at different wind speeds.

Vortex Bladeless is clearly a wind harvester which responds to the weaknesses
mentioned in Chapter 1, it’s harmless to wildlife, quite easy to build and to install,
the lack of rotating system led to low maintenance, gears and breaks are absent so
no oiling is needed. On the other hand the low frequency vibration brings to noise,
the fundamentally turbulent oscillation raise the difficult to optimize the energy
harvested, and lastly the conversion to electrical power is based on a piezoelectric
system as shown in Fig.2.4 and it drops the efficiency. Furthermore such a device is
strongly subjected to fatigue effects that in combination with piezo’s low efficiency
constituted a non negligible issue.

Figure 2.4: Scheme of omnidirectional piezoelectric energy converter

In the eyes of a fluid dynamics engineer the physics of such a device is translated
into a fluid-structure interaction analysis whose numerical treatment needs around
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2 – State of the art

10’000 cpu hours [7] without counting the experiments to validate models. The
typical CFD based analysis is a sort of cap for such of these problems in terms
of computational costs (both time and money) even for supercomputers and HPC
systems. This consideration brings newest approaches to promote numerical study
which are not based on classic RANS,LES or DNS model. In this thesis a model of
this kind in adopted and compared to CFD simulations.

2.4 VIVACE
VIVACE (acrostic for Vortex Induced Vibration Aquatic Clean Energy) is a con-
verter of hydrokinetic energy (river or ocean) into an usable form of energy. In-
vented by Bernitas and Raghavan, patent pending on University of Michingan [4],
VIVACE represents an interesting device which exploit VIVs phenomena instead
of suppressing it, inverting the typical approach (see Tacoma Bridge) as said in the
introductory chapter.
The device consists of a rake of cylinders elastically mounted in a box placed on
the bottom of a river or ocean, the current through cylinders allows them to bob
up and down exploiting vortexes. Each cylinder moves a magnet coil creating DC
current. Using water instead of air as energy carrier increase the amount of power
output proportionally to the ratio between water’s density and air, so about 1000
time higher.
Working with water flows means also dealing with more stable flows, since rivers
and ocean currents are distinguished by nearly constant speed and direction which
makes it possible an aimed design, matching dimensions and mechanical specifica-
tion with a well defined current velocity.

This device is the model of reference of this thesis since it is the best example of
exploitation of Vortex Induced Vibrations. Unlike the other devices, VIVACE was
developed precisely to work in water, that is the largest medium of storing energy,
0.1% of the ocean energy would cover the energy needs of 15 billions of people.
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2.4 – VIVACE

Figure 2.5: VIVACE
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Chapter 3

Vortex Induced Vibrations

Vortex induced vibrations are a class of the vast phenomena of Flow Induced Vibra-
tions where the interaction between fluid forces and the stressed structure causes a
coupling, whose feedback is described in Fig.3.1. The fluid forces due to pressure

Figure 3.1: Feedback between fluid and structure

and shear, for example, cause the body deformation. As it deforms, the flow state
may change and so on. Even in case of rigid structures elastically mounted vibra-
tions may arise. The baseline taxonomy according to Blevins[6] of flow-induced
vibrations is shown in Fig. 3.2. To be noticed that vibrations occurs even in case
of steady flow, indeed such a kind of excitations are the focus of this thesis.

It ought be noted the distinction between flutter and vortex induced vibrations.
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3 – Vortex Induced Vibrations

Figure 3.2: A classification of flow induced vibrations

The first phenomenon commonly refers to aerodynamic bodies that oscillate with
large amplitude, which generates vortices at wake. In the latter, the oscillations of
the structure (not necessary streamlined-shape, actually a bluff body) are caused
by vortices.
As well as other fluid dynamic phenomena the aim is the understanding, prediction
and eventually the prevention, while in case of energy harvesting is the exploita-
tion. These objectives require simulations that could be direct numerical like DNS
with spectral methods, or RANS and LES with particular sub-grid scale models.
Anyway, all of these techniques depend upon experiments and measurements with
preferably non-intrusive methods. One of major problems in VIV scope are precisely
the empirical data obtained through digital particle image velocimetry (DPIV) or
laser Doppler or even pressure sensitive paints, which are expensive both in terms
of cost and time. The lack of experimental data, especially at high Reynolds, is a
critical point in VIVs’ studies.

The study of FIV requires the generation of model both for the fluid and the
structure. In general the structural models consist of linear equations (systems if
more than one degree of freedom is present) since the most of structure’s deforma-
tions are near-linear with increasing loads.
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3.1 – Flow around cyliders and vortex shedding

3.1 Flow around cyliders and vortex shedding
In fluid dynamics, study of flow around cylinder is surely one the most thoughtful
subject. This flow is fundamentally Reynolds-dependent, that is defined as:

Re = UD

ν

where U is the free-stream velocity, D the characteristic length (here the diame-
ter iof cylinder) and ν the kinematic viscosity. Referring to Fig.3.3 it is possible

Figure 3.3: Flow around cylinder varying Re [26]

to identify changes of flow patterns and wake structure increasing the free-stream
velocity. A real fluid is considered so the interaction between its viscosity and the
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3 – Vortex Induced Vibrations

body’s surface generates an important boundary layer. Increasing U , hence Re, at
a certain point a separation of the boundary layer will occur.
The very first Reynolds range, called Stokes flow, sees a major influence of viscous
effects and the streamlines surround the body. Indeed considering the physical
meaning of Re, i.e. the ratio between inertial forces and viscous ones, the creeping
is evident.
Increasing the free-stream velocity in the range 5 < Re < 40 separation occurs, a
steady re-circulation bubble forms behind the body with two symmetrical counter-
rotating vortices; the bubble length increase with increasing Re. Beyond a certain
value of Re, in case of circular cylinder is Re u 46 [27] the previous steady configura-
tion become unstable until the restoration of a new equilibrium. This unsteadiness
is characterized by an alternate and periodic shedding of vortices. The laminar vor-
tex street is well-known as VonKarmann Street in honour of Theodore VonKarman.

(a) (b)

Figure 3.4: Flow in the near wake of a cylinder starting from rest [20]

Vortex shedding exerts an alternate and periodic force on the cylinder, this im-
pose the oscillation in case it was elastically mounted or of distributed elasticity
type. It is obvious the importance of shed with respect to Vortex Induced Vibra-
tions.

The periodic pattern recurs with a particular frequency of vortex shedding fvs
that depends by body’s shape and free-stream velocity through the Strouhal num-
ber :

fvs = St
U

D
(3.1)

Strouhal number as well as Reynolds will be discussed later in the section of the
dimensionless parameters involved in Vortex Induced Vibrations.
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3.2 – Lock-in

3.2 Lock-in
Lock-in, also called synchronization, is a crucial phenomenon associated with vortex
induced vibrations. In order to understand it a system with natural frequency fn is
considered. The system is externally excited by an oscillating force with frequency
fe. It can be observed that when fe is close to fn there is an interference or beating.
When fe approaches even more to fn the beating vanishes and only a frequency fe
remains. A practical example is what happen to two or more pendulum clocks hung
together on a wall: they were unsynchronized with another one in this condition
but became synchronized when suspended to a thin wooden board. This example
is know as Huygens’s clocks.
In VIVs’ study the external force with frequency fe is the periodic pressure loading
acting due to the vortices structure shed from the body sides. The mutual interac-
tion of these two systems (vortices structure and oscillating body), manifests itself
as a non-linear resonance between the fluctuating pressure, externally driving the
body, and transversal motion, which may give rise to the synchronization of the
system.
An important development of lock-in phenomenon is the violation of Strouhal law,
hence vortex shedding is restrained by the body motion. In Fig.3.5 this violation
is shown both for air and water, they differs according to the non negligible effect
of added mass in case of high density fluid.

Figure 3.5: Frequency response in air (a) and water (b) with regard to cross-flow
vibrations [26]

In these condition (fe close to fn) resonance can occur which results in an har-
monic oscillation. However, this resonance has showed to be nonlinear and it is
reported [17] that no model is actually able to properly predict vortex-induced vi-
brations in lock-in range varying the mass-damping parameter. Differently from
flutter and other aeroelastic instabilities that are fundamentally destructive phe-
nomena, lock-in is self-limited, which means the stable amplitude of the harmonic
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3 – Vortex Induced Vibrations

oscillation response is bounded to a certain value, typically in the order of the di-
ameter of cylinder, for each velocity at which the body is subjected. Once the flow
velocity overcomes the lock-in range the oscillations quickly disappeared.

3.3 Pattern of vortex shedding
Vortex Induced Vibrations involves large amplitudes and this afflicts the mode
of shedding, that are not now described by the typical vonKarman vortex street
model. In 1988, Williamson and Roshko [30] conducted an experimental campaign
in order to capture the different patterns of vortex shedding in the range of lock-in.
The takeovers acquired by Particle-Image-Velocimetry techniques led to the identi-
fication of four modes of vortex shedding as shown in Fig.3.6 where the amplitude
ratio A∗ is plotted versus the wavelength λ = UTe, where Te is the period of cylin-
der oscillation in the transverse y-direction, so λ corresponds to the wavelength of
sine wave trajectory alog which the body bobs up relative to the fluid. Outside

Figure 3.6: Map of vortex synchronization regions

ranges considered in Fig.3.6 there is no synchronized pattern observed. Capitals
letter indicates the 4 modes detected, where S refers to the single vortex and P a
counter-rotating pair:

2S Is the typical vonKarman vortex street mode where opposite vortices shed
alternately from each side of cylinder. So a vortex breaks away from the
cylinder every half cycle, the following one shows an opposite direction of

18



3.3 – Pattern of vortex shedding

rotation. In lock-in range, the shedding frequency is equal to the natural one
of the structure, so the wake acts as an external force introducing power in
the system.

Figure 3.7: 2S Mode

2P This mode indicates the detach of an equal strength vortex pair every half
cycle.

Figure 3.8: 2P Mode

P+S This third mode has a single vortex shed from one side of the cylinder and a
pair P shed from the other side. An important outcome about P+S mode is

Figure 3.9: P+S Mode

found by Morse and Williamson [18]: energy is transferred to the fluid from
the cylinder.

The critical curve in Fig.3.6 marks the transition from mode to another. The curves
denoted by I and II refer to the jump in the phase of the lift force relative to the body
displacement observed by Bishop and Hassan [5]. There are two different curves
because of the hysteresis: I is for wavelength decreasing and II for the wavelength
increasing.
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3 – Vortex Induced Vibrations

3.4 VIVs first harmonic model
In summary:

• Alternate and periodic vortex shedding acts as an oscillatory force on cylinder.

• When the frequency of shed is close to the natural one of the structure lock-in
occurs and the bluff body tends to vibrate at large amplitude

This implies that Vortex Induced Vibrations is a two-way Fluid-Structure Interac-
tion phenomenon, so structure and wake have to be modeled.

In order to describe the VIV’s physics, reference is made to the model in Fig.3.10.
The rigid cylinder characterized by mass m, diameter D and length L is subjected

Figure 3.10: Scheme of cylinder elastically mounted

to a uniform flow of water with velocity U . The body is rigid and elastically
mounted, in such a manner it is allowed to oscillate in the cross-flow direction y:
it’s a 1-DoF mass-damping-spring model, where supports have damping coefficient
c and stiffness k.
This first simple model, that has one degree of freedom, is a typical linear oscillator
and it allows to consider the cylinder’s motion as a result of its interaction with
the wake instead of considering a forced motion.
Since vortex shedding is not far from a sinusoidal process, the transverse force, or
lift force acting on the cylinder could be assumed as harmonic in time with the
shedding frequency:

FL = 1
2ρU

2DCL sin(ωst) (3.2)
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3.4 – VIVs first harmonic model

where:

• ρ : the fluid density

• U : free stream velocity

• D : cylinder diameter

• CL : lift coefficient

• ωs = 2πfs : vortex shedding angular frequency, fs is given by Strouhal relation
3.1

• FL : lift force or transverse force

In the case considered, the cylinder is forces to bob up along transverse directiony
so the governing equation is:

mÿ + 2mζωyẏ + ky = FL (3.3)

where:

• y : displacement along transverse direction with zero at equilibrium position

• m : mass per unit length including the added mass (discussed later)

• ζ : damping factor

• ωy =
√
k/m angular natural frequency

• k : spring constant, ie. force over displacement

Supposing an harmonic response it is possible to find a solution for the linear
governing equation 3.3:

y = Ay sin(ωst+ φ) (3.4)

That substituting into 3.3 produces:

y

D
=

1
2ρU

2CL sin(ωst+ φ)
k
√

[1− (ωs/ωy)2]2 + (2ζωs/ωy)2
(3.5)

where the phase angle:
tanφ = 2ζωsωy

ω2
s − ω2

y

(3.6)

shifts by π [rad] when system passes through fs = fy, that is the resonance condi-
tion.

Ay
D
|fs=fy = ρU2CL

4kζ (3.7)
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3 – Vortex Induced Vibrations

The mass m takes into account both the mass of the structure ms and the fluid-
added mass ma.
In the case of unsteady motion of bodies underwater or unsteady flow around
objects, it must be considered the additional effect (force) resulting from the fluid
acting on the structure when formulating the system equation of motion. This
added effect is added mass. In a physical sense, this added mass is the weight
added to a system due to the fact that an accelerating or decelerating body must
move some volume of surrounding fluid with it as it moves.

ma = CaρD
2π

4 (3.8)

where Ca is the added mass coefficient. Considering the potential flow theory it is
assumed as a constant value according to Blevins [6].
Similarly, the damping c models both structure’s damping and the fluid-added
damping:

r = rs + ra where ra = γΩρD2 (3.9)

In case of cylinder elastically mounted the frequency Ω is equal to the frequency of
vortex shedding Ωf . The coefficient γ is related to CD but here assumed to be a
constant.
Stiffness k is related to support on which cylinder is mounted.
All masses, dampings and stiffness parameters are defined per unit length.

3.5 Dimensionless Parameters
Citing [16] "large number of variables and parameters involved in analytical repre-
sentations of VIV have been used in early works in this field" so the an important
step forward is to identify the most significant parameter involved.

Mass Ratio m∗ ms +ma

ρD2

Damping Ratio ζ
cs + cf

2
√
k(m+ma)

Reduced Velocity Ur
U

fD

Amplitude Ratio A∗ A

D

Table 3.1: Dimensioless paramenters

The effects of parameters in Tab.3.5 is mainly empirical. Firstly, mass ratio is
considered and described by experimental data by Feng [11] and Khalak-Williamson
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3.5 – Dimensionless Parameters

Figure 3.11: Feng’s experimental
data at high mass ratio

Figure 3.12: Khalak and
Williamson’s experimental data
at small mass ratio

[14] with regards to figures below. In Fig.3.11 are reported responses in terms of
amplitude ratio and frequency of a spring-mounted cylinder freely oscillating in air.
It is noteworthy that the fluid in which the cylinder is immersed is air, so a small
density compared with water, hence a high mass ratio m∗.
In the second Fig.3.12 it is observed the response of amplitude in water, about 800
times more dense than air, so it refers to cylinder freely oscillating with small mass
ratio. Khalak’s data are compared with Feng’s in Fig.3.12 which show a broader
locn-in range and, more important, 3 branches that are absent in case of high mass
ratio.
Data of experiments are reported in Tab.3.5.

m∗ ζ m∗ζ Apeak

Feng 248 0.00103 0.255 0.6
K-W 10.1 0.0013 0.013 0.9

Table 3.2: Data of experiments by Feng [11] and Khalak-Williamson [14]

The amplitude response indicates a greater peak in case of small ratio, ie. more
dense fluid (water) due to the presence of Upper Branch. Khalak and Williamson
stated "our studies here [...] indicate that it is principally the parameter (m∗ζ),
which influences whether the Upper branch (see Fig.3.12) will appear or not".

23



3 – Vortex Induced Vibrations

This is a first important outcome, first for the physics understanding it results a
clear change of response varying mass ratio, second, in terms of energy harvesting,
water is more convenient.
Returning to Khalak and Williamson experiments, the rising of three response
branches (Initial,Upper and Lower)is detected under condition of low mass-damping.
Referring to the Fig.3.13 the transition Initial→ Upper is hysteretic (H), while Up-
per → Lower shows an intermittent switching of modes (I).

Figure 3.13: Response of low m∗ζ system

Damping ζ, as show in Tab.3.5, is maily affected by Damping of fluid. Differ-
ently from structural damping and material’s one, the fluid damping is generated
in behalf of relative motion between fluid and vibrating structure. Considering the
governing equation of motion ??, the force F could be written through Morrison’s
equation per units length:

F = 0.5ρCDD(−ẏ)| − ẏ|+ ρCaAwet(−ÿ) (3.10)

Replacing Eq.3.10 in the equation of motion Eq.??

(m+ma)ÿ + cẏ + 0.5ρCDD|ẏ|ẏ + ky = 0 (3.11)

such a solution is obtained:

y = Ay exp(−ζωdt) cos(ωdt) (3.12)

where ωd is the damping angular frequency defined as ωd = ωN
√

1− ζ2 and the
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3.5 – Dimensionless Parameters

total damping factor ζ = ζs + ζfas:

ζs = c

2ωd(m+ma)
Structural damping factor (3.13)

ζf = 8
3

ρD2

4π(m+ma)
CD

A

D
Fluid damping factor (3.14)

In the expression of the damping factor of fluid it is clear the influence of the
amplitude displacement and the added mass.

In VIVs’ studies there are different combination of mass-damping parameters
depending on scope. For instance, in flexible cantilevers, shall read rises, the peak
amplitude is plotted versus a stability parameter KS:

KS = π2(m∗ζ) (3.15)

From which it derives Scruton number:

Sc = π

2 (m∗ζ) (3.16)

The question is: "what range of value of mass-damping will yield a unique relation
between Apeak and m∗ζ ?". To answer the question Skop-Griffin parameter is
introduced:

SG = 2π3St2(m∗ζ) (3.17)

where St is the Strouhal number. The scatter data in Griffin Plot in Fig.3.14 show

Figure 3.14: Griffin Plot

as the relation Apeak = f(SG) is satisfactory for wind engineering, where there
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3 – Vortex Induced Vibrations

are high mass-damping values, while it not acceptable working with more dense
fluid like water. Griffin scatter plot in Fig.3.14 also indicates that the amplitude
does not exceed two diameters even for very low SG, say mass-damping. Another
dependency on Skop-Griffin parameter is the lock-in range as shown in Fig.3.15.
The plots 3.14 and 3.15 demonstrate two important features about self-limitation

Figure 3.15: Effect of mass-damping parameter on the range of lock-in in terms of
reduced velocity Ur

of VIV phenomenon which differentiate it from aero-elastic instabilities such as
galloping.

Last parameter described in Eq.3.18 is the Reduced Velocity:

Ur = U

fnD
(3.18)

where U is the free stream velocity and fN the natural frequency of the cylinder. As
discussed later, reduced velocity and Strouhal number are related. Indeed resonance
occurs when frequency of shedding become equal to that of the structure:

StUr = fsD

U

U

fnD
= fs
fn

= 1 when resonance occurs (3.19)

In summary the Fig.3.16 below represents the combined effect or reduced velocity
and mass damping parameter on amplitude motion of a cylinder elastically mounted
with length L.
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Figure 3.16: Combined effect of reduced velocity-Strouhal number and mass-
damping parameter on amplitude ratio of motion of an elastically mounted cylinder
due to VIV

3.6 Classification of models
The phenomenology of vortex induced vibration summarized gives an idea of the
gargantuan number of existing models. Considering only the formulations based on
experimental results, hence not all those theoretical models and numerical simula-
tions built only primitive information of the flow, relating to oscillating cylinders
treated as rigid solid, all these models could be classified depending on how the
fluid-structure interaction is modeled [19].
The classification proposed by Païdoussis is based on the formulation of the fluid
force:

Ffluid = −maÿ + F (3.20)

where ma is the discussed added mass.
The three type of models in Fig.3.17 can be detected:

Type A Forced system models: F is independent of y, so F = F (t)

Type B Fluidelastic system models: F = F (y(t), t) and dependence in y may include
all time derivatives
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3 – Vortex Induced Vibrations

Type C Coupled system models: the force F depends on something related to the wake,
say q, so F = F (q(t), t) and q = G(y(t), t)

Figure 3.17: Classification of VIV models

Without going into too much detail, according to the formulations of type A and B,
the fluid force is given as a function of time, for instance in the simplest formulation
(Type A) in Eq.3.21:

F = F (t) = 1
2ρU

2DCL sin
(

2πStU
D
t
)

(3.21)

Or it could be function of the amplitude ratio through CL, as in fluid-elastic by
Blevins [6] in Eq.3.22:

F = F (t) = 1
2ρU

2DCL

(
A

D

)
sin

(
2πStU

D
t
)

(3.22)

where the dependency of CL on amplitude ratio is straightforwardly a polynomial
fit:

CL

(
A

D

)
= C0

L + α
(
A

D

)
+ β

(
A

D

)2
(3.23)

Lastly it could be a combination of amplitude and time, say frequency, for example
Sarpkaya [22]:

F
(
A

D
,Ur, t

)
= 1

2ρU
2D

[
C̄L cosφ(A

D
,Ur sinωt− C̄L sinφ(A

D
,Ur cosωt

]
(3.24)

where C̄L is the amplitude an harmonic-assumed lift with phase φ.
These types of modeling do not take into account the physics of wakes, while, on the
contrary, forces in VIVs are the outcomes of wake dynamics, whose follows specific
rules. According to this limitation formulation of Type C arise since the pioneering
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work of Hartlen & Currie [12]. First example of so-called wake oscillator models,
Hartlen & Currie introduced a wake variable as being the lift coefficient.

q(t) = CL(t) ⇒ F (q(t), t) = 1
2ρU

2Dq(t) (3.25)

The wake’s dynamics q is governed by a Rayleigh equation:

W (q) = q̈ − aq̇ + bq̇3 + ω2q = 0 (3.26)

In the W-equation 3.26 coefficients a and b are positive:

1. the term −aq̇ allows to represent the oscillating wake as a result from self-
sustained flow instability at frequency ω

2. this instability is self-limited by the cubic term bq̇3

Defined the wake dynamics, the only thing missing is the effect of body’s motion
on the wake, so looking at the Fig.3.17, the function G.
For the record, Hartlen & Currie assumed "rather arbitrarily" (it is a literal quote)
the proportionality of G to cylinder’s velocity G = cẏ. The same assumption can
be done for displacement y and acceleration ÿ and it’s discussed in Facchinetti &
al [10].
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Chapter 4

Numerical model and
analysis

In this chapter numerical model and reasons why it has been chosen are presented.
Firstly the wake oscillator model is described and a parametric analysis is carried
out in order to estimate a performing set of parameters to design a feasible water
evergy harvester.
Concerning the model it is necessary a calibration due to some model’s parameters
without a physical meaning.
Finally it follows a dimensional analysis and the results in terms of energy perfor-
mance.

4.1 Wake oscillator model
Even if in recent years the computational power available increased making possible
the CFD analysis of phenomena like VIV, low order methods are still more feasible
in terms of computing time, say costs, at least in a preliminary approximation.
Wake oscillator models are a kind of such these, born of pioneering work by Hartlen
& Currie [12] they describe the wake dynamics considering the feedback between
fluid and structure.
Considering the scheme in Fig.4.1: The 1DoF scheme proposed by Facchinetti &
al. [10] considers an elastically mounted rigid cylinder of diameter D, forced to bob
up transversely to a stationary and uniform flow of free stream velocity U . A linear
oscillator describes the structure:

mŸ + cẎ kY = F (4.1)

where over-dot (·) states the derivative with respect to the dimensional time T .
As said, mass m takes into account the sum of the structure’s mass ms and the
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4 – Numerical model and analysis

Figure 4.1: 1DoF model of coupled stucture and wake oscillator

fluid-added one ma, from which the dimensionless mass ratio is defined:

m = ms +mf , ma = CAρD
2π/4 , m∗ = (ms +ma)/ρD2 (4.2)

The structure’s equation 4.1 sees a linear damping c that models both viscous
dissipation in the supports, henceforth structural damping cs, and a fluid-added
damping cf :

c = cs + cf , cf = γΩρD2 (4.3)
where the variable γ is a stall parameter discussed by Skop & Balasubramanian [25]
in their reexamination of non-linear oscillator models. Stall parameter is nominally
a function of oscillation amplitude through the drag coefficient CD, and of Strouhal
number, but here assumed as a constant. All mass, damping and stiffness are
defined per unit length. In the case of cross-flow considered Ω is the frequency of
vortex shedding.

γ = CD
4πSt , Ω = Ωf = 2πStU

D
(4.4)

In order to conduct a forthcoming dimensionless set of equations, structural angular
frequency Ωs =

√
k(/m) and structure reduced damping ζ = cs/(2mΩs) are defined:

Ÿ +
(

2ζΩs + γ

m∗ Ωs

)
Ẏ + Ω2

sY = F

m
(4.5)

Last Eq.4.5 governs the structure describing it as a linear oscillator. There remains
the wake dynamics and it is modeled by a wake oscillator as explained in the
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4.1 – Wake oscillator model

previous chapter. The oscillations of vortex shedding is modeled by a non-linear
oscillator and instead of the RayleighW -equation 3.26, the van der Pol equation
is used:

q̈ + εΩf (q2 − 1)q̇ + Ω2
fq = F

′ (4.6)
henceforth called wake oscillator equation. q is a dimensionless variable without
an explicit physical meaning, but pertinent to the fluctuating lift coefficient of the
cylinder (Hartlen and Currie [12]), or it may be associated to a weighted average
of the transverse component of the flow (Blevins [6]), or lastly assumed to be
proportional to the transverse velocity of a near wake fluid mass (Krenk and Jielsen
[15]). The RHS F

′ models the effects of the structure motion on the near wake.
Referring to Rayleigh equation 3.26, here, the viscous term εΩf (q2−1)q̇ confirms the
capability of modeling a self-sustainable and stable oscillation of finite amplitude
at frequency Ωf . Finally, introducing the dimensionless time t = TΩf , that is the
time scale from T to the wake-based time scale t, and the analogous displacement
y = Y/D the coupled fluid-structure dynamical system is reached:

ẏ +
(

2ζδ + γ

m∗

)
ẏ + δ2y = f

q̈ + ε(q2 − 1)q̇ + q = f
′

(4.7)

where δ is the reduced angular frequency of the structure:

δ = Ωs

2πSt(U/D) = 1
StUr

with St = fsD

U
and Ur = 2π

Ωs

U

D
(4.8)

The term f represents the action of the fluid in near wake on the cylinder and is
commonly treated as a oscillating lift force; in dimensional terms:

F = 1
2ρU

2DCL (4.9)

Note that lift coefficient CL takes into account the forcing caused by the only
vorticity in the wake and not the total instantaneous lift on structure. Following
the prevailing notation is VIV’s literature CL is the vortex lift coefficient and CL0

the observed lift coefficient on a fixed structure subjected to vortex shedding.In this
sense, wake variable q is interpreted as a reduced vortex lift coefficientq = 2CL/CL0

so the ratio q/2 represents the magnification with respect to a fixed structure under
vortex shedding flow.
In dimensionless form, the oscillating lift force becomes:

f = Mq where M = CL0

2
1

8π2St2m∗ (4.10)

Since M depends on mass ratio m∗, it is fundamentally a mass parameter that
scales the effect of wake on structure.
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An important step is the relation between the RHS term of wake oscillator and
the equation on motion in y, that means the fluid-structure coupling.

f
′ = Ay displacement coupling was the first considered and "rather arbitrar-

ily" chosen by Hartlen & Currie [12]

f
′ = Aẏ velocity coupling was suggested starting from energy considerations

f
′ = Aÿ acceleration coupling proposed by Facchinetti & al. was chosen in

order to consider a linear inertial effect of the structure on the fluid

In this model the acceleration coupling is considered.
So set of equations 4.7 becomes:

ẏ +
(

2ζδ + γ

m∗

)
ẏ + δ2y = Mq

q̈ + ε(q2 − 1)q̇ + q = Aÿ

(4.11)

Where:

γ = CD0

4πSt
√

1 + (2πSt ẏ)2 (4.12)

M = CL0

2
1

8π2St2m∗

√
1 + (2πSt ẏ)2 (4.13)

Almost all the parameters in the set of equations governing 1 DoF VIVs are
Reynolds dependent. In this first analysis a dimensionless investigation is con-
ducted in order to evaluate amplitude ratios and energy performance parameters.

4.1.1 Tuning parameters
The van der Pol equation contains two semi-empirical parameter, ε and A, re-
spectively named cross-flow fluid damping parameter and coupling coefficient in
cross-flow direction. These coefficients do not have a physical meaning and they
must be tuned on experimental data.
For such reason, a tuning analysis has been conducted. The baseline experiment is
the one handled by Khalak & Williamson [13] on fluid forces and dynamics of an
elastically mounted rigid cylinder, constrained to oscillate along transverse direc-
tion with respect to the free stream, data are shown in Fig.4.2. Since the fluid in
question is water the experiment’s system has a very low mass ratio, circa 1% of
the value used in the experiments by Feng [11]. The experimental setup consists of
an air-bearing facility atop the water channel, a 2-axis force balance with LVTDs
measures lift and drag simultaneously through measurements of displacements.
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4.1 – Wake oscillator model

Figure 4.2: Khalak & Williamson experimental data (1997) [13]

Description Symbol Values
Drag Coefficient CD0 1.1856
Lift Coefficient CL0 0.3842
Mass Ratio m∗ 2.36

Damping Ratio ζ 0.0045
Fluid Damping Parameter ε 0.001 up to 1.05

Coupling Coefficient A 1 up to 20

Table 4.1: Values of tuning analysis

Values of drag and lift coefficients have been found by CFD analysis at high
Reynolds, as will be discussed in next chapter. The non linear feature passing
from Upper Branch to the Lower is reflected by the need to define two values for
both ε and A and the threshold of reduced velocity that set the boundary between
Upper and Lower, named UB and LB.
Several attempts are then made to match experimental data in Fig.4.2 with the
system of equation 4.11 varying ε and A between values in Tab.4.1.1. Since the dif-
ferent behavior of VIVs in Upper and Lower branches it was needed to impose two
different sets of values of semi-empirical parameters. Literature is unclear about
a rigorous threshold between UB and LB in terms of reduced velocity, this limit
value is here named Urth

. Figure 4.3 below shows different values of the limit of
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reduced velocity on equal terms of all the other parameters.

U
r
 = 6.7

U
r
 = 6.0

U
r
 = 7.0

U
r
 = 6.5

U
r
 = 5.5

Figure 4.3: Effect of threshold of reduced velocity which separates Upper Branch
from Lower

With the respect to tests in Fig.4.3 the limit value of Ur = 6.7 has been chosen.
The effects of semi-empirical parameters is interdependent, even if in general the
the fluid damping parameter ε raises the amplitude curve decreasing its values in
the Upper branch, while there is a shift towards higher values of reduced velocity
in the Lower branch. Coupling coefficient A lifts the curve increasing in the UB
while in Lower branch the curves are shifted towards and upwards. The effects are
summarized in figures below 4.8. This said, the various tuning tests conducted,
such as the few reported in Fig.4.9 , have led to results below in Tab.4.1.1.

Upper Branch Lower Branch
Ur < 6.75 > 6.75
A 11 4
ε 0.9 0.05

Table 4.2: Values of semi-empirical parameters in tuning analysis
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A
L
 = 11

A
L
 = 10

A
L
 = 12

A
L
 = 9

A
L
 = 13

(a) A in LB (b) ε in LB

(c) A in UB (d) ε in UB

Figure 4.8: Dependency of semi-empirical parameters A and ε on amplitude ratio
- reduced velocity chart.
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Figure 4.9: Some of tests conducted in order to calibrate model on Khalak &
Williamson experimental data at very low mass ratio
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4.2 Numerical solution procedure
The solution of governing non-linear coupled equation 4.11 is conducted and found
through a 4th order Runge Kutta scheme for values of reduced velocity from 2 to
15.

ẋ = f(t, x) x(t0) = x0

Considered a step size h = ∆t

And defined xn+1 = xn + 1
6(k1 + 2k2 + 2k3 + k4)

tn+1 = tn + ∆t
For the n steps: k1 = ∆tf(tn, xn)

k2 = ∆t f
(
tn + ∆t

2 , xn + k1

2

)

k3 = ∆t f
(
tn + ∆t

2 , xn + k2

2

)
k4 = ∆t f(tn + ∆t, xn + k3)

where, in this case, x is the vector state [y ẏ q q̇].
The integration in time is handled for a total of 100 s and a time step of 0.1 s.
Initial condition per t = 0 are in Tab.4.2 below:

y0 ẏ0 ÿ0 q0 q̇0

0 0 0 2 0

Table 4.3: Initial condition for the first iteration

For each reduced velocity between 2 and 15 with a step-size of 0.1, maximum
amplitude Amax, frequency response f and maximum value of wake variable q have
been obtained.

4.3 Energy efficiency performances
Since this thesis considers VIVs for energy harvesting it is necessary to describe the
evaluation procedure in terms of efficiency of conversion.
As introduced in the introductory chapter, in the paragraph concerning the Betz
Limit, an option of performance estimation might be the ratio:

η = absorbed energy
avaible power of swept area =

1
T

∫ T
0 cẎ 2dT

1
2ρU

3(2Y +D)L (4.14)
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where, since the Power Take-Off (PTO) system is a linear generator, so the control
law which regulates the absorbed power is proportional to the force, ie. the damping
term of equation of motion multiplied by the velocity ẏ.
Altering the Eq.4.14 into a dimensionless form it becomes:

η = 4(2π)3 m
∗ζ

U3
r δ

2
1

2y + 1
1
t

∫ t

0
ẏ2dt (4.15)

where all the dimensionless parameters have been already defined in previous sec-
tions. Integrals in preceding equation are numerically obtained through a 1st order
closed Newton-Cotes over five complete oscillation so obtaining an averaged value.

4.4 Dimensionless analysis and results
In this section the dimensionless analysis’ results are reported in terms of amplitude
ratio A∗ and conversion efficiency η in Eq.4.15.
A first point to note is the effect of damping ratio ζ. As shown in figures, regardless
of mass ratio, at very low damping, the system’s feedback returns surely an highest
amplitude, but a low conversion efficiency, since ζ appears to the numerator of
Eq.4.15 in the mass-damping parameter. As reported in figures, in case of very low
damping, the energy extracted from fluid and converted into electricity is small, so
efficiency drops down. However in the occurrence of high damping it suppresses
the VIV resulting in zero harnessed energy. As result, seems to exist an optimum
value of damping ratio in order to obtain a maximum efficiency of conversion for
every mass ratio.
More than one value of reduced mass is presented in following figures, and each m∗

is shown varying damping ζ from the lowest value in literature to the highest.
The first figures plot the amplitude ratio or normalized semi-amplitude versus

the reduced velocity for various values of mass ratio at same damping ratio ζ.

m∗ 1.5 2 2.36 2.5 3

ζ

0.0045 0.0184 0.0322 0.0461 0.0600
0.0738 0.0877 0.1016 0.1154 0.1293
0.1432 0.1571 0.1709 0.1848 0.1987
0.2125 0.2264 0.2403 0.2541 0.2680

Table 4.4: Mass ratio and damping values for the dimensionless analysis
Figures 4.10,4.11,4.12, 4.13 and 4.14 prove that the amplitude response decreases
in absolute terms increasing mass ratio, that is consistent with the VIV’s dynamics
as exposed in the theory chapter. Considering, for example, the first value of
damping ζ = 0.0045, the trend of max amplitude ratio versus mass ratio is show in
Fig.4.15. The next charts Figs.4.16,4.17, 4.18,4.19 and 4.20 propose the amplitude
ratio versus five values in Tab.4.4, of damping factor ζ for each mass ratio.
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Figure 4.10: A∗ for m∗ = 1.5
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Figure 4.11: A∗ for m∗ = 2
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Figure 4.12: A∗ for m∗ = 2.36
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Figure 4.13: A∗ for m∗ = 2.5
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Figure 4.14: A∗ for m∗ = 3
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Figure 4.15: Trend of max ampli-
tude ratio versus mass ratio for
ζ = 0.0045
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Figure 4.16: A∗ for ζ = 0.0045
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Figure 4.17: A∗ for ζ = 0.0877
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Figure 4.18: A∗ for ζ = 0.1293
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Figure 4.19: A∗ for ζ = 0.1709
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Figure 4.20: A∗ for ζ = 0.2541
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Figure 4.21: Trend of max am-
plitude ratio versus damping for
m∗ = 2.36
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Larger the value of mass ratio, more extended is the range in which amplitudes
are consistent, as already outlined in theory chapter and here highlighted, for in-
stance, by Fig.4.10 where A∗ for the lowest value of mass ratio is shown. Another
in physics consistent outcome is what emerges from Fig.4.15 where amplitude ratio
decreases increasing mass ratio.
From a damping point of view figures from 4.16 to 4.20 unveil an increasing de-
pendence of system’s response increasing the value of damping. In fact for low ζ,
according to plot of A∗ for ζ = 0.0045 in Fig.4.16 there is quite no impact due to
mass ratio, while increasing the damping value the curves move away from each
other and, in absolute terms, the amplitude decreases because the system is more
damped.

Once all cases considered have been assessed in the previous figures, follows the
observations on maximum values of efficiency η. The plot on Fig.4.22 shows that
the maximum of energy conversion efficiency η is quite not afflicted by the damping
ratio, in absolute terms is more or less equal for each value of mass ratio, about
6.5%, just shifted forward towards higher value of damping factor.
Maybe the most important and crucial feature of dimensionless analysis is consists
of the expression of maximum conversion efficiency as a function of mass-damping.
The chart in Fig.4.23 clearly demonstrates a collapse of maximum η around m∗ζ u
0.2, coherently with the value found by Barrero & Gil in [3].
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Figure 4.22: Maximum efficiency η versus damping factor ζ for each mass ratio m∗
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Figure 4.23: Maximum efficiency of conversion versus mass-damping parameter
m∗ζ

4.5 Dimensional parameters design
In the scope of energy harvesting through VIVs, about reduced mass, "less is more"
(to paraphrase a famous motto). A low value of m∗ is easily achievable in case of
water as energy carrier, since is more dense than air.
According to the previous dimensionless analysis a reduced mass m∗ = 2.5 has
been chosen. The maximum value of efficiency of conversion is obtained for a mass-
damping parameter equal to m∗ζ so damping ratio is given.
The next step in dimensional design is to determine diameter D and natural fre-
quency of the structure fn through the selection of the reduced velocity on-design.
As reported in theory paragraphs a VIV-based system is able to catch the bulk of
energy in the synchronization range, in particular close to the condition of reso-
nance, here corresponding to Ur = 5.2 that is the on-design reduced velocity.
Initially amplitude and efficiency are summarized in Figs.4.24 and 4.25.
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Figure 4.24: 3D plot of A∗ for m∗ = 2.5

Figure 4.25: 3D plot of η for m∗ = 2.5
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4.5.1 Case study
In this section the case study of Pantelleria is presented with the aim of identifying
the design current velocity for the VIVs-based energy harvester.
Data collected and exposed concern the system AWAC (Acoustic Doppler Wave &
Current Profiler, in Fig.4.27), an hydroacoustic current meter placed in the island
of Pantelleria as shown in Fig.4.26, at coordinates GPS (DMS) 36° 49’ 54" N, 11°
55’ 13" E.

Figure 4.26: AWAC position in the island of Pantelleria

Figure 4.27: AWAC system

Starting from raw data, supplied by kind permission of ISWEC research team,
a post-processing has been conducted to analyze the site in terms of current speed.
The best practice about the evaluation of wind and sea site is to organize data into

46



4.5 – Dimensional parameters design

chats and histograms containing respectively the current speed and its direction
during the observed period. Measures refer to the maximum current speed at 2.5m
below the water line. Both of diagrams are separately shown in Figs.4.28 and 4.29.

Figure 4.28: Sea-current speed

Figure 4.29: Sea-current direction occurrences
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Next step is the evaluation of the sea-current distribution and a statistical prob-
ability analysis. The current speed distribution is thus replaced by a Weibull distri-
bution, as usually done in weather forecasting. It consist in a continuous probability
distribution in which the random variable x is function of two parameters, in this
case both equal to 1:

f(x|λ, k) =
 k
λ

(
x
λ

)k−1
e−x/λk

x ≥ 0
0 x < 0

(4.16)

Results of probability analysis are reported in Fig.4.30.

Figure 4.30: Sea-current probability and Weibull PDF

Finally it is possible to evaluate a design speed U = 0.57m/s that represents the
most probable value during the sampled period. Once the design speed is defined,
the natural frequency multiplied by diameter D is given by definition of reduced
speed:

fnD = Udesign
Ur

(4.17)

For small values of diameter of the cylinder it is expected a small amount of power
due to the smaller swept area, but an higher value of power density compared
with an bigger cylinder. Since designer assigns the diameter D it is possible to
evaluate total massm of a hollow cylinder with thickness tc, frequency from previous
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equation and therefore the optimal value of stiffness:

m = ms +ma = πD2
(
tc
D
ρm + 1

4ρw
)

(4.18)

fn = Udesign
UrD

(4.19)

kopt = ω2
nmL = (2πfn)2mL (4.20)

where ρm is the density of cylinder’s material, ρw density of seawater, U is the
design current speed, L is the cylinder’s length. The calculation of damping factor
is done through the optimal mass-damping (m∗ζ)opt, ie. the value for which the
efficiency is maximized, as found in Fig.4.21.

For each value diameter D as a free parameter from 0.01 to 0.17, this maximum
value allows to dealing with moderate low aspect ratio L/D, and a step of 0.02,
assuming a unit length, the amplitude response is computed and shown in Fig4.31.
All the next charts plot the quantity under examination as function of the flow
velocity:

U = UroptfD where f = Udesign
UroptD

(4.21)

The quantity Uropt is the reduced velocity in correspondence of maximum efficiency
η. It is obvious that a larger diameter provides to higher amplitude response. So,
in order to achieve a better design, considerations and calculations about power are
needed.

Starting from the definition of efficiency η in Eq.4.15, such efficiency represents
the ratio between the power absorbed by the system and the one available from the
fluid flow:

PE = ηPA = η
1
2ρU

3(2y +D)L (4.22)

where the subscripts E and A are respectively extracted and available. Results
are shown in Fig.4.32 below. Considering a mechanical damping, basically due to
the friction of a gears-based system, equal to ζm = 0.002 with regards to similar
structures in literature, it is possible to write the actual power converted into
electricity:

Pel = ζ − ζm
ζ

η
1
2ρU

3(2y +D)L (4.23)

The outcomes in terms of the electrical power Pel are shown is Fig.4.23. Similar
but opposite trends could be observed in terms of power density. Therefore two
quantities are defined:

PDstr = Power extracted
Stroke (4.24)

PDsurf = Power extracted
Swept area (4.25)
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D =0.01

D =0.03

D =0.05

D =0.07

D =0.09

D =0.11

D =0.13

D =0.15

D =0.17

Figure 4.31: Amplitude response for each diameter D considered in the dimensional
analysis and design

where stroke = 2y + D and the swept are is equal to π/4 · stroke2. Referring to
these specifications the results are shown in figures below, Fig.4.34 and Fig.4.35.

4.6 Tuned system
To aim a full operative system a continuous control of stiffness and damping is
thinkable. Such a regulation has to be made to keep the system in optimal range
for every velocity, ie. having always:

Ur = Uropt (4.26)

so the equation above are correct, considering the natural frequency as variable.
In such a case the power extracted increase increasing the flow speed U , so not

following the typical bell-shape already seen since the theory chapter. Results are
reported in Figs.4.36 and 4.37.
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D =0.01

D =0.03

D =0.05

D =0.07

D =0.09

D =0.11

D =0.13

D =0.15

D =0.17

Figure 4.32: Power extracted before conversion to electrical power for each diameter

D =0.01

D =0.03

D =0.05

D =0.07

D =0.09

D =0.11

D =0.13

D =0.15

D =0.17

Figure 4.33: Electrical power extracted for each diameter
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D =0.01

D =0.03

D =0.05

D =0.07

D =0.09

D =0.11

D =0.13

D =0.15

D =0.17

Figure 4.34: Power density referred to the stroke of cylinder

Figure 4.35: Power density referred to occupied surface
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Figure 4.36: 3D plot of power extracted in tuned system for different diameters

D =0.01

D =0.03

D =0.05

D =0.07

D =0.09

D =0.11

D =0.13

D =0.15

D =0.17

Figure 4.37: Power extracted in tuned system for different diameters
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Chapter 5

Computational Fluid
Dynamics analysis

Nowadays the comprehension of a fluid dynamics phenomenon cannot be achieved
only through experiments, but thanks above all to the growth of computational
power, simulations and numerical modeling are powerful tools both in academic and
industrial scopes. Computational Fluid Dynamics, commonly abbreviated CFD, is
a computer based approach born to analyze and solve problems where fluid flows
are involved; it is also related to heat transfer and chemical reactions. Thus making
clear that CFD cannot be considered as a replacement of experiments, rather exp
tests are necessary to tune numerical models.
That said, the advantages of CFD are quite evident:

• No capacity or model scale limits

• No instrumentation and facilities

• Unlimited detail level of results

The list could continue straightforwardly. On the other hand, the costs recovered
from the absence of instruments and laboratories are replaced by computing tools,
from a basic CPU to the High Performance Computing (HPC) solutions, both in
terms of purchase and maintenance due to usage time. Furthermore, as said, CFD
is not yet at the level where it can be blindly used without experimental-based
tuning and despite the increasing speed of computation available (as established by
the famous Moore Law) CFD has not yet matured to a level where it can be used
for real time computation. Numerical analyses require significant time to be set up
and performed.
Taking into account these pros and cons, CFD techniques are now essential to the
achievement of fluid dynamics.
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5.1 Methodology of CFD
In this section a brief introduction to CFD and its numerical method is presented,
starting from the governing equation, through the methods used to obtain the
solution of N-S equations, until the discretization aspects.

5.1.1 Governing equations
The CFD soul stated in a of mathematical equations and their solution in a nu-
merical way. These equations are named Navier-Stokes equations and describe the
motion of fluids in a macroscopic manner due to the hypothesis of continuum. De-
spite their physics meaning and engineering uses, they are of great interest in a
purely mathematical sense: it has not yet been proven whether solutions always
exist and, if they do exist, whether they are smooth, the reason why the CMI have
included them in the Millennium Prize Problems.

Continuity Equation Starting from fundamental laws of Newtonian mechan-
ics, which states the conservation of mass in an arbitrary material control volume
varying in time and fixed in space, the first governing equation states:

∂ρ

∂t
+∇ · (ρu) = 0 (5.1)

or better, in Einstein notation:

∂ρ

∂t
+ ∂

∂xi
[ρui] = 0 (5.2)

where ρ is the fluid density and u the velocity vector. For an incompressible fluid
the change rate of density is nil so:

∇ · u = 0 (5.3)

Momentum equations or Navier-Stokes equations The second equation of
governing set states the conservation of momentum, so is a sub-set of 3 equation in
a 3D space with coordinates x,y,z. The conservation of momentum is a straightfor-
ward consequence of Newton’s second Law, hence the balance between forces and
mass time acceleration is applied for each fluid particle or, better, for a closed sys-
tem, the total momentum will not change as long as there are no external forces.
Defined the stresses p pressure, ie. a normal stress, and τ the viscous stresses
coming from Stokes relations and stress tensor, in Einstein notation:

∂

∂t
(ρui) + ∂

∂xj
[ρuiuj + pδij − τji] = 0 (5.4)
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For incompressible fluid, so ∇ ·u is valid, under the acting of an external force, for
instance gravity g, equations 5.4 become:

ρ
Dui
Dt

= −∇p+ ρg + µ∇2u (5.5)

where D/Dt is the material derivative in time, µ is the dynamic viscosity of the
fluid and ∇2ui the Laplasian of velocity vector component ui. Many authors prefer
to report another form of N-S equation for incompressible fluid, where incompress-
ibility is better visualized by dividing for the density:

∂u
∂t

+ (u · ∇)u− ν∇2u = −∇p
ρ

+ g (5.6)

where ν is cinematic viscosity µ/ρ.

Energy Balance Last equation consists in the simple physical principle that
states the conservation of energy expressed by the First Principle of Thermody-
namics. So the rate of change of total energy in a control volume is equal to the
sum of net heat flux towards the control volume and the work done per unit time
on the control volume by volumetric and surface forces. In a mathematical form:

ρ
D

Dt

(
e+ 1

2 |u|
2
)

= ρξ̇ −∇ · q̇−∇ · (p · u) +∇ · (τ̄ · u) + ρf · u (5.7)

where ξ̇ is the heat absorbed per unit time and unit mass, q̇ is heat flux due to
thermal conduction depends from the temperature gradients through the Fourier’s
law q̇ = −k∇T , e is the internal energy per unit mass.

Closure of governing equations The partial differential equations presented
above have general meaning and are not a closed set. To provide closure it is needed
to add equations to the mathematical models and depend on fluid material under
consideration and the psysical phenomenon analyzed.

5.1.2 Discretization FVM
The fundamental of CFD capability is to transfrom the mathematical model into
a system of algebric equations, this trasformation involves discretizing in space
and time. There are fundametally three methods of discretization: finite difference
method (FDM), finite element method (FEM) and finite volume method (FVM).
The last one is here described. Every balance equations can be manipulated in
terms of generic trasport equation which consists of four parts:

d

dt

∫
V
ρφdV︸ ︷︷ ︸

Transient term

+
∫
S
ρuφ · dS︸ ︷︷ ︸

Convective term

=
∫
S

Γ∇φdS︸ ︷︷ ︸
Diffusive term

+
∫
V
FφdV︸ ︷︷ ︸

Source term

(5.8)

They express respectively:
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Figure 5.1: Finite Volume Method Discretization

• The time rate change of the fluid property φ inside the control volume V

• The net rate of decrease of φ across the volume’s boundaries due to convection
with velocity u

• As convective but due to diffusion

• The generation and/or destruction of φ inside the control volume

The surface integrals are evaluate using quadrature approximations, while the
source term volume integral as the product of mean value at the cell center and its
volume. Both of these approximations are second-order accurate.
The convective term is discretized using upwind schemes with limiters that involve
the product of the mass flow rate at face and the value of φ at the face.
To discretize the diffusive term of Eq.5.8 an accurate 2nd-order expression for the
interior face gradient ∇φ is required and involves different methods of decomposi-
tion.
The transient term comes into play in transient simulations so time t is an ad-
ditional coordinate. The most used methods are fundamentally Euler’s implicit
and explicit schemes. Below it is presented the Euler implicit scheme of 1st-order
accuracy. The total time t is subdivided into time-steps ∆t and the algorithm ap-
proximates the transient term in Eq.5.8 in the i-th cell using the solution at the
current time step n+ 1 and the one from the previous (n):

d

dt
(ρφV )i = (ρφV )n+1

i − (ρφV )ni
∆t (5.9)

A second-order involves, for the n + 1 time-step, the solutions at the current time
and the previous two n and n− 1, each properly weighted.

5.1.3 Solver or governing equations
Fundamentally, solving the conseration equations for continuity 5.3, momentum 5.5,
energy 5.7 and the closure equation, such as the state equation for ideal gases, means
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the obtainment of the velocity field pressure and in general density. Therefore,
the solution algorithms are commonly named Pressure-Velocity Coupled Equation
Algorithm and there are essentially two types of solvers.

• Segregated Solver: the integral conservation equations of continuity and mo-
mentum are solved sequentially. The non-linearity is solved iteratively one
after the other for the solution variables such as ui and p. The pressure-
velocity coupling sees the continuity equation as a constraint on velocity field
that is first predicted and the corrected by the pressure. It is also called
predictor-corrector approach.

• Coupled Solver: the governing equations and the closure ones are solved simul-
taneously as a vector of equations. The velocity is obtained from momentum
equation, pressure from continuity and density from the equation of state.

Lastly, from a discrete and numerical point of view, it is described the integration
in time that can be achieved through explicit time-stepping and implicit. In the
explicit scheme the solution is obtained advancing from time t to time t+ ∆t with
a n-th order Runge-Kutta scheme. The time step ∆t has a physical meaning and
it is applied uniformly to each cells in the domain.
In the implicit scheme it is used a pseudo-time for inner iterations τ . In the general
conservation law the diffusive term is making vanished through an inner iteration
progress where the pseudo-t τ is involved. When inner iteration converges the
solution is updated to the next physical-meaning time-step ∆t.
Both ∆t in the explicit scheme and ∆τ in the implicit one are defined as:

∆τ = min
(
CFL · V (x)
λmax(x) ,

V NN ·∆x2(x)
ν(x)

)
(5.10)

where CFL is the Courant–Friedrichs–Lewy number , a necessary condition for
convergence while solving certain partial differential equations. In 1-dimension it
can be written as follow:

CFL = u∆t
∆x ≤ CFLmax (5.11)

the max of CFL depends on whether the method is explicit or implicit, it usually
equal to 1 or lesser for explicit schemes, whilst the implicit may tolerate greater
values. The other values in EQ.5.11 are V the cell’s volume, λ the eigenvalue
of a relation between convectie velocity, sound speed and the cell’s surface area,
V NN ≈ 1 is the VonNeumann number, ∆x is the characteristic cell length scale
and ν the cinematic viscosity.
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5.1.4 Turbulence

When I meet God, I am going to
ask him two questions:
Why relativity?
And why turbulence?
I really believe he will have an
answer for the first.

Werner Heisenberg

Almost none except academic fluid flows are laminar. From an experimental
point of view we define laminar flow a fluid motion in which macroscopic features,
such as velocity or pressure, in every point and at any instant are fully deterministic
and repeatable under the same conditions. If it does not occur, motion is said
turbulent and so characterized by elements of randomness in space and time with
regards to macroscopic characteristics. From the mathematical standpoint it means
a chaotic behavior of Navier-Stokes equations which remain valid in general. The
characteristics of turbulence can be resumed as follow:

• Unsteadyness: the macroscopic quantities, such as velocity and pressure, de-
pend on time as well as their fluctuations, that are observed in a wide range
of frequencies.

• Randomness: the equations are highly susceptible to the initial conditions and
this dependency rises increasing Reynolds

• Vorticity and three-dimensionality: fluctuations of velocity become fluctua-
tions of vorticity, described for incompressible flow by:

Dω

Dt
= (ω · ∇)u+ ν∇2u (5.12)

where ω is the vorticity vector and u the velocity vector. The terms in brackets
is called stretching and tilting term is zero under 3D since ∇ · u = 0.

• Dissipation: the viscosity causes a growth of internal energy of fluid to the
detriment of kinetic energy. Hence, turbulence requires a continuous supply of
evergy from mean motion in order to replace losses due to viscous dissipation.

• Reshuffling: all the physical quantities suffer a strong reshuffling, far superior
compared to the one purely molecular.

• Wide scale range: turbulent flows involve a full range of scale both in time
and space, extended up to the dimensions of the entire system.

• Continuum hypothesis are fulfilled, so N-S equation are valid.
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• Turbulence is a flow’s property, not of fluid.

Numerically, turbulence can be solved through three methods.

Figure 5.2: DNS (left), LES (middle) and RANS (right) predictions of a turbulent
jet. - A. Maries, University of Pittsburgh

Direct Numerical Simulation (DNS) Since Navier-Stokes equations still re-
main valid, being assessed the continuum hypothesis, they can be solved directly,
hence the method is so called. Such a method is surely the best in terms of ac-
curacy, reliability of outcomes and about the understanding of physics. The great
drawback is the gargantuan cost both in time and amount of data. It can be proven
that the number of discretization points in space N∆x and in time N∆t are propor-
tional to Reynolds, so for an industrial application, where Re u 106, the amount
of data N is:

N = 4(N∆x)3N∆t ≈ 4Re11/4 ≈ 1017

Reynolds Averaged Navier-Stokes (RANS) The generic variable can be
written as the sum of its mean, or averaged, value and its fluctuation φ = φ̄ + φ

′

so the governing equation of continuity 5.3 and momentum balance 5.5 can be
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rewritten as:

∂ρ

∂t
+∇ · (ρū) = 0 (5.13)

∂

∂t
(ρū) +∇ · (ρū⊗ ū) = −∇ · p̄I +∇ · (T + TRANS) + fb (5.14)

where the over-bar indicates the averaged value, I is the identity tensor, T is the
viscous stress tensor and fb the resultant of body forces. The new term given by
TRANS contains the adding terms ρuiuj, arose from Reynolds decomposition into
mean value and fluctuation, and the turbulent kinetic energy k. These so-called
Reynolds stresses make the number of unknown variables exceeds the number of
equation, so the system is open; it is known as problem of closure of Reynolds av-
eraged equations. A way to close the system, ie. express the Reynolds stress tensor
as a function of the mean flow velocity, is the introduction of the eddy viscosity
starting from the analogy between molecular gradient-diffusion and turbulent mo-
tion (Boussinesq hypothesis). This formulation led to express the components of
Reynolds stress tensor as :

τij = ρ(ν + νT )
(
∂ūi
∂xj

+ ∂ūj
∂xi

)
(5.15)

So the focus is now to define the eddy viscosity νT . There are various methods to
do so and the most used are briefly reported:

• Mixture Lenght Model : it is 0-th order model where νT is proportional to
the derivative of mean velocity with respect to the distance y through the
vonKarmann constant κ = 0.41

• K Model: a 1-st order model where the eddy viscosity is proportional to the
turbulent kinetic energy K:

K̄ = 1
2 ¯uiuj ⇒ νT ∝

√
K̄

• K−εModel: a 2-equation model that solves equations forK and the turbulent
dissipation rate ε while this last one variable was before treated as known, given
K.

• K − ω Model: like the previous is a 2-equation model, but instead of the
dissipation rate ε, the second equation solves for ω ∝ ε/K the dissipation rate
per unit turbulent kinetic energy, in order to obtain the eddy viscosity νT .

Large Eddy Simulation (LES) As said a direct simulation of all scale, even the
smallest (the Kolmogorov scale) is far costly and it is not practical and available for
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what concerns industrial, or in general, engineering problems. Turbulence carries
a wide range of scale: the largest scales’ nature is convective and so dominated by
high Reynolds, recalling the energy cascade, we find the intermediate scale whose
are responsible for the energy transfer from largest so smallest, so these last one
have dissipative nature and through the viscosity convert kinetic energy into heat.
Hence smallest scale are dominated by low Reynolds, short characteristic time and
decay exponentially, so the basis idea of LES is to model the smallest scale in order
to obtain a simulation with the accuracy close to a DNS, solving large and medium
scales, but affordable like a RANS, modeling smallest vortices, through a spatial
filter. LES techniques are commonly used in weather forecasting.

5.2 Validation of CFD simulations
Within the scope of this thesis about VIVs simulation for an energy harvester, this
section describes the validation of the numerical CFD model usign the commercial
solver STAR-CCM+ by Siemens.

Firstly a domain and grid validation was carried for a steady case of turbulent
flow around cylinder, the outcomes are the discretization errors and grid conver-
gence plot.

Secondly a time discretization validation was assessed to obtain a stable simula-
tion in terms of frequencies, so Strhoual, and compared to values found in literature
and obtained through numerical model of the previous chapter.

In the following section the validated model is described and finally the results
in the last section of this chapter are reported.

5.2.1 Domain determination and mesh type
The very first important step in a CFD simulation is the determination of the
domain and at the same time the evaluation of grid type, according the options
available in the software.
For the problem considered the best choice is surely a rectangular domain and
because of the importance of the wake a refinement is needed in that zone.

5.2.2 Mesh quality
In this section the criteria given by STAR-CCM+ are reported in order to describe
the quality of a mesh grid.

Face validity This feature describes the validity of a 2D mesh element in terms
of an are-weighted measure. As reported in the Fig.5.3 below the normal vectors
point outwards with the respect to the cell’s centroid; in such a case the value is 1.
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Volume change The volume change metric describes the ratio of the volume of
a cell to that of its largest neighbor.

Cell quality It is a function not only of the relative geometric distribution of the
cell centroids of the face neighbor cells, but also of the orientation of the cell faces.
Generally, flat cells with highly non-orthogonal faces have a low cell quality.

Skewness angle This skewness angle θ, according the Fig.5.6 below, measures
whether the cells on either side of a face are formed in such a way as to permit diffu-
sion of quantities without these quantities becoming unbounded. An angle of zero
indicates a perfectly orthogonal mesh and cells with a skewness angle greater than
85◦ are considered as bad. Furthermore angle greater than 90◦ cause convergence
issues.

Figure 5.3: Face validity
Figure 5.4: Volume change

Figure 5.5: Cell quality Figure 5.6: Skewness angle

In order to evaluate the best mesh type all the setups allowed by the software
have been analyzed. The Figs.5.7, 5.8 and 5.9 below report the configurations
considered, respectively triangular, polyhedral and quadrilateral. Results are
obtained concerning the quality measures introduced are reported in the Tab. 5.2.2.
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TRIA POLY QUAD
MIN MAX MIN MAX MIN MAX

SA — 3.46E+01 — 3.86E+01 — 2.85E+01
CQ 5.24E-05 — 5.44E-05 — 5.26E-05 —
VC 4.27E-01 — 1.59E-01 — 3.19E-01 —

Table 5.1: Mesh quality measures in grid analysis

The outcomes in Tab.5.2.2 indicates respectively the kewness angle SA, the cell
quality CQ and the volume change VC. The best choice is to be found in maximum
between minimum values of volume change and results to be the triangular mesh.

5.2.3 Domain size

It has been verified that the inlet and outlet surface size does not affect the solu-
tion [33], nevertheless the good practices recommend to use a semi-height size for
both inlet and outlet equal to 10 times the cylinder diameter. In the case consid-
ered coming out from the dimensional analysis it is taken into account a diameter
D = 0.16 m so a total height of 3.2m for inlet and outlet boundaries. The same
reasoning is applied to the distance inlet-cylinder.
It is a slightly different case for the outlet distance in which a different behav-
ior arises varying the space between cylinder and outlet. In order to achieve a
best compromise to avoid a huge domain a simulation at low Reynolds has been
conducted and Sthroual number evaluated to select the minimum stable distance
between cylinder and outlet. The vortex shedding was analyzed and the follow-
ing example Fig.5.11 shows the vorticity at Re = 75. Five simulation, varying
the length cylinder-outlet, have been conducted to evaluate the Sthroual number
obtaining the frequency from the coefficient of lift CL time history, an example is
shown in Fig.5.12. The distance varies from 7 times the diameter up to 40 and
results in terms of Strouhal number are reported in the following Tab5.2.3. Where
the percentage error in the third column is evaluated considering the Sthroual dif-
ference with respect to the previous case and normalized on the case considered. It
is noteworthy the absence of shedding phenomenon in the case 7D, ie. a distance
cylinder-outlet equal to 1.12m; in such a case a prevalent frequency is not observ-
able so the Strouhal cannot be evaluated. According to the results in Tab.5.2.3, as
best result the case 30D was chosen.
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Figure 5.7: Triangular Mesh

Figure 5.8: Polyhedral Mesh

Figure 5.9: Quadrilateral mesh

Figure 5.10: Mesh setups in grid quality analysis
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Figure 5.11: Simulation at low Reynolds number Re = 75 to observe vortex shed-
ding for the evaluation of Sthroual and distance between cylinder and outlet

Figure 5.12: Drag and Lift coefficient at low Re Re = 75 in domain size analysis
and frequency analysis through Fast Fourier Transformation FFT.

Case St Err%
7D —
10D 0.16985 —
25D 1.1715 85.501%
30D 1.17299 0.1267%
40D 1.17365 0.0564%
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Table 5.2: Strhoual numbr at low Reynolds Re to evaluate the distance between
cylinder and outlet face.

The outcome of the domain size analysis is the geometry in Fig.5.13 where the
origin coincides with the center of cylinder of diameter D = 0.16m, both inlet and
outlet heights are 1.6m, the distance inlet-diameter is 10 times the diameter and
the gap cylinder-outlet equal to 30 times the diameter 4.8m.

Figure 5.13: Domain geometry in CAD environment.

5.2.4 Number of cells

Given the mesh type by quality measures and the domain size by a frequency
analysis of vortex shedding at low Re, a grid study in terms of cell number was
conducted. Starting from a coarse grid a refinement was carried on until the finest
mesh permitted by the RAM available. In detail, maintaining unchanged all over
the mesh parameter fixed by the analysis above and fixed the domain dimensions,
the refinement was achieved varying the so-called Base Size. Citing [24] "The Base
Size is a characteristic dimension of the model that you set before using any relative
values. As general examples, you can set the base size to the diameter of an inlet,
the length of the fluid volume, or a size that is convenient for scaling other values".
This feature allows to keep the consistency of the mesh, so not varying all the other
parameters resumed as follows.
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Part Parameter Value Description

Domain

Base Size Varying Reference length for all relative size controls

Target Size 100% Face size that mesher aims to achieve

Minimum Size 25% Remove mesh edges below this size where feasible

Curvature 36 Number of points per circle

Growth Rate 1.1 Maximum size ratio of connected edges

Refinement Size 7.5% Volumetric control of refinement size

Cylinder
Target Size 7.5% Size aimed around cylinder

Minimum Size 3% Minimum face size where feasible

Growth Rate 1.05 Size ratio of connected edges

Table 5.3: 2D triangular mesher parameters.

In this analysis’ stage a same 2D simulation at low Reynolds was carried out and
the convergence was achieved in terms of the drag coefficient CD. Varying Base
Size from a greater to a smaller value means to increase the number of cell; for
each simulation the coefficient was obtained as reported below both in tabular and
chart form.

Figure 5.14: No. cells convergence

Base size No.cells CD
m % # —

0.240 150 42714 1.58674
0.200 125 56716 1.58989
0.160 100 84410 1.59866
0.140 87.5 102062 1.59989
0.120 75 143064 1.59998
0.100 62.5 170728 1.6001
0.080 50 294750 1.60022
0.040 25 1055488 1.60025

Table 5.4: Convergence data

According to the analysis and results in Fig.5.14 and Tab.5.4 the minimum number
of element to obtain an accurate solution is about 100k corresponding to a base
size of 85% with respect of cylinder diameter D = 0.16m.
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5.2.5 Discretization Error
A further analysis could be done estimating the discretization error using the Grid
Convergence Index GCI due to Roache [21] based the extrapolation by Richardson.
The GCI is a measure of the difference between the quantity calculated and the
numerical asymptotic value obtainable from a negligible spacing grid. A consistent
numerical analysis will provide a result which approaches the actual result as the
grid resolution approaches zero. It is an alternative way respect the traditional
convergence analysis, where rigorously the exact solution must be considered; in
fact in most practical problems the exact solution is unknown.
Defining h the grid discretization parameter, in our case the minimum cell size,
three grids from a coarsest to a finest are considered, so h1 < h2 < h3. The grid
refinement is defined as:

rij = hj
hi

(5.16)

The solution is done for all the three cases and it is fi for the i-th case. So the
order of convergence p is:

p =
ln
(
f3 − f2

f2 − f1

)
ln r (5.17)

The Richardson Extrapolation let to write the exact quantity fex as :

fex ≈ f1 −
f2 − f1

rp21 − 1 (5.18)

Where the grid refinement r21 is considered as the ratio between the mesh case 2
over the 1. From the Eq.5.18 it is possible to define the relative error between two
finest grids by:

e21 =
∣∣∣∣∣f2 − f1

f1

∣∣∣∣∣ (5.19)

Rewriting the equations three time for all the cases the following system of equation
is reached: 

p = ln(f32/f21) + q(p)
ln r21

q(p) = ln r
p
21 − s
rp32 − s

s = signf32

f21

(5.20)

where fij = fi − fj and the iterative equation is resolved starting from the initial
guess q(p) = 0. Finally the GCI is given by:

GCI21 = Fs
e21

rp21 − 1 (5.21)
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Where Fs = 1.25 is a safety factor and is based on experience applying GCI in
many situation by Roache[21].
Such a method is applied for the case at base size equal to 87.5% in Tab.5.4 and the
outcomes are reported in the report output 5.2.5. The computation was performed
through a Fortran90 code available from NASA website [29].

−−− VERIFY: Performs v e r i f i c a t i o n c a l c u l a t i o n s −−−

Number o f data s e t s read = 3

Grid S i z e Quantity

0 .120000 1.599980
0.140000 1.599890
0.160000 1.598660

Order o f convergence us ing f i r s t th ree f i n e s t g r id
and assuming constant g r id re f inement (Eqn . 5 . 1 0 . 6 . 1 )
Order o f Convergence , p = 1.6963443

Richardson Extrapo lat ion : Use above order o f convergence
and f i r s t and second f i n e s t g r i d s (Eqn . 5 . 4 . 1 )
Estimate to zero g r id value , f \_exact = 1.59998715

Grid Convergence Index on f i n e g r i d s . Uses p from above .
Factor o f Sa fe ty = 1.25000000

Grid Refinement
Step Ratio , r GCI(%)
1 2 1.166667 0.000555
2 3 1.142857 0.011132

Checking f o r asymptot ic range us ing Eqn . 5 . 1 0 . 5 . 2 .
A r a t i o o f 1 . 0 i n d i c a t e s asymptot ic range .

Grid Range Ratio
12 23 0.681505

−−− End o f VERIFY −−−

The GCI index results to be fine, with respect to the coarser grid is about 0.011%,
while respecting the finer one is really negligible and equal to 0.0005%. Hence a
further thickening of the mesh grid is not required.
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5.3 Simulations
In this section the 2D simulation of vortex induced vibration concerning the cylinder
carried out from the dimensional analysis and design of the pertinent chapter, are
reported. Since the huge amount of data and computational costs in terms of time,
5 cases were analyzed in order to compare amplitude ratio with the outcomes of
numerical model.

Case S1 S2 S3 S4 S5
Reduced Velocity 2.5 4.0 5.2 6.5 8.0

Table 5.5: Cases analyzed

5.3.1 Domain and Mesh
Domain dimensions analyzed in the grid convergence and size design section are
shown in the following Fig.5.15 and for the sake of clarity the dimensions are sum-
marized in Tab.5.6.

Figure 5.15: Domain sizes in VIVs simulation

Cylinder Diameter D 0.16m
Inlet-cylinder distance 1.6m

Cylinder-Outlet distance 4.8m
Inlet/Outlet height 3.2m
Overset square side 0.5m

Table 5.6: Domain geometric characteristics
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The triangular mesher in CAE enviroment STAR-CCM+ was chosen after the
considerations in the previous step through the mesh quality measures. In the
following Fig.5.16 three regions are indicated: Domain, Refinement and Overset.
The second one allow to refine gradually the mesh size in order to avoid a growth
rate too high and so allows a better accuracy without placing too much in terms
of number of cells. This Refinement in wake region has a total length equal to
4.0m and height of 0.9m. The mesh size in this region are imposed as a volumetric
control and its value is equal to 7.5% of the base size equal to 85% of cylinder
diameter.

Figure 5.16: Mesh regions in VIVs simulation

5.3.2 Overset Mesh
Overset meshes are also known as Chimera or overlapping meshes. An overset mesh
typically containing a body of interest such as a boat or a gear is superimposed on
a background mesh containing the surrounding geometry and data is interpolated
between the two. This approach allows complex motions without remeshing tech-
niques that would involve the whole domain, so reducing solving time.
Overset meshes typically involve a background mesh adapted to the environment
and one or more overset grids attached to bodies, overlapping with the background
mesh. In the Fig.5.17 is represented the data transfer between overset mesh (red)
and background mesh (blue). Acceptor cells (dotted line) provide information for
the calculation of active cell center values (orange and blue). For each acceptor cell,
donr cells must be found and this set depends on the interpolation method and on
the number of active cells in the donor region around the acceptor cell centroid.
Active cells are those ones in which discretizing governing equations are solved.
In the simulations conducted and exposed in this thesis a least square interpolation
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Figure 5.17: Data transfer between overset mesh and background

was chosen and the following Fig.5.18 indicate the overset cell type, ie. the blue
ones are the donor cells and the red cells are the acceptors, the contour indicates
that all cells are active.

Figure 5.18: Overset Cell Status

5.3.3 DFBI Solver
The DFBI (Dynamic Fluid Body Interaction) is the module to simulate motion of
a rigid body, ie. an object in which the relative distance between internal points
does not change, in response to forces exerted by physics continuum and any ad-
ditional forces and couplings defined by the user. It is a 6DoF solver, but in our
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case, conducting 2D simulations the degree of freedom are naturally limited to the
translation along cross direction y.
The effect of the motion of the cylinder on the fluid is accounted for by moving the
entire fluid mesh rigidly using the overset technique above.
Since the cylinder is physically connected to a spring a body coupling is requested,
so the body in connected to the domain through a linear spring which an elastic
force tends to restore the equilibrium state or in this case the resonance induced
by vortices. the Fig.5.19 below shows the linear spring coupling implemented.
As regards the damping obtained by the numerical analysis in previous chapter a

Figure 5.19: Linear spring coupling

damping force proportional to the body’s velocity was defined in DFBI setup as
an external force acting with respect to the center of mass of the body.

5.3.4 Model Setup
Once the mesh operations were completed, the model setup followed starting from
the definition of the boundary conditions considering the turbulence specification
for a K − ε model:

• Domain Region:
Inlet: the velocity is specified in components V = ui+ vj where, since the

flow is uniform and totally directed along the x-axis v = 0. Regarding tur-
bulence the specification are implemented specifying Intensity and Length
Scale. Best practices and theory state to use the 7% of the inlet size for the
Length Scale and the Turbulence Intensity I was calculated as follow:

I =
√

1.5v2
t

U2 (5.22)

where vt is the turbulent velocity scale equal to the 10% of the free-stream
velocity U .

Outlet: pressure boundary defined in Pa
Top and Bottom walls: symmetry planes with zero shear.
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• Overset Region:
Boundaries: is the overlap region in which acceptors and donors are de-

fined.
Cylinder: smooth wall with a dynamic overset behaviour and a no-slip

shear stress specification. The boundary layer is modeled through the Prism
Layer Mesh in order to obtain a low y+ with 10 number of layers, a near
wall thickness of about yw = 4.08 · 10−5m and a total thickness of 1cm. The
estimation was conducted considering the boundary layer theory [23] using the
force coefficient expression cf = 0.058 ·Re−0.2; and a target y-plus equal to 1.

Figure 5.20: Prism Layer Mesh

As regard the DFBI module the cylinder is implemented as a rigid body, being 2D
the motion is 1DoF translating in y-direction. The center of mass coincide with
the global coordinate system origin and the mass of cylinder is equal to 51.57kg.
Damping force and spring constant are respectively 35.52Ns/m and 955.61N/m. In
order to a stable solution it was set a delay time of 0.1s before calculation of body
motion begins. This so-called release time allows some time for the fluid flow to
initialize. Furthermore a ramp time of 1s was imposed because at release time,
force and moments are applied to the body can cause a shock effect.

Solver properties

Time marching model selected is the Implicit Unsteady. Firstly an adaptive time
stepping was used in order to obtain a relatively small CFL, it was noticed that,
even for an implicit time marching, the solution does not converge if the physical
time step value is high. After the first simulations a fixed time step equal to 0.001s
was selected for the sake of clarity during post-processing and analysis of results.
Temporal discretization is a 1-st order accuracy.
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The 6DoF solver was set to 10 maximum number of iteration within a time-step.
The governing equations are solved in a coupled manner selecting the Coupled
Solver with a 2nd order discretization accuracy with first a low value for the
Courant number, then increased to 50 as suggested by user guides.
Turbulence is modeled through the Realizable K − ε that contains a different
form of the ε turbulent dissipation rate equation. This model is recommended for
high Reynolds simulations.
Finally about fluid a constant density, so incompressible flow, were set up consider-
ing seawater with density ρ = 1026kg/m3 and dynamic viscosity µ = 0.00123Pa s.

5.4 Results
For each simulation from the smallest reduced velocity to the largest, results are
reported in terms of scalar scenes e plots. In a next step the outcomes are post-
processed in order to be compared to numerical Matlab model presented in the 4th
chapter.
Furthermore two probes have been included in the simulation in order to evaluate
shedding at cylinder downstream.

5.4.1 Simulation at Ur = 2.5
A first simulation is conducted for a reduced velocity Ur = 2.5. So the boundary
conditions for the velocity inlet are the following:

Ur U vt I

2.5 0.2740 0.0274 0.1224

Table 5.7: Velocity inlet BC for Ur = 2.5

This first case considered carried out come problems inherent to the initial tran-
sitory Fig.5.24. Strong oscillations occurred are reported in the charts below. It
should be noted that transitory oscillations led to a bad computation od drag co-
efficient in Fig.5.26.
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Figure 5.21: Velocity Magnitude scene for Ur = 2.5

Figure 5.22: Vorticity Magnitude scene for Ur = 2.5

Figure 5.23: Residuals for Ur = 2.5
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Figure 5.24: Translation plot for Ur = 2.5

Probe 1

Probe 2

Figure 5.25: Probes Velocity for Ur = 2.5
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Lift Coefficient

Drag Coefficient

Figure 5.26: Lift and Drag Coefficients for Ur = 2.5
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5.4.2 Simulation at Ur = 4.0
The second simulation S2 were conducted at the reduced velocity of Ur = 4.0.

Ur U vt I

4 0.4384 0.0438 0.1224

Table 5.8: Velocity inlet BC for Ur = 4.0

Figure 5.27: Velocity Magnitude scene for Ur = 4.0

Figure 5.28: Vorticity Magnitude scene for Ur = 4.0

In this case the VIV phenomenon starts to rise, vortex shedding is evident with
respect to probes measures in Fig.5.33. Lift coefficient oscillates around zero and
drag rises as expected. Performing an FFT analysis about translation a frequency
equal to 7.4Hz was calculated as plotted in Fig.5.32.
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Figure 5.29: CFL scene for Ur = 4.0

Figure 5.30: Residuals for Ur = 4.0
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Figure 5.31: Translation plot for Ur = 4.0

Figure 5.32: Response spectrum for Ur = 4.0
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Probe 1

Probe 2

Figure 5.33: Probes Velocity for Ur = 4.0

Lift Coefficient

Drag Coefficient

Figure 5.34: Lift and Drag Coefficients for Ur = 4.0
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5.4.3 Simulation at Ur = 5.2
In this simulation the design reduced speed equal to 5.2 was set.

Ur U vt I

5.2 0.57 0.057 0.1224

Table 5.9: Velocity inlet BC for Ur = 5.2

Figure 5.35: Velocity Magnitude scene for Ur = 5.2

Figure 5.36: Vorticity Magnitude scene for Ur = 5.2
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Figure 5.37: CFL scene for Ur = 5.2

Figure 5.38: Residuals for Ur = 5.2
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Figure 5.39: Translation plot for Ur = 5.2

Figure 5.40: Response spectrum for Ur = 5.2
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Probe 1

Probe 2

Figure 5.41: Probes Velocity for Ur = 5.2

Lift Coefficient

Drag Coefficient

Figure 5.42: Lift and Drag Coefficients for Ur = 5.2
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5.4.4 Simulation at Ur = 6.5
In this simulation the reduced velocity was increased to Ur = 6.5. It was expected
a termination of VIV phenomenon, expectation that is confirmed by results below.
Vortex shedding still occurs but gradually fades over time, as well as the translation
response.

Ur U vt I

6.5 0.7125 0.0712 0.1224

Table 5.10: Velocity inlet BC for Ur = 6.5

Figure 5.43: Velocity Magnitude scene for Ur = 6.5

Figure 5.44: Vorticity Magnitude scene for Ur = 6.5
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Figure 5.45: CFL scene for Ur = 6.5

Figure 5.46: Residuals for Ur = 6.5
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Figure 5.47: Translation plot for Ur = 6.5

Figure 5.48: Response spectrum for Ur = 6.5
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Probe 1

Probe 2

Figure 5.49: Probes Velocity for Ur = 6.5

Lift Coefficient

Drag Coefficient

Figure 5.50: Lift and Drag Coefficients for Ur = 6.5
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5.4.5 Simulation at Ur = 8.0

Ur U vt I

8 0.8769 0.0876 0.1224

Table 5.11: Velocity inlet BC for Ur = 8.0

Figure 5.51: Velocity Magnitude scene for Ur = 8.0

Figure 5.52: Vorticity Magnitude scene for Ur = 8.0
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Figure 5.53: CFL scene for Ur = 8.0

Figure 5.54: Residuals for Ur = 8.0
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Figure 5.55: Translation plot for Ur = 8.0

Figure 5.56: Response spectrum for Ur = 8.0

95



5 – Computational Fluid Dynamics analysis

Probe 1

Probe 2

Figure 5.57: Probes Velocity for Ur = 8.0

Lift Coefficient

Drag Coefficient

Figure 5.58: Lift and Drag Coefficients for Ur = 8.0
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